Science.gov

Sample records for al fe ca

  1. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  2. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  3. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  4. Reoxidation of Aluminum in Fe- Al- M (M = C, Mn, and Ti) melts with CaO-Al2 O3-Fe t O (3 mass pct) slags

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Ro; Suito, Hideaki

    1996-06-01

    An Fe-0.01 to 0.5 mass pct Al alloy and an Fe-0.003 to 0.71 mass pct Al-1 mass pct M (M = C, Mn, and Ti) alloy were reoxidized with the CaO-Al2O3-FetO (3 mass pct) slags at 1873 K in an Al2O3 or CaO crucible for 5 and 60 minutes. The contents of acid-insoluble Al, total O, and alloying element M in metal as well as those of M and FetO in slag were measured as a function of total Al content. On the basis of the present and previous results for Fe- Al- Te alloys, the effect of alloying elements on the degree of supersaturation with respect to the Al2O3 precipitation was studied. As a result, the supersaturation phenomenon was observed in all experiments at 5 minutes, but in the experiments at 60 minutes, it was observed only in Fe- Al and Fe- Al- Ti alloys. No supersaturation was observed in the reoxidation of Si in Fe-0.13 to 0.98 mass pct Si alloys with the CaO-SiO2-FetO (3 mass pct) slags in a CaO crucible at 5 and 60 minutes.

  5. Observations of the Minor Species Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report the first detections of Al and Fe, and strict upper limits for Ca(+) in the exosphere of Mercury, using the HIRES spectrometer at the Keck I telescope. We report observed 4-sigma tangent columns of 1.5x10(exp 7) Al atoms per square centimeter at an altitude of 1220 km (1.5 Mercury radii (R(sub M)) from planet center), and that for Fe of 1.6 x 10 per square centimeter at an altitude of 950 km (1.4 R(sub M)). The observed 3-sigma Ca(+) column was 3.9x10(exp 6) ions per square centimeter at an altitude of 1630 km (1.67 R(sub M). A simple model for zenith column abundances of the neutral species were 9.5 x 10(exp 7) Al per square centimeter, and 3.0 x 10(exp 8) Fe per square centimeter. The observations appear to be consistent with production of these species by impact vaporization with a large fraction of the ejecta in molecular form. The scale height of the Al gas is consistent with a kinetic temperature of 3000 - 9000 K while that of Fe is 10500 K. The apparent high temperature of the Fe gas would suggest that it may be produced by dissociation of molecules. A large traction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  6. Observations of the minor species Al, Fe and Ca+ in Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Killen, R. M.; Bida, T. A.

    2015-12-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of 4-5-σ resolved emission lines of these metals made with Keck-1/HIRES. AlI emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 2.4 and 3.0e+07 Al atoms cm-2 at altitudes of 1300 and 1850 km (1.1 and 1.5 RM), respectively. FeI emission has been observed once, yielding a tangent column of 6.2e+08 cm-2 at an altitude of 950 km (1.4 RM) in 2009. We also present observations of 3.5-σ CaII emission features near Mercury's equatorial anti-solar limb in 2011, from which a stringent column abundance upper limit of 4.0e+06 cm-2 is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 2.0e+07 Al cm-2, and 8.2e+08 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 4800-8200 K while that of Fe is 5000-13000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules. A large fraction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  7. Observations of the minor species Al, Fe and Ca+ in Mercury’s exosphere

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Bida, Thomas A.

    2015-11-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of 4-5-σ resolved emission lines of these metals with Keck-1/HIRES. AlI emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 2.4 and 3 x 107 Al atoms cm-2 at altitudes of 1300 and 1850 km (1.1 and 1.5 RM), respectively. FeI emission has been observed once, yielding a tangent column of 6.2 x 108 cm-2 at an altitude of 950 km (1.4 RM) in 2009. We also present observations of 3.5-σ Ca+ emission features near Mercury’s equatorial anti-solar limb in 2011, from which a stringent tangent column abundance of 4.0 x 106 cm-2 is derived for the Ca ion.A simple model for zenith column abundances of the neutral species yields 2.0 x 107 Al cm-2, and 8.2 x 108 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 4800-8200 K while that of Fe is 5000-13000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules. A large fraction of both Al and Fe appear to condense in a vapor cloud at low altitudes.

  8. Magnesium doping on brownmillerite Ca{sub 2}FeAlO{sub 5}

    SciTech Connect

    Malveiro, J.; Ramos, T.; Ferreira, L.P.; Waerenborgh, J.C.

    2007-06-15

    Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05 and 0.1) compounds adopting the brownmillerite-type structure were prepared by a self-combustion route using two different fuels. Characterisation was performed using X-ray powder diffraction, Moessbauer spectroscopy, magnetisation measurements, chemical analysis, scanning electron microscopy and 4-point dc conductivity measurements. Global results indicate that the solubility limit was reached for x=0.1. An antiferromagnetic behaviour was detected for all studied compositions, with magnetic ordering temperatures of 340 and 290 K for x=0 and 0.05, respectively. Mg doping increases the number of iron cations in tetrahedral sites, which induces magnetisation enhancement at low temperatures through the coupling between octahedral iron cations in different octahedral planes. The compounds exhibit semiconductor behaviour and Mg{sup 2+} doping yields a significant enhancement of the total conductivity, which can be essentially attributed to the presence of Fe{sup 4+} ions. - Graphical abstract: Ca{sub 2}FeAl{sub 1-} {sub x} Mg {sub x} O{sub 5} (x=0, 0.05, 0.1) compounds with the brownmillerite structure were prepared and characterised. The paramagnetic Moessbauer spectra presented were obtained at T=363 K (x=0); T=297 K (x=0.05) and T=353 K (x=0.1)

  9. Major soil element (Ca, Mg, K, Na, Al, Fe) distribution along the Qinghai-Tibet Railway

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, Y.; Zhang, H.; Ding, M.; Lin, X.

    2011-12-01

    The Tibetan Plateau (TP), which has been called the third polar region, is the highest plateau in the world. There are a series of special soils present in the TP, which are extremely important in soil sciences for their particularities. Soil chemical composition is one of the necessary indices of soil characteristics. The major element content of the soil, such as Ca, Mg, K, Na, not only can affect the soil pH value and soil fertility but also are the main drivers of soil geochemical processes. It is helpful to understand the TP environmental characteristics, to study the major soil element content.The Qinghai-Tibet Railway (QTR) is the highest-elevation and the longest highland railway on earth. There are nearly all types of TP soil along the QTR. Most of the areas along the QTR are in fairly pristine condition. This offers a good platform to study the natural environmental characteristics of the soil. This study selected 240 soil samples from 28 sample areas along the Qinghai-Tibet Railway, and the aluminum, iron, calcium, sodium, potassium and magnesium content in the soil were measured with ICP-AES. The results indicated: (1) Compared with the national soil background values, the Ca content in soil was higher along the QTR and Al was lower; but the Fe, Mg, K and Na contents were similar. (2) Along the whole QTR, the soil Al, Fe and Mg content showed a decreasing trend from Xining to Lhasa, the changes in K and Na values were relatively complex, and the distribution of Ca could be divided three sections. (3) The soil element contents varied with different soil types and parent materials. Most of the six elements content was minimum in soil, which derived from debris materials for ice and water, and the elements content was maximum in soil, which evolved from debris for flood, and the content of soil Ca developed from debris for lake was maximum. The amount of each element present in the Hapli-Cryic Aridosols and Calci-Cryic Aridosols was relatively higher than

  10. Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan

    NASA Astrophysics Data System (ADS)

    Khoury, Hani N.; Sokol, Ella V.; Kokh, Svetlana N.; Seryotkin, Yurii V.; Nigmatulina, Elena N.; Goryainov, Sergei V.; Belogub, Elena V.; Clark, Ian D.

    2016-02-01

    Tululite (Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36 (the hypothetical end-member formula Ca14{Fe3+O6}[SiO4][Zn5Al9]O26) (IMA2014-065) is a new natural Ca zincate-aluminate, identified in medium-temperature (800-850 °C) combustion metamorphic (CM) spurrite-fluorellestadite marbles from central Jordan. The type locality (Tulul Al Hammam area) is situated in the northern part of the Siwaqa complex, the largest area of the "Mottled Zone" Formation in the Dead Sea region. The marbles originated from bitumen-rich chalky marine sediments of the Maastrichtian-Paleogene Muwaqqar Chalk Marl Formation, which have low clay content (and, consequently, low Al) and high Zn, Cd, and U enrichments. The bulk CM rocks derived from the low-Al protolith have unusually high (Zn + Cd)/Al ratios ( 0.2) and, as a result, a mineralogy with negligibly small percentages of Ca aluminates having low Ca:Al molar ratios (minerals of mayenite supergroup, Ca:Al = 6:7) common to most of calcareous CM rocks in the Mottled Zone. Instead, the mineral assemblage of the Zn-rich marbles contains tululite, with high Ca:Al = 2.55 molar ratios and Zn substituting for a large portion of Al (Zn:Al = 1.1). Tululite occurs in thin clusters as irregular grains with indented outlines (20-100 μm in size), having typical open-work textures associated with rock-forming calcite, fluorellestadite, spurrite, and accessory Zn-rich periclase, lime-monteponite solid solutions, calcium uranates, and zincite. Marbles also bear brownmillerite, dorrite, fluormayenite, high-fluorine Ca aluminate, and lakargiite. Secondary phases are brucite, gel-like calcium silicate hydrates and calcium silicate aluminate hydrates, including Zn- and U-bearing and Cd-rich compounds, Si-bearing hydrated compounds after calcium uranates, and basic Cd chlorides. The empirical formula of the holotype tululite (a mean of 32 analyses) is (Ca13.29Cd0.75)Σ14.04(Al5.46Zn5.20Fe3+ 2.23Si0.95Mn3+ 1.01Mg0.78P0.41)Σ16.04O36. Tululite is cubic, space

  11. Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chronosequence in the Pearl River estuary, South China

    NASA Astrophysics Data System (ADS)

    Xiao, Rong; Bai, Junhong; Zhang, Honggang; Gao, Haifeng; Liu, Xinhui; Wilkes, Andreas

    2011-04-01

    Soil and plant samples were collected in four fringe marsh zones (i.e., A, B, C and D zones) along a pedogenic chronosequence in the Pearl River estuary in the Spring of 2009. Samples were subjected to a total digestion technique and analyzed for P, Ca, Al and Fe in order to study the changes of nutrient contents, storages in soils and their bioavailabilities to wetland plants (e.g. Cyperus malaccensis) in four zones. Results showed that soil Ca increased with depth along soil profiles, while P, Al and Fe generally kept constant in soil profiles in four zones. Al and Fe contents in the top 10 cm soils showed significant decreases from D to A zone, while a significant increase in Ca contents ( P<0.05). Significant increases along pedogenic chronosequence for P, Al and Fe at 30-40 cm soil horizons were also observed. Ca was mainly accumulated in plant aboveground parts; Al and Fe were accumulated in the belowground parts; while P was homogenously distributed among the tissues of C. malaccensis. C. malaccensis in D zone had lower Bio-concentration factors (BCFs) of P in the shoots and Al and Fe in the roots, and higher values of Ca in the shoots than those in older zones ( P<0.05). Compared to Al and Fe, both Ca and P had relatively higher translocation capacities for C. malaccensis, while only lower TFs for P and higher values for Al and Fe in D zone were observed than those in A and B zones ( P<0.05). Except for Al with no significant changes, the total BCFs for P and Fe showed an increasing trend with soil ages, while a decreasing trend for Ca. The total bio-storage factors (TBSFs) of P and Ca declined with the pedogenic time, whereas an increase for Fe. The results of this study can contribute to the wetland conservation and management in the Pearl River estuarine region.

  12. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  13. Synthesis and characterization of phosphates in molten systems Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr)

    NASA Astrophysics Data System (ADS)

    Zatovsky, Igor V.; Strutynska, Nataliya Yu.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Ogorodnyk, Ivan V.; Shishkin, Oleg V.

    2011-03-01

    The crystallization of complex phosphates from the melts of Cs 2O-P 2O 5-CaO- MIII2O 3 ( MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/ МIII=1. The fields of crystallization of CsCaP 3O 9, β-Ca 2P 2O 7, Cs 2CaP 2O 7, Cs 3CaFe(P 2O 7) 2, Ca 9MIII(PO 4) 7 ( MIII—Fe, Cr), Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 and CsCa 10(PO 4) 7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa 10(PO 4) 7 and Cs 0.63Ca 9.63Fe 0.37(PO 4) 7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.

  14. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  15. Thermal equation of state of CaFe 2O 4-type MgAl 2O 4

    NASA Astrophysics Data System (ADS)

    Sueda, Yuichiro; Irifune, Tetsuo; Sanehira, Takeshi; Yagi, Takehiko; Nishiyama, Norimasa; Kikegawa, Takumi; Funakoshi, Ken-ichi

    2009-05-01

    In situ X-ray diffraction measurements of CaFe 2O 4-type MgAl 2O 4 have been conducted at pressures up to 42 GPa and temperatures to 2400 K using Kawai-type multianvil apparatus with sintered diamond anvils. Additional measurements have also been conducted at pressures to 12 GPa using diamond anvil cell with helium as a pressure medium at room temperature, and at temperatures to 836 K at the ambient pressure using a high-temperature X-ray diffractometer. The analysis of room-temperature data yielded V0 = 240.1(2) Å 3, K0 = 205(6) GPa, and K0=4.1(3). A fit of the present data to high-temperature Birch-Murnaghan equation of state (EOS) yielded (∂ K0/∂ T) P = -0.030(2) GPa/K and α0 = a0 + b0T with values of a0 = 1.96(13) × 10 -5 K -1 and b0 = 1.64(24) × 10 -8 K -2. The present data set was also fitted to Mie-Grüneisen-Debye (MGD) EOS and we obtained γ0 = 1.73(7), q = 2.03(37), and θ0 = 1546(104) K. Density changes of MORB have been estimated using the newly obtained thermoelastic parameters, assuming that the Al-rich phase in this composition possesses the CaFe 2O 4-type structure under the lower mantle P, T conditions. The calculated densities along geotherms for the normal mantle and subducting cold slabs are both significantly higher than those of typical seismological models, confirming the conclusion of some recent results on MORB by laser-heated diamond anvil cell experiments.

  16. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.

    1980-01-01

    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  17. Isolating /sup 241/Am from waste solutions containing Al, Ca, Fe, and Cr

    SciTech Connect

    Gray, L.W.; Burney, G.A.; King, C.M.

    1982-01-01

    About 2.4 kg of /sup 241/Am contaminated with calcium and aluminum had been recovered from low-activity waste during recycle of 11% /sup 240/Pu. A process was developed and demonstrated to purify the americium before shipment as /sup 241/AmO/sub 2/. The americium and some of the calcium were batch extracted into 50% TBP-n-paraffin from 2.2M Al(NO/sub 3/)/sub 3/ - 0.3M HNO/sub 3/ solution in a canyon tank. Pregnant solvent was scrubbed first with 2.1M Al/sup 3 +/-0.3M Li/sup +/-6.7M NO/sub 3/- and then with 7M LiNO/sub 3/ to reduce the calcium content and to displace the aluminum. Americium was then stripped from the solvent with water and concentrated by evaporation. Before precipitating the americium with oxalic acid, the nitric acid was adjusted with NH/sub 4/OH to yield a 1M NH/sub 4/NO/sub 3/ solution. Recovery across the batch extraction step was 97.8%, while 93% of the calcium and >99% of the aluminum was rejected. Recovery across precipitation averaged >96% while producing a product which was >99.3% pure /sup 241/AmO/sub 2/. The major impurities were water, carbon, calcium, iron, and zinc.

