Science.gov

Sample records for al exclusion mechanism

  1. Dissociable Brain Mechanisms for Processing Social Exclusion and Rule Violation

    PubMed Central

    Bolling, Danielle Z.; Pitskel, Naomi B.; Deen, Ben; Crowley, Michael J.; McPartland, James C.; Mayes, Linda C.; Pelphrey, Kevin A.

    2010-01-01

    Social exclusion inherently involves an element of expectancy violation, in that we expect other people to follow the unwritten rule to include us in social interactions. In this functional magnetic resonance imaging (fMRI) study, we employed a unique modification of an interactive virtual ball-tossing game called “Cyberball” (Williams et al., 2000) and a novel paradigm called “Cybershape”, in which rules are broken in the absence of social exclusion, to dissociate brain regions that process social exclusion from rule violations more generally. Our Cyberball game employed an alternating block design and removed evoked responses to events when the participant was throwing the ball in inclusion to make this condition comparable to exclusion, where participants did not throw. With these modifications, we replicated prior findings of ventral anterior cingulate cortex (vACC), insula, and posterior cingulate cortex activity evoked by social exclusion relative to inclusion. We also identified exclusion-evoked activity in the hippocampi, left ventrolateral prefrontal cortex, and left middle temporal gyrus. Comparing social exclusion and rule violation revealed a functional dissociation in the active neural systems as well as differential functional connectivity with vACC. Some overlap was observed in regions differentially modulated by social exclusion and rule violation, including the vACC and lateral parietal cortex. These overlapping brain regions showed different activation during social exclusion compared to rule violation, each relative to fair play. Comparing activation patterns to social exclusion and rule violation allowed for the dissociation of brain regions involved in the experience of exclusion versus expectancy violation. PMID:20974272

  2. Dissociable brain mechanisms for processing social exclusion and rule violation.

    PubMed

    Bolling, Danielle Z; Pitskel, Naomi B; Deen, Ben; Crowley, Michael J; McPartland, James C; Mayes, Linda C; Pelphrey, Kevin A

    2011-02-01

    Social exclusion inherently involves an element of expectancy violation, in that we expect other people to follow the unwritten rule to include us in social interactions. In this functional magnetic resonance imaging (fMRI) study, we employed a unique modification of an interactive virtual ball-tossing game called "Cyberball" (Williams et al., 2000) and a novel paradigm called "Cybershape," in which rules are broken in the absence of social exclusion, to dissociate brain regions that process social exclusion from rule violations more generally. Our Cyberball game employed an alternating block design and removed evoked responses to events when the participant was throwing the ball in inclusion to make this condition comparable to exclusion, where participants did not throw. With these modifications, we replicated prior findings of ventral anterior cingulate cortex (vACC), insula, and posterior cingulate cortex activity evoked by social exclusion relative to inclusion. We also identified exclusion-evoked activity in the hippocampi, left ventrolateral prefrontal cortex, and left middle temporal gyrus. Comparing social exclusion and rule violation revealed a functional dissociation in the active neural systems as well as differential functional connectivity with vACC. Some overlap was observed in regions differentially modulated by social exclusion and rule violation, including the vACC and lateral parietal cortex. These overlapping brain regions showed different activation during social exclusion compared to rule violation, each relative to fair play. Comparing activation patterns to social exclusion and rule violation allowed for the dissociation of brain regions involved in the experience of exclusion versus expectancy violation. PMID:20974272

  3. QCD mechanisms of (semi)exclusive Drell-Yan processes

    SciTech Connect

    Pivovarov, A.A.; Teryaev, O.V.

    2015-04-10

    Two mechanisms for the lepton pair production in exclusive proton-meson collisions are considered and compared. Amplitudes and differential cross sections are calculated. The interference of these mechanisms is taken into account. The skewness dependence of the result is discussed.

  4. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  5. Emerging mechanisms of molecular pathology in ALS

    PubMed Central

    Peters, Owen M.; Ghasemi, Mehdi; Brown, Robert H.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease characterized by progressive loss of motor neurons in the motor cortex, brainstem, and spinal cord. Although defined as a motor disorder, ALS can arise concurrently with frontotemporal lobal dementia (FTLD). ALS begins focally but disseminates to cause paralysis and death. About 10% of ALS cases are caused by gene mutations, and more than 40 ALS-associated genes have been identified. While important questions about the biology of this disease remain unanswered, investigations of ALS genes have delineated pathogenic roles for (a) perturbations in protein stability and degradation, (b) altered homeostasis of critical RNA- and DNA-binding proteins, (c) impaired cytoskeleton function, and (d) non-neuronal cells as modifiers of the ALS phenotype. The rapidity of progress in ALS genetics and the subsequent acquisition of insights into the molecular biology of these genes provide grounds for optimism that meaningful therapies for ALS are attainable. PMID:25932674

  6. The Al-Al3Ni Eutectic Reaction: Crystallography and Mechanism of Formation

    NASA Astrophysics Data System (ADS)

    Fan, Yangyang; Makhlouf, Makhlouf M.

    2015-09-01

    The characteristics of the Al-Al3Ni eutectic structure are examined with emphasis on its morphology and crystallography. Based on these examinations, the mechanism of formation of this technologically important eutectic is postulated. It is found that a thin shell of α-Al forms coherently around each Al3Ni fiber. The excellent thermal stability of the Al-Al3Ni eutectic may be attributed to the presence of this coherent layer.

  7. NbAl Intelligent Material Through Mechanical Alloying

    SciTech Connect

    Chinniah, K.; Aikra, K.

    2010-03-11

    An intelligent material of Nb-Al composite, is expected to produce intermetallics phase instantaneously upon collision with hypervelocity space debris to stop the crack propagation. Intermetallics-free MA powder with Nb dispersion in Al matrix is targeted. Nb-Al powders are mechanically alloyed using agate media. Mechanical alloying (MA) with agate media produced fine intermetallics-free powder of Nb dispersion in Al matrix. Intermetallics-free critical MA powder curve for agate media were established. The optimum critical agate MA powder of 200 rpm 132 hours had intelligent properties.

  8. Amorphous powders of Al-Hf prepared by mechanical alloying

    SciTech Connect

    Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H.; Tiainen, T.

    1988-01-01

    We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.

  9. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  10. Preparation, structure and mechanical properties of RuAl and (Ru,Ni)Al alloys

    SciTech Connect

    Sabariz, A.L.R.; Taylor, G.

    1997-12-31

    The intermetallic compound, RuAl with B2 CsCl type structure, has been shown to possess room-temperature toughness and plasticity. NiAl also forms a B2 compound and it is claimed that a pseudo-binary compound, (Ru,Ni)Al, may be formed because the difference in lattice parameter between the two binary phases is slight. In this work a study has been made of the mechanical properties of some polycrystalline compounds, across the RuAl-(Ru,Ni)Al pseudo-binary, prepared from high-purity elemental powders. Compressive yield stresses were measured between room-temperature and 900 C, and the mechanisms of plastic flow are discussed in relation to the dislocation structures observed by TEM. Hot-microhardness tests were made to provide an indication of the effect of solid-solution hardening.

  11. Physical and mechanical metallurgy of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  12. Transport mechanisms of leakage current in Al2O3/InAlAs MOS capacitors

    NASA Astrophysics Data System (ADS)

    Jin, Chengji; Lu, Hongliang; Zhang, Yimen; Zhang, Yuming; Guan, He; Wu, Lifan; Lu, Bin; Liu, Chen

    2016-09-01

    An Al2O3 layer is inserted between the InAlAs layer and the metal gate in InAs/AlSb HEMTs to suppress the leakage current. The transport mechanisms of leakage current in Al2O3/InAlAs metal-oxide-semiconductor (MOS) capacitors at both positive and negative biases at different temperatures ranging from 10 °C to 70 °C are investigated. For positive bias, the leakage current is dominated by Schottky emission. Based on the fitted straight lines, the relative dielectric constant of Al2O3 and the barrier height between Al2O3 and InAlAs are extracted. However, for negative bias, the leakage current is dominated by Frenkel-Poole (F-P) emission and the depth of the trap energy level from the conduction band (ϕt) is extracted. Furthermore, authors explain the reason why the dominating mechanisms at positive and negative biases are different.

  13. Mechanical and wear properties of Al-Al3Mg2 nanocomposites prepared by mechanical milling and hot pressing

    NASA Astrophysics Data System (ADS)

    Zolriasatein, A.; Khosroshahi, R. A.; Emamy, M.; Nemati, N.

    2013-03-01

    β-Al3Mg2 intermetallic was used as a reinforcing agent to improve the mechanical properties of an aluminum matrix. Different amounts of Al3Mg2 nanoparticles (ranging from 0wt% to 20wt%) were milled with aluminum powders in a planetary ball mill for 10 h. Consolidation was conducted by uniaxial pressing at 400°C under a pressure of 600 MPa for 2 h. Microstructural characterization confirms the uniform distribution of Al3Mg2 nanoparticles within the matrix. The effects of nano-sized Al3Mg2 content on the wear and mechanical properties of the composites were also investigated. The results show that as the Al3Mg2 content increases to higher levels, the hardness, compressive strength, and wear resistance of the nanocomposites increase significantly, whereas the relative density and ductility decrease. Scanning electron microscopy (SEM) analysis of worn surfaces reveals that a transition in wear mechanisms occurs from delamination to abrasive wear by the addition of Al3Mg2 nanoparticles to the matrix.

  14. Experimental tests of quantum mechanics: Pauli Exclusion Principle Violation (the VIP experiment) and future perspectives

    NASA Astrophysics Data System (ADS)

    Curceanu, C.; Bartalucci, S.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; di Matteo, S.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Vidal, A. Romero; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment established the world's best limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also shortly mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics.

  15. Mechanism and estimation of Al(OH) 3 crystal growth

    NASA Astrophysics Data System (ADS)

    Farhadi, Fatollah; Babaheidary, Masoud Bahrami

    2002-02-01

    Precipitation is an important stage of the Bayer process. For simulation of this section, growth-rate estimation of Al(OH) 3 crystals, is vital for the solution of population balance. Various published equations for linear growth rate of Al(OH) 3 are reviewed. In all of these equations, a square exponent was considered for supersaturation terms. In some of the previous works, it was believed that BCF model is the governing mechanism for surface growth of crystals. It is shown that polynuclear model is the most probable mechanism. Also, a modification of the best previous correlation is performed, which results in a considerable improvement of the growth-rate estimation over the available published experimental data.

  16. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  17. Refinement performance and mechanism of an Al-50Si alloy

    SciTech Connect

    Dai, H.S.; Liu, X.F.

    2008-11-15

    The microstructure and melt structure of primary silicon particles in an Al-50%Si (wt.%) alloy have been investigated by optical microscopy, scanning electron microscopy, electron probe micro-analysis and a high temperature X-ray diffractometer. The results show that the Al-50Si alloy can be effectively refined by a newly developed Si-20P master alloy, and the melting temperature is crucial to the refinement process. The minimal overheating degree {delta}T{sub min} ({delta}T{sub min} is the difference between the minimal overheating temperature T{sub min} and the liquidus temperature T{sub L}) for good refinement is about 260 deg. C. Primary silicon particles can be refined after adding 0.2 wt.% phosphorus amount at sufficient temperature, and their average size transforms from 2-4 mm to about 30 {mu}m. The X-ray diffraction data of the Al-50Si melt demonstrate that structural change occurs when the melting temperature varies from 1100 deg. C to 1300 deg. C. Additionally, the relationship between the refinement mechanism and the melt structure is discussed.

  18. Quantitative observations of dislocation mechanisms in gamma TiAl

    SciTech Connect

    Viguier, B.; Cieslar, M.; Martin, J.L.; Hemker, K.J.

    1995-08-01

    Quantitative TEM observations have been made on a series of gamma Ti{sub 47}Al{sub 51}Mn{sub 2} polycrystals that were deformed at different temperatures. Special attention has been given to determining the statistical variation of defect densities that occur at the different temperatures. The results, which are in good agreement with mechanical testing, indicate that three different mechanisms control deformation in this alloy: lattice friction and the formation of faulted dipoles at low temperatures, the pinning of ordinary dislocations at intermediate temperatures, and the bowing and looping of dislocations at high temperatures. The anomalous flow strength of this alloy has been found to be related to the intrinsic pinning of ordinary dislocations. Details of this pinning and subsequent unzipping process, which are the basis for the new local-pinning-unzipping (LPU) models, are outlined within.

  19. Mechanical analysis of UMo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Sohn, Dong-Seong

    2015-11-01

    Deformation of fuel particles and mass transfer from the transverse end of fuel meat toward the meat center was observed. This caused plate thickness peaking at a location between the meat edge and the meat center. The underlying mechanism for this fuel volume transport is believed to be fission induced creep of the U-Mo/Al meat. Fuel meat swelling was measured using optical microscopy images of the cross sections of the irradiated test plates. The time-dependent meat swelling was modeled for use in numerical simulation. A distinctive discrepancy between the predicted and measured meat thickness was found at the meat ends, which was assumed to be due to creep-induced mass relocation from the meat end to the meat center region that was not considered in the meat swelling model. ABAQUS FEA simulation was performed to reproduce the observed phenomenon at the meat ends. Through the simulation, we obtained the effective creep rate constants for the interaction layers (IL) and aluminum matrix. In addition, we obtained the corresponding stress and strain analysis results that can be used to understand mechanical behavior of U-Mo/Al dispersion fuel.

  20. Surface effects in atomistic mechanical simulations of Al nanocrystals

    NASA Astrophysics Data System (ADS)

    Munilla, Javier; Castro, Mario; Carnicero, Alberto

    2009-07-01

    Detailed knowledge of the mechanical properties of nanocrystals is crucial for understanding the behavior of micromachining devices. Determining experimentally the elastic and plastic properties of nanocrystals can be very challenging. In this work, we present molecular-dynamics simulations of mechanical properties of Al nanocrystals, both using Lennard-Jones and embedded-atom method potentials. We show that this kind of tests borrowed from mechanical engineering provide helpful insight on the mechanical behavior of nanocrystals. We also provide evidence suggesting that the small scale effects, mainly due to the small surface-to-volume ratio of nanocrystals, are crucial. The main results of our work are the failure of the thermodynamical relations connecting the applied stress and the material strain (additionally, we introduce a simple mathematical framework to account for this effect), the nonequilibrium behavior at the onset of the plastic deformation related to the appearance of long tails (power law) in the distribution of dissipated heat and, finally, the existence of conditions under which the system can experience reversible load-unload cycles in the plastic state.

  1. Interfacial microstructure and growth mechanism of Al4C3 in Grf/Al composites fabricated by liquid pressure method.

    PubMed

    Xu, Wang; Chenchong, Wang; Zhichao, Zhang; Ping, Liang; Yanhua, Shi; Guofu, Zhang

    2014-10-01

    In this study, Grf/Al composite was fabricated by liquid pressure method. The diffusion layer and the nucleation and growth of Al4C3 were observed at the interface of Grf/Al composites by TEM and HRTEM. The growth mechanism of Al4C3 was analyzed in detail by crystallography theory. It was found that Al4C3 had no phase relations with the carbon fiber. (0001) layer of Al4C3 was parallel with main growth direction. Both the diffusion layer at the interface and crystal structure of Al4C3 affected the shape of Al4C3. At a certain position, Al4C3 could connect two fibers when the fibers were close to each other. PMID:25041826

  2. Properties Evaluation and Studying Production Mechanism of Nanocrystalline NiAl Intermetallic Compound by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Khajesarvi, Ali; Akbari, Golamhossein

    2016-04-01

    Ni50Al50 intermetallic compound was synthesized by mechanical alloying (MA) of elemental mixtures of Ni and Al powders in a planetary ball mill. After 16 hours of milling and obtaining crystallites with a critical size, the initial NiAl compound was formed along with the combustive reaction after opening the vial lid. In the time interval of 16 to 128 hours, the reaction from combustive state reached the explosive state. Finally, after 128 hours of milling, the initial powders were wholly transformed into NiAl before completion of the milling time. Structural changes of powder particles during MA were studied by X-ray diffractometry and scanning electron microscopy. The crystallite size measurements revealed that the grain size of the NiAl phase decreased from 155 to 26 nm with increasing MA time from 8 to 128 hours. Microhardness for nanocrystalline Ni50Al50 intermetallic compound produced after 128 hours of milling was measured as about 350 Hv.

  3. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts.

    PubMed

    Ma, Liang; Chen, Zehua; Huang, Da Wei; Kutty, Geetha; Ishihara, Mayumi; Wang, Honghui; Abouelleil, Amr; Bishop, Lisa; Davey, Emma; Deng, Rebecca; Deng, Xilong; Fan, Lin; Fantoni, Giovanna; Fitzgerald, Michael; Gogineni, Emile; Goldberg, Jonathan M; Handley, Grace; Hu, Xiaojun; Huber, Charles; Jiao, Xiaoli; Jones, Kristine; Levin, Joshua Z; Liu, Yueqin; Macdonald, Pendexter; Melnikov, Alexandre; Raley, Castle; Sassi, Monica; Sherman, Brad T; Song, Xiaohong; Sykes, Sean; Tran, Bao; Walsh, Laura; Xia, Yun; Yang, Jun; Young, Sarah; Zeng, Qiandong; Zheng, Xin; Stephens, Robert; Nusbaum, Chad; Birren, Bruce W; Azadi, Parastoo; Lempicki, Richard A; Cuomo, Christina A; Kovacs, Joseph A

    2016-01-01

    Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses. PMID:26899007

  4. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts

    PubMed Central

    Ma, Liang; Chen, Zehua; Huang, Da Wei; Kutty, Geetha; Ishihara, Mayumi; Wang, Honghui; Abouelleil, Amr; Bishop, Lisa; Davey, Emma; Deng, Rebecca; Deng, Xilong; Fan, Lin; Fantoni, Giovanna; Fitzgerald, Michael; Gogineni, Emile; Goldberg, Jonathan M.; Handley, Grace; Hu, Xiaojun; Huber, Charles; Jiao, Xiaoli; Jones, Kristine; Levin, Joshua Z.; Liu, Yueqin; Macdonald, Pendexter; Melnikov, Alexandre; Raley, Castle; Sassi, Monica; Sherman, Brad T.; Song, Xiaohong; Sykes, Sean; Tran, Bao; Walsh, Laura; Xia, Yun; Yang, Jun; Young, Sarah; Zeng, Qiandong; Zheng, Xin; Stephens, Robert; Nusbaum, Chad; Birren, Bruce W.; Azadi, Parastoo; Lempicki, Richard A.; Cuomo, Christina A.; Kovacs, Joseph A.

    2016-01-01

    Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses. PMID:26899007

  5. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  6. Boron-modified Ni3Al intermetallic compound formed by spark plasma sintering of mechanically activated Ni and Al powders

    NASA Astrophysics Data System (ADS)

    Shevtsova, L. I.; Ogneva, T. S.; Mul, D. O.; Esikov, M. A.; Larichkin, A. Yu; Malikov, V. N.

    2016-04-01

    A Ni3Al intermetallic compound was obtained by spark plasma sintering of mechanically activated Ni and Al powders in atomic ratio 3:1 respectively. Samples with boron addition of 0.1 and 0.2% (wt.) and samples without boron were obtained. The maximum value of the relative density (~99 %) has been obtained for the material by sintering of mechanically activated mixture powders modified with 0.1% of boron. No differences have been found between the structure of boron-modified Ni3Al and Ni3Al without boron addition. The maximum level of bending strength (2200 MPa) has been achieved for Ni3Al with 0.1% (wt.) of boron. This value is almost 3 times the bending strength of the sample of Ni3Al sintered without boron addition.

  7. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    SciTech Connect

    Moon, I.H.; Lee, J.H.; Lee, K.M. . Dept. of Materials Engineering); Kim, Y.D. . Div. of Metals)

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al[sub 3]Ti phase, where the formation of the fine Al[sub 3]Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al[sub 3]Ti as well as Al[sub 4]C[sub 3] and Al[sub 2]O[sub 3], of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature.

  8. Processing and Mechanical Properties of Directionally Solidified NiAl/NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1994-01-01

    Promising creep strengths were found for a directionally solidified NiAl-NiAlTa alloy when compared to other NiAl based intermetallics. The directionally solidified alloy had an off-eutectic composition that resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of the two phase alloy was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Alloying additions that may improve the room temperature toughness by producing multiphase alloys are discussed.

  9. Mechanism of Corrosion in Al-Si-Cu

    NASA Astrophysics Data System (ADS)

    Hayasaka, Nobuo; Koga, Yuri; Shimomura, Koji; Yoshida, Yukimasa; Okano, Haruo

    1991-07-01

    An Al-Cu local cell was formed between the Cu precipitation and adjacent Al in an Al-Si-Cu alloy when Cu was added in excess to the alloy. Once an Al-Cu local cell was formed, corrosion took place simply by dipping the alloy in deionized water without any contamination. Furthermore, it was found that corrosion was enhanced at the Al-Si-Cu lines in contact with the p+-n junction of Si. The reason for this is that holes are injected into Al-Si-Cu from p+-Si due to electromotive force produced by light irradiation and an external circuit connecting the alloy and n-Si formed by the adsorption of moisture on the surface. Furthermore, it was found that the irradiation of light with a wavelength between 320 to 380 nm was most effective in enhancing the corrosion reaction.

  10. Molecular Mechanism for the Preferential Exclusion of TMAO from protein surfaces

    PubMed Central

    Canchi, Deepak R.; Jayasimha, Pruthvi; Rau, Don C.; Makhatadze, George I; Garcia, Angel E

    2012-01-01

    Trimethylamine N-oxide (TMAO) is a naturally occurring protecting osmolyte that stabilizes the folded state of proteins and also counteracts the destabilizing effect of urea on protein stability. Experimentally, it has been inferred that TMAO is preferentially excluded from the vicinity of protein surfaces. Here, we combine computer modeling and experimental measurements to gain an understanding of the mechanism of the protecting effect of TMAO on proteins. We have developed an all-atom molecular model for TMAO that captures the exclusion of TMAO from model compounds and protein surfaces, as a consequence of incorporating realistic TMAO-water interactions through osmotic pressure measurements. Osmotic pressure measurements also suggest no significant attraction between urea and TMAO molecules in solution. To obtain an accurate potential for molecular simulations of protein stability in TMAO solutions, we have explored different ways of parameterizing the protein/osmolyte and osmolyte/osmolyte interactions by scaling charges and the strength of Lennard-Jones interactions and carried out equilibrium folding experiments of Trp-cage miniprotein in presence of TMAO to guide the parameterization. Our calculations suggest a general principle for preferential interaction behavior of cosolvents with protein surfaces - preferentially excluded osmolytes have repulsive self-interaction given by osmotic coefficient φ > 1, while denaturants, in addition to having attractive interactions with the proteins, have favorable self-interaction given by osmotic coefficient φ < 1, to enable preferential accumulation in the vicinity of proteins. PMID:22970901

  11. Synthesis, characterization and mechanical properties of nanocrystalline NiAl

    SciTech Connect

    Choudry, M. |; Eastman, J.A.; DiMelfi, R.J.; Dollar, M.

    1996-11-01

    Nanocrystalline NiAl was produced from pre-cast alloys using an electron beam inert gas condensation system. In-situ compaction was carried out at 100-300 C under vacuum conditions. Energy dispersive spectroscopy was used to determine chemical composition and homogeneity. Average grain sizes in the range 4-10 nm were found from TEM dark field analyses. A compression-cage fixture was designed to perform disk bend tests. These tests revealed substantial room temperature ductility in nanocrystalline NiAl, while coarse grained NiAl showed no measurable room temperature ductility.

  12. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  13. Splat Formation and Adhesion Mechanisms of Cold Gas-Sprayed Al Coatings on Al2O3 Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Manygoats, K.; Schucknecht, T.; Rafaja, D.

    2014-01-01

    The metallization of ceramics by means of cold gas spraying (CGS) has been in the focus of numerous publications in the recent past. However, the bonding mechanism of metallic coatings on non-ductile substrates is still not fully understood. Former investigations of titanium coatings deposited on corundum revealed that a combination of recrystallization induced by adiabatic shear processes and hetero-epitaxial growth might be responsible for the high adhesion strengths of coatings applied on smooth ceramic surfaces. In the present work, the interface formation between CGS aluminum and alumina substrates is examined for different particle sizes and substrate temperatures. Furthermore, the influence of subsequent heat treatment on tensile strength and hardness is investigated. The splat formation of single particles is examined by means of scanning electron microscopy, while a high resolution transmission electron microscope is used to study the Al/Al2O3 interface. First results suggest that mechanical interlocking is the primary adhesion mechanism on polycrystalline substrates having the roughness in sub-micrometer range, while the heteroepitaxy between Al and Al2O3 can be considered as the main bonding mechanism for single-crystalline sapphire (α-Al2O3) substrates with the surface roughness in nanometer range. The heteroepitaxial growth is facilitated by deformation-induced recrystallisation of CGS aluminum.

  14. From Transcriptome to Noncoding RNAs: Implications in ALS Mechanism.

    PubMed

    Gagliardi, Stella; Milani, Pamela; Sardone, Valentina; Pansarasa, Orietta; Cereda, Cristina

    2012-01-01

    In the last years, numerous studies have focused on understanding the metabolism of RNA and its implication in disease processes but abnormal RNA metabolism is still unknown. RNA plays a central role in translating genetic information into proteins and in many other catalytic and regulatory tasks. Recent advances in the study of RNA metabolism revealed complex pathways for the generation and maintenance of functional RNA in amyotrophic lateral sclerosis (ALS). Interestingly, perturbations in RNA processing have been described in ALS at various levels such as gene transcription, mRNA stabilization, transport, and translational regulations. In this paper, we will discuss the alteration of RNA profile in ALS disease, starting from transcription, the first step leading to gene expression, through the posttranscriptional regulation, including RNA/DNA binding proteins and aberrant exon splicing to protein noncoding RNAs, as lncRNA and microRNA. PMID:22778949

  15. Mechanical anisotropy in sheets of {gamma}-TiAl alloys

    SciTech Connect

    Bartels, A.; Hartig, C.; Mecking, H.; Clemens, H.

    1997-12-31

    At room temperature sheets of {gamma}-TiAl exhibit a higher yield stress in the rolling direction than in the transverse direction. Around 700 C the opposite behavior is observed. The texture mainly consists of a modified cube component. The tetragonal c-axis <001> is aligned in the sheet plane transversely to the rolling direction. Taken into account this special texture and the single crystal yield surface of {gamma}-TiAl the authors conclude that around 700 C the CRSS of super-dislocations is higher than the CRSS of ordinary dislocations. At RT the relation changes to the opposite.

  16. Mechanical properties of submicron-grained TiAl alloys prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Oehring, M.; Appel, F.; Pfullmann, Th.; Bormann, R.

    1995-02-01

    Ti-48 at. % Al powders of the metastable hexagonal-closed-packed solid solution with a grain size of 15 nm were prepared by mechanical alloying. The powders were consolidated to a density of greater than 99.5% by hot isostatic pressing (HIP) at 800 °C. After HIP the material exhibits a globular microstructure of the equilibrium phases α2 and γ with a mean grain size of 150 nm. Microhardness measurements show a Hall-Petch type [E. O. Hall, Proc. Phys. Soc. B 64, 747 (1951); N. J. Petch, J. Iron Steel Inst. 174, 25 (1953)] dependence on grain size. Room temperature compression tests reveal low ductility, but high fracture strengths ≥1800 MPa. On increasing the test temperature the yield strength drops sharply in the temperature range 600-800 °C to very low values. The results indicate that submicron-grained TiAl alloys can be deformed at much lower temperatures than coarse-grained material, making them suitable as precursors for net shaping, in particular if high deformation ratios are required.

  17. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGESBeta

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; et al

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  18. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    SciTech Connect

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.

  19. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1992-01-01

    In preparation for experiments with surface modified Al2O3 reinforcements in (beta)NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al2O3, Al, Ni) and then composited with (beta)NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni3Al was studied.

  20. The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: light competition or stoichiometric homoeostasis?

    PubMed

    Yan, Junhua; Li, Kun; Peng, Xingju; Huang, Zhongliang; Liu, Shizhong; Zhang, Qianmei

    2015-01-01

    Competition for light has traditionally been considered as the main mechanism for exclusion of Pinus massoniana during succession in subtropical forest ecosystems. However, both long-term inventories and a seedling cultivation experiment showed that growth of mature individuals and young seedlings of P. massoniana was not limited by available light, but was strongly influenced by stoichiometric homoeostasis. This is supported by the results of homoeostatic regulation coefficients for nitrogen (HN) and phosphorus (HP) estimated using the measured data from six transitional forests across subtropical China. Among three dominant tree species in subtropical forests, P. massoniana and Castanopsis chinensis had the lowest values of HP and HN, respectively. Therefore P. massoniana cannot survive in the advanced stage due to soil phosphorus limitation and C. chinensis cannot successfully grow in the pioneer stage due to soil nitrogen limitation. Our results support that stoichiometric homeostasis is the main reason for gradual exclusion of P. massoniana from the transitional forest and the eventual elimination from the advanced forest during the subtropical forest succession. Therefore greater attention should be paid to stoichiometric homeostasis as one of the key mechanisms for species exclusion during forest succession. PMID:26046944

  1. The mechanism for exclusion of Pinus massoniana during the succession in subtropical forest ecosystems: light competition or stoichiometric homoeostasis?

    NASA Astrophysics Data System (ADS)

    Yan, Junhua; Li, Kun; Peng, Xingju; Huang, Zhongliang; Liu, Shizhong; Zhang, Qianmei

    2015-06-01

    Competition for light has traditionally been considered as the main mechanism for exclusion of Pinus massoniana during succession in subtropical forest ecosystems. However, both long-term inventories and a seedling cultivation experiment showed that growth of mature individuals and young seedlings of P. massoniana was not limited by available light, but was strongly influenced by stoichiometric homoeostasis. This is supported by the results of homoeostatic regulation coefficients for nitrogen (HN) and phosphorus (HP) estimated using the measured data from six transitional forests across subtropical China. Among three dominant tree species in subtropical forests, P. massoniana and Castanopsis chinensis had the lowest values of HP and HN, respectively. Therefore P. massoniana cannot survive in the advanced stage due to soil phosphorus limitation and C. chinensis cannot successfully grow in the pioneer stage due to soil nitrogen limitation. Our results support that stoichiometric homeostasis is the main reason for gradual exclusion of P. massoniana from the transitional forest and the eventual elimination from the advanced forest during the subtropical forest succession. Therefore greater attention should be paid to stoichiometric homeostasis as one of the key mechanisms for species exclusion during forest succession.

  2. Aluminum exclusion and aluminum tolerance in woody plants

    PubMed Central

    Brunner, Ivano; Sperisen, Christoph

    2013-01-01

    The aluminum (Al) cation Al3+ is highly rhizotoxic and is a major stress factor to plants on acid soils, which cover large areas of tropical and boreal regions. Many woody plant species are native to acid soils and are well adapted to high Al3+ conditions. In tropical regions, both woody Al accumulator and non-Al accumulator plants occur, whereas in boreal regions woody plants are non-Al accumulators. The mechanisms of these adaptations can be divided into those that facilitate the exclusion of Al3+ from root cells (exclusion mechanisms) and those that enable plants to tolerate Al3+ once it has entered the root and shoot symplast (internal tolerance mechanisms). The biochemical and molecular basis of these mechanisms have been intensively studied in several crop plants and the model plant Arabidopsis. In this review, we examine the current understanding of Al3+ exclusion and tolerance mechanisms from woody plants. In addition, we discuss the ecology of woody non-Al accumulator and Al accumulator plants, and present examples of Al3+ adaptations in woody plant populations. This paper complements previous reviews focusing on crop plants and provides insights into evolutionary processes operating in plant communities that are widespread on acid soils. PMID:23781222

  3. Beyond Quantum Mechanics? Hunting the `Impossible' Atoms --- Pauli Exclusion Principle Violation and Spontaneous Collapse of the Wave Function at Test

    NASA Astrophysics Data System (ADS)

    Piscicchia, K.; Curceanu, C.; Bartalucci, S.; Bassi, A.; Bertolucci, S.; Berucci, C.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Di Matteo, S.; Donadi, S.; D'Uffizi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Zmeskal, J.

    The development of mathematically complete and consistent models solving the so-called "measurement problem", strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper.

  4. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  5. Dissimilar Friction Stir Welds in Al5186-Al2024: The Effect of Process Parameters on Microstructures and Mechanical Properties

    SciTech Connect

    Mousavi, S. A. A. Akbari; ShamAbadi, S. H.

    2011-01-17

    The effect of tool traverse and rotation speeds on the microstructures and mechanical properties are quantified for welds between non-age-hardening Al5083 and age hardening Al2024 and compared to single alloy joints made from each of the two constituents. In this paper, we report the results of microstructural, mechanical property investigations of Al5186-Al2024 friction stir welds produced using various rotations and traveling speeds of the tool to investigate the effects of the welding parameters on the joint strength. Metallographic studies by optical microscopy, electron probe microscopy, and the utilization of the X-ray diffraction technique have been conducted. It was found that the weld properties were dominated by the thermal input rather than the mechanical deformation by the tool. In particular the larger stresses under the weld tool on the AA5186 side compared to the AA2024 side are related to a transient reduction in yield stress due to dissolution of the hardening precipitates during welding prior to natural aging after welding.

  6. Dissimilar Friction Stir Welds in Al5186-Al2024: The Effect of Process Parameters on Microstructures and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A. A. Akbari; ShamAbadi, S. H.

    2011-01-01

    The effect of tool traverse and rotation speeds on the microstructures and mechanical properties are quantified for welds between non-age-hardening Al5083 and age hardening Al2024 and compared to single alloy joints made from each of the two constituents. In this paper, we report the results of microstructural, mechanical property investigations of Al5186-Al2024 friction stir welds produced using various rotations and traveling speeds of the tool to investigate the effects of the welding parameters on the joint strength. Metallographic studies by optical microscopy, electron probe microscopy, and the utilization of the X-ray diffraction technique have been conducted. It was found that the weld properties were dominated by the thermal input rather than the mechanical deformation by the tool. In particular the larger stresses under the weld tool on the AA5186 side compared to the AA2024 side are related to a transient reduction in yield stress due to dissolution of the hardening precipitates during welding prior to natural aging after welding.

  7. Water droplet erosion mechanisms of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Kamkar Zahmatkesh, Niloofar

    Water impingement erosion of materials can be a life-limiting phenomenon for the components in many erosive environments. For example, aircraft body exposed to rain, steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is the focus of this study. Inlet fogging system is the most common method used to augment gas turbine output during hot days; high ambient temperature causes strong deterioration of the engine performance. Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as well as intercooling the compressor (overspray) and thus optimizes the output power. However, erosion damage of the compressor blades in overspray stage is one of the major concerns associated with the inlet fogging system. The main objective of this research work (CRIAQ MANU419 project) is to understand the erosion induced by water droplets on Titanium alloy to eventually optimize the erosion resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet erosion damage on Ti-6Al-4V receives the major importance. The influence of base material microstructure and impact parameters were considered in erosion evaluation in present study. This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: - The water droplet erosion damage through a novel experimental approach. The collected data were processed both qualitatively and quantitatively for multi-aspects damage study. - The influence of impact velocity on erosion in an attempt to represent the in-service conditions.

  8. Fabrication of Nb3Al superconducting bulks by mechanical alloying method

    NASA Astrophysics Data System (ADS)

    Qi, Ming; Pan, Xi Feng; Zhang, Ping Xiang; Cui, Li Jun; Li, Cheng Shan; Yan, Guo; Chen, Yong Liang; Zhao, Yong

    2014-06-01

    Since it can directly prepare the Nb-Al supersaturated solid solution, mechanical alloying is thought as a promising method to make high-performance Nb3Al superconductors at a low temperature annealing condition, without the complicated rapid heating, quenching and transformation (RHQT) process. In this paper, we investigate the effects of milling time, the content of Al and annealing temperature on phase formation and superconducting properties of mechanical alloying Nb3Al bulks in detail. The study results show that Nb-Al supersaturated solid solution could be obtained by high energy ball milling, as long as the Nb-Al blended powder is ball milled for 1 h, even the amorphous phase appears with the ball milling time prolonging to 10 h, the Nb-Al intermetalics do not come out either. Amorphous phase is hardly beneficial to synthesizing the Nb3Al phase, instead, it will make the products impurity. By optimizing the milling time, elements composition and annealing temperature , pure Nb3Al phase is obtained and the highest onset superconducting transition temperature (Tc-onset) reaches 15.8 K and the critical current density (Jc) 106 A/cm2 at 8 K without outer field. This paper also discusses the main reasons that affect the superconducting properties of mechanical alloying Nb3Al superconductor.

  9. Microstructure and growth mechanism of Al{sub 2}O{sub 3}/Al ceramic matrix composite made by directed oxidation of Al alloys

    SciTech Connect

    Qin, C.D.; Lai, M.O.; Cotterell, B.; Shi, S.

    1995-10-01

    Since the Lanxide process was advanced for forming of Al{sub 2}O{sub 3} ceramic composite by directed oxidation of Al alloys, much work has been done with various mechanisms being proposed. The mechanisms have claimed that only certain dopants are essential to the growth process. Nevertheless, no united consensus has yet been reached. In the present work, Al alloy containing 5% Mg was oxidized in air for 12 hours at 1,150 C with or without surface dopants of MgO or Pd. The resultant composites showed very different microstructures. Without any surface doping, the alloy did not develop any portion of composite as the initial intimate oxide film stops further oxidation. This intimate oxide film can either be broken off by mechanical means or penetrated by reaction with surface dopants, so that the composite can grow and develop. The results show that the previously reported incubation time is not only related to reaction processes but also to the initial mechanical disturbances. Doping with Pd made the composite darker in color as the grains of the alumina ceramic matrix and inclusions of Al metal are finer. This shows that Pd may make the top oxide layer less intimate, and more nucleation sites are therefore available for oxidation. A new model is presented for oxide sustained growth based on the existence of oxygen active top surface layer and the capillary flow of molten metal around ceramic phase.

  10. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  11. Pressureless Infiltration and Resulting Mechanical Properties of Al-AlN Preforms Fabricated by Selective Laser Sintering and Partial Nitridation

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Yan, M.; Schaffer, G. B.; Qian, Ma

    2010-09-01

    A novel manufacturing process has recently been developed for the fabrication of intricate Al-AlN composite parts. The process involves green shape formation by selective laser sintering, preform development by nitridation, and net shape forming by pressureless infiltration. The infiltration atmosphere has an important influence on the final fabrication and mechanical properties. This work presents a detailed investigation on the infiltration of Al-AlN preforms with AA 6061 at various temperatures above its liquidus under nitrogen, vacuum, and argon. The green shapes are formed by selective laser sintering of a premix of AA 6061-2Mg-1Sn-3Nylon (wt pct) powders. They are then partially nitrided to create a rigid, 2- to 3- μm-thick AlN skeleton for subsequent infiltration. Nitrogen infiltration results in the highest density (2.4 gcm-3) and best tensile properties (UTS: 214 MPa; elongation: 2.5 pct), while argon infiltration gives the lowest density. Fractographs confirmed the difference in density arising from the use of different atmospheres where small pores are evident on the fracture surfaces of both argon and vacuum-infiltrated samples. The molten AA 6061 infiltrant reacts with nitrogen during infiltration leading to a 5- μm-thick AlN skeleton compared to the original 2- to 3- μm-thick skeleton in both argon and vacuum-infiltrated samples. Transmission electron microscope (TEM) examination revealed inclusions of Mg2Si and Mg2Si x Sn1- x in both nitrogen- and argon-infiltrated samples but not in vacuum-infiltrated samples. Vacuum infiltration is slower than nitrogen and argon infiltration. The mechanisms that affect each infiltration process are discussed. Infiltration under nitrogen is preferred.

  12. High-temperature mechanical behavior of B2 type IrAl doped with Ni

    SciTech Connect

    Chiba, A.; Ono, T.; Li, X.G.; Takahashi, S.

    1997-12-31

    Constant-velocity and constant-load compression tests have been conducted to examine the mechanical behavior of polycrystalline IrAl and Ir{sub 1{minus}x}Ni{sub x}Al at ambient and elevated temperatures. Although IrAl exhibits brittle fracture before or immediately after yielding below 1,073 K, steady-state deformation takes place at temperatures higher than 1,273 K. Ductility of Ir{sub 1{minus}x}Ni{sub x}Al is improved with increasing x. On the contrary, strength decreases with increasing x. IrAl exhibits the 0.2% flow stress of 1,200MPa at 1,073 K and 350 MPa at 1,473 K, about an order of magnitude higher than NiAl. Secondary creep of IrAl and Ir{sub 0.2}Ni{sub 0.8}Al (i.e., modified NiAl) exhibits class II and class I behavior respectively. Creep strength of binary IrAl and modified NiAl with Ir is about a magnitude of 4 higher than that of single-phase and multi-phase NiAl at a given applied stress.

  13. Mechanical and Tribological Behavior of Ni(Al)-Reinforced Nanocomposite Plasma Spray Coatings

    NASA Astrophysics Data System (ADS)

    Movahedi, B.

    2014-02-01

    The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.

  14. Microstructure and Mechanical Properties of Al2024/Ti-6Al-4V Transient Liquid Phase Bonded Joint

    NASA Astrophysics Data System (ADS)

    Samavatian, M.; Halvaee, A.; Amadeh, A.; Zakipour, S.

    2015-06-01

    Transient liquid phase bonding mechanism of two dissimilar alloys Al2024 and Ti-6Al-4V using Sn-Ag-Cu-Ni interlayer with different thicknesses (40, 80, 120 µm) was studied at 510 °C under 10-4 mBar. The results showed that with an increase in bonding time, the interlayer elements diffused into the parent metals and formed various intermetallic compounds in the joint zone. While diffusion mechanism led to isothermal solidification and process completion at 60 min bonding time, remaining interlayer was observed in the bond made with 120-μm-thick interlayer. With an increase in bonding time growth, the hardness of the joints at the interface rose to 139 VHN. Although the shear strength was proportional to the bonding time, the interlayer thickness showed a critical value at which the maximum shear strength was attained.

  15. Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-lu; Zhang, Jun; Zhang, Zhen; Wang, Shuang-hong; Zhang, Zheng-gui

    2014-01-01

    (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-Al-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from -50 to -200 V, the microhardness (max. Hv0.01 4100) and adhesive strength (max. > 200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr,Cr)N monolayer films.

  16. Tensile properties of cast and mechanically alloyed FeAl with high boron content

    SciTech Connect

    Kim, M.H.; Kwun, S.I.

    1996-08-01

    The FeAl with B2 structure has been considered as a potential structural material for use at elevated temperatures and severe environment. Two major problems with this polycrystalline aluminide are its brittleness through cleavage or grain boundary failure at ambient temperature and rapid strength drop at high temperatures above 750K. In order to expand the use of iron aluminide, these two problems must be overcome. Making a grain size small might be one of the effective ways as the stress distribution is more homogeneous throughout the material. Another method to increase the ductility of iron rich FeAl seems to add small amount of boron. Webb reported that the optimum B content for ambient temperature ductility enhancement was approximately 12 wppm in FeAl(40at%Al). With these points in mind, the authors have tried to modify room and high temperature mechanical properties of FeAl by mechanical alloying. The mechanical alloying is a unique process in that it is an entirely solid state process, permitting fine distribution of insoluble phases and fine grain size material. This paper compares the mechanical properties of the cast and the mechanically alloyed FeAl with B as much as 0.3wt%. The highest B content added in iron rich FeAl was reported to be 0.2wt% up to now.

  17. Interfaces and failure mechanisms in Al-SiC composites

    NASA Technical Reports Server (NTRS)

    Nutt, S. R.

    1986-01-01

    Aluminum alloys reinforced with silicon carbide whiskers exhibit significantly higher strength and modulus than the unreinforced alloys. However, the composites also exhibit low ductility and poor fracture toughness for reasons which are not well-understood. In this study, high resolution and conventional TEM techniques are used to analyze interface microstructure and failure mechanisms in P/M 2124 and 6061 aluminum alloys reinforced with silicon carbide whiskers. Interfacial oxides are typical of both composite materials, often distributed in clusters or in a discrete layer 2-5 nm thick along the whisker-matrix interface. Highly deformed regions beneath bulk tensile fracture surfaces reveal possible fracture nucleation centers as well as sites of stress concentration where intense plastic strain has occurred. Observations of such highly deformed regions include (1) void initiation at whisker ends, (2) interface decohesion involving the thin oxide layer, (3) transverse cracks in whiskers, and (4) cracks in large constituent particles. TEM results are presented and discussed in relation to mechanisms of composite failure.

  18. Mechanical properties of Al-mica particulate composite material

    NASA Technical Reports Server (NTRS)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.

    1980-01-01

    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  19. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: γ(TiAl), τ2(Al2FeTi), and α2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  20. Mechanical alloying as method for introducing carbon in Ni3Al intermetallide

    NASA Astrophysics Data System (ADS)

    Portnoi, V. K.; Leonov, A. V.; Logachev, A. V.; Streletskii, A. N.; Popov, V. A.

    2012-12-01

    The method for the mechanical alloying of Ni-Al-C and Ni3Al-C mixtures was used to obtain nonequilibrium solid Ni(Al,C) solutions in which the carbon content varies from 2.9 to 8.5 at %. The relationship between carbon dissolution and the probability of appearance of deformation-induced stacking faults (SFs) in the formation of mixed (substitutional and interstitial) solid Ni(Al,C) solutions has been found based on an analysis of the diffraction spectra. SFs are assumed to serve as pathways of carbon penetration in nickel-based solid solutions. The effective carbon radius was found to be about 0.0616 nm in the formation of an antiperovskite phase Ni3AlC x . The method of calculating the amount of interstitial carbon was proposed based on the experimental lattice parameters of fcc solid Ni(Al,C) solutions and ordered phases L12 Ni3Al and E21 (Ni3AlC x ). The temperature stability of the nonequilibrium solid Ni(Al,C) solutions was established. It was shown that the decomposition of the solid solutions proceeded according to a spinodal mechanism at a temperature of 400°C with separation into two phases, i.e., an antiperovskite carbide (Ni3AlC x ) and Ni(Al,C). At higher temperatures (600-800°C), carbon precipitates from these phases with the formation of an antiperovskite Ni3AlC0.16, solid Ni(Al) solution, and nanocrystalline graphite.

  1. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  2. Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie

    Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.

  3. Mechanical Properties and Strengthening Mechanisms of Al-15 Pct B4C Composites with Sc and Zr at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Zhang, Zhan; Chen, X.-Grant

    2016-09-01

    The mechanical properties at ambient and elevated temperatures of two Al-15 vol pct B4C composites, S40 with 0.4 wt pct Sc and SZ40 with 0.4 wt pct Sc and 0.24 wt pct Zr, are investigated during long-term thermal annealing. The presence of large B4C particles in the microscale has a moderate but stable strengthening effect on Al-B4C composites at ambient and elevated temperatures, while the precipitation of nanoscale Al3Sc and Al3(Sc, Zr) in the composite matrix provides a predominate contribution to the composite strength, which is varied by tested temperatures. The Al3Sc precipitates in S40 remain coarsening resistant at 523 K (250 °C), whereas the Al3(Sc, Zr) precipitates in SZ40 are thermally stable at 573 K (300 °C) over 2000 hours of annealing. At higher annealing temperatures (573 K (300 °C) for S40 and 623 K (350 °C) for SZ40), both Al3Sc and Al3(Sc, Zr) precipitates become coarsening with prolonged annealing time. The yield strength of S40 and SZ40 at ambient temperature decreases with the increasing precipitate size, which can be explained by the classical precipitate shearing and Orowan bypass mechanisms. At elevated temperatures [523 K to 623 K (250 °C to 350 °C)], considerably lower yield stresses are observed compared to those at ambient temperature, which invokes a dislocation climb mechanism. The predicted yield strengths at elevated temperatures by the combination of dislocation climb and Orowan models are in good agreement with the experimental data.

  4. Mechanical properties of {beta}-SiAlON ceramics joined using composite {beta}-SiAlON-glass adhesives

    SciTech Connect

    Walls, P.A.; Ueki, Masanori

    1995-04-01

    The mechanical properties of {beta}-SiAlON ceramics joined using {beta}-SiAlON-glass-forming adhesives consisting of mixed Si{sub 3}N{sub 4}, Y{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, and SiO{sub 2} powders are described. Use of adhesives with a {beta}-SiAlON:glass ratio of 60:40 gave an optimum joint strength of 650 MPa in four-point bending mode, i.e., 85% of that of unbonded material, when joining was carried out at 1,600-C for 10 min, under an applied uniaxial pressure of 2 MPa. Bonding pressures in excess of 2 MPa caused excessive compressive creep distortion during the joining operation. The strengths of postjoined HIPed material and HIPed, unbonded material, differed by only 4%, i.e., 975 and 1,010 MPa, respectively, which indicates that HIPing reduces the size of critical defects in the joint. Fracture toughness of the joint also improved upon HIPing.

  5. Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous collapse models

    NASA Astrophysics Data System (ADS)

    Curceanu (Petrascu, C.; Bartalucci, S.; Bassi, A.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Di Matteo, S.; Donadi, S.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Poli Lener, M.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2012-05-01

    The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, is at the very basis of our understanding of matter. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the q violation parameter translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the q-parameter to a value very close to either 1 (for bosons) or -1 (for fermions). The VIP (Violation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter and as probability of PEP violation, we briefly discuss the results and present future plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopic fast Silicon Drift Detectors. We mention as well the possibility of using a similar experimental technique to search for eventual X-rays generated as a signature of the spontaneous collapse of the wave function, predicted by continuous spontaneous localization type theories.

  6. Experimental tests of quantum mechanics: Pauli exclusion principle violation and spontaneous collapse models

    NASA Astrophysics Data System (ADS)

    Curceanu, Catalina; Bartalucci, S.; Bassi, A.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Di Matteo, S.; Donadi, S.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Vidal, A. Romero; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2012-03-01

    The Pauli exclusion principle (PEP) is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the violation parameter q translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the violation parameter to a value very close to either 1 (for bosons) or -1 (for fermions). The VIP (VIolation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter from quon theory and as probability of PEP violation, we briefly discuss them and present future plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopical fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for eventual X-rays, generated in the spontaneous collapse models.

  7. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-07-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  8. High temperature stability, interface bonding, and mechanical behavior in. beta. -NiAl and Ni sub 3 Al matrix composites with reinforcements modified by ion beam enhanced deposition

    SciTech Connect

    Grummon, D.S.

    1992-01-22

    In preparation for experiments with surface modified Al{sub 2}O{sub 3} reinforcements in {beta}NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al{sub 2}O{sub 3}, Al, Ni) and then composited with {beta}NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni{sub 3}Al was studied. 3 figs, 1 tab. (DLC)

  9. Mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy dental castings.

    PubMed

    Kobayashi, E; Wang, T J; Doi, H; Yoneyama, T; Hamanaka, H

    1998-10-01

    With the aim of applying a novel titanium alloy, Ti-6Al-7Nb, to a dental casting material, a comprehensive research work was carried out on its characteristics, such as castability, mechanical properties and corrosion resistance in the present study. As a result, Ti-6Al-7Nb alloy exhibited sufficient castability by a dental casting method for titanium alloys and enough mechanical properties for dental application. It is also showed excellent corrosion resistance through an immersion test in 1.0% lactic acid and an anodic polarization test in 0.9% NaCl solution. From these results, it is concluded that this Ti-6Al-7Nb alloy is applicable as a dental material in place of Ti-6Al-4V alloy, which includes cytotoxic vanadium. PMID:15348689

  10. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

    NASA Astrophysics Data System (ADS)

    Carvalho, O.; Buciumeanu, M.; Soares, D.; Silva, F. S.; Miranda, G.

    2015-06-01

    The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

  11. Characterization of Al–Al{sub 4}C{sub 3} nanocomposites produced by mechanical milling

    SciTech Connect

    Santos-Beltrán, A.; Morales-Rodriguez, H.; Gallegos-Orozco, V.; Baldenebro-Lopez, F.

    2015-08-15

    In this work, a mixture of Al–C–Al{sub 4}C{sub 3} nanopowder previously synthesized by mechanical milling and subsequent thermal treatment was used to reinforce the Al matrix. The nanocomposites were fabricated via high-energy ball milling and subsequent sintering process for different periods of time at 550 °C. Hardness and compression tests were performed to evaluate the mechanical properties of the nanocomposites in the as-milled and sintered conditions. According to the results the reinforcement located in the grain boundaries is responsible for the brittle behavior observed in the nanocomposites during the compression test. The combined effect of sintering and precipitation mechanisms produced an evident increase of the strength of the Al matrix at a relatively short sintering time. By using the Rietveld method the crystallite size and microstrain measurements were determined and correlated with the microhardness values. For the proper characterization of the nanoparticles present in the Al matrix, atomic force microscopy and high resolution electron microscopy were used. - Highlights: • Nanostructured Al{sub 4}C{sub 3} reinforcement was fabricated via mechanical milling and heat treatment. • We found a significant increase of the mechanical properties at short sintering times. • The formation of Al{sub 4}C{sub 3} with during sintering time restricted the excessive growth of the crystallite. • Al{sub 4}C{sub 3} located in the grain boundaries causes brittle fracture observed in compression tests. • There is a correlation between, crystallite size and microstrain values with microhardness.

  12. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  13. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    NASA Astrophysics Data System (ADS)

    Aryanto, Didik; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-01

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatings exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe3O4 and Fe2O3 layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al)2O3. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.

  14. The electrical, thermal conductivity, microstructure and mechanical properties of Al-Sn-Pb ternary alloys

    NASA Astrophysics Data System (ADS)

    Alper Billur, C.; Gerçekcioglu, E.; Bozoklu, M.; Saatçi, B.; Ari, M.; Nair, F.