  18. Modeling of viscosities of the partly crystallized slags in the Al2O3-CaO-``FeO''-SiO2 system

    NASA Astrophysics Data System (ADS)

    Kondratiev, Alex; Jak, Evgueni

    2001-12-01

    A viscosity model of the partly crystallized slag in the Al2O3-CaO-‘FeO’-SiO2 system has been developed in conjunction with the thermodynamic computer package F*A*C*T. Proportions of solids crystallized out of the liquid phase and compositions of the remaining liquid phase predicted by F*A*C*T are used in the viscosity model. Various heterogeneous viscosity models have been tested using large experimental dataset in the Al2O3-CaO-‘FeO’-SiO2 system in reducing conditions close to the equilibrium with metallic iron. The Roscoe equation with new empirical parameters was found to provide reasonable agreement with experimental data. Examples of model application to industrial nonferrous smelting slag systems are presented. This model can also be applied to coal ash slags.

  19. Synthesis of high-quality, well-characterized CaAlFe-layered triple hydroxide with the combination of dry-milling and ultrasonic irradiation in aqueous solution at elevated temperature.

    PubMed

    Szabados, Márton; Pásztor, Krisztián; Csendes, Zita; Muráth, Szabolcs; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István

    2016-09-01

    The combination of mechanochemical and ultrasonic treatment was applied to synthesize CaAlFe-layered triple hydroxides with carbonate or chloride anions in the interlamellar space. The optimal parameters of the preparation were explored by altering the initial ratio of the metal ions and the temperature of ultrasonic irradiation. The resulting triple hydroxides were characterized by X-ray diffractometry, infrared and X-ray absorption spectroscopies, thermogravimetric analysis and scanning electron microscopy. The products were close-to-phase-pure CaAlFe-layered triple hydroxides. Elevation of the temperature transformed the CaAlFe-Cl(-)-layered triple hydroxide to rare oxyhalides (Ca2FeO3Cl and Ca12Al14O32Cl2). PMID:27150758

  20. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  1. Structure and magnetic properties of Ca{sub 2}Fe{sub 1-x}Mn{sub x}AlO{sub 5+{delta}}

    SciTech Connect

    Carvalho, M.D.; Waerenborgh, J.C.; Tsipis, E.; Godinho, M.

    2008-09-15

    Ca{sub 2}Fe{sub 1-x}Mn{sub x}AlO{sub 5} (0{<=}x{<=}1) compounds were prepared by a self-combustion method under air (x=0, 0.1, 0.2 and 0.3) and nitrogen (x=0.5, 0.7 and 1.0). The samples prepared under nitrogen were successfully oxidized after short annealing under air. Both X-ray powder diffraction (XRD) Rietveld analysis and electron diffraction revealed that all compounds adopt the brownmillerite-type structure. All samples present an overall antiferromagnetic behaviour and data from magnetic measurements and Moessbauer spectroscopy allowed to conclude that the transition temperature decreases as Mn content increases for x{<=}0.3 and increases in the case of the x{>=}0.5 compounds. Except for x=1, chemical disorder due to the occupancy of both octahedral and tetrahedral sites by different metals as well as the competition between different moments' orientation induce a complex magnetic behaviour characterized by magnetic frustration and canted antiferromagnetism. Moessbauer spectroscopy and chemical titrations also allowed to conclude about the preferential oxidation of Mn{sup 3+} over Fe{sup 3+}, obtained by thermal treatment under air of the x=0.5 and 0.7 compositions. - Graphical abstract: Structure of the Ca{sub 2}Fe{sub 1-x}Mn{sub x}AlO{sub 5} compound and electron diffraction pattern obtained along the [1-bar 01] zone axis (x=0.2), showing a brownmillerite structure.

  2. The Aqueous Ca2+ System, in Comparison with Zn2+, Fe3+, and Al3+: An Ab Initio Molecular Dynamics Study

    SciTech Connect

    Bogatko, Stuart A.; Cauet, Emilie L.; Bylaska, Eric J.; Schenter, Gregory K.; Fulton, John L.; Weare, John H.

    2013-02-21

    Results of Ab Initio Molecular Dynamics (AIMD) simulations of a Ca2+ ion in an aqueous environment (64 waters, 38ps=5ps equilibration + 33ps data collection, 300K) are reported. The 1st hydration shell contains 6-7 waters with d(OH) = 0.97Å (identical to our bulk water estimate) and average tilt angle, I = 32º. The 1st maximum in the radial distribution function occurs at GCaO(r) = 2.45Å. Our results compare well with published experimental structural data from X-Ray Absorption (XAFS) and Neutron Diffraction. We also generate simulated XAFS spectra using a 1st principles MD-XAFS procedure and show quantitative agreement with experimental XAFS data from a 0.2m Ca(ClO4)2 aqueous solution. The Ca2+ 1st shell water dipole moment of 3.1D is identical to our bulk water estimate (3.1D). The structured 2nd hydration shell, composed of ~16.5 waters, has a maximum at GCaO(r) =4.6Å. The average 2nd shell dipole moment = 2.9D, is suppressed relative to bulk water values. Detailed H-bond analysis demonstrates the waters in this shell predominately coordinate 1st shell waters with a trigonally structured H-bond network. Two exchanges between the 1st hydration shell and the bulk were observed. These were consistent with a dissociative and dissociative interchange Eigen-Wilkins ligand exchange mechanism. Many transfers between the 2nd shell and bulk are detected for Ca2+ allowing an estimation of the 2nd shell mean residence time (MRT) of 4.6ps. Comparison of the Ca2+ hydration shell structure and dynamics with those of the recently reported Zn2+, Fe3+ and Al3+ cation species show that the 1st and 2nd hydration shell parameters, d(M-OI) distance, CNII, H-bond d(OI-OII) distance and %Tetrahedral structure are correlated with cation charge density, the ratio of cation charge (Z) and size (Rion). However, important exceptions are d(M-OII) and the 2nd shell Mean Residence Time (MRT). These differences are explained in terms of the 1st shell structure parameters (d(M-OI) distance

  3. Biogeochemistry of Mariana Islands coastal sediments: terrestrial influence on /gd13, Ash, CaCO3, Al, Fe, Si and P

    NASA Astrophysics Data System (ADS)

    Matson, Ernest A.

    1989-01-01

    Stable C isotope ratios (δ13C-PDB), percentages of organic matter, and HCl insoluble ash and soluble carbonates, extractable Fe, Al, Si and P were used to determine the distribution and accumulation of terrestrial material in reef-flat moats and lagoons of two high islands (Guam and Saipan) in the western tropical Pacific. Carbonate sediments of a reef-flat moat infiltrated by seepage of aquifer waters (but without surface runoff) were depleted in both P (by 38%) and 13C (by 41%) and enriched in Si (by 100%) relative to offshore lagoon sediments. Iron and ash accumulated in depositional regimes regardless of the occurrence of runoff but was depleted from coarse-grained carbonates in turbulent regimes. Aluminum (>ca. 10 to 20 μmol g-1), Fe (>ca. 1 to 3 μmol g-1) and ash (>0.5%) indicated terrigenous influence which was corroborated by depletions in both 13C and P. Low-salinity geochemical segregation, natural biochemical accumulation, as well as long-shore currents and eddies help sequester these materials nearshore.

  4. Modelling Equilibrium and Fractional Crystallization in the System MgO-FeO-CaO-Al2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Herbert, F.

    1985-01-01

    A mathematical modelling technique for use in petrogenesis calculations in the system MgO-FeO-CaO-Al2O3-SiO2 is reported. Semiempirical phase boundary and elemental distribution information was combined with mass balance to compute approximate equilibrium crystallization paths for arbitrary system compositions. The calculation is applicable to a range of system compositions and fractionation calculations are possible. The goal of the calculation is the computation of the composition and quantity of each phase present as a function of the degree of solidification. The degree of solidification is parameterized by the heat released by the solidifying phases. The mathematical requirement for the solution of this problem is: (1) An equation constraining the composition of the magma for each solid phase in equilibrium with the liquidus phase, and (2) an equation for each solid phase and each component giving the distribution of that element between that phase and the magma.

  5. Understanding the reentrant superconducting phase diagram of the iron pnictide Ca4Al2O6Fe2(As1-xPx)2: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Usui, Hidetomo; Suzuki, Katsuhiro; Kuroki, Kazuhiko; Takeshita, Nao; Shirage, Parasharam Maruti; Eisaki, Hiroshi; Iyo, Akira

    2013-05-01

    Recently, a very rich phase diagram has been obtained for an iron-based superconductor Ca4Al2O6Fe2(As1-xPx)2. It has been revealed that nodeless (x˜0) and nodal (x=1) superconductivity are separated by an antiferromagnetic phase. Here we study the origin of this peculiar phase diagram using a five orbital model constructed from first-principles band calculation, and applying the fluctuation exchange approximation assuming spin-fluctuation-mediated pairing. At x=1, there are three hole Fermi surfaces, but the most inner one around the wave vector (0,0) has strong dX2-Y2 orbital character, unlike in LaFeAsO, where the most inner Fermi surface has dXZ/YZ character. Since the Fermi surfaces around (0,0), (π,0), and (π,π) all have dX2-Y2 orbital character, the repulsive pairing interaction mediated by the spin fluctuations gives rise to a frustration in momentum space, thereby degrading superconductivity despite the bond angle being close to the regular tetrahedron angle. As x decreases and the bond angle is reduced, the inner hole Fermi surface disappears, but the frustration effect still remains because the top of the band with dX2-Y2 character lies close to the Fermi level. On the other hand, the loss of the Fermi surface itself gives rise to a very good nesting of the Fermi surface because the number of electron and hole Fermi surfaces are now the same. The pairing interaction frustration and the good nesting combined favors antiferromagnetism over superconductivity. Finally for x close to 0, the band sinks far below the Fermi level, reducing the frustration effect, so that superconductivity is enhanced. There, the Fermi surface nesting is also lost to some extent, once again favoring superconductivity over antiferromagnetism. To see whether the present theoretical scenario is consistent with the actual nature of the competition between superconductivity and antiferromagnetism, we also perform hydrostatic pressure experiment for Ca4Al2O6Fe2(As1-xPx)2. In the

  6. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  7. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  8. The crystal and magnetic structures of LaCa{sub 2}Fe{sub 3-x}M{sub x}O{sub 8} (M=Al, Ga, In)

    SciTech Connect

    Goossens, D.J.; Henderson, L.S.F.; Trevena, S.; Hudspeth, J.M.; Avdeev, M.; Hester, J.R.

    2012-12-15

    LaCa{sub 2}Fe{sub 3}O{sub 8} (A{sub 3}B{sub 3}O{sub 8}) is an example of a layered structure in that it consists of pairs of octahedral, perovskite-like layers alternating with a single tetrahedral layer. This work explores the doping of non-magnetic group 13 elements, M=Al, Ga and In, onto the B-site of LaCa{sub 2}Fe{sub 3-x}M{sub x}O{sub 8} as a function of x. The structural and magnetic effects are examined using a combination of neutron and X-ray diffraction. Solubility limits are established. It is found that for M=Ga the solubility limit occurs between x=1.0 and x=1.25, for the synthesis conditions used, while there is evidence for low (x<0.25) but non-zero substitution of Al. Structural refinements at x=1 suggest that Ga prefers neither the tetrahedral nor octahedral sites. The magnetic structure of LaCa{sub 2}Fe{sub 2}GaO{sub 8} has been examined using neutron diffraction at 3.2 K and room temperature. At low temperature the staggered moment per Fe{sup 3+} is 3.8(1){mu}{sub B} in LaCa{sub 2}Fe{sub 3}O{sub 8} and 4.8(1){mu}{sub B} in LaCa{sub 2}Fe{sub 2}GaO{sub 8}. The magnetic space group (P{sub 2b}2{sub 1} Prime ma Prime ) and moment direction (along c) does not appear to change with Ga substitution. - Graphical abstract: Solubility limits for group 13 elements in LaCa{sub 2}Fe{sub 3}O{sub 8}. Highlights: Black-Right-Pointing-Pointer Solubility limits for group 13 elements in LaCa{sub 2}Fe{sub 3}O{sub 8} are determined. Black-Right-Pointing-Pointer Evolution of the magnetic structure with temperature and doping is explored using neutron scattering. Black-Right-Pointing-Pointer The magnetic space group is quoted as P{sub 2b}2{sub 1}'ma' and the staggered moments are obtained for LaCa{sub 2}Fe{sub 3}O{sub 8} and LaCa{sub 2}Fe{sub 2}GaO{sub 8}.

  9. Perrierite-(La), (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8, a new mineral species from the Eifel volcanic district, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Blass, G.; Pekov, I. V.; Belakovskiy, D. I.; Van, K. V.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2012-12-01

    Non-metamict perrierite-(La) discovered in the Dellen pumice quarry, near Mendig, in the Eifel volcanic district, Rheinland-Pfalz, Germany has been approved as a new mineral species (IMA no. 2010-089). The mineral was found in the late assemblage of sanidine, phlogopite, pyrophanite, zirconolite, members of the jacobsite-magnetite series, fluorcalciopyrochlore, and zircon. Perrierite-(La) occurs as isolated prismatic crystals up to 0.5 × 1 mm in size within cavities in sanidinite. The new mineral is black with brown streak; it is brittle, with the Mohs hardness of 6 and distinct cleavage parallel to (001). The calculated density is 4.791 g/cm3. The IR spectrum does not contain absorption bands that correspond to H2O and OH groups. Perrierite-(La) is biaxial (-), α = 1.94(1), β = 2.020(15), γ = 2.040(15), 2 V meas = 50(10)°, 2 V calc = 51°. The chemical composition (electron microprobe, average of seven point analyses, the Fe2+/Fe3+ ratio determined from the X-ray structural data, wt %) is as follows: 3.26 CaO, 22.92 La2O3, 19.64 Ce2O3, 0.83 Pr2O2, 2.09 Nd2O3, 0.25 MgO, 2.25 MnO, 3.16 FeO, 5.28 Fe2O3, 2.59 Al2O3, 16.13 TiO2, 0.75 Nb2O5, and 20.06 SiO2, total is 99.21. The empirical formula is (La1.70Ce1.45Nd0.15Pr0.06Ca0.70)Σ4.06(Fe{0.53/2+}Mn0.38Mg0.08)Σ0.99(Ti2.44Fe{0.80/3+}Al0.62Nb0.07)Σ3.93Si4.04O22. The simplified formula is (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4(Si2O7)2O8. The crystal structure was determined by a single crystal. Perrierite-(La) is monoclinic, space group P21/ a, and the unit-cell dimensions are as follows: a =13.668(1), b = 5.6601(6), c = 11.743(1) Å, β = 113.64(1)°; V = 832.2(2) Å3, Z = 2. The strong reflections in the X-ray powder diffraction pattern are [ d, Å ( I, %) ( hkl)]: 5.19 (40) (110), 3.53 (40) (overline 3 11), 2.96 (100) (overline 3 13, 311), 2.80 (50) (020), 2.14 (50) (overline 4 22, overline 3 15, 313), 1.947 (50) (024, 223), 1.657 (40) (overline 4 07, overline 4 33, 331). The holotype specimen of perrierite-(La) is

  10. Solid solution between Al-ettringite and Fe-ettringite (Ca{sub 6}[Al{sub 1-x}Fe{sub x}(OH){sub 6}]{sub 2}(SO{sub 4}){sub 3}.26H{sub 2}O)

    SciTech Connect

    Moeschner, Goeril Lothenbach, Barbara; Winnefeld, Frank; Ulrich, Andrea; Figi, Renato; Kretzschmar, Ruben

    2009-06-15

    The solid solution between Al- and Fe-ettringite Ca{sub 6}[Al{sub 1-x}Fe{sub x}(OH){sub 6}]{sub 2}(SO{sub 4}){sub 3}.26H{sub 2}O was investigated. Ettringite phases were synthesized at different Al/(Al + Fe)-ratios (= X{sub Al,total}), so that X{sub Al} increased from 0.0 to 1.0 in 0.1 unit steps. After 8 months of equilibration, the solid phases were analyzed by X-ray diffraction (XRD) and thermogravimetric analysis (TGA), while the aqueous solutions were analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). XRD analyses of the solid phases indicated the existence of a miscibility gap between X{sub Al,total} = 0.3-0.6. Some of the XRD reflections showed two overlapping peaks at these molar ratios. The composition of the aqueous solutions, however, would have been in agreement with both, the existence of a miscibility gap or a continuous solid solution between Al- and Fe-ettringite, based on thermodynamic modeling, simulating the experimental conditions.

  11. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part II

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and the liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 have been determined experimentally in equilibrium with metallic iron. Specifically, the effects of Al2O3 concentrations in Imperial Smelting Furnace slags are identified, and the results are presented in the form of pseudo-ternary sections ZnO-“FeO”-(Al2O3 + CaO + SiO2) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 5.0 and 3.5, respectively. It was found that, in the presence of Al2O3, the spinel phase is formed, the spinel primary phase field expands, and the wustite and melilite primary phase fields are reduced in size with an increasing Al2O3 concentration. The implications of the findings to industrial practice are discussed.

  12. Menzerite-(Y) a New Species {(Y REE)(Ca Fe2plus)2}[(Mg Fe2plus)(Fe3plus Al)](Si3)O12 from a Felsic Granulite Parry Sound Ontario and a New Garnet End-member (Y2Ca)Mg2(SiO4)3

    SciTech Connect

    E Grew; J Marsh; M Yates; B Lazic; T Armbruster; A Locock; S Bell; M Dyar; H Bernhardt; O Medenbach

    2011-12-31

    Menzerite-(Y), a new mineral species, forms reddish brown cores, n = 1.844 (20), up to 70 {micro}m across, rimmed successively by euhedral almandine containing up to 2.7 wt% Y{sub 2}O{sub 3} and by K-feldspar in a felsic granulite on Bonnet Island in the interior Parry Sound domain, Grenville Orogenic Province, Canada. It is named after Georg Menzer (1897-1989), the German crystallographer who solved the crystal structure of garnet. Single-crystal X-ray-diffraction results yielded space group Ia3d, a = 11.9947(6) {angstrom}. An electron-microprobe analysis of the grain richest in Y (16.93 wt% Y{sub 2}O{sub 3}) gave the following formula, normalized to eight cations and 12 oxygen atoms: {l_brace}Y{sub 0.83}Gd{sub 0.01}Dy{sub 0.05}Ho{sub 0.02}Er{sub 0.07}Tm{sub 0.01}Yb{sub 0.06}Lu{sub 0.02}Ca{sub 1.37}Fe{sub 0.49}{sup 2+}Mn{sub 0.07}{r_brace} [Mg{sub 0.55}Fe{sub 0.42}{sup 2+}Fe{sub 0.58}{sup 3+}Al{sub 0.35} V{sub 0.01}Sc{sub 0.01}Ti{sub 0.08}](Si{sub 2.82}Al{sub 0.18})O{sub 12}, or {l_brace}(Y,REE)(Ca,Fe{sup 2+}){sub 2}{r_brace}[(Mg,Fe{sup 2+})(Fe{sup 3+},Al)](Si{sub 3})O{sub 12}. Synchrotron micro-XANES data gave Fe{sup 3+}/{Sigma}Fe = 0.56(10) versus 0.39(2) calculated from stoichiometry. The scattering power refined at the octahedral Y site, 17.68 epfu, indicates that a relatively light element contributes to its occupancy. Magnesium, as determined by electron-microprobe analyses, would be a proper candidate. In addition, considering the complex occupancy of this site, the average Y-O bond length of 2.0244(16) {angstrom} is in accord with a partial occupancy by Mg. The dominance of divalent cations with Mg > Fe{sup 2+} and the absence of Si at the octahedral Y site (in square brackets) are the primary criteria for distinguishing menzerite-(Y) from other silicate garnet species; the menzerite-(Y) end-member is {l_brace}Y{sub 2}Ca{r_brace}[Mg{sub 2}](Si{sub 3})O{sub 12}. The contacts of menzerite-(Y) with almandine are generally sharp and, in places, cuspate. It is

  13. Stable isotope studies of metasomatic Ca-Fe-Al-Si skarns and associated metamorphic and igneous rocks, Osgood Mountains, Nevada

    USGS Publications Warehouse

    Taylor, B.E.; O'Neil, J.R.

    1977-01-01

    Garnet-pyroxene skarns were formed 90 m.y. B.P. in the Osgood Mountains at or near contacts of grandiorite with calcareous rocks of the Cambrian Preble Formation. The metasomatic replacement followed contact metamorphic recrystallization of the Preble. The sources, temperature, and variation in H2O/CO2 ratios of the metasomatic fluid are interpreted from 269 analyses of oxygen, carbon, hydrogen, and sulfur isotopes in whole rocks, minerals and inclusion fluids. Skarns formed in three mineralogical stages. Oxygen isotope data indicate that temperatures during the crystallization of garnet, pyroxene and wollastonite (Stage I) were least 550 ?? C, and that the metasomatic fluid had an {Mathematical expression} ??? 0.035 in the massive skarns, and ??? 0.12 in vein skarns up to 3 cm thick. Pore fluids in isotopic equilibrium with garnet in calc-silicate metamorphic rocks, on the other hand, had {Mathematical expression} ??? 0.15. The metasomatic fluids of Stage I were derived primarily from the crystallizing magma. The isotopic composition of magmatic water was ??18O =+9.0, ??D= -30 to -45. Oxygen isotope temperatures of greater than 620 ?? C were determined for the granodiorite. Isotopic and chemical equilibria between mineral surfaces and the metasomatic fluid were approached simultaneously in parts of the skarn several meters or more apart, while isotopic and chemical disequilibria (i.e. zoning) have been preserved between 20 to 40 ??m-thick zones in grandite garnet. More Fe-, or andradite-rich garnet crystallized in more H2O-rich C-O-H fluids ( {Mathematical expression} ??? 0.01) than present with grossularite-rich garnet ( {Mathematical expression}??? 0.035). Stage II was marked by the replacement of garnet and pyroxene by quartz, amphibole, plagioclase, epidote, magnetite, and calcite. Many of the replacement reactions took place over a relatively narrow range in temperature (480-550 ?? C), as indicated by 18O fractionations between quartz and amphibole. Meteoric

  14. Calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O

    PubMed Central

    Lafuente, Barbara; Downs, Robert T.; Yang, Hexiong; Jenkins, Robert A.

    2014-01-01

    Calcioferrite, ideally Ca4MgFe3+ 4(PO4)6(OH)4·12H2O (tetra­calcium magnesium tetrairon(III) hexakis-phosphate tetra­hydroxide dodeca­hydrate), is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4 AB 4(PO4)6(OH)4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al), kingsmountite (A = Fe2+, B = Al), and zodacite (A = Mn2+, B = Fe3+), usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06)Mg1.01(Fe2.93Al1.07)(PO4)6(OH)4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/Al)O6 octa­hedra (site symmetries 2 and -1) sharing corners (OH) to form chains running parallel to [101]. These chains are linked together by PO4 tetra­hedra (site symmetries 2 and 1), forming [(Fe/Al)3(PO4)3(OH)2] layers stacking along [010], which are connected by (Ca/Sr)2+ cations (site symmetry 2) and Mg2+ cations (site symmetry 2; half-occupation). Hydrogen-bonding inter­actions involving the water mol­ecules (one of which is equally disordered over two positions) and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010). PMID:24764934

  15. Synthesis, characterization of double perovskite Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr, Al) materials via sol–gel auto-combustion and their catalytic properties

    SciTech Connect

    Feraru, S.; Samoila, P.; Borhan, A.I.; Ignat, M.; Iordan, A.R.; Palamaru, M.N.

    2013-10-15

    Double perovskite-type oxide Ca{sub 2}MSbO{sub 6} materials, where M = Dy, Fe, Cr, and Al, were prepared by using the sol–gel auto-combustion method. The role of different B-site cations on their synthesis, structures, morphologies and catalytic properties was investigated. The progress of double-perovskite type structure formation and the disappearance of the organic phases were monitored by infrared absorption spectroscopy (FTIR). Double perovskite oxide structures were evaluated using X-ray diffraction (XRD), while the microstructure of obtained compounds was studied using scanning electron microscopy (SEM). Also, BET surface areas were measured at the liquid nitrogen temperature by nitrogen adsorption. Catalytic properties of the obtained compounds were evaluated by test reaction of hydrogen peroxide decomposition. - Highlights: • Ca{sub 2}MSbO{sub 6} double perovskites were obtained by sol–gel auto-combustion method. • Ca{sub 2}MSbO{sub 6} (M = Dy, Fe, Cr and Al) as catalysts in H{sub 2}O{sub 2} decomposition • Strong relationship between particles' shape, BET area and catalytic performance • Ca{sub 2}FeSbO{sub 6} spherical grains show superior catalytic activity.

  16. Hillesheimite, (K,Ca,□)2(Mg,Fe,Ca,□)2[(Si,Al)13O23(OH)6](OH) · 8H2O, a new phyllosilicate mineral of the Günterblassite group

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Pekov, I. V.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.; Blass, G.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral, hillesheimite, has been found in the Graulai basaltic quarry, near the town of Hillesheim, the Eifel Mountains, Rhineland-Palatinate (Rheinland-Pfalz), Germany. It occurs in the late assemblage comprising nepheline, augite, fluorapatite, magnetite, perovskite, priderite, götzenite, lamprophyllite-group minerals, and åkermanite. Colorless flattened crystals of hillesheimite reaching 0.2 × 1 × 1.5 mm in size and aggregates of the crystals occur in miarolitic cavities in alkali basalt. The mineral is brittle, with Mohs' hard-ness 4. Cleavage is perfect parallel to (010) and distinct on (100) and (001). D calc = 2.174 g/cm3, D meas = 2.16(1) g/cm3. IR spectrum is given. Hillesheimite is biaxial (-), α = 1.496(2), β = 1.498(2), γ = 1.499(2), 2 V meas = 80°. The chemical composition (electron microprobe, mean of 4 point analyses, H2O determined from structural data, wt %) is as follows: 0.24 Na2O, 4.15 K2O, 2.14 MgO, 2.90 CaO, 2.20 BaO, 2.41 FeO, 15.54 Al2O3, 52.94 SiO2, 19.14 H2O, total is 101.65. The empirical formula is: K0.96Na0.08Ba0.16Ca0.56Mg0.58Fe{0.37/2+}[Si9.62Al3.32O23(OH)6][(OH)0.82(H2O)0.18] · 8H2O. The crystal structure has been determined from X-ray single-crystal diffraction data, R = 0.1735. Hillesheimite is orthorhombic, space group Pmmn, the unit-cell dimensions are: a = 6.979(11), b = 37.1815(18), c = 6.5296(15) Å; V=1694(3) Å3, Z = 2. The crystal structure is based on the block [(Si,Al)13O25(OH)4] consisting of three single tetrahedral layers linked via common vertices and is topologically identical to the triple layers in günterblassite and umbrianite. The strong reflections [ d Å ( I %)] in the X-ray powder diffraction pattern are: 6.857(58), 6.545(100), 6.284(53), 4.787(96), 4.499(59), 3.065(86), 2.958(62), 2.767(62). The mineral was named after its type locality. Type specimens are deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4174/1.

  17. A vibrational spectroscopic study of the phosphate mineral zanazziite - Ca2(MgFe2+)(MgFe2+Al)4Be4(PO4)6ṡ6(H2O)

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda M.; Dias Menezes Filho, Luiz Alberto

    2013-03-01

    Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Gerais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical formula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00ṡ5.69(H2O) and shows an intermediate member of the zanazziite-greinfeinstenite series, with predominance of zanazziite member. The molecular structure of the mineral zanazziite has been determined using a combination of Raman and infrared spectroscopy. A very intense Raman band at 970 cm-1 is assigned to the phosphate symmetric stretching mode whilst the Raman bands at 1007, 1047, 1064 and 1096 cm-1 are attributed to the phosphate antisymmetric stretching mode. The infrared spectrum is broad and the antisymmetric stretching bands are prominent. Raman bands at 559, 568, 589 cm-1 are assigned to the ν4 out of plane bending modes of the PO4 and HPO4 units. The observation of multiple bands supports the concept that the symmetry of the phosphate unit in the zanazziite structure is reduced in symmetry. Raman bands at 3437 and 3447 cm-1 are attributed to the OH stretching vibrations; Raman bands at 3098 and 3256 are attributed to water stretching vibrations. The width and complexity of the infrared spectral profile in contrast to the well resolved Raman spectra, proves that the pegmatitic phosphates are better studied with Raman spectroscopy.

  18. Rapidly solidified NiAl and FeAl

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Crimp, M. A.

    1984-01-01

    Melt spinning was used to produce rapidly solidified ribbons of the B2 intermetallics NiAl and FeAl. Both Fe-40Al and Fe-45Al possessed some bend ductility in the as spun condition. The bend ductility of Fe-40Al, Fe-45Al, and equiatomic NiAl increased with subsequent heat treatment. Heat treatment at approximately 0.85 T (sub m) resulted in significant grain growth in equiatomic FeAl and in all the NiAl compositions. Low bend ductility in both FeAl and NiAl generally coincided with intergranular failure, while increased bend ductility was characterized by increasing amounts of transgranular cleavage fracture.

  19. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-04-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  20. Effects of Al2O3 and MgO on Softening, Melting, and Permeation Properties of CaO-FeO-SiO2 on a Coke Bed

    NASA Astrophysics Data System (ADS)

    Ueda, Shigeru; Kon, Tatsuya; Miki, Takahiro; Kim, Sun-Joong; Nogami, Hiroshi

    2016-08-01

    In ironmaking, maintaining gas permeability in blast furnace with low coke rate operation is essential to reduce carbon emissions. The high pressure loss in the cohesive zone decreases the gas permeability and affects the productivity of blast furnace. In order to increase the gas permeability in the cohesive zone, the thickness of the cohesive layer should be decreased. For this purpose, increasing softening temperature and decreasing dripping temperature of the iron ore are desired. In this study, softening, melting, and permeation of SiO2-FeO-CaO-Al2O3-MgO on a coke bed were investigated. The oxide sample in a tablet form was heated under CO/CO2 atmosphere, and the shape of the tablet was observed. The softening and melting temperatures of the SiO2-FeO-CaO system changed with the addition of Al2O3 and MgO. Oxide tablets with and without Al2O3 softened below and above the solidus temperature, respectively. The melting temperatures varied with the ratio of CO/CO2 in the gas. The permeation temperature was independent of the melting temperature, but dependent on the wettability.

  1. Investigation of Liquidus Temperatures and Phase Equilibria of Copper Smelting Slags in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 System at PO2 10-8 atm

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Nexhip, Colin; George-Kennedy, David P.; Hayes, P. C.; Jak, E.