    2015-08-01

    The structural, thermal, electrical and mechanical properties and micro-hardness of four different samples of Al-Sn-Pb ternary alloys (Al-[x] wt. % Sn-10 wt. % Pb) (x = 40, 30, 20 and 10) with constant lead concentrations were investigated for four different samples. Electrical resistivity and conductivity were measured by using (four-point probe measurement techniques) 4PPT techniques. The variations of thermal conductivity were determined by Wiedemann-Franz law (W-F) and Smith-Palmer (S-P) equation using the data obtained from electrical properties. The mechanical properties of the same alloys were obtained by the tensile test and the Vickers micro-hardness test.

  15. Deformation mechanisms at Different grain sizes in a cryogenically ball-milled Al-Mg alloy.

    SciTech Connect

    Liao, Xiaozhou; Huang, J.; Zhu, Y. T.; Zhou, F.; Lavernia, Enrique J.

    2001-01-01

    An Al-7.5 wt. % Mg alloy was ball-milled in liquid N2 for eight hours and its microstructures were investigated using transmission electron microscopy. Electron diffraction confirmed that the resulting powder is a supersaturated Al-Mg solid solution with a face-centered cubic structure. Three nanostructures with different grain size ranges and shapes were observed and the deformation mechanisms in these structures were found to be different. The reasons for the different deformation mechanisms were discussed. Keywords: Aluminum alloy; Cryogenic ball milling; Transmission electron microscopy; Microstructure.

  16. The mechanical behavior and deformation mechanisms of Nb-Al-V alloys

    SciTech Connect

    Tappin, D.K.; Horspool, D.N.; Smith, L.S.; Aindow, M.

    1997-12-31

    A series of Nb-Al-V alloys containing 20--40 at.% V and 10--25 at.% Al have been investigated. The phase distributions in the alloys indicate that Al promotes the formation of the A15 phase whilst V stabilizes a B2 phase. Room temperature compression testing revealed that the B2 is inherently ductile such that for the alloys with less than 40% by volume of the A15 phase, strains of over 50% were obtained easily. The 2% offset yield stresses of these alloys did not vary significantly with composition, being 1.2 {+-} 0.1 GPa in each case. TEM studies were used to show that the deformation in the B2 phase occurs predominantly by the glide of screw-type super-partial dislocations with b = 1/2<111> on {l_brace}110{r_brace} and {l_brace}112{r_brace}. In some alloys this dislocation activity was preceded by the formation of pseudo-twins, via a martensitic shear transformation.

  17. Effect of Al Doping Concentration on Microstructure, Photoelectric Properties and Doped Mechanism of Azo Films

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Cai, Yanqing; Hou, Linyan; Ma, Penghua

    2014-05-01

    Al doped ZnO (AZO) thin films were deposited on a glass substrate by atmospheric pressure chemical vapor deposition (APCVD) method. Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO thin films were investigated. The analysis results revealed that the structural properties of the films possessed crystalline structure with a preferred (002) orientation. The best crystallization quality and minimum electrical resistivity was obtained at 5 at.% Al doped films and the minimum resistivity was 6.6 × 10-4 Ω ṡ cm. Uniform granular grains were observed on the surface of AZO films, and the average optical transmittance was above 80% in the visible range. The doped mechanism of AZO films was analyzed as follows. With Al doping in ZnO films, AlZn substitute and Ali interstice were produced, which decreased the resistivity of films. While after the limit value and with the continuing increase of Al doping concentration, free electrons were consumed and the resistivity of films increased.

  18. Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Gharsallah, Hana Ibn; Sekri, Abderrahmen; Azabou, Myriam; Escoda, Luiza; Suñol, Joan Josep; Khitouni, Mohamed

    2015-08-01

    Nanostructured iron-aluminum alloy of Fe-25 at. pct Al composition doped with 0.2 at. pct B was prepared by mechanical alloying. The phase transformations and structural changes occurring in the studied material during mechanical alloying and during subsequent heating were investigated by SEM, XRD, and DSC techniques. The patterns so obtained were analyzed using the Rietveld program. The alloyed powders were disordered Fe(Al) solid solutions and Fe2B boride phase. The Fe2B boride phase is formed after 4 hours of milling. The crystallite size reduction to the nanometer scale (5 to 8 nm) is accompanied by an increase in lattice strains. The powder milled for 40 hours was annealed at temperatures of 523 K, 823 K, 883 K, and 973 K (250 °C, 550 °C, 610 °C, and 700 °C) for 2 hours. Low temperatures annealing are responsible for the relaxation of the disordered structure, while high temperatures annealing enabled supersaturated Fe(Al) solid solutions to precipitate out fines Fe3Al, Fe2Al5, and Fe4Al13 intermetallics and, also the recrystallization and the grain growth phenomena.

  19. Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings

    SciTech Connect

    Rovere, Florian; Mayrhofer, Paul H.

    2008-01-15

    Cr{sub 1-x}Al{sub x}N coatings are promising candidates for advanced machining and high temperature applications due to their good mechanical and thermal properties. Recently the authors have shown that reactive magnetron sputtering using Cr-Al targets with Al/Cr ratios of 1.5 and Y contents of 0, 2, 4, and 8 at % results in the formation of stoichiometric (Cr{sub 1-x}Al{sub x}){sub 1-y}Y{sub y}N films with Al/Cr ratios of {approx}1.2 and YN mole fractions of 0%, 2%, 4%, and 8%, respectively. Here, the impact of Y on thermal stability, structural evolution, and thermo-mechanical properties is investigated in detail. Based on in situ stress measurements, thermal analyzing, x-ray diffraction, and transmission electron microscopy studies the authors conclude that Y effectively retards diffusional processes such as recovery, precipitation of hcp-AlN and fcc-YN, grain growth, and decomposition induced N{sub 2} release. Hence, the onset temperature of the latter shifts from {approx}1010 to 1125 deg. C and the hardness after annealing at T{sub a}=1100 deg. C increases from {approx}32 to 39 GPa with increasing YN mole fraction from 0% to 8%, respectively.

  20. Mechanically driven phase transformation from crystal to glass in Ti-Al binary system

    SciTech Connect

    Fan, G.J.; Quan, M.X.; Hu, Z.Q. . National Key Lab for RSA)

    1995-01-15

    Metastable phases such as metallic glass have been widely studied during the past few years. A number of techniques have been employed to synthesize these alloys, among which, mechanical alloying (MA) was considered to be a promising tool for large production and economical operation. However, the mechanism of formation of the metastable phases during mechanical alloying/ball milling have not been well determined. Previous studies of amorphization by mechanical alloying of pure elements or ball milling of intermetallics have proposed the following mechanics: rapid quenching of local melts produced by mechanical impacts, high density of defects generated by mechanical deformation which raises the free energy of compound to above that of the amorphous phase, effective local temperature rise at the collision site which gives rise to a solid-state reaction similar to thin film diffusion couples. Most of the studies have suggested that solid-state-type reactions are most likely to be responsible for vitrification during mechanical alloying, and the kinetics was controlled by the point and lattice defects generated by mechanical deformation. In the Zr-Al alloy system, however, another mechanisms was proposed by Fecht et al. based on a chemically induced catastrophic transition. The amorphization was interpreted with the elastic instability of crystal caused by the atomic mismatch of two components in supersaturated solid solution; when solute concentration reaches a critical value, the supersaturated solid solution becomes metastable and a polymorphous melting'' transition to a glass may occur. This hypothesis has been further examined by Ma and Atzmon with calorimeter measurements. In this paper, it will be shown experimentally that this mechanism may be valid in the Ti-Al binary system.

  1. Electronic and Mechanical Properties of Tetragonal Nb2Al Under High Pressure: First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Wang, Wen-Peng; Wang, Yi-Gao; Li, Yong; Liu, Zheng-Tang

    2016-04-01

    We have investigated the structure, density of states, mechanical stability, elastic properties, and Debye temperature of tetragonal Nb2Al under high pressure using the generalized gradient approximation WC (GGA-WC) functional within density functional theory (DFT). Our obtained lattice constants were in good agreement with the reported experimental and theoretical data at zero pressure. The volume decreased with the increasing pressure. The effects of pressure on the electronic properties have been discussed. The elastic constants under pressure have been calculated, which all satisfied the stability criterion, meaning that tetragonal Nb2Al was mechanical stability from 0 to 100 GPa. Then, the mechanical properties including bulk modulus B, shear modulus G, Young's modulus E, G/B, and Poisson's ratio ν under pressure were determined using the Voigt-Reuss-Hill method. The G/B value suggested that tetragonal Nb2Al exhibited ductile behavior under pressure. Poisson's ratio indicated that the interatomic forces in tetragonal Nb2Al were mainly central forces. Finally, the transverse, longitudinal, and average sound velocities and Debye temperature of tetragonal Nb2Al under pressure have been estimated.

  2. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  3. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  4. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    SciTech Connect

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equations that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.

  5. Fabrication of Open-Cell Al Foams and Evaluation of their Mechanical Response under Tension

    NASA Astrophysics Data System (ADS)

    Michailidis, N.; Stergioudi, F.; Omar, H.; Tsipas, D. N.

    2010-01-01

    In the present paper a novel procedure for describing the solid geometry of open cell foams is introduced, facilitating the establishment of a corresponding FEM model for simulating the material behaviour in micro-tension. Open-cell Al-foams were fabricated using the polymer impregnating method. A serial sectioning image-based process is described to capture, reproduce and visualize the exact three-dimensional (3D) microstructure of the examined foam. The generated 3D geometry of the Al-foam, derived from the synthesis of digital cross sectional images of the foam, was appropriately adjusted to build a FE model simulating the deformation conditions of the Al-foam under micro-tension loads. The obtained results enabled the visualisation of the stress fields in the Al-foam, allowing for a full investigation of its mechanical behaviour.

  6. The corrosion behaviors and mechanism of 1420 Al-Li alloy

    SciTech Connect

    Cui Yusheng; Zhu Ziyong; Liu Sue; Ke Wei; Zhang Yun; Zhang Wanming

    1996-03-01

    Aluminum-lithium alloys are attractive materials for aircraft components and aerospace applications due to their reduced density and increased stiffness as compared with conventional aluminum alloys. Although many behaviors of Al-Li alloys have been and are being studied, it is necessary to understand their stress corrosion cracking (SCC) characteristics and mechanism because of the high SCC susceptibility of other high-strength aluminum alloys. The purpose of the investigation is to look for the best combination of strength, ductility, and SCC resistance and to understand the mechanism of SCC for Al-Li alloys. In the present paper the SCC behavior of 1420 Al-Li has been studied. The intermetallic compounds in the alloy were synthesized for investigating their electrochemical behaviors.

  7. Physical and mechanical properties of the B2 compound NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Nathal, M. V.

    1993-01-01

    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range.

  8. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    SciTech Connect

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K.

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  9. RESPONSE TO KLAUNIG, J.E. ET AL, EPIGENETIC MECHANISMS OF CHEMICAL CARCINOGENESIS

    EPA Science Inventory

    The article by Klaunig et al. is a comprehensive review of the general principles underlying the induction of tumors by epigenetic mechanisms. The review describes the roles of cell proliferation, loss of apoptotic function, gap junctional intercellular communication, P450 induct...

  10. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting

    SciTech Connect

    Chlebus, Edward; Kuznicka, Bogumila Kurzynowski, Tomasz; Dybala, Bogdan

    2011-05-15

    Selective laser melting (SLM) is an advanced manufacturing technology providing alternative method of producing complex components directly from 3D computer models. The purpose of this work is to determine the influence of the SLM manufacturing strategy on mechanical properties and microstructure of the as-built Ti-Al-Nb alloy. Specimens of Ti-6Al-7Nb were produced in three versions of the specimen axis orientation with respect to its build direction. Mechanical characteristics of the alloy were determined by tensile and compression testing, as well as hardness measurements. Microstructures were characterised utilising optical microscopy, scanning electron microscopy and X-ray diffraction analysis. It was found that the as-built Ti-6Al-7Nb alloy has microstructure of {alpha}' martensite hardened by dispersive precipitates of the second phase, which results in higher tensile and compressive strengths, but lower ductility in comparison to those of an alloy manufactured by conventional methods. The layered microstructure of the material gives it a significant anisotropy of Young's modulus, moderate anisotropy of mechanical properties, but strong anisotropy of sensitivity to the build porosity. The paper develops understanding of the relationships between the strategy of layered manufacturing of the Ti-6Al-7Nb alloy and its microstructural and mechanical characteristics. This is important for future applications of the SLM technology for producing Ti-6Al-7Nb parts, e.g. the custom medical implants. - Research Highlights: {yields} The as-built SLM Ti-6Al-7Nb alloy has a layered microstructure of {alpha}' martensite. {yields} Size and orientation of the {alpha}' plates are determined by the SLM building strategy. {yields} The layered microstructure gives the alloy an anisotropy of Young's modulus. {yields} The building strategy influences anisotropy of material sensitivity to the built porosity.

  11. The Underlying Mechanisms of Endovascular Exclusion of Intracranial Aneurysms by Coils

    PubMed Central

    Henkes, H.; Brew, S.; Miloslavski, E.; Fischer, S.; Tavrovski, I.; Kühne, D.

    2003-01-01

    Summary Endovascular coil treatment of intracranial aneurysms is now widely accepted. We discuss some of the arguments for the relative roles of electrothrombosis, spontaneous thrombosis, mechanical filling, haemodynamic effects and surface properties in successful coil treatment. Despite an enormous body of literature, with many theories and much data, there is limited evidence for, or understanding of, the mechanisms by which coil treatment protects against aneurysm rupture. It seems likely that electrothrombosis plays no part. Dense packing is probably important in preventing recurrence. New technologies aiming to encourage endothelialisation and increased connective tissue formation appear promising. PMID:20591263

  12. Crystalline gold in soil and the problem of supergene nugget formation: Freezing and exclusion as genetic mechanisms

    USGS Publications Warehouse

    Watterson, J.R.

    1985-01-01

    Many of the world's richest gold placer deposits now occur in cold regions despite differences in their climatic history. It therefore seems possible that there may be some fundamental connection between freezing climates and the local chemical behavior of gold in the weathering cycle. This hypothesis, along with the problematical occurrence of gold as euhedral crystals in arctic gravel and soil placers, has led me to review low temperature phenomena that may bear on the geochemistry of gold. Several effects which may influence the weathering of natural gold-bearing rocks, the chemical complexation of gold, and its subsequent mobility and deposition appear to be strongly connected with freeze action. The exclusion of dissolved solutes, solute gases, and particles from ice, subjects rock and soil minerals to increased corrosion from thin, unfrozen, adsorbed water films which remain at particle surfaces throughout the freezing of rocks and soils. The preferential exclusion of cations (over anions) from growing ice crystals creates charge separations and measurable current flow across waterice phase boundaries in freezing soil - a phenomenon which leads to troublesome seasonal electrolytic corrosion of pipelines buried in soil; this phenomenon may also favor the dissolution of normally insoluble metals such as gold during geologic time periods. The ice-induced accumulation of clays, organic acids, bacteria, and other organic matter at mineral surfaces may also speed chemical attack by providing a nearby sink of alternate cation-binding sites and hence rapid removal of liberated cations from solution. The latter mechanism may be operative in both the dissolution and redeposition of gold. These physical, chemical, and electrical effects are favorable to the dissolution of rocks (in addition to frost shattering) and to the dissolution, mobilization, and redeposition of gold and other noble metals and must therefore contribute significantly to the behavior of gold at low

  13. Sinterability, mechanical, and electrical properties of Al2O3/8YSZ nanocomposites prepared by ultrasonic spray pyrolysis.

    PubMed

    Yang, Jae-Kyo; Shim, Kwang-Bo; Kim, Hee-Taik; Choa, Yong-Ho

    2006-11-01

    Al2O3 nanoparticles added the YSZ for improving the mechanical property and the ionic conductivity. Al2O3/YSZ nanocomposites were prepared by ultrasonic spray pyrolysis and PECS process. The relative density of the Al2O3/YSZ nanocomposites was fully densified at a sintering temperature of 1100 degrees C. The grain size for 5 vol.% Al2O3/YSZ was less than 100 nm. The fracture toughness and total ionic conductivity of Al2O3/YSZ nanocomposites were improved compared with Al2O3/YSZ nanocomposites by conventional process, due to homogeneous dispersion and uniform particle size of added Al2O3. PMID:17252776

  14. Mechanism of Electron Emission from Al(100) Bombarded by Slow Li{sup +} Ions

    SciTech Connect

    Yarmoff, J.A.; Liu, T.D.; Qiu, S.R.; Sroubek, Z.

    1998-03-01

    Emission of electrons from Al(100) during bombardment by 50{endash}520eV Li{sup +} ions was measured as a function of incident ion energy and direction. The process was modeled by a surface electron-hole pair excitation mechanism and was quantified with a one-electron parametric theory. This is a previously unidentified mechanism which is characterized by a strong dependence on the energy and angle of incidence of the primary particle. Good agreement between the experimental data and theory is found, which indicates that this mechanism is indeed responsible for electron emission during Li-Ai collisions. {copyright} {ital 1998} {ital The American Physical Society}

  15. Special Features of the Mechanical Characteristics of Al-Al2O3 Composites Produced By Explosive Compaction of Powders Under Shock-Wave Deformation

    NASA Astrophysics Data System (ADS)

    Zhukov, I. A.; Garkushin, G. V.; Vorozhtsov, S. A.; Khrustalyov, A. P.; Razorenov, S. V.; Kvetinskaya, A. V.; Promakhov, V. V.; Zhukov, A. S.

    2016-01-01

    The results obtained from investigations into the special features inherent in the mechanical characteristics (Hugoniot elastic limit and spall strength) observed under shock-wave loading of Al-Al2O3 composite samples produced by an explosive powder compaction technique are presented. Embedding 10 wt.% of aluminum oxide in the aluminum matrix has been found to increase the Hugoniot elastic limit as opposed to the commercialgrade AD1(Al 1013) aluminum alloy.

  16. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Xue, Haiyang; Lv, Guoqiang; Ma, Wenhui; Chen, Daotong; Yu, Jie

    2015-07-01

    Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

  17. Exclusive studies of 130-270 MeV {sup 3}He- and 200-MeV proton-induced reactions on {sup 27}Al, {sup nat}Ag, and {sup 197}Au

    SciTech Connect

    Ginger, D. S.; Kwiatkowski, K.; Wang, G.; Hsi, W.-C.; Hudan, S.; Cornell, E.; Souza, R. T. de; Viola, V. E.; Korteling, R. G.

    2008-09-15

    Exclusive light-charged-particle and IMF spectra have been measured with the ISiS detector array for bombardments of {sup 27}Al, {sup nat}Ag, and {sup 197}Au nuclei with 130-270-MeV {sup 3}He and 200-MeV protons. The results are consistent with previous interpretations based on inclusive data that describe the global yield of complex fragments in terms of a time-dependent process. The emission mechanism for energetic nonequilibrium fragments observed at forward angles with momenta up to twice the beam momentum is also investigated. This poorly understood mechanism, for which the angular distributions indicate formation on a time scale comparable to the nuclear transit time, are accompanied primarily by thermal-like emissions. The data are most consistent with a schematic picture in which nonequilibrium fragments are formed in a localized region of the target nucleus at an early stage in the energy-dissipation process, where the combined effects of high energy density and Fermi motion produce the observed suprathermal spectra.

  18. Structural, mechanical and piezoelectric properties of polycrystalline AlN films sputtered on titanium bottom electrodes

    NASA Astrophysics Data System (ADS)

    Pătru, M.; Isac, L.; Cunha, L.; Martins, P.; Lanceros-Mendez, S.; Oncioiu, G.; Cristea, D.; Munteanu, D.

    2015-11-01

    Polycrystalline AlN coatings were deposited on Ti-electrode films by reactive magnetron sputtering. During the deposition, processing parameters such as the reactive gas pressure and time of deposition have been varied. The purpose was to obtain an optimized AlN/Ti system coating with suitable properties for applications such as piezoelectric sensors, which could monitor the wear rate and the remaining coating life of a specific part. The chemical composition, the structure, and the morphology of the multilayered films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy techniques, respectively. These measurements showed the formation of highly (1 0 1), (1 0 2) and (1 0 3) oriented AlN films with piezoelectric and mechanical properties suitable for the desired purpose. A densification of the AlN coating was also observed, caused by lower nitrogen pressures, which has led to an improvement of the crystallinity along with an increase of hardness. The coating stability at high temperatures was also examined. Consequently, an improvement of the piezoelectric properties of the AlN films was observed, inferred from the enhancement of c-axis (0 0 2) orientation after annealing. Furthermore, the mechanical characteristics (hardness and Young's modulus) were significantly improved after heat treatment. These two parameters decrease rapidly with the increase of the indentation depth, approaching constant values close to those of the substrate after annealing. Thus, thermal annealing promotes not only the rearrangement of Al-N network, but also a surface hardening of the film, caused by a nitriding process of unsaturated Al atoms.

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  20. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  1. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  2. Mechanical Characterization of CrN/CrAlN Multilayer Coatings Deposited by Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Kaouther, Khlifi; Hafedh, Dhiflaoui; Lassaad, Zoghlami; Ahmed, Ben Cheikh Larbi

    2015-10-01

    Chromium-based coatings are deposited on a 100Cr6 (AISI 52100) substrate by a physical vapor deposition magnetron sputtering system. The coatings have different structures, such as a CrN monolayer and CrAlN multilayer. The structural and morphological compositions of the coatings were evaluated using glow discharge optical emission spectroscopy, atomic force microscopy, and cross-sectional scanning electron microscopy. Nano-indentation tests were performed to investigate the mechanical properties. Domes and craters are shown to be uniformly distributed over the entire surfaces of the two coatings. Additionally, the CrN/CrAlN multilayer coating exhibits a rough surface, attractive mechanical properties, a high compressive stress, and a high plastic and elastic deformation resistance. The improvement of the mechanical properties of the CrN/CrAlN coating is mainly attributed to a reduction in the crystallite size. We found that this reduction was related to three factors: (1) the compositional change resulting from the substitution of aluminum for chromium, which can produce a decrease in the interatomic distance; (2) the structure of CrN/CrAlN, which was characterized by grain size refinement; and (3) the high number of interfaces, which explains the widely accepted concept of dislocation blocking by the layer interfaces.

  3. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  4. Effect of Grain Refinement on the Mechanical Behaviour of an Al6061 Alloy at Cryogenic Temperatures

    SciTech Connect

    Moreno-Valle, E.; Sabirov, I.; Murashkin, M. Yu.; Valiev, R. Z.; Bobruk, E. V.; Perez-Prado, M. T.

    2011-05-04

    A solution treated coarse grained (CG) Al6061 was subjected to high pressure torsion (HPT) at room temperature resulting in the formation of a homogeneous ultra-fine grained (UFG) microstructure with an average grain size of 170 nm. Tensile tests were performed at room temperature (RT) and liquid nitrogen temperature (LNT). The as-HPT UFG Al6061 alloy shows an increased strength at both RT and LNT. The decrease of testing temperature results in increased flow stress and in enhanced elongation to failure in both CG and UFG samples. The ratio {sigma}{sub y}{sup LNT}/{sigma}{sub y}{sup RT} was found to be larger for the CG Al6061 than for the UFG Al6061. Both surface relief and fracture surface observations were performed. The effect of the grain size and of the testing temperature on the mechanical behaviour of the Al6061 alloy is analyzed in detail. It is suggested that the solute atoms play an important role in the plastic deformation of the UFG Al6061 alloy.

  5. Alloying effects on mechanical and metallurgical properties of NiAl

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  6. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  7. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Jiang, Ke; Li, Shuo-Qi; Zhang, Fen; Cui, Hong-Zhi; Han, En-Hou

    2015-03-01

    Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the Mg/Al/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively. The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210°C. The diffusion mechanism of the interfaces of Mg/Al and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HTat a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.

  8. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-05-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  9. Molecular dynamics simulation of Ga penetration along grain boundaries in Al: a dislocation climb mechanism.

    PubMed

    Nam, Ho-Seok; Srolovitz, David J

    2007-07-13

    Many systems where a liquid metal is in contact with a polycrystalline solid exhibit deep liquid grooves where the grain boundary meets the solid-liquid interface. For example, liquid Ga quickly penetrates deep into grain boundaries in Al, leading to intergranular fracture under very small stresses. We report on a series of molecular dynamics simulations of liquid Ga in contact with an Al bicrystal. We identify the mechanism for liquid metal embrittlement, develop a new model for it, and show that is in excellent agreement with both simulation and experimental data. PMID:17678231

  10. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  11. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  12. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors.

    PubMed

    Nishi, Yuichi; Zhang, Xiaoxiao; Jeong, Jieun; Peterson, Kevin A; Vedenko, Anastasia; Bulyk, Martha L; Hide, Winston A; McMahon, Andrew P

    2015-10-01

    Sonic hedgehog (Shh) signaling patterns the vertebrate spinal cord by activating a group of transcriptional repressors in distinct neural progenitors of somatic motor neuron and interneuron subtypes. To identify the action of this network, we performed a genome-wide analysis of the regulatory actions of three key ventral determinants in mammalian neural tube patterning: Nkx2.2, Nkx6.1 and Olig2. Previous studies have demonstrated that each factor acts predominantly as a transcriptional repressor, at least in part, to inhibit alternative progenitor fate choices. Here, we reveal broad and direct repression of multiple alternative fates as a general mechanism of repressor action. Additionally, the repressor network targets multiple Shh signaling components providing negative feedback to ongoing Shh signaling. Analysis of chromatin organization around Nkx2.2-, Nkx6.1- and Olig2-bound regions, together with co-analysis of engagement of the transcriptional activator Sox2, indicate that repressors bind to, and probably modulate the action of, neural enhancers. Together, the data suggest a model for neural progenitor specification downstream of Shh signaling, in which Nkx2.2 and Olig2 direct repression of alternative neural progenitor fate determinants, an action augmented by the overlapping activity of Nkx6.1 in each cell type. Integration of repressor and activator inputs, notably activator inputs mediated by Sox2, is probably a key mechanism in achieving cell type-specific transcriptional outcomes in mammalian neural progenitor fate specification. PMID:26293298

  13. Pressure and tension effects on mechanical properties of ZrAl{sub 2}

    SciTech Connect

    Zhang, Pinliang; Tang, Xiuzhang; Meng, Fanchen; Gong, Zizheng; Ji, Guangfu; Yang, Jinke

    2014-11-15

    Structural, elastic, thermodynamic of ZrAl{sub 2} under pressure, ideal strength and deformation mode under tension are investigated by the first-principles method. The calculated structural parameters at zero pressure are in consistent with experiments. Under pressure, elastic constants and their pressure dependence are obtained using the static finite strain technique. ZrAl{sub 2} exhibits lower elastic anisotropy. The linear thermal expansion coefficient shows greater effects of temperature at lower pressure. The ideal tensile have been investigated by stress–strain calculations. Finally, the microscopic mechanism that determines the structural stability is studied using the results of electronic structure calculations. We propose that the weakening of Zr-Zr leads to the significant change of stress–strain curve at strain ∼0.27, and the breaking of Zr{sub 2}-Zr{sub 3} leads to the structural instability of ZrAl{sub 2} under large tensile strains.

  14. Leakage mechanism in GaN and AlGaN Schottky interfaces

    NASA Astrophysics Data System (ADS)

    Hashizume, Tamotsu; Kotani, Junji; Hasegawa, Hideki

    2004-06-01

    Based on detailed temperature-dependent current-voltage (I-V-T) measurements the mechanism of leakage currents through GaN and AlGaN Schottky interfaces is discussed. The experiments were compared to calculations based on thin surface barrier model in which the effects of surface defects were taken into account. Our simulation method reproduced the experimental I-V-T characteristics of the GaN and AlGaN Schottky diodes, and gave excellent fitting results to the reported Schottky I-V curves in GaN for both forward and reverse biases at different temperatures. The present results indicate that the barrier thinning caused by unintentional surface-defect donors enhances the tunneling transport processes, leading to large leakage currents through GaN and AlGaN Schottky interfaces.

  15. Reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Apurba; Ghosh, Saptarsi; Mukhopadhyay, Partha; Jana, Sanjay K.; Dinara, Syed Mukulika; Bag, Ankush; Mahata, Mihir K.; Kumar, Rahul; Das, Subhashis; Das, Palash; Biswas, Dhrubes

    2016-03-01

    The reverse bias leakage current mechanism of AlGaN/InGaN/GaN heterostructure is investigated by current-voltage measurement in temperature range from 298 K to 423 K. The Higher electric field across the AlGaN barrier layer of AlGaN/InGaN/GaN double heterostructure due to higher polarization charge is found to be responsible for strong Fowler-Nordheim (FN) tunnelling in the electric field higher than 3.66 MV/cm. For electric field less than 3.56 MV/cm, the reverse bias leakage current is also found to follow the trap assisted Frenkel-Poole (FP) emission in low negative bias region. Analysis of reverse FP emission yielded the barrier height of trap energy level of 0.34 eV with respect to Fermi level. [Figure not available: see fulltext.

  16. Formation Mechanism of CuAlO2 Prepared by Rapid Thermal Annealing of Al2O3/Cu2O/Sapphire Sandwich Structure

    NASA Astrophysics Data System (ADS)

    Shih, C. H.; Tseng, B. H.

    Single-phase CuAlO2 films were successfully prepared by thin-film reaction of an Al2O3/Cu2O/sapphire sandwich structure. We found that the processing parameters, such as heating rate, holding temperature and annealing ambient, were all crucial to form CuAlO2 without second phases. Thermal annealing in pure oxygen ambient with a lower temperature ramp rate might result in the formation of CuAl2O4 in addition to CuAlO2, since part of Cu2O was oxidized to form CuO and caused the change in reaction path, i.e. CuO + Al2O3 → CuAl2O4. Typical annealing conditions successful to prepare single-phase CuAlO2 would be to heat the sample with a temperature rampt rate higher than 7.3 °C/sec and hold the temperature at 1100 °C in air ambient. The formation mechanism of CuAlO2 has also been studied by interrupting the reaction after a short period of annealing. TEM observations showed that the top Al2O3 layer with amorphous structure reacted immediately with Cu2O to form CuAlO2 in the early stage and then the remaining Cu2O reacted with the sapphire substrate.

  17. Damage mechanisms in a cast ductile iron and a Al{sub 2}O{sub 3p}/Al composite

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Corum, J.M.; Hansen, J.G.R.; Cornie, J.A.

    1998-11-01

    Recently, pressure infiltration was used to fabricate alumina particulate (Al{sub 2}O{sub 3p})-reinforced Al matrix composites, and a program is in progress to demonstrate the suitability of this material for use in automobile parts with the goal of reducing the weight and increasing the vehicle performance. Mechanical behavior and damage mechanisms of an Al{sub 2}O{sub 3} particulate-reinforced Al matrix composite (Al{sub 2}O{sub 3p}/Al) prepared by pressure infiltration are investigated and compared with those of a cast ductile iron. In addition to low cost and reduced weight, the composite has a Young`s modulus comparable to the ductile iron, However, its fracture toughness is lower than that of the ductile iron. Interface debonding between the graphite and ferrite is responsible for the crack initiation behavior of the ductile iron. The crack in the ductile iron is arrested by the ductile ferrite phase surrounding the graphite, leading to high fracture toughness. For the Al{sub 2}O{sub 3p}/Al composite, the dominating crack initiation mode is particulate cracking. Interface debonding and zigzag cracking of particulates are additional fracture modes. The high content of Al{sub 2}O{sub 3} particulates and the high thermal and elastic incompatibilities between the Al matrix and Al{sub 2}O{sub 3} particulates result in brittle fracture and low fracture toughness for the composite. Possible ways to increase the fracture toughness of the Al{sub 2}O{sub 3p}/Al composite material are also outlined.

  18. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transformation temperature

    NASA Technical Reports Server (NTRS)

    Antolovich, Stephen D.; Saxena, Ashok; Cullers, Cheryl

    1992-01-01

    One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is considered a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems. More importantly though

  19. The Effect of Ti on Microstructural Characteristics and Reaction Mechanism in Bonding of Al-Ceramic Composite

    NASA Astrophysics Data System (ADS)

    Juan, Li; Kehong, Wang; Deku, Zhang

    2016-06-01

    The effect of Ti on microstructural characteristics and reaction mechanism in bonding of Al-Ceramic composite was studied. Ti and Al-Ceramic composite were diffusion welded at 550, 600, 700, 800, and 900 °C in a vacuum furnace. The microstructures and compositions of the interface layers were analyzed, and the mechanical properties and fracture morphology of the joints were examined. The results indicated that there was a systematic switch from Ti/Ti7Al5Si12/composite at 600 °C and Ti/TiAl3/Ti7Al5Si12/composite at 700 °C to Ti/Ti7Al5Si12/TiAl3/Ti7Al5Si12/composite at 800 °C and Ti/Ti7Al5Si12/TiAl3/composite at 900 °C. The formation of TiAl3 at 700 and 800 °C depended on Al segregation, which was an uphill diffusion driven by chemical potential. The maximum shear strength was 40.9 MPa, found in the joint welded at 700 °C. Most joints fractured between Ti7Al5Si12 and Al-Ceramic composite. In any case, Ti7Al5Si12 was favorable for Al-Ceramic composite welding, which attached to Al-Ceramic composite, reducing the differences in physiochemical properties between SiC and metal, improving the mechanical properties of the joints and increasing the surface wettability of Al-Ceramic composite.

  20. Effects of Co and Al Contents on Cryogenic Mechanical Properties and Hydrogen Embrittlement for Austenitic Alloys

    SciTech Connect

    Li, X.Y.; Ma, L.M.; Li, Y.Y.

    2004-06-28

    The effects of Co and Al content on ambient and cryogenic mechanical properties, microstructure and hydrogen embrittlement of a high strength precipitate-strengthened austenitic alloy (Fe-Ni-Cr-Mo system) had been investigated with temperature range from 293K to 77 K. Hydrogen embrittlement tests were conducted using the method of high pressure thermal hydrogen charging. It was found that increasing Co content can cause increasing in ambient and cryogenic ductility, but has less effect on ultimate tensile strength. When Co content is 9.8%, obvious decrease was found in cryogenic yield strength. Increasing Al content can result in decreasing ambient and cryogenic ductility and severe hydrogen embrittlement, but slight increase in cryogenic yield strength. Increasing Co content, reducing Al content, and decreasing test temperature tend to decrease the hydrogen embrittlement tendency for the alloys. This work showed that the alloy with composition of Fe-31%Ni-15%Cr-5%Co-4.5%Mo-2.4%Ti-0.3%Al-0.3%Nb-0.2%V has the superior cryogenic mechanical properties and lower hydrogen embrittlement tendency, is a good high strength cryogenic hydrogen-resistant material.

  1. Effect of heat treatments on structural, microstructural and mechanical properties of Al 2017 alloy

    NASA Astrophysics Data System (ADS)

    Lemmadi, Fatima Z.; Chala, Abdelouahed; Belahssen, Okba; Benramache, Said

    2016-01-01

    The effect of ageing at 300°C before and after quenched at two temperatures of 180 and 280°C on the Al 2017 alloy was studied. The structural properties were investigated using X-ray diffraction; the microstructural evolution was investigated using scanning electron microscopy and microhardness measurement for the mechanical properties. After various states of ageing, the Al-Cu-Fe alloy shows significant changes in the microstructure and mechanical behavior. After ageing, the microstructure of the matrix consisted of a three solid solution of α-Al-Cu-Fe, β-AlFe and θ-A 2Cu phases precipitations. After two-step heat treatment (quenching and ageing), the alloy reveals the formation of β and θ phases precipitates. After ageing at 300°C of original sample, the alloy reveals higher β precipitates, corresponding to the minimum value of microhardness, the volume fraction of this precipitates becomes higher. On the other hand, the TTT curves for the discontinuous and continuous precipitation reaction in this alloy have been suggested.

  2. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction

    NASA Astrophysics Data System (ADS)

    Atrian, A.; Majzoobi, G. H.; Enayati, M. H.; Bakhtiari, H.

    2014-03-01

    This paper describes the synthesis of Al7075 metal matrix composites reinforced with SiC, and the characterization of their microstructure and mechanical behavior. The mechanically milled Al7075 micron-sized powder and SiC nanoparticles are dynamically compacted using a drop hammer device. This compaction is performed at different temperatures and for various volume fractions of SiC nanoparticles. The relative density is directly related to the compaction temperature rise and indirectly related to the content of SiC nanoparticle reinforcement, respectively. Furthermore, increasing the amount of SiC nanoparticles improves the strength, stiffness, and hardness of the compacted specimens. The increase in hardness and strength may be attributed to the inherent hardness of the nanoparticles, and other phenomena such as thermal mismatch and crack shielding. Nevertheless, clustering of the nanoparticles at aluminum particle boundaries make these regions become a source of concentrated stress, which reduces the load carrying capacity of the compacted nanocomposite.

  3. Supersaturated Al(Ti) solid solutions with partial L1{sub 2} ordering prepared by mechanical alloying

    SciTech Connect

    Fan, G.J.; Quan, M.X.; Hu, Z.Q.

    1995-08-01

    The authors report phase formation during mechanical alloying of Al rich Ti-Al powder blends. Their experimental results further support the idea that the synthesis of Al rich supersaturated solid solutions in the Al-Ti system occurs in the following two steps. First, the ordered L1{sub 2}-Al{sub 3}Ti intermetallic compound is formed at Al/Ti interfaces. Second, the ordered L1{sup 2}-Al{sub 3}Ti compound was partially disordered by mechanical deformation. Meanwhile, Ti or Al atoms dissolve into the partially disordered phase and a supersaturated solid solution is finally obtained. However, the disordering is not complete and the resulting alloys may exhibit partial L1{sub 2} ordering.

  4. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  5. Mechanical Properties and Fracture Behavior of Directionally Solidified NiAl-V Eutectic Composites

    NASA Astrophysics Data System (ADS)

    Milenkovic, Srdjan; Caram, Rubens

    2015-02-01

    Directional solidification of eutectic alloys has been recognized as promising technique for producing in situ composite materials exhibiting balance of properties. Therefore, an in situ NiAl-V eutectic composite has been successfully directionally solidified using Bridgman technique. The mechanical behavior of the composite including fracture resistance, microhardness, and compressive properties at room and elevated temperatures was investigated. Damage evolution and fracture characteristics were also discussed. The obtained results indicate that the NiAl-V eutectic retains high yield strength up to 1073 K (800 °C), above which there is a rapid decrease in strength. Its yield strength is higher than that of binary NiAl and most of the NiAl-based eutectics. The exhibited fracture toughness of 28.5 MPa√m is the highest of all other NiAl-based systems investigated so far. The material exhibited brittle fracture behavior of transgranular type and all observations pointed out that the main fracture micromechanism was cleavage.

  6. Synthesis of metastable phases in Al-Nb powders by mechanical alloying

    SciTech Connect

    Peng, Z.; Suryanarayana, C.; Froes, F.H. )

    1992-08-15

    Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on titanium, zirconium, vanadium, niobium and tantalum for use as structural materials in an elevated temperature environment. This interest is due to their high strength-to-density ratios, high melting points and excellent oxidation resistance. Amongst these, niobium trialuminide (NbAl{sub 3}) has a high melting point (1605{degrees} C), possesses adequate oxidation resistance (a result of the formation of a protective alumina over-layer and a density (4.54 g/cc) which is lower than that of advanced Ni{sub 3}Al-based compounds (7.6 g/cc). However, NbAl{sub 3} melts congruently and since it has an extremely limited homogeneity range, it is difficult to ensure that the chemistry falls in this desired narrow range. Further, due to the intrinsic brittleness, niobium aluminide ingots crack during solidification. Some of these problems can be overcome by producing the NbAl{sub 3} compound through the powder metallurgy route. This paper reports on the successful synthesis of homogeneous NbAl{sub 3} and amorphous phases by mechanical alloying starting from elemental powders.

  7. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    PubMed

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites. PMID:27251994

  8. Deformation mechanisms of NiAl cyclicly deformed near the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Cullers, Cheryl L.; Antolovich, Stephen D.

    1993-01-01

    The intermetallic compound NiAl is one of many advanced materials which is being scrutinized for possible use in high temperature, structural applications. Stoichiometric NiAl has a high melting temperature, excellent oxidation resistance, and good thermal conductivity. Past research has concentrated on improving monotonic properties. The encouraging results obtained on binary and micro-alloyed NiAl over the past ten years have led to the broadening of NiAl experimental programs. The purpose of this research project was to determine the low cycle fatigue properties and dislocation mechanisms of stoichiometric NiAl at temperatures near the monotonic brittle-to-ductile transition. The fatigue properties were found to change only slightly in the temperature range of 600 to 700 K; a temperature range over which monotonic ductility and fracture strength increase markedly. The shape of the cyclic hardening curves coincided with the changes observed in the dislocation structures. The evolution of dislocation structures did not appear to change with temperature.

  9. Mechanical and thermal properties of LaMgAl{sub 11}O{sub 19}

    SciTech Connect

    Jiang, B.; Fang, M.H.; Huang, Z.H.; Liu, Y.G.; Peng, P.; Zhang, J.

    2010-10-15

    Lanthanum magnesium hexaaluminate (LaMgAl{sub 11}O{sub 19}) powders were synthesized successfully at 1300 {sup o}C for 4 h by solid-state reaction, and LaMgAl{sub 11}O{sub 19} ceramic was prepared at 1700 {sup o}C for 6 h by pressureless sintering. Phase composition, microstructure, mechanical and thermophysical properties of LaMgAl{sub 11}O{sub 19} ceramic were investigated. Results show that the flexural strength and fracture toughness of LaMgAl{sub 11}O{sub 19} ceramic are 353.3 {+-} 12.5 MPa and 4.60 {+-} 0.46 MPa m{sup 1/2}. Young's Modulus and Poisson ratio is 295 GPa and 0.23, respectively. The linear thermal expansion coefficient of LaMgAl{sub 11}O{sub 19} ceramic from 473 K to 1473 K is 9.17 x 10{sup -6}/K, and thermal conductivity at 1273 K is 2.55 W/m K.

  10. Development and fracture mechanics data for 6Al-6V-2 Sn titanium alloy

    NASA Technical Reports Server (NTRS)

    Fiftal, C. F.; Beck, E. J.

    1974-01-01

    Fracture mechanics properties of 6Al-6V-2Sn titanium in the annealed, solution-treated, and aged condition are presented. Tensile, fracture toughness, cyclic flaw growth, and sustained-load threshold tests were conducted. Both surface flaw and compact tension-specimen geometries were employed. Temperatures and/or environments used were -65 F (220 K) air, ambient, 300 F (422 K) air, and room-temperature air containing 10 and 100% relative humidity.

  11. Mechanics and mechanisms of surface damage in Al-Si alloys under ultra-mild wear conditions

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    Al-Si alloys intended for use in engine components must operate under ultra-mild wear (UMW) conditions to fit an acceptable amount of wear during a typical vehicle life. This study simulated surface damage in a UMW regime on five chemically etched Al-Si alloy surfaces using a pin-on-disc tribometer at low loads (0.5-2.0 N) under boundary lubricated conditions. The five alloys contained 11 to 25 wt.% Si and differed in matrix hardness, silicon particle morphology, and size. The mechanisms leading to the UMW damage and the role that the matrix hardness and microstructure play on said mechanisms were studied. Quantitative measurement methods based on statistical analysis of particle height changes and material loss from elevated aluminum using a profilometer technique were developed and used to assess UMW. The Greenwood and Tripp's numerical model was adapted to analyze the contact that occurred between Al-Si alloys with silicon particles protruding above the aluminum and steel balls. The estimation of the real contact pressure applied to the silicon particles was used to rationalize the damage mechanisms. The UMW mechanisms consisted of (i) abrasive wear on the top of the silicon particle surfaces; (ii) sinking-in of the silicon particles; (iii) piling-up of the aluminium around sunken-in particles and (vi) wear of the aluminium by the counterface, which eventually led to the initiation of UMW-II. Increasing the size or areal density of silicon particles with small aspect ratios delayed the onset of UMW-II by providing resistance against the silicon particles sinking-in and the aluminum piling-up. The UMW wear rates, however, began to decrease after long sliding cycles once an oil residue layer supported by hardened ultra-fine subsurface grains formed on the deformed aluminium matrix. The layer formation depended on the microstructure and applied load. Overall experimental observations suggested that Al-11% Si with small silicon particles exhibited optimal long

  12. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  13. Effects of the Formation of Al x Cu y Gradient Interfaces on Mechanical Property of Steel/Al Laminated Sheets by Introducing Cu Binding-Sheets

    NASA Astrophysics Data System (ADS)

    Wei, Aili; Liu, Xinghai; Shi, Quanxin; Liang, Wei

    2015-07-01

    Steel/Cu/Al laminated sheets were fabricated by two-pass hot rolling to improve the mechanical properties of steel/Al sheets. The bonding properties and deformability of the steel/Cu/Al sheets were studied. Steel/Al and steel/Cu/Al samples were rolled at 350°C for 15 min with the first-pass reduction of 40%, and then heated at 600°C for 5 min with different reductions. It was found that the steel/Cu/Al samples rolled by the second-pass reduction of 85% could endure the maximum 90° bend cycle times of 45, exhibiting excellent fatigue resistance as well as deformability. The steel/Al samples could only reach the maximum 90° bend cycle times of 20. Furthermore, the scanning electron microscope, energy-dispersive spectrometer, and electron backscattered diffraction results showed that the preferred growth orientations of Cu, Al4Cu9, and Al2Cu on the steel/Cu/Al laminated sheets are {-1, 1, 2} <1, -1, 1>, {1, 0, 0} <0, 1, 0> and {-1, 1, 2} <1, -1, 1> {1, 1, 0} <0, 0, 1>. The orientation relationships between Cu and Al2Cu are {1, 1, 0}(fcc)//{1, 1, 0}(bct) and {1, 1, 1}(fcc)//{1, 1, 1}(bct). The improved bonding property and excellent fatigue resistance as well as deformability were mainly ascribed to the tight combination and consistent deformability across steel, Al, and the transition layers (Cu, Al4Cu9, and Al2Cu).

  14. Effect of Y Addition on the Mechanical Properties and Microstructure of Zn-Al Alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Lu, Shujing; Long, Fang; Sheng, Meng; Geng, Haoran; Liu, Wendi

    2015-05-01

    This article will discuss the influence of the rare earth Y on the microstructure and mechanical properties of Zn-Al alloys (ZA27, ZA35, and ZA40), and it will provide reference to rare-earth microalloying through the cast ingot metallurgy process. The results also suggest that the microstructure can be refined and mechanical properties can be improved obviously when adding the right amount of Y, and its tensile strength and brinell hardness increased by 9.1% and 11.7% compared with the unmodified ZA27 alloys, respectively. Compared with non-Y addition, the alloys will form dispersed YZn12 phase, which can strongly pin dislocations and subgrain boundary, inhibiting further recrystallization. On this basis, the impacts of Y on the microstructure and mechanical properties of ZA27, ZA35, and ZA40 have been explored. After adding Y, the microstructures of as-cast Zn-Al alloys are refined at different degree. However, with the increase of Al content, the microstructure shows a certain coarsening and the segregation and shrinkage porosity occur. The most effective refining appears in ZA27-0.4%Y.

  15. Mechanical properties of cast Ti-6Al-4V-XCu alloys.

    PubMed

    Aoki, T; Okafor, I C I; Watanabe, I; Hattori, M; Oda, Y; Okabe, T

    2004-11-01

    The mechanical properties of Ti-6Al-4V-XCu (1, 4 and 10 wt% Cu) alloys were examined. The castings for each alloy were made in a centrifugal titanium casting machine. Two shapes of specimens were used: a dumbbell (20 mm gauge length x 2.8 mm diameter) for mechanical property studies, and a flat slab (2 mm x 10 mm x 10 mm) for metallography, microhardness determination and X-ray diffractometry. Tensile strength, yield strength, modulus of elasticity, elongation and microhardness were evaluated. After tensile testing, the fracture surfaces were observed using scanning electron microscopy. The tensile strengths of the quaternary alloys decreased from 1016 MPa for the 1% Cu alloy to 387 MPa for the 10% Cu alloy. Elongation decreased with an increase in the copper content. The 1% Cu alloy exhibited elongation similar to Ti-6Al-4V without copper (3.0%). The results also indicated that the copper additions increased the bulk hardness of the quaternary alloy. In particular, the 10% Cu alloy had the highest hardness and underwent the most brittle fracture. The mechanical properties of cast Ti-6Al-4V alloy with 1 and 4% Cu were well within the values for existing dental casting non-precious alloys. PMID:15525390

  16. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments.

    PubMed

    Sonntag, Robert; Reinders, Jörn; Gibmeier, Jens; Kretzer, J Philippe

    2015-01-01

    Mechanical surface treatments have a long history in traditional engineering disciplines, such as the automotive or aerospace industries. Today, they are widely applied to metal components to increase the mechanical performance of these. However, their application in the medical field is rather rare. The present study aims to compare the potential of relevant mechanical surface treatments on the high cycle fatigue (R = 0.1 for a maximum of 10 million cycles) performance of a Ti6Al4V standard alloy for orthopedic, spinal, dental and trauma surgical implants: shot peening, deep rolling, ultrasonic shot peening and laser shock peening. Hour-glass shaped Ti6Al4V specimens were treated and analyzed with regard to the material's microstructure, microhardness, residual stress depth profiles and the mechanical behavior during fatigue testing. All treatments introduced substantial compressive residual stresses and exhibited considerable potential for increasing fatigue performance from 10% to 17.2% after laser shock peening compared to non-treated samples. It is assumed that final mechanical surface treatments may also increase fretting wear resistance in the modular connection of total hip and knee replacements. PMID:25823001

  17. Fatigue Performance of Medical Ti6Al4V Alloy after Mechanical Surface Treatments

    PubMed Central

    Sonntag, Robert; Reinders, Jörn; Gibmeier, Jens; Kretzer, J. Philippe

    2015-01-01

    Mechanical surface treatments have a long history in traditional engineering disciplines, such as the automotive or aerospace industries. Today, they are widely applied to metal components to increase the mechanical performance of these. However, their application in the medical field is rather rare. The present study aims to compare the potential of relevant mechanical surface treatments on the high cycle fatigue (R = 0.1 for a maximum of 10 million cycles) performance of a Ti6Al4V standard alloy for orthopedic, spinal, dental and trauma surgical implants: shot peening, deep rolling, ultrasonic shot peening and laser shock peening. Hour-glass shaped Ti6Al4V specimens were treated and analyzed with regard to the material’s microstructure, microhardness, residual stress depth profiles and the mechanical behavior during fatigue testing. All treatments introduced substantial compressive residual stresses and exhibited considerable potential for increasing fatigue performance from 10% to 17.2% after laser shock peening compared to non-treated samples. It is assumed that final mechanical surface treatments may also increase fretting wear resistance in the modular connection of total hip and knee replacements. PMID:25823001

  18. Model of reversible vesicular transport with exclusion

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Karamched, Bhargav R.

    2016-08-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states.

  19. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  20. Thermal conductivity and mechanical properties of AlN-based thin films

    NASA Astrophysics Data System (ADS)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  1. Effects of heat treatment on the mechanical properties of SiC p/6061 Al composite

    NASA Astrophysics Data System (ADS)

    Aldun, D.; Martin, P.; Sun, J.

    1992-10-01

    Metal-matrix composites have been receiving considerable attention as light-weight materials for use in many advanced technology applications. Silicon carbide (SiC) particles and whiskers have several advantages over other discontinuous reinforcements. Studies have shown that heat treatment can change the mechanical properties of metal-matrix composites. Modified heat treatments were developed for SiC p/6061 Al composites through a series of heat treatment with varied solution temperatures and aging time. Mechanical tests were conducted to determine the mechanical properties of the composites in three conditions; as-received, annealed, and heat treated. The modified heat treatments resulted in increases in the yield strength of up to 12% over the manufacturer’s reported yield strength for the standard T6 heat treatment. The trends which occur during heat treatment of SiC p/6061 Al are simular to those which occur during heat treatment of aluminum alloys. In addition, the relationship between the mechanical properties and the heat treatment parameters was documented. Throughout this study, the values of elastic modules were rather erratic compared to the strength values. Scanning Electron Microscope fractographic analysis revealed various fracture initiation sites, such as particle clusters and iron inclusions.

  2. The formation mechanism of eutectic microstructures in NiAl-Cr composites.

    PubMed

    Tang, Bin; Cogswell, Daniel A; Xu, Guanglong; Milenkovic, Srdjan; Cui, Yuwen

    2016-07-20

    NiAl-based eutectic alloys, consisting of an ordered bcc matrix (B2) and disordered bcc fibers (A2), have been a subject of intensive efforts aimed at tailoring the properties of many of the currently used nickel-based superalloys. A thermodynamic phase field model was developed on a thermodynamic foundation and fully integrated with a thermo-kinetic database of the Ni-Al-Cr ternary system to elucidate the resulting peculiar eutectic microstructure. Invoking a variation of the liquid/solid interfacial thickness with temperature, we simulated the characteristic sunflower-like eutectic microstructures in the NiAl-Cr composites, consistent with experimental observations. The mechanism that governs the formation of the peculiar eutectic morphology was envisioned from the modeled evolutions associated with six sequential steps. Our calculations show that the conditional spinodal decomposition occurring in sequence could further trim and revise the microstructure of the eutectics by generating fine-domain structures, thereby providing an additional method to explore the novel NiAl-based eutectic composites with tunable properties at elevated temperatures. PMID:27385194

  3. Ti-6Al-4V Additively Manufactured by Selective Laser Melting with Superior Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Xu, W.; Sun, S.; Elambasseril, J.; Liu, Q.; Brandt, M.; Qian, M.

    2015-03-01

    The Achilles' heel of additively manufactured Ti-6Al-4V by selective laser melting (SLM) is its inferior mechanical properties compared with its wrought (forged) counterparts. Acicular α' martensite resulted from rapid cooling by SLM is primarily responsible for high strength but inadequate tensile ductility achieved in the as-fabricated state. This study presents a solution to eliminating the adverse effect of the nonequilibrium α' martensite. This is achieved by enabling in situ martensite decomposition into a novel ultrafine (200-300 nm) lamellar ( α + β) microstructure via the selection of an array of processing variables including the layer thickness, energy density, and focal offset distance. The resulting tensile elongation reached 11.4% while the yield strength was kept above 1100 MPa. These properties compare favorably with those of mill-annealed Ti-6Al-4V consisting of globular α and β. The fatigue life of SLM-fabricated Ti-6Al-4V with an ultrafine lamellar ( α + β) structure has approached that of the mill-annealed counterparts and is much superior to that of SLM-fabricated Ti-6Al-4V with α' martensite.

  4. Effect of current reversal on the failure mechanism of Al-Cu-Si narrow interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Un; Kang, S. H.; Morris, J. W.

    1996-02-01

    The work reported here concerns the effect of a brief exposure to a reversed current on the electromigration failure of narrow Al-Cu thin-film conducting lines. While the precise mechanism by which Cu retards electromigration in AlCu alloys is not fully understood, the consistent observation that electromigration failure is preceded by the sweeping of Cu from the failure site can be used to improve electromigration resistance by stabilizing the distribution of Cu. One way of doing this is to expose the Al-Cu line to a reverse current for some period of time. The present work shows that this method is particularly effective in thin lines with “quasi-bamboo” microstructures. It has the effect of building a reservoir of Cu at the upstream ends of the polygranular segments that are the preferred failure sites, and significantly increases both the mean time to failure, and the time to first failure of a distribution of lines. It can be inferred from these results that Al-Cu lines that conduct alternating current should be exceptionally resistant to electromigration failure.

  5. Interface Characterization and Bonding Mechanisms of Cold Gas-Sprayed Al Coatings on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Manygoats, K.; Schucknecht, T.; Rafaja, D.

    2015-01-01

    The aim of the present work is to contribute to the understanding of the adhesion mechanisms, which take effect at the interface of cold gas-sprayed metallic coatings on ceramic substrates. Former investigations revealed that it is possible to deposit well-adhering metallic coatings on atomically smooth ceramics. This led to the conclusion that mechanical interlocking is not always a necessary precondition for bonding. A combination of recrystallization processes induced by adiabatic shear processes and heteroepitaxial growth might be an explanation for the high observed adhesion strengths. The present work focuses on the examination of the interface area of cold gas-sprayed aluminum on various ceramic substrates by means of SEM and HRTEM. Beside sintered corundum plates, single-crystalline sapphire substrates with defined lattice orientations were used as substrates for the deposition of the coatings. In addition to Al2O3 substrates, aluminum coatings were also deposited on AlN, Si3N4, and SiC in order to investigate, whether the different amounts of ionic bonds in these substrate materials have an influence on the substrate/coating interface formation. Additional information about the local heteroepitaxy and its effect on the adhesion of Al coatings was obtained from experiments performed on coatings produced by means of physical vapor deposition.

  6. Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al

    NASA Astrophysics Data System (ADS)

    Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori

    2013-06-01

    Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  7. Multiple Mechanisms Increase Levels of Resistance in Rapistrum rugosum to ALS Herbicides

    PubMed Central

    Hatami, Zahra M.; Gherekhloo, Javid; Rojano-Delgado, Antonia M.; Osuna, Maria D.; Alcántara, Ricardo; Fernández, Pablo; Sadeghipour, Hamid R.; De Prado, Rafael

    2016-01-01

    Rapistrum rugosum (turnip weed) is a common weed of wheat fields in Iran, which is most often controlled by tribenuron-methyl (TM), a sulfonylurea (SU) belonging to the acetolactate synthase (ALS) inhibiting herbicides group. Several cases of unexplained control failure of R. rugosum by TM have been seen, especially in Golestan province-Iran. Hence, there is lack of research in evaluation of the level of resistance of the R. rugosum populations to TM, using whole plant dose-response and enzyme assays, then investigating some potential resistance mechanisms Results revealed that the resistance factor (RF) for resistant (R) populations was 2.5–6.6 fold higher than susceptible (S) plant. Neither foliar retention, nor 14C-TM absorption and translocation were the mechanisms responsible for resistance in turnip weed. Metabolism of TM was the second resistant mechanism in two populations (Ag-R5 and G-1), in which three metabolites were found. The concentration of TM for 50% inhibition of ALS enzyme activity in vitro showed a high level of resistance to the herbicide (RFs were from 28 to 38) and cross-resistance to sulfonyl-aminocarbonyl-triazolinone (SCT), pyrimidinyl-thiobenzoate (PTB) and triazolopyrimidine (TP), with no cross-resistance to imidazolinone (IMI). Substitution Pro 197 to Ser 197 provided resistance to four of five ALS-inhibiting herbicides including SU, TP, PTB, and SCT with no resistance to IMI. These results documented the first case of R. rugosum resistant population worldwide and demonstrated that both RST and NRST mechanisms are involved to the resistance level to TM. PMID:26941749

  8. Multiple Mechanisms Increase Levels of Resistance in Rapistrum rugosum to ALS Herbicides.

    PubMed

    Hatami, Zahra M; Gherekhloo, Javid; Rojano-Delgado, Antonia M; Osuna, Maria D; Alcántara, Ricardo; Fernández, Pablo; Sadeghipour, Hamid R; De Prado, Rafael

    2016-01-01

    Rapistrum rugosum (turnip weed) is a common weed of wheat fields in Iran, which is most often controlled by tribenuron-methyl (TM), a sulfonylurea (SU) belonging to the acetolactate synthase (ALS) inhibiting herbicides group. Several cases of unexplained control failure of R. rugosum by TM have been seen, especially in Golestan province-Iran. Hence, there is lack of research in evaluation of the level of resistance of the R. rugosum populations to TM, using whole plant dose-response and enzyme assays, then investigating some potential resistance mechanisms Results revealed that the resistance factor (RF) for resistant (R) populations was 2.5-6.6 fold higher than susceptible (S) plant. Neither foliar retention, nor (14)C-TM absorption and translocation were the mechanisms responsible for resistance in turnip weed. Metabolism of TM was the second resistant mechanism in two populations (Ag-R5 and G-1), in which three metabolites were found. The concentration of TM for 50% inhibition of ALS enzyme activity in vitro showed a high level of resistance to the herbicide (RFs were from 28 to 38) and cross-resistance to sulfonyl-aminocarbonyl-triazolinone (SCT), pyrimidinyl-thiobenzoate (PTB) and triazolopyrimidine (TP), with no cross-resistance to imidazolinone (IMI). Substitution Pro 197 to Ser 197 provided resistance to four of five ALS-inhibiting herbicides including SU, TP, PTB, and SCT with no resistance to IMI. These results documented the first case of R. rugosum resistant population worldwide and demonstrated that both RST and NRST mechanisms are involved to the resistance level to TM. PMID:26941749

  9. On the mechanism of milling induced disordering in AlFe

    SciTech Connect

    Clavaguera-Mora, M.T.; Zhu, J.; Meyer, M.; Mendoza-Zelis, L.; Sanchez, F.H.; Clavaguera, N.

    1997-12-31

    The evolution of the B2-AlFe phase during mechanical grinding in Ar has been examined as a function of milling time by X-Ray diffraction, transmission Moessbauer spectroscopy and differential scanning calorimetry. Short and long range disorder was observed to increase with the mechanical treatment up to the attainment of a steady state. The evolution of the long range order parameter and of the local atomic configurations at Fe sites were analyzed in terms of possible mechanisms for milling induced disordering. The kinetics of the thermal reordering was studied under continuous heating and isothermal calorimetric regimes. Modeling of the reordering processes by diffusion controlled growth of pre-existing ordered grains is presented as well as the estimated values of both the enthalpy and the activation energy of the reordering process. The results are consistent with a nonuniform distribution of disorder throughout the sample and will be compared with preceding information on related systems.

  10. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  11. Investigation of the fracture mechanism in Ti-5Al-2.5Sn at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.

    1977-01-01

    The influence of microstructure on the fracture mechanism and plane-strain fracture toughness of Ti-5Al-2.5Sn was studied through the use of fractography and metallographic sectioning techniques. One-inch thick plates of extra low interstitial (ELI) and normal interstitial Ti-5Al-2.5Sn were mill annealed at 815 C followed by either air or furnace cooling. These variations in composition and cooling rate resulted in differences in the volume fraction and internal structure of the iron-stabilized phase, and in the crystallographic texture and ordering of the alpha matrix. The tensile properties of these plates were determined at 20 K, 77 K, and 295 K. The air-cooled ELI plate was the toughest material evaluated.

  12. Preparation and mechanical properties of the MgAl2O4 transparent phosphor ceramics

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Li, Zhen; Lei, Muyun; Pang, Zhenli

    2014-09-01

    MgAl2O4 transparent phosphor ceramics were fabricated by hot-pressing and hot isostatic pressing using high-purity ultrafine MgAl2O4 powder mixed with phosphor. The microstructures of transparent phosphor ceramics were characterized by SEM and EDS. Moreover, the hardness and bending strength of transparent ceramics were measured. Effect of phosphor concentration (0~20%) on microstructure, hardness and bending flexture of transparent ceramics was analyzed. It was found that phosphor doping plays an important role in improving the mechanical property of transparent ceramics. So applying this kind of transparent phosphor ceramic to LED components as packaging material can significantly improve the lifetime and reliability of LED products.

  13. Microstructural Characteristic and Mechanical Behavior of Nodular Silicon Hypereutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Ruyao; Lu, Weihua

    2012-02-01

    The microstructure and mechanical properties of Al-Si-Cu-Mg alloys containing 12 wt.% to 30 wt.% Si are discussed. The eutectic and primary silicon particles are nodulized by a designed modification practice followed by a solution heat treatment of 6 h to 8 h at 510°C to 520°C. Metallographic analysis was used to measure structural characteristics of the Si-rich structures. Spheroidization of silicon phase leads to an increase in tensile strength and ductility of alloys at room temperature and 300°C compared with commercial Al-Si alloy. Increasing Si concentration causes the ultimate tensile strength and elongation at room temperature to fall due to the appearance of coarse silicon particles, but the ultimate tensile strength at 300°C remains unchanged.

  14. The effective mechanical advantage of a.L. 129-1a for knee extension.

    PubMed

    Sylvester, Adam D; Mahfouz, Mohamed R; Kramer, Patricia Ann

    2011-09-01

    The functional significance of shape differences between modern human and australopithecine distal femora remains unclear. Here, we examine the morphological component of the effective mechanical advantage (EMA) of the quadriceps muscle group in a sample of hominins that includes the fossil A.L. 129-1a (Australopithecus afarensis) and modern humans. Quadriceps muscle moment arms were calculated from three-dimensional computer models of specimens through a range of knee flexion. All hominins were compared using the same limb positions to allow us to examine, in isolation, the morphological component of the lengths of the pertinent moment arms. After taking into account the differences in bicondylar angle, the morphological component of the EMA was calculated as the ratio of the quadriceps muscle and ground reaction force moment arms. Our analyses reveal that A.L. 129-1a would have possessed a morphological component of the quadriceps muscle EMA expected for a hominin of its body mass. PMID:21809469

  15. Investigation of Thermo-Mechanical Fatigue Characteristics for Cast Aluminum (AL319-T7)

    NASA Astrophysics Data System (ADS)

    Miller, Luke W.

    In today's transient economy, the demand for new alternative technologies is increasing. Vehicle fuel economy has become the most important phrase in the automotive industry. The ability to achieve optimal fuel economy has many trade-offs. In terms of engine components, this trade-off comes in the form of component reliability. In the past, most engine components were constructed of cast iron. Currently many cast iron components have been replaced by aluminum components to reduce part weight. In parallel with the use of light weight components, higher thermal loadings have been applied to engine components due to the increasing use of fuel saving technologies. Current aluminum reliability concerns have led to a thermal mechanical fatigue (TMF) investigation of the aluminum casting alloy, AL319-T7. This thesis attempts to model TMF behaviour for an AL319-T7 cylinder head using a combined hardening material model, in which the effects of creep and oxidation have been neglected.

  16. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system

    PubMed Central

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-01-01

    Two AlGaN samples with different strain were designed to investigate mechanism of stress-driven composition evolution. It is discovered that AlGaN grown on AlN or (AlN/GaN superlattices (SLs))/GaN both consist of two distinct regions with different compositions: transition region and uniform region, which is attributed to the compositional pulling effect. The formation of the transition region is due to the partial stress release caused by the generation of misfit dislocations near the hetero-interface. And the Al composition in the uniform region depends on the magnitude of residual strain. The difference in relaxation degree is 80.5% for the AlGaN epilayers grown on different underlayers, leading to a large Al composition difference of 22%. The evolutionary process of Al composition along [0001] direction was investigated in detail. PMID:27112969

  17. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system.

    PubMed

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-01-01

    Two AlGaN samples with different strain were designed to investigate mechanism of stress-driven composition evolution. It is discovered that AlGaN grown on AlN or (AlN/GaN superlattices (SLs))/GaN both consist of two distinct regions with different compositions: transition region and uniform region, which is attributed to the compositional pulling effect. The formation of the transition region is due to the partial stress release caused by the generation of misfit dislocations near the hetero-interface. And the Al composition in the uniform region depends on the magnitude of residual strain. The difference in relaxation degree is 80.5% for the AlGaN epilayers grown on different underlayers, leading to a large Al composition difference of 22%. The evolutionary process of Al composition along [0001] direction was investigated in detail. PMID:27112969

  18. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-04-01

    Two AlGaN samples with different strain were designed to investigate mechanism of stress-driven composition evolution. It is discovered that AlGaN grown on AlN or (AlN/GaN superlattices (SLs))/GaN both consist of two distinct regions with different compositions: transition region and uniform region, which is attributed to the compositional pulling effect. The formation of the transition region is due to the partial stress release caused by the generation of misfit dislocations near the hetero-interface. And the Al composition in the uniform region depends on the magnitude of residual strain. The difference in relaxation degree is 80.5% for the AlGaN epilayers grown on different underlayers, leading to a large Al composition difference of 22%. The evolutionary process of Al composition along [0001] direction was investigated in detail.

  19. The effects of alloy purity on the mechanical behavior of soft oriented NiAl single crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1993-01-01

    Preliminary results of the effects of alloy purity on the mechanical properties of NiAl single crystals are presented. Two stoichiometric NiAl single crystals with different impurity contents were studied. It is concluded that reductions in the interstitial and substitutional levels cause reduced yield strengths in NiAl. Heat treatment also results in reduced yield and flow stresses in both CP-NiAl and Hp-NiAl which are considered to be due to a reduction in the concentration of thermal vacancies due to vacancy coalescence during heat treatment.

  20. Microstructure and mechanical behavior of spray-deposited high-Li Al-Li alloys

    SciTech Connect

    Del Castillo, L.; Wu, Y.; Hu, H.M.; Lavernia, E.J.

    1999-05-01

    High-Li alloys, with the composition Al-3.8Li-XCu-1.0Mg-0.4Ge-0.2Zr, were synthesized using a spray deposition technique (wt. pct, X = 0 {approximately} 1.5). The microstructure of the spray-deposited Al-Li alloys consisted of equiaxed grains with an average grain size in the range from 20 to 50 {micro}m. The grain-boundary phases were fine and discrete. The spray-deposited and thermomechanically processed materials were isothermally heat treated at 150 C and 170 C to investigate the age-hardening kinetics. It was noted that the spray-deposited Al-3.8Li-XCu-1.0Mg-0.4Ge-0.2Zr alloys exhibited relatively sluggish aging behavior. The peak-aged condition was achieved at 170 C in the range from 20 to 90 hours. It was noted that Cu increases the hardness of alloys during aging. Moreover, the influence of Cu on age-hardening kinetics is marginal. The mechanical properties of the spray-deposited and extruded Al-Li alloys were studied in the underaged, peak-aged, and overaged conditions. For example, the peak-aged yield strength, tensile strength, and ductility of Al-3.8Li-1.0Cu-1.0Mg-0.4Ge-0.2Zr are 455 MPa, 601 MPa, and 3.1 pct, respectively. Moreover, an increase in the Cu content of the alloy led to improvements in strength, with only slight changes in ductility, for Cu contents up to 1.0 wt pct. Beyond this range, an increase in Cu content led to decreases in both strength and ductility.

  1. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  2. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGESBeta

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  3. Surface nanocrystallization of Ti-6Al-4V alloy: microstructural and mechanical characterization.

    PubMed

    Pi, Y; Agoda-Tandjawa, G; Potiron, S; Demangel, C; Retraint, D; Benhayoune, H

    2012-06-01

    In this study, microstructural and mechanical properties of Ti-6Al-4V alloy, before and after the SMA treatment (SMAT) as well as the duplex SMAT/Nitriding process at different treatment conditions, were investigated in order to deepen the knowledge of these properties for biomedical devices. For that purpose, tribological (wear resistance, coefficient of friction) and mechanical (Vickers microhardness) tests were performed. To carry out the microstructural and surface topographical characterization of the samples, the scanning electron microscopy (SEM) and the 3D-SEM reconstruction from stereoscopic images have been used. By means of profiles deduced from the 3D images, the surface roughness has been calculated. The obtained results allowed to find an interesting SMAT condition which, followed by nitriding at low temperature, can greatly improve tribological and mechanical properties of Ti-6Al-4V alloy. It was also shown from SEM characterization and the original method of 3D-SEM reconstruction, that SMAT can reduce the machined grooves and consequently the roughness of the samples decreases. Moreover, we demonstrated, for the first time, that instead of usual etching method, the ionic polishing allowed to reveal the grains, the grain boundaries and the twins as well as the surface nanocrystalline layer generated by SMAT. Thus, the thickness of the SMATed layer decreases with the nitriding temperature, whereas the surface grain size increases. PMID:22905548

  4. Fabrication of Nb3Al superconducting wires by utilizing the mechanically alloyed Nb(Al)ss supersaturated solid-solution with low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Pan, X. F.; Yan, G.; Qi, M.; Cui, L. J.; Chen, Y. L.; Zhao, Y.; Li, C. S.; Liu, X. H.; Feng, Y.; Zhang, P. X.; Liu, H. J.; Li, L. F.

    2014-07-01

    High-performance Nb3Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb3Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb3Al superconducting wires, which were made by using the mechanically alloyed Nb(Al)ss supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb3Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb2Al and Nb impurities still keep being existence at present work. At the Nb3Al with a nominal 26 at.% Al content, the onset Tc reaches 15.8 K. Furthermore, a series of Nb3Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the Jc at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm2, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb3Al superconducting wires by directly using the Nb(Al)ss supersaturated solid-solution without the complex RHQT heat-treatment process.

  5. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    SciTech Connect

    Hosch, Timothy

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  6. Structure of AlSi-SiC composite foams surface formed by mechanical and thermal cutting

    NASA Astrophysics Data System (ADS)

    Krajewski, Sławomir; Nowacki, Jerzy

    2015-02-01

    The article presents the geometric structure of AlSi-SiC composite foam surface after thermal, mechanical and erosive cutting with regards to its subsequent practical applications. In stereometric measurements of foam surfaces, confocal microscopy was suggested as a method fit for measuring surfaces of high discontinuity ratio that results from porosity. Basic quality parameters of cutting plane were characterised, and technical as well as methodological problems deriving from atypical porous structure of metallic foams were identified. On the basis of the results obtained, the influence of cutting methods on the geometric parameters of foam plane was established, and most favourable cutting conditions were determined.

  7. Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy

    NASA Astrophysics Data System (ADS)

    Sarraf, M.; Zalnezhad, E.; Bushroa, A. R.; Hamouda, A. M. S.; Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A. R.

    2014-12-01

    In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.

  8. Research on an AlSiNx bi-material thermal-mechanical uncooled infrared FPA pixel

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Zhang, Da-cheng

    2011-08-01

    AlSiNx bi-material thermal strain structure is used in uncooled optic readout infrared focal plane array (UOR IR FPA) pixel based on Micro-Electro-Mechanical Systems (MEMS) technology. In this paper, the problems that the AlSiNxstructure prevents FPA pixel scaling down and fill factor improving, and the Au reflection layer of the pixel leads to larger readout light energy loss are analyzed. The feasibility of AlSiNx instead of AlSiNx in the UOR IR FPA fabrication is researched in detail. The theoretical analyzing and simulation results demonstrate that, with optimized thicknesses and their matching designing of SiNx and Al, the thermal-mechanical response of AlSiNx bi-material structure is improved to 1.8 times and the intensity of optic readout signal is improved to about 2 times compared with AuSiNAlSiNx one.

  9. Age hardening characteristics and mechanical behavior of Al-Cu-Li-Zr-In alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.

    1989-01-01

    An investigation was conducted to determine the age-hardening response and cryogenic mechanical properties of superplastic Al-Cu-Li-Zr-In alloys. Two alloys with compositions Al-2.65Cu-2.17Li-O.13Zr (baseline) and Al-2.60Cu-2.34Li-0.16Zr-0.17In were scaled-up from 30 lb permanent mold ingots to 350 lb DC (direct chill) ingots and thermomechanically processed to 3.2 mm thick sheet. The microstructure of material which contained the indium addition was partially recrystallized compared to the baseline suggesting that indium may influence recrystallization behavior. The indium-modified alloy exhibited superior hardness and strength compared to the baseline alloy when solution-heat-treated at 555 C and aged at 160 C or 190 C. For each alloy, strength increased and toughness was unchanged or decreased when tested at - 185 C compared to ambient temperature. By using optimized heat treatments, the indium-modified alloy exhibited strength levels approaching those of the baseline alloy without deformation prior to aging. The increase in strength of these alloys in the T6 condition make them particularly attractive for superplastic forming applications where post-SPF parts cannot be cold deformed to increase strength.

  10. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics.

    PubMed

    Zhang, Jie; Lu, Tiecheng; Chang, Xianghui; Wei, Nian; Qi, Jianqi

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young's modulus, as derived from the load-displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  11. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzheng; Topping, Troy D.; Yang, Hanry; Lavernia, Enrique J.; Schoenung, Julie M.; Nutt, Steven R.

    2015-03-01

    A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

  12. Mechanical properties of Al-60 Pct SiC p composites alloyed with Mg

    NASA Astrophysics Data System (ADS)

    Ahlatci, H.; Çimenoğlu, H.; Candan, E.

    2004-07-01

    In the present work, the effect of an Mg addition on the mechanical properties of the Al-60 vol pct SiC p composites were investigated by uniaxial compression, three-point bending, impact and wear tests (composite-metal and composite-abrasive types). The composites were produced by the pressure-infiltration technique. The composition of the Al matrix was varied between 0 and 8 pct Mg. The mean diameter of the SiC particles was 23 µm. Upon addition of Mg, Mg2Si precipitated in the matrix and the amount of the porosity dramatically decreased. Mg-alloyed-matrix composites exhibited higher strength, lower toughness, and higher wear resistance than pure-Al-matrix composites. During composite-metal wear testing, wear progressed in two sequential periods (running-in and steady state). Weight loss during wear testing decreased with increasing Mg content of the matrix. The degree of improvement of abrasive resistance depended on the abrasive-grain size. Above 200 °C, the composite-abrasive wear resistance decreased with increasing test temperature for all materials.

  13. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  14. Characterization of Al and Fe nanosized powders synthesized by high energy mechanical milling

    SciTech Connect

    Mhadhbi, Mohsen; Khitouni, Mohamed Azabou, Myriam; Kolsi, Abdelwaheb

    2008-07-15

    The process of nanocrystalline structure formation during mechanical milling was studied in Al and Fe powders. A detailed microstructural study of powder samples was carried out by X-ray diffraction experiments as a function of milling time. As a result, nanosized powders have been synthesized with microstructures showing a significant decrease of the coherent diffraction domains and the creation of a large number of linear defects, which induce microstrains. SEM results show that welding of very small particles to the surfaces of larger particles occurred and that the powder particles tended to form a matrix of randomly welded thin layers of highly deformed particles. Calorimetric measurements, as a function of milling time, indicated the decrease of the melting point of Al powder and at early stages it can be seen that initially endothermic peak was divided to two endothermic melting peaks. This is probably due to the oxide layer around the Al grains. In the case of Fe powder, the DSC measurements show a broad exothermal peak occurring over quite a large temperature interval, corresponding to the strain release and grain growth.

  15. Unique mechanical properties of nanostructured transparent MgAl2O4 ceramics

    PubMed Central

    2013-01-01

    Nanoindentation tests were performed on nanostructured transparent magnesium aluminate (MgAl2O4) ceramics to determine their mechanical properties. These tests were carried out on samples at different applied loads ranging from 300 to 9,000 μN. The elastic recovery for nanostructured transparent MgAl2O4 ceramics at different applied loads was derived from the force-depth data. The results reveal a remarkable enhancement in plastic deformation as the applied load increases from 300 to 9,000 μN. After the nanoindetation tests, scanning probe microscope images show no cracking in nanostructured transparent MgAl2O4 ceramics, which confirms the absence of any cracks and fractures around the indentation. Interestingly, the flow of the material along the edges of indent impressions is clearly presented, which is attributed to the dislocation introduced. High-resolution transmission electron microscopy observation indicates the presence of dislocations along the grain boundary, suggesting that the generation and interaction of dislocations play an important role in the plastic deformation of nanostructured transparent ceramics. Finally, the experimentally measured hardness and Young’s modulus, as derived from the load–displacement data, are as high as 31.7 and 314 GPa, respectively. PMID:23724845

  16. Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    2012-11-01

    Reduction in grain size in weld fusion zones (FZs) presents the advantages of increased resistance to solidification cracking and improvement in mechanical properties. Transverse mechanical arc oscillation was employed to obtain grain refinement in the weldment during tungsten inert gas welding of Al-Mg-Si alloy. Electron backscattered diffraction analysis was carried out on AA6061-AA4043 filler metal tungsten inert gas welds. Grain size, texture evolution, misorientation distribution, and aspect ratio of weld metal, PMZ, and BM have been observed at fixed arc oscillation amplitude and at three different frequencies levels. Arc oscillation showed grain size reduction and texture formation. Fine-grained arc oscillated welds exhibited better yield and ultimate tensile strengths and significant improvement in percent elongation. The obtained results were attributed to reduction in equivalent circular diameter of grains and increase in number of subgrain network structure of low angle grain boundaries.

  17. Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Hackbarth, Andreas; Berger, Georg; Krüger, Jörg

    2012-07-01

    The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation.

  18. Microstructure and mechanical properties of P/M (powder metallurgy) Fe sub 3 Al alloys

    SciTech Connect

    Knibloe, J.R.; Wright, R.N. ); Sikka, V.K. )

    1990-01-01

    Alloys based on Fe{sub 3}Al have an equilibrium DO{sub 3} structure at low temperatures and transform to a B2 structure above about 550{degree}C. The influence of different rates of quenching from the B2 region to room temperature on the microstructure and mechanical properties of powder metallurgy (P/M) alloys with two different Cr contents has been examined. By optimizing the processing to maximize the amount of B2 order, room temperature ductility approaching 20% has been achieved although the fracture mode is primarily brittle cleavage. The refined microstructure resulting from P/M processing contributes to enhanced yield strength compared to ingot processed materials with similar ductility. Increasing the Cr content from 2 to 5% has little effect on mechanical properties. 8 refs., 12 figs., 2 tabs.

  19. Composition, morphology and mechanical properties of sputtered TiAlN coating

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2014-03-24

    TiAlN coating was deposited on the tungsten carbide cutting tool by using DC magnetron sputtering system to study the influence of substrate bias and nitrogen flow rate on the composition, morphology and mechanical properties. The negatively substrate bias and nitrogen flow rate was varied from about −79 to −221 V and 30 sccm to 72 sccm, respectively. The coating composition and roughness were characterized by using SEM/EDX and Atomic Force Microscopy (AFM), respectively. The dynamic ultra micro hardness tester was used to measure the mechanical properties. The coating hardness increases to about 10-12 GPa with an increase of the negatively substrate bias up to − 200 V and it tend to decrease with an increase in nitrogen flow rate up to 70 sccm. The increase of hardness follows the increase of Ti and N content and rms coating roughness.

  20. Influence of Al2O3 sol concentration on the microstructure and mechanical properties of Cu-Al2O3 composite coatings

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tang, Ying; Gao, Wei

    2015-03-01

    Copper (Cu) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu, sol-enhanced Cu-Al2O3 nanocomposite coatings were electroplated by adding a transparent Al oxide (Al2O3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al2O3 sol concentration. The results show that the Al2O3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by 20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu-Al2O3 composite coatings. The wear resistance was also improved by 84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.

  1. Mechanical behavior of Al-Li-SiC composites: Part I. Microstructure and tensile deformation

    NASA Astrophysics Data System (ADS)

    Poza, P.; Llorca, J.

    1999-03-01

    The microstructure and tensile properties of an 8090 Al-Li alloy reinforced with 15 vol pet SiC particles were investigated, together with those of the unreinforced alloy processed following the same route. Two different heat treatments (naturally aged at ambient temperature and artificially aged at elevated temperature to the peak strength) were chosen because they lead to very different behaviors. Special emphasis was given to the analysis of the differences and similarities in the microstructure and in the deformation and failure mechanisms between the composite and the unreinforced alloy. It was found that the dispersion of the SiC particles restrained the formation of elongated grains during extrusion and inhibited the precipitation of Al3Li at ambient temperature. The deformation processes in the peak-aged materials were controlled by the S' precipitates, which acted as barriers for dislocation motion and homogenized the slip. Homogeneous slip was also observed in the naturally aged composite, but not in the unreinforced alloy, where plastic deformation was concentrated in slip bands. The most notorious differences between the alloy and the composite were found in the fracture mechanisms. The naturally aged unreinforced alloy failed by transgranular shear, while the failure of the peak-aged alloy was induced by grain-boundary fracture. The fracture of the composite in both tempers was, however, precipitated by the progressive fracture of the SiC reinforcements during deformation, which led to the early failure at the onset of plastic instability.

  2. Mechanism of Interaction of Al3+ with the Proteins Composition of Photosystem II

    PubMed Central

    Hasni, Imed; Yaakoubi, Hnia; Hamdani, Saber; Tajmir-Riahi, Heidar-Ali; Carpentier, Robert

    2015-01-01

    The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII. PMID:25806795

  3. Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling

    NASA Astrophysics Data System (ADS)

    Pusceddu, E.; Charlton, S.; Hampshire, D. P.

    2008-02-01

    An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.

  4. Mechanism of interaction of Al3+ with the proteins composition of photosystem II.

    PubMed

    Hasni, Imed; Yaakoubi, Hnia; Hamdani, Saber; Tajmir-Riahi, Heidar-Ali; Carpentier, Robert

    2015-01-01

    The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII. PMID:25806795

  5. Golgi Fragmentation in ALS Motor Neurons. New Mechanisms Targeting Microtubules, Tethers, and Transport Vesicles

    PubMed Central

    Haase, Georg; Rabouille, Catherine

    2015-01-01

    Pathological alterations of the Golgi apparatus, such as its fragmentation represent an early pre-clinical feature of many neurodegenerative diseases and have been widely studied in the motor neuron disease amyotrophic lateral sclerosis (ALS). Yet, the underlying molecular mechanisms have remained cryptic. In principle, Golgi fragmentation may result from defects in three major classes of proteins: structural Golgi proteins, cytoskeletal proteins and molecular motors, as well as proteins mediating transport to and through the Golgi. Here, we present the different mechanisms that may underlie Golgi fragmentation in animal and cellular models of ALS linked to mutations in SOD1, TARDBP (TDP-43), VAPB, and C9Orf72 and we propose a novel one based on findings in progressive motor neuronopathy (pmn) mice. These mice are mutated in the TBCE gene encoding the cis-Golgi localized tubulin-binding cofactor E, one of five chaperones that assist in tubulin folding and microtubule polymerization. Loss of TBCE leads to alterations in Golgi microtubules, which in turn impedes on the maintenance of the Golgi architecture. This is due to down-regulation of COPI coat components, dispersion of Golgi tethers and strong accumulation of ER-Golgi SNAREs. These effects are partially rescued by the GTPase ARF1 through recruitment of TBCE to the Golgi. We hypothesize that defects in COPI vesicles, microtubules and their interaction may also underlie Golgi fragmentation in human ALS linked to other mutations, spinal muscular atrophy (SMA), and related motor neuron diseases. We also discuss the functional relevance of pathological Golgi alterations, in particular their potential causative, contributory, or compensatory role in the degeneration of motor neuron cell bodies, axons and synapses. PMID:26696811

  6. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).

    PubMed

    Parthasarathy, Jayanthi; Starly, Binil; Raman, Shivakumar; Christensen, Andy

    2010-04-01

    Patient specific porous implants for the reconstruction of craniofacial defects have gained importance due to their better performance over their generic counterparts. The recent introduction of electron beam melting (EBM) for the processing of titanium has led to a one step fabrication of porous custom titanium implants with controlled porosity to meet the requirements of the anatomy and functions at the region of implantation. This paper discusses an image based micro-structural analysis and the mechanical characterization of porous Ti6Al4V structures fabricated using the EBM rapid manufacturing process. SEM studies have indicated the complete melting of the powder material with no evidence of poor inter-layer bonding. Micro-CT scan analysis of the samples indicate well formed titanium struts and fully interconnected pores with porosities varying from 49.75%-70.32%. Compression tests of the samples showed effective stiffness values ranging from 0.57(+/-0.05)-2.92(+/-0.17)GPa and compressive strength values of 7.28(+/-0.93)-163.02(+/-11.98)MPa. For nearly the same porosity values of 49.75% and 50.75%, with a variation in only the strut thickness in the sample sets, the compressive stiffness and strength decreased significantly from 2.92 GPa to 0.57 GPa (80.5% reduction) and 163.02 MPa to 7.28 MPa (93.54 % reduction) respectively. The grain density of the fabricated Ti6Al4V structures was found to be 4.423 g/cm(3) equivalent to that of dense Ti6Al4V parts fabricated using conventional methods. In conclusion, from a mechanical strength viewpoint, we have found that the porous structures produced by the electron beam melting process present a promising rapid manufacturing process for the direct fabrication of customized titanium implants for enabling personalized medicine. PMID:20142109

  7. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  8. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Bhushan, Bharat

    2016-08-01

    Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  9. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  10. CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei

    2016-08-01

    Understanding the role of metal-support interaction for the supported single-atom catalysts is very important in heterogeneous catalysis. Here, Three different CO oxidation mechanisms on Pt/γ-Al2O3 catalyst were probed by periodic density functional theory (DFT) calculations in detail, namely the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism, the reactive CO3 intermediate mechanism and the Pt-Al3+ double sites mechanism. According to the calculated results analysis, we concluded that the dominant reaction pathway at the low temperatures is the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism. Our results are in very good agreement with the experimental evidence for O*sbnd Osbnd C*dbnd O coverage on Pt/γ-Al2O3 at room temperature by an in situ diffuse reflectance infrared detector.

  11. Mechanical properties of porous Al2O3 composite with surface modified multi-walled carbon nanotubes (MWCNTs).

    PubMed

    Kim, Eun-Hee; Lee, Woo-Ram; Jung, Yeon-Gil

    2011-08-01

    Multi-walled carbon nanotubes (MWCNTs) have been reinforced in alumina (Al2O3) matrix to overcome the inherent brittleness of the Al2O3 matrix. In this work, MWCNTs were treated by acid to provide hydrophilicity to hydrophobic MWCNTs, inducing the homogeneous dispersion of MWCNTs in an aqueous solution. Aluminum hydroxide (Al(OH)3) as a Al2O3 precursor was added in the solution with the modified MWCNTs, and then this mixture solution was filtered at room temperature. The prepared powders were calcinated at 800-1000 degrees C to reduce the gas pocket in the matrix by decomposition of Al(OH)3. Then the calcinated powders were formed, and heat-treated. The porous MWCNTs-Al2O3 composites show higher mechanical properties in flexure strength and hardness than the porous Al2O3 without the reinforcement phase, which is attributed to the high mechanical properties of MWCNTs. However, higher MWCNTs contents in the composites decrease the mechanical properties due to the aggregation of MWCNTs in the composites. Therefore, control of the MWCNTs content and its dispersibility in the matrix are key factors to be considered for the fabrication of the porous MWCNT-Al2O3 composites. PMID:22103230

  12. The microstructural mechanism of electromigration failure in narrow interconnects of Al alloys

    SciTech Connect

    Kim, Choongun

    1993-04-01

    This thesis reports a study of the mechanism of electromigration failure in Al-2Cu-1Si thin-film conducting lines on Si. Samples were patterned from 0.5 {mu}m thick vapor-deposited films with various mean grain sizes (G), and had lines widths (W) of 1.3, 2, 4 and 6 {mu}m. The lines were aged at various conditions to change the Cu-precipitate distribution and were tested to failure at T = 225{degrees}C and j = 2.5 {times} 10{sup 6} A/cm{sup 2}. Some samples were tested over a range of substrate temperatures, current densities and current reversal times. Aging produces an initially dense distribution of metastable {Theta}{prime} (Al{sub 2}Cu; coherent) in the grain interiors, with stable {Theta} (Al{sub 2}Cu; incoherent) at the grain boundaries. The intragranular {theta}{prime} is gradually absorbed into the grain boundary precipitates. In the wide lines the mean time to failure increases slowly and monotonically with pre-aging time and current reversal time. The failure mode is the formation and coalescence of voids that form on grain boundaries with an apparent activation energy of 0.65 eV. In the narrow lines, the lines failed by a transgranular-slit mechanism with an activation energy near 0.93 eV. The distribution of the polygranular segments and the kinetics of failure varies with the linewidths. Failure occurs after Cu has been swept from the grains that fail. Pre-aging the line to create a more stable distribution of Cu significantly increases the time to failure. When the density of intragranular {Theta}-phase precipitates is maximized, the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture. The results from the current reversal test indicate that the time to sweep Cu in the polygranular segments is longer for longer polygranular segments. Thus the time to first failure in an array of lines is much longer than predicted by a log-normal fit to the distribution of failure times.

  13. Influence of Bond Coats on the Microstructure and Mechanical Behaviors of HVOF-Deposited TiAlNb Coatings

    NASA Astrophysics Data System (ADS)

    Zeng, H. J.; Zhang, L. Q.; Lin, J. P.; He, X. Y.; Zhang, Y. C.; Jia, P.

    2012-12-01

    Hot dip galvanizing has been extensively employed for corrosion protection of steel structures. However, during the process of galvanization, the corrosion in molten zinc brings many problems to galvanization industry. In this study, as a material of corrosion resistance to molten zinc intended for application in Hot-dip galvanization, HVOF Ti28.15Al63.4Nb8.25Y (at.%) coatings with different bond coats (NiCr5Al, NiCoCrAlY, CoCrAlYTaSi, and NiCr80/20) were deposited onto 316L stainless steel substrate, respectively. The influences of different bond coats on HVOF Ti28.15Al63.4Nb8.25Y coatings were investigated. The results showed that bond coat had an obvious influence on improving the mechanical properties of HVOF Ti28.15Al63.4Nb8.25Y coatings. HVOF Ti28.15Al63.4Nb8.25Y coatings with NiCoCrAlY bond coat displayed the best mechanical properties. However, bond coats had no obvious effects on the microstructure, porosity, and hardness of HVOF Ti28.15Al63.4Nb8.25Y top coatings. The effects of as-received powder morphology and grain size on the characteristics of coatings were also discussed.

  14. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    NASA Astrophysics Data System (ADS)

    AL-Bukhaiti, M. A.; Al-hatab, K. A.; Tillmann, W.; Hoffmann, F.; Sprute, T.

    2014-11-01

    A new [Ti/TiAlN/TiAlCN]5 multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al2O3 balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10-15 m3/N m, low friction coefficients against 100Cr6 and Al2O3 balls in the range of 0.25-0.37, and good hardness in the range of 17-20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al2O3 and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al2O3 pair, while for coating/100Cr6 pair, a combination of mild adhesive wear, severe adhesive wear, and abrasive wear (extensive plowing) were the dominant wear mechanisms at different applied normal loads.

  15. Dendritic Arm Spacing Affecting Mechanical Properties and Wear Behavior of Al-Sn and Al-Si Alloys Directionally Solidified under Unsteady-State Conditions

    NASA Astrophysics Data System (ADS)

    Cruz, Kleber S.; Meza, Elisangela S.; Fernandes, Frederico A. P.; Quaresma, José M. V.; Casteletti, Luiz C.; Garcia, Amauri

    2010-04-01

    Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.

  16. Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment

    NASA Astrophysics Data System (ADS)

    Mohan, K.; Suresh, J. A.; Ramu, Palaniappan; Jayaganthan, R.

    2016-04-01

    The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at -80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.

  17. Microstructure and Mechanical Behavior of Al 7075-T6 Subjected to Shallow Cryogenic Treatment

    NASA Astrophysics Data System (ADS)

    Mohan, K.; Suresh, J. A.; Ramu, Palaniappan; Jayaganthan, R.

    2016-06-01

    The effect of shallow cryogenic treatment (SCT) on the microstructure and mechanical properties of Al7075-T6 is investigated in the present work. The alloy was subjected to shallow CT at -80 °C for 72 h. Mechanical tests such as Vickers hardness test, tensile, and fatigue tests were performed on both native and treated samples. It was observed that the mechanical properties such as hardness, yield strength, and ultimate tensile strength increased by about 30, 17, and 7%, respectively, for the treated sample. The treated alloy was characterized by using the techniques such as optical microscopy, electron back scattered diffraction (EBSD), energy-dispersive x-ray spectroscopy (EDS), and transmission electron microscopy (TEM) to observe the changes in the microstructural features. EBSD results show precipitation, better distribution of second-phase particles, and higher dislocation density in the treated alloy as compared to the untreated alloy. The treatment imparts improved hardness and strength to the alloy due to precipitation hardening and high dislocation density. Fracture morphologies of the treated and the native samples were characterized by using scanning electron microscopy and it was observed that the striations were denser in the treated sample justifying the higher fatigue strength.

  18. Formation Mechanism of CaS-Al2O3 Inclusions in Low Sulfur Al-Killed Steel After Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianfei; Huang, Fuxiang; Wang, Xinhua

    2016-04-01

    The laboratory experiments of alumina inclusions modified by calcium treatment in Al-killed steel were carried out at 1873 K (1600 °C), and the inclusions in steel samples were characterized at 1, 5, and 10 minutes after calcium addition. The results show that the type of inclusions after calcium treatment was determined by the sulfur and T.O contents of steel. CaS-Al2O3 inclusions were obtained in steels with high sulfur and low T.O contents. The mass ratio between CaS and Al2O3 was determined by T.Ca and T.O contents of steel. The influence of holding time after calcium addition on the composition of inclusions was negligible. The thermodynamics for the formation of CaS-Al2O3 inclusions after calcium treatment was discussed, and a simple formation mechanism was proposed. Moreover, the CaO, Al2O3, and CaS contents in the inclusions were predicted through the sulfur, total calcium (T.Ca), and T.O contents, and it was found that the CaO content decreases with increasing S/T.O, while (pctCaS)/(pctAl2O3)1/3 increases with increasing T.Ca/T.O.

  19. Fabrication, Microstructure, and Mechanical Property of NiAl-based Composite with Microlaminated Architecture by Roll Bonding and Annealing Treatment

    NASA Astrophysics Data System (ADS)

    Fan, Guohua; Wang, Qingwei; Geng, Lin; Zhang, Jie; Hu, Weiping; Du, Yan

    2016-03-01

    Microlaminated TiB2-NiAl composite sheets consisting of alternating TiB2-rich and monolithic NiAl layers have been successfully fabricated by roll bonding and reaction annealing of Ni sheets and TiB2/Al composite sheets. Solid-liquid reaction mechanisms including diffusion reaction and precipitation were determined in the initial multi-laminated Ni-(TiB2/Al) sheets at 1473 K (1200 °C). After fabrication, the microlaminated composite sheets have a strong texture with <111> parallel to normal direction formed by phase transformation inheritance from initial rolling texture of Ni sheets via diffusion reaction. Both the tensile strength and elongation of the microlaminated TiB2-NiAl composite sheets were significantly improved when tested at the temperatures above BDTT, which could be attributed to the unique laminated structure, bimodal grain size distribution in NiAl matrix, and enhanced interface bonding between both layers.

  20. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    , within error, for both 0 and 2 mol% Al nanoparticle suspensions. Thus, the presence of 2 mol% Al decreased the rate constants determined from analyses of infrared OH-stretching and OH-bending vibrations by 43-57%. We postulate that dissolution re-precipitation reactions are accelerated in aggregate microenvironments by locally increased supersaturation, yielding the dominant mechanism for transformation of ferrihydrite to goethite and goethite crystal growth when bulk ion concentrations are low. Although we did observe growth of a population of prismatic goethite single crystals by TEM, there was more substantial growth of a population of polycrystalline goethite needles that appeared to retain some defects from a preceding aggregation step that we detected with DLS. Since the presence of Al hinders the dissolution of ferrihydrite, it too reduces the rate of crystallization to goethite and its crystal growth. As exemplified in this nano-particle crystallization study, the combination of advanced spectral-curve-resolution algorithms and sensitive and quantitative infrared sampling techniques opens future opportunities for the quantification of mineral phase dynamics in nanocolloidal suspensions, which is important for many aspects of environmental studies.

  1. Microstructure and mechanical properties of Ni sub 3 Al-based alloys reinforced with particulates

    SciTech Connect

    McKamey, C.G.; Carmichael, C.A.

    1990-01-01

    Hot-extrusion was used to produce Ni{sub 3}Al-based alloys to which 10 vol % TiN, NbC, HfO{sub 2}, or HfN was added for reinforcement. The TiN, NbC, and HfO{sub 2} particulates produced Ni{sub 3}Al-matrix composites in which no reaction was noted at the particle-matrix interface. However, the addition of HfN resulted in extensive reaction in which the hafnium appeared to diffuse into the matrix. Microstructures of this alloy showed a complex array of phases and voids where the HfN particles are presumed to have been originally. Hot hardness, compression, and compression creep tests were preformed on specimens cut from the extruded bar of each alloy. No significant strengthening was observed for the alloys containing TiN, NbC, or HfO{sub 2}. However the HfN-containing alloy did show significant strengthening in simple compression and compression creep. This presentation will include microstructures and the results of the mechanical properties tests. 26 refs., 5 figs.

  2. Mechanical properties of rapidly solidified Al-Si-Ni-Ce P/M alloys

    SciTech Connect

    Lee, T.H. |; Kawamura, Yoshihito; Inoue, Akihisa; Masumoto, Tsuyoshi; Cho, S.S.

    1997-02-15

    To meet current and future materials needs for structural members or engine parts in aircraft, motorcycle and automobile, it is needed to develop high-performance light weight alloys with higher room-temperature strength, higher elevated temperature strength, higher wear resistance and lower thermal expansion. Powder metallurgy (P/M) alloys with novel mechanical properties have been developed by a rapid solidification technique. The improved properties result from structural modifications such as reduction of segregation, refinement of grain size and increase in solid solubility limit. The aim of this paper is to examine the effect of adding of glass-forming elements, Ni and Ce, to a RS P/M Al-19at.%Si alloy for the development of high strength and good wear resistance aluminum alloys.

  3. Deactivation mechanisms for Pd/Al{sub 2}O{sub 3} acetylene hydrogenation catalysts

    SciTech Connect

    Hall, J.B.; Huggins, B.J.; Meyers, B.L.; Kaminsky, M.P.

    1994-12-31

    The selective hydrogenation of acetylenic impurities to ethylene is a crucial purification step in the production of olefins by steam cracking. This hydrogenation is done catalytically using a Pd/Al{sub 2}O{sub 3} catalyst in a fixed bed reactor. The designed lifetime of the catalyst in a front end acetylene converter is about 4 years. Accelerated catalyst deactivation and thermal runaways caused by loss in catalyst selectivity are common problems which plague acetylene converters. Such problems result in unscheduled shutdowns and increased costs to replace deactivated catalyst. This presentation outlines several deactivation mechanisms of the catalyst and discusses how they affect catalyst lifetime and performance. Catalyst characterization using electron microscopy and CO chemisorption provides information on how poisons deteriorate the catalyst and Pd particle size changes produced by use and regeneration. Thermal gravimetric analysis was also used to determine the extent of coke burn-off using less severe regeneration procedures.

  4. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  5. Deformation mechanisms responsible for the creep resistance of Ti-Al alloys

    SciTech Connect

    Morris, M.A.; Lipe, T.

    1997-12-31

    Two {gamma}-based Ti-Al alloys with similar grain sizes and, respectively, lamellar and duplex microstructures have been creep tested at 700 C and constant stresses ranging between 280 and 430 MPa. TEM observations have confirmed that the duplex alloy deforms by extensive mechanical twinning whose density increases with applied stress and increasing strain. The new twin interfaces subdivide the {gamma} grains throughout the primary stage of creep. At the onset of the minimum creep rate, the twin interfaces in the duplex alloy behave in the same way as the {gamma}/{gamma} or the {alpha}{sub 2}/{gamma} interfaces in the lamellar alloy. However, single dislocations were also present and it appears that in both alloys the deformation process is controlled by the accumulation and emission of dislocations from the different interfaces.

  6. Microstructure and Mechanical Property Change During FSW and GTAW of Al6061 Alloy

    NASA Astrophysics Data System (ADS)

    Fahimpour, V.; Sadrnezhaad, S. K.; Karimzadeh, F.

    2013-05-01

    The variation of morphology and mechanical properties of Al6061 automotive aluminum alloy due to friction stir welding (FSW) and gas tungsten arc welding (GTAW) was investigated by optical metallography, scanning electron microscopy, microhardness measurement, X-ray diffraction, tensile testing, and fractography. The center-line dendrite emergence and microhardness reduction in the heat-affected zone were observed in the GTAW process. Although similar microhardness reduction with respect to the base metal was observed in the FSW samples, higher HVs were obtained for the FSW rather than the GTAW process at almost all heat-affected locations. Ultimate tensile strengths of the FSW and the GTAW samples in the transverse direction were ~0.57 and ~0.35 of the base metal, respectively. Post-weld aging improved the strength, but reduced the ductility of the welding.

  7. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis

    PubMed Central

    Ling, Shuo-Chien; Polymenidou, Magdalini; Cleveland, Don W.

    2015-01-01

    Breakthrough discoveries identifying common genetic causes for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have transformed our view of these disorders. They share unexpectedly similar signatures, including dysregulation in common molecular players including TDP-43, FUS/TLS, ubiquilin-2, VCP, and expanded hexanucleotide repeats within the C9ORF72 gene. Dysfunction in RNA processing and protein homeostasis is an emerging theme. We present the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feed-forward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression. PMID:23931993

  8. Mechanical, electronic and thermodynamic properties of full Heusler compounds Fe2VX(X = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Khalfa, M.; Khachai, H.; Chiker, F.; Baki, N.; Bougherara, K.; Yakoubi, A.; Murtaza, G.; Harmel, M.; Abu-Jafar, M. S.; Omran, S. Bin; Khenata, R.

    2015-11-01

    The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0-40 GPa and 0-1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.

  9. Microstructure and Functional Mechanism of Friction Layer in Ni3Al Matrix Composites with Graphene Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Xue, Bing; Zhu, Qingshuai; Shi, Xiaoliang; Zhai, Wenzheng; Yang, Kang; Huang, Yuchun

    2016-08-01

    Microstructure and functional mechanism of friction layer need to be further researched. In the present work, the friction coefficients and wear rates are analyzed through response surface methodology to obtain an empirical model for the best response. Fitting results show that the tribological performance of Ni3Al matrix composites (NMCs) with graphene nanoplatelets (GNPs) is better than that of NMCs without GNPs, especially at high sliding velocities and high loads. Further research suggests that the formation of integrated friction layer, which consists of a soft microfilm on a hard coating, is the major reason to cause the differences. Of which, the wear debris layer (WDL) with a low shear strength can reduce the shear force. The ultrafine layer (UL), which is much harder and finer, can effectively avoid fracture and improve the load support capacity. Moreover, the GNPs in WDL and UL can be easily sheared and help to withstand the loads, trending to be parallel to the direction of shear force.

  10. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  11. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  12. Mechanisms of Chromate, Selenate, and Sulfate Adsorption on Al-Substituted Ferrihydrite: Implications for Ferrihydrite Surface Structure and Reactivity.

    PubMed

    Johnston, Chad P; Chrysochoou, Maria

    2016-04-01

    Ferrihydrite is a nanocrystalline Fe (hydr)oxide and important sink for environmental contaminants. Although Fe (hydr)oxides are rarely pure in natural systems, little is known about the effects of structural impurities such as Al on the surface properties and reactivity of ferrihydrite. In this study, we characterized the adsorption mechanisms of chromate, selenate, and sulfate on Al-substituted ferrihydrite (0, 6, 12, 18, and 24 mol % Al) using in situ attenuated total reflection Fourier transform infrared spectroscopy. Spectral data sets recorded as a function of pH were processed using a multivariate curve resolution technique to identify which types of surface species form and to generate their concentration profiles as a function of pH and Al content. Results show a significant increase in relative fraction of outer-sphere complexes for all three oxyanions with increasing Al substitution. In addition, the effect of Al substitution is found to be mechanism-specific in the case of chromate, with bidentate complexes disproportionately suppressed over monodentate complexes at higher Al contents. Overall, our findings have important implications for the fate of chromate, selenate, and sulfate in subsurface environments and offer new insight into the surface reactivity of Al-ferrihydrite. PMID:26900715

  13. Effects of rhenium alloying on the microstructures and mechanical properties of directionally solidified NiAl-Mo eutectic alloy

    SciTech Connect

    Misra, A.; Wu, Z.L.; Gibala, R.