    2010-08-01

    Copper concentrates and fluxes can contain variable levels of SiO2, CaO, and MgO in addition to main components Cu, Fe, and S. Metal recovery, slag tapping, and furnace wall integrity all are dependent on phase equilibria and other properties of the phases and are functions of slag composition and operational temperature. Optimal control of the slag chemistry in the copper smelting, therefore, is essential for high recovery and productivity; this, in turn, requires detailed knowledge of the slag phase equilibria. The present work provides new phase equilibrium experimental data in the FeO-Fe2O3-SiO2-CaO-MgO-Al2O3 system at oxygen partial pressure of 10-8 atm within the range of temperatures and compositions directly relevant to copper smelting. For the range of conditions relevant to the Kennecott Utah Copper (South Magna, UT) smelting furnace, it was confirmed experimentally that increasing concentrations of MgO or CaO resulted in significant decreases of the tridymite liquidus temperature and in changes in the position of the tridymite liquidus in the direction of higher silica concentration; in contrast, the spinel liquidus temperatures increase significantly with the increase of MgO or CaO. Olivine and clinopyroxene precipitates appeared at high MgO concentrations in the liquid slag. The liquidus temperature in the spinel primary phase field was expressed as a linear function of 1/(wt pctFe/wt pctSiO2), wt pctCaO, wt pctMgO, and wt pctAl2O3. The positions of each of the liquidus points (wt pctFe)/(wt pctSiO2) at a fixed temperatures in the tridymite primary phase field were expressed as linear functions of wt pctCaO, wt pctMgO, and wt pctAl2O3.

  2. On the Production of He, Ne, and AR Isotopes from Mg, Al, Si, Ca, Fe, and NI in an Artificially Irradiated Meteoroid

    NASA Astrophysics Data System (ADS)

    Wieler, R.; Signet, P.; Rosel, R.; Herpers, U.; Lupke, M.; Lange, H.-J.; Michel, R.

    1992-07-01

    The production of He, Ne, and Ar isotopes from their main target elements was investigated in an experiment (1) by irradiating a 50-cm-diameter gabbro sphere isotropically with 1.6 GeV protons. The model meteoroid contained, among a large number of other targets, pure element foils of Mg, Al, Si, Fe, and Ni at 10 different depths and wollastonite targets at 3 different depths in central bores. After the irradiation, radionuclide production in these targets was measured by gamma spectrometry. Stable He, Ne, and Ar isotopes were measured in statically operated mass spectrometers. Here, we report the results for stable He, Ne, and Ar isotopes and for ^22Na. The production depth profiles vary widely, ranging from profiles with near-surface production 15% higher than in the center (^22Na from Fe) to such profiles with production in the center 45% higher than near the surface (^20Ne from Mg). The isotope ratios ^3He/^4He and ^3He/^21Ne in Mg, Al, Si and ^22Ne/^21Ne in Mg all decrease significantly with increasing shielding. The production rates of He, Ne, and ^22Na from Mg, Al, and Si in the 1600-MeV simulation experiment are 1.5 to 3 times higher than in the model meteoroid of similar size but irradiated earlier with 600 MeV protons (2). This increase is attributed to the increase of the production of secondary neutrons with primary energies rising from 600 to 1600 MeV. This effect also causes the depth dependences of isotope ratios observed in the 1600-MeV simulation that was not seen in the 600-MeV experiment. Model calculations of the production of He, Ne, and Ar isotopes and of ^22Na were performed for the artificial meteorites of the 600- and 1600 MeV-exposures as well as for real meteoroids. Production rates were calculated from depth-dependent p- and n- spectra, which were derived by Monte Carlo techniques using the HERMES code system (3), and from cross sections for the relevant nuclear reactions as described earlier (4). The cross section database for p

  3. Crystal structure of the mineral (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4}: a triclinic representative of the amphibole family

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.

    2012-05-15

    A mineral belonging to the amphibole family found at the Rothenberg paleovolcano (Eifel, Germany) was studied by single-crystal X-ray diffraction. The triclinic pseudomonoclinic unit-cell parameters are a = 5.3113(1) Angstrom-Sign , b = 18.0457(3) Angstrom-Sign ; c = 9.8684(2) Angstrom-Sign , {alpha} = 90.016(2) Degree-Sign , {beta} = 105.543(4) Degree-Sign , {gamma} = 89.985(2) Degree-Sign . The structure was solved by direct methods in sp. gr. P1 and refined to the R factor of 2.7% based on 6432 reflections with |F| > 3{sigma}(F) taking into account twinning. The mineral with the idealized formula (Na,Ca,K){sub 2}(Ca,Na){sub 4}(Mg,Fe){sub 5}(Mg,Fe,Ti){sub 5}[Si{sub 12}Al{sub 4}O{sub 44}](F,O){sub 4} has some symmetry and structural features that distinguish it from other minerals of this family.

  4. An experimental study of the Fe oxidation states in garnet and clinopyroxene as a function of temperature in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2: implications for garnet-clinopyroxene geothermometry

    NASA Astrophysics Data System (ADS)

    Purwin, Horst; Lauterbach, Stefan; Brey, Gerhard P.; Woodland, Alan B.; Kleebe, Hans-Joachim

    2013-04-01

    Samples with eclogitic composition in the system CaO-FeO-Fe2O3-MgO-Al2O3-SiO2 were produced from various kinds of starting materials held in graphite-lined Pt capsules at a pressure of 2.5-3.0 GPa and temperatures of 800-1,300 °C using a piston-cylinder or Belt apparatus. Garnets and clinopyroxenes were characterized by analytical transmission electron microscopy and electron probe micro-analysis (EPMA). Fe3+/ΣFe ratios determined by electron energy-loss spectroscopy (EELS) decrease in clinopyroxene from 22.2 ± 3.4 % at 800 °C to 13.3 ± 5.4 % at 1,300 °C, while in garnet, they vary between 10.8 ± 1.5 and 15.4 ± 4.7 %, respectively. Temperature estimates according to Krogh (Contrib Mineral Petrol 99:44-48, 1988) reproduce the experimental temperature to ±60 °C without systematic deviations if total iron is used in the calculation. If only the Fe2+ content is used, which was obtained by combining EPMA and EELS results, the experimental temperature is underestimated by 33 °C on average at 800-1,200 °C and overestimated by 77 °C on average at 1,300 °C. These systematic deviations can be explained by the temperature-dependent ratio of Fe2+/ΣFe in garnet divided by that in clinopyroxene. Since the difference between the calculated and experimental temperature is relatively small, a Fe2+-based recalibration of the thermometer appears not to be necessary for the investigated system in the range of pressure, temperature and composition covered by the experiments of this study.

  5. Thermoelectric properties of metallic antiperovskites AXD3 (A=Ge, Sn, Pb, Al, Zn, Ga; X=N, C; D=Ca, Fe, Co)

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Ahmad, Iftikhar; Asadabadi, Saeid Jalali; Ahmad, Rashid; Maqbool, Muhammad

    2015-05-01

    In this paper we communicate the thermoelectric properties of carbon and nitrogen based metallic antiperovskites ANCa3 (A=Ge, Sn, Pb), BCFe3 (B=Al, Zn, Ga) and SnCD3 (D=Co and Fe) using the ab-initio calculations to explore efficient metallic thermoelectric materials. The consistency of the calculated results of SnCCo3 and SnCFe3 with the experimental results confirms the reliability of our theoretical calculations for the other investigated metallic antiperovskites. The results indicate that the thermopower of these materials can be enhanced by changing the chemical potential. The dimensionless figure of merit for the three nitrides approaches 0.96 at room temperature, which proves the usefulness of these materials in thermoelectric generators. Furthermore, the thermal conductivity is minimum at room temperature for chemical potential values between -0.25 μ(eV) and 0.25 μ(eV), and provides the maximum values of dimensionless figure of merit in this range. The striking feature of these studies is identifying a metallic compound, SnNCa3, with the highest value of Seebeck coefficient at room temperature out of all metals. The results anticipate that these materials could be efficient in thermoelectric generators; however, this needs experimental verification.[Figure not available: see fulltext.

  6. Bulk modulus and specific heat of B-site doped (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B=Fe, Cr, Ru, Al, Ga)

    NASA Astrophysics Data System (ADS)

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-01

    Specific heat (Cp) thermal expansion (α) and Bulk modulus (BT) of lightly doped Rare Earth manganites (La0.3Pr0.7)0.65Ca0.35Mn1-xBxO3 (B3+ = Fe3+,Cr3+,Ga3+,Al3+,Ru4+); (0.3Ca0.35Mn0.97Fe0.03O3 as a function of temperature (10K≤T≤ 200K) is found to be in agreement with the published data. The trend of variation of Debye temperature with B-site cationic radius is predicted probably for the first time for the B-site doped rare earth manganites.

  7. Orientation relationship of eutectoid FeAl and FeAl2

    PubMed Central

    Scherf, A.; Kauffmann, A.; Kauffmann-Weiss, S.; Scherer, T.; Li, X.; Stein, F.; Heilmaier, M.

    2016-01-01

    Fe–Al alloys in the aluminium range of 55–65 at.% exhibit a lamellar microstructure of B2-ordered FeAl and triclinic FeAl2, which is caused by a eutectoid decomposition of the high-temperature Fe5Al8 phase, the so-called ∊ phase. The orientation relationship of FeAl and FeAl2 has previously been studied by Bastin et al. [J. Cryst. Growth (1978 ▸), 43, 745] and Hirata et al. [Philos. Mag. Lett. (2008 ▸), 88, 491]. Since both results are based on different crystallographic data regarding FeAl2, the data are re-evaluated with respect to a recent re-determination of the FeAl2 phase provided by Chumak et al. [Acta Cryst. (2010 ▸), C66, i87]. It is found that both orientation relationships match subsequent to a rotation operation of 180° about a 〈112〉 crystallographic axis of FeAl or by applying the inversion symmetry of the FeAl2 crystal structure as suggested by the Chumak data set. Experimental evidence for the validity of the previously determined orientation relationships was found in as-cast fully lamellar material (random texture) as well as directionally solidified material (∼〈110〉FeAl || solidification direction) by means of orientation imaging microscopy and global texture measurements. In addition, a preferential interface between FeAl and FeAl2 was identified by means of trace analyses using cross sectioning with a focused ion beam. On the basis of these habit planes the orientation relationship between the two phases can be described by (01)FeAl || (114) and [111]FeAl || [10]. There is no evidence for twinning within FeAl lamellae or alternating orientations of FeAl lamellae. Based on the determined orientation and interface data, an atomistic model of the structure relationship of Fe5Al8, FeAl and FeAl2 in the vicinity of the eutectoid decomposition is derived. This model is analysed with respect to the strain which has to be accommodated at the interface of FeAl and FeAl2. PMID:27047304

  8. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  9. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  10. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  11. Modulus measurements in ordered Co-Al, Fe-Al, and Ni-Al alloys

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The composition and/or temperature dependence of the dynamic Young's modulus for the ordered B2 Co-Al, Fe-Al, and Ni-Al aluminides has been investigated using the piezoelectric ultrasonic composite oscillator technique (PUCOT). The modulus has been measured in the composition interval 48.49 to 52.58 at. pct Co, 50.87 to 60.2 at. pct Fe, and 49.22 to 55.95 at. pct Ni for Co-Al, Fe-Al, and Ni-Al, respectively. The measured values for Co-Al are in the temperature interval 300 to 1300 K, while those for the other systems are for ambient temperature only. The data points show that Co-Al is stiffer than Fe-Al, which is stiffer than Ni-Al. The data points for Fe-Al and Ni-Al are slightly higher than those reported in the literature.

  12. The Ca II triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe

    NASA Astrophysics Data System (ADS)

    Da Costa, G. S.

    2016-01-01

    Measurements are presented and analysed of the strength of the Ca II triplet lines in red giants in Galactic globular and open clusters, and in a sample of red giants in the LMC disc that have significantly different [Ca/Fe] abundance ratios to the Galactic objects. The Galactic objects are used to generate a calibration between Ca II triplet line strength and [Fe/H], which is then used to estimate [Fe/H]CaT for the LMC stars. The values are then compared with the [Fe/H]spec determinations from high-dispersion spectroscopy. After allowance for a small systematic offset, the two abundance determinations are in excellent agreement. Further, as found in earlier studies, the difference is only a very weak function of the [Ca/Fe] ratio. For example, changing [Ca/Fe] from +0.3 to -0.2 causes the Ca II-based abundance to underestimate [Fe/H]spec by only ˜0.15 dex, assuming a Galactic calibration. Consequently, the Ca II triplet approach to metallicity determinations can be used without significant bias to study stellar systems that have substantially different chemical evolution histories.

  13. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  14. On the crack growth resistance and strength of the B2 iron aluminides Fe-40Al, Fe-45Al, and Fe-10Ni-40Al (at. %)

    SciTech Connect

    Schneibel, J.H.; Maziasz, P.J.

    1994-09-01

    The crack growth resistance and yield strength of the B2 iron aluminides Fe-40Al, Fe-45Al, are Fe-10Ni-40Al (at. %) have been investigated at room temperature laboratory air. After fast cooling from 1273 K, Fe-45Al and Fe-10Ni-40Al are much stronger than Fe-40Al, and exhibit considerably lower crack growth resistance. The crack growth resistance decreases with decreasing crack propagation velocity. Low crack propagation velocities favor intergranular fracture, whereas high velocities can lead to significant contributions from transgranular fracture. Boron additions to Fe-40Al and Fe-10Ni-40Al improve the crack growth resistance, reduce its dependence on the crack propagation velocity, and cause the path to be predominantly transgranular. In a plot of fracture toughness versus yield strength, the properties of the iron aluminides are similar to those of typical aluminum alloys.

  15. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    NASA Astrophysics Data System (ADS)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  16. Thermodynamic Optimization of the Ca-Fe-O System

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Jak, Evgueni

    2016-02-01

    The present study deals with the thermodynamic optimization of the Ca-Fe-O system. All available phase equilibrium and thermodynamic experimental data are critically assessed to obtain a self-consistent set of model parameters for the Gibbs energies of all stoichiometric and solution phases. Model predictions of the present study are compared with previous assessments. Wüstite and lime are described as one monoxide solution with a miscibility gap, using the random mixing Bragg-Williams model. The solubility of CaO in the "Fe3O4" magnetite (spinel) phase is described using the sublattice model based on the Compound Energy Formalism. The effect of CaO on the stability of the spinel phase is evaluated. The liquid CaO-FeO-Fe2O3 slag is modeled using the Modified Quasichemical Formalism. Liquid metal phase is described as a separate solution by an associate model.

  17. Thermal mixing of Al-Fe multilayers

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Mendoza Zélis, L.; Sánchez, F. H.; Traverse, A.

    1994-12-01

    Al-Fe multilayers have been mixed by thermal treatment and their evolution followed by conversion electron Mössbauer spectroscopy. The initial and final states have been characterized by Rutherford backscattering spectrometry. The results are compared with those previously obtained in the ion beam mixing of similar systems.

  18. Atomic data from the iron project. 3: Rate coefficients for electron impact excitation of boron-like ions: Ne VI, Mg VIII, Al IX, Si X, S XII, Ar XIV, Ca XVI and Fe XXII

    NASA Technical Reports Server (NTRS)

    Zhang, Hong Lin; Graziani, Mark; Pradhan, Anil K.

    1994-01-01

    Collison strengths and maxwellian averaged rate coefficients have been calculated for the 105 transitions among all 15 fine structure levels of the 8 LS terms 2s(sup 2) 2 P(P-2(sup 0 sub 1/, 3/2)), 2s2p(sup 2)(P-4(sub 1/2,3/2,5/2), D-2(sub 3/2, 5/2), S-2(sub 1/2), P-2(sub 1/2, 3/2)), 2p(sup 3)(S-4(sup 0)(sub 3/2), D-2(sup 0 sub 3/2, 5/2), P-2(sup 0 sub 1/2, 3/2)) in highly- charged B-like Ne, Mg, Al, Si, S, Ar, Ca and Fe. Rate coefficients have been tabulated at a wide range of temperatures, depending on the ion charge and abundance in plasma sources. Earlier work for O IV has also been extended to include the high temperature range. A brief discussion of the calculations, sample results, and comparison with earlier works is also given. While much of the new data should be applicable to UV spectral diagnostics, the new rates for the important ground state fine structure transition P-2(sup 0 sub 1/2)-P-2(sup 0 sub 3/2) should result in significant revision of the IR cooling rates in plasmas where B-like ions are prominent constituents, since the new rate coefficients are generally higher by several factors compared with the older data.

  19. Günterblassite, (K,Ca)3 - x Fe[(Si,Al)13O25(OH,O)4] · 7H2O, a new mineral: the first phyllosilicate with triple tetrahedral layer

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Aksenov, S. M.; Pekov, I. V.; Zubkova, N. V.; Britvin, S. N.; Belakovskiy, D. I.; Schüller, W.; Ternes, B.

    2012-12-01

    A new mineral, günterblassite, has been found in the basaltic quarry at Mount Rother Kopf near Gerolstein, Rheinland-Pfalz, Germany as a constituent of the late assemblage of nepheline, leucite, augite, phlogopite, åkermanite, magnetite, perovskite, a lamprophyllite-group mineral, götzenite, chabazite-K, chabazite-Ca, phillipsite-K, and calcite. Günterblassite occurs as colorless lamellar crystals up to 0.2 × 1 × 1.5 mm in size and their clusters. The mineral is brittle, with perfect cleavage parallel to (001) and less perfect cleavage parallel to (100) and (010). The Mohs hardness is 4. The calculated and measured density is 2.17 and 2.18(1) g/cm3, respectively. The IR spectrum is given. The new mineral is optically biaxial and positive as follows: α = 1.488(2), β = 1.490(2), γ = 1.493(2), 2 V meas = 80(5)°. The chemical composition (electron microprobe, average of seven point analyses, H2O is determined by gas chromatography, wt %) is as follows: 0.40 Na2O, 5.18 K2O, 0.58 MgO, 3.58 CaO, 4.08 BaO, 3.06 FeO, 13.98 Al2O3, 52.94 SiO2, 15.2 H2O, and the total is 98.99. The empirical formula is Na0.15K1.24Ba0.30Ca0.72Mg0.16F{0.48/2+}[Si9.91Al3.09O25.25(OH)3.75] · 7.29H2O. The crystal structure has been determined from a single crystal, R = 0.049. Günterblassite is orthorhombic, space group Pnm21; the unit-cell dimensions are a = 6.528(1), b = 6.970(1), c = 37.216(5) Å, V = 1693.3(4) Å3, Z = 2. Günterblassite is a member of a new structural type; its structure is based on three-layer block [Si13O25(OH,O)4]. The strong reflections in the X-ray powder diffraction pattern [ d Å ( I, %) are as follows: 6.532 (100), 6.263 (67), 3.244 (49), 3.062 (91), 2.996 (66), 2.955 (63), and 2.763 (60). The mineral was named in honor of Günter Blass (born in 1943), a well-known amateur mineralogist and specialist in electron microprobe and X-ray diffraction. The type specimen of günterblassite is deposited in the collections of the Fersman Mineralogical Museum of the

  20. Boron strengthening in FeAl

    SciTech Connect

    Baker, I.; Li, X.; Xiao, H.; Klein, O.; Nelson, C.; Carleton, R.L.; George, E.P.

    1998-11-01

    The effect of boron on the strength of B2-structured FeAl is considered as a function of composition, grain size and temperature. Boron does not affect the concentrations of antisite atoms or vacancies present, with the former increasing and the latter decreasing with increasing deviation from the stoichiometric composition. When vacancies are absent, the strength increase per at. % B per unit lattice strain, {Delta}{sigma}/({Delta}c x {epsilon}) increases with increasing aluminum concentration, but when vacancies are present (>45 at. % Al), {Delta}{sigma}/({Delta}c x {epsilon}) decreases again. Boron increases grain size strengthening in FeAl. B strengthening is roughly independent of temperature up to the yield strength peak but above the point, when diffusion-assisted deformation occurs, boron strengthening increases dramatically.

  1. AlN/Fe/AlN nanostructures for magnetooptic magnetometry

    SciTech Connect

    Lišková-Jakubisová, E. Višňovský, Š.; Široký, P.; Hrabovský, D.; Pištora, J.

    2014-05-07

    AlN/Fe/AlN/Cu nanostructures with ultrathin Fe grown by sputtering on Si substrates are evaluated as probes for magnetooptical (MO) mapping of weak currents. They are considered for a laser wavelength of λ = 410 nm (3.02 eV) and operate at oblique light incidence angles, φ{sup (0)}, to enable detection of both in-plane and out-of-plane magnetization. Their performance is evaluated in terms of MO reflected wave electric field amplitudes. The maximal MO amplitudes in AlN/Fe/AlN/Cu are achieved by a proper choice of layer thicknesses. The nanostructures were characterized by MO polar Kerr effect at φ{sup (0)} ≈ 5° and longitudinal Kerr effect spectra (φ{sup (0)} = 45°) at photon energies between 1 and 5 eV. The nominal profiles were refined using a model-based analysis of the spectra. Closed form analytical expressions are provided, which are useful in the search for maximal MO amplitudes.

  2. Room temperature luminescence and ferromagnetism of AlN:Fe

    NASA Astrophysics Data System (ADS)

    Li, H.; Cai, G. M.; Wang, W. J.

    2016-06-01

    AlN:Fe polycrystalline powders were synthesized by a modified solid state reaction (MSSR) method. Powder X-ray diffraction and transmission electron microscopy results reveal the single phase nature of the doped samples. In the doped AlN samples, Fe is in Fe2+ state. Room temperature ferromagnetic behavior is observed in AlN:Fe samples. Two photoluminescence peaks located at about 592 nm (2.09 eV) and 598 nm (2.07 eV) are observed in AlN:Fe samples. Our results suggest that AlN:Fe is a potential material for applications in spintronics and high power laser devices.

  3. Structure refinements of members in the brownmillerite solid solution series Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3

    SciTech Connect

    Stoeber, Stefan; Schorr, Susan; Poellmann, Herbert

    2013-01-15

    Four different brownmillerite solid solutions Ca{sub 2}Al{sub x}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}O{sub 5+{delta}} with 1/2{<=}x{<=}4/3 were synthesized by a solid oxide ceramic method. The phases crystallize either in a primitive centered orthorhombic cell with space group Pnma or in a body centered cell with space group I2mb dependent on the aluminum concentration present in the solid solution. Mn{sup 3+} ions occupy exclusively site 4a coordinated by six oxygen anions. Increasing Mn{sup 3+} concentrations cause a remarkable distortion of the octahedron and indirectly of the tetrahedron, resulting in twisted and tilted octahedral layers as well as buckled tetrahedral chains. The influences are discussed on the site 4a of trivalent manganese due to its Jahn-Teller activity, with regard to the occupation of octahedron and tetrahedron with different sized iron and aluminum ions. - Graphical Abstract: The coupled substitution Fe{sup 3+}>Mn{sup 3+}+Fe{sup 3+} <=>2 Al{sup 3+} in brownmillerite phases (Ca{sub 2}(Fe{sub 0.5}Mn{sub 0.5}){sub 2-x}Al{sub x}O{sub 5+{delta}}) changes predominantly their structural properties, which is essential for the hydration performance of the calcium aluminate cement, where brownmillerites occur as clinker phases. Highlights: Black-Right-Pointing-Pointer We present structural data of four Ca-Al-Fe-Mn-brownmillerites. Black-Right-Pointing-Pointer Mn{sup 3+}-ions occupy exclusively the octahedrally coordinated site 0,0,0. Black-Right-Pointing-Pointer Bonds and angles of the octahedrally coordinated site are distorted strongly. Black-Right-Pointing-Pointer Mn{sup 3+}-ions influence indirectly the shape of the tetrahedron. Black-Right-Pointing-Pointer Mn{sup 3+}-ions stabilize Pnma instead of I2mb in Ca-Al-Fe-Mn-brownmillerites.

  4. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  5. Moessbauer effect and X-ray distribution function analysis in complex Na{sub 2}O-CaO-ZnO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses and glass-ceramics

    SciTech Connect

    Romero, M.; Rincon, J.M.; Musik, S.; Kozhukharov, V.

    1999-05-01

    Moessbauer spectroscopy at room temperature was carried out to determine the state of iron ions in complex glasses and glass-ceramics in the SiO{sub 2}-CaO-ZnO-Na{sub 2}O-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3} system. Isomer shift values of the glasses suggest that Fe{sup 3+} and Fe{sup 2+} are in tetrahedral and octahedral coordination, respectively. The spectrum of the glass-ceramic shows that about 60 wt% total iron is in the magnetite phase. The Fe{sup +3}/Fe{sup +2} ratio varies with the total iron oxide content of the glasses, indicating that the vitreous network is more distorted when the iron content is greater. X-ray diffraction measurements were carried out to obtain the radial distribution function (RDF). The interatomic distances for Si-Si and Si-O have been determined. The complex composition of these glasses does not allow the estimation of Al-O and Fe-O distances.

  6. Synthesis and characterization of polycrystalline brownmillerite cobalt doped Ca2Fe2O5

    NASA Astrophysics Data System (ADS)

    Dhankhar, Suchita; Bhalerao, Gopal; Baskar, K.; Singh, Shubra

    2016-05-01

    Brownmillerite compounds with general formula A2BB'O5 (BB' = Mn, Al, Fe, Co) have attracted attention in wide range of applications such as in solid oxide fuel cell, oxygen separation membrane and photocatalysis. Brownmillerite compounds have unique structure with alternate layers of BO6 octahedral layers and BO4 tetrahedral layers. Presence of dopants like Co in place of Fe increases oxygen vacancies. In the present work we have synthesized polycrystalline Ca2Fe2O5 and Ca2Fe1-xCoxO5 (x = 0.01, 0.03) by citrate combustion route. The as prepared samples were characterized by XRD using PANalytical X'Pert System, DRS (Diffuse reflectance spectroscopy) and SEM (Scanning electron microscopy).

  7. Catalytic Methane Decomposition over Fe-Al2 O3.

    PubMed

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-06-01

    The presence of a Fe-FeAl2 O4 structure over an Fe-Al2 O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750 °C, Fe-Al2 O3 prepared by means of a fusion method, containing 86.5 wt % FeAl2 O4 and 13.5 wt % Fe(0) , showed a stable CMD activity at 750 °C for as long as 10 h. PMID:27159367

  8. Ferromagnetic Fe2CrAl Nanowires

    NASA Astrophysics Data System (ADS)

    Dulal, Rajendra; Dahal, Bishnu; Pegg, Ian L.; Philip, John

    Heusler alloy Fe2CrAl (FCA) nanowires were grown on silicon substrates. Nanowires have diameters in the range 50 to 200 nm and lengths up to 100 µm. They exhibit cubic L21 and A2 type structure with a space group, Pm m. Magnetic characterization reveals that they display ferromagnetic behavior and has a Curie temperature above 400 K. Magnetic behavior of FCA nanowires is different from the reported bulk behavior. Bulk FCA with L21 structure has a Curie temperature around 274 K. National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  9. Overview of the development of FeAl intermetallic alloys

    SciTech Connect

    Maziasz, P.J.; Liu, C.T.; Goodwin, G.M.

    1995-09-01

    B2-phase FeAl ordered intermetallic alloys based on an Fe-36 at.% Al composition are being developed to optimize a combination of properties that includes high-temperature strength, room-temperature ductility, and weldability. Microalloying with boron and proper processing are very important for FeAl properties optimization. These alloys also have the good to outstanding resistance to oxidation, sulfidation, and corrosion in molten salts or chlorides at elevated temperatures, characteristic of FeAl with 30--40 at.% Al. Ingot- and powder-metallurgy (IM and PM, respectively) processing both produce good properties, including strength above 400 MPa up to about 750 C. Technology development to produce FeAl components for industry testing is in progress. In parallel, weld-overlay cladding and powder coating technologies are also being developed to take immediate advantage of the high-temperature corrosion/oxidation and erosion/wear resistance of FeAl.

  10. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    NASA Astrophysics Data System (ADS)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  11. 57Fe Moessbauer Spectroscopic Investigations on the Brownmillerite Series Ca2(Fe2-xAlx)O5

    SciTech Connect

    Redhammer, G.J.; Roth, G.

    2005-04-26

    Several compounds along the Brownmillerite solid solution series Ca2Fe2-xAlxO5 with 0.0 {<=} x {<=} 1.34 have been synthesized by slow cooling from the melt and subsequent quenching. These samples were studied by Moessbauer spectroscopy at different absorber temperatures. Samples up to x = 1.00 are antiferromagnetically ordered at room temperature and can be evaluated by one octahedral and one tetrahedral magnetically split subspectra. With increasing temperature or increasing Al3+-content, respectively, the local magnetic fields decrease and finally collapse (TN = 518 K for x = 0.0 and TN = 298 K for x = 1.06, respectively). Despite the change of space group symmetry, quadrupole splittings at both positions increase almost linearly with increasing Al3+-content. This can be referred to structural changes reported. Even at low Al3+-contents, there always is a distribution of Fe3+ and Al3+ over the tetrahedral and octahedral positions in contrast to earlier results. Fe3+ prefers the octahedral and Al3+ prefers the tetrahedral positions.

  12. First principles investigation of Fe and Al bearing phase H

    NASA Astrophysics Data System (ADS)

    Tsuchiya, J.; Tsuchiya, T.

    2015-12-01

    The global circulation of water in the earth is important to investigate the evolution history and dynamics of the earth, since the physical properties (e.g. atomic diffusivity, melting temperature, electrical conductivity and seismic velocities) of the constituent minerals are considerably changed by the presence of water. It has been believed that water is carried into the deep Earth's interior by hydrous minerals such as the dense hydrous magnesium silicates (DHMSs) which are also known as alphabet phases (phase A, superhydrous phase B, and phase D etc.) in the descending cold plate. It has been thought that the relay of these hydrous phases was terminated at ~1200 km depth by the dehydration of phase D which was the highest pressure phase of DHMSs. Recently, we have theoretically predicted the high pressure phase of phase D and experimentally confirmed the existence of this new DHMS in lower mantle pressure conditions above ~45 GPa. This phase has MgSiO4H2chemical composition and named as phase H. At the lower mantle pressure conditions, Al and H-bearing SiO2, δ-AlOOH, ɛ-FeOOH and phase H may be the relevant hydrous phases in the subducting slabs. Interestingly, the crystal structure of these hydrous phases are almost same and have CaCl2type structure. This suggests that these hydrous phases may potentially be able to make the wide range of solid solution. Some experimental studies already reported that Al preferentially partitioned into phase H and the stability of phase H drastically increased by incorporation of Al (Nishi et al. 2014, Ohira et al. 2014). The density of subducted MORB is reported to be denser than that of pyrolite in the lower mantle (e.g. Kawai et al. 2009). Therefore, there is a possibility that phase H containing Al and Fe in subducted MORB survive down to the bottom of lower mantle and the melting of phase H at the core mantle boundary may contribute to the cause of ultra-low velocity zones. In this study, we further extends our

  13. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  14. Long range order and vacancy properties in Al-rich Fe{sub 3}Al and Fe{sub 3}Al(Cr) alloys

    SciTech Connect

    Kim, S.M.; Morris, D.G.