    1997-12-31

    Low ductility of the reinforcing bcc metal phase at room temperature and weak interfaces can limit the intrinsic toughness and ductility of NiAl-bcc metal eutectic composites. The potential of rhenium (Re) addition, which is known to solid solution soften and lower the ductile-to-brittle transition temperature of various bcc metals, to enhance the ductility and toughness of a directionally solidified NiAl-9 at.% Mo eutectic alloy was investigated. Re partitioned to the bcc metal phase and formed a substitutional solid solution. The interface morphology was changed from a faceted to a non-faceted one. Re alloying caused softening of the Mo fibers, and as a result NiAl-Mo(Re) alloys were softer in compression and flexure and had {approximately}20% higher fracture toughness values as compared to the transverse orientation toughness of NiAl-9Mo alloy. The toughness of the NiAl-Mo(Re) alloys was lower than the longitudinal orientation toughness of the NiAl-9Mo alloy due to the poor alignment of the Mo(Re) phase with the growth direction. The toughening mechanisms have been evaluated and schemes for processing NiAl-Mo(Re) alloys for higher toughness in the longitudinal orientation are suggested. The role of the residual interstitial impurities and partitioning of Ni and Al to Mo fibers on the mechanical properties are highlighted.

  14. Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Castro, Ramon

    2000-11-01

    Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics

  15. Effect of milling time and CNT concentration on hardness of CNT/Al{sub 2024} composites produced by mechanical alloying

    SciTech Connect

    Perez-Bustamante, R.; Perez-Bustamante, F.; Estrada-Guel, I.; Licea-Jimenez, L.; Miki-Yoshida, M.; Martinez-Sanchez, R.

    2013-01-15

    Carbon nanotube/2024 aluminum alloy (CNT/Al{sub 2024}) composites were fabricated with a combination of mechanical alloying (MA) and powder metallurgy routes. Composites were microstructurally and mechanically evaluated at sintering condition. A homogeneous dispersion of CNTs in the Al matrix was observed by a field emission scanning electron microscopy. High-resolution transmission electron microscopy confirmed not only the presence of well dispersed CNTs but also needle-like shape aluminum carbide (Al{sub 4}C{sub 3}) crystals in the Al matrix. The formation of Al{sub 4}C{sub 3} was suggested as the interaction between the outer shells of CNTs and the Al matrix during MA process in which crystallization took place after the sintering process. The mechanical behavior of composites was evaluated by Vickers microhardness measurements indicating a significant improvement in hardness as function of the CNT content. This improvement was associated to a homogeneous dispersion of CNTs and the presence of Al{sub 4}C{sub 3} in the aluminum alloy matrix. - Highlights: Black-Right-Pointing-Pointer The 2024 aluminum alloy was reinforced by CNTs by mechanical alloying process. Black-Right-Pointing-Pointer Composites were microstructural and mechanically evaluated after sintering condition. Black-Right-Pointing-Pointer The greater the CNT concentration, the greater the hardness of the composites. Black-Right-Pointing-Pointer Higher hardness in composites is achieved at 20 h of milling. Black-Right-Pointing-Pointer The formation of Al{sub 4}C{sub 3} does not present a direct relationship with the milling time.

  16. Microstructure and High-Temperature Mechanical Properties of ZrO2-Al2O3-SiC Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Ping; Ouyang, Jia-Hu; Wang, Yu-Jin; Liu, Zhan-Guo; Wang, Ya-Ming

    2015-09-01

    In the present work, ZrO2-Al2O3 ceramics incorporated with and without β-SiC were prepared by hot pressing. ZrO2-Al2O3 ceramic powder used in this study is a mixture of 71 vol.% YSZ (3 mol.% Y2O3 partially stabilized zirconia) and 29 vol.% α-Al2O3. β-SiC powders with different volume fractions are added into the ZrO2-Al2O3 powder to form the composite powder. The microstructure and high-temperature mechanical properties of ZrO2-Al2O3-SiC ceramics were investigated by tailoring the compositions and sintering parameters to optimize the strengthening mechanisms. For a comparative study, the TZ3Y20A powder was also hot-pressed under identical sintering condition to form dense bulk ceramic. ZrO2-Al2O3-SiC ceramics consist mainly of t-ZrO2, α-Al2O3, and β-SiC phases. SiC particles in the ZrO2-Al2O3 ceramic restrain the grain growth of the oxide matrix. The incorporation of SiC into ZrO2-Al2O3 ceramic enhances high-temperature flexural strength at 1273 K. ZrO2-Al2O3 ceramic incorporated with 15 vol.% SiC has a flexural strength of 518 MPa at 1273 K, much higher than that (201 MPa) of unmodified ZrO2-Al2O3 ceramic.

  17. Electronic and mechanical properties of Zr{sub 2}TiAl: A first principles study

    SciTech Connect

    Reddy, P. V. Sreenivasa Kanchana, V.

    2014-04-24

    First principles study of electronic and mechanical properties of ternary phase Zr{sub 2}TiAl intermetallic compound has been carried out by using full potential linear augmented plane wave (FP-LAPW) method. Our calculated lattice parameter is in good agreement with the experiment. We find the magnetic phase of the compound to be stable with a magnetic moment of 1.95 μ{sub B}. The major contribution to the total magnetic moment arises mainly from the Ti atom with the local magnetic moment of 1.22 μ{sub B}. From the density of states plots we find the Ti-d and Zr-d to dominate at the Fermi level (E{sub F}) with enhanced crystal field splitting and exchange splitting found in Ti. The mechanical stability of the compound is confirmed from the calculated elastic constants, and we find the compound to be ductile in nature from the calculated Pugh’s ratio and Cauchy’s pressure.

  18. Mechanism of Fluorescence Switching in One ESIPT-Based Al(3+) Probe.

    PubMed

    Budzák, Šimon; Jacquemin, Denis

    2016-07-14

    A recently synthesized Schiff base used as a probe for aluminum cations was studied with ab initio models. The primary reason for the lack of fluorescence in aprotic solvents was found to be the presence of an efficient conical intersection (CI) between the ground-states and the first singlet excited-states close to the Franck-Condon geometry. The excited-state pathway leading to this CI is barrierless but implies large amplitude motions, explaining why the fluorescence was observed in frozen acetonitrile matrix. Our calculations suggest that constraining the molecule by impending the rotation around the imino bond enables excited-state intramolecular proton transfer. A similar stiffening mechanism is responsible for the strong fluorescence turn-on after formation of complexes between Al(3+) cations and dehydrogenated Schiff base. Finally, the analysis of the possible fluorescence mechanisms in water indicates that the anion of 1 is the likely fluorescence source. Overall, this work allows one to disentangle the various origins of fluorescence switching in a probe. PMID:27281545

  19. Mechanisms of continuous recrystallization in an Al-Zr-Si alloy

    SciTech Connect

    Gudmundsson, H.; Brooks, D.; Wert, J.A. )

    1991-01-01

    This paper reports that microstructural evolution in an Al-Zr-Si alloy has been investigated with the goal of elucidating the mechanisms responsible for formation of high-angle grain boundaries by continuous, recovery-type processes during concurrent straining and annealing. The primary method of investigation was TEM characterization of the microstructure and microtexture after cold rolling, after annealing, and after concurrent straining and annealing. The cold-rolled microstructure consists of layers parallel to the rolling plane; only low-angle boundaries are present within each layer while adjacent layers are separated by high-angle boundaries. During annealing, the subgrain size increased but the subgrain boundary misorientations are not significantly changed and the high-angle boundaries are relatively immobile. In contrast, concurrent straining and annealing of the cold-rolled material causes a gradual increase in the misorientation of some of the original low-angle boundaries, implying subgrain rotation. Ultimately, high-angle boundaries evolve by subgrain rotation from the subgrain boundaries originally present within each layer. The observations are interpreted in terms of several mechanisms previously proposed for microstructural evolution during concurrent straining and annealing.

  20. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    PubMed Central

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-01-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes. PMID:27486073

  1. Mechanical Properties, Corrosion Behavior, and Microstructures of a MIG-Welded 7020 Al Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Cao, Xiaowu; Xu, Guofu; Deng, Ying; Tang, Lei; Yin, Zhimin

    2016-03-01

    7020 aluminum alloy plates were welded by metal inert gas welding method, with the ER5183 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The mechanical properties, corrosion behavior, and microstructures of these two welded joints were investigated. The tensile strength and ductilities of the joints are inferior to those of base alloy, and the lowest hardness is obtained in the welded zone, while the heat-affected zones are more sensitive to corrosion than the base metal and welded zones. The base metal shows a deformed subgrains microstructure, and the heat-affected zones still remain in elongated shape, where the soften zones form as a result of η' (MgZn2) coarsening. Two welded zones are mainly characterized by as-cast structure; however, grains are refined and a zone of equiaxed grains forms along the bonding boundary due to the Zr addition into ER5183 Al alloy. Accordingly, the mechanical properties and corrosion resistance in this zone of the joint with ER5183 exhibit better than those of the joint with ER5356.

  2. Failure Mechanisms During Isothermal Fatigue of SiC/Ti-24Al-11Nb Composites

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Bartolotta, P. A.

    1995-01-01

    Failure mechanisms during isothermal fatigue of unidirectional SiC/Ti-24Al-11Nb (at.%) composites have been determined by microstructural analysis of samples from tests interrupted prior to the end of life and from tests conducted to failure. Specimens from three regions of life were examined based on the maximum strain from a fatigue life diagram: Region 1 (high strain), Region 2 (mid-strain) and Region 3 (low strain). Crack lengths were also measured from interrupted samples and compared based on temperature (23-815 C), region of life and numbers of cycles. Region 1 was controlled by fiber-dominated failure. A transition zone was observed between Regions 1 and 2 due to competition between failure mechanisms. Failure in Region 2 was generally described as surface-initiated cracking with varying amounts of fiber bridging. However, the specific descriptions of crack propagation through the fibers and matrix varied with strain and temperature over this broad region. Region 3 exhibited endurance behaviour at 23 C with no cracking after lO(exp 6) cycles. However at 425 C, surface-initiated cracking was observed after 10(exp 6) cycles with fractured fibers in the crack wake. If endurance behaviour exists for conditions of isothermal fatigue in air at temperatures of greater than or equal to 425 C, it may only be found at very low strains and at greater than 10(exp 6) cycles.

  3. Two-step crystal growth mechanism during crystallization of an undercooled Ni50Al50 alloy

    NASA Astrophysics Data System (ADS)

    An, Simin; Li, Jiahao; Li, Yang; Li, Shunning; Wang, Qi; Liu, Baixin

    2016-08-01

    Crystallization processes are always accompanied by the emergence of multiple intermediate states, of which the structures and transition dynamics are far from clarity, since it is difficult to experimentally observe the microscopic pathway. To insight the structural evolution and the crystallization dynamics, we perform large-scale molecular dynamics simulations to investigate the time-dependent crystallization behavior of the NiAl intermetallic upon rapid solidification. The simulation results reveal that the crystallization process occurs via a two-step growth mechanism, involving the formation of initial non-equilibrium long range order (NLRO) regions and of the subsequent equilibrium long range order (ELRO) regions. The formation of the NLRO regions makes the grains rather inhomogeneous, while the rearrangement of the NLRO regions into the ELRO regions makes the grains more ordered and compact. This two-step growth mechanism is actually controlled by the evolution of the coordination polyhedra, which are characterized predominantly by the transformation from five-fold symmetry to four-fold and six-fold symmetry. From liquids to NLRO and further to ELRO, the five-fold symmetry of these polyhedra gradually fades, and finally vanishes when B2 structure is distributed throughout the grain bulk. The energy decrease along the pathway further implies the reliability of the proposed crystallization processes.

  4. Conduction mechanism of non-gold Ta/Si/Ti/Al/Ni/Ta ohmic contacts in AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Li, Yang; Ng, Geok Ing; Arulkumaran, Subramaniam; Ye, Gang; Mohan Manoj Kumar, Chandra; Jesudas Anand, Mulagumoottil; Liu, Zhi Hong

    2015-04-01

    This work investigates the conduction mechanism of non-gold Ta/Si/Ti/Al/Ni/Ta ohmic contact in un-doped AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on Si. Temperature-dependent current-voltage (I-V) measurements reveal that the conduction occurs primarily via thermionic emission (TE). The extracted mean barrier height (ΦB) values are 0.113 and 0.121 eV and the mean contact resistance (Rc) values are 0.24 and 0.28 Ω mm, for annealing temperatures of 850 and 900 °C, respectively. The low Rc is attributed to the formation of low work function TixSiy at the metal-semiconductor interface. The high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis provide further structural evidence in support of the TE mechanism.

  5. Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings

    NASA Astrophysics Data System (ADS)

    Li, W. Z.; Chen, Q. Z.; Polcar, T.; Serra, R.; Cavaleiro, A.

    2014-10-01

    Cr-Al-N coatings with Zr alloying (Zr contents from 0 to 29.5 at.%) were deposited by d.c. reactive magnetron sputtering. The chemical composition and the morphology of as-deposited coatings were characterized, and the phase structure, mechanical properties and wear resistance of the coatings before and after thermal annealing were analyzed and evaluated. With the increase of Zr content, both Cr and N contents decrease whereas Al shows a growing trend. Low Zr (<26.9 at.%) coatings are stoichiometric and present a fcc NaCl-type B1 structure with columnar morphology, while high Zr (≥26.9 at.%) coatings are in N deficiency and have low crystallinity degree. The alloying of low contents of Zr improves the coating hardness and H/E ratio; however, for low ordered coatings these properties decrease significantly. After thermal annealing, fcc structure is kept in low Zr films whereas the crystalline degree is improved in the high Zr ones and their mechanical properties were slightly improved. Two coatings were selected for further testing, representatives of low (CrAlZr5N) and high (CrAlZr27N) Zr contents. The onset oxidation temperature is ∼900 °C and 600 °C for CrAlZr5N and CrAlZr27N coatings, respectively. Mainly Cr2O3 is formed on low Zr coatings whereas mixed oxides of ZrO2 and Cr2O3 are detected on CrAlZr27N sample after thermal exposure. In all tribological tests, low Zr coating presents lower wear rate than the CrAlZr27N coating. In general, the addition of very high Zr contents (>20 at.%) with N deficiency markedly weakens the mechanical properties and the oxidation resistance of Cr-Al-Zr-N coatings.

  6. Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryoforging

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Kumar, Nikhil; Yogesha, K. K.; Jayaganthan, R.; Nath, S. K.

    2016-07-01

    Mechanical properties and microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 were investigated in the present work. The deformed samples after 4 cycles at a cumulative strain of 2.4 shows the formation of ultrafine grain sizes in the range of 100-450 nm with high-angle grain boundaries as observed from TEM analysis. The tensile and hardness of the deformed sample were measured by Universal Testing machine and Vickers hardness Tester, respectively. The tests were also conducted for sample deformed at room temperature to compare with cryo-forged samples. The sample deformed at cryogenic temperature up to a cumulative strain 2.4 shows an improvement of tensile strength, hardness, and apparent fracture toughness (KQ) from 318 MPa to 470 MPa, 103HV to 171 HV, and 23.93 MPa √ m to 37.7 MPa √ m, respectively, with decrease in ductility from 18% to 6% as compared with solution-treated alloy. The cryo-forged Al 2014 alloy exhibits an increment of 7% in tensile strength, 3% in yield strength, and 3% in hardness up to cumulative true strain of 2.4 as compared to the samples forged at room temperature. The improvement in tensile properties of MDFed alloy is attributed to dislocation strengthening and grain boundary strengthening effect at both temperatures. The effective suppression of cross slip and climb at liquid nitrogen temperature improves the strength of cryo-forged sample better than that of room temperature-forged alloy.

  7. Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed Through Multidirectional Cryoforging

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Kumar, Nikhil; Yogesha, K. K.; Jayaganthan, R.; Nath, S. K.

    2016-06-01

    Mechanical properties and microstructure evolution of Al 2014 alloy subjected to cryoforging (MDF) to a cumulative strain of 1.2, 1.8, and 2.4 were investigated in the present work. The deformed samples after 4 cycles at a cumulative strain of 2.4 shows the formation of ultrafine grain sizes in the range of 100-450 nm with high-angle grain boundaries as observed from TEM analysis. The tensile and hardness of the deformed sample were measured by Universal Testing machine and Vickers hardness Tester, respectively. The tests were also conducted for sample deformed at room temperature to compare with cryo-forged samples. The sample deformed at cryogenic temperature up to a cumulative strain 2.4 shows an improvement of tensile strength, hardness, and apparent fracture toughness (KQ) from 318 MPa to 470 MPa, 103HV to 171 HV, and 23.93 MPa √ m to 37.7 MPa √ m, respectively, with decrease in ductility from 18% to 6% as compared with solution-treated alloy. The cryo-forged Al 2014 alloy exhibits an increment of 7% in tensile strength, 3% in yield strength, and 3% in hardness up to cumulative true strain of 2.4 as compared to the samples forged at room temperature. The improvement in tensile properties of MDFed alloy is attributed to dislocation strengthening and grain boundary strengthening effect at both temperatures. The effective suppression of cross slip and climb at liquid nitrogen temperature improves the strength of cryo-forged sample better than that of room temperature-forged alloy.

  8. Mechanical Behavior of Cu/Al multilayers fabricated by Accumulative Roll-Bonding (ARB) processing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei

    For many years, there have been long-standing interests in studying multilayer metals. And many kinds of multilayers are fabricated via a variety of methods. Recently, in an effort to obtain ultrafine grains, a novel technique, namely, accumulative roll-bonding (ARB) is created, which is a kind of severe plastic deformation (SPD) process [1]. Via this technique extremely high strain can be obtained when metal materials are processed; and the properties of original metals can also be largely changed. However, ARB process is rarely applied to multilayer fabrication, especially the fabrication of multilayer bimetals. This thesis focuses on how to obtain Al/Cu multilayers via ARB process, and also examines the microstructure evolution with the increasing number of layers, and the metal properties of the obtained multilayers. This thesis first reviews the development and mechanism of rolling, one of the most important metal forming processes, and the application of rolling in metal fabrication in recent years. Then the formation and the development of ARB process are introduced, followed by current studies on ARB process. Among all the methods of fabricating multilayers, ARB process features high efficiency and continuous production of sheet materials, etc., because it is based on the rolling principle. This thesis examines a mass of unique metal properties and the microstructure of the products that experienced ARB process. In this research, a great numbers of conditions for the roll-bonding of aluminum and copper sheets were studied. Besides, aluminum and copper sheets were rolled to 1.1 mm, 0.8 mm, 0.58 mm and 0.5 mm thick as initial samples. Then the Al/Cu multilayer sheets experienced ARB process for up to 10 cycles at most, at various heat treatment temperatures under various annealing conditions, with various reductions in thickness per cycles and different thickness ratio of aluminum and copper layers. Altogether 11 groups were obtained. In this thesis, the

  9. Investigation on mechanical properties of AlZrCr- A12O3 nanocomposites fabricated by stir casting

    NASA Astrophysics Data System (ADS)

    M, Kirman; Zulfia, Anne; Sutopo; Suharno, Bambang

    2014-06-01

    Aluminum alloy composite with nano Al2O3 reinforcement will be designed to have good mechanical properties that correspond to its application. The addition of nano Al2O3 in aluminum is to increase strength and stiffness. In this study aluminum matrix made as a master alloy with the addition of zirconium (Zr) and cerium (Ce) to form Al-Zr-Ce alloys which was reinforced with nanoscale alumina particles known as nano aluminum composite which has high strength and stiffness. Master alloy Al-Zr-Ce used as a matrix content of 0.12 wt% Zr and 0.13 wt% Ce, while Al2O3 nano particles (<100nm) used as reinforcement was various in the range of 0-3 Vf%. Aluminum composite was produced by stirring of molten metal with a rotational speed of 500 rpm at a temperature of 750°C in an inert argon gas environment then characterized both mechanical properties and microstructure analysis. The tensile strength increased with increasing Al2O3 nano particles up to 1 Vf%. Mechanical properties of composites were slightly increased and there was no significant change in elongation and hardness, perhaps due to the non-uniformity distribution or clustering formation of particles in the matrix.

  10. Comparison in mechanical and tribological properties of CrTiAlMoN and CrTiAlN nano-multilayer coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Guojun; Jiang, Bailing

    2016-02-01

    CrTiAlN and CrTiAlMoN nano-multilayer coatings were deposited by closed field unbalanced magnetron sputtering. TiMoN and CrTiMoN nano-multilayer coatings with same Mo2N layer thickness were also prepared for comparison. The structure of these coatings is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The mechanical and tribological properties were characterized and compared by nano-indentation and ball-on-disc test. It was found that these coatings were structured by fcc metal nitride phases (including CrN, TiN, AlN and Mo2N) and the preferred orientation changed from (1 1 1) to (2 0 0) with the increase of Mo content. The TEM results showed that the coatings exhibited typical columnar structure and nano-multilayer structure with modulation periods ranged from 3.2 nm to 7.6 nm. Among these coatings, CrTiAlMoN coatings presented the highest hardness, lowest coefficient of friction (COF) and wear rate. The hardness of these nano-multilayer coatings were determined by layer interfaces: TiN/Mo2N and AlN/Mo2N layer interface showed benefit on hardness enhancement while CrN/Mo2N layer interface led to a great hardness decrement. In comparison with the other as-deposited coatings, the low COF of CrTiAlMoN coatings was not only affected by Mo addition but also related to its oxidation behaviors.

  11. Intrapersonal and interpersonal processes of social exclusion

    PubMed Central

    Kawamoto, Taishi; Ura, Mitsuhiro; Nittono, Hiroshi

    2015-01-01

    People have a fundamental need to belong with others. Social exclusion impairs this need and has various effects on cognition, affect, and the behavior of excluded individuals. We have previously reported that activity in the dorsal anterior cingulate cortex (dACC) and right ventrolateral prefrontal cortex (rVLPFC) could be a neurocognitive index of social exclusion (Kawamoto et al., 2012). In this article, we provide an integrative framework for understanding occurrences during and after social exclusion, by reviewing neuroimaging, electrophysiological, and behavioral studies of dACC and rVLPFC, within the framework of intrapersonal and interpersonal processes of social exclusion. As a result, we have indicated directions for future studies to further clarify the phenomenon of social exclusion from the following perspectives: (1) constructional elements of social exclusion, (2) detection sensitivity and interpretation bias in social exclusion, (3) development of new methods to assess the reactivity to social exclusion, and (4) sources of social exclusion. PMID:25798081

  12. Contributions of phase and structural transformations in multicomponent Al-Mg alloys to the linear and nonlinear mechanisms of anelasticity

    NASA Astrophysics Data System (ADS)

    Golovin, I. S.; Bychkov, A. S.; Mikhailovskaya, A. V.; Dobatkin, S. V.

    2014-02-01

    The effects of the processes of severe plastic deformation (SPD), recrystallization, and precipitation of the β phase in multicomponent alloys of the Al-5Mg-Mn-Cr and Al-(4-5%)Mg-Mn-Zn-Sc systems on the mechanisms of grain-boundary relaxation and dislocation-induced microplasticity have been studied in some detail. To stabilize the ultrafine-grained structure and prevent grain growth, dispersed Al-transition-metal particles, such as Al3Zr, Al6Mn, Al7Cr, Al6(Mn,Cr), Al18Cr2Mg3 have been used. We have special interest in alloys with additions of scandium, which forms compounds of the Al3Sc type and favors the precipitation of finer particles compared to the aluminides of other transition metals. After SPD, Al-(4-5%)Mg-Mn-Zr-Sc alloys exhibit an enhanced recrystallization temperature. The general features of the dislocation and grain-boundary anelasticity that have been established for the binary Al-Mg alloys are retained; i.e., (1) the decrease in the dislocation density in the process of recrystallization of cold-worked alloys leads to the formation of a pseudo-peak in the curves of the temperature dependences of internal friction (TDIF) and to a decrease in the critical amplitude of deformation corresponding to the onset of dislocation motion in a stress field; (2) the precipitation of the β phase suppresses the grain-boundary relaxation; (3) the dissolution of the β phase, the passage of the magnesium atoms into the solid solution, and the precipitation of the β' phase upon heating hinder the motion of dislocations; (4) the coarsening of the highly dispersed particles containing Zr and Sc increases the dislocation mobility. The grain-boundary relaxation and dislocation-impurity interaction and their temperature dependences, as well as processes of the additional alloying of the binary alloys by Mn, Cr, Zr, and Sc, have been estimated quantitatively.

  13. Conduction mechanisms in thin atomic layer deposited Al{sub 2}O{sub 3} layers

    SciTech Connect

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-11-14

    Thin Al{sub 2}O{sub 3} layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current.

  14. Social exclusion in finite populations

    NASA Astrophysics Data System (ADS)

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2015-04-01

    Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation.

  15. Social exclusion in finite populations.

    PubMed

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2015-04-01

    Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation. PMID:25974550

  16. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    NASA Astrophysics Data System (ADS)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  17. Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping

    2016-07-01

    In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.

  18. Mechanical properties of binary Ni{sub 3}Al single crystals

    SciTech Connect

    Bonneville, J.; Martin, J.L.; Spaetig, P.; Viguier, B.; Matterstock, B.

    1997-12-31

    The mechanical properties of binary Ni{sub 76.6}Al{sub 23.4} single crystalline specimens have been studied in compression test over a wide range of temperature (293--1,100 K). The resolved proof stress ({tau}{sub 0.2%}) and the corresponding work-hardening rate ({theta}{sub 0.2%}) have been measured as a function of temperature. In addition, a technique of repeated stress relaxations has been used to investigate the related microscopic activation volume (V{sub 0.2%}) and to characterize the variation in the density of mobile dislocations that occurs during such transient tests. It is observed that not only {tau}{sub 0.2%} exhibits an anomalous behavior with temperature but also {theta}{sub 0.2%}, while the stress dependence of V{sub 0.2%} may be considered as normal, i.e., V{sub 0.2%} is a monotonic decreasing function of stress.

  19. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-05-01

    This report deals with the welding procedure development and weldment properties of an Fe-16 at. % Al alloy known as FAPY. The welding procedure development was carried out on 12-, 25-, and 51-mm (0.5-, 1-, and 2-in.) -thick plates of the alloy in the as-cast condition. The welds were prepared by using the gas tungsten arc process and filler wire of composition matching the base-metal composition. The preheat temperatures varied from room temperature to 350{degrees}C, and the postweld heat treatment (PWHT) was limited only for 1 h at 750{degrees}C. The welds were characterized by microstructural. analysis and microhardness data. The weldment specimens were machined for Charpy-impact, tensile, and creep properties. The tensile and creep properties of the weldment specimens were essentially the same as that of the base metal. The Charpy-impact properties of the weldment specimens improved with the PWHT and were somewhat lower than previously developed data on the wrought material. Additional work is required on welding of thicker sections, development of PWHT temperatures as a function of section thickness, and mechanical properties.

  20. Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.

  1. Effect of Cr on Microstructure, Mechanical Properties, and Wear Behavior of In Situ 20 wt.%Al2O3/Fe-25Al Composites

    NASA Astrophysics Data System (ADS)

    Bai, Yaping; Xing, Jiandong; Guo, Yongchun; Li, Jianping; He, Yuanyuan; Ma, Shengqiang

    2015-02-01

    In order to improve the room temperature ductility and high temperature strength of Fe-25Al alloys, in situ 20 wt.%Al2O3/Fe-25Al composites with 0, 1, 2, 3, 4, and 5 at.% Cr element contents (0-6.70 wt.%) were prepared by mechanical alloying inducing self-propagating reaction with subsequent plasma-activated sintering. Microstructures, room temperature hardness, flexural strength, fracture toughness, and compression property and wear behavior at mid-high temperatures of the sintered samples were tested and analyzed. The results showed that all the composites with Cr element addition had good microstructure with fine grain size and high relative density. The flexural strength and fracture toughness increased first and then decreased with increasing content of Cr. Especially, the composites with 3 at.% Cr had the highest flexural strength, highest fracture toughness, and best compressive properties during 298-1073 K, and the main fracture mechanism changed from brittle fracture at room temperature to plastic deformation and pullout of the second phase at 673 K. With Cr content increasing, the friction coefficients decreased and the wear rates increased because of decreasing hardness. The composites with 3 at.% Cr had excellent wear properties with lower friction coefficient and wear rate.

  2. The mechanism of electromigration failure of narrow Al-2Cu-1Si thin-film interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Choongun; Morris, J. W., Jr.

    1993-05-01

    This work is principally concerned with the microstructure of electromigration failure in narrow Al-2Cu-1Si conducting lines on Si. Samples were patterned from 0.5-μm-thick vapor-deposited films with mean grain size of 2.4 μm, and had linewidths of 1.3 μm (W/G≊0.5), 2 μm (W/G≊0.8), and 6 μm (W/G≊2.5). The lines were tested to failure at T=226 °C and j=2.5×106 A/cm2. Other samples were tested over a range of substrate temperatures and current densities to test the effect of these variables, and 1.3 μm lines were tested after preaging at 226 °C for various times to change the Cu-precipitate distribution prior to testing. Three failure modes were observed: The 6 μm specimens failed by separation along grain boundaries with an apparent activation energy of 0.65 eV; the 1.3 μm specimens that were preaged for 24 h failed after very long times by gradual thinning to rupture; all other narrow lines failed by the transgranular-slit mechanism with an activation energy near 0.93 eV. Microstructural studies suggest that the transgranular-slit failure mechanism is due to the accumulation of a supersaturation of vacancies in the bamboo grains that terminate polygranular segments in the line. Failure occurs after Cu has been swept from the grain that fails. Failure happens first at the end of the longest polygranular segment of the line, at a time that decreases exponentially with the polygranular segment length. Preaging the line to create a more stable distribution of Cu lengthens the time required to sweep Cu from the longest polygranular segment, and significantly increases the time to failure. In the optimal case the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture. Preaging is particularly effective in increasing the lifetimes of lines that contain very long polygranular segments, and has the consequence that the time to first failure in an array of lines is much longer than predicted by a log

  3. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  4. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?

    PubMed Central

    2013-01-01

    Background Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.) are generally considered among the crop species most sensitive to salt stress. A handful of lines are known to be tolerant, and a small number of these have been used extensively as donors in breeding programs. However, these donors use many of the same genes and physiological mechanisms to confer tolerance. Little information is available on the diversity of mechanisms used by these species to cope with salt stress, and there is a strong need to identify varieties displaying additional physiological and/or genetic mechanisms to confer higher tolerance. Results Here we present data on 103 accessions from O. sativa and 12 accessions from O. glaberrima, many of which are identified as salt tolerant for the first time, showing moderate to high tolerance of high salinity. The correlation of salinity-induced senescence (as judged by the Standard Evaluation System for Rice, or SES, score) with whole-plant and leaf blade Na+ concentrations was high across nearly all accessions, and was almost identical in both O. sativa and O. glaberrima. The association of leaf Na+ concentrations with cultivar-groups was very weak, but association with the OsHKT1;5 allele was generally strong. Seven major and three minor alleles of OsHKT1;5 were identified, and their comparisons with the leaf Na+ concentration showed that the Aromatic allele conferred the highest exclusion and the Japonica allele the least. A number of exceptions to this association with the Oryza HKT1;5 allele were identified; these probably indicate the existence of additional highly effective exclusion mechanisms. In addition, two landraces were identified, one from Thailand and the other from Senegal, that show high tissue tolerance. Conclusions Significant variation in salinity tolerance exists within both cultivated Oryza species, and this is the first report of significant tolerance in O. glaberrima. The majority of accessions display a

  5. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  6. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    SciTech Connect

    Tammy J. Harrell; Troy D. Topping; Haiming Wen; Tao Hu; JULIE M. SCHOENUNG; ENRIQUE J. LAVERNIA

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grained material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.

  7. Mechanical properties of Al-Cu alloy-SiC composites

    SciTech Connect

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-25

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  8. Ion implantation in Al{sub x}Ga{sub 1-x}As : damage structures and amorphization mechanisms.

    SciTech Connect

    Lagow, B. W.; Turkot, B. A.; Robertson, I. M.; Coleman, J. J.; Roh, S. D.; Forbes, D. V.; Rehn, L. E.; Baldo, P. M.; Materials Science Division; Univ. of Illinois

    1998-07-01

    We review previous research on ion implantation in Al{sub x}Ga{sub 1-x}As-GaAs heterostructures, and include observations from our current work in order to assess the various mechanisms that have been proposed to account for damage accumulation and amorphization in this system. In considering all of the experimental observations, the most consistent description is one where amorphization occurs by a combination of point-defect buildup and direct impact amorphization mechanisms.

  9. On a mechanism of 1/2<110> and 1/2<112> dislocation pinning in {gamma}-TiAl

    SciTech Connect

    Inkson, B.J.

    1996-10-15

    A new mechanism for 1/2<110> and 1/2<112> dislocation pinning in TiAl is discussed. This mechanism is based on the inability of 1/2<110> perfect dislocations and 1/2<112> superdislocations to propagate through small {gamma} order-domains where the two {gamma}-grains are related by an order relationship equivalent to a 120{degree} rotation about <111>.

  10. Mechanism of the formation of peripheral coarse grain structure in hot extrusion of Al-4.5Zn-1Mg

    NASA Astrophysics Data System (ADS)

    Eivani, A. R.; Zhou, J.; Duszczyk, J.

    2016-04-01

    Microstructural evolution leading to peripheral coarse grain (PCG) structure in hot extruded Al-4.5Zn-1Mg rods is investigated. The extent of dynamic recrystallization (DRX) in the as-extruded product falls not in line with the basis over which the existing mechanisms for interpretation of PCG formation are built. A new mechanism is therefore proposed based on partial DRX during extrusion and nucleation and abnormal growth of statically recrsystallised grains.

  11. An ab initio study of the size-dependent mechanical behavior of single-walled AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Wang, Yun-Feng; Jin, Qing-Hua

    2015-07-01

    Employing ab initio electronic structure calculations combined with the linear combination of atomic orbitals (LCAO) we have investigated a size dependence of mechanical behavior in single-walled AlN nanotubes with armchair and zigzag forms. A simple procedure of nanotubes construction based on the wurtzite (0 0 1) slab with monolayer rolling and subsequent cylindrical coordinate system introduction is suggested. The present calculations indicate that the Young's modulus and electronic band gap of these tubes are increased monotonically as the radius increases, but decreases with the Al-N bond length. In addition, the amount of charge transfer calculated by the Mulliken's population analysis is introduced to explain clearly the strength of bonding between Al and N atoms in single-walled AlN nanotubes.

  12. Local Structures of Mechanically Alloyed Al70Cu20Fe10 Nanocomposites Studied by XRD and XAFS

    SciTech Connect

    Yin Shilong; Qian Liying; He Bo; Zou Shaobo; Wei Shiqiang; Bian Qing

    2007-02-02

    Ternary Al70Cu20Fe10 alloy nano-composites prepared by mechanical alloying are characterized by X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results indicate that after milled for 10 hours, the coordination environment around Cu atoms is changed largely and becomes disordered, but the local structure of Fe atoms still remains as that of {alpha}-Fe. This indicates the forming of inter-metallic compound Al2Cu with body center cubic structure. Even if the milling time is extended to 40 hours, only small amount of {alpha}-Fe can be alloyed to produce Al-Fe-Cu alloy. However, the annealing treatment at 700 deg. C can drive the {alpha}-Fe to incorporate into the Al2Cu compound to form an icosahedral alloy phase.

  13. Microstructure and mechanical properties of sputter deposited Ni/Ni3Al multilayer films at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Wu, Yixiong

    2016-08-01

    Nano-structured Ni/Ni3Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni3Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni3Al on strengthening mechanisms of Ni/Ni3Al multilayers at elevated temperature are discussed.

  14. On the populating mechanisms of the autoionising states of Al III ions produced in a Penning ionisation discharge

    NASA Technical Reports Server (NTRS)

    Finkenthal, M.; Littman, A.; Stutman, D.; Bhatia, A. K.

    1989-01-01

    Spectra emitted by Al II and Al III in the 100-1900-A range from a Penning ionization discharge (PID) have been analyzed in order to study the populating mechanisms of the autoionizing levels of the Al III ion. Electron temperature and density estimates and Al III line intensities obtained using a collisional-radiative model are found to differ from those obtained experimentally, implying that the autoionizing levels of the Na I-like ion may be populated, in the PID plasma, by the inner-shell ionization of excited Mg I-like ions. It is suggested that such autoionizing lines could be used to search for populations inversions in the soft X-ray domain.

  15. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    SciTech Connect

    Germen, Gülşah Şevik, Hüseyin; Kurnaz, S. Can

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are α−Mg, β−Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  16. Al-TiC Composites Fabricated by a Thermally Activated Reaction Process in an Al Melt Using Al-Ti-C-CuO Powder Mixtures. Part I: Microstructural Evolution and Reaction Mechanism

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hee; Lee, Jung-Moo; Kim, Su-Hyeon

    2014-11-01

    Al matrix composites reinforced with TiC particles are fabricated by a thermally activated reaction of Al-Ti-C powder mixtures in an Al melt. In the presence of CuO, reactant mixtures in the form of a pellet added to molten Al at temperatures higher than 1093 K (820 °C) instantly reach the peak temperature over 1785 K (1512 °C), followed by combustion wave propagation with in situ synthesizing TiC with a size of approximately 1 μm. Incomplete reaction products such as unreacted C, Al3Ti, and TiC aggregates are also observed. The pellet microstructure evolution upon the combustion reaction indicates that preheating temperature, i.e., the initial melt temperature, affects both the thermodynamic and kinetic characteristics of the reaction, and thereby influences the final microstructure of the Al/TiC composites. Based on the experimental and theoretical results, a sequence of the reaction leading upto the in situ synthesis of TiC is illustrated and the corresponding mechanism for the present process is proposed.

  17. Effects of Interfacial Layers Fracture on the Dissolution Mechanism of Solid Fe in Liquid Al

    NASA Astrophysics Data System (ADS)

    Rezaei, H.; Akbarpour, M. R.; Shahverdi, H. R.

    2015-07-01

    Solid Fe and liquid Al interaction was studied in the temperature range of 750-900°C by immersion tests in the absence of convection to better understand interfacial reactions during the first instances of immersion (10-80 s). Solidified interface profiles were characterized using a scanning electron microscope and an electron probe micro-analyzer. The results showed the formation of a transition layer with a composition close to pure Fe on the Fe side as a result of Al diffusion from the melt into the solid at initial times of the immersion test, before the formation of an intermetallic compound. At longer immersion times, two intermetallic layers were observed, Fe2Al5 and FeAl3. With increasing immersion time, the intermetallic compounds were thickened, and cracks formed at the interface layers. The formation of cracks accelerated the fracture of the interfacial layers and enhanced the Al diffusion toward solid Fe. As a result of the detachment and dissolution of the intermetallic phases in liquid Al, precipitates of FeAl3 with needle-like morphology were found in the Al phase. A model is proposed for the interface reaction of solid Fe with liquid Al at the first instance of immersion.

  18. A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test

    NASA Astrophysics Data System (ADS)

    Curceanu Petrascu, C.; Bartalucci, S.; Bassi, A.; Bertolucci, S.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Matteo, S. Di; Donadi, S.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Scordo, A.; Sirghi, D. L.; Sirghi, F.; Sperandio, L.; Vazquez Doce, O.; Widmann, E.; Zmeskal, J.

    2012-12-01

    The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, is at the very basis of our understanding of matter and Nature. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Mechanics and Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible small violation of PEP, where the q violation parameter translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the q-parameter to a value very close to either 1 (for bosons) or -1 (for fermions). The VIP (VIolation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter and as probability of PEP violation, we briefly discuss the results and present plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopical fast Silicon Drift Detectors. We discuss as well the possibility of using a similar experimental technique to search for X-rays generated as a signature of the spontaneous collapse of the wave function, predicted by continous spontaneous localization type theories.

  19. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    SciTech Connect

    Pereira, J.C.; Zambrano, J.C.; Afonso, C.R.M.; Amigó, V.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  20. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-07-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1-x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1-x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1-x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1-x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  1. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  2. Dynamic Mechanical Behavior Characterization of Epoxy-Cast Al + Fe2O3 Thermite Mixture Composites

    NASA Astrophysics Data System (ADS)

    Ferranti, Louis; Thadhani, Naresh N.

    2007-11-01

    The dynamic mechanical behavior characterization of epoxy-cast stoichiometric mixtures of nano- or micron-scale aluminum and hematite (Fe2O3) powders is investigated in this work. Experiments conducted on rod-shaped samples, using instrumented reverse Taylor impact tests employing high-speed imaging and velocity interferometry, show that these composites exhibit viscoelastic deformation and brittle fracture behaviors. Upon impact, the samples display significant elastic and plastic deformation during both the loading and unloading stages, as determined from quantitative high-speed camera measurements of the transient deformation states. Approximately 50 pct elastic recovery of total axial strain was observed to occur rapidly (within tens of microseconds) after impact. A one-dimensional elastic-plastic wave propagation analysis was used for estimating the composite’s dynamic average yield stress and total plastic strain. The results reveal that the nano-Al + Fe2O3-containing epoxy composite is most resilient, has the highest strength, and is more capable of absorbing impact energy. The analysis additionally provides detailed information about elastic and plastic wave interactions for discrete times, up to the final state of the material. Calculations and observations through the coupling of high-speed camera images and velocity interferometry (VISAR) measurements show that the elastic recovery coincides with peak axial strain and the interaction of elastic and plastic waves propagating within the rod-shaped specimen. Hence, such an instrumented Taylor test provides a detailed view of the general wave structure within the material upon impact and, at the same time, enables a complete description of the stress-strain response.

  3. Mechanisms Associated with Rumpling of Pt-Modified Beta-NiAl Coatings

    SciTech Connect

    Joseph Peter Henderkott

    2007-12-01

    The formation of surface undulations (i.e. rumpling) at the bond coat/thermally grown oxide (TGO) interface has been shown to cause failure by spallation of the ceramic top coat in aero-turbine systems. Many mechanisms have been proposed concerning the cause of these surface distortions; however, there is little agreement on what may be the dominating cause of the rumpling behavior. Of there mechanisms, the reversible phase transformation from a cubic {beta}-NiAl structure to a face centered tetragonal (FCT) martensitic phase was of particular interest because of its ability to form surface rumpling in Pt-modified {beta} bulk alloys. However, the bulk alloys used in obtaining that result were simple ternary systems and not relevant to actual coating compositions as other alloying elements enter the coating due to coating/substrate interdiffusion at high temperature. In the current study, the depletion behavior of a commercial coating was studied. Compositions from the depletion path were determined and bulk alloys representing these coating compositions were prepared. The martensitic phase transformation was then characterized using DSC and XRD. The martensitic start temperature on cooling, Ms, was consistently found to be significantly lower than previously reported values (e.g. 530 C vs 100 C). Because of the low Ms temperature, the formation of the martensitic phase was concluded to be unnecessary for the occurrence of rumpling. However, cyclic exposure treatments at low temperature ({approx} 400 C) of bulk alloys and commercial coatings did show the detrimental effects of the phase transformation in the form of crack formation and propagation leading to eventual failure of the alloys. The current work also infers that the differences in coefficient of thermal expansion (CTE) mismatch between the coating and substrate are the dominating factor leading to rumpling. Dilatometry measurements were made on bulk alloys representing depleted coatings and the superalloy

  4. Mechanism of Sinkhole Formation in the Ghor Al-Haditha Based on Geophysical Data

    NASA Astrophysics Data System (ADS)

    Akawwi, E.; Al-Zoubi, A.; Abueadas, A.; Eppelbaum, L.; Ezersky, M.; Levi, E.; Legchenko, A.; Boucher, M.

    2012-04-01

    Dead Sea sinkholes have been forming along the Dead Sea coastal areas in both Israel and Jordan during three last decades. Sinkholes developing in the Ghor Al-Haditha Area affect in roads, agriculture lands, and building foundations by the sudden collapse of the ground surface and cracks with different sizes and depths. If mechanism of sinkhole formation along western Dead Sea shore has been studied goodly enough eastern side requires additional interpretation of data available. The situation in Jordan is complicated by complicated geology and absence of data on salt layers from the verification boreholes. The exposed walls of sinkholes also demonstrated that much of this geological sequence near the surface is composed of sand, silty sand and gravel, in addition to some evaporates minerals (dominantly salt and gypsum). It is understood today that sinkholes are formed within Holocene salt layers located after seismic refraction data at shallow depths of 40-50 meters. Different models suggested by different investigating groups have been suggested. There are models based on surface measurements (InSAR Radar), Microgravity modeling, visual inspection of sinkhole sites etc. The flushing model based on the assumption that turbulent underground water flows associated with a massive mass transport of insoluble fractions (clay and silt) have produced subsurface hollows. These expand upwards and finally appear on the surface as sinkholes. We develop model based on different geophysical studies using seismic reflection and refraction methods, Magnitometry and Microgravity, Electric resistivity Tomography (ERT) and Ground Penetrating Radar (GPR), Magnetic Resonance Sounding (MRS) method, Transient Electromagnetic (TEM) method etc. These data allows suggesting the geophysical model of sinkhole formation mechanism. Our model considers the salt edge as a major factor of sinkhole formation with some features associated with tectonic setting and hydrogeology. The salt model is

  5. High temperature stability, interface bonding, and mechanical behavior in {beta}-NiAl and Ni{sub 3}Al matrix composites with reinforcements modified by ion beam enhanced deposition. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Grummon, D.S.

    1992-01-22

    In preparation for experiments with surface modified Al{sub 2}O{sub 3} reinforcements in {beta}NiAl, diffusion bonding experiments were conducted. FP alumina fibers were prepared with ion sputtered surface films (Al{sub 2}O{sub 3}, Al, Ni) and then composited with {beta}NiAl slabs and hot pressed. After 70 thermal cycles, interfacial shear strength was measured. A roughness mechanism is proposed for the observed increased strength of the coated fibers. Creep in Ni{sub 3}Al was studied. 3 figs, 1 tab. (DLC)

  6. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    SciTech Connect

    Asgharzadeh, H.; Kim, H.S.; Simchi, A.

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometric alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.

  7. Oxide growth stress measurements and relaxation mechanisms for alumina scales grown on FeCrAlY: Oxide growth stress measurements and relaxation mechanisms

    SciTech Connect

    Tortorelli, P. F.; Specht, E. D.; More, K. L.; Hou, P. Y.

    2012-08-08

    Early-stage tensile stress evolution in α-Al2O3 scales during oxidation of FeCrAlY at 1000, 1050, 1100, and 1200 °C was monitored in situ by use of synchrotron radiation. Tensile stress development as a function of oxidation temperature indicated a dynamic interplay between stress generation and relaxation. An analysis of the time dependence of the data indicated that the observed relaxation of the initial tensile stress in the oxide scales at 1100 and 1200°C is dominated by creep in the α-Al2O3. A thin layer of a (Fe,Cr,Al) oxide was observed at the oxide-gas interface, consistent with a mechanism whereby the conversion of (Fe,Cr,Al)2O3 to α-Al2O3 produces an initial tensile stress in the alumina scale.

  8. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress

    PubMed Central

    Velichko, Artem K.; Petrova, Nadezhda V.; Razin, Sergey V.; Kantidze, Omar L.

    2015-01-01

    Heat stress is one of the best-studied cellular stress factors; however, little is known about its delayed effects. Here, we demonstrate that heat stress induces p21-dependent cellular senescence-like cell cycle arrest. Notably, only early S-phase cells undergo such an arrest in response to heat stress. The encounter of DNA replication forks with topoisomerase I-generated single-stranded DNA breaks resulted in the generation of persistent double-stranded DNA breaks was found to be a primary cause of heat stress-induced cellular senescence in these cells. This investigation of heat stress-induced cellular senescence elucidates the mechanisms underlying the exclusive sensitivity of early S-phase cells to ultra-low doses of agents that induce single-stranded DNA breaks. PMID:26032771

  9. The mechanical and thermodynamic properties of ZrAl2 under pressure from first-principles investigation

    NASA Astrophysics Data System (ADS)

    Wei, Ning; Wang, Xuefei; Zuo, Xuzhong

    2016-06-01

    The mechanical and thermodynamic properties of ZrAl2 alloy under high pressure are investigated by first-principles based on the density functional theory. Due to all the elastic constants of ZrAl2 alloy satisfy generalized stabilities criteria, ZrAl2 is mechanically stable under pressure up to 100GPa. By analyzing the value of B/G and Poisson’s ratio ν which are correlated with the ductility and brittleness of material, we found that ZrAl2 belongs to brittle material at pressure of 0-70GPa and will change from brittleness to ductility at 70GPa. Combining with high bulk modulus B and shear modulus G, the mechanical of properties will be improved under high pressure. Moreover, the thermodynamic properties, such as the Debye temperature ΘD, heat capacity Cp and thermal expansion α, are discussed using the quasi-harmonic Debye model. We noted that the Debye temperature ΘD is mainly dependent on the pressure and the effect of temperature on the heat capacity Cp is more important than the applied pressure.

  10. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy

    SciTech Connect

    Li, Jianbo; Liu, Yong; Liu, Bin; Wang, Yan; Liang, Xiaopeng; He, Yuehui

    2014-09-15

    In this work, the effects of deformation on the microstructure and mechanical behaviors of TiAl alloy were investigated. Deformed microstructure observation was characterized by scanning electron microscopy, electron back scattered diffraction technique, transmission electron microscopy and DEFORM-3D software. Results indicated that the core area of the TiAl pancake was characterized by completely dynamically recrystallized microstructures, however some residual lamellar colonies can be observed near the edge area, which are primarily caused by a temperature drop and inhomogenous plastic flow. The main softening mechanism is dynamic recrystallization of γ grains. The as-forged alloy exhibited excellent mechanical properties at both room temperature and high temperature. Tensile test results showed that the ultimate tensile strength of the alloy increased from 832 MPa at room temperature to 853 MPa at 700 °C, while the elongation increased from 2.7% to 17.8%. Even at the temperature of 850 °C, the ultimate tensile strength maintained 404 MPa, and the elongation increased to 75%. The as-forged alloy also exhibited remarkable low-temperature superplasticity at 850 °C, with an elongation of 120%. - Highlights: • The core area of the TiAl pancake was characterized by DRX microstructure. • The elongation at RT is higher than that of other high Nb-containing TiAl alloys. • The forged alloy exhibited low-temperature superplasticity at 850 °C.

  11. Effect of Tool Offset and Tool Rotational Speed on Enhancing Mechanical Property of Al/Mg Dissimilar FSW Joints

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyuan; Chen, Ke; Wang, Xiaona; Yao, Junshan; Yang, Qi; Zhang, Lanting; Shan, Aidang

    2013-08-01

    Friction stir welding (FSW) is a promising solid-state joining technique for producing effective welds between Al alloy and Mg alloy. However, previously reported Al/Mg dissimilar FSW joints generally have limited strength or barely any ductility with relatively high strength, which was blamed on the brittle intermetallics formed during welding. In this study, effective joints with comparably high strength (163 MPa) and large elongation (~6 pct) were obtained. Three crucial/weak zones were identified in the welds: (1) Al/Mg bottom interface (BI) zone that resulted from the insufficient materials' intermixing and interdiffusion; (2) banded structure (BS) zone which contains intermetallic particles possibly formed by constitutional liquation; and (3) softened Al alloy to the retreating side (SAA-RS) zone due to the dissolution and coarsening of the strengthening precipitates. Three fracture modes observed in the tensile specimens perpendicular to the weld seam were found closely related to these zones. Their microstructure evolution with the change of tool rotational speed and tool offset was characterized and the consequent effect on the fracture mode alteration was studied. It turned out that enhancing the strengths of all these zones, but keeping the strength of the SAA lowest, is an effective way for enhancing ductility while keeping comparatively high strength in Al/Mg FSW joints. Also, suggestions for further improving the mechanical property of the Al/Mg dissimilar FSW joints were made accordingly for practical applications.

  12. Effect of Grain Refinement and Cooling Rate on the Microstructure and Mechanical Properties of Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Camicia, Giordano; Ferraro, Stefano

    2013-10-01

    The effect of AlTi5B1 grain refinement and different solidification rates on metallurgical and mechanical properties of a secondary AlSi7Cu3Mg alloy is reported. While the Ti content ranges from 0.04 up to 0.225 wt.%, the cooling rate varies between 0.1 and 5.5 °C/s. Metallographic and thermal analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with grain refiner addition at various cooling rates. The results indicate that a small AlTi5B1 addition produces the greatest refinement, while no significant reduction of grain size is obtained with a great amount of grain refiner. On increasing the cooling rate, a lower amount of AlTi5B1 master alloy is necessary to produce a uniform grain size throughout the casting. The combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. The grain refinement improves the plastic behavior of the alloy and increases the reliability of castings, as evidenced by the Weibull statistics.

  13. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Hao, Yi; Wang, Ji-qiang; Cui, Xin-yu; Wu, Jie; Li, Tie-fan; Xiong, Tian-ying

    2016-06-01

    The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.

  14. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Hao, Yi; Wang, Ji-qiang; Cui, Xin-yu; Wu, Jie; Li, Tie-fan; Xiong, Tian-ying

    2016-04-01

    The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.

  15. Processing and mechanical properties of {gamma}-TiAl based alloy sheet material

    SciTech Connect

    Clemens, H.; Schretter, P.; Glatz, W.; Koeppe, C.; Bartels, A.; Behr, R.; Wanner, A.

    1995-12-31

    The status of rolling of Ti-48Al-2Cr and Ti-47Al-2Cr-0.2Si on industrial scale is described. Defect-free sheet material up to {approximately}800x300x1.5 mm has been produced with grain sizes in the range of 5--20 {micro}m. Tensile properties of Ti-48Al-2Cr sheet material after different heat treatments have been measured at room temperature and 700 C. Fracture elongations at room temperature are in the range of 2.5--5% which proves the good homogeneity of the microstructure. Crack growth characteristics and K{sub IC}-values for different microstructures were determined. The superplastic behavior with respect to grain size was investigated in the temperature range of 950--1,200 C. Initial experiments clearly demonstrate that superplastic forming methods can be applied for shaping of {gamma}-TiAl sheet materials.

  16. Mechanism and modelling of aluminium nanoparticle oxidation coupled with crystallisation of amorphous Al2O3 shell

    NASA Astrophysics Data System (ADS)

    Kong, Chengdong; Yu, Dan; Li, Shuiqing; Yao, Qiang

    2016-03-01

    The oxidation of aluminium nanoparticles coupled with crystallisation of amorphous alumina shell is investigated through the thermogravimetric analyser and differential scanning calorimetry (TGA-DSC) and the transmission electron microscope (TEM). The thermogravimetric (TG) curves show stepwise shapes with temperature increase and could be divided into four stages. The reaction at the second stage is complex, including the simultaneous crystallisation of amorphous alumina (am-Al2O3) and Al oxidation. The crystallisation of am-Al2O3 promotes the reaction through generating fast diffusion channels, like micro-cracks and grain boundaries in the oxide shell to accelerate the ionic diffusion. An enhancement factor (freact), which follows a power-law formula with the crystallisation rate, is introduced to quantify the impact of crystallisation on reaction. With heating rate increase, the second stage of TG curves shifts to the high temperature regime and the total weight gain at the second stage decreases slowly. A crystallisation-reaction model is constructed to fit and predict the weight gain after derivation of diffusivities and crystallisation kinetics. Modelling indicates that with heating rate rise, the mass increment at the second stage of TG curves decreases owing to the reduced reaction time, although the reaction is accelerated. The shift of TG curve to higher temperature is due to the polymorphic phase transition. Actually the derived kinetics of the crystallisation of amorphous alumina indicates that the polymorphic phase transformation mechanism works mainly below the heating rate of 3 K s-1. At higher heating rate, the melting of Al takes place firstly and the crystallisation of am-Al2O3 follows to enhance the ionic diffusion. Therefore, when the heating rate is fast during ignition or combustion, the Al nanoparticles undergo both the melting of Al and the polymorphic phase transition of am-Al2O3 to accelerate the reaction.

  17. Preparation and mechanism of nanometer Al{sub 5}O{sub 6}N via shock wave plasma technique

    SciTech Connect

    Lei Fengbin; Wang Zuoshan Zhao Baoguo

    2009-01-08

    Cubic Al{sub 5}O{sub 6}N nanocrystals were successfully synthesized via a novel strategy called shock wave plasma technique, using trinitrotoluene (TNT) and aluminum powder as raw materials and water as protection medium. The precursor including carbon and Al{sub 5}O{sub 6}N was engendered firstly during the detonation of compound dynamite, and then the pure Al{sub 5}O{sub 6}N nanoparticles were obtained when the carbon was removed through calcining at high temperature. The precursor and the final as-synthesized Al{sub 5}O{sub 6}N powder were characterized by X-ray diffraction (XRD), Raman spectrum and high-resolution transmission electron microscope (HRTEM), respectively. The calcining temperature schedule of the precursor was decided through DTA/TG analysis. The results indicate that the precursor consists of 37.7% carbon and 62.3 deg. C Al{sub 5}O{sub 6}N. After calcining at 600 deg. C for 1 h, the average diameter of the as-synthesized Al{sub 5}O{sub 6}N nanocrystal is 30-40 nm and the morphology micrograph takes on uniform spherical shape. The lattice parameters are consistent completely with the standard cubic Al{sub 5}O{sub 6}N (JCPDS 48-0686). The well-dispersed Al{sub 5}O{sub 6}N nanocrystals synthesized by shock wave plasma technique can be attributed to the covering of carbon and fast cooling of water medium. A possible reaction mechanism was also proposed preliminarily based on the experimental results.

  18. Hot deformation mechanisms in Ti-5.5Al-1Fe alloy

    NASA Astrophysics Data System (ADS)

    Balasubrahmanyam, V. V.; Prasad, Y. V. R. K.

    2001-12-01

    The mechanisms of hot deformation in the alloy Ti-5.5Al-1Fe have been studied in the temperature range 750 to 1150 °C and with the true strain rate varying from 0.001 to 100 s-1 by means of isothermal compression tests. At temperatures below β transus and low strain rates, the alloy exhibited steady-state flow behavior, while, at high strain rates, either continuous flow softening or work hardening followed by flow softening was observed. In the β region, the deformation behavior is characterized by steady-state behavior at low strain rates, yield drops at intermediate strain rates, and oscillations at high strain rates. The processing maps revealed two domains. (1) In the temperature range 750 to 1050 °C and at strain rates lower than 0.01 s-1, the material exhibits fine-grained superplasticity. The apparent activation energy for superplastic deformation is estimated to be about 328 kJ/mole. The optimum conditions for superplasticity are 825 °C and 0.001 s-1. (2) In the β region, a domain occurs at temperatures above 1100 °C and at strain rates from 0.001 to 0.1 s-1 with its peak efficiency of 47% occurring at 1150 °C and 0.01 s1. On the basis of kinetic analysis, tensile ductility, and grain size variation, this domain is interpreted to represent dynamic recrystallization (DRX) of β phase. The apparent activation energy for DRX is estimated to be 238 kJ/mole. The grain size ( d) is linearly dependent on the Zener-Hollomon parameter ( Z) per the equation log (d) = 2.86 - 0.023 log (Z) In the regimes in the temperature range 750 to 825 °C and at strain rates from 0.01 to 1.2 s-1 and at temperatures above 1050 °C and strain rates above 10 s-1, the material exhibits flow instabilities manifested in the form of adiabatic shear bands.

  19. A Collector Plate Mechanism-Based Classical Intergranular Precipitation Model for Al Alloys Sensitized at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Yi, Gaosong; Derrick, Alexander T.; Zhu, Yakun; Free, Michael L.

    2015-11-01

    The sensitization behavior of Al 5xxx alloys is mainly caused by the formation of Mg-rich precipitates at grain boundaries. In this study, a classical nucleation-growth-coarsening theory for the description of intergranular precipitation is formulated, which adopts a collector plate mechanism, an equivalent average Mg concentration at the grain boundary, and new coarsening mechanisms. Three coarsening mechanisms, the modified Lifshitz-Slyozov-Wagner, the Kirchner mechanism, and a combination of these two mechanisms, are compared. Modeling results reveal that the Kirchner mechanism will breakdown when continuity ( √ {Nπ R2 } ) is close to 1. According to the new model, the coarsening still accounts for a small fraction (only 10 pct) in the final growth rate after aging at 343 K (70 °C) for 40 months, which is confirmed by the precipitate size distribution data. Thickness and continuity results predicted by the new model agree well with the experimental results obtained from scanning transmission electron microscopy images of Al 5083 H131 alloys aged at 343 K (70 °C) for different times. In addition, the new model is also applied to a high-temperature [453 K (180 °C)] situation, where coarsening of precipitates is observed.

  20. Microstructure, thermo-physical and mechanical properties of spray-deposited Si-30Al alloy for electronic packaging application

    SciTech Connect

    Wang Feng Xiong Baiqing; Zhang Yongan; Zhu Baohong; Liu Hongwei; Wei Yanguang

    2008-10-15

    In this study, Si-30Al alloy was synthesized by the spray atomization and deposition technique. The microstructure and properties of the alloy were studied using optical microscopy, scanning electron microscopy, coefficient of thermal expansion (CTE) and thermal conductivity (TC) measurements, and 3-point bending tests. It was found that the microstructure of the alloy after hot pressing is composed of a continuous network of globular primary Si and interpenetrating secondary Al-rich phase. The property measurements results indicate that the spray-deposited 70Si30Al alloy has advantageous physical and mechanical characteristics, including low coefficient of thermal expansion (6.8 x 10{sup -6}/K), high thermal conductivity (118 W/mK), low density (2.42 g cm{sup -3}), high ultimate flexural strength (180 MPa) and Brinell hardness (261)

  1. Effect of Aging Treatment on the Damping Capacity and Mechanical Properties of Mg-6Al-1Zn Alloy

    PubMed Central

    El-Morsy, Abdel-Wahab; Farahat, Ahmed I. Z.

    2015-01-01

    The damping capacity and mechanical properties of Mg-6Al-1Zn alloy after heat treatment were investigated. The damping characteristics of un-heat-treated, solution treated, and aged Mg-6Al-1Zn specimens were determined by measuring the damping ratio and the logarithmic decrement of free vibrations of a bending beam clamped at one side. The microstructural evaluations confirmed that the β-Mg17Al12 phase was reprecipitated after aging and increased with an increase in aging time. The peak level of damping ratio and logarithmic decrement was obtained after 34 hr of aging time, over which the damping capacity declined according to increasing amount of strong pining points. PMID:25918738

  2. Phase formation and superconducting properties of mechanically alloyed Nb3(Al1‑x Ge x ) system

    NASA Astrophysics Data System (ADS)

    Li, Pingyuan; Chen, Yongliang; Xu, Liyuan; Zhang, Yun; Pan, Xifeng; Yan, Guo; Zhang, Yong; Cheng, C. H.; Feng, Yong; Zhao, Yong

    2016-07-01

    Mechanically alloyed Nb3(Al1‑x Ge x ) compounds with nominal composition x = 0%, 10%, 15%, 20%, 25% and 30% were synthesized using high-energy ball milling. The effects of Ge content and sintering temperature on the formation of the Nb3Al superconducting phase at a relatively low temperature without the extremely high-temperature rapid heating, quenching and transformation process were studied. The results revealed that Ge doping in Nb3Al improved the formation of the A15 phase at low temperatures, enhanced the superconducting transition temperature (T c), and refined the grain structure, thus improving the overall superconducting properties. The pinning behavior was also studied for the optimized sample.

  3. Microstructure and mechanical properties investigation of in situ TiB2 and ZrB2 reinforced Al-4Cu composites

    NASA Astrophysics Data System (ADS)

    Lutfi Anis, Ahmad; Ramli, Rosmamuhammadani; Darham, Widyani; Zakaria, Azlan; Talari, Mahesh Kumar

    2016-02-01

    Conventional Al-Cu alloys exhibit coarse grain structure leading to inferior mechanical properties in as-cast condition. Expensive thermo-mechanical treatments are needed to improve microstructure and corresponding mechanical properties. In situ Al-based composites were developed to improve mechanical properties by dispersion strengthening and grain refinement obtained by the presence of particulates in the melt during solidification. In this work Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 in situ composites were prepared by liquid casting method. XRD, electron microscopy and mechanical tests were performed on suitably sectioned and metallographically prepared surfaces to investigate the phase distribution, hardness and tensile properties. It was found that the reinforcement particles were segregated along the grain boundaries of Al dendrites. Tensile fracture morphology for both Al-4Cu - 3TiB2 and Al-4Cu-3ZrB2 were analyzed and compared to determine the fracture propagation mechanism in the composites. Al-4Cu-3ZrB2 in situ composites displayed higher strength and hardness compared to Al-4Cu-3TiB2 which could be ascribed to the stronger interfacial bonding between the Al dendrites and ZrB2 particulates as evidenced from fractographs.

  4. Disease Mechanisms in ALS: Misfolded SOD1 Transferred Through Exosome-Dependent and Exosome-Independent Pathways.

    PubMed

    Silverman, Judith M; Fernando, Sarah M; Grad, Leslie I; Hill, Andrew F; Turner, Bradley J; Yerbury, Justin J; Cashman, Neil R

    2016-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neuromuscular degenerative disorder with a poorly defined etiology. ALS patients experience motor weakness, which starts focally and spreads throughout the nervous system, culminating in paralysis and death within a few years of diagnosis. While the vast majority of clinical ALS is sporadic with no known cause, mutations in human copper-zinc superoxide dismutase 1 (SOD1) cause about 20 % of inherited cases of ALS. ALS with SOD1 mutations is caused by a toxic gain of function associated with the propensity of mutant SOD1 to misfold, presenting a non-native structure. The mechanisms responsible for the progressive spreading of ALS pathology have been the focus of intense study. We have shown that misfolded SOD1 protein can seed misfolding and aggregation of endogenous wild-type SOD1 similar to amyloid-β and prion protein seeding. Our recent observations demonstrate a transfer of the misfolded SOD1 species from cell to cell, modeling the intercellular transmission of disease through the neuroaxis. We have shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell, either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or in association with vesicles which are released into the extracellular environment. Furthermore, once misfolding of wild-type SOD1 has been initiated in a human cell culture, it can induce misfolding in naïve cell cultures over multiple passages of media transfer long after the initial misfolding template is degraded. Herein we review the data on mechanisms of intercellular transmission of misfolded SOD1. PMID:26908139

  5. Microstructure, mechanical and optical properties of TiAlON coatings sputter-deposited with varying oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Schalk, Nina; Thierry Simonet Fotso, J. F.; Holec, David; Fian, Alexander; Jakopic, Georg; Terziyska, Velislava L.; Daniel, Rostislav; Mitterer, Christian

    2016-01-01

    Due to their excellent mechanical and optical properties as well as chemical stability, the synthesis of transition metal oxynitride thin films has attracted growing interest in the last years. Within this work, the evolution of the structure and properties of TiAlON coatings over a wide compositional range, from the nitride to the oxide side, was investigated. The coatings were grown on Si substrates in a laboratory-scale unbalanced magnetron dc sputtering system from powder metallurgical TiAl targets with an Al/Ti atomic ratio of 60/40, using a constant level of nitrogen with rising oxygen partial pressure. Coating composition and microstructure were investigated by energy- and wavelength-dispersive x-ray spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. Furthermore, the mechanical and optical properties were evaluated using nanoindentation and spectroscopic ellipsometry, respectively. Oxygen concentrations of up to 49 at.% within the films could be obtained, at the expense of the nitrogen content. The oxygen-free coating exhibited a single-phase fcc-Ti1-x Al x N structure. With increasing oxygen content the structure remained fcc-Ti1-x Al x N based, but additional fractions of amorphous oxides were formed. The structural evolution was corroborated by ab initio calculations. Decreasing coating hardness could be observed with increasing oxygen concentration. The refraction index and extinction coefficient were lower for coatings with higher oxygen content, but the behavior of the optical properties remained Ti1-x Al x N-like over the investigated spectral range.

  6. Mechanical behavior and phase stability of NiAl-based shape memory alloys

    SciTech Connect

    George, E.P.; Liu, C.T.; Horton, J.A.; Kunsmann, H.; King, T.; Kao, M.

    1993-12-31

    NiAl-based shape memory alloys (SMAs) can be made ductile by alloying with 100--300 wppm B and 14--20 at.% Fe. The addition of Fe has the undesirable effect that it lowers the temperature (A{sub p}) of the martensite {yields} austenite phase transformation. Fortunately, however, A can be raised by lowering the ``equivalent`` amount of Al in the alloy. In this way a high A{sub p} temperature of {approximately}190 C has been obtained without sacrificing ductility. Furthermore, a recoverable strain of 0.7% has been obtained in a Ni-Al-Fe alloy with A{sub p} temperature of {approximately}140 C. Iron additions do not suppress the aging-induced embrittlement that occurs in NiAl alloys at 300--500 C as a result of Ni{sub 5}Al{sub 3} precipitation. Manganese additions (up to 10 at.%) have the effect of lowering A{sub p}, degrading hot workability, and decreasing room-temperature ductility.

  7. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    SciTech Connect

    Tiwary, C. S. Chattopadhyay, K.; Chakraborty, S.; Mahapatra, D. R.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  8. Effect of Different Production Methods on the Mechanical and Microstructural Properties of Hypereutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Fatih Kilicaslan, M.; Uzun, Orhan; Yilmaz, Fikret; Çağlar, Seyit

    2014-10-01

    In this study, the effects of different production methods like melt spinning, high-energy ball milling, and combined melt spinning and high-energy ball milling on the mechanical and microstructural properties of hypereutectic Al-20Si-5Fe alloys were investigated. While microstructural and spectroscopic analyses were performed using scanning electron microscopy and X-ray diffractometry, mechanical properties were measured using a depth-sensing indentation instrument with a Berkovich tip. Microstructural and spectroscopic analyses demonstrate that high-energy ball milling process applied on the melt-spun Al-20-Si-5Fe alloy for 10 minutes brings about a reduction in the size of silicon particles and intermetallic compounds. However, further increase in milling time does not yield any significant reduction in size. High-energy ball milling for 10 minutes on the starting powders is not enough to form any intermetallic phase. According to the depth-sensing indentation experiments, high-energy milling of melt-spun Al-20Si-5Fe alloys shows an incremental behavior in terms of hardness values. For the Al-20Si-5Fe alloys investigated in this study, the production technique remarkably influences their elastic-plastic response to the indentation process in terms of both magnitude and shape of P- h curves.

  9. Microstructure and Mechanical Properties of Al6061-31vol.% B4C Composites Prepared by Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Xian, Yajiang; Pang, Xiaoxuan; He, Shixiong; Wang, Wei; Wang, Xin; Zhang, Pengcheng

    2015-10-01

    Fabrication of durable and usable composites with high content of B4C (up to 31vol.%) is quite challenging in several aspects including blending, cold isostatic pressing, and hot isostatic pressing (HIP), and especially the optimal HIP process is essential to achieve the metal matrix composite with desirable properties. The microstructure and mechanical properties of Al6061-31vol.% B4C with different particle sizes were investigated by scanning electron microscopy (SEM) and tensile testing, respectively. SEM analysis and quantitative measurements of the particle distribution reveal that B4C particles were uniformly distributed in the matrix without agglomeration when the HIP treatment temperature was about 580 °C, and x-ray diffraction also identified a dispersion of B4C particles as well as reaction products (AlB2 and Al3BC) in the composites. Microhardness of Al6061-31vol.% B4C composites was improved with B4C particle size, and the tensile strength of all the samples declined with an increase in B4C particle size. The contribution from different strengthening mechanisms was also discussed.

  10. Effect of HNT on the Microstructure, Thermal and Mechanical Properties of Al/FACS-HNT Composites Produced by GPI

    NASA Astrophysics Data System (ADS)

    Siewiorek, A.; Malczyk, P.; Sobczak, N.; Sobczak, J. J.; Czulak, A.; Kozera, R.; Gude, M.; Boczkowska, A.; Homa, M.

    2016-07-01

    To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FACS) with halloysite nanotubes (HNTs) addition. The preform made out of FACS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FACS-HNT composites produced shows that the addition of 5 wt.% of HNT to FACS preform contributes to receiving of the best mechanical and structural properties of investigated composites.

  11. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G.; Stover, A.; Benson, D. J.; Nesterenko, V. F.

    2014-05-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  12. Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.

    2015-06-01

    The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.

  13. Study of mechanical properties, microstructures and corrosion behavior of al 7075 t651 alloy with varying strain rate

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Ghosh, M.; Mondal, K.; Venkitanarayanan, P.; Moon, A. P.; Varshney, A.

    2015-02-01

    Compression test of Al 7075 T651 was carried out at high strain rates (1138 - 2534 s-1) using Split Hopkinson Pressure Bar and at slow strain rate (10-4s-1) in 100KN Universal Testing machine to understand the improvement in mechanical properties and associated changes in microstructures. Cylindrical specimens of 6 mm height and 6 mm diameter were compressed dynamically. The influence of strain rates on mechanical properties, microstructure evolution and corrosion behavior after immersion test in 3.5% NaCl solution was also investigated. Strain rate, withdrawal stress and yield stress were observed to increase with impact velocity in high strain rate tests, while in slow strain rate tests, n value was observed to increase with increasing total strain. Microstructural observations revealed that after high strain rate test, grains of Al matrix were elongated. It was observed that corrosion resistance decreased with increase in impact velocity.

  14. Interaction mechanism of in-situ nano-TiN-AlN particles and solid/liquid interface during solidification.

    PubMed

    Cui, Chunxiang; Li, Yanchun; Shen, Yutian; Sun, Jibing; Wang, Ru

    2003-10-01

    This paper deals with the interaction mechanism between in situ nanometer-grade TiN-AlN particles and the solid/liquid (S/L) interface during the solidification of an in situ TiN-AlN/Al composite. According to the setting of a force balance for the particles in front of the S/L interface during solidification, F = F(buoyant) + F(repulsive) + F(viscous). We obtained the relationship between the critical cooling velocity of the liquid composite, Vr, and the size of the ceramic particle, rp. By this relationship formula, we can know that the S/L interface engulfs particles or pushes them to the crystal grain boundary during the solidification of a TiN-AlN/Al composite. It is found that Vr is proportional to the radius of ceramic particles by transmission electron microscope (TEM) observation. The TEM test indicates that the smaller the particle is, the more easily the S/L interface engulfs particles. PMID:14733152

  15. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    DOE PAGESBeta

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less

  16. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease

    PubMed Central

    Moloney, Elizabeth B.; de Winter, Fred; Verhaagen, Joost

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS. PMID:25177267

  17. Mechanical properties of superelastic Cu Al Be wires at cold temperatures for the seismic protection of bridges

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Camilleri, Joseph A.; Zhu, Songye

    2008-04-01

    This paper examines the suitability of superelastic copper-aluminum-beryllium (Cu-Al-Be) alloy wires for the seismic protection of bridges in cold regions. Experimental results for the mechanical properties of superelastic Cu-Al-Be alloy wires at a variety of temperatures and loading rates are presented. This research is motivated by the recent use of shape memory alloys for bridge restrainers subject to harsh winter conditions, especially in cold regions. Bridge restrainers made of superelastic Cu-Al-Be wire strands are expected to be used for protecting bridge decks from excessive displacement when subjected to strong earthquakes. Using a temperature chamber, superelastic Cu-Al-Be wires with a diameter of 1.4 mm were tested under uniaxial cyclic loading at various loading rates and cold temperatures. The test results from 23 to -50 °C demonstrate that Cu-Al-Be exhibits superelastic behavior at cold temperatures down to -85 °C. It is also found that with decreasing temperature the transformation plateau stress is reduced while its fatigue life increases under cyclic testing.

  18. Temperature-dependent phase-specific deformation mechanisms in a directionally solidified NiAl-Cr(Mo) lamellar composite

    SciTech Connect

    Yu, Dunji; An, Ke; Chen, Xu; Bei, Hongbin

    2015-10-09

    Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in in situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.

  19. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  20. Thermo-mechanical processing (TMP) of Ti-48Al-2Nb-2Cr based alloys

    SciTech Connect

    Fuchs, G.E.

    1995-02-01

    The effects of heat treatment and deformation processing on the microstructures and properties of {gamma}-TiAl based alloys produced by ingot metallurgy (I/M) and powder metallurgy (P/M) techniques were examined. The alloy selected for this work is the second generation {gamma}-TiAl based alloy -- Ti-48Al-2Nb-2Cr (at %). Homogenization of I/M samples was performed at a variety of temperatures, followed by hot working by isothermal forging. P/M samples were prepared from gas atomized powders, consolidated by both HIP and extrusion and some of the HIPed material was then hot worked by isothermal forging. The effects of processing, heat treatment and hot working on the microstructures and properties will be discussed.

  1. Mechanism of particle growth of a BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3}

    SciTech Connect

    Oshio, Shozo; Matsuoka, Tomizo; Tanaka, Shosaku; Kobayashi, Hiroshi

    1998-11-01

    The mechanism of particle growth of the blue emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphor by firing with AlF{sub 3} has been clarified. It was found that the reaction between BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} during firing, on the basis of the following chemical equation, results in recreation of BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} with particle growth BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} + (4/3)AlF{sub 3} {l_reversible} BaMgF{sub 4}:Eu{sup 2+} + (17/3)Al{sub 2}O{sub 3}, the firing of Ba/MgAl{sub 10}O{sub 17}:Eu{sup 2+} with AlF{sub 3} first converts the phosphor into a mixture of the two compounds, BaMgF{sub 4}:Eu{sup 2+} and Al{sub 2}O{sub 3}, at around 1200 C. The BaMgF{sub 4}:Eu{sup 2+} melts at temperatures over 1000 C, then reacts with Al{sub 2}O{sub 3}, and participates in the recreation of both BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} and AlF{sub 3} through a chemical reaction between the two compounds at 1200 C in BaMgF{sub 4}:Eu{sup 2+} solutions. Recreated AlF{sub 3} appears to sublime immediately because it is a material which sublimates with heating. This paper proposes a mechanism for the growth of particle of recreated BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} by the melting of BaMgF{sub 4}:Eu{sup 2+}.

  2. Microstructure, mechanical properties, and high-temperature oxidation resistance of boronized {gamma}-TiAl(Mn)

    SciTech Connect

    Kim, S.; Yoon, Y.; Kim, H.; Park, K.

    1997-12-31

    Titanium aluminide (TiAl) based intermetallic compounds are considered as potential materials for high-performance automobile and aircraft engine components and airframe applications because of their low density (3.8 g/cm{sup 3}), high melting temperature (1,480 C), and good elevated temperature strength retention. To improve the wear and high-temperature oxidation resistance of reactively sintered {gamma}-TiAl(Mn) intermetallic compounds, they were boronized in the temperature range of 900 to 1,100 C for 5 to 11 hours with powder mixtures of B{sub 4}C and Na{sub 2}B{sub 4}O{sub 7}. It was found that the coating layer consisted of three sublayers, i.e., outer, middle, and inner sublayers. The outer, middle, and inner sublayers were identified as a mixture of TiB{sub 2} and TiO{sub 2}, a mixture of Al{sub 2}O{sub 3} and TiO{sub 2}, and Ti-rich TiAl based compounds, respectively. The coating layer significantly improved the surface hardness and the wear and high-temperature oxidation resistances. The highest surface hardness (Hv {approx} 2,720) was obtained at 900 C for 11 hours. This surface hardness is much higher than that of TiAl(Mn) (Hv {approx} 400). In addition, the specimens boronized at both 1,000 and 1,050 C for 9 hours showed an excellent high-temperature oxidation resistance. It is believed that the boronizing on the TiAl(Mn) intermetallics is very effective to improve the wear and high-temperature oxidation resistances.

  3. Mechanism of ZrB2 Formation in Molten Al-V-Zr Alloy During Boron Treatment

    NASA Astrophysics Data System (ADS)

    Khaliq, Abdul; Rhamdhani, Muhammad Akbar; Brooks, Geoffrey A.; Grandfield, John

    2016-02-01

    Smelter-grade aluminum cannot be used for electrical conductor applications without the removal of transition metal impurities including zirconium (Zr) and vanadium (V). These impurities are removed by treating molten aluminum with boron bearing substances in the casthouse. Such procedures are called boron treatment. Transition metal impurities form their borides and settle at bottom of the furnace. Industrially, Al-B (AlB2/AlB12) master alloys are used for this process. Literature review showed that ZrB2 are more stable compared to VB2 and AlB2 in the temperatures ranging from 948 K to 1173 K (675 °C to 900 °C). As a result, ZrB2 will form preferentially in molten aluminum during boron treatment process. In this study, a systematic investigation on formation of the ZrB2 and VB2 borides in Al-V-Zr-B alloys was carried out at 1023 K (750 °C). Experiments showed that the mechanism of ZrB2 and VB2 borides formation in molten aluminum is complex. It involves the possible phenomenon of chemical reactions, mass transfer in liquid phase, diffusion through borides layers, and the dissolution of Al3Zr, AlB2/AlB12 in the molten aluminum. Scanning electron microscopy, Energy-dispersive X-ray, and electron backscattered diffraction analyses revealed the preferential formation of ZrB2 in the Al-Zr-V-B alloys at 1023 K (750 °C). Moreover, ICP-AES analysis showed the higher rate of Zr removal compared to V from Al-Zr-V-B alloys. Overall it was suggested that the kinetics of Zr removal was controlled by the mass transfer of Zr through liquid phase. The calculated mass transfer coefficient ( k m) for Zr was 1.15 × 10-3 m/s which is within the range of those values reported in the literature.

  4. Effect of thermomechanical processing on mechanical properties of Fe-16 at. % Al alloy

    SciTech Connect

    Sikka, V.K.

    1994-12-31

    An iron-aluminum alloy containing 16 at. % Al, which is essentially free from environmental effect on its ductility, has been developed. This alloy has over 20% elongation at room temperature. This paper presents in detail the effect of vacuum versus air melting on the properties of Fe-16 at. % Al alloy. The comparative results have shown air-induction melting to produce lower room-temperature ductility for the identical processing steps. Additional processing steps required to improve the ductility of air-melted material are also identified.

  5. Experimental and theoretical investigation of the dislocation mechanisms of microcrack nucleation in Ti3Al

    NASA Astrophysics Data System (ADS)

    Yakovenkova, L. I.; Karkina, L. E.; Elkina, O. A.

    2010-04-01

    The dislocation structure and microcracks in Ti3Al samples subjected to deformation with an indenter at room temperature are analyzed by electron microscopy. The reactions of interaction between superdislocations that carry out deformation in the basal, prismatic, and pyramidal planes (of types I and II) are considered. The types of interactions that result in the formation of dislocation barriers, i.e., microcrack nuclei, are found. The Rice-Thompson model is used to study the relation between the fracture sensitivity and the plastic-relaxation ability of the Ti3Al intermetallic compound during microcrack propagation.

  6. Mechanical Responses of Superlight β-Based Mg-Li-Al-Zn Wrought Alloys under Resonance

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Lin, Yi-Hua; Su, Chien-Wei; Wang, Jian-Yih

    2009-05-01

    To extend the application of lightweight Mg alloys in the automotive industry, this study suggests a β-based Mg-Li alloy (LAZ1110) with superior vibration fracture resistance by means of material design. In the cold-rolled state, a strengthened β matrix by the additions of Al and Zn, as well as intergranular platelike α precipitates, which are able to stunt the crack growth, contributes to a comparable vibration life with commercial Mg-Al-Zn alloys under a similar strain condition.

  7. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  8. Dependence of the mechanical characteristics of fast-quenched amorphous Zr-Cu-Al alloys on their composition

    NASA Astrophysics Data System (ADS)

    Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; Plokhikh, A. I.; Fedotova, N. L.

    2016-06-01

    The thermal and mechanical characteristics of fast-quenched amorphous Zr-Cu-Al alloys with various concentrations of copper and aluminum are studied. It is shown that the crystallization temperature of glass-like compositions increases when copper is replaced with aluminum in concentrations of up to 10 at %, and that the hardness, Young's modulus, and fracture stress increase only at low concentrations of aluminum (no more than 6 at %). Upon a further increase in the concentration of the alloying element, fracture stress σf decreases because σf the change in the fracture mechanism, despite high hardness and Young's modulus.

  9. Surface-Mechanical Properties of Electrodeposited Cu-Al2O3 Composite Coating and Effects of Processing Parameters

    NASA Astrophysics Data System (ADS)

    Maharana, H. S.; Ashok, Akarapu; Pal, S.; Basu, A.

    2016-01-01

    Cu/Al2O3 composite coatings were prepared from acidic copper sulfate bath containing ultrafine Al2O3 particles by direct current plating method to increase the surface-mechanical property of Cu for its possible use as electrical contact. Effect of ultrafine Al2O3 particle concentration in electrolyte and deposition current density on the surface-mechanical properties of the coatings was investigated. Coatings were characterized by scanning electron microscopy and X-ray diffraction (XRD) techniques for the purpose of surface morphology and phase study. From XRD data, crystallographic texture of the coating was also analyzed. To study the mechanical properties, microhardness testing, adhesion, and wear test were carried out. Improved hardness of the resultant coatings was observed and was correlated with the wt pct of ultrafine particle in the Cu matrix, matrix structure, and crystallographic orientation. Better wear property of the composite coating was also reported from the wear plot and wear track morphology. Altogether, better coating property was attributed toward finer matrix, hard reinforced phase, and preferred orientation in selected conditions. Electrical conductivity of the coating was affected by grain size and second-phase concentration, and the values obtained were in the usable range required for electrical applications.

  10. Effects of substrate bias on structure and mechanical properties of (AlCrNbSiTiV)N coatings

    NASA Astrophysics Data System (ADS)

    Huang, Ping-Kang; Yeh, Jien-Wei

    2009-06-01

    AlCrNbSiTiV nitride films were deposited by reactive radio-frequency magnetron sputtering and the effects of substrate bias on the chemical composition, structure and mechanical properties of the deposited films were investigated. AlCrNbSiTiV nitride films exhibit a single FCC NaCl-type structure and have the stoichiometric nitride ratio of (Al, Cr, Nb, Si, Ti, V)50N50. The deposition rate decreases with increasing substrate bias due to resputtering effects and densification of films, which also leads to less obvious columnar structure, reduced grain size, smaller surface roughness and transition of preferred orientation from the (1 1 1) plane to the (2 0 0) plane. The nitride film deposited at -100 V exhibits the maximum compressive stress around 4.5 GPa and attains a peak hardness and an elastic modulus of 42 GPa and 350 GPa, respectively, which fall in the superhard grade. Moreover, the film keeps its hardness at the superhard grade even after its residual compressive stress was partially released by annealing at 1073 K for 5 h. The structural evolution mechanism and strengthening mechanism are both discussed.

  11. Wear mechanisms of sintered self-lubricating Al-based composites under dry friction

    NASA Astrophysics Data System (ADS)

    Rusin, N. M.; Skorentsev, A. L.; Gurskih, A. V.

    2015-10-01

    The composition and structure of the surface layer, formed as a result of dry friction of the steel disc and Al-Sn composites, were studied. The research showed that the final stage of composites wearing is the destruction of the thin surface layer formed as a result of the sample's material and oxide particles mixing during dry friction.

  12. Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Naohara, T.; Inoue, A.; Minemura, T.; Masumoto, T.; Kumada, K.

    1982-03-01

    By the rapid quenching technique, ductile supersaturated ferrite solid solution with high hardness and strength as well as unusual electrical properties has been found in Fe-Cr-Al ternary system. This formation range is limited to less than about 35 at. pct Cr and 23 at. pct Al. The ferrite phase has fine grains of about 10 μm in diameter. Their hardness, yield strength, and tensile fracture strength increase with increase in the amounts of chromium and aluminum, and the highest values reach about 290 DPN, 720 MPa, and 740 MPa. These alloys are so ductile that no cracks are observed even after closely contacted bending test. The good strength and ductility remain almost unchanged on tempering for one hour until heated to about 923 K where a large amount of Cr2Al compound begins to precipitate preferentially along the grain boundaries of the ferrite phase. The room-temperature resistivity increases with increasing chromium and aluminum contents and reaches as high as 1.86 μ Ώ m for Fe50Cr30Al20 alloy. Also, the temperature coefficient of resistivity in the temperature range between room temperature and 773 K decreases with increasing chromium and aluminum contents and becomes zero in the vicinity of 20 to 30 at. pct Cr and 15 at. pct Al. Thus, the present alloys may be attractive as fine gauge high-resistance and/or standard-resistance wires and plates because of the unusual electrical properties combined with high strength and good ductility.

  13. Effects of metallurgical parameters on the decomposition of pi-AlFeMgSi phase in Al-Si-Mg alloys and its influence on the mechanical properties

    NASA Astrophysics Data System (ADS)

    Elsharkawi, Ehab A.

    2011-12-01

    The formation of the pi-AlFeMgSi iron intermetallic phase in Al-Si-Mg alloys is known for its detrimental effect on ductility and strength, in that it is controlled by the Fe and Mg content of the alloy, as well as by the cooling rate. The current study was carried out with a view to investigating all the metallurgical parameters affecting the formation of the pi-phase iron intermetallic and, in turn, the role of the pi-phase as it relates to the tensile and impact properties of Al-Si-Mg alloys. Microstructural assessment was carried out by means of quantitative metallography using electron probe microanalysis (EPMA) and scanning electron microscopy (SEM). The results indicate that increasing the Mg and Fe content increases the amount of the pi-AlMgFeSi phase formed. All the alloys containing low levels of iron regardless of the amount of Mg-content show low amounts of pi-phase iron intermetallic. The addition of trace amounts of Be has an observable effect in reducing the amount of the pi-phase formed in all the alloys studied. The pi-phase iron intermetallic particles appear to be segregated away from the modified Si in the Sr-modified alloys, particularly those solidified at a low cooling rate. The effects of different solution treatment times on the decomposition of the pi-phase were investigated in order to examine how this type of decomposition affected the chemistry of the matrix itself. After 8 hours of solution heat treatment and at Mg content of 0.4wt%, the pi-phase showed complete decomposition into fine beta-phase needles. The a-phase, however, showed only partial decomposition into beta-AlFeSi phase needles at Mg levels of over 0.4%wt. This type of decomposition was examined for the purposes of this study over extended periods of solution heat treatment time in Al-7Si-0.55Mg-0.1Fe alloy samples obtained at different cooling rates in order to evaluate the mechanism of pi to beta-phase decomposition. The results obtained show that the volume fraction of

  14. Mechanical Properties and Electrochemical Corrosion Behavior of Al/Sn-9Zn- xAg/Cu Joints

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Huang, Y. Z.; Ma, H. T.; Zhao, J.

    2011-03-01

    The effect of Ag content on the wetting behavior of Sn-9Zn- xAg on aluminum and copper substrates during soldering, as well as the mechanical properties and electrochemical corrosion behavior of Al/Sn-9Zn- xAg/Cu solder joints, were investigated in the present work. Tiny Zn and coarsened dendritic AgZn3 regions were distributed in the Sn matrix in the bulk Sn-9Zn- xAg solders, and the amount of Zn decreased while that of AgZn3 increased with increasing Ag content. The wettability of Sn-9Zn-1.5Ag solder on Cu substrate was better than those of the other Sn-9Zn- xAg solders but worse than that of Sn-9Zn solder. The wettability of Sn-9Zn-1.5Ag on the Al substrate was also better than those of the other Sn-9Zn- xAg solders, and even better than that of Sn-9Zn solder. The Al/Sn-9Zn/Cu joint had the highest shear strength, and the shear strength of the Al/Sn-9Zn- xAg/Cu ( x = 0 wt.% to 3 wt.%) joints gradually decreased with increasing Ag content. The corrosion resistance of the Sn-9Zn- xAg solders in Al/Sn-9Zn- xAg/Cu joints in 5% NaCl solution was improved compared with that of Sn-9Zn. The corrosion potential of Sn-9Zn- xAg solders continuously increased with increasing Ag content from 0 wt.% to 2 wt.% but then decreased for Sn-9Zn-3Ag. The addition of Ag resulted in the formation of the AgZn3 phase and in a reduction of the amount of the eutectic Zn phase in the solder matrix; therefore, the corrosion resistance of the Al/Sn-9Zn- xAg/Cu joints was improved.

  15. Effect of Partial Replacement of Si with Al on the Microstructures and Mechanical Properties of 1000 MPa TRIP Steels

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ding, Hua; Zhang, Jun; Di, Huafang

    2014-11-01

    Two newly synthesized C-Mn-Si-Mo-Nb transformation-induced plasticity (TRIP) steels with and without Al addition were designed in order to achieve significant improvements in the mechanical properties. The effect of substitution of Si by Al on tensile properties and the microstructure of cold-rolled C-Mn-Si TRIP steel was investigated under different heat treatments. It was shown that a complex ultrafine microstructure composed of different phases was formed and two types of morphology for ferrite were detected (equiaxial and polygonal). The distribution of alloying elements was observed by using electron probe microanalysis. It was clear that C was concentrated in the retained austenite (RA) and small M/A (austenite/martensite) islands. The Al addition facilitated the formation of polygonal ferrite and increased the stability of the RA. The strain-hardening behavior was studied in detail. All the investigated specimens showed a very high strain-hardening exponent (instantaneous n) but their strain dependence was different. For the C-Mn-Si-Mo-Nb TRIP steel, the maximum n value was achieved when the strain was only about 0.04, while the n value of the Al substituted TRIP steel increased gradually until strains in the range of 0.07-0.10 were reached and the maximum value was achieved. As a result, the elongations of the steel with Al addition increased considerably without obvious deterioration of strength. It was the first time to find microtwinned martensite located between ferrite and bainitic ferrite after tensile deformation in the low alloy TRIP steel with Al.

  16. Synergistic effect and mechanisms of compound bioflocculant and AlCl3 salts on enhancing Chlorella regularis harvesting.

    PubMed

    Zhang, Chaofan; Wang, Xiansheng; Wang, Yao; Li, Yunbao; Zhou, Dandan; Jia, Yanwu

    2016-06-01

    The high energy input required for harvesting microalgae means that commercial production of microalgal biodiesel is economically unfeasible. In this study, we investigated the flocculation efficiency and synergistic mechanisms of novel coupled flocculants, AlCl3 and compound bioflocculants (CBF), to overcome this difficulty. AlCl3 flocculation was found to be very sensitive to pH, and flocculation efficiency increased from 55 to 95 % when pH increased from 4 to 10. CBF was environmental friendly, less reliant on pH, but had a relatively low flocculation of 75 % in optimum conditions. The harvesting efficiency of Chlorella regularis can achieve a satisfactory level of 96.77 % even in neutral conditions, with a CBF dosage of 0.26 g/L, AlCl3 dosage of 0.18 g/L, and coagulant aid (CaCl2) dosage of 0.12 g/L. Interestingly, compared with the use of single flocculant, the dosage of CBF, AlCl3, and coagulant aid (CaCl2) were reduced by about 52, 49, and 66 %, respectively. Besides, the aluminum (Al) ion content of the supernatant decreased significantly to a residue of only 0.03 mg/L, therefore meeting the downstream process needs easily. Patching and bridging played key roles in coupled flocculant flocculation, in which AlCl3 mainly carried out the electrical neutralization. This work provides new insight into an efficient, economical, and environmentally friendly protocol for microalgae harvesting. PMID:27102131

  17. Hydrogen generation from ammonia borane and water through the combustion reactions with mechanically alloyed Al/Mg powder

    NASA Astrophysics Data System (ADS)

    Rodriguez, Daniel

    Finding and developing a safe and effective method for hydrogen storage is integral to its use as an alternative source of energy. The goal of the studies described in this thesis was to investigate the feasibility of developing combustible hydrogen-generating compositions based on ammonia borane and novel energetic materials such as nanocomposite and mechanically alloyed reactive materials, recently obtained by Prof. Edward Dreizin's team at the New Jersey Institute of Technology (NJIT). Such compositions could be stored for long time and release hydrogen on demand, upon ignition. The first phase of the research included thermodynamic calculations for combustion of ammonia borane with various reactive materials obtained at NJIT. The second phase involved experiments with compositions that appeared to be promising based on thermodynamic calculations. An experimental setup with laser ignition of mixtures was developed for these experiments. As a result of these tests, further work was focused on mixtures of ammonia borane, gelled water, and mechanically alloyed Al/Mg powder. The last part of the research revealed the reaction mechanisms during combustion of these mixtures. For this purpose, isotopic tests, involving use of heavy water and mass-spectroscopy of gaseous combustion products, were conducted. The results of the present work indicate that combustible mixtures of ammonia borane, water, and mechanically alloyed Al/Mg powder are promising for the development of hydrogen generators that release large amounts of hydrogen upon ignition.

  18. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Zejun; Wu, Xia; Hu, Hongbo; Chen, Quanzhong; Liu, Qing

    2014-03-01

    For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

  19. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    NASA Technical Reports Server (NTRS)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  20. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-01

    Pulse or impact welding traditionally has been referred to as "solid-state" welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  1. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2013-04-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  2. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2014-01-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  3. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al{sub 2}O{sub 3}/Ge structure

    SciTech Connect

    Shibayama, Shigehisa; JSPS, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 ; Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2013-08-19

    The reaction mechanisms at Al{sub 2}O{sub 3}/Ge interfaces with thermal oxidation through the Al{sub 2}O{sub 3} layer have been investigated. X-ray photoelectron spectroscopy reveals that an Al{sub 6}Ge{sub 2}O{sub 13} layer is formed near the interface, and a GeO{sub 2} layer is formed on the Al{sub 2}O{sub 3} surface, suggesting Ge or GeO diffusion from the Ge surface. It is also clarified that the Al{sub 6}Ge{sub 2}O{sub 13} layer is formed by the different mechanism with a small activation energy of 0.2 eV, compared with the GeO{sub 2} formation limited by oxygen diffusion. Formation of Al-O-Ge bonds due to the AlGeO formation could lead appropriate interface structures with high interface qualities.

  4. The Mechanisms of Dispersion Strengthening and Fracture in Al-based XD (TM) Alloys

    NASA Technical Reports Server (NTRS)

    Aiken, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength, and the fracture toughness of metal matrix composites of both pure aluminum and Al(4 percent)Cu(1.5 percent)Mg with 0 to 15 vol percent TiB2 were examined. Higher TiB2 volume fractions increased the tensile yield strength both at room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. The fracture toughness of the Al(4 percent)Cu(1.5 percent)Mg alloys decreased rapidly with TiB2 additions of 0 to 5 vol percent and more slowly with TiB2 additions of 5 to 15 vol percent. Fracture toughness appears to be independent of TiB2 particle size. The isothermal-aging response of the precipitation strengthened Al(4 percent)Cu(1.5 percent)Mg alloys was not altered by the presence of TiB2.

  5. Atomic disorder induced by mechanical milling in the intermetallic compound CoAl

    NASA Astrophysics Data System (ADS)

    Di, L. M.; Bakker, H.; de Boer, F. R.

    1992-10-01

    The stoichiometric intermetallic compound CoAl with the CsCl-structure was subjected to ball milling. Structural changes during ball milling were studied by measurements of the magnetization and the lattice parameter. The behaviour of Coal upon milling turns out to be quite similar to that of CoGa. The increase of the magnetization and the decrease of the lattice parameter with the milling time show that, similar to CoGa, triple-defect disorder is generated by ball milling. By comparing the measured magnetization to the magnetization of Co xAl 100- x compounds with excess Co, the concentration of defects is derived for milled samples. In order to interpret our results, the existing experimental data of lattice parameters, X-ray densities calculated from the lattice parameters and macroscopic densities for Co xAl 100- x compounds were analyzed according to Edelin's equations. The defect volumes for vacancies and anti-site atoms obtained by fitting these experimental data have reasonable values. By means of the defect concentrations obtained from our magnetization measurements and the defect volumes by fitting the experimental data, the change of the lattice parameter was calculated by means of Edelin's equation. The agreement between the calculated lattice parameter and the measured lattice parameter is quite satisfactory.

  6. An atom probe investigation of the influence of trace impurities on the mechanical behavior of NiAl

    SciTech Connect

    Jayaram, R.; Liu, C.T.; Miller, M.K.

    1993-11-01

    Atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM) have been used to investigate the influence of trace metallic impurities on the enormous increase in the yield stress of boron-doped NiAl. Previous atom probe studies of NiAl containing 0.12 at. % boron had demonstrated that 0.026 at. % of the boron was in solid solution. The remainder reacted with trace metallic impurities, presumably present in high purity Ni, to form ultrafine MB{sub 2} precipitates ranging in size from less than 2 nm to 20 nm. Atom probe measurements had shown that their number densities were significant enough to make the dominant contribution to the observed increase in yield stress. An attempt was made in the present work to minimize the effect of these precipitates by an additional aging treatment. Field ion microscope (FIM) and TEM micrographs revealed that 2 nm precipitates coarsened significantly during aging. Microstructure of aged NiAl was consistent with observed mechanical behavior showing a significantly smaller increase in the yield stress. An approximate value of the Orowan stress, based on TEM estimates of the size and number density of the precipitates, is in reasonable agreement with the measured value. This APFIM/TEM investigation has indicated a practical approach to minimize the detrimental role of trace impurities in NiAl.

  7. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  8. Improvements in Mechanical Properties of 319 Al Alloy Engine Blocks Through Cost-Effective Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Lombardi, A.; Ravindran, C.; MacKay, R.

    2014-08-01

    The use of Al engine blocks has increased significantly to improve vehicle fuel efficiency. However, the gray cast iron cylinder liners cause the development of large tensile residual stress along the cylinder bores which necessitates the optimization of mechanical properties in this region to prevent premature engine failure. This study compared the microstructure of T4-treated Al billet castings of varying cooling rate to that of the cylinder region of T4-treated (current production schedule) Al engine blocks. The aim of this study was to develop a cost-effective small scale heat treatment optimization method for engine block production. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy. The results suggest that the microstructure and hardness at the top, middle, and bottom of the cylinder were similar to those of each representative billet casting, indicating that heat treatment resulted in successful replication of the engine block locations. In addition, tensile testing revealed that the YS and UTS increased slightly following T4 treatment for all billet castings, which was also observed at the middle of the engine block cylinder bridge. As such, this method can be an effective forerunner for future heat treatment optimization in Al engine block production.

  9. Mechanical properties of NiAl-Y2O3-based powdered alloys produced by directional recrystallization

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. I.

    2014-03-01

    The mechanical properties of NiAl-Y2O3-based powdered composite alloys (0.5-7.5 vol %), including those with an NiAl intermetallic matrix alloyed with 0.5 wt % Fe and 0.1 wt % La have been studied. Structures with various aspect ratios (AR, the ratio of the grain length to the grain diameter) are formed using deformation and subsequent annealing. A combination of the optimum amount of strengthening phase (2.5 vol % Y2O3) and a quasi-single-crystalline structure with a sharp axial texture with the (100) main orientation and AR ≈ 20-40 provides the maximum short-term strength and life at temperatures up to 1400-1500°C. An NiAl-Y2O3 alloy (2.5 vol %) has the best strength properties among all known nickel superalloys at temperatures higher than 1200°C and can operate under moderate loads at temperatures higher than the working temperatures of nickel superalloys (by 100-400°C) and their melting points. Additional alloying with 10 wt % Co and 2 wt % Nb makes it possible to increase the ultimate tensile strength of an intermetallic NiAl matrix at 1100°C by a factor of 1.3-1.4.

  10. Developing LBM Process Parameters for Ti-6Al-4V Thin Wall Structures and Determining the Corresponding Mechanical Characteristics

    NASA Astrophysics Data System (ADS)

    Ahuja, Bhrigu; Schaub, Adam; Karg, Michael; Lechner, Michael; Merklein, Marion; Schmidt, Michael

    The Laser Beam Melting (LBM) process technology within the family of Additive Manufacturing technology is characterized by its ability to fabricate fully dense 3D structures directly from micro-sized metal powder. With the current state of the art, Ti-6Al-4V has been processed using LBM machine systems constituting a laser with a beam diameter of about 100 μm. In order to fabricate structures with smaller wall thicknesses, processing of Ti-6Al-4V is attempted on the LBM machine system, Realizer SLM 50 consisting of a laser with a beam diameter 10 μm. The proposed paper presents the development of process parameters for fabricating fully dense Ti-6Al-4V 3D structures using the LBM machine system, Realizer SLM 50. Further experiments are carried out to determine the wall thickness and mechanical properties achievable using the selected process parameters. Analysis and scientific arguments are presented to explain the influence of building direction and heat treatment on mechanical properties.

  11. A unified mechanism for 2DEG at SrTiO3 /LaAlO3 interface

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Zunger, Alex

    2014-03-01

    The origin of 2DEG appearing at the TiO2-LaO (n-type) interface between two insulating oxides of polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) after some critical LAO thickness is still under hot debate. Here applying modern defect theory for bulk, interface and surface, based on DFT and HSE, we investigated the current mechanisms that focus on polar catastrophe scenario, interfacial and surface O vacancies (VO), or interfacial cation defects. We uncovered a unified mechanism that can explain not only the 2DEG at n-type interface, but also the insulating behaviour at SrO/AlO2 (p-type) interface. Specifically, for n-type interface, we found that (i) it is the VO at LAO surface coupled with built-in electric field in LAO film that causes 2DEG and determines the critical thickness. (ii) The interfacial La-on-Sr and Ti-on-Al antisite donor defects cause interfacial mixing, but do not contribute itinerant carriers. (iii) The cation vacancies and acceptor antisite defects can trap partially the 2DEG. For p-type interface, the insulating behaviour is resulted from the spontaneous formation of the defect pair of ``interfacial La-on-Sr defect and surface La vacancy defect'' after a critical thickness smaller than that expected from pure polar catastrophe scenario. Supported by DOE BES Energy Frontier Research Center for Inverse Design.

  12. Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt Pct) Alloys

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Yildiz, Mehmet; Keskin, Mustafa

    2016-08-01

    Rapidly solidified hypoeutectic Al-10Si- xMg ( x = 0, 5, 10 wt pct) alloys were produced by the melt-spinning method. The phase composition was identified by X-ray diffractometry, and the microstructures of the alloys were characterized by scanning electron microscopy. The melting characteristics were studied by differential scanning calorimetry and differential thermal analysis under an Ar atmosphere. The mechanical properties of the melt-spun and conventionally solidified alloys were tested by tensile-strength and Vickers microhardness tests. The results illustrate that the cooling rate and solidification time of 89 μm thick melt-spun ribbon were estimated to be 2.97 × 107 K s-1 and 9.31 × 10-6 s, respectively. Nanoscale Si spot particles were observed growing on the surface of the dendritic α-Al matrix and the average sizes of these spots ranged from 10 to 50 nm. The improvement in the tensile properties and microhardness was related to structural refinement and the supersaturated α-Al solid solution; the nanoscale-dispersed Si spot particles made a significant improvement to the mechanical properties of the melt-spun ribbon. Detailed electrical resistivity tests of the ribbons were carried out at temperatures of 300 K to 800 K (27 °C to 527 °C).