    1998-05-01

    Neutron powder diffraction measurements have been carried out in situ from room temperature to about 100 C in Fe28Al (28 at.% Al), Fe32.5Al (32.5 at.% Al) and Fe28Al15Cr (28 at.% Al, 5 at.% Cr) alloys. X-ray diffraction and TEM studies provided supporting information. The data were analyzed to obtain information about the temperature dependence of the DO{sub 3} and B2 long range order parameters, the location of the Cr atoms and their effect on the ordering energies, and on the vacancy formation and migration properties in Fe28Al and Fe32.5Al alloys. The location of the ternary alloying addition in DO{sub 3} and B2 ordered Al-rich Fe{sub 3}Al is shown to be consistent with considerations of interatomic bond energies.

  15. Itinerant magnetism in CaMn2Al10

    NASA Astrophysics Data System (ADS)

    Simonson, Jack; Steinke, Lucia; Zellman, Shelby; Kistner-Morris, Jedediah; Puri, Akshat; Andrews, Evon; Aronson, Meigan

    2015-03-01

    We report the synthesis and basic properties of CaMn2Al10, a new itinerant magnet that is nearly isostructural with the known quantum critical compound YFe2Al10. Magnetic susceptibility measurements performed on single crystals reveal a cusp at 2 K. Electrical resistivity measurements similarly have a maximum at this temperature, and heat capacity measurements show a broad peak with total entropy of ~ 10 % R ln2. These results together with those of neutron diffraction measurements suggest that CaMn2Al10 is weakly magnetic and potentially close to a quantum critical point. Research supported by a DOD National Security Science and Engineering Fellowship via the AFOSR.

  16. Microstructure of the Al-La-Ni-Fe system

    SciTech Connect

    Vasil’ev, A. L.; Ivanova, A. G.; Bakhteeva, N. D.; Kolobylina, N. N.; Orekhov, A. S.; Presnyakov, M. Yu.; Todorova, E. V.

    2015-01-15

    The microstructure of alloys based on the Al-La-Ni-Fe system, which are characterized by a unique ability to form metal glasses and nanoscale composites in a wide range of compositions, has been investigated. Al{sub 85}Ni{sub 7}Fe{sub 4}La{sub 4} and Al{sub 85}Ni{sub 9}Fe{sub 2}La{sub 4} alloys have been analyzed by electron microscopy (including high-resolution scanning transmission electron microscopy), energy-dispersive X-ray microanalysis, electron diffraction (ED), and X-ray diffraction (XRD). It is found that, along with fcc Al and Al{sub 4}La (Al{sub 11}La{sub 3}) particles, these alloys contain a ternary phase Al{sub 3}Ni{sub 1−x}Fe{sub x} (sp. gr. Pnma) isostructural to the Al{sub 3}Ni phase and a quaternary phase Al{sub 8}Fe{sub 2−x}Ni{sub x}La isostructural to the Al{sub 8}Fe{sub 2}Eu phase (sp. gr. Pbam). The unit-cell parameters of the Al{sub 3}Ni{sub 1−x}Fe{sub x} and Al{sub 8}Fe{sub 2−x}Ni{sub x}La compounds, determined by ED and refined by XRD, are a = 0.664(1) nm, b = 0.734(1) nm, and c = 0.490(1) nm for Al{sub 3}Ni{sub 1−x}Fe{sub x} and a = 1.258(3) nm, b = 1.448(3) nm, and c = 0.405(8) nm for Al{sub 8}Fe{sub 2−x}Ni{sub x}La. In both cases Ni and Fe atoms are statistically arranged, and no ordering is found. Al{sub 8}Fe{sub 2−x}Ni{sub x}La particles contain inclusions in the form of Al{sub 3}Fe δ layers.

  17. Chemical ordering and large tunnel magnetoresistance in Co2FeAl/MgAl2O4/Co2FeAl(001) junctions

    NASA Astrophysics Data System (ADS)

    Scheike, Thomas; Sukegawa, Hiroaki; Inomata, Koichiro; Ohkubo, Tadakatsu; Hono, Kazuhiro; Mitani, Seiji

    2016-05-01

    Epitaxial magnetic tunnel junctions (MTJs) with a Co2FeAl/CoFe (0.5 nm)/MgAl2O4/Co2FeAl(001) structure were fabricated by magnetron sputtering. High-temperature in situ annealing led to a high degree of B2-order in the Co2FeAl layers and cation order of the MgAl2O4 barrier. Large tunnel magnetoresistance (TMR) of up to 342% was obtained at room temperature (616% at 4 K), in contrast to the TMR ratio ( ≲ 160%) suppressed by the band-folding effect in Fe/cation-ordered MgAl2O4/Fe MTJs. The present study reveals that the high degree of B2-order and the resulting high spin polarization in the Co2FeAl electrodes enable us to bypass the band-folding problem in spinel barriers.

  18. Effect of Al2O3 on the Viscosity and Structure of CaO-SiO2-MgO-Al2O3-FetO Slags

    NASA Astrophysics Data System (ADS)

    Wang, Zhanjun; Sun, Yongqi; Sridhar, Seetharaman; Zhang, Mei; Guo, Min; Zhang, Zuotai

    2015-04-01

    The present paper provided a fundamental investigation on the effect of Al2O3 on the viscosity and structure of CaO-SiO2-MgO-Al2O3-FetO slags for the purpose of efficiently recycling the valuable elements from the steelmaking slags. The results show that the viscosity of CaO-SiO2-Al2O3-MgO-FetO slags slightly increases with increasing Al2O3 content. The degree of the polymerization (DOP) of quenched slags, determined from Raman spectra and magic angle spinning-nuclear magnetic resonance, is also found to increase with increasing Al2O3 content. It can be deduced that the increasing DOP can promote the formation of gehlenite phase (Ca2Al2SiO7), thus facilitating the formation of higher phosphorous (or vanadium) contained solid solution ( n'Ca2SiO4·Ca3((P or V)O4)2). As Al2O3 content increases up to a specific value, the charge compensating ions which present near [AlO4]-tetrahedra and [FeO4]-tetrahedra are not fully supplied due to the scarcity of Ca2+. In this case, the existing Fe3+ in the melt cannot completely form [FeO4]-tetrahedra and part of Fe3+ would form [FeO6]-octahedra to substitute Ca2+ to modify the slags.

  19. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  20. Oscillator strengths for Ar VII, Ca IX and Fe XV

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1986-01-01

    The excitation energies and oscillator strengths are calculated for electric-dipole-allowed and intercombination transitions between 3s2 1S, 3s3p(1,3)P0, 3p2 3P, 1D, 1S and 3s3d(1,3)D states in Ar VII, Ca IX, and Fe XV ions of the magnesium sequence. These states are represented by the fairly large configuration-interaction expansions. The calculations have been carried out in both LS and intermediate coupling schemes. The relativistic corrections have been included through the Breit-Pauli Hamiltonian. The results are compared with previous theoretical calculations and with measurements.

  1. Thermoelasticity of Al3+- and Fe3+-bearing bridgemanite

    NASA Astrophysics Data System (ADS)

    Valencia-Cardona, Juan; Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata

    2015-03-01

    We present quasi-harmonic LDA+U calculations of thermoelastic properties of Fe3+- and Al3+-bearing bridgemanite (MgSiO3), the main Earth forming phase, at relevant P,T conditions and compositions. Three charge-coupled substitutions, namely, Al3+-Al3+, Fe3+-Fe3+, and Fe3+-Al3+ have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental measurements available. The effect of the pressure induced high-spin to low-spin state change in Fe3+ in the B-site has been investigated in great detail since it has potentially dramatic effects on seismic velocities in the Earth's lower mantle. Research supported by NSF/EAR and NSF/CAREER.

  2. Bulk modulus and specific heat of B-site doped (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B=Fe, Cr, Ru, Al, Ga)

    SciTech Connect

    Srivastava, Archana; Thakur, Rasna; Gaur, N. K.

    2014-04-24

    Specific heat (C{sub p}) thermal expansion (α) and Bulk modulus (B{sub T}) of lightly doped Rare Earth manganites (La{sub 0.3}Pr{sub 0.7}){sub 0.65}Ca{sub 0.35}Mn{sub 1−x}B{sub x}O{sub 3} (B{sup 3+} = Fe{sup 3+},Cr{sup 3+},Ga{sup 3+},Al{sup 3+},Ru4+); (0.3Ca{sub 0.35}Mn{sub 0.97}Fe{sub 0.03}O{sub 3} as a function of temperature (10K≤T≤ 200K) is found to be in agreement with the published data. The trend of variation of Debye temperature with B-site cationic radius is predicted probably for the first time for the B-site doped rare earth manganites.

  3. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  4. Solubility of Fe(III) and Al in AMD by modelling and experimtn

    SciTech Connect

    Mitchell, K.G.; Wildeman, T.R.

    1995-12-01

    Studies of Fe(III) and Al species in acid mine drainage (AMD) alone and in contact with limestone were conducted by MINTEQA2 and by experiments. Using Fe(OH){sub 3} as the primary species and the standard values for MINTEQ, Fe(III) precipitates at pH 2.90 when the concentration is 453 mg/L. Al precipitates at a pH of 4.00 when the concentration is 108 mg/L. Experiments found that over 90 % of Fe(III) and 45 % of Al were precipitated at these pH`s. Experimental verification of Fe(III) concentrations at pH`s from 2.90 to 4.0 found that modelling agreed with experiment when ferrihydrite is the primary solid and the log Ksp is -38.9. For Al, gibbsite would be the primary solid and log Ksp is -34.1. For AMD in contact with CaCO{sub 3} when CO{sub 2} is conserved, final alkalinity is higher when mineral acidity is higher even though pH of the final solution is lower. This modelling result was confirmed by experiment. Higher mineral acidity causes generation of more CO{sub 2} that reacts with CaCO{sub 3} to generate more dissolved HCO{sub 3-}.

  5. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  6. Oxidation behavior of FeAl+Hf,Zr,B

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Doychak, Joseph

    1988-01-01

    The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses.

  7. Oxidation of Fe-Cr-Al and Fe-Cr-Al-Y Single Crystals

    NASA Astrophysics Data System (ADS)

    Grabke, H. J.; Siegers, M.; Tolpygo, V. K.

    1995-03-01

    Single crystal samples of the alloy Fe-20%Cr-5%Al with and without Y-doping were used to study the "reactive element" (RE) effect, which causes improved oxidation behaviour and formation of a protective Al2O3 layer on this alloy. The oxidation was followed by AES at 10-7 mbar O2 up to about 1000 °C. Most observations were peculiar for this low pO2 environment, but yttrium clearly favors the formation of Al-oxide and stabilizes it also under these conditions, probably by favoring its nucleation. The oxides formed are surface compounds of about monolayer thickness, not clearly related to bulk oxides. Furthermore, the morphologies of oxide scales were investigated by SEM, after oxidation at 1000°C for 100 h at 133 mbar O2. On Fe-Cr-Al the scale is strongly convoluted and tends to spalling, whereas the presence of Y leads to flat scales which are well adherent. This difference is explained by a change in growth mechanism. The tendency for separation of oxide and metal was highest for the samples with low energy metal surface, i.e. (100) and (110), the scale was better adherent on the (111) oriented surface and on the polycrystalline specimen, since in the latter cases the overall energy for scale/metal separation is higher. All observations, from the low and from the high pO2 experiments, are discussed in relation to the approximately ten mechanisms proposed in the literature for explanation of the RE effects.

  8. The Charpy impact behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 at % Mn alloys

    SciTech Connect

    Liu, J.N.; Yan, W.; Ma, J.L.; Wu, K.H.

    1997-12-31

    A series of experiments were conducted to investigate the impact fracture behavior of Fe{sub 3}Al and Fe{sub 3}Al-20 Mn alloys. The results of this study indicated that: (i) The addition of Mn introduces an ordered L1{sub 2}-type phase in the Fe{sub 3}Al-based alloys. On the other hand, the addition of Mn decreases the order parameter of the DO{sub 3} {alpha} phase. (ii) The total-impact energy of an Fe{sub 3}Al alloy increases with the temperature at the low-temperature range (<600 C), then drops around 700 C, and finally increases again as the temperature further elevates. (iii) The trend of the variation of the impact energy of Fe{sub 3}Al-20 at % Mn alloy with temperature is the same as that of the Fe{sub 3}Al alloy. (iv) And the addition of Mn significantly improves the impact energy of the Fe{sub 3}Al-based alloy, and changes the variation of the crack-growth energy with the testing temperature when the temperature is above 700 C.

  9. Microstructure Evolution of Atomized Al-0.61 wt pct Fe and Al-1.90 wt pct Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Dahlborg, Ulf; Bao, Cui Min; Calvo-Dahlborg, Monique; Henein, Hani

    2011-06-01

    The microstructure evolution of impulse atomized powders of Al-0.61 wt pct and Al-1.90 wt pct Fe compositions have been investigated with a scanning electron microscope, transmission electron microscope, neutron diffraction, and backscattering electron diffraction (EBSD). Both hypoeutectic and hypereutectic compositions demonstrated similar macrostructure ( i.e., primary α-Al dendrites/cells with eutectic Al-Fe intermetallics decorated at the dendritic/cellular walls). Selected area electron diffraction (SAED) analysis and SAED pattern simulation identified the eutectic Al-Fe intermetallic as AlmFe ( m = 4.0-4.4). This is verified by neutron diffraction analysis. Cubic texture was observed by EBSD on the droplets with dendritic growth direction close to <111>. The possible reasons are discussed.

  10. The structure and stability of CaFe layered double hydroxides with various Ca:Fe ratios studied by Mössbauer spectroscopy, X-ray diffractometry and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Sipiczki, M.; Kuzmann, E.; Homonnay, Z.; Megyeri, J.; Pálinkó, I.; Sipos, P.

    2013-07-01

    The effects of the Ca(II)/Fe(III) ratios on the structure and Fe microenvironments have been studied in layered double hydroxides comprising of Ca(II) and Fe(III) (CaFe-LDH) prepared by the co-precipitation method. The Ca(II)/Fe(III) ratios were varied systematically from 2 to 6 and for characterisation 57Fe Mössbauer spectroscopy, powder X-ray diffractometry and scanning electron microscopy were applied. XRD patterns of the samples at all Ca(II)/Fe(III) ratios exhibited reflections corresponding to CaFe-LDH and 57Fe Mössbauer measurements revealed that Fe(III) was in a high-spin, somewhat disordered octahedral environment. Above the Ca(II)/Fe(III) ratio of 2 the reflections of Ca(OH)2 also appeared. This phase was found to stabilise the LDH phase, while the phase-pure LDH decomposed on ageing.

  11. {sup 60}Fe AND {sup 26}Al IN CHONDRULES FROM UNEQUILIBRATED CHONDRITES: IMPLICATIONS FOR EARLY SOLAR SYSTEM PROCESSES

    SciTech Connect

    Mishra, R. K.; Goswami, J. N.; Rudraswami, N. G.; Tachibana, S.; Huss, G. R.

    2010-05-10

    The presence of about a dozen short-lived nuclides in the early solar system, including {sup 60}Fe and {sup 26}Al, has been established from isotopic studies of meteorite samples. An accurate estimation of solar system initial abundance of {sup 60}Fe, a distinct product of stellar nucleosynthesis, is important to infer the stellar source of this nuclide. Previous studies in this regard suffered from the lack of exact knowledge of the time of formation of the analyzed meteorite samples. We present here results obtained from the first combined study of {sup 60}Fe and {sup 26}Al records in early solar system objects to remove this ambiguity. Chondrules from unequilibrated ordinary chondrites belonging to low petrologic grades were analyzed for their Fe-Ni and Al-Mg isotope systematics. The Al-Mg isotope data provide the time of formation of the analyzed chondrules relative to the first solar system solids, the Ca-Al-rich inclusions. The inferred initial {sup 60}Fe/{sup 56}Fe values of four chondrules, combined with their time of formation based on Al-Mg isotope data, yielded a weighted mean value of (6.3 {+-} 2) x 10{sup -7} for solar system initial {sup 60}Fe/{sup 56}Fe. This argues for a high-mass supernova as the source of {sup 60}Fe along with {sup 26}Al and several other short-lived nuclides present in the early solar system.