  13. Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt Pct) Alloys

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Yildiz, Mehmet; Keskin, Mustafa

    2016-05-01

    Rapidly solidified hypoeutectic Al-10Si-xMg (x = 0, 5, 10 wt pct) alloys were produced by the melt-spinning method. The phase composition was identified by X-ray diffractometry, and the microstructures of the alloys were characterized by scanning electron microscopy. The melting characteristics were studied by differential scanning calorimetry and differential thermal analysis under an Ar atmosphere. The mechanical properties of the melt-spun and conventionally solidified alloys were tested by tensile-strength and Vickers microhardness tests. The results illustrate that the cooling rate and solidification time of 89 μm thick melt-spun ribbon were estimated to be 2.97 × 107 K s-1 and 9.31 × 10-6 s, respectively. Nanoscale Si spot particles were observed growing on the surface of the dendritic α-Al matrix and the average sizes of these spots ranged from 10 to 50 nm. The improvement in the tensile properties and microhardness was related to structural refinement and the supersaturated α-Al solid solution; the nanoscale-dispersed Si spot particles made a significant improvement to the mechanical properties of the melt-spun ribbon. Detailed electrical resistivity tests of the ribbons were carried out at temperatures of 300 K to 800 K (27 °C to 527 °C).

  14. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  15. Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes

    SciTech Connect

    Ren, Jian; Yan, Dawei Yang, Guofeng; Wang, Fuxue; Xiao, Shaoqing; Gu, Xiaofeng

    2015-04-21

    Lattice-matched Pt/Au-In{sub 0.17}Al{sub 0.83}N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

  16. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  17. Microstructural evolution and mechanical properties of cryomilled nanograined near Al-5083 alloy following deformation processing

    NASA Astrophysics Data System (ADS)

    Kaisar, Khan Hasib

    Nanocrystalline Al-Mg alloys are being considered for light weight transportation applications because they possess significantly higher strength than the conventional coarse grained alloys. Failure strengths higher than 1000 MPa have been reported for Al-5083 alloy at New Mexico Tech, which are almost double the strength of commercial precipitation strengthened Al-alloys. Unfortunately, the ductility tends to exhibit inverse relationship to strength and therefore there is a need to find ways to increase the ductility while maintaining high strength. In this work, we utilize a near Al-5083 alloy that was cryomilled for 24 hours in liquid nitrogen environment and consolidated by vacuum hot-pressing. The as-atomized Al-Mg powder was especially fabricated to minimize undesired impurity content to prevent premature fracture from intermetallic particles. It turned out that the final composition was slightly lower in Mn and Mg content and so the alloy is better designated as a near Al-5083 alloy. The as-vacuum hot pressed material had poor ductility because of inadequate prior-particle bonding, and therefore was subjected to deformation processing using low strain-rate extrusion at elevated temperatures. Both the strain-rate and temperature of extrusion were varied in an effort to obtain a good combination of tensile strength and ductility. In addition, the samples were annealed following extrusion in order to reduce residual stresses. The microstructure of extruded samples were characterized using a combination of electron microscope and X-ray diffraction techniques, and revealed a multi-scale morphology that could be binned into three different sizes of grains: i) those less than 100 nm that were analyzed using the X-ray based Williamson-Hall technique and transmission electron microscopy (TEM), ii) grain sizes in the 100-300 nm regime that were best revealed using TEM and scanning electron microscope (SEM) based electron-backscatter diffraction (EBSD) techniques, and

  18. Evolution of Microstructure and Mechanical Properties of the Ni-25Al-27.5Fe-1.0Nb Intermetallic Alloy after Thermal Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Chiang; Jang, Jason Shian-Ching; Tsai, Han-Chang; Li, Tsung-Hsiung

    The evolution of microstructure and mechanical properties of the Ni-25Al-27.5Fe-1.0Nb intermetallic alloy after thermal mechanical treatment (TMT) was systematically investigated by means of X-ray diffractometry (XRD), scanning electron microscopy (SEM) with electron dispersive spectrum (EDS) capability, and atmosphere-controlled tensile test at room temperature with different strain rate. The results of XRD reveals that a matrix of β' phase [(Ni, Fe) Al type ordered bcc structure] and a precipitated γ phase (Ni3Fe fcc solid solution) co-exist in this alloy after TMT. The dendritic microstructure of the as-cast alloy was eliminated after TMT process. In parallel, a refined and homogeneous distributed lath precipitates can be obtained after annealing at 820 for 4 hr. Additionally, this alloy presents a relative high strength as well as ductile mechanical behavior (UTS~1320 MPa and ɛ~8%, respectively) at room temperature in air. A 30% improvement in yield strength is suggested to be contributed by the refined microstructure from the TMT. Moreover, the tensile strength and ductility of this alloy exhibit insensitive response with respect to the loading strain rate at room temperature.

  19. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part II. Reaction Mechanism, Interface Morphology, and Al2O3 Accumulation in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kang, Youn-Bae; Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon

    2013-04-01

    Following a series of laboratory-scale experiments, the mechanism of a chemical reaction 4[{Al}] + 3({SiO}_2) = 3[{Si}] + 2({Al}_2{O}_3) between high-alloyed TWIP (TWin-Induced Plasticity) steel containing Mn and Al and molten mold flux composed mainly of CaO-SiO2 during the continuous casting process is discussed in the present article in the context of kinetic analysis, morphological evolution at the reaction interface. By the kinetic analysis using a two-film theory, a rate-controlling step of the chemical reaction at the interface between the molten steel and the molten flux is found to be mass transport of Al in a boundary layer of the molten steel, as long as the molten steel and the molten flux phases are concerned. Mass transfer coefficient of the Al in the boundary layer (k_{{Al}}) is estimated to be 0.9 to 1.2 × 10-4 m/s at 1773 K (1500 ^{circ}C). By utilizing experimental data at various temperatures, the following equation is obtained for the k_{{Al}}; ln k_{{Al}} = -14,290/T - 1.1107. Activation energy for the mass transfer of Al in the boundary layer is 119 kJ/mol, which is close to a value of activation energy for mass transfer in metal phase. The composition evolution of Al in the molten steel was well explained by the mechanism of Al mass transfer. On the other hand, when the concentration of Al in the steel was high, a significant deviation of the composition evolution of Al in the molten steel was observed. By observing reaction interface between the molten steel and the molten flux, it is thought that the chemical reaction controlled by the mass transfer of Al seemed to be disturbed by formation of a solid product layer of MgAl2O4. A model based on a dynamic mass balance and the reaction mechanism of mass transfer of Al in the boundary layer for the low Al steel was developed to predict (pct Al2O3) accumulation rate in the molten mold flux.

  20. Superior Mechanical Properties of AlCoCrFeNiTi x High-Entropy Alloys upon Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Ma, S. G.; Chu, M. Y.; Yang, H. J.; Wang, Z. H.; Zhang, Y.; Qiao, J. W.

    2016-02-01

    High-entropy alloys with composition of AlCoCrFeNiTi x ( x: molar ratio; x = 0, 0.2, 0.4) under quasi-static and dynamic compression exhibit excellent mechanical properties. A positive strain-rate sensitivity of yield strength and the strong work-hardening behavior during plastic flows dominate upon dynamic loading in the present alloy system. The constitutive relationships are extracted to model flow behaviors by employing the Johnson-Cook constitutive model. Upon dynamic loading, the ultimate strength and fracture strain of AlCoCrFeNiTi x alloys are superior to most of bulk metallic glasses and in situ metallic glass matrix composites.

  1. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications.

    PubMed

    Murr, L E; Quinones, S A; Gaytan, S M; Lopez, M I; Rodela, A; Martinez, E Y; Hernandez, D H; Martinez, E; Medina, F; Wicker, R B

    2009-01-01

    The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti-6Al-4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and included alpha (hcp), beta (bcc) and alpha(') (hcp) martensite phase regimes which give rise to hardness variations ranging from HRC 37 to 57 and tensile strengths ranging from 0.9 to 1.45 GPa. The advantages and disadvantages of layered manufacturing utilizing initial powders in custom building of biomedical components by EBM and SLM in contrast to conventional manufacturing from Ti-6Al-4V wrought bar stock are discussed. PMID:19627804

  2. Investigation of the wet-etching mechanism of Ga-polar AlGaN/GaN micro-pillars

    NASA Astrophysics Data System (ADS)

    Kang, Junjie; Li, Zhi; Liu, Zhiqiang; Li, Hongjian; Zhao, Yongbing; Tian, Yingdong; Ma, Ping; Yi, Xiaoyan; Wang, Guohong

    2014-01-01

    The wet-etching mechanism of Ga-polar AlGaN/GaN micro-pillars is analyzed in this work. By using solutions of KOH in ethylene glycol (KE), we discover the difference in wet-etching processes with and without an AlGaN layer. In the Ga-polar micro-pillar GaN-based nano-wire, a micro-pillar with {1-100} facet and a pyramid with a {11-212} facet are realized by accurately controlling the wet-etching rate and time, respectively. Schematic drawings are established to explain the dissimilarity of these two structures. Our research attempts to fabricate lager scale nano-wires and quasi-polarity substrates.

  3. Influence of ECAP on the mechanical properties of sintered Al-20Sn composite materials alloyed with Cu

    NASA Astrophysics Data System (ADS)

    Rusin, N. M.; Skorentsev, A. L.; Rashituli, E.; Mishin, I. P.; Vlasov, I. V.

    2015-10-01

    The effect of copper additions up to 2 wt % on the structure and mechanical properties of sintered and deformed Al-20Sn composite materials (CM) was studied. The investigated samples were obtained by the vacuum sintering of compacts made of a mixture of pure metal powders. Equal channel angular pressing by route A (ECAP (A)) was chosen as the method of deformation. It was founded that copper is located mainly as brittle inclusions in Sn interlayers and only a small part of Cu dissolves in the aluminum matrix. The strength and hardness of sintered CM are increased with the increase of Cu content and intensity of deformation, but the CM ductility is significantly reduced. The low ductility of the deformed Al-20Sn-Cu CM leads to their catastrophic wear under the dry friction against steel disc.

  4. FP-LAPW study of structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Sanyal, S. P.

    2016-05-01

    The structural, electronic, elastic, mechanical and thermal properties of AlFe intermetallic compound in B2-type (CsCl) structure have been investigated using first-principles calculations. The exchange-correlation term was treated within generalized gradient approximation. Ground state properties i.e. lattice constants (a0), bulk modulus (B) and first-order pressure derivative of bulk modulus (B') are presented. The density of states are derived which show the metallic character of present compound. Our results for C11, C12 and C44 agree well with previous theoretical data. Using Pugh's criteria (B/GH < 1.75), brittle character of AlFe is satisfied. In addition shear modulus (GH), Young's modulus (E), sound wave velocities and Debye temperature (θD) have also been estimated.

  5. Neither Serotonin nor Adenosine-dependent Mechanisms Preserve Ventilatory Capacity in ALS rats

    PubMed Central

    Nichols, N.L.; Johnson, R.A.; Satriotomo, I.; Mitchell, G.S.

    2014-01-01

    In rats over-expressing SOD1G93A, ventilation is preserved despite significant loss of respiratory motor neurons. Thus, unknown forms of compensatory respiratory plasticity may offset respiratory motor neuron cell death. Although mechanisms of such compensation are unknown, other models of respiratory motor plasticity may provide a conceptual guide. Multiple cellular mechanisms give rise to phrenic motor facilitation; one mechanism requires spinal serotonin receptor and NADPH oxidase activity whereas another requires spinal adenosine receptor activation. Here, we studied whether these mechanisms contribute to compensatory respiratory plasticity in SOD1G93A rats. Using plethysmography, we assessed ventilation in end-stage SOD1G93A rats after: 1) serotonin depletion with parachlorophenylalanine (PCPA), 2) serotonin (methysergide) and A2A (MSX-3) receptor inhibition, 3) NADPH oxidase inhibition (apocynin), and 4) combined treatments. The ability to increase ventilation was not decreased by individual or combined treatments; thus, these mechanisms do not maintain breathing capacity at end-stage motor neuron disease. Possible mechanisms giving rise to enhanced breathing capacity with combined treatment in end-stage SOD1G93A rats are discussed. PMID:24681328

  6. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair.

    PubMed

    Haracska, Lajos; Prakash, Louise; Prakash, Satya

    2003-11-15

    The human Y-family DNA polymerases, Poliota, Poleta, and Polkappa, function in promoting replication through DNA lesions. However, because of their low fidelity, any involvement of these polymerases in DNA synthesis during base excision repair (BER) would be highly mutagenic. Mechanisms, therefore, must exist to exclude their participation in BER. Here, we show that although Poliota, Poleta, and Polkappa are all able to form a covalent Schiff base intermediate with the 5'-deoxyribose phosphate (5'-dRP) residue that results from the incision of DNA at an abasic site by an AP endonuclease, they all lack the ability for the subsequent catalytic removal of the 5'-dRP group. Instead, the covalent trapping of these polymerases by the 5'-dRP residue inhibits their DNA synthetic activity during BER. The unprecedented ability of these polymerases for robust Schiff base formation without the release of the 5'-dRP product provides a means of preventing their participation in the DNA synthetic step of BER, thereby avoiding the high incidence of mutagenesis and carcinogenesis that would otherwise occur. PMID:14630940

  7. Effect of composition on properties of reactive Al·B·I2 powders prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Abraham, Ani; Obamedo, John; Schoenitz, Mirko; Dreizin, Edward L.

    2015-08-01

    Metal-based fuels producing halogen-containing combustion products are being developed to enable rapid inactivation of harmful aerosolized spores and bacteria. Ternary reactive materials containing aluminum, boron, and iodine were prepared by mechanical milling with systematically varied Al:B ratio. The aluminum mass fraction varied from 0% to 70%, and most materials included 20 wt% of iodine. Prepared powders were inspected by electron microscopy; particle size distributions were measured using low angle laser light scattering. Stability of materials was studied using thermo-gravimetry and differential scanning calorimetry. As-prepared as well as pre-heated and quenched samples were analyzed using x-ray diffraction. Iodine was released upon heating in several stages. Low-temperature iodine release was relatively small. It overlapped with decomposition of B(OH)3 releasing water. The most significant amounts of iodine were released when the samples were heated to 400-500 °C, when AlB2 formed. Both AlB2 formation and iodine release were further accelerated by melting of aluminum. For the boron-rich samples, in which boron remained after all aluminum was used to form AlB2, an additional, high-temperature iodine release stage was observed near 900 °C. The results show that both boron and aluminum are capable of stabilizing substantial quantities of iodine in the metal matrix. The iodine is released at temperatures much greater than its boiling point. The mechanism by which iodine is retained in boron and aluminum remains unclear.

  8. Characterization of weld imperfections in 2195 Al-Li alloy: Experimental approaches towards mechanisms

    NASA Astrophysics Data System (ADS)

    Zaidi, Anwer Arif

    1997-10-01

    2195 Al-Li alloy apparently offers significantly higher strength to weight ratio than the 2219 aluminum alloy. It was discovered that 2195 Al-Li has a greater tendency to crack, generates peculiar kind of porosity, and is vulnerable to deleterious microparticulate emission during welding than its 2219 predecessor. An experimental investigation has been carried to characterize these weld imperfections in 2195 Al-Li alloy. This work presents a scientific account of an analytical study and of the clues it has provided towards an understanding of the weld imperfections in 2195 Al-Li welds. The study begins with the observation of peculiar pore formation in 2195 welds, which occurs not as in the case of 2219 welds upon solidification, but in a thermal ageing process subsequent to solidification. An apparent reaction (DTA) between the fusion zone dendritic surface and nitrogen gas implies a porous fusion zone. Tiny surface melting sites, designated as Blisters, due to its resemblance to skin blisters, testify to the conjunction of outgassing and melting effects and suggest that porosity formation in the solid phase depends upon local melting as well as outgassing. The absence of a dark magnesium rich substance, designated as smut in the immediate vicinity of a crack opening next to a weld repair bead implies either an umbrella of gas emission keeping off a condensate evaporated under the welding arc or, possibly an expulsion of atomized, liquified metal from the crack itself in the form of microparticulate emission. These microparticulate emission from VPPA welds takes various forms herein labeled as smut, snow, and Lava. It is attributed to a gas generating reaction taking place at molten grain boundaries or crack surfaces. The reaction could only be release of hydrogen displaced from lithium hydrides by a coming influx of dissolved nitrogen. There appears to be a close link between porosity, cracking and microparticulate emission. Observations of melting on the surface

  9. Gain broadening mechanism in various GaAlAs laser structures

    SciTech Connect

    Ruehle, W.; Brosson, P.

    1980-11-01

    Coupling of an external grating to a GaAlAs laser results in a strong enhancement of the selected mode and a reduction of the nonselected modes. The spectral form of this reduction is measured with a new sensitive experimental arrangement for three types of laser structures: proton bombarded stripe geometry, V-groove and CSP lasers. This spectral form is determined by the gain curve of the laser only and is independent on the position of the selected mode, i.e., no spectral hole burning is observed at room temperature.

  10. Post-irradiation mechanical properties of an AlMgSi alloy

    NASA Astrophysics Data System (ADS)

    Ismail, Z. H.; Birt, B.

    1995-03-01

    The effect of fast-neutron irradiation on the tensile properties and hardness of the age-hardenable alloy AlMgSi is investigated. Post-irradiation tensile tests are carried out in the temperature range 298 to 628 K. The results show that the degree of irradiation-produced hardening is dependent upon the initial condition of the alloy. The alloy in its soft condition exhibits a higher degree of irradiation hardening compared with that in the hard condition. The implication of the results is discussed in terms of the variation in the microstructures involved and compared with previosly published data.

  11. The influence of growth conditions on the surface morphology and development of mechanical stresses in Al(Ga)N layers during metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Lundin, W. V.; Zavarin, E. E.; Brunkov, P. N.; Yagovkina, M. A.; Troshkov, S. I.; Sakharov, A. V.; Nikolaev, A. E.; Tsatsulnikov, A. F.

    2016-04-01

    We have studied the influence of technological parameters on the surface morphology and development of mechanical stresses in Al(Ga)N layers during their growth by metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates. Minimization of tensile stresses under conditions of a retained atomically smooth surface can be achieved by using a combination of factors including (i) nitridation of substrate in ammonia flow, (ii) formation of two-layer AlN-Al(Ga)N structures by introducing a small amount (several percent) of Ga after growth of a thin AlN layer, and (iii) reduction of ammonia flow during growth of an Al(Ga)N layer.

  12. Evolution of microstructure and mechanical properties in laser induced reaction coating of Al{sub 2}O{sub 3} on SiC/Al{sub 2}O{sub 3} composite

    SciTech Connect

    Dahotre, N.B.; Xiao, C.; Boss, W.; McCay, M.H.; McCay, T.D.

    1996-12-31

    Protection of a SiC(p)/Al2O3 composite (SiC particulate-reinforced Al{sub 2}O{sub 3}-matrix) at high temperature from deleterious reactions occurring within and with the surrounding environment is required for high temperature applications. Development of a continuous Al2O3 coating on SiC(p)/Al2O3 ceramic composite for such protection is achieved using the laser assisted in-situ reaction technique. The as-deposited alumina coating was analyzed using optical microscopy and XRD. The coated samples were also evaluated for mechanical properties using 3-point bend tests.

  13. Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock

    NASA Astrophysics Data System (ADS)

    Beese, Allison M.; Carroll, Beth E.

    2016-03-01

    Laser-based additive manufacturing (AM) of metals using powder feedstock can be accomplished via two broadly defined technologies: directed energy deposition (DED) and powder bed fusion (PBF). In these processes, metallic powder is delivered to a location and locally melted with a laser heat source. Upon deposition, the material undergoes a rapid cooling and solidification, and as subsequent layers are added to the component, the material within the component is subjected to rapid thermal cycles. In order to adopt AM for the building of structural components, a thorough understanding of the relationships among the complex thermal cycles seen in AM, the unique heterogeneous and anisotropic microstructure, and the mechanical properties must be developed. Researchers have fabricated components by both DED and PBF from the widely used titanium alloy Ti-6Al-4V and studied the resultant microstructure and mechanical properties. This review article discusses the progress to date on investigating the as-deposited and heat-treated microstructures and mechanical properties of Ti-6Al-4V structures made by powder-based laser AM using DED and PBF.

  14. Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E

    NASA Technical Reports Server (NTRS)

    Sampson, J. W.; Martinez, J.; McLean, C.

    2016-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.

  15. Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy

    NASA Astrophysics Data System (ADS)

    Şahin, M.; Çadırlı, E.

    2014-10-01

    A Bi-2.0Zn-0.2Al (wt%) ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified upwards at a constant growth rate ( V = 18.4 μm/s) under different temperature gradients ( G = 1.15-3.44 K/mm) and at a constant temperature gradient ( G = 2.66 K/mm) under different growth rates ( V = 8.3-500 μm/s) in a Bridgman-type directional solidification furnace. The dependence of microstructure parameter ( λ) on the solidification parameters ( G and V) and that of the microhardness (Hv) on the microstructure and solidification parameters were investigated. The resistivity ( ρ) measurements of the studied alloy were performed using the standard four-point-probe method, and the temperature coefficient of resistivity ( α) was calculated from the ρ- T curve. The enthalpy (Δ H) and the specific heat ( C p ) values were determined by differential scanning calorimetry analysis. In addition, the thermal conductivities of samples, obtained using the Wiedemann-Franz and Smith-Palmer equations, were compared with the experimental results. The results revealed that, the thermal conductivity values obtained using the Wiedemann-Franz and Smith-Palmer equations for the Bi-2.0Zn-0.2Al (wt%) alloy are in the range of 5.2-6.5 W/Km and 15.2-16.4 W/Km, respectively.

  16. High Temperature Mechanical Behavior of Ti-45Al-8Nb and Its Cavity Evolution in Deformation

    NASA Astrophysics Data System (ADS)

    Du, Zhihao; Zhang, Kaifeng; Jiang, Shaosong; Zhu, Ruican; Li, Shuguang

    2015-10-01

    The tensile property of a high Nb containing TiAl-based alloy (Ti-45Al-8Nb) was investigated in the temperature range of 900-1050 °C and strain rate range of 1 × 10-3 to 2.5 × 10-2 s-1. The results revealed that the yield stress decreased with increasing temperature and decreasing strain rate, while the tensile elongation increased with an increase in temperature and a decrease in strain rate. Hence, The minimum yield stress of 119.2 MPa and the maximum elongation of 237% were obtained at the temperature of 1050 °C and strain rate of 1 × 10-3 s-1. Based on the experimental data, the activation energy of the alloy was calculated to be 360 kJ/mol. Moreover, the microstructure and the fracture morphology of the specimens were observed, and the results revealed that the distribution of cavities was related to deformation parameters and the fracture mode was typically dimple-type.

  17. Manufacturing Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Baufeld, Bernd; van der Biest, Omer; Gault, Rosemary; Ridgway, Keith

    2011-12-01

    The urge in aeronautics to reduce cost and time to flight of components without compromising safety and performance stimulates the investigation of novel manufacturing routes. Shaped Metal Deposition (SMD) is an innovative time-compression technology, which creates near-net shaped components layer by layer by weld deposition. Especially for Ti alloys, which are difficult to shape by traditional methods such as forging, machining and casting and for which the loss of material during the shaping process is also very expensive, SMD promises great advantages. Applying preliminary SMD parameter, four different tubular components with a square cross section and wall thicknesses of about 9 mm were built. The microstructure of the Ti-6Al-4V components consists of large prior β grains, elongated along the temperature gradient during welding, which transform into a lamellar α/β substructure at room temperature. The ultimate tensile strength was between 880 and 1054 MPa. The strain at failure was between 3.0 and 11.3 % for tensile testing parallel to the deposition plane and between 9.1 and 16.4 % perpendicular to the deposition plane. The micro-hardness (3.1 - 3.4 GPa), the Young's modulus (117 - 121 GPa) and the oxygen and nitrogen content are comparable to cast Ti-6Al-4V material.

  18. Fabrication and mechanical properties of Fe sub 3 Al-based iron aluminides

    SciTech Connect

    Sikka, V.K.; McKamey, C.G.; Howell, C.R.; Baldwin, R.H.

    1990-03-01

    Iron aluminides based on Fe{sub 3}Al are ordered intermetallic alloys that offer good oxidation resistance, excellent sulfidation resistance, and lower material cost than many stainless steels. These materials also conserve strategic elements such as chromium and have a lower density than stainless steels. However, limited ductility at ambient temperature and a sharp drop in strength have been major deterrents to their acceptance for structural applications. This report presents results on iron aluminides with room-temperature elongations of 15 to 20%. Ductility values were improved by a combination of thermomechanical processing and heat-treatment control. This method of ductility improvement has been demonstrated for a range of compositions. Melting, casting, and processing of 7-kg (15-lb) heats produced at the Oak Ridge National Laboratory (ORNL) and 70-kg (150-lb) commercial heats are described. Vacuum melting and other refining processes such as electroslag remelting are recommended for commercial heats. The Fe{sub 3}Al-based iron aluminides are hot workable by forging or extruding at temperatures in the range of 850 to 1100{degree}C. rolling at 800{degree}C is recommended with a final 50% reduction at 650{degree}C. Tensile and creep properties of 7- and 70-kg (15- and 150-lb) heats are presented. The presence of impurities such as manganese an silicon played an important role in reducing the ductility of commercially melted heats. 7 refs., 60 figs., 12 tabs.

  19. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    SciTech Connect

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  20. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy.

    PubMed

    Balla, Vamsi Krishna; Soderlind, Julie; Bose, Susmita; Bandyopadhyay, Amit

    2014-04-01

    Laser surface melting (LSM) of Ti6Al4V alloy was carried out with an aim to improve properties such as microstructure and wear for implant applications. The alloy substrate was melted at 250W and 400W at a scan velocity of 5mm/s, with input energy of 42J/mm(2) and 68J/mm(2), respectively. The results showed that equiaxed α+β microstructure of the substrate changes to mixture of acicular α in β matrix after LSM due to high cooling rates in the range of 2.25×10(-3)K/s and 1.41×10(-3)K/s during LSM. Increasing the energy input increased the thickness of remelted region from 779 to 802µm and 1173 to 1199µm. Similarly, as a result of slow cooling rates under present experimental conditions, the grain size of the alloy increased from 4.8μm to 154-199μm. However, the hardness of the Ti6Al4V alloy increased due to LSM melting and resulted in lowest in vitro wear rate of 3.38×10(-4)mm(3)/Nm compared to untreated substrate with a wear rate of 6.82×10(-4)mm(3)/Nm. PMID:24388220

  1. Degradation of sulfur mustard on KF/Al2O3 supports: insights into the products and the reactions mechanisms.

    PubMed

    Zafrani, Yossi; Goldvaser, Michael; Dagan, Shai; Feldberg, Liron; Mizrahi, Dana; Waysbort, Daniel; Gershonov, Eytan; Columbus, Ishay

    2009-11-01

    The degradation of the warfare agent sulfur mustard (HD) adsorbed onto KF/Al(2)O(3) sorbents is described. These processes were explored by MAS NMR, using (13)C-labeled sulfur mustard (HD*) and LC-MS techniques. Our study on the detoxification of this blister agent showed the formation of nontoxic substitution and less-toxic elimination products (t(1/2) = 3.5-355 h). Interestingly, the reaction rates were found to be affected by MAS conditions, i.e., by a centrifugation effect. The products and the mechanisms of these processes are discussed. PMID:19817399

  2. Nanoindentation Mechanical Properties of a Bi-phase Cu29Zr32Ti15Al5Ni19 Alloy

    NASA Astrophysics Data System (ADS)

    Pi, JinHong; Wang, ZhangZhong; He, XianCong; Bai, YunQiang

    2016-01-01

    Mechanical properties of cylindrical bi-phasic high-entropy alloy Cu29Zr32Ti15Al5Ni19 (3 mm in diameter) were characterized by nanoindentation test in each phase. The results show that the constituent FCC phase is of low nanohardness (2.35 GPa) and modulus (60.9 GPa), while another constituent phase in the alloy, the HCP phase, shows much higher nanohardness (6.5 GPa) and modulus (115.3 GPa). Creep occurs in both phases during the indentation.

  3. Enhancement of the Thermal Stability and Mechanical Hardness of Zr-Al-Co Amorphous Alloys by Ag Addition

    NASA Astrophysics Data System (ADS)

    Wang, Yongyong; Dong, Xiao; Song, Xiaohui; Wang, Jinfeng; Li, Gong; Liu, Riping

    2016-05-01

    The thermal and mechanical properties of Zr57Al15Co28- X Ag X ( X = 0 and 8) amorphous alloys were investigated using differential scanning calorimetry, in situ high-pressure angle dispersive X-ray diffraction measurements with synchrotron radiation, and nanoindentation. Results show that Ag doping improves effective activation energy, nanohardness, elastic modulus, and bulk modulus. Ag addition enhances topological and chemical short-range orderings, which can improve local packing efficiency and restrain long-range atom diffusion. This approach has implications for the design of the microstructure- and property-controllable functional materials for various applications.

  4. Formation mechanism of AlN whiskers on sapphire surfaces heat-treated in a mixed flow of H2 and N2

    NASA Astrophysics Data System (ADS)

    Takada, Kazuya; Nomura, Kazushiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori; Kumagai, Yoshinao

    2016-05-01

    The formation mechanism of AlN whiskers on sapphire substrates during heat treatment in a mixed flow of H2 and N2 was investigated in the temperature range of 980-1380 °C. AlN whiskers grew above 1030 °C after covering the sapphire surface with a thin AlN layer. The existence of pits on the sapphire surface beneath the thin AlN layer was observed. Both AlN whisker and pit densities of samples were on the same order of 108 cm-2. These results suggested the following mechanism. First, the sapphire surface reacts with H2, and the generated Al gas reacts with N2 to form a thin AlN layer on sapphire. Then, the sapphire surface reacts with H2 diffusing to the AlN/sapphire interface. The Al gas escapes through dislocations in the AlN layer to leave pits on the sapphire surface, and finally reacts with N2 to form AlN whiskers on the top surface.

  5. Microstructure and Mechanical Properties of Al-8 pct Si Alloy Prepared by Direct Chill Casting Under Electromagnetic and Ultrasonic Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Jie, Jinchuan; Wu, Li; Fu, Ying; Li, Mu; Lu, Yiping; Li, Tingju

    2014-04-01

    The intermediate frequency electromagnetic field and power ultrasonic field were applied during the direct chill (DC) casting process of Al-8 pct Si alloy. The effects of different physical fields on the solidification microstructure and mechanical properties were studied. The results show that compared to the conventional casting without any treatments, refined microstructures and improved mechanical properties can be obtained when the electromagnetic or ultrasonic field is applied individually. For the case of compound fields, the electromagnetic field can increase the ultrasonic treated region, while the ultrasonic field can enhance the refinement effect of electromagnetic field. Owing to the advantages of both electromagnetic and ultrasonic fields, the microstructure obtained under the compound fields is fine and uniform, leading to a remarkable enhancement of mechanical properties. The interaction mechanism between intermediate frequency electromagnetic field and power ultrasonic field was discussed. The present study may be useful for grain refinement and improvement of mechanical properties of alloys during the DC casting process which is now widely used in industry.

  6. Void shrinking process and mechanisms of the diffusion bonded Ti-6Al-4V alloy with different surface roughness

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, M. Q.; Kang, P. J.

    2016-01-01

    The diffusion bonding of Ti-6Al-4V alloy with different surface roughness was performed at 5 and 10 MPa. The influence of surface roughness on the void shrinking process and mechanisms was investigated. The average void size increases as the R a increases from 0.33 to 0.44 μm, while it decreases as the R a increases to 0.46 μm because of the decreasing of R λq. The void shrinking mechanisms were analyzed by using the dynamic model of void shrinking. Power-law creep is a dominant mechanism on void shrinking, of which the contribution decreases as the R a increases from 0.33 to 0.44 μm, while it increases as the R a increases to 0.46 μm. The influence of surface roughness on the contribution of plastic deformation and surface source mechanism on void shrinking is not significant while that on the contribution of interface source mechanism is dependent on the imposing pressure. The optimizing surface roughness is with a R a of 0.33 μm and R λq of 5.38 μm in this study.

  7. Deformation Mechanisms in NiTi-Al Composites Fabricated by Ultrasonic Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Hehr, Adam; Dapino, Marcelo J.; Anderson, Peter M.

    2015-09-01

    Thermally active NiTi shape memory alloy (SMA) fibers can be used to tune or tailor the effective coefficient of thermal expansion (CTE) of a metallic matrix composite. In this paper, a novel NiTi-Al composite is fabricated using ultrasonic additive manufacturing (UAM). A combined experimental-simulation approach is used to develop and validate a microstructurally based finite element model of the composite. The simulations are able to closely reproduce the macroscopic strain versus temperature cyclic response, including initial transient effects in the first cycle. They also show that the composite CTE is minimized if the austenite texture in the SMA wires is <001>B2, that a fiber aspect ratio >10 maximizes fiber efficiency, and that the UAM process may reduce hysteresis in embedded SMA wires.

  8. Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy

    NASA Astrophysics Data System (ADS)

    Bhat, Tahir Mohiuddin; Gupta, Dinesh C.

    2016-08-01

    The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.

  9. Mechanical properties and permeability of hydrogen isotopes through CrNi35WTiAl alloy, containing radiogenic helium

    SciTech Connect

    Maksimkin, I.P.; Yukhimchuk, A.A.; Boitsov, I.Y.; Malkov, I.L.; Musyaev, R.K.; Baurin, A.Y.; Shevnin, E.V.; Vertey, A.V.

    2015-03-15

    The long-term contact of structural materials (SM) with tritium-containing media makes their properties in terms of kinetic permeability of hydrogen isotopes change. This change is the consequence of the defect formation in SM due to the result of {sup 3}He build-up generated by the radioactive decay of tritium dissolved in SM. This paper presents the experimental results concerning the permeability of hydrogen isotopes through CrNi35WTiAl alloy containing {sup 3}He and the impact of the presence of {sup 3}He and H on its mechanical properties. Tensile tests of cylindrical samples containing various concentrations of {sup 3}He (90, 230 and 560 appm) have been performed in inert and hydrogen atmospheres. The build-up of {sup 3}He has been made using the 'helium trick' technique. The maximal decrease in the plastic characteristics of the CrNi35WTiAl alloy occurs in samples with the highest {sup 3}He (560 appm) content at 873 K. The permeability of deuterium through the CrNi35WTiAl alloy in the initial state and that with 560 appm of {sup 3}He content was explored. The presence of this {sup 3}He concentration has shown an increase in deuterium permeability, evidently due to structural changes in the material under the impact of radiogenic helium.

  10. Controlling microstructure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta

    NASA Astrophysics Data System (ADS)

    Hollerweger, R.; Zhou, L.; Holec, D.; Koller, C. M.; Rachbauer, R.; Polcik, P.; Mayrhofer, P. H.

    2016-02-01

    Recent ab initio studies showed that the inherent ductility of cubic structured Cr1-xAlxN coatings (as compared with similar hard coatings) significantly increases when alloyed with Ta. As there is only little experimental and theoretical information available, we have performed a combined experimental and ab initio based study on the influence of Ta additions (0, 2, 6, 12, and 26 at. % on the metal sublattice) on structure and mechanical properties of arc evaporated Cr1-x-yAlxTayN coatings with Al/(Cr + Al) ratios >0.61. With increasing Ta-content, the droplet number density decreases and the coating surface smoothens, which is much more pronounced as with increasing the bias potential from -40 to -120 V. Simultaneously, the columnar structure observed for Ta-free Cr0.37Al0.63N significantly changes into a fine-grained structure (crystallite size ˜5 nm) with clearly reduced columnar character. Increasing the Ta content also favors the formation of a preferred 200 growth orientation resulting in a reduction of the indentation moduli E from ˜500 to ˜375 GPa, which is in agreement with ab initio calculations. As the hardness H remains between 34 and 41 GPa, an increased resistance against brittle fracture is indicated with increasing Ta.

  11. Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy

    NASA Astrophysics Data System (ADS)

    Fritz, Gregory M.; Spey, Stephen J.; Grapes, Michael D.; Weihs, Timothy P.

    2013-01-01

    We use pulses of electrical, mechanical, and thermal energy to determine the ignition thresholds of self-propagating reactions in Al/(Ni-7 V) and Al/Inconel multilayers. The energy density and power density required to initiate reactions in a Al/(Ni-7 V) foil with a 50 nm bilayer is compared for all three techniques to demonstrate the importance of heat loss on ignition thresholds and its dependence on the test volume and the surrounding thermal resistance. In addition, ignition is shown to occur at temperatures as low as 232 °C when heat losses are very small suggesting that ignition can be controlled by atomic mixing in the solid state. The experiments demonstrate that the ignition threshold drops with increasing ignition volume, and it rises with increasing bilayer spacing and with increasing intermixed thickness. These trends are also supported by an analytical model we derive to predict the effects of ignition volume, multilayer microstructure, and physical properties on the ignition threshold. We calculate an activation energy of 77.3 ± 1.3 kJ/mol for solid state mixing based on measured ignition temperatures.

  12. Mechanisms of oxygen ion diffusion in a nanoporous complex oxide 12CaO•7 Al2 O3

    NASA Astrophysics Data System (ADS)

    Sushko, Peter V.; Shluger, Alexander L.; Hayashi, Katsuro; Hirano, Masahiro; Hosono, Hideo

    2006-01-01

    We performed a theoretical analysis of O2- diffusion mechanisms in a nanoporous complex oxide 12CaO•7Al2O3 (C12A7). This material can be viewed as a positively charged framework, arranged in subnanometer sized cages, hosting extra-framework O2- ions occupying one in six cages. Using both classical molecular-dynamics simulations and ab initio calculations we demonstrate that the diffusion of O2- species is dominated by the exchange of framework and extra-framework O2- ions rather than by an interstitial diffusion mechanism. The results allow us to rationalize the origins of the experimentally observed high oxide ion conductivity of C12A7 and the stability of its lattice under positive ion-beam irradiation.

  13. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Cumming, A. V.; Craig, K.; Martin, I. W.; Bassiri, R.; Cunningham, L.; Fejer, M. M.; Harris, J. S.; Haughian, K.; Heinert, D.; Lantz, B.; Lin, A. C.; Markosyan, A. S.; Nawrodt, R.; Route, R.; Rowan, S.

    2015-02-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors.

  14. Regulation Mechanism of Novel Thermomechanical Treatment on Microstructure and Properties in Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Zhiguo; Ren, Jieke; Zhang, Jishuai; Chen, Jiqiang; Fang, Liang

    2016-02-01

    Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations.

  15. Microstructures and Mechanical Properties of Transient Liquid-Phase Diffusion-Bonded Ti3Al/TiAl Joints with TiZrCuNi Interlayer

    NASA Astrophysics Data System (ADS)

    Ren, H. S.; Xiong, H. P.; Pang, S. J.; Chen, B.; Wu, X.; Cheng, Y. Y.; Chen, B. Q.

    2016-04-01

    Transient liquid-phase diffusion bonding of Ti3Al-based alloy to TiAl intermetallics was conducted using Ti-13Zr-21Cu-9Ni (wt pct) interlayer foil. The joint microstructures were examined using a scanning electron microscope (SEM) equipped with an electron probe micro-analyzer (EPMA). The microhardness across the joint was measured and joint strengths were tested. The results show that the Ti3Al/TiAl joint mainly consists of Ti-rich phase, Ti2Al layer, α 2-Ti3Al band, and residual interlayer alloy dissolved with Al. The amount of residual interlayer at the central part of the joint is decreased with the increase of the bonding temperature, and meantime the Ti2Al and α 2-Ti3Al reaction bands close to the joined Ti3Al-based alloy become thickened gradually. Furthermore, the central part of the joint exhibits the maximum microhardness across the whole joint. The joints bonded at 1193 K (920 °C) for 600 seconds with a pressure of 2 MPa presented the maximum shear strength of 417 MPa at room temperature, and the strength of 234 MPa was maintained at 773 K (500 °C).

  16. The Effect of Process Parameters on the Microstructure and Mechanical Properties of Semisolid Cast Al6061

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Niroumand, Behzad; Shamanian, Morteza

    2015-04-01

    An examination of the microstructure and mechanical properties of aluminum 6061 alloy samples produced by a miniature cooling slope is presented. The effects of several process parameters including pouring rate, cooling slope angle, superheat and cooling slope length on the microstructure and mechanical characteristics of the samples were investigated. An attempt was made to use the two-level factorial design method to determine the relationships between the process parameters and the properties of the semisolid aluminum 6061 alloy manufactured by the miniature cooling slope. Finally, an optimum processing region was identified. The interaction between the cooling slope length and the pouring rate ( BC); the interaction among the superheat, the pouring rate, and the cooling slope length ( ABC); and the cooling slope length (C), in the order mentioned, were identified as the most important effects.

  17. Mechanical Property and Corrosion Resistance Evaluations of Ti-6Al-7Nb Alloy Brazed with Bulk Metallic Glasses

    SciTech Connect

    Miura, E.; Kato, H.; Ogata, Toshiaki; Nishiyama, Nobuyuki; Specht, Eliot D; Shiraishi, Takanobu; Inoue, A.; Hisatsune, K.

    2007-01-01

    Exploitation of metallic glass as new brazing filler for Ti-based biomedical alloy was attempted. Ti-6Al-7Nb was used as a brazed material, and candidates of bulk metallic glass brazing filler were Cu60Hf25Ti15, Mg65Cu25Gd10, Zr55Cu30Al10Ni5 and Pd40Cu30P20Ni10. Convergence infrared-ray brazing was conducted for brazing Ti-6Al-7Nb/metallic glass in Ar atmosphere. After brazing, hardness measurement, X-ray tomography, cross-sectional observation, artificial saliva immersion test and tensile test were performed to evaluate brazability, mechanical property and corrosion resistance of the obtained brazing joints. The results of brazing using these metallic glass fillers show that all the metallic glasses were brazable to Ti-6Al-7Nb except for Mg65Cu25Gd10. Mg65Cu25Gd10, Cu60Hf25Ti15 and their joints collapsed rapidly during immersion test. Zr55Cu30Al10Ni5 joint was the best in terms of degradation resistance; however, tensile strength was inferior to the conventional one. Pd40Cu30Ni10P20 filler and Zr55Cu30Al10Ni5 filler and their joints did not show any collapse or tarnish during the immersion test. Pd40Cu30Ni10P20 joint showed the excellent properties in terms of both corrosion resistance and tensile strength, which were superior to a joint brazed using Ti-15Cu-25Ni conventional filler. X-ray tomograph indicates that fracture tends to occur in the vicinity of the brazing interface after tensile test. The brazed metallic glass fillers were fully crystallized, excluding Pd40Cu30Ni10P20 filler. Pd40Cu30Ni10P20 brazed filler contained mapleleaf like primary dendrite, peritectoid and a few microns interfacial reaction layer in glassy matrix. The results indicated that Pd40Cu30Ni10P20 is promising brazing filler for dental or biomaterial devices.

  18. The role of microstructure refinement on the impact ignition and combustion behavior of mechanically activated Ni/Al reactive composites

    NASA Astrophysics Data System (ADS)

    Mason, B. A.; Groven, L. J.; Son, S. F.

    2013-09-01

    Metal-based reactive composites have great potential as energetic materials due to their high energy densities and potential uses as structural energetic materials and enhanced blast materials however these materials can be difficult to ignite with typical particle size ranges. Recent work has shown that mechanical activation of reactive powders increases their ignition sensitivity, yet it is not fully understood how the role of microstructure refinement due to the duration of mechanical activation will influence the impact ignition and combustion behavior of these materials. In this work, impact ignition and combustion behavior of compacted mechanically activated Ni/Al reactive powder were studied using a modified Asay shear impact experiment where properties such as the impact ignition threshold, ignition delay time, and combustion velocity were identified as a function of milling time. It was found that the mechanical impact ignition threshold decreases from an impact energy of greater than 500 J to an impact energy of ˜50 J as the dry milling time increases. The largest jump in sensitivity was between the dry milling times of 25% of critical reaction milling time (tcr) (4.25 min) and 50% tcr (8.5 min) corresponding to the time at which nanolaminate structures begin to form during the mechanical activation process. Differential scanning calorimetry analysis indicates that this jump in the sensitivity to thermal and mechanical impact is dictated by the formation of nanolaminate structures, which reduce the temperature needed to begin the dissolution of nickel into aluminum. It was shown that a milling time of 50%-75% tcr may be near optimal when taking into account both the increased ignition sensitivity of mechanical activated Ni/Al and potential loss in reaction energy for longer milling times. Ignition delays due to the formation of hotspots ranged from 1.2 to 6.5 ms and were observed to be in the same range for all milling times considered less than tcr

  19. The Effect of Ti on Mechanical Properties of Extruded In-Situ Al-15 pct Mg2Si Composite

    NASA Astrophysics Data System (ADS)

    Soltani, Niloofar; Bahrami, Amin; Pech-Canul, Martin Ignacio

    2013-09-01

    This work was carried out to investigate the effect of different Ti concentrations as a modifying agent on the microstructure and tensile properties of an in-situ Al-15 pctMg2Si composite. Cast, modified, and homogenized small ingots were extruded at 753 K (480 °C) at the extrusion ratio of 18:1 and ram speed of 1 mm/s. Various techniques including metallography, tensile testing, and scanning electron microscopy were used to characterize the mechanical behavior, microstructural observations, and fracture mechanisms of this composite. The results showed that 0.5 pctTi addition and homogenizing treatment were highly effective in modifying Mg2Si particles. The results also exhibited that the addition of Ti up to 0.5 pct increases both ultimate tensile strength (UTS) and tensile elongation values. The highest UTS and elongation values were found to be 245 MPa and 9.5 pct for homogenized and extruded Al-15 pctMg2Si-0.5 pctTi composite, respectively. Fracture surface examinations revealed a transition from brittle fracture mode in the as-cast composite to ductile fracture in homogenized and extruded specimens. This can be attributed to the changes in size and morphology of Mg2Si intermetallic and porosity content.

  20. Insight into the reaction mechanisms for oxidative addition of strong σ bonds to an Al(i) center.

    PubMed

    Zhang, Xiangfei; Cao, Zexing

    2016-06-21

    The oxidation addition of a series of σ H-X bonds (X = H, B, C, Si, N, P, and O) to a single Al(i) supported by a (NacNac)(-) bidentate ligand ((NacNac)(-) = [ArNC(Me)CHC(Me)NAr](-) and Ar = 2,6-(i)Pr2C6H3) has been explored through extensive DFT calculations. The presented results show that activation and addition of these σ bonds follow various reaction mechanisms, in which hydride transfer, proton transfer, and Al-X bond coupling steps are involved. The predicted free energy barriers for these oxidative additions range from 8 to 32 kcal mol(-1), and all the reactions are remarkably favorable thermodynamically. However, sterically hindered ligands, for most reactants, make the formation of the initial reactant complex difficult and may reduce the efficiency of the reaction. Calculations reveal a strong dependence of the reaction mechanism and low-energy channel on the bonding features of X-H and the local structural environments. PMID:27249667

  1. Kinetics and mechanisms of primary and steady state creep in B- and Al-containing alpha silicon carbide

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Carter, Calvin H., Jr.

    1989-07-01

    The steady state creep behavior of a number of high temperature structural ceramics has been measured and the results analyzed to determine the controlling mechanism. Pure polycrystalline silicon carbide, devoid of sintering aids, creeps by dislocation motion and climb. Silicon carbide containing B- and Al- sintering aids, creeps by grain boundary sliding controlled by diffusion mechanisms (grain boundary diffusion - Coble creep - below 1920 K; lattice diffusion - Nabarro-Herring creep-above 1920 K). The difference in behavior is attributed to the high concentration of vacancies accompanying impurity substitution in the sintered silicon carbide. Experimental measurements of grain boundary sliding offsets on polycrystalline silicon carbide have shown that the primary, transient, creep stage in this material is primarily due to plastic strain within the grains, and that the secondary, steady state, creep stage is primarily due to grain boundary sliding between the grains. The creep of a single crystal and polycrystalline niobium carbide in the 1570 to 1850 K range is controlled by dislocation glide and climb. The creep of hot pressed silicon nitrate and mullite in the 1470 to 1800 K range is controlled by grain boundary sliding due to the amorphous phase present as a consequence of Y2O3 and Al2O3 sintering aids.

  2. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  3. Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing

    SciTech Connect

    Zhang, Jinhan; Zhou, Qi; Chen, Wanjun; Zhang, Bo; Huang, Sen Bao, Qilong; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Zhao, Chao; Liu, Xinyu

    2015-12-28

    The physical mechanism of low-thermal-budget Au-free ohmic contacts to AlGaN/GaN heterostructures is systematically investigated with current-voltage, high-resolution transmission electron microscopy, and temperature-dependent contact resistivity characterizations. With a low annealing temperature of 600 °C, pre-ohmic recess etching of the AlGaN barrier down to several nanometers is demonstrated to be an effective method to reduce the contact resistance between Ti/Al/Ti/W ohmic metals and AlGaN/GaN heterostructures. However, further over recess of the AlGaN barrier leads to only sidewall contact to 2D electron gas channel and thus degraded contact performance. It is verified by temperature-dependent contact resistivity measurements that field emission (tunneling) dominates the current transport mechanism in Au-free ohmic contacts with AlGaN barrier partially and over recessed, while both field emission and thermionic emission contribute to traditional Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures that annealed at high temperature (850 °C)

  4. Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhan; Huang, Sen; Bao, Qilong; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Zhao, Chao; Liu, Xinyu; Zhou, Qi; Chen, Wanjun; Zhang, Bo

    2015-12-01

    The physical mechanism of low-thermal-budget Au-free ohmic contacts to AlGaN/GaN heterostructures is systematically investigated with current-voltage, high-resolution transmission electron microscopy, and temperature-dependent contact resistivity characterizations. With a low annealing temperature of 600 °C, pre-ohmic recess etching of the AlGaN barrier down to several nanometers is demonstrated to be an effective method to reduce the contact resistance between Ti/Al/Ti/W ohmic metals and AlGaN/GaN heterostructures. However, further over recess of the AlGaN barrier leads to only sidewall contact to 2D electron gas channel and thus degraded contact performance. It is verified by temperature-dependent contact resistivity measurements that field emission (tunneling) dominates the current transport mechanism in Au-free ohmic contacts with AlGaN barrier partially and over recessed, while both field emission and thermionic emission contribute to traditional Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures that annealed at high temperature (850 °C).

  5. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    SciTech Connect

    Farrow, Adam M; Laird, Campbell

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  6. Dielectric Relaxation, Modulus Behaviour and Conduction Mechanism in NdAlO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2015-10-01

    The dielectric property of neodymium aluminate, NdAlO3 ceramic, synthesized by the solid state reaction method is investigated. The Rietveld refinement of the room temperature x-ray diffraction pattern suggests the rhombohedral crystal structure with R-3c space symmetry of the system. The dielectric relaxation is observed in the temperature range from 313 K to 523 K and in the frequency range from 580 Hz to 1.1 MHz as a gradual decrease in the real part ( ɛ') of the dielectric constant and as a broad peak in the imaginary part ( ɛ″) of the dielectric constant. The complex impedance plane plot confirms the existence of both the grain and grain-boundary contributions to the relaxation and is analysed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The temperature dependence of both the grain and grain-boundary resistances follow the Arrhenius law with activation energy of 0.3 eV and 0.34 eV, respectively. The room temperature Raman spectrum confirms the rhombohedral phase of the system. Photoluminescence measurements show a red band at around 682 nm due to the transition from the 4I9/2 ground state to the 4F9/2 excited state.

  7. Thermo-mechanical Forming of Al-Mg-Si Alloys: Modeling and Experiments

    SciTech Connect

    Kurukuri, S.; Boogaard, A. H. van den; Ghosh, M.; Miroux, A.

    2010-06-15

    In an ongoing quest to realize lighter vehicles with improved fuel efficiency, deformation characteristics of the material AA 6016 is investigated. In the first part of this study, material behavior of Al-Mg-Si sheet alloy is investigated under different process (temperature and strain rate) and loading (uniaxial and biaxial) conditions experimentally. Later, warm cylindrical cup deep drawing experiments were performed to study the effect of various parameters on warm forming processes, such as the effect of punch velocity, holding time, temper and temperature on force-displacement response. The plastic anisotropy of the material which can be directly reflected by the earing behavior of the drawn cups has also been studied. Finite element simulations can be a powerful tool for the design of warm forming processes and tooling. Their accuracy will depend on the availability of material models that are capable of describing the influence of temperature and strain rate on the flow stresses. The physically based Nes model is used to describe the influence of temperature and strain rate and the Vegter yield criterion is used to describe the plastic anisotropy of the sheet. Experimental drawing test data are used to validate the modeling approaches.

  8. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  9. Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs

    NASA Astrophysics Data System (ADS)

    Licausi, M. P.; Igual Muñoz, A.; Amigó Borrás, V.

    2013-10-01

    Titanium and its alloys has been widely used for the design of dental implants because of its biocompatibility, mechanical properties and corrosion resistance. The powder-metallurgy process is a promising alternative to the casting fabrication process of titanium alloys for bone implants design as the porous structure mimics the natural bone structures, allowing the bone to grow into the pores which results in a better fixation of the artificial implant. However, under in vivo conditions the implants are subjected to tribocorrosion phenomenon, which consists in the degradation mechanisms due to the combined effect of wear and corrosion. The aim of this study is to evaluate the tribocorrosion behaviour of cast and sintered Ti6Al4V biomedical alloy for dental applications using the cast material as reference. Titanium samples were tested in artificial human saliva solution with three different pHs (3, 6, 9) and in an acidic saliva with 1000 ppm fluorides (AS-3-1000F-) by different electrochemical techniques (potentiodynamic curves, potentiostatic tests and tribo-electrochemical tests). Cast and sintered titanium alloys exhibit the same tribocorrosion mechanisms in AS independently of the pH which consists in plastic deformation with passive dissolution, but the addition of fluorides to the acidified solution changes the degradation mechanism towards active dissolution of the titanium alloys.