  12. Synthesis and performance of Ca-α/β-SiAlON composites from tailings

    NASA Astrophysics Data System (ADS)

    Hao, Hong-shun; Yang, Yang; Lian, Fang; Gao, Wen-yuan; Liu, Gui-shan; Hu, Zhi-qiang

    2014-05-01

    Ca-α/β-SiAlON composites were prepared using Ca-α/β-SiAlON powder synthesized from gold ore tailings, which contained abundant Si and Al elements as the major raw materials together with minor additives, through a pressure-less sintering method. The influences of sintering temperature on the phase composition and microstructure of the composites were analyzed. The scanning electron microscopy images of the composites show the interlacing of grains with elongated columnar, short columnar and plate-like morphologies. The composites sintered at 1520°C for 6 h have a flexural strength of 352 MPa, Vickers hardness of 11.2 GPa, and fracture toughness of 4.8 MPa·m1/2. The relative content of each phase in the products is I(Ca-α-SiAlON): I(β-SiAlON): I(Fe3Si) = 23:74:3, where I i stands for the diffraction peak intensity of phase i.

  13. Aluminian Low-Ca Pyroxene in a Ca-Al-rich Chondrule from the Semarkona Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    A Ca-AI-rich chondrule (labeled G7) from the Semarkona LL3.0 ordinary chondrite (OC) consists of 73 vol% glassy mesostasis, 22 vol% skeletal forsterite. 3 vol% fassaite (i.e., Al-Ti diopside), and 2 vol% Al-rich, low-Ca pyroxene. The latter phase, which contains up to 16.3 wt% A1203, is among the most AI-rich, low-Ca pyroxene grains ever reported. It is inferred that 20% of the tetrahedral sites and 13% of the octahedral sites in this grain are occupied by Al. Approximately parallel optical extinction implies that the Al-rich, low-Ca pyroxene grains are probably orthorhombic, consistent with literature data that show that A1203 stabilizes the orthoenstatite structure relative to protoenstatite at low pressure. The order of crystallization in the chondrule was forsterite, AI-rich low-Ca pyroxene, and fassaite; the residual liquid vitrified during chondrule quenching. Phase relationships indicate that, for a G7-composition liquid at equilibrium, spinel and anorthite should crystallize early and orthopyroxene should not crystallize at all. The presence of AI-rich orthopyroxene in G7 is due mainly to the kinetic failure of anorthite to crystallize; this failure was caused by quenching of the G7 precursor droplet. Aluminum preferentially enters the relatively large B tetrahedra of orthopyroxene; because only one tetrahedral size occurs in fassaite, this phase contains higher mean concentrations of Al2O3 than the Al-rich orthopyroxene (17.8 and 14.7 wt%, respectively). Chondrule G7 may have formed by remelting an amoeboid olivine inclusion that entered the OC region of the solar nebula during an episode of chondrule formation.

  14. Petrography, mineralogy, and Mg isotope composition of VICTA: A vigarano CaAl4O7-bearing type A inclusion

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Morse, A.; Long, J. V. P.

    1993-01-01

    Thermodynamic calculations predict that Ca-dialuminate (CaAl4O7) condenses from a cooling gas of solar composition after hibonite and before melilite. Although Ca-dialuminate has now been recorded from Ca Al-rich inclusions (CAI's) in at least 9 meteorites, compared to hibonite it is a relatively rare phase. As pointed out by Michel-Levy et al., the absence of Ca-dialuminate from most hibonite-bearing inclusions poses a serious problem for the condensation model of CAI formation. Here we describe an inclusion which contains abundant CA-dialuminate partially altered to a hercynite-rich (FeAl2O4) assemblage. The evidence from VICTA indicates that compared to all other phases in type A inclusions, Ca-dialuminate is the most susceptible to secondary alteration; a feature which may explain its restricted occurrence. Unaltered Ca-dialuminate and melilite in VICTA display excess Mg-26 indicative of in situ decay of Al-26.

  15. Alloy development and processing of FeAl: An overview

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Alexander, D.J.; Viswanathan, S.

    1997-03-01

    In the last few years, considerable progress has been made in developing B2-phase FeAl alloys with improved weldability, room-temperature ductility, and high-temperature strength. Controlling the processing-induced microstructure is also important, particularly for minimizing trade-offs in various properties. FeAl alloys have outstanding resistance to high-temperature oxidation, sulfidation, and corrosion in various kinds of molten salts due to formation of protective Al{sub 2}O{sub 3} scales. Recent work shows that FeAl alloys are carburization-resistant as well. Alloys with 36 to 40 at. % Al have the best combination of corrosion resistance and mechanical properties. Minor alloying additions of Mo, Zr, and C, together with microalloying additions of B, produce the best combination of weldability and mechanical behavior. Cast FeAl alloys, with 200 to 400 {mu}m grain size and finely dispersed ZrC, have 2 to 5% tensile ductility in air at room-temperature, and a yield strength > 400 MPa up to about 700 to 750{degrees}C. Extruded ingot metallurgy (I/M) and powder metallurgy (P/M) materials with refined grain sizes ranging from 2 to 50 {mu}m, can have 10 to 15% ductility in air and be much stronger, and can even be quite tough, with Charpy impact energies ranging from 25 to 105 J at room-temperature. This paper highlights progress made in refining the alloy composition and exploring processing effects on FeAl for monolithic applications. It also includes recent progress on developing FeAl weld-overlay technology, and new results on welding of FeAl alloys. It summarizes some of the current industrial testing and interest for applications.

  16. Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2As2 family of materials.

    PubMed

    Ortenzi, L; Gretarsson, H; Kasahara, S; Matsuda, Y; Shibauchi, T; Finkelstein, K D; Wu, W; Julian, S R; Kim, Young-June; Mazin, I I; Boeri, L

    2015-01-30

    We report a combination of Fe Kβ x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx)2. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx)2. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx)2 (x=0.055) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides. PMID:25679903

  17. Structural Origin of the Anomalous Temperature Dependence of the Local Magnetic Moments in the CaFe2As2 Family of Materials

    NASA Astrophysics Data System (ADS)

    Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.

    2015-01-01

    We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.

  18. Oxidation Resistant Ti-Al-Fe Diffusion Barrier for FeCrAlY Coatings on Titanium Aluminides

    NASA Technical Reports Server (NTRS)

    Brady, Michael P. (Inventor); Smialke, James L. (Inventor); Brindley, William J. (Inventor)

    1996-01-01

    A diffusion barrier to help protect titanium aluminide alloys, including the coated alloys of the TiAl gamma + Ti3Al (alpha2) class, from oxidative attack and interstitial embrittlement at temperatures up to at least 1000 C is disclosed. The coating may comprise FeCrAlX alloys. The diffusion barrier comprises titanium, aluminum, and iron in the following approximate atomic percent: Ti-(50-55)Al-(9-20)Fe. This alloy is also suitable as an oxidative or structural coating for such substrates.

  19. Rate of reactions between D 2O and Ca xAl yO z

    NASA Astrophysics Data System (ADS)

    Christensen, A. Nørlund; Lehmann, M. S.

    1984-02-01

    The rate of the reaction between D 2O and the calcium aluminum oxides Ca 3Al 2O 6, Ca 5Al 6O 14, CaAl 2O 4, and CaAl 4O 7 was investigated by on-line neutron diffraction powder methods at temperatures from room temperature to 100°C. The rate of the reaction increases with increasing calcium content of the compounds and with increasing temperature for each of the compounds. The crystallographic stable hydrate Ca 3Al 2(OD) 12 is obtained from CaAl 4O 7 and CaAl 2O 4 at temperatures above 63°C, from Ca 5Al 6O 14 at temperatures above 49°C, and from Ca 3Al 2O 6 at temperatures as low as 7°C.

  20. Influence of FeCrAl Content on Microstructure and Bonding Strength of Plasma-Sprayed FeCrAl/Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Liang; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2016-02-01

    Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.

  1. Solubility of Fe(III) Al in AMD by modelling and experiment

    SciTech Connect

    Mitchell, K.G.; Wildeman, T.R.

    1996-12-31

    Studies of Fe(III) and Al species in acid mine drainage (AMD) alone and in contact with limestone were conducted by MINTEQA2 modelling and by experiments. The objectives of these studies were to: (1) determine at what pH Fe(III) and Al would be in solution in AMD such that the water would be harmful to an anoxic limestone drain (ALD), and (2) evaluate the theoretical limits to the amount of alkalinity that could be generated by an ALD. Using Fe(OH){sub 3} as the primary species and the standard values for MINTEQA2, Fe(III) precipitates at pH 2.90 when the concentration is over 453 mg/L. Al precipitates at a pH of 4.00 when the concentration is over 108 mg/L. Experiments found that over 90 % of Fe(III) and 45% of Al were precipitated at these pH`s. Experimental verification of Fe(III) concentrations of pH`s from 2.90 to 4.0 found that modelling agreed with experiment when ferrihydrite is the primary solid and the log Ksp (solubility product) is -38.9. For Al, gibbsite would be the primary solid and log Ksp is -34.1. For AMD in contact with CaCO{sub 3} when CO{sub 2} is conserved, final alkalinity is higher when mineral acidity is higher even though pH of the final solution is lower. This modelling result was confirmed by experiment. Higher mineral acidity causes generation of more CO{sub 2} that reacts with CaCO{sub 3} to generate more dissolved HCO{sub -3}.

  2. An Assessment of the Al- Fe- N System

    NASA Astrophysics Data System (ADS)

    Hillert, Mats; Jonsson, Stefan

    1992-11-01

    The thermodynamic properties of the Al-Fe-N system are assessed, taking various types of information into account. For solid AIN, a description very similar to that given by JANAF is found to yield reasonable predictions for the solubility of A1N in face-centered cubic (fcc) Fe and in liquid Fe. An ionic two-sublattice model is applied to the liquid phase, containing two N species, N-3 and N0 The melting point of A1N is taken as 3068 K, and a required gas pressure of 9.75 bar is predicted. A sublimation point of 2690 K at 1 bar is also predicted. A plot of the liquidus surfaces in the Fe-rich end of the Al-Fe-N system is presented.

  3. Incorporation of Ba in Al and Fe pollucite

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Griffiths, Grant J.; Gaugliardo, Paul R.; Grant, Charmaine

    2016-09-01

    Ba, the transmutation product of radioactive Cs, can be incorporated at levels of up to ∼0.07 formula units in Cs(1-2x)BaxAlSi2O6 aluminium pollucite formed by sol-gel methods and sintering at 1400 °C, with more Ba forming BaAl2Si2O8 phases. The effect of Ba substitution in pollucite-structured CsFeSi2O6 was also studied and no evidence of Ba substitution in the pollucite structure via cation vacancies or Fe2+ formation was obtained. The Ba entered a Fe-silicate glass structure. Charge compensation was also attempted with a Cs+ + Fe3+ ↔ Ba2+ + Ni2+ scheme but again the Ba formed a glass and NiO was evident. PCT leaching data showed CsFeSi2O6 to be very leach resistant.

  4. Mössbauer and SEM study of Fe Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    2006-04-01

    Fe Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 × 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  5. Measuring Ages and Elemental Abundances from Unresolved Stellar Populations: Fe, Mg, C, N, and Ca

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.; Schiavon, Ricardo P.

    2008-08-01

    We present a method for determining mean light-weighted ages and abundances of Fe, Mg, C, N, and Ca from medium-resolution spectroscopy of unresolved stellar populations. The method is implemented in a publicly available code called EZ_Ages. The method and error estimation are described, and the results tested for accuracy and consistency, by application to integrated spectra of well-known Galactic globular and open clusters. Ages and abundances from integrated light analysis agree with studies of resolved stars to within ±0.1 dex for most clusters, and to within ±0.2 dex for nearly all cases. The results are robust to the choice of Lick indices used in the fitting to within ±0.1 dex, except for a few systematic deviations that are clearly categorized. The realism of our error estimates is checked through comparison with detailed Monte Carlo simulations. Finally, we apply EZ_Ages to the sample of galaxies presented in Thomas et al. (2005) and compare our derived values of age, [Fe/H], and [α/Fe] to their analysis. We find that [α/Fe] is very consistent between the two analyses, that ages are consistent for old (age > 10 Gyr) populations but show modest systematic differences at younger ages, and that [Fe/H] is fairly consistent, with small systematic differences related to the age systematics. Overall, EZ_Ages provides accurate estimates of fundamental parameters from medium-resolution spectra of unresolved stellar populations in the old and intermediate-age regime, for the first time allowing quantitative estimates of the abundances of C, N, and Ca in these unresolved systems.

  6. Crystal structure of the NaCa(Fe{sup 2+}, Al, Mn){sub 5}[Si{sub 8}O{sub 19}(OH)](OH){sub 7} {center_dot} 5H{sub 2}O mineral: A new representative of the palygorskite group

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2012-01-15

    A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Angstrom-Sign , b = 17.901(1) Angstrom-Sign , c = 13.727(1) Angstrom-Sign , {alpha} = 90.018(3) Degree-Sign , {beta} = 97.278(4) Degree-Sign , and {gamma} = 89.952(3) Degree-Sign . The structure is solved by the direct methods in space group P1-bar and refined to R = 5.5% for 4168 |F| > 7{sigma}(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na{sub 1.6}K{sub 0.2}Ca{sub 0.2})[Ca{sub 2}(Fe{sub 3.6}{sup 2+}Al{sub 1.6}Mn{sub 0.8})(OH){sub 9}(H{sub 2}O){sub 2}][(Fe{sub 3.9}{sup 2+}Ti{sub 0.1})(OH){sub 5} (H{sub 2}O){sub 2}][Si{sub 16}O{sub 38}(OH){sub 2}] {center_dot} 6H{sub 2}O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.

  7. Synthetic gedrite: a stable phase in the system MgO-Al2O3-SiO2-H2O (MASH) at 800°C and 10kbar water pressure, and the influence of FeNaCa impurities

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Schreyer, W.; Maresch, W. V.

    Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10kbar water pressure and 800°C. Conversely, breakdown was observed at 11kbar and 850°C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO.Al2O3.8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10+/-1kbar, 800+/-20°C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO . 2Al2O3 . 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15kbar, 800°C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite

  8. Hibonite, Ca2/Al, Ti/24O38, from the Leoville and Allende chondritic meteorites.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Fuchs, L. H.

    1971-01-01

    Hibonite was discovered in light-colored, Ca-Al-Ti-rich and Si-Fe-poor, achondritic inclusions of the Leoville and Allende HL-group chondrites. Two varieties of hibonite occur: one emits a bright red-orange luminescence under electron bombardment and has high amounts of Al2O3 (87.7; 87.9) and low amounts of MgO (0.65; 0.8) and TiO2 (0.68; 0.8). The other emits a bright blue luminescence and is low in Al2O3 (78.7; 79.2) and high in MgO (3.3; 3.7) and TiO2 (6.5; 7.9) (in wt. %). The oxide CaO is about the same in both varieties. It is suggested that the change in the color of the visible luminescence results from changes in composition. The origin of hibonite which occurs in complex mineral assemblages together with anorthite, gelhenite, wollastonite, aluminous diopside, andradite, Ca-pyroxene, perovskite, spinel, taenite, chromite, and pentlandite, and in close proximity to nodules containing calcite, whewellite, forsterite and many of the aforementioned phases, is discussed. The proposition that hibonite and associated phases originated by contact metamorphism and metasomatism of calcite-dolomite bearing assemblages cannot, at this time, be completely ruled out.