  10. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition

    PubMed Central

    Eriani, Gilbert; Geslain, Renaud

    2016-01-01

    Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings. PMID:26844776

  11. The Enzymatic Paradox of Yeast Arginyl-tRNA Synthetase: Exclusive Arginine Transfer Controlled by a Flexible Mechanism of tRNA Recognition.

    PubMed

    McShane, Ariel; Hok, Eveline; Tomberlin, Jensen; Eriani, Gilbert; Geslain, Renaud

    2016-01-01

    Identity determinants are essential for the accurate recognition of transfer RNAs by aminoacyl-tRNA synthetases. To date, arginine determinants in the yeast Saccharomyces cerevisiae have been identified exclusively in vitro and only on a limited number of tRNA Arginine isoacceptors. In the current study, we favor a full cellular approach and expand the investigation of arginine determinants to all four tRNA Arg isoacceptors. More precisely, this work scrutinizes the relevance of the tRNA nucleotides at position 20, 35 and 36 in the yeast arginylation reaction. We built 21 mutants by site-directed mutagenesis and tested their functionality in YAL5, a previously engineered yeast knockout deficient for the expression of tRNA Arg CCG. Arginylation levels were also monitored using Northern blot. Our data collected in vivo correlate with previous observations. C35 is the prominent arginine determinant followed by G36 or U36 (G/U36). In addition, although there is no major arginine determinant in the D loop, the recognition of tRNA Arg ICG relies to some extent on the nucleotide at position 20. This work refines the existing model for tRNA Arg recognition. Our observations indicate that yeast Arginyl-tRNA synthetase (yArgRS) relies on distinct mechanisms to aminoacylate the four isoacceptors. Finally, according to our refined model, yArgRS is able to accommodate tRNA Arg scaffolds presenting N34, C/G35 and G/A/U36 anticodons while maintaining specificity. We discuss the mechanistic and potential physiological implications of these findings. PMID:26844776

  12. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Wang, Haiyan; Wen, Lei; Li, Guoqiang

    2015-01-01

    High-quality AlN epitaxial films have been grown on Si substrates by pulsed laser deposition (PLD) by effective control of the interfacial reactions between AlN films and Si substrates. The surface morphology, crystalline quality and interfacial property of as-grown AlN/Si hetero-interfaces obtained by PLD have been systemically studied. It is found that the amorphous SiAlN interfacial layer is formed during high temperature growth, which is ascribed to the serious interfacial reactions between Si atoms diffused from the substrates and the AlN plasmas produced by the pulsed laser when ablating the AlN target during the high temperature growth. On the contrary, abrupt and sharp AlN/Si hetero-interfaces can be achieved by effectively controlling the interfacial reactions at suitable growth temperature. The mechanisms for the evolution of interfacial layer from the amorphous SiAlN layer to the abrupt and sharp AlN/Si hetero-interfaces by PLD are hence proposed. This work of obtaining the abrupt interfaces and the flat surfaces for AlN films grown by PLD is of paramount importance for the application of high-quality AlN-based devices on Si substrates. PMID:26089026

  13. Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites

    NASA Astrophysics Data System (ADS)

    Amra, M.; Ranjbar, Khalil; Dehmolaei, R.

    2015-08-01

    In this investigation, nano-sized cerium oxide (CeO2) and silicon carbide (SiC) particles were stirred and mixed into the surface of an Al5083 alloy rolled plate using friction stir processing (FSP) to form a surface nano-composite layer. For this purpose, various volume ratios of the reinforcements either separately or in the combined form were packed into a pre-machined groove on the surface of the plate. Microstructural features, mechanical properties, and corrosion behavior of the resultant surface composites were determined. Microstructural analysis, optical microscopy and scanning electron microscopy, showed that reinforcement particles were fairly dispersed inside the stir zone and grain refinement was gained. Compared with the base alloy, all of the FSP composites showed higher hardness and tensile strength values with the maximum being obtained for the composite containing 100% SiC particles, i.e., Al5083/SiC. The corrosion behavior of the samples was studied by conducting potentiodynamic polarization tests and assessed in terms of corrosion potential, pitting potential, and passivation range. The result shows a significant increase in corrosion resistance of the base alloy; i.e., the longest passivation range when CeO2 alone was incorporated into the surface by acting as cathodic inhibitors. Composites reinforced with SiC particles exhibited lower pitting resistance due to the formation of microgalvanic couples between cathodic SiC particles and anodic aluminum matrix. The study was aimed to fabricate metal matrix surface composites with improved hardness, tensile strength, and corrosion resistance by the incorporation of CeO2 and SiC reinforcement particles into the surface of Al5083 base alloy. Optimum mechanical properties and corrosion resistance were obtained for the FSP composite Al5083/(75%CeO2 + 25%SiC). In this particular FSP composite, hardness and tensile strength were increased by 30, and 14%, respectively, and passivation range was increased

  14. Microstructural and nuclear magnetic resonance studies of solid-state amorphization in Al-Ti-Si composites prepared by mechanical alloying

    SciTech Connect

    Manna, I.; Nandi, P.; Bandyopadhyay, B.; Ghoshray, K.; Ghoshray, A

    2004-08-16

    Three Al{sub 30}Ti{sub 70-x} Si{sub x} (x=10, 20, 30), along with an Al-rich (Al{sub 50}Ti{sub 40}Si{sub 10}) and an Al-lean (Al{sub 10}Ti{sub 60}Si{sub 30}) elemental powder blends were subjected to mechanical alloying by high-energy planetary ball milling to yield a composite microstructure with varying proportions of amorphous and nanocrystalline intermetallic phases. Microstructural characterization at different stages of milling was carried out by X-ray diffraction, high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Furthermore, {sup 27}Al nuclear magnetic resonance (NMR) studies were undertaken to probe the mechanism of solid-state amorphization. Ball milling leads to alloying, nanocrystallization and partial solid-state amorphization followed/accompanied by strain-induced nucleation of nanocrystalline intermetallic phases from an amorphous solid solution. Both these amorphous and nano-intermetallic phases are associated with characteristic NMR peaks at lower frequencies (than that of pure Al). Thus, mechanical alloying of Al-Ti-Si appears a suitable technique for developing nanocrystalline intermetallic phase/compound dispersed amorphous matrix composites.

  15. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.).

    PubMed

    Délye, Christophe; Pernin, Fanny; Scarabel, Laura

    2011-02-01

    We investigated the diversity of mechanisms conferring resistance to herbicides inhibiting acetolactate synthase (ALS) in corn poppy (Papaver rhoeas L.) and the processes underlying the selection for resistance. Six mutant ALS alleles, Arg₁₉₇, His₁₉₇, Leu₁₉₇, Ser₁₉₇, Thr₁₉₇ and Leu₅₇₄ were identified in five Italian populations. Different alleles were found in a same population or a same plant. Comparison of individual plant phenotype (herbicide sensitivity) and genotype (amino-acid substitution(s) at codon 197) showed that all mutant ALS alleles conferred dominant resistance to the field rate of the sulfonylurea tribenuron and moderate or no resistance to the field rate of the triazolopyrimidine florasulam. Depending on the allele, dominant or partially dominant resistance to the field rate of the imidazolinone imazamox was observed. Putative non-target-site resistance mechanisms were also likely present in the populations investigated. The derived Cleaved Amplified Polymorphic Sequence assays targeting ALS codons crucial for herbicide sensitivity developed in this work will facilitate the detection of resistance due to mutant ALS alleles. Nucleotide variation around codon 197 indicated that mutant ALS alleles evolved by multiple, independent appearances. Resistance to ALS inhibitors in P. rhoeas clearly evolved by redundant evolution of a set of mutant ALS alleles and likely of non-target-site mechanisms. PMID:21421378

  16. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.

    2016-05-01

    Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.

  17. High temperature stability, interface bonding, and mechanical behavior in (beta)-NiAl and Ni3Al matrix composites with reinforcements modified by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.

    1993-01-01

    Diffusion-bonded NiAl-Al2O3 and Ni3Al-Al2O3 couples were thermally fatigued at 900 C for 1500 and 3500 cycles. The fiber-matrix interface weakened after 3500 cycles for the Saphikon fibers, while the Altex, PRD-166, and FP fibers showed little, if any, degradation. Diffusion bonding of fibers to Nb matrix is being studied. Coating the fibers slightly increases the tensile strength and has a rule-of-mixtures effect on elastic modulus. Push-out tests on Sumitomo and FP fibers in Ni aluminide matrices were repeated. Al2O3 was evaporated directly from pure oxide rod onto acoustically levitated Si carbide particles, using a down-firing, rod-fed electron beam hearth; superior coatings were subsequently produced using concurrent irradiation with 200-eV argon ion-assist beam. The assist beam produced adherent films with reduced tensile stresses. In diffusion bonding in B-doped Ni3Al matrices subjected to compressive bonding at 40 MPa at 1100 C for 1 hr, the diffusion barriers failed to prevent catastrophic particle-matrix reaction, probably because of inadequate film quality. AlN coatings are currently being experimented with, produced by both reactive evaporation and by N(+)-ion enhanced deposition. A 3-kW rod-fed electron-beam-heated evaporation source has been brought into operation.

  18. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  19. On trapping mechanisms at oxide-traps in Al2O3/GaN metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Bisi, D.; Chan, S. H.; Liu, X.; Yeluri, R.; Keller, S.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Mishra, U. K.

    2016-03-01

    By means of combined current-voltage and capacitance-voltage sweep and transient measurements, we present the effects of forward-bias stress and charge trapping mechanisms at oxide traps in Al2O3/GaN metal-oxide-semiconductor capacitors grown in-situ by metalorganic chemical vapor deposition. Two main current-voltage regimes have been identified: a low-field regime characterized by low gate-current and low flat-band voltage instabilities, and a high-field regime triggered for oxide field greater than 3.3 MV/cm and characterized by the onset of parasitic leakage current and positive flat-band shift. In the low-voltage regime, gate current transients convey stress/relaxation kinetics based on a power-law, suggesting that tunneling trapping mechanisms occur at near-interface traps aligned with the GaN conduction-band minimum. In the high-voltage regime, devices experience parasitic conduction mechanisms and enhanced charge-trapping at oxide-traps revealed by very slow recovery transients.

  20. Adsorption mechanism of gallium(III) and indium(III) onto {gamma}-Al{sub 2}O{sub 3}

    SciTech Connect

    Lin, C.F.; Tsay, C.W.; Lee, D.Y.; Lo, S.L.; Yasunaga, Tatsuya; Chang, K.S.

    1997-04-01

    The transport of heavy metals in the aquatic environment has long been the primary interest of environmental engineers and geochemists. The adsorption mechanism of trivalent Ga and In onto {gamma}-Al{sub 2}O{sub 3} was investigated using a triple-layer model simulation and pressure-jump technique. Bidentate Ga{sup 3+} and In{sup 3+} and monodentate GaOH{sup 2+}/InOH{sup 2+} are the most likely surface species responsible for Ga(III)/In(III) adsorption. Sorption of Ga(III) and In(III) can be interpreted as an associative process. The adsorption pathway is a two-step mechanism: proton release from surface hydroxyl group(s) followed by coordination of Ga(III)/In(III) species to the depronated site(s). Intrinsic adsorption rate constants cannot be estimated with a liner free-energy relationship between the adsorption rate constant and the rate of water exchange, which is developed solely based on the dissociative sorption mechanism of divalent ions.

  1. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism

    PubMed Central

    Gal, Jozsef; Strom, Anna-Lena; Kwinter, David M.; Kilty, Renee; Zhang, Jiayu; Shi, Ping; Fu, Weisi; Wooten, Marie W.; Zhu, Haining

    2009-01-01

    The p62/sequestosome 1 protein has been identified as a component of pathological protein inclusions in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). P62 has also been implicated in autophagy, a process of mass degradation of intracellular proteins and organelles. Autophagy is a critical pathway for degrading misfolded and/or damaged proteins, including the copper-zinc superoxide dismutase (SOD1) mutants linked to familial ALS. We previously reported that p62 interacted with ALS mutants of SOD1 and that the ubiquitin-association (UBA) domain of p62 was dispensable for the interaction. In this study, we identified two distinct regions of p62 that were essential to its binding to mutant SOD1: the N-terminal PB1 domain (residues 1-104) and a separate internal region (residues 178–224) termed here as SOD1 mutant interaction region (SMIR). The PB1 domain is required for appropriate oligomeric status of p62 and the SMIR is the actual region interacting with mutant SOD1. Within the SMIR, the conserved W184, H190 and positively charged R183, R186, K187 and K189 residues are critical to the p62-mutant SOD1 interaction since substitution of these residues with alanine resulted in significantly abolished binding. In addition, SMIR and the p62 sequence responsible for the interaction with LC3, a protein essential for autophagy activation, are independent of each other. In cells lacking p62, the existence of mutant SOD1 in acidic autolysosomes decreased, suggesting that p62 can function as an adaptor between mutant SOD1 and the autophagy machinery. This study provides a novel molecular mechanism by which mutant SOD1 can be recognized by p62 in an ubiquitin-independent fashion and targeted for the autophagy-lysosome degradation pathway. PMID:19765191

  2. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  3. Effects of Sm2O3 Content on the Microstructure and Mechanical Properties of Post-Sintered Reaction-Bonded β-SiAlON

    NASA Astrophysics Data System (ADS)

    Li, Yanjun; Liu, Donghua; Zeng, Cunfeng; Shi, Zhongqi; Jin, Zhihao

    2016-03-01

    β-SiAlON materials were fabricated by a reaction bonding combining post-sintering route using raw materials of Si, Al2O3, AlN, etc. Sm2O3 was used as sintering additive with the content of 0, 2, 4, and 6 wt.%, respectively. The reaction-bonded β-SiAlON (RB-β-SiAlON) were post sintered at 1750 °C for 6 h. XRD results showed that the phase composition of both RB-β-SiAlON and post-sintered RB-β-SiAlON (PSRB-β-SiAlON) was β-SiAlON. For RB-β-SiAlON, the apparent porosity was decreased with the increase of Sm2O3 content, while the bending strength (σf) and Vicker's hardness (HV10) was increased accordingly. After the post-sintering procedure, nearly full densified PSRB-β-SiAlON was obtained and the mechanical properties were significantly improved with the addition of Sm2O3 additive. The σf and HV10 of the PSRB-β-SiAlON (4 wt.% Sm2O3) achieved 520 MPa and 16.4 GPa, respectively, which were as 3.5 and 6.3 times high as those of the corresponding RB-β-SiAlON. The Young's modulus (E) and the fracture toughness (K IC) of the dense PSRB-β-SiAlON were increased with the increase of the Sm2O3 content.

  4. Microstructure and Mechanical Properties of Pulsed Laser Beam Welded Ti-2Al-1.5Mn Titanium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Fang, Xiuyang; Liu, Hong; Zhang, Jianxun

    2014-06-01

    The microstructure and mechanical properties in the pulsed laser beam welded joints of Ti-2Al-1.5Mn titanium alloy thin sheet were investigated in this study. The results show that the original α + β-phases and the transformed α + α'-phases are found in the partially transformed heat-affected zone (HAZ) together with the remaining β-phase, and the microhardness gradually enhances in the region as the result of the increase of α'-phase. The martensitic α'-phase and the remaining β-phase are detected in the fully transformed HAZ and the fusion zone (FZ), and the highest microhardness is found in these regions in virtue of the dominant α'-phase structure. The fine α'-phase appeared in the FZ results in higher average microhardness at high welding speed. Moreover, similar to the results of microhardness test, the tensile test results mean that the HAZ and FZ are stronger than the base metal (BM). Therefore, pulsed laser beam welding is feasible for joining thin sheet of Ti-2Al-1.5Mn titanium alloy.

  5. The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21

    DOE PAGESBeta

    Meng, Fanling; Qiu, Jingwen; Baker, Ian; Bei, Hongbin

    2015-08-20

    In this paper, As-cast Fe28Ni18Mn33Al21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does not lead to β-Mn precipitation.more » Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less

  6. Role of Ce4+ in the scintillation mechanism of codoped Gd3Ga3Al2O12:Ce

    DOE PAGESBeta

    Wu, Yuntao; Meng, Fang; Li, Qi; Koschan, Merry; Melcher, Charles L.

    2014-10-17

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce4+, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce4+ is still lacking. The aim of this work is to clarify the role of Ce4+ in scintillators by studying Ca2+ codoped Gd3Ga3Al2O12∶Ce (GGAG∶Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca2+codoping content and the Ce4+ fraction is seen. The energy-levelmore » diagrams of Ce3+ and Ce4+ in the Gd3Ga3Al2O12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d1 state of Ce4+ in the forbidden gap in comparison to that of Ce3+. Underlying reasons for the decay-time acceleration resulting from Ca2+ codoping are revealed, and the physical processes of the Ce4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.« less

  7. The MPAW of Ti-3Al-2.5V Thin Sheets and Its Effects on Mechanical and Microstructural Properties

    NASA Astrophysics Data System (ADS)

    Javidrad, F.; Farghadani, H.; Hedari, M.

    2013-11-01

    This research work deals with joining of Ti-3Al-2.5V titanium alloy thin sheets by means of microplasma arc welding (MPAW). An experimental set-up was developed to produce specimens welded in butt joint under controlled welding parameters, such as voltage, current, travel speed, and shielding gas flow rate. The performance of MPAW process was examined by mechanical properties tests and microstructural characterization. Results show that tensile strength and elongation of the welded specimens for a range of specific input heat are comparable to those of the base material (BM). Scanning electron microscopy (SEM) images of the fracture surface presented characteristics of ductile rupture. Studies on microstructure morphology of the specimens at the fusion zone (FZ) and heat-affected zone (HAZ) reveal occurrence of phase transformation from high temperature β phase to acicular α^' phase, while the BM is of equiaxed α with intergranular β. An increasing variation in hardness was measured at the HAZ and FZ, which can be attributed to the presence of acicular α^' phase and decreasing the amount of β phase at these regions. Based on the experimental results, it can be stated that MPAW process is an effective method for joining Ti-3Al-2.5V thin sheets provided appropriate welding parameters are used.

  8. Acid dissociation mechanisms of Si(OH) 4 and Al(H 2O) 63+ in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Meijer, Evert Jan; Wang, Rucheng; Zhou, Huiqun

    2010-01-01

    Silicic acid and the hexa-aqua of Al 3+ are fundamental model aqueous species of chemical importance in nature. In order to investigate their hydroxyl dissociation mechanisms, Car-Parrinello molecular dynamics (CPMD) simulations were carried out, which allow treating the solutes and solvents on the same footing. The method of constraint was employed to trigger the reactions by taking coordination number as the reaction coordinate and the thermodynamic integration was used to obtain the free-energy profiles. The approximate transition states were located and the reactant and product states were also characterized. The free-energy changes of dissociation are found about 15.0 kcal/mol and 7.7 kcal/mol for silicic acid and Al-aqua, respectively. From the simulation results, the first p Kas were calculated by using two approaches, which are based on the pristine thermodynamic relation and the RDF (radial distribution function)-free energy relation, respectively. Because of more uncertainties involved in the RDF way, it is suggested that the pristine way should be favored, which shows an error margin of 1 p Ka unit. This study provides an encouraging basis for applying the present methodology to predict acidity constants of those groups that are difficult to measure experimentally.

  9. The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Al-Bermani, S. S.; Blackmore, M. L.; Zhang, W.; Todd, I.

    2010-12-01

    An additive layer manufacture (ALM) technique, electron beam melting, has been used for the production of simple geometries, from prealloyed Ti-6Al-4V powder. Microstructure, texture, and mechanical properties achieved under standard operating conditions have been investigated. Three transitional regions are observed with a change in microstructural formation dependent on the thermal mass of deposited material. Prior β-phase reconstruction, from room temperature α-phase electron backscatter diffraction (EBSD) data, reveals a strong texture perpendicular to the build axis. Variation of build temperature within the processing window of 898 K to 973 K (625 °C to 700 °C) is seen to have a significant effect on the properties and microstructure of both as-deposited and hot isostatically pressed (HIP) samples.

  10. Influence of mechanical milling on the SiC particulate size in an Al-SiC composite

    NASA Astrophysics Data System (ADS)

    Mujahid, M.; Friska, I.

    2005-02-01

    Particle reinforced aluminum-matrix composites are particularly attractive for the automobile and air-craft industries, due to their light weight, high strength, and good wear resistance. In the present work, silicon carbide (SiC) particulates have been incorporated into a pure Al matrix with the help of mechanical milling in a planetary ball-mill. Composite powders were prepared using both raw as well as premilled SiC powders. The effect of milling time on the SiC particulate size was investigated. Systematic analysis of x-ray diffraction data revealed a reinforcement particle size of about 30 nm in a composite containing 50 vol.% SiC. It has been observed that the size reduction occurs at a faster rate when indirect milling is used.

  11. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation

    SciTech Connect

    Ma Tiejun; Chen Tao Li Wenya; Wang Shiwei; Yang Siqian

    2011-01-15

    The microstructure of the linear friction welded Ti-6Al-4V titanium alloy joint was investigated by optical microscope, scanning electronic microscope and transmission electron microscope. Results show that the dynamic recovery and recrystallization resulting from the intensive plastic deformation and fast heating and cooling processes during linear friction welding account for the superfine {alpha} + {beta} grains in the weld center. Fine {alpha} grains distribute in the {beta} matrix or at the boundaries of {beta} grains. A mass of dislocations networks and metastructures present within the {alpha} and {beta} grains. - Research Highlights: {yields} TEM is employed in the analysis. {yields} The dynamic recovery is the main mechanism in thermal deformation of TC4. {yields} Superfine grains in the weld result from dynamic recovery and dynamic recrystallizaion, but the recrystallization is inadequate.

  12. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    NASA Astrophysics Data System (ADS)

    Thömmes, A.; Shevtsova, L. I.; Mali, V. I.; Anisimov, A. G.; Laptev, I. S.; Mul, D. O.

    2015-10-01

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show as clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.

  13. Mechanism of X-ray excited optical luminescence (XEOL) in europium doped BaAl2O4 phosphor.

    PubMed

    Rezende, Marcos V Dos S; Montes, Paulo J R; Andrade, Adriano B; Macedo, Zelia S; Valerio, Mário E G

    2016-06-29

    This paper reports a luminescence mechanism in Eu-doped BaAl2O4 excited with monochromatic X-rays (also known as X-ray excited optical luminescence - XEOL) from synchrotron radiation. The material was prepared via a proteic sol-gel methodology. The X-ray absorption near edge structures (XANES) at the Ba LIII- and Eu LIII-edges exhibit typical absorption spectra. XEOL spectra recorded in energy ranges, either around the Ba LIII- or Eu LIII-edges, showed important differences concerning the intensity of the Eu(2+) or Eu(3+) emission bands. Nevertheless, the total area under the XEOL spectra increases as the energy of the X-ray photons increases in both ranges (Ba LIII- and Eu LIII-edges). PMID:27306425

  14. Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases

    SciTech Connect

    Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.

    2015-06-01

    A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.

  15. The influence of sintering temperature on microstructure and mechanical properties of Ni-Al intermetallics fabricated by SPS

    SciTech Connect

    Thömmes, A. Shevtsova, L. I. Laptev, I. S. Mul, D. O.; Mali, V. I. Anisimov, A. G.

    2015-10-27

    In the present study PN85Yu15 was used as elemental powder to produce a sintered compound with Ni3Al as main phase. The Spark Plasma Sintering (SPS) technique is used to compact the powders. The powder was sintered in a temperature range between 1000°C and 1150°C to observe the influence of the sintering temperature on the microstructure and the mechanical properties. The microstructure was observed with optical microscope (OM), the phase composition was characterized by X-ray diffraction (XRD) technique. Density and microhardness were observed and compared the values with the results of other researchers. The compressive-, density- and microhardness tests show as clear result that with increasing the sintering temperature nearly all properties become better and also the microstructure studies show that porous places become less.

  16. Mechanism of surface modification of the Ti-6Al-4V alloy using a gas tungsten arc heat source

    SciTech Connect

    Labudovic, M.; Kovacevic, R.; Kmecko, I.; Khan, T.I.; Blecic, D.; Blecic, Z.

    1999-06-01

    The surface modification of a Ti-6Al-4V alloy using a gas tungsten arc, as a heat source, was studied. The experimental results show that the titanium alloy surface can be melted and nitrided using pure nitrogen or a nitrogen/argon mixture shielding atmosphere. The resolidified surfaces are 0.9 to 1.2-mm thick and contain titanium nitride dendrites, {alpha}-titanium, and {alpha}{double_prime}-titanium (martensite). The average dendrite arm spacing is influenced by the electrode speed. Small titanium nitride dendrites are homogeneously distributed in the resolidified surfaces. The microstructure and phase constitution in the resolidified surfaces were determined and analyzed, and the mechanism of the formation of titanium nitrides is discussed. The results show that the nitriding kinetics obey parabolic laws and are, therefore, controlled by nitrogen diffusion. The nitrogen-concentration depth profiles, calculated using Fick`s second law of diffusion, are compared to experimental nitrogen depth profiles, showing satisfactory agreement.

  17. Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix.

    PubMed

    Kim, Eun-Hee; Jung, Yeon-Gil; Paik, Ungyu

    2012-02-01

    Aluminum oxide (Al2O3) matrix have been reinforced by the multi-walled carbon nanotubes (MWCNTs) to overcome the inherent brittleness of Al2O3 matrix. In order to increase mechanical properties of MWCNTs-Al2O3 composites, MWCNTs need to be well dispersed and individually incorporated in Al2O3 matrix. In this work, aluminum hydroxide (Al(OH)3) used as a Al2O3 precursor and MWCNTs were mixed in an aqueous solution for the homogeneous mixing of hetero-particles, as functions of the content of MWCNTs and the potential hydrogen (pH) of Al(OH)3 suspension. Firstly, MWCNTs were purified and modified by an acid reagent, inducing that the dispersibility of MWCNTs is increased in an aqueous solution by carboxylic group given on the surface of MWCNTs. The modified MWCNTs were added in the Al(OH)3 suspension, and then the mixture was filtered at room temperature. The filtered powders were formed using an uniaxial pressing and then densified by a pressureless heat treatment. As the pH is decreased the Al(OH)3 particles are well dispersed in an aqueous solution, due to the increment of repulsive force between particles with a same surface charge. MWCNTs are individually incorporated into Al2O3 matrix up to 1 vol.% MWCNTs, whereas MWCNTs are aggregated at the composite with 3 vol.% MWCNTs. Therefore, control of the pH and the MWCNTs content are key factors to be considered for the fabrication of MWCNTs-Al2O3 composites with high functional properties. PMID:22629950

  18. Mechanical behavior of Al-Al{sub 2}O{sub 3} MMC manufactured by PM techniques. Part 1: Scheme 1 processing parameters

    SciTech Connect

    Mazen, A.A.; Ahmed, A.Y.

    1998-06-01

    Metal matrix composites (MMC) were manufactured using hot pressing followed by hot extrusion of aluminum (Al) powder reinforced by alumina (Al{sub 2}O{sub 3}) particles. Under tensile as well as compressive loads, a strength improvement of 64 to 100% compared to the matrix material strength was obtained. The percent elongation to fracture ranged from 20 to 30%, which indicates good ductility as compared to the ductility of MMC manufactured by other techniques. Optical as well as scanning electron microscopy (SEM) examinations were used for characterization of the material microstructure and fracture behavior. Porosity retained in the microstructure was very limited in the case of pure aluminum billets. Microstructural examination revealed uniform distribution of Al{sub 2}O{sub 3} particles in the Al-matrix. Under tensile loads, voids opened by decohesion between the matrix and reinforcement. Such behavior led to a decrease in strength properties of the MMC as a function of reinforcement volume fraction. The fracture surface is dominated by the ductile fracture features, that is, dimples. Voids were found to initiate at retained porosity sites at the Al/Al{sub 2}O{sub 3} interface or in the matrix close to the interface due to stress concentration. The SEM revealed the formation of a complex fine subgrain structure. Such a polygonized structure is a major source of strengthening.

  19. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting.

    PubMed

    Sallica-Leva, E; Jardini, A L; Fogagnolo, J B

    2013-10-01

    Rapid prototyping allows titanium porous parts with mechanical properties close to that of bone tissue to be obtained. In this article, porous parts of the Ti-6Al-4V alloy with three levels of porosity were obtained by selective laser melting with two different energy inputs. Thermal treatments were performed to determine the influence of the microstructure on the mechanical properties. The porous parts were characterized by both optical and scanning electron microscopy. The effective modulus, yield and ultimate compressive strength were determined by compressive tests. The martensitic α' microstructure was observed in all of the as-processed parts. The struts resulting from the processing conditions investigated were thinner than those defined by CAD models, and consequently, larger pores and a higher experimental porosity were achieved. The use of the high-energy input parameters produced parts with higher oxygen and nitrogen content, their struts that were even thinner and contained a homogeneous porosity distribution. Greater mechanical properties for a given relative density were obtained using the high-energy input parameters. The as-quenched martensitic parts showed yield and ultimate compressive strengths similar to the as-processed parts, and these were greater than those observed for the fully annealed samples that had the lamellar microstructure of the equilibrium α+β phases. The effective modulus was not significantly influenced by the thermal treatments. A comparison between these results and those of porous parts with similar geometry obtained by selective electron beam melting shows that the use of a laser allows parts with higher mechanical properties for a given relative density to be obtained. PMID:23773976

  20. The Influence of Sc and Zr Additions on the Microstructure and Mechanical Behavior of Ultrafine Grained Al-Mg Alloys Processed by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Harrell, Tammy Jeanne

    Additions of Sc and Zr to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc and Zr significantly increase the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultra-fine-grained (UFG) microstructure (e.g., 100's nm). Accordingly, we investigate the microstructural evolution and mechanical behavior of four powder metallurgy UFG Al-Mg-Sc-(Zr) compositions and compared the results to those of equivalent fine-grained (FG) compositions - Al-5Mg-0.1Sc, Al-3Mg-0.5Sc, Al-5Mg-0.4Sc and Al-5Mg-0.2Sc-0.2Zr (wt.%). Experimental materials were consolidated by hot isostatic pressing (HIP'ing) followed by extrusion or dual mode dynamic (DMD) forging. Under identical processing conditions, UFG ternary Al-5Mg-0.4Sc materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 - 3 μm apart, while precipitates in the FG materials have an average diameter of 24 nm and are spaced 50 - 200 nm apart. The strengthening mechanisms are quantitatively evaluated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are dispersion strengthening due to the presence of Mg-rich oxides/nitrides and precipitate strengthening, respectively. Preliminary results suggest that replacing 0.2 wt% Sc with Zr results in higher strength, lower ductility and a change in precipitate distribution.

  1. Growth mechanism of atomic-layer-deposited TiAlC metal gate based on TiCl4 and TMA precursors

    NASA Astrophysics Data System (ADS)

    Jinjuan, Xiang; Yuqiang, Ding; Liyong, Du; Junfeng, Li; Wenwu, Wang; Chao, Zhao

    2016-03-01

    TiAlC metal gate for the metal-oxide-semiconductor field-effect-transistor (MOSFET) is grown by the atomic layer deposition method using TiCl4 and Al(CH3)3(TMA) as precursors. It is found that the major product of the TiCl4 and TMA reaction is TiAlC, and the components of C and Al are found to increase with higher growth temperature. The reaction mechanism is investigated by using x-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The reaction mechanism is as follows. Ti is generated through the reduction of TiCl4 by TMA. The reductive behavior of TMA involves the formation of ethane. The Ti from the reduction of TiCl4 by TMA reacts with ethane easily forming heterogenetic TiCH2, TiCH=CH2 and TiC fragments. In addition, TMA thermally decomposes, driving Al into the TiC film and leading to TiAlC formation. With the growth temperature increasing, TMA decomposes more severely, resulting in more C and Al in the TiAlC film. Thus, the film composition can be controlled by the growth temperature to a certain extent. Project supported by the Key Technology Study for 16/14 nm Program of the Ministry of Science and Technology of China (Grant No. 2013ZX02303).

  2. First-principles investigations on vibrational, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Jiang, Wei

    2015-06-01

    The lattice dynamics, thermodynamic, mechanical properties and thermal conductivity of L12 Al3X (X = Sc, Er, Tm, Yb) intermetallics have been investigated from first-principles calculations by means of using the VASP code. Our results agree well with the previous experiments and calculations. The phonon dispersion curves and the density of phonon states have been calculated by means of using the PHONONPY code and compared with the experimental results. The four compounds stay dynamically stable in the L12 structure. We also calculated the thermodynamics properties and give the relationships between thermal parameters and temperature. The elastic constants of the considered compounds are satisfied with mechanical stability criteria. The related mechanical parameters predict that Al3Sc has higher hardness than the other three compounds, and four compounds all posses a brittle nature. The mechanical anisotropy is predicted by anisotropic constants AU and AZ. The results show that the four compounds are all elastically isotropic. We also calculated the thermal conductivity by means of the Clarke’s model and Cahill’s model and found that the thermal conductivity of the four intermetallics follows the order: Al3Sc > Al3Er > Al3Tm > Al3Yb.

  3. Processing and mechanical properties of laminated metal composites of Al/Al-25 vol.% SiC and ultrahigh carbon steel/brass

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.; Sherby, O.D.

    1992-07-01

    Al 5182/Al 6061-25 vol.% SiCp and ultrahigh carbon (1.8% C) steel/brass (70% Cu-30% Zn type) laminates were prepared by press-bonding stacks of alternating layers of the component materials. Press bonding of these materials required consideration of the flow stresses of the component materials and the interlayer friction. Tensile properties and fracture toughness were measured for different processing conditions of surface oxide descaling, layer thickness, and heat treatment. Descaling of the surface oxide prior to the press-bonding was found to eliminate premature delamination along interfaces resulting in an increased yield strength and tensile ductility. Reduction in the layer thickness brought an increase in the tensile ductility for both laminates, a decrease in yield strength and fracture toughness for the Al laminate. T6 heat treatment on the Al laminate induced a substantial increase in the yield and tensile strength but a decrease in tensile ductility. Fracture surface morphology indicated evidences of local delamination, crack blunting and bridging. Fracture toughness measured in the crack arrester and crack divider orientation showed a substantial enhancement over that of the Al 6061-SiCp or UHCS components.

  4. Processing and mechanical properties of laminated metal composites of Al/Al-25 vol. % SiC and ultrahigh carbon steel/brass

    SciTech Connect

    Syn, C.K.; Lesuer, D.R. ); Sherby, O.D. . Dept. of Materials Science and Engineering)

    1992-07-01

    Al 5182/Al 6061-25 vol.% SiCp and ultrahigh carbon (1.8% C) steel/brass (70% Cu-30% Zn type) laminates were prepared by press-bonding stacks of alternating layers of the component materials. Press bonding of these materials required consideration of the flow stresses of the component materials and the interlayer friction. Tensile properties and fracture toughness were measured for different processing conditions of surface oxide descaling, layer thickness, and heat treatment. Descaling of the surface oxide prior to the press-bonding was found to eliminate premature delamination along interfaces resulting in an increased yield strength and tensile ductility. Reduction in the layer thickness brought an increase in the tensile ductility for both laminates, a decrease in yield strength and fracture toughness for the Al laminate. T6 heat treatment on the Al laminate induced a substantial increase in the yield and tensile strength but a decrease in tensile ductility. Fracture surface morphology indicated evidences of local delamination, crack blunting and bridging. Fracture toughness measured in the crack arrester and crack divider orientation showed a substantial enhancement over that of the Al 6061-SiCp or UHCS components.

  5. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    NASA Technical Reports Server (NTRS)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  6. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    NASA Astrophysics Data System (ADS)

    Roth, M.; Biermann, H.

    2010-07-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400°C to 800°C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper PSWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750°C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter PSWT cannot be applied for the live prediction.

  7. A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Luong, Dung D.; Rohatgi, Pradeep K.

    2011-05-01

    Obtaining meaningful information from the test results is a challenge in the split-Hopkinson pressure bar (SHPB) test method if the specimen does not fail during the test. Although SHPB method is now widely used for high strain rate testing, this limitation has made it difficult to use it for characterization of materials in the intermediate strain rate range (typically 10-1000 s-1). In the present work, a method is developed to characterize materials in the intermediate strain rate range using SHPB setup. In this method, the specimen is repeatedly tested under compression at a given strain rate until failure is achieved. The stress-strain graphs obtained from each test cycle are used to plot the master stress-strain graph for that strain rate. This method is used to study the strain rate dependence of compressive response of a Mg-Al-Zn alloy in the intermediate strain rate range. A remarkable difference is observed in the failure mechanism of the alloy under quasi-static and intermediate strain rate compression. Matrix cracking is the main failure mechanism under quasi-static compression, whereas shattering of intermetallic precipitates, along with plastic deformation of the matrix, is discovered to become prominent as the strain rate is increased.

  8. Contribution of phase and structural transformations to linear and nonlinear mechanisms of anelasticity in binary Al-Mg alloys

    NASA Astrophysics Data System (ADS)

    Golovin, I. S.; Bychkov, A. S.; Golovin, S. A.

    2014-01-01

    Effects of the processes of the recrystallization and precipitation of the β phase in Al-(0.3-12%)% Mg alloys on the mechanisms of grain-boundary relaxation and dislocation-induced microplasticity have been studied in some detail. The decrease in the dislocation density due to the process of recrystallization of cold-worked alloys leads to the formation of a pseudopeak in the curves of the temperature dependence of internal friction and to a decrease in the critical amplitude of deformation necessary to initiate dislocation motion in a stress field. The precipitation of the β phase in the structure suppresses the mechanism of grain-boundary relaxation; the dissolution of the β phase, which leads to the formation of impurity atmospheres, then to the passage of magnesium atoms into the solid solution, impedes dislocation motion. Depending on the total content of Mg in the alloy, the dislocation mobility upon the measurements of amplitude dependences of internal friction can be described in terms of either breakaway or friction models. The characteristics of grain-boundary relaxation and dislocation-impurity interaction and of their temperature dependences have been estimated quantitatively.

  9. Spin relaxation mechanism in graphene spin valves with Al2O3 and MgO tunnel barriers

    NASA Astrophysics Data System (ADS)

    Amamou, Walid; Lin, Zhisheng; van Baren, Jeremiah; Shi, Jing; Kawakami, Roland

    Contact induced spin relaxation in graphene lateral spin valves is one of major limiting factors for obtaining long spin lifetimes in graphene. There are various spin relaxation mechanisms, including spin absorption, interfacial spin scattering, and fringe field effects, which may account for the observed short spin lifetimes. One possible solution is to introduce a tunnel barrier between graphene and the ferromagnetic electrode, which should reduce contact induced spin relaxation and allow for longer spin lifetimes. We study the spin relaxation mechanisms in our graphene spin valves with two different types of tunnel barriers, aluminum oxide and MgO/TiO2 using the standard non-local measurement geometry. To extract the spin lifetime from Hanle spin precession data, we perform fits based on Bloch equation models that include the effects of spin absorption into the magnetic contacts. We observe a strong dependence of the extracted spin lifetime on the resistance-area (RA) product of the contacts. To understand the role of spin absorption, we compare these results to fits obtained using Hanle models that do not take spin absorption into account. Analysis shows that spin absorption might not be the dominant source of contact induced spin relaxation for graphene spin valves with sputtered Al2O3 and MgO/TiO2 barriers. Interfacial spin-flip scattering or spin dephasing resulting from local magnetostatic fields due to contact roughness are likely to be more important. C-SPIN, ONR.

  10. Comparative analysis of the effect of mechanical activation in an attritor on the structure and behavior of β-RuAl and β-NiAl alloy powder mixtures during reactive sintering

    NASA Astrophysics Data System (ADS)

    Drozdov, A. A.; Morozov, A. E.; Povarova, K. B.

    2013-05-01

    The structure of Ni + Al (two ductile fcc metals) and Al + Ru (ductile aluminum and hard-to-deform hcp ruthenium) powder mixtures subjected to short-term (≤16 h) mechanical activation (MA) is studied. During MA of a 50Ni + 50Al mixture, the powder particles undergo multiple compressive and shear deformation, and large layered granules form due to contact welding and flattening of the layers of both metals. The related increase in the internal stresses, the increase in the dislocation density in particles of both metals, and the decrease in the coherent domain size (CDS) lead to the fracture and fragmentation of the powder particles. In a 49Ru + 48Al + 3Re mixture, aluminum particles are deformed and "spread" over "rigid" ruthenium particles. The formed granules consist of disperse undeformable ruthenium particles connected by an Al binder. The work hardening of ruthenium occurs due to a decrease in CDS. An increase in the contact area between metal particles and a decrease in the diffusion path lengths (aluminum in nickel and ruthenium) cause a decrease in the temperature of the onset of interaction with the participation of liquid aluminum, the activation of solid-phase interaction, and the formation of aluminum-rich nickel (ruthenium) aluminide NiAl (RuAl). Nevertheless, unreacted nickel (ruthenium) particles are retained. A microhomogeneous distribution of the basic and alloying elements and phases in a compacted material is achieved Annealing at temperatures ≥0.8 T m is required to complete reactive alloy formation.

  11. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D. V.

    2015-12-01

    In this work, we investigated the microstructure and mechanical properties of Al25Ti25Ni25Cu25 Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al25Ti25Ni25Cu25, Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al22.5Ti22.5Ni20Cu20Fe15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  12. Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al{sub 2}O{sub 3} nanocomposites

    SciTech Connect

    Guo Yan; Cho, Hoonsung; Shi Donglu; Lian Jie; Song Yi; Abot, Jandro; Poudel, Bed; Ren Zhifeng; Wang Lumin; Ewing, Rodney C.

    2007-12-24

    The effects of plasma surface modification on interfacial behaviors in carbon nanotube (CNT) reinforced alumina (Al{sub 2}O{sub 3}) nanocomposites were studied. A unique plasma polymerization method was used to modify the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. The CNT-Al{sub 2}O{sub 3} nanocomposites were processed by both ambient pressure and hot-press sintering. The electron microscopy results showed ultrathin polymer coating on the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. A distinctive stress-strain curve difference related to the structural interfaces and plasma coating was observed from the nanocomposites. The mechanical performance and thermal stability of CNT-Al{sub 2}O{sub 3} nanocomposites were found to be significantly enhanced by the plasma-polymerized coating.

  13. Recovery and recrystallisation in mechanically alloyed and annealed, legacy, FeCrAlY ODS alloy precursor powders

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Rao, A.; Tatlock, G. J.; Jones, A. R.

    2015-08-01

    This study presents findings related to the recrystallisation behaviour in Mechanically Alloyed (MA) and annealed powders of legacy commercial Oxide Dispersion Strengthened (ODS) FeCrAl alloys PM2000, MA956 and ODM751. Annealing of as-MA ODS alloy powders at temperatures ≥ 800 °C induced primary recrystallisation. The volume fraction (Vf) recrystallised increased with higher annealing temperatures in the range studied (∼800-1050 °C). However, low temperature (650 °C) recovery reduced the subsequent kinetics of recrystallisation in PM2000 alloy. Transmission Electron Microscopy (TEM) analysis of annealed PM2000 and MA956 alloy powders indicates that precipitation of nano-particulate Y-Al-O phases begins at temperatures as low as 650 °C and microstructural changes during annealing of ODS powders involved interactions between nano-particle formation and recovery/recrystallisation processes. High number densities (NV > 1023 m-3) of coherent nano-precipitates were identified in both recovered and recrystallised regions of powder particles. These formed over a range of temperatures used in the consolidation processing of ODS alloys. The orientation relationship between nano-particles and the matrix was identical in both recovered and recrystallised grains, indicating that particles were dissolved at recrystallising interfaces and subsequently reprecipitated. Examination and comparison of as-MA and annealed powder specimens suggests that nuances in the manufacturing of these three, nominally similar, alloys leads to differences in recovery/recrystallisation behaviour, which may influence microstructure and, ultimately, properties in the final product form.

  14. Influence of Surface Passivation on AlN Barrier Stress and Scattering Mechanism in Ultra-thin AlN/GaN Heterostructure Field-Effect Transistors.

    PubMed

    Lv, Y J; Song, X B; Wang, Y G; Fang, Y L; Feng, Z H

    2016-12-01

    Ultra-thin AlN/GaN heterostructure field-effect transistors (HFETs) with, and without, SiN passivation were fabricated by the same growth and device processes. Based on the measured DC characteristics, including the capacitance-voltage (C-V) and output current-voltage (I-V) curves, the variation of electron mobility with gate bias was found to be quite different for devices with, and without, SiN passivation. Although the AlN barrier layer is ultra thin (c. 3 nm), it was proved that SiN passivation induces no additional tensile stress and has no significant influence on the piezoelectric polarization of the AlN layer using Hall and Raman measurements. The SiN passivation was found to affect the surface properties, thereby increasing the electron density of the two-dimensional electron gas (2DEG) under the access region. The higher electron density in the access region after SiN passivation enhanced the electrostatic screening for the non-uniform distributed polarization charges, meaning that the polarization Coulomb field scattering has a weaker effect on the electron drift mobility in AlN/GaN-based devices. PMID:27553382

  15. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound. PMID:27433675

  16. The influence of Ca-Mg-Al hydrotalcite synthesized from brine water on thermal and mechanical properties of HTlc-EVA composite

    NASA Astrophysics Data System (ADS)

    Karina, Wiwiek; Heraldy, Eddy; Pramono, Edi; Heriyanto, Astuti, Shanti

    2016-02-01

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as well as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.

  17. Atomistic simulation on the site preference and mechanical properties of Th{sub 3}Co{sub 4+x}Al{sub 12-x} and U{sub 3}Co{sub 4+x}Al{sub 12-x}

    SciTech Connect

    Qian Ping Tian Huijun; Chen Nanxian; Shen Jiang

    2008-04-15

    An atomistic study is presented on the phase stability, site preference and lattice constants of the actinide intermetallic compounds Th{sub 3}Co{sub 4+x}Al{sub 12-x} and U{sub 3}Co{sub 4+x}Al{sub 12-x}. Calculations are based on a series of interatomic pair potentials related to the actinides and transition metals, which are obtained by a strict lattice inversion method. The lattice constants of Th{sub 3}Co{sub 4+x}Al{sub 12-x} and U{sub 3}Co{sub 4+x}Al{sub 12-x} are calculated for different values of x. The site preference of Co atoms at Al sites is also evaluated and the order is given as 6h, 4f, 2b and 12k for Th{sub 3}Co{sub 4+x}Al{sub 12-x}, and 6h, 4f, 12k and 2b for U{sub 3}Co{sub 4+x}Al{sub 12-x}. In addition, some simple mechanical properties such as the elastic constants and bulk modulus are investigated for the actinide compounds with complex structures. - Graphical abstract: It is seen from figure that the substitution of Co for Al at all the four sites 2b, 4f, 6h and 12k decrease the cohesive energy of U{sub 3}Co{sub 4+x}Al{sub 12-x}, which means that the Co atoms can play a role in stabilizing the structure. The Co atoms strongly prefer 6h sites. Display Omitted.

  18. Reaction kinetics for the solid state synthesis of the AlH3/MgCl2 nano-composite by mechanical milling.

    PubMed

    Duan, C W; Hu, L X; Sun, Y; Zhou, H P; Yu, H

    2015-09-14

    The process of mechanical milling has been proved to be a cost-effective way to synthesize the AlH3/MgCl2 nano-composite by using MgH2 and AlCl3 as reagents. However, so far there is no comprehensive knowledge of the kinetics of this process. In an effort to predict the reaction progress and optimize the milling parameters, the kinetics of the synthesis of the AlH3/MgCl2 nano-composite by mechanical milling of MgH2 and AlCl3 is experimentally investigated in the present work. The reaction progress or the transformation fraction upon milling for different times is evaluated using the isothermal hydrogen desorption test of the as-milled samples at 220 °C, which is much lower than the threshold temperature for the de-hydriding of the reagent MgH2 but enough for the de-hydriding of the as-synthesized nano-sized AlH3. The effects of milling parameters on the reaction kinetics as well as the underlying mechanism are discussed by referring to the mechanical energy input intensity, the vial temperature and the Gibbs free energy change for the reaction. Furthermore, it is found that the Johnson-Mehl-Avrami (JMA) model can well describe the kinetics theoretically. By fitting the experimental data with the JMA expression, the theoretical kinetics expressions, the equation parameters, and the activation energy are obtained. PMID:26256935

  19. Microstructure and mechanical properties of twin-wire arc sprayed Ni-Al composite coatings on 6061-T6 aluminum alloy sheet

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Liu, Jing-shun; Zhang, Lun-yong; Sun, Jian-fei; Wang, Zhi-ping

    2014-05-01

    We have systematically studied the microstructure and mechanical properties of Ni-5wt%Al and Ni-20wt%Al composite coatings fabricated on 6061-T6 aluminum alloy sheet by twin-wire arc spraying under different experimental conditions. The abrasive wear behavior and interface diffusion behavior of the composite coatings were evaluated by dry/wet rubber wheel abrasive wear tests and heat treatment, respectively. Experimental results indicate that the composite coatings exhibit features of adhesive wear. Besides, the Vickers microhardness of NiAl and Ni3Al intermetallic compounds is relatively larger than that of the substrate, which is beneficial for enhancing the wear resistance. With the increase of annealing temperature and time, the interface diffusion area between the Ni-Al coating and the substrate gradually expands with the formation of NiAl3 and Ni2Al3 phases, and is controlled by diffusion of aluminum atoms. The grain growth exponent n of diffusion kinetics of the Ni-Al coating, calculated via a high-temperature diffusion model at 400, 480, and 550°C, is between 0.28 and 0.38. This satisfies the cubic law, which is consistent with the general theoretical relationship of high-temperature diffusion.

  20. Mechanical properties of Ta-Al-N thin films deposited by cylindrical DC magnetron sputtering: Influence of N2% in the gas mixture

    NASA Astrophysics Data System (ADS)

    Darabi, Elham; Moghaddasi, Naghmeh; Reza Hantehzadeh, Mohammad

    2016-06-01

    Ta-Al-N thin films were deposited by cylindrical DC magnetron sputtering on a stainless steel substrate under varying nitrogen flow ratios ( N2 with respect to N2 + Ar in the range of 1.5%-9%. The effect of the N2 content in the reactive gas mixture on crystalline structure, surface morphology, and mechanical properties of Ta-Al-N thin films was investigated. The amount of Al and Ta in deposited films was obtained by energy dispersive X-ray spectroscopy (EDX) analysis and films thickness was measured by surface step profilometer. X-ray diffraction analysis (XRD) revealed that the crystalline structure of the Ta-Al-N polycrystalline thin film is a mixture of TaAl, TaN, and AlN crystalline phases. Surface morphology, roughness, and grain size were investigated by atomic force microscopy (AFM). The nano hardness of Ta-Al-N thin films, measured by the nanoindentation method, was about 9GPa maximum for samples prepared under 3% N2 , and the friction coefficient, obtained by nanoscratch analysis, was approximately 0.2 for all Ta-Al-N thin films. Other results were found to be affected considerably by increasing the N2 amount.

  1. Force field measurements within the exclusion zone of water.

    PubMed

    Chen, Chi-Shuo; Chung, Wei-Ju; Hsu, Ian C; Wu, Chien-Ming; Chin, Wei-Chun

    2012-01-01

    Water molecules play critical roles in many biological functions, such as protein dynamics, enzymatic activities, and cellular responses. Previous nuclear magnetic resonance and neutron scattering studies have shown that water molecules bind to specific sites on surfaces and form localized clusters. However, most current experimental techniques cannot measure dynamic behaviors of ordered water molecules on cell-size (10 μm) scale. Recently, the long-distance effect of structured water has been demonstrated by Pollack and his colleagues. Namely, there is a structured water layer near the hydrophilic surface that can exclude solutes (Zheng et al, Adv Colloid Interface Sci 127:19-27, 2006; Pollack 2006, Adv Colloid Interface Sci 103:173-196, 2003). The repelling forces of water clusters inside this exclusion region are investigated in this study. With a laser tweezers system, we found the existence of an unexpected force fields inside the solute-free exclusion zone near a Nafion surface. Our results suggest that the water clusters could transduce mechanical signals on the micrometer range within the exclusion zone. This unexpected inhomogeneous force field near the hydrophilic surface would provide a new insight into cellular activities, leading to a potential new physical chemistry mechanism for cell biology. PMID:23277674

  2. Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism.

    PubMed

    Keller, Brian A; Volkening, Kathryn; Droppelmann, Cristian A; Ang, Lee Cyn; Rademakers, Rosa; Strong, Michael J

    2012-11-01

    While the pathogenesis of amyotrophic lateral sclerosis (ALS) remains to be clearly delineated, there is mounting evidence that altered RNA metabolism is a commonality amongst several of the known genetic variants of the disease. In this study, we evaluated the expression of 10 ALS-associated proteins in spinal motor neurons (MNs) in ALS patients with mutations in C9orf72 (C9orf72(GGGGCC)-ALS; n = 5), SOD1 (mtSOD1-ALS; n = 9), FUS/TLS (mtFUS/TLS-ALS; n = 2), or TARDBP (mtTDP-43-ALS; n = 2) and contrasted these to cases of sporadic ALS (sALS; n = 4) and familial ALS without known mutations (fALS; n = 2). We performed colorimetric immunohistochemistry (IHC) using antibodies against TDP-43, FUS/TLS, SOD1, C9orf72, ubiquitin, sequestosome 1 (p62), optineurin, phosphorylated high molecular weight neurofilament, peripherin, and Rho-guanine nucleotide exchange factor (RGNEF). We observed that RGNEF-immunoreactive neuronal cytoplasmic inclusions (NCIs) can co-localize with TDP-43, FUS/TLS and p62 within spinal MNs. We confirmed their capacity to interact by co-immunoprecipitations. We also found that mtSOD1-ALS cases possess a unique IHC signature, including the presence of C9orf72-immunoreactive diffuse NCIs, which allows them to be distinguished from other variants of ALS at the level of light microscopy. These findings support the hypothesis that alterations in RNA metabolism are a core pathogenic pathway in ALS. We also conclude that routine IHC-based analysis of spinal MNs may aid in the identification of families not previously suspected to harbor SOD1 mutations. PMID:22941224

  3. Effect of thermomechanical treatments on the room-temperature mechanical behavior of iron aluminide Fe{sub 3}Al

    SciTech Connect

    Agarwal, A.; Balasubramaniam, R.; Bhargava, S.

    1996-10-01

    The room-temperature hydrogen embrittlement (HE) problem in iron aluminides has restricted their use as high-temperature structural materials. The role of thermomechanical treatments (TMT), i.e., rolling at 500 C, 800 C, and 1,000 C, and post-TMT heat treatments, i.e., recrystallization at 750 C and ordering at 500 C, in affecting the room-temperature mechanical properties of Fe-25Al intermetallic alloy has been studied from a processing-structure-properties correlation viewpoint. It was found that when this alloy is rolled at higher temperature, it exhibits a higher fracture strength. This has been attributed to find subgrain size (28 {micro}) due to dynamic recrystallization occurring at the higher rolling temperature of 1,000 C. However, when this alloy is rolled at 1,000 C and then recrystallized, it shows the highest ductility but poor fracture strength. This behavior has been ascribed to the partially recrystallized microstructure, which prevents hydrogen ingress through grain boundaries and minimizes hydrogen embrittlement. When the alloy is rolled at 1,000 C and then ordered at 500 C for 100 hours, it shows the highest fracture strength, due to its finer grain size. The alloy rolled at 500 C and then ordered undergoes grain growth. Hence, it exhibits a lower fracture strength of 360 MPa. Fracture morphologies of the alloy were found to be typical of brittle fracture, i.e., cleavage-type fracture in all the cases.

  4. Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al (wt%) alloys

    SciTech Connect

    Li, Y.G.; Blenkinsop, P.A.; Loretto, M.H.; Rugg, D.; Voice, W.

    1999-08-10

    The effect of carbon additions on microstructure and mechanical properties of alloys with different levels of oxygen was studied in {beta} titanium alloys of the general composition Ti-25V-15Cr-2Al (all compositions are in wt% unless otherwise indicated). The microstructures were studied using optical microscopy (OM), X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that titanium carbides with vacancy-ordered structure formed in all alloys with C additions of over 1,000 w.p.p.m. Grains were refined by carbides.Wavelength-dispersive X-ray (WDX) analysis showed that oxygen was much higher in carbides than in {beta} matrix. After long-term exposure at 550 C {alpha} precipitation was significantly reduced in samples with titanium carbides compared with those without. A significant improvement in room temperature tensile ductility was achieved by the addition of carbon to the alloys. Elongations of {approximately} 10% were obtained in samples which were exposed at 550 C for 500 h following heat treatments at 1,050 and 700 C.

  5. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-feng; Guo, Ming-xing; Cao, Ling-yong; Wang, Fei; Zhang, Ji-shan; Zhuang, Lin-zhong

    2015-07-01

    The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstructural observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio ( r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geometry value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001}<110> and Goss {110}<001> orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H{001}<110> orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.

  6. Effects of Aging Treatments on the Mechanical Behavior of Ti-15V-3Cr-3Sn-3Al Alloy

    NASA Astrophysics Data System (ADS)

    Chou, Y.-K.; Tsay, L. W.; Chen, C.

    2015-09-01

    The effect of aging treatments on the mechanical properties and microstructures of Ti-15V-3Cr-3Sn-3Al (Ti-15-3) alloy was evaluated using tensile, notched tensile, and J-integral tests. The properties for the one-step aged specimens (371 to 648 °C for 8 h) were compared with those for the two-step aged specimens (one-step aged + 426 °C/24 h). An increase in aging temperature of one-step aging resulted in increased notched tensile strength and fracture toughness of the Ti-15-3 alloy. The second-step aging at 426 °C for 24 h caused various degrees of hardening in the group of double aged specimens. Comparing to the one-step aged specimens, increased notch brittleness and decreased fracture toughness were observed in the two-step aged specimens. For the specimens subjected to aging at 648 °C, the formation of thick α layer at β grain boundaries resulted in lower tensile properties and fracture toughness. The fracture modes of the notch-brittle specimens were strongly affected by the distribution, size, and morphology of the α precipitates.

  7. Microstructure-mechanical property relationships for Al-Cu-Li-Zr alloys with minor additions of cadmium, indium or tin

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Starke, E. A., Jr.

    1989-01-01

    Minor amounts of cadmium, indium or tin were added to a baseline alloy with the nominal composition of Al-2.4Cu-2.4Li-0.15Zr. These elements were added in an attempt to increase the age-hardening response of the material such that high strengths could be achieved through heat-treatment alone, without the need for intermediate mechanical working. The alloy variant containing indium achieved a higher peak hardness in comparison to the other alloy variations, including the baseline material, when aged at temperatures ranging from 160 C to 190 C. Tensile tests on specimens peak-aged at 160 indicated the yield strength of the indium-bearing alloy increased by approximately 15 percent compared to that of the peak-aged baseline alloy. In addition, the yield strength obtained in the indium-bearing alloy was comparable to that reported for similar baseline material subjected to a 6 percent stretch prior to peak-aging at 190 C. The higher strength levels obtaied for the indium-bearing alloy are attributed to increased number densities and homogeneity of both the T1 and theta-prime phases, as determined by TEM studies.

  8. Chemical composition and selected mechanical properties of Al-Zn alloy modified in plasma conditions by RF CVD

    NASA Astrophysics Data System (ADS)

    Kyzioł, Karol; Kluska, Stanisława; Januś, Marta; Środa, Marcin; Jastrzębski, Witold; Kaczmarek, Łukasz

    2014-08-01

    The paper reports results of the study of surface composition and selected functional properties of 7075 (Al-Zn) alloys modified in Ar, N2, SiH4 and CH4 atmosphere at reduced pressure. RF CVD (Radio Frequency Chemical Vapour Deposition) technique was used in the study. The type or weight percentage of carbon in each modification varied in the resultant SiN:H and SiCN:H coatings. Alloy samples were treated with Ar+ plasma etching and N+ ion implantation at reduced pressure. The tests proved the values of selected mechanical properties (hardness ca. 10.5 GPa, Young modulus ca. 95 GPa) and adhesion (delamination force ca. 11.5 mN) to be higher in the case of SiCN:H anti-wear coating (deposited in SiH4:CH4:N2 = 1:1:2 gas mixture) than the values of the respective parameters obtained in the remaining modifications. Further, carbon doped coatings (SiCN:H) exhibited significantly improved hardness (by about 50 to 70%) and nearly threefold increase in delamination force in comparison with SiCN:H coatings.

  9. Al-TiC Composites Fabricated by a Thermally Activated Reaction Process in an Al Melt Using Al-Ti-C-CuO Powder Mixtures: Part II. Microstructure Control and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hee; Lee, Jung-Moo; Kim, Su-Hyeon

    2015-03-01

    Controlling the processing parameters is important to minimize such undesirable microstructural features in Al/TiC composites as unreacted C, incomplete reaction products of Al3Ti and TiC aggregates, which originate from the pellet microstructure upon the combustion reaction of an Al-Ti-C-CuO pellet in an Al melt. In particular, the mean particle size of elemental powders is a key factor linked to the formation of TiC aggregates, which is significantly suppressed with smaller initial particles of Ti and C by mixing them homogenously by ball milling. Al-Cu-Mg alloys reinforced with up to 12 vol pct TiC are fabricated by the developed process, followed by extrusion. The composites after heat treatment exhibit high elastic modulus and an ultimate tensile strength of 93 GPa and 461 MPa, respectively, with a low coefficient of thermal expansion of 17.11 ppm/K.

  10. Microstructure, excess solid solubility, and elevated-temperature mechanical behavior of spray-atomized and codeposited Al-Ti-SiCP

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Juarez-Islas, J.; Frazier, W. E.; Mohamed, F. A.; Lavernia, E. J.

    1992-12-01

    In the present study, the microstructure, thermal stability, and elevated temperature mechanical behavior of Al-Ti-SiCP metal matrix composites (MMCs) processed by spray atomization and codeposition were investigated. The evolution of the microstructure of the spray-deposited material before and after thermal annealing was studied using X-ray diffractometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and optical microscopy. The thermal stability of the spray-deposited materials was determined by monitoring the changes in hardness after isochronal thermal anneals at various temperatures. The results of X-ray and microanalysis studies revealed the presence of a supersaturated solid solution of Ti in α Al in the spray-atomized and codeposited material, with Ti concentrations in the 0.8 to 1.1 wt pet range. The formation of an extended solid solution was discussed in light of the cooling rates present during atomization and, subsequently, during deposition. Regarding mechanical behavior, the present results suggest that the as-spray deposited and hot extruded Al-Ti matrix is thermally stable up to a temperature of 400 °C and that the excess solid solubility of Ti in a Al, resulting from the rapid quench during processing, is maintained up to a temperature of 300 °C. The elevated-temperature mechanical properties of the hot extruded spray-deposited materials were studied following a 100-hour exposure at 250 °C, 350 °C, and 450 °C; the roomtemperature mechanical properties were also determined. Results show that the elevated-temperature yield strength of the spray-deposited and extruded materials compared favorably to those of an equivalent alloy made by powder metallurgical materials, were superior to those of the ingot material, but were inferior to those of mechanically alloyed Al-Ti materials. In addition, TEM studies showed no evidence of interfacial reactions at the Al-Ti/SiCP interface.

  11. Study on the Mechanical Properties of Heat-Treated Electroless NiP Coatings Reinforced with Al2O3 Nano Particles

    NASA Astrophysics Data System (ADS)

    Karthikeyan, S.; Vijayaraghavan, L.; Madhavan, S.; Almeida, A.

    2016-05-01

    This work reports the effects of electroless co-deposition of Al2O3 nanoparticles and NiP to obtain a NiP-Al2O3 coating on the structure and mechanical properties of the composite coatings. The effects of annealing heat treatments at 373 K, 473 K, 573 K, and 673 K (100 °C, 200 °C, 300 °C, and 400 °C) on the structure and properties of the coatings were evaluated. The as-deposited coatings are a mixture of crystalline and amorphous phases that tend to crystallize during heat treatment. Heat treatment at higher temperatures causes the precipitation of the Ni3P phase. The mechanical properties of as-deposited and heat-treated NiP-Al2O3 coatings were evaluated using depth-sensing indentation tests performed at loads of 200 mN. The incorporation of Al2O3 nanoparticles induces strengthening of the NiP coating by dispersion. Heat treatment of the NiP-Al2O3 coatings induced crystallization of the amorphous phase with the formation of nanosized grains and the precipitation of Ni3P. Consequently, there is an increase in the hardness and Young's modulus of the coatings to 15.4 ± 0.5 and 227 ± 2.8 GPa, respectively, in a combined hardening effect induced by dispersion of the Al2O3 nanoparticles and crystallization and precipitation during heat treatment.

  12. Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer

    SciTech Connect

    Bai, J.; Wang, T.; Parbrook, P. J.; Wang, Q.; Lee, K. B.; Cullis, A. G.

    2007-09-24

    A significant dislocation reduction is achieved in an AlGaN layer grown on an AlN buffer by introducing a thin GaN interlayer. The mechanisms for the dislocation reduction are explored by transmission electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, and micro-Raman spectroscopy. The GaN interlayer grown on the AlN takes the form of platelets. The mechanisms of dislocation reduction in the platelet area and the area between the platelets are different. In the GaN platelets, due to the large misfit strain, the threading dislocations (TDs) in the AlN layer migrate into the interface and annihilate with each other. However, the GaN between the platelets is highly strained so that a higher density of TDs from AlN is incorporated into the upper layer. The coalescing of the platelets induced by the AlGaN growth makes the TDs in the areas between the platelets assemble and annihilate, resulting in additional dislocation reduction.

  13. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  14. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    PubMed

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-01

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion. PMID:26554497

  15. Conclusive exclusion of quantum states

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somshubhro; Jain, Rahul; Oppenheim, Jonathan; Perry, Christopher

    2014-02-01

    In the task of quantum state exclusion, we consider a quantum system prepared in a state chosen from a known set. The aim is to perform a measurement on the system which can conclusively rule that a subset of the possible preparation procedures cannot have taken place. We ask what conditions the set of states must obey in order for this to be possible and how well we can complete the task when it is not. The task of quantum state discrimination forms a subclass of this set of problems. Within this paper, we formulate the general problem as a semidefinite program (SDP), enabling us to derive sufficient and necessary conditions for a measurement to be optimal. Furthermore, we obtain a necessary condition on the set of states for exclusion to be achievable with certainty, and we give a construction for a lower bound on the probability of error. This task of conclusively excluding states has gained importance in the context of the foundations of quantum mechanics due to a result from Pusey, Barrett, and Rudolph (PBR). Motivated by this, we use our SDP to derive a bound on how well a class of hidden variable models can perform at a particular task, proving an analog of Tsirelson's bound for the PBR experiment and the optimality of a measurement given by PBR in the process. We also introduce variations of conclusive exclusion, including unambiguous state exclusion, and state exclusion with worst-case error.

  16. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-06-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  17. Study on the Mechanism of Adhesion Improvement Using Dry-Ice Blasting for Plasma-Sprayed Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The mechanisms of adhesion improvement of plasma-sprayed Al2O3 coatings using dry-ice blasting were investigated. In this study, the change of substrate surface characteristics in both the topography and the wettability due to the treatment of dry-ice blasting was mainly studied. The effect of dry-ice blasting on Al2O3 splat morphology with different treatment durations was also examined. The residual stress of plasma-sprayed Al2O3 coatings using dry-ice blasting was measured by curvature method and compared to that of coatings deposited with conventional air cooling. Based on these numerous assessment tests, it could be concluded that the adhesion improvement of Al2O3 coatings could be attributed to the cleaning effect of dry-ice blasting on different organic substances adsorbed on the substrates and the peening effect.

  18. Microstructural evolution and mechanical properties of an Fe-18Ni-16Cr-4Al base alloy during aging at 950°C

    NASA Astrophysics Data System (ADS)

    Wang, Man; Sun, Yong-duo; Feng, Jing-kai; Zhang, Rui-qian; Tang, Rui; Zhou, Zhang-jian

    2016-03-01

    The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe-18Ni-16Cr-4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950°C were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.

  19. Review of the physical and mechanical properties and potential applications of the B2 compound NiAl: Unabridged version of a paper published in International materials review

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1992-01-01

    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range.

  20. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Wang, Dongpo; Cheng, Fangjie; Wang, Ying

    2015-05-01

    The oxide-film structure on the 5052 Al alloy and the film-removal mechanism by activated CsF-AlF3 flux in brazing were studied. Characterisation of the oxide film shows that thermally activated Mg, segregated from the alloy's interior, was significantly enriched and oxidised during medium-temperature brazing. Thus, the outer oxide surface consisted of the amorphous MgO-like phase, and the interior of the oxide film comprised mainly the amorphous MgO-like phase and dispersely distributed and less-ordered MgAl2O4. The MgO-like phase was the main obstacle to oxide removal in brazing. The activated ZnCl2-containing CsF-AlF3 flux effectively removed the oxide film, and the 5052 Al alloy was successfully brazed by the Zn-Al filler metal and activated flux. When Zn2+ in the molten flux permeated the oxide film through cracks, its chemical reaction with the Al substrate loosened the oxide film, which was eventually pushed out as the filler metal spread over the alloy surface.

  1. Study on the nanostructure formation mechanism of hypereutectic Al-17.5Si alloy induced by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Hu, Liang; Li, Shi-wei; Hao, Yi; Zhang, Yu-dong; Tu, Gan-feng; Grosdidier, Thierry

    2015-08-01

    This work investigates the nanostructure forming mechanism of hypereutectic Al-17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1)Al//(0 0 1)Si with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al-Si alloys.

  2. Development of a self-supporting, transparent AlGaAs top solar cell for mechanical attachment to an existing solar cell

    NASA Astrophysics Data System (ADS)

    Negley, Gerald H.; Terranova, Nancy E.; McNeely, James B.; Barnett, Allen M.

    A technique for fabricating AlGaAs solar cells on transparent AlGaAs substrates has been developed which utilizes the most advanced wide-bandgap material on a transparent substrate. The rugged, self-supporting, transparent AlGaAs top solar cell can be mechanically stacked on any well-developed existing solar cell. The key to this success is the growth technique, liquid-phase epitaxy (LPE). Fabrication of tandem or triple stacks is impossible with this transparent, self-supporting AlGaAs device. To obtain high stack efficiencies, the top solar cell must be state-of-the-art. A 1.93 eV AlGaAs top cell results in two-stack solar cells with efficiencies over 30 percent AM0 and triple stacks approaching 35 percent AM0. Transmission of 91 percent of the photons less energetic than the top solar cell bandgap has been demonstrated for the self-supporting AlGaAs substrate. The design rules for the tandem structure and progress in the development of the transparent AlGaAs top solar cell are discussed.

  3. Temperature-Dependent Electrical Properties and Carrier Transport Mechanisms of TMAH-Treated Ni/Au/Al2O3/GaN MIS Diode

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Puneetha, Peddathimula; Reddy, V. Rajagopal; Lee, Jung-Hee; Jeong, Seong-Hoon; Park, Chinho

    2016-08-01

    The temperature-dependent electrical properties and carrier transport mechanisms of tetramethylammonium hydroxide (TMAH)-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The experimental results reveal that the barrier height (I-V) increases whereas the ideality factor decreases with increasing temperature. The TMAH-treated Ni/Au/Al2O3/GaN MIS diode showed nonideal behaviors which indicate the presence of a nonuniform distribution of interface states (N SS) and effect of series resistance (R S). The obtained R S and N SS were found to decrease with increasing temperature. Furthermore, it was found that different transport mechanisms dominated in the TMAH-treated Ni/Au/Al2O3/GaN MIS diode. At 150 K to 250 K, Poole-Frenkel emission (PFE) was found to be responsible for the reverse leakage, while Schottky emission (SE) was the dominant mechanism at high electric fields in the temperature range from 300 K to 400 K. Feasible energy band diagrams and possible carrier transport mechanisms for the TMAH-treated Ni/Au/Al2O3/GaN MIS diode are discussed based on PFE and SE.

  4. Study the effect of mechanical alloying parameters on synthesis of Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite

    SciTech Connect

    Shayesteh, Payam Mirdamadi, Shamseddin; Razavi, Hossein

    2014-01-01

    Graphical abstract: - Highlights: • Cr{sub 2}Nb–Al{sub 2}O{sub 3} nanocomposite synthesized through MA. • Effect of BPR, rotating speed, milling time and PCA concentration investigated. • After annealing at 1100 °C crystalline phase were appeared. • Williamson–Hall analysis was used in order to study the grain size of nano composite. - Abstract: In this study, Cr{sub 2}Nb–20 vol.% Al{sub 2}O{sub 3} nanocomposite was prepared successfully by mechanochemical reaction between Al, Nb and Cr{sub 2}O{sub 3} powders. Amorphization of powder occurred during mechanical alloying because of high energy collisions between powders and steel balls in milling container which transfer high degree of energy to powders. Therefore, annealing was needed to form crystalline phases. The influence of different mechanical alloying parameters such as BPR, rotating speed, milling time and PCA concentration on synthesis of composite material were investigated. After mechanical alloying, the powder was encapsulated in quartz and then annealed at 1100 °C for 3 h. After annealing, 3 different phases were appeared (Cr{sub 2}Nb (cubic), Cr{sub 2}Nb (hexagonal) and α-Al{sub 2}O{sub 3}). The structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM)

  5. Mechanical, tribological, and electrochemical behavior of Cr 1- xAl xN coatings deposited by r.f. reactive magnetron co-sputtering method

    NASA Astrophysics Data System (ADS)

    Sanchéz, J. E.; Sanchéz, O. M.; Ipaz, L.; Aperador, W.; Caicedo, J. C.; Amaya, C.; Landaverde, M. A. Hernández; Beltran, F. Espinoza; Muñoz-Saldaña, J.; Zambrano, G.

    2010-02-01

    Chromium aluminum nitride (Cr 1- xAl xN) coatings were deposited onto AISI H13 steel and silicon substrates by r.f. reactive magnetron co-sputtering in (Ar/N 2) gas mixture from chromium and aluminum targets. Properties of deposited Cr 1- xAl xN coatings such as compositional, structural, morphological, electrochemical, mechanical and tribological, were investigated as functions of aluminum content. X-ray diffraction patterns of Cr 1- xAl xN coatings with different atomic concentrations of aluminum (0.51 < x < 0.69) showed the presence and evolution of (1 1 1), (2 0 0), and (1 0 2) crystallographic orientations associated to the Cr 1- xAl xN cubic and w-AlN phases, respectively. The rate of corrosion of the steel coated with Cr 1- xAl xN varied with the applied power; however, always being clearly lower when compared to the uncoated substrate. The behavior of the protective effect of the Cr 1- xAl xN coatings is based on the substitution of Cr for Al, when the power applied to the aluminum target increases. The mechanical properties were also sensitive to the power applied, leading to a maximum in hardness and a reduced elastic modulus of 30 and 303 GPa at 350 W and a monotonic decrease to 11 and 212 GPa at 450 W, respectively. Finally, the friction coefficient measured by pin-on disk revealed values between 0.45 and 0.70 in humid atmosphere.

  6. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    SciTech Connect

    Wang, Wei-Lin Tsai, Yi-Chia

    2012-06-15

    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on the titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.

  7. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    SciTech Connect

    Meng, Yi Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ∼ 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 35–60 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400–550 μm in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q′ phase precipitation, while the β″ phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: • Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. • L1{sub 2} Al{sub 3}Zr phases with 35–60 nm in diameter precipitate during homogenization. • L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. • Minor Zr can promote the precipitation of Q′ phases. • Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  8. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  9. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  10. Anisotropy in Mechanical Properties and Fracture Behavior of an Oxide Dispersion Fe20Cr5Al Alloy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Capdevila, C.

    2014-08-01

    Anisotropy of fracture toughness and fracture behavior of Fe20Cr5Al oxide dispersion-strengthened alloy has been investigated by means of compression tests, hardness tests, and wedge splitting test. The results show a small effect of the compression direction on yield strength (YS) and strain hardening. The YS is minimum for longitudinal direction and maximum for the tangential direction. The transverse plastic strain ratio is similar for tangential and longitudinal directions but very different from that in normal direction. Hardness depends on the indentation plane; it is lower for any plane parallel to the L-T plane and of similar magnitude for the other orthogonal planes, i.e., the L-S and T-S planes. Macroscopically, two failure modes have been observed after wedge-splitting tests, those of LS and TS specimens in which fracture deviates along one or two branches normal to the notch plane, and those of LT, TL, SL, and ST specimens in which fracture propagates along the notch plane. Besides LT and TL specimens present delaminations parallel to L-T plane. Both, the fracture surface of branching cracks and that of the delaminations, show an intergranular brittle fracture appearance. It is proposed that the main cause of the delamination and crack branching is the alignment in the mesoscopic scale of the ultrafine grains structure which is enhanced by the <110>-texture of the material and by the presence in the grain boundaries of both yttria dispersoids and impurity contaminations. An elastoplastic finite element analysis was performed to study what stress state is the cause of the branches and delaminations. It is concluded that the normal to the crack branches and/or the shear stress components could determine the crack bifurcation mechanism, whereas the delamination it seems that it is controlled by the magnitude of the stress component normal to the delamination plane.

  11. Model Fe-Al Steel with Exceptional Resistance to High Temperature Coarsening. Part I: Coarsening Mechanism and Particle Pinning Effects

    NASA Astrophysics Data System (ADS)

    Zhou, Tihe; Zurob, Hatem S.; O'Malley, Ronald J.; Rehman, Kashif

    2015-01-01

    The mechanism by which austenite particles coarsen in a delta-ferrite matrix was investigated in a model Al-containing steel. Special emphasis was placed on the effect of volume fraction on the coarsening kinetics as well as the ability of the particles to pin the growth of delta-ferrite grains. The specimens were heated to temperatures in the range of 1123 K to 1583 K (850 °C to 1305 °C) in the austenite plus delta-ferrite two-phase region and held for times between 5 minutes and 288 hours, followed by water quenching. When the reheating temperature was higher than 1473 K (1200 °C), the coarsening of austenite particles was found to evolve as t 1/3, which is typical of volume diffusion-controlled behavior. For lower temperatures, the particle coarsening behavior followed t 1/4 kinetics which is consistent with a grain boundary diffusion-controlled process. The observations were interpreted in terms of the modified Lifshitz-Slyozov-Wanger theory by considering multi-component diffusion, particle volume fraction, and the fact that this two-phase material is a non-ideal solid solution. Three types of interaction between particle coarsening and grain growth were observed. Grain growth was completely pinned when the particle pinning force was much larger than the driving force for grain growth. When the particle pinning force was comparable to the driving force for grain growth, the delta-ferrite grains were observed to grow at a rate which is controlled by the kinetics of coarsening of the austenite particles. Finally, when the particle pinning force was smaller than the driving force for grain growth, significant grain growth occurred but its rate was lower than that expected in the absence of particle pinning. The results point to an effective approach for controlling grain growth at high temperatures.

  12. Microstructure, Mechanical Properties, Hot-Die Forming, and Joining of 47XD Gamma TiAl Rolled Sheets

    NASA Technical Reports Server (NTRS)

    Das, G.; Draper, S.; Whittenberger, J. D.; Bartolotta, P. A.

    2001-01-01

    The microstructure and mechanical properties, along with the hot-die forming and joining of Ti-47Al-2Nb-2Mn-0.8 vol% TiB, sheets (known as 47XD), produced by a low-cost rolling process, were evaluated. A near-gamma microstructure was obtained in the as-rolled condition. The microstructures of heat-treated sheets ranged from a recrystallized equiaxed near-gamma microstructure at 1,200 to 1,310 C, to a duplex microstructure at 1,350 C, to a fully lamellar microstructure at 1,376 C. Tensile behavior was determined for unidirectionally rolled and cross-rolled sheets for room temperature (RT) to 816 C. Yield stress decreased gradually with increasing deformation temperature up to 704 C; above 704 C, it declined rapidly. Ultimate tensile strength exhibited a gradual decrease up to 537 C before peaking at 704 C, followed by a rapid decline at 816 C. The modulus showed a gradual decrease with temperature, reaching approximately 72% of the RT value at 816 C. Strain to failure increased slowly from RT to 537 C; between 537 C and 704 C it exhibited a phenomenal increase, suggesting that the ductile-brittle transition temperature was below 704 C. Fracture mode changed from transgranular fracture at low temperature, to a mixture of transgranular and intergranular fracture at intermediate temperature, to ductile fracture at 816 C, coupled with dynamic recrystallization at large strains. Creep rupture response was evaluated between 649 and 816 C over the stress range of 69 to 276 MPa. Deformation parameters for steady-state creep rate and time-to-rupture were similar: activation energies of approximately 350 kJ/mol and stress exponents of approximately 4.5. Hot-die forming of sheets into corrugations was done at elevated temperatures in vacuum. The process parameters to join sheets by diffusion bonding and brazing with TiCuNi 70 filler alloy were optimized for test coupons and successfully used to fabricate large truss-core and honeycomb structures. Nondestructive evaluation

  13. Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer

    SciTech Connect

    Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1; Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 ; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.; Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7; Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7

    2013-09-21

    The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSb islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.

  14. Influence of the Processing Route in the Microstructure and Mechanical Properties of NiAl/TiB2 Composites Produced by Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Torres, Ricardo D.; Lepienski, Carlos M.; Moore, John J.; Reimanis, Ivar E.

    2009-04-01

    In this work, dense NiAl/TiB2 composites with varying amounts of TiB2 were produced by combustion synthesis routes. The morphology of the TiB2 phase in the composite has been modified by changing the reactants in the initial powder mixture. In the first processing route, NiAl and TiB2 phases were obtained from Ni, Al, Ti, and B elemental powders. In the second processing route, TiB2 was added, instead of Ti and B, along with Ni and Al to produce NiAl and TiB2 phases. The XRD performed on the products of both processing routes confirmed that the synthesized phases were indeed TiB2 and NiAl. The NiAl grain size is smaller for the composites obtained in the first processing route. In addition, the first processing route leads to clusters of TiB2 submicron particles in which the matrix is either TiB2 or NiAl depending on the starting composition. The second processing route results in less dense composites in which the matrix is the NiAl and the TiB2 exists as dispersed platelets. The hardness ( H) and Young’s modulus ( E) were observed to be higher for composites produced by the first processing route. This difference in the mechanical properties is caused by the difference in microstructure, as well as the difference in porosity between the two processing routes.

  15. A numerical model to investigate the role of residual stresses on the mechanical behavior of Al/Al{sub 2}O{sub 3} particulate composites

    SciTech Connect

    Guagliano, M.

    1998-04-01

    Research is presented about the mechanical behavior of a 6061 aluminum alloy reinforced with alumina particles. In particular, the role of thermal-induced residual stresses on the mechanical behavior of this composite is analyzed. Experimental tests were carried out to evaluate the mechanical characteristics of this type of material under static and fatigue loading. Fractographies on broken specimens evidenced the failure mechanisms under different load conditions. Also carried out were measurements using the x-ray diffractometric (XRD) technique to determine the residual stresses due to the thermal treatment both in the matrix and in the particles. A microscale finite-element model (FEM) of this material was developed to investigate the actual stress state caused by the thermal treatment and an applied load. A comparison of the numerical results and the experimental observations helped to explain the fracture modes under static and cyclic loading and to determine the role of the residual stresses under both monotone and cyclic loads. These results suggest some treatment to improve fatigue strength of the material.

  16. Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Araki, Yoshikazu; Kimura, Kosuke; Asai, Takehiko; Masui, Takeshi; Omori, Toshihiro; Kainuma, Ryosuke

    2015-12-01

    Quasi-zero-stiffness (QZS) vibration isolators avoid excessive deformation due to gravity, a critical issue in vertical vibration isolation, by providing restoring force with high initial stiffness and low tangent stiffness around the static equilibrium position. Effective use of geometric nonlinearity often plays a central role in QZS mechanisms. Design of such QZS mechanisms, however, tends to be complex, and it is difficult to realize large loading capacity as well as large stroke length at the same time. This paper attempts to resolve these issues by applying newly developed superelastic Cu-Al-Mn shape memory alloy (SMA) bars, characterized by excellent recoverable strain upon unloading along with small hysteresis and nearly flat stress plateau. These features are realized by material design tailored for obtaining mechanical properties required in QZS mechanisms. The use of such tailored superelastic Cu-Al-Mn SMA bars allows us to easily achieve large loading capacity as well as large stroke length while keeping the QZS mechanism simple and compact. In this paper, we derive design equations, produce a prototype, and conduct shaking table tests and numerical simulations to demonstrate the feasibility of QZS vibration isolator with superelastic Cu-Al-Mn SMA bars.

  17. Effect of Natural Aging and Cold Working on Microstructures and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag alloy

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Te; Lee, Sheng-Long; Bor, Hui-Yun; Lin, Jing-Chie

    2013-06-01

    This research investigates the effects of natural aging and cold working prior to artificial aging on microstructures and mechanical properties of Al-4.6Cu-0.5Mg-0.5Ag alloy. Mechanical properties relative to microstructure variations were elucidated by the observations of the optical microscope (OM), differential scanning calorimeter (DSC), electrical conductivity meter (pct IACS), and transmission electron microscopy (TEM). The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects which suppress Al-Cu (GP zone) and Mg-Ag clustering, and therefore the precipitation of Ω phase decreases. Furthermore, more dislocations are formed, leading to precipitate the more heterogeneous nucleation of θ' phase. The above-mentioned precipitation phenomena and strain hardening effect are more obvious with higher degrees of cold working.

  18. Effect of Surplus Phase on the Microstructure and Mechanical Properties in Al-Cu-Mg-Ag Alloys with High Cu/Mg Ratio

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Zhao, Yuguang; Wang, Xudong; Zhang, Ming; Ning, Yuheng

    2015-11-01

    In order to examine the effect of surplus phase on the microstructure and mechanical properties, different compositions with high Cu/Mg ratio of the T6-temper extruded Al-Cu-Mg-Ag alloys were studied in this investigation. The results show that the Al-5.6Cu-0.56Mg-0.4Ag alloy obtains superior mechanical properties at room temperature, while the yield strength of Al-6.3Cu-0.48Mg-0.4Ag alloy is 378 MPa at 200 °C, which is 200 MPa higher than that of Al-5.6Cu-0.56Mg-0.4Ag alloy. Although the excessive Cu content causes the slight strength loss and elongation decrease in the Al-6.3Cu-0.48Mg-0.4Ag alloy at room temperature, the surplus phases and recrystallized microstructure will play an effective role in strengthening the alloy at elevated temperature.

  19. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  20. Microstructure and Mechanical Properties of Al356/SiCp Cast Composites Fabricated by a Novel Technique

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Niroumand, Behzad

    2013-01-01

    In this study, SiCp containing composite powders were used as the reinforcement carrier media for manufacturing cast Al356/5 vol.% SiCp composites. Untreated SiCp, milled particulate Al-SiCp composite powder, and milled particulate Al-SiCp-Mg composite powder were injected into Al356 melt. The resultant composite slurries were then cast from either a fully liquid state (stir casting) or semisolid state (compocasting). The results revealed that by injection of composite powders, the uniformity of the SiCp in the Al356 matrix was greatly improved, the particle-free zones in the matrix were disappeared, the SiC particles became smaller, the porosity was decreased, and the matrix microstructure became finer. Compocasting changed the matrix dendritic microstructure to a finer non-dendritic one and also slightly improved the distribution of the SiCp. Simultaneous utilization of Al-SiCp-Mg composite powder and compocasting method increased the macro- and micro-hardness, impact energy, bending strength, and bending strain of Al356/SiCp composite by 35, 63, 20, 20, and 40%, respectively, as compared with those of the composite fabricated by injection of untreated SiCp and stir casting process.

  1. Effects of small amount of additional elements on control of interstitial impurities and mechanical properties of V?4Cr?4Ti?Si?Al?Y alloys

    NASA Astrophysics Data System (ADS)

    Chuto, Toshinori; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori; Muroga, Takeo; Yamamoto, Norikazu

    2004-03-01

    In order to improve the mechanical properties of low activation vanadium alloys for fusion structural applications, effects of small addition of Si, Al and Y on the control of interstitial impurities (O, C and N) during the fabrication process were examined for several V-4Cr-4Ti-Si-Al-Y alloys produced by the levitation melting method. Charpy impact tests and tensile tests were carried out for five kinds of V-4Cr-4Ti-Si-Al-Y alloys using miniaturized specimens for the purpose of evaluating the effects of these elements on mechanical properties. Oxygen concentration decreased almost linearly with increasing loss of yttrium during melting. This oxygen reduction with yttrium loss during the melting process may have been achieved by two types of mechanisms, they are, (i) suppression of oxygen penetration into the molten materials from the environment and (ii) getting of oxygen from the matrix by forming Y 2O 3, which floats to the surface during the melting. There was no effect of Si and Al addition to control the concentration of interstitial impurities. V-4Cr-4Ti-0.1Si-0.1Al-0.1Y alloy showed the best impact properties out of the alloys investigated. Upper-shelf energy of the alloys decreased with increasing yttrium content. High number density of coarse inclusions containing yttrium could cause the degradation of impact properties, though they hardly affect tensile properties of the alloys. Even at higher yttrium contents, V-4Cr-4Ti-Y alloys without addition of Si and Al showed relatively high upper-shelf energy.

  2. Effect of heat treatment on microstructures and mechanical properties of a Ti-6Al-4V alloy rod prepared by powder compact extrusion

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Gabbitas, Brian

    2015-03-01

    In this paper, Ti-6Al-4V alloy rods were manufactured by the powder compact extrusion of a powder mixture of hydride-dehydride (HDH) titanium powder, elemental aluminum powder and master alloy powder. Extrusions were carried out at 1300°C and with a holding time of 5 min in an argon atmosphere. The effects of different heat treatments (HT1: 960°C/1 h, water quenching, HT2: 960°C/1 h, water quenching + 500°C/6 h, air cooling, HT3: 850°C/2 h, furnace cooling to 540°C, then air cooling) on the microstructure and mechanical properties of as-extruded Ti-6Al-4V alloy rods were investigated. The results showed that a homogeneous microstructure, composed of a lamellar structure with a grain size range of 40-60 μm, was produced by powder compact extrusion of a powder mixture. The mechanical properties achieved were an ultimate tensile strength (UTS) of 1254 MPa, a yield strength (YS) of 1216 MPa and 8% ductility. After quenching at 960°C and with a holding time of 1 h, the UTS and YS of the heat treated Ti-6Al-4V alloy rod were increased to 1324 MPa and 1290 MPa, and the ductility was increased to 12%. After HT2, the UTS and YS of the heat treated Ti-6Al-4V alloy rod were significantly increased to 1436 MPa and 1400 MPa, but the ductility decreased to 4%. After HT3, the mechanical properties of the heat treated Ti-6Al-4V alloy rod were slightly decreased to give a UTS of 1213 MPa and a YS of 1180 MPa, with an increase in ductility to 11%. The microstructural changes of as-extruded Ti-6Al-4V alloy rods were also investigated for the different heat treatments.

  3. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.

    PubMed

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Huang, Tingting; Zhou, Lian

    2015-09-01

    Porous titanium and its alloys are believed to be promising materials for bone implant applications, since they can reduce the "stress shielding" effect by tailoring porosity and improve fixation of implant through bone ingrowth. In the present work, porous Ti6Al4V alloys for biomedical application were fabricated by diffusion bonding of alloy meshes. Compressive mechanical behavior and compatibility in the range of physiological strain rate were studied under quasi-static and dynamic conditions. The results show that porous Ti6Al4V alloys possess anisotropic structure with elongated pores in the out-of-plane direction. For porous Ti6Al4V alloys with 60-70 % porosity, more than 40 % pores are in the range of 200-500 μm which is the optimum pore size suited for bone ingrowth. Quasi-static Young's modulus and yield stress of porous Ti6Al4V alloys with 30-70 % relative density are in the range of 6-40 GPa and 100-500 MPa, respectively. Quasi-static compressive properties can be quantitatively tailored by porosity to match those of cortical bone. Strain rate sensitivity of porous Ti6Al4V alloys is related to porosity. Porous Ti6Al4V alloys with porosity higher than 50 % show enhanced strain rate sensitivity, which is originated from that of base materials and micro-inertia effect. Porous Ti6Al4V alloys with 60-70 % porosity show superior compressive mechanical compatibility in the range of physiological strain rate for cortical bone implant applications. PMID:26384823

  4. Effect of the Soldering Process on the Microstructure and Mechanical Properties of Sn-9Zn/Al Solder Joints

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Feng, Xue; Jian, Zhou; Zhanying, Feng; Xu, Chen

    2015-08-01

    Tin-zinc solder alloys are considered to be appropriate for soldering of aluminum alloys at low-temperature in electronics and radiators applications. In this paper, the effects of different soldering parameters on the microstructure and interfacial reaction behaviors of 1070Al/Sn-9Zn/1070Al joints were investigated. The results show that the Al substrate was dissolved by the liquid solder, but Al-related intermetallic was not observed in the interface. Two kinds of Al-rich phases formed in the solder matrix. Large butterfly-shaped solid solution (Al)″ phases (about 10 μm) were formed in the liquid alloys, and compact-shaped precipitations (nano-size) were dissolved out from solders during solidification process. With increasing of the soldering time, Al″ phases were migrated upwards in the solders and the amount of this phase increased. In addition, with the increase of the soldering temperature, the dissolution rate of Al into the solder increased and the formation time of (Al)″ phases was reduced. Shear test results indicate when soldered at 250 °C, the shear strength increased from 48.6 MPa to a maximum 60.5 MPa and then decreased to a stable value (about 55 MPa) with increasing of the soldering time. Similar trends were also observed at 300 and 350 °C, while the soldering time needed to obtain maximum shear strength was shortened. The formation of these Al-rich phases improves the shear strength but deteriorates the ductility.

  5. A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement.

    PubMed

    Ataollahi Oshkour, Azim; Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  6. Mechanical Properties Evaluation of Zr Addition in L12-Al3(Sc1- x Zr x ) Using First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Qian, Yi; Xue, Jilai; Wang, Zengjie; Yang, Zhenhai; Qian, Ping

    2016-05-01

    L12-Al3(Sc1- x Zr x ) can be used as a grain refiner and recrystallization inhibitor in forming and heat-treatment of wrought aluminum alloy. In this work, the mechanical properties of L12-Al3(Sc1- x Zr x ) (0 < x< 0.5) have been systematically evaluated using first principles calculations. The optimized structural parameters obtained through the virtual crystal approximation were in good agreement with available experimental and calculated data. The computed bulk modulus of L12-Al3(Sc1- x Zr x ) increased while the shear modulus and Young's modulus decreased with increasing Zr addition. The ductility of L12-Al3(Sc1- x Zr x ) estimated by Pugh empirical criterion and Cauchy pressure were improved with Zr addition. The calculated ideal strength of L12-Al3(Sc1- x Zr x ) along the [001], [110] and { 111} [1bar{1}0] directions increased linearly with Zr additions. The addition of Zr gave great improvements in the ideal strength along the [110] direction and the ductility in the [001] direction, respectively. The calculated electronic density of states and the charge density distribution revealed that the valence electron increased with Zr addition and hence strengthened the p-d covalent bonding and d-d bonding, resulting in the improvements in ideal strength and ductility. The evaluation data would be useful in materials design and process optimization for Al alloys in forming and heat treatment.

  7. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    SciTech Connect

    Akulinkin, Alexandr Shugurov, Artur Sergeev, Viktor; Panin, Alexey; Cheng, C.-H.

    2015-10-27

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  8. The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing

    NASA Astrophysics Data System (ADS)

    Akulinkin, Alexandr; Shugurov, Artur; Panin, Alexey; Sergeev, Viktor; Cheng, C.-H.

    2015-10-01

    The effect of preliminary ion bombardment of 321 stainless steel substrate on crack resistance of TiAlN coatings at uniaxial tension and thermal cycling is studied. The ion-beam treatment of the substrate is shown to substantially improve the adhesion strength of the coatings that prevents their delamination and spalling under uniaxial tension. The resistance to crack propagation and spalling by the thermal shock is higher in the TiAlN coating deposited onto the substrate subjected to Ti ion bombardment as compared to that in the TiAlN coating deposited onto the initial substrate.

  9. Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V

    SciTech Connect

    Murr, L.E. Esquivel, E.V.; Quinones, S.A.; Gaytan, S.M.; Lopez, M.I.; Martinez, E.Y.; Medina, F.; Hernandez, D.H.; Martinez, E.; Martinez, J.L.; Stafford, S.W.; Brown, D.K.; Hoppe, T.; Meyers, W.; Lindhe, U.; Wicker, R.B.

    2009-02-15

    This study represents an exploratory characterization and comparison of electron-beam melted (EBM) or rapid manufacturing (RM) of Ti-6Al-4V components (from nominal 30 {mu}m diameter powder) with wrought products. Acicular {alpha} and associated {beta} microstructures observed by optical metallography and electron microscopy (SEM and TEM) are compared along with corresponding tensile test and hardness data; including the initial powder particles where the Vickers microindentation hardness averaged 5.0 GPa in comparison with the fully dense, EB manufactured product with an average microindentation hardness ranging from 3.6 to 3.9 GPa. This compared with wrought products where the Vickers microindentation hardness averaged 4.0 GPa. Values of UTS for the EBM samples averaged 1.18 GPa for elongations ranging from 16 to 25%. Biomaterials/biomedical applications of EBM prototypes in direct prosthesis or implant manufacturing from CT or MRI data are discussed in the context of this work, especially prospects for tailoring physical properties through EB control to achieve customized and optimized implant and prosthetic products direct from CT-scans.

  10. Tensile Properties of Nano AL2O3 Particulate-Reinforced Aluminum Matrix Composites by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Mehdinia, M.; Jenabali Jahromi, S. A.

    The powder of the micro Al and variant volume fractions of nano Al2O3 were milled by a high energy planetary ball-mill. By milling, a homogenous distribution of nano Al2O3 particles in the metal matrix were developed. Then the milled powder was cold compressed and sintered at 545°C for one hr. The mold and the sintered sample hold in a furnace until the temperature reached 545°C. Then the hot 27mm diameter sample was extruded to 6mm diameter. From the extruded specimens, tensile, hardness and microstructure of the prepared specimens were determined. By these tests the effect of milling time, the percent of nano-particles and the microstructure were evaluated. The hardness and tensile behaviors of aluminum matrix composites reinforced with nano Al2O3 particulate have been found to increase remarkably with the volume fraction of the reinforcement.

  11. 75 FR 21045 - Notice of intent to grant exclusive license

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... Corporation, having its principal place of business in Huntsville, AL. The patent rights in this invention... Administration. ACTION: Notice of intent to grant exclusive license. SUMMARY: This notice is issued in accordance... exclusive license in the United States to practice the inventions described and claimed in U.S....

  12. An insight to the mechanism of weld penetration in dissimilar pulsed laser welding of niobium and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.

    2016-05-01

    In laser welding of Ti-6Al-4V to niobium, the interaction of laser with the two metals is such that at the investigated laser conditions there will be conduction mode on the Nb side and keyhole on the Ti side. Thus the weld pool is not developed symmetrically as there will not be sufficient penetration in the higher melting point higher conductivity niobium side. The mechanisms of energy absorption and effective melting in dissimilar laser welding are analyzed. It is shown that more penetration into niobium is obtained when the laser energy is absorbed by Ti-6Al-4V and then the molten Ti-6Al-4V dissolves the niobium metal.

  13. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products.

    PubMed

    Huang, Yi; Han, Minfang

    2011-10-15

    Fly ash-based geopolymer with α-Al(2)O(3) addition were synthesized and used to remove formaldehyde from indoor air. The microstructure, mechanical and formaldehyde adsorption properties of the geopolymer products obtained were investigated. The results showed that α-Al(2)O(3) addition with appropriate amount (such as 5 wt%) increased the geopolymerization extent, resulting in the increase of surface area and compressive strength. In addition, the improvement of structural ordering level for geopolymer sample with 5 wt% α-Al(2)O(3) addition was found through FTIR analysis. By contrast, excessive addition (such as 10 wt%) had the opposite effect. The test of formaldehyde adsorption capacity confirmed that fly ash-based geopolymer product exhibited much better property of adsorbing indoor formaldehyde physically and chemically than fly ash itself. The surface area was an important but not unique factor influencing the adsorption capacity of geopolymers. PMID:21802843

  14. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  15. Wear Behavior and Mechanism of Fe-Al Intermetallic Coating Prepared by Hot-Dip Aluminizing and Diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Q. Y.; Zhou, Y.; Liu, J. Q.; Chen, K. M.; Mo, J. G.; Cui, X. H.; Wang, S. Q.

    2016-05-01

    A Fe-Al intermetallic compound coating was prepared on AISI H13 steel by hot-dip aluminizing and subsequent high-temperature diffusion. Dry sliding wear tests of the Fe-Al intermetallic coating were performed at 298 K to 873 K (25 °C to 600 °C). The wear behavior of the Fe-Al intermetallic coating was noticed to vary markedly with the temperature and load. At 298 K (25 °C), the wear rate rapidly increased with an increase of the load. As the temperature was elevated, the wear rate dramatically decreased except for the cases under 300 N at 473 K and 673 K (200 °C and 400 °C). The Fe-Al intermetallic coating possessed an excellent elevated-temperature wear performance, especially at 673 K to 873 K (400 °C to 600 °C), but worse room-temperature one, which were noticed to be attributed to the existence and inexistence of thin tribo-oxide layers, respectively. Such a thin tribo-oxide layer was considered to provide a protection for the intermetallic compound. When the tribo-oxide layer did not form at room temperature or the formed one was massively delaminated above the critical load at elevated temperatures, Fe-Al intermetallic coating possessed poor wear resistance.

  16. An analysis of GaAlAs-GaAs solar cells - A study of the limiting mechanisms of heterojunction systems

    NASA Astrophysics Data System (ADS)

    Gazaleh, Y. A.

    1985-12-01

    Design and manufacturing techniques are presented for the production of optimized heterojunction GaAlAs-GaAs solar cells. The design goal is to obtain multispectral solar cells with enhanced efficiency and reliability at lower cost than now possible. Window layers with Al doping levels of 40 percent are shown to have efficiencies equivalent to layers with Al doping levels of 80-90 percent. Liquid phase epitaxial techniques are described for producing the cells. Supercooling methods are used to minimize the defect densities. Laboratory tests have yielded 0.04 sq cm cells with 20.2 percent efficiency under an illumination of 0.4 W/sq cm. In extending the study to bispectral cells, a cascade configuration is found promising for lowering production costs. Ternary and quaternary materials are determined to be the most suitable for obtaining the cascade cell, i.e., GaAlAsSb and GaInAsP substrates with GaAlAsSb window layers. A metal grid in the layer connection is demonstrated to give efficiencies of up to 25.4 percent, which are augmented to 27.3 percent with an AR coating. Finally, optimization of the metal contacts further enhances the cell efficiencies to 31 percent in AM0.

  17. Degradation mechanisms of 2 MeV proton irradiated AlGaN/GaN HEMTs

    SciTech Connect

    Greenlee, Jordan D. Anderson, Travis J.; Koehler, Andrew D.; Weaver, Bradley D.; Kub, Francis J.; Hobart, Karl D.; Specht, Petra; Dubon, Oscar D.; Luysberg, Martina; Weatherford, Todd R.

    2015-08-24

    Proton-induced damage in AlGaN/GaN HEMTs was investigated using energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM), and simulated using a Monte Carlo technique. The results were correlated to electrical degradation using Hall measurements. It was determined by EDS that the interface between GaN and AlGaN in the irradiated HEMT was broadened by 2.2 nm, as estimated by the width of the Al EDS signal compared to the as-grown interface. The simulation results show a similar Al broadening effect. The extent of interfacial roughening was examined using high resolution TEM. At a 2 MeV proton fluence of 6 × 10{sup 14} H{sup +}/cm{sup 2}, the electrical effects associated with the Al broadening and surface roughening include a degradation of the ON-resistance and a decrease in the electron mobility and 2DEG sheet carrier density by 28.9% and 12.1%, respectively.

  18. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

    NASA Astrophysics Data System (ADS)

    Kim, Youngmoo; Lee, Junho; Lee, Bin; Ryu, Ho Jin; Hong, Soon Hyung

    2016-09-01

    The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

  19. Dilatometric Analysis and Microstructural Investigation of the Sintering Mechanisms of Blended Elemental Ti-6Al-4V Powders

    NASA Astrophysics Data System (ADS)

    Kim, Youngmoo; Lee, Junho; Lee, Bin; Ryu, Ho Jin; Hong, Soon Hyung

    2016-06-01

    The densification behavior of mixed Ti and Al/V master alloy powders for Ti-6Al-4V was investigated by a series of dilatometry tests to measure the shrinkage of the samples with the sintering temperature. The corresponding microstructural changes were examined under various sintering conditions with optical microscopy, energy-dispersive spectroscopy, and X-ray diffraction analyses. From these results, the consolidation of the mixed powders was divided into two domains: (i) sintering densification and solute homogenization of Ti and Al/V master alloy particles below 1293 K (1020 °C), and (ii) densification of Ti alloy phases above 1293 K (1020 °C). In the lower temperature region, the inter-diffusion between Ti and Al/V master alloy particles dominated the sintering of the mixed powders because the chemical gradient between two types of particles outweighed the surface energy reduction. Following chemical homogenization, the densification induced the shrinkage of the Ti alloy phases to reduce their surface energies. These tendencies are also supported by the density and grain size variations of the sintered specimens with temperature. The apparent activation energies of the sintering and grain growth for Ti alloy particles are 85.91 ± 6.93 and 37.33 kJ/mol, respectively, similar to or slightly lower than those of pure Ti particles. The difference was attributed to the slower self-diffusion of Ti resulting from the alloying of Al and V into in the Ti matrix.

  20. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets

    SciTech Connect

    Gao, Xiao-Long; Liu, Jing; Zhang, Lin-Jie Zhang, Jian-Xun

    2014-07-01

    The effect of the overlapping factor on the microstructures and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V alloy sheets was investigated by microstructural observations, microhardness tests, tensile tests and fatigue tests. A microstructural examination shows that by increasing the overlapping factor, the grains in the fusion zone become coarser, and the width of the heat affected zone increases. As overlapping factor increases, the width of region composed completely of martensite α′ and the secondary α phase in the heat affected zone increases, consequently the gradient of microstructure along the direction from the fusion zone to base metal decreases, so does the gradient of microhardness. The results of tensile and fatigue tests reveal that the joints made using medium overlapping factor exhibit better mechanical properties than those welded with low and high overlapping factors. Based on the experimental results, it can be stated that a sound weld of Ti6Al4V alloy can be obtained if an appropriate overlapping factor is used. - Highlights: • The weld quality of Ti6Al4V alloy under various overlapping factors was assessed. • Tensile and fatigue tests were conducted with as-welded specimen. • Localized strain across the weld was measured using DIC photogrammetry system. • A sound weld of Ti6Al4V alloy is obtained by using right overlapping factor.