  9. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  10. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  11. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  12. Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms

    SciTech Connect

    Martens, E.; Jacques, D.; Van Gerven, T.; Wang, L.; Mallants, D.

    2010-08-15

    Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leaching is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.

  13. Comparison of Fe-AlPILC and Fe-ZSM-5 catalysts used for degradation of methomyl

    NASA Astrophysics Data System (ADS)

    Lázár, Károly; Tomašević, Andjelka; Bošković, Goran; Kiss, Ernő

    2009-07-01

    Catalytic performances of Fe-AlPILC (14 wt.% Fe) and Fe-ZSM-5 (5 wt.% Fe) catalysts are compared in the wet oxidative degradation of methomyl. Fe-ZSM-5 exhibits outstanding whereas Fe-AlPILC shows only mediocre activity. Positions of iron are analysed in the two catalysts by Mössbauer spectroscopy. Iron is in highly dispersed state in Fe-AlPILC whereas in the other case a hematite/ZSM-5 composite is formed. The catalytic activity is attributed to iron located and stabilized in ionic dispersion.

  14. FeAl-TiC and FeAl-WC composites - melt infiltration processing, microstructure and mechanical properties

    SciTech Connect

    Subramanian, R.; Schneibel, J.H.

    1997-04-01

    TiC-based and WC-based cermets were processed with iron aluminide, an intermetallic, as a binder by pressureless melt infiltration to near full density (> 97 % theoretical density). Phase equilibria calculations in the quaternary Fe-Al-Ti-C and Fe-Al-W-C systems at 145{degrees}C were performed to determine the solubility of the carbide phases in liquid iron aluminide. This was done by using Thermocalc{trademark} and the results show that molten Fe-40 at.% Al in equilibrium with Ti{sub 0.512}C{sub 0.488} and graphite, dissolves 4.9 at% carbon and 64 atomic ppm titanium. In the Fe-Al-W-C system, liquid Fe-40 at.% Al in equilibrium with graphite dissolves about 5 at.% carbon and 1 at.% tungsten. Due to the low values for the solubility of the carbide phases in liquid iron aluminide, liquid phase sintering of mixed powders does not yield a dense, homogeneous microstructure for carbide volume fractions greater than 0.70. Melt infiltration of molten FeAl into TiC and WC preforms serves as a successful approach to process cermets with carbide contents ranging from 70 to 90 vol. %, to greater than 97% of theoretical density. Also, the microstructures of cermets prepared by melt infiltration were very homogeneous. Typical properties such as hardness, bend strength and fracture toughness are reported. SEM observations of fracture surfaces suggest the improved fracture toughness to result from the ductility of the intermetallic phase. Preliminary experiments for the evaluation of the oxidation resistance of iron aluminide bonded cermets indicate that they are more resistant than WC-Co cermets.

  15. EFFECTS OF AQUEOUS AL, CD, CU, FE(II), NI, AND ZN ON PB IMMOBILIZATION BY HYDROXYAPATITE

    EPA Science Inventory

    The effects of aqueous Al, Cd, Cu, Fe(II), Ni, or Zn on Pb immobilization by hydroxyapatite (Ca10(PO4),(OH)2) were studied. ead was removed mainly via hydroxyapatite dissolution and hydroxypyromorphite (Pb10(PO4)6(OH)2) precipitation in the presence of these metals with a Pb remo...

  16. Effect of reaction time and (Ca+Mg)/Al molar ratios on crystallinity of Ca-Mg-Al layered double Hydroxide

    NASA Astrophysics Data System (ADS)

    Heraldy, E.; Nugrahaningtyas, K. D.; Sanjaya, F. B.; Darojat, A. A.; Handayani, D. S.; Hidayat, Y.

    2016-02-01

    Ca-Mg-Al Layered Double Hydroxides (Ca-Mg-Al-LDH) compounds were successfully synthesized from brine water and AlCl3.6H2O as the starting materials by coprecipitation method. The product result was characterized by X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR). The effects of the reaction time and the molar ratios of the raw material on the crystallinity of Ca-Mg-Al-LDH were examining. Results show that increasing reaction time (30; 60 and 90 min.) could improve the crystallinity and monodispersity of layered double hydroxide compounds particles. The well-defined Ca-Mg- Al-LDH could be prepared with (Ca+Mg)/Al molar ratios 0.5.

  17. Quantum Chemical Design of Doped Ca2MnAlO(5+δ) as Oxygen Storage Media.

    PubMed

    Ling, Chen; Zhang, Ruigang; Jia, Hongfei

    2015-07-01

    Brownmillerite Ca2MnAlO5 has an exceptional capability to robustly adsorb half-molecules of oxygen and form Ca2MnAlO5.5. To utilize this unique property to regulate oxygen-involved reactions, it is crucial to match the oxygen release-intake equilibrium with targeted reaction conditions. Here we perform a comprehensive investigation of the strategy of tuning the oxygen storage property of Ca2MnAlO5 through chemical doping. For undoped Ca2MnAlO5+δ, our first-principles calculation predicts that the equilibrium temperature at a pressure of 1 atm of O2 is 848 K, which is in excellent agreement with experimental results. Furthermore, the doping of alkaline earth ions at the Ca site, trivalent ions at the Al site, and 3d transition metal ions at the Mn site is analyzed. By the doping of 12.5% of Ga, V, and Ti, the equilibrium temperature shifts to high values by approximately 110-270 K, while by the doping of 12.5% of Fe, Sr, and Ba, the equilibrium temperature is lowered by approximately 20-210 K. The doping of these elements is thermodynamically stable, and doping other elements including Mg, Sc, Y, Cr, Co, and Ni generates metastable compounds. The doping of a higher content of Fe, however, lowers the oxygen storage capacity. Finally, on the basis of our calculated data, we prove that the formation energetics of nondilute interacting oxygen vacancy in doped Ca2MnAlO5.5 scale linearly with a simple descriptor, the oxygen p-band position relative to the Fermi level. The higher-oxygen p-band position leads to a lower vacancy formation energy and thus a lower oxygen release temperature. Understanding such a relationship between fundamental quantum chemical properties and macroscopic properties paves the road to the design and optimization of novel functional oxides. PMID:26066573

  18. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4: Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra.

    PubMed

    Marashdeh, Ali; Frankcombe, Terry J

    2008-06-21

    The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized. PMID:18570508

  19. Processing and properties of FeAl-bonded composites

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.; Alexander, K.B.; Becher, P.F.

    1996-12-31

    Iron aluminides are thermodynamically compatible with a wide range of ceramics such as carbides, borides, oxides, and nitrides, which makes them suitable as the matrix in composites or cermets containing fine ceramic particulates. For ceramic contents varying from 30 to 60 vol.%, composites of Fe-40 at. % Al with WC, TiC, TiB{sub 2}, and ZrB{sub 2} were fabricated by conventional liquid phase sintering of powder mixtures. For ceramic contents from 70 to 85 vol.%, pressureless melt infiltration was found to be a more suitable processing technique. In FeAl-60 vol.% WC, flexure strengths of up to 1.8 GPa were obtained, even though processing defects consisting of small oxide clusters were present. Room temperature fracture toughnesses were determined by flexure testing of chevron-notched specimens. FeAl/WC and FeAl/TiC composites containing 60 vol.% carbide particles exhibited K{sub Q} values around 20 MPa m{sup 1/2}. Slow crack growth measurements carried out in water and in dry oxygen suggest a relatively small influence of water-vapor embrittlement. It appears therefore that the mechanical properties of iron aluminides in the form of fine ligaments are quite different from their bulk properties. Measurements of the oxidation resistance, dry wear resistance, and thermal expansion of iron aluminide composites suggest many potential applications for these new materials.

  20. Magnetic properties of superstoichiometric CaFe2O4 + δ obtained by thermobaric synthesis

    NASA Astrophysics Data System (ADS)

    Lobanovsky, L. S.; Trukhanov, S. V.

    2011-05-01

    The crystal structure and magnetic properties of the superstoichiometric (with respect to oxygen) CaFe2O4 + δ compound have been studied at temperatures of 5-300 K and in magnetic fields from 0 to ±10 T. The unit cell volume of this compound is found to exceed that of the initial stoichiometric CaFe2O4 composition. The results of studying the temperature and field dependences of the magnetization and magnetic susceptibility indicate the formation of ferrimagnetic ordering in CaFe2O4 + δ below the Neel temperature (180 K).

  1. PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khanna, Lavanya; Verma, Narendra K.

    2013-10-01

    The coating of Polyethylene Glycol (PEG) on calcium ferrite (CaFe2O4) nanoparticles has been reported in the present study. The X-ray diffraction pattern revealed the formation of orthorhombic structure of bare CaFe2O4 nanoparticles, which was also retained after the PEG coating, along with additional characteristic peaks of PEG at 19° and 23°. The rings of CaFe2O4 nanoparticles were identified by the selected area electron diffraction pattern. The characteristic bands of PEG as observed in its Fourier transform infrared spectrum were also present in PEG coated CaFe2O4 nanoparticles, hence confirming its presence. In the thermal gravimetric studies, the complete thermal decomposition of PEG occurred in a one step process, but in case of PEG coated CaFe2O4 nanoparticles, the decomposition took place at a higher temperature owing to the formation of covalent bonds of PEG with CaFe2O4 nanoparticles. The presence of PEG on CaFe2O4 nanoparticles, spherical formation of PEG coated CaFe2O4 nanoparticles and reduced agglomeration in the CaFe2O4 nanoparticles were revealed by high resolution transmission electron microscope, transmission electron microscope and scanning electron microscope studies, respectively. In vibrating sample magnetometer analysis, both bare as well as coated CaFe2O4 nanoparticles exhibited superparamagnetic behavior. However, a drop in the magnetic saturation value was observed from 36.76 emu/g for CaFe2O4 nanoparticles to 6.74 emu/g for PEG coated CaFe2O4 nanoparticles, due to the formation of magnetically dead layer of PEG. In ZFC and FC analyses, superparamagnetic behavior with blocking temperature for bare and coated nanoparticles has been observed at ∼40 K and ∼60 K, respectively. The increase in the blocking temperature is attributed to the increase in the particle size after PEG coating.

  2. Carbon Nanostructures Grown on Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Čaplovičová, Mária; Čaplovič, Ľubomír; Búc, Dalibor; Vinduška, Peter; Janík, Ján

    2010-11-01

    The morphology and nanostructure of carbon nanotubes (CNTs), synthesized directly on Fe-Cr-Al-based alloy substrate using an alcohol catalytic chemical vapour deposition method (ACCVD), were examined by transmission electron microscopy (TEM). The grown CNTs were entangled with chain-like, bamboo-like, and necklace-like morphologies. The CNT morphology was affected by the elemental composition of catalysts and local instability of deposition process. Straight and bended CNTs with bamboo-like nanostructure grew mainly on γ-Fe and Fe3C particles. The synthesis of necklace-like nanostructures was influenced by silicon oxide, and growth of chain-like nanostructures was supported by a catalysts consisting of Fe, Si, oxygen and trace of Cr. Most of nanotubes grew according to base growth mechanism.

  3. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  4. Composition and solidification microstructure selection in the interdendritic matrix between primary Al{sub 3}Fe dendrites in hypereutectic Al-Fe alloys

    SciTech Connect

    Liang, D.; Korgul, P.; Jones, H.

    1996-07-01

    The composition and constitution of matrix microstructure between plate-like Al{sub 3}Fe dendrites in Bridgman-grown hypereutectic Al-Fe alloys has been determined as a function of alloy concentration C{sub 0} and growth velocity V in the ranges 2.5 < C{sub 0} < 28.1 wt%Fe and 0.01 < V < 5.0 mm/s. The transition at V = 0.1 mm/s from a fully eutectic matrix at C{sub 0} = 3.5 wt%Fe to one containing {alpha}Al dendrites at C{sub 0} {ge} 4.7 wt%Fe is attributed to growth temperatures of {alpha}Al dendrites that are higher than those of eutectic in a matrix of lower iron-content, which results from these conditions. The matrix eutectic changes from irregular {alpha}-Al-Al{sub 3}Fe to regular {alpha}Al-Al{sub x}Fe with increasing V, the transition velocity increasing from 0.1 to 0.2 mm/s for C{sub 0} values of 9.5 and 14 wt%Fe up to 0.35--1.0 mm/s for C{sub 0} values of 18.7--28.1 wt%Fe. This increased transition velocity, compared with that for {alpha}-Al-Al{sub 3}Fe to {alpha}Al-Al{sub 6}Fe at lower concentration, is indicative of a lower formation temperature for the {alpha}Al-Al{sub x}Fe than the {alpha}Al-Al{sub 6}Fe eutectic.

  5. Low cycle fatigue of FeAl(42 at. % Al) at room temperature

    SciTech Connect

    Hanes, D.B.; Gibala, R.

    1997-12-31

    The monotonic mechanical behavior in tension and compression of FeAl has been well documented. However, very little work has been done on the cyclic deformation behavior of this material. In this work, the behavior of FeAl (42 at. % Al) under low cycle fatigue was studied, including the effects of test environments and surface coatings. It was found that the fatigue life of this alloy is limited by environmental embrittlement. This embrittlement process can be equally well prevented by deformation in an oxygen environment or by coating the alloy with a protective film. The type of film applied appears to have little effect. Similar results were seen in monotonic testing.

  6. Anomalous phonon properties in the silicide superconductors CaAlSi and SrAlSi

    NASA Astrophysics Data System (ADS)

    Kuroiwa, S.; Hasegawa, T.; Kondo, T.; Ogita, N.; Udagawa, M.; Akimitsu, J.

    2008-11-01

    Lattice-dynamical properties of CaAlSi and SrAlSi with a similar layer structure to MgB2 have been first investigated by both Raman-scattering and ab initio calculations. All Raman-active phonons with E' symmetry have been clearly observed for both compounds. Their line shapes are asymmetric but their linewidths are ˜10cm-1 , which is very narrower than that of MgB2 . In addition to the Raman-active modes, several extra peaks have been observed below 160cm-1 . These low-energy extra modes can be assigned to the out-of-plane vibrations of Al perpendicular to Al-Si basal plane. Since these peak intensities are strongly affected by the incident energy (resonance Raman process), the electronic state is important for them. Moreover, in both crystals of CaAlSi and SrAlSi, we point out the energy difference for the different propagation directions along the c axis and the c plane, in spite of the very close wave vector to the Brillouin-zone center. This energy difference cannot be explained by a usual Raman-scattering scenario at this stage.

  7. The iron phosphate CaFe3(PO4)3O

    PubMed Central

    Hidouri, Mourad; Ben Amara, Mongi

    2009-01-01

    A new iron phosphate, calcium triiron(III) tris­(phosphate) oxide, CaFe3(PO4)3O, has been isolated and shown to exhibit a three-dimensional structure built by FeO6 octa­hedra, FeO5 trigonal bipyramids and PO4 tetra­hedra. The FeOx (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe6O28]∞ chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe3(PO4)3O and Bi0.4Fe3(PO4)3O structures, in which the Ca2+ cations occupy a single symmetry non-equivalent cavity. PMID:21583300

  8. The iron phosphate CaFe(3)(PO(4))(3)O.

    PubMed

    Hidouri, Mourad; Ben Amara, Mongi

    2009-01-01

    A new iron phosphate, calcium triiron(III) tris-(phosphate) oxide, CaFe(3)(PO(4))(3)O, has been isolated and shown to exhibit a three-dimensional structure built by FeO(6) octa-hedra, FeO(5) trigonal bipyramids and PO(4) tetra-hedra. The FeO(x) (x = 5, 6) polyhedra are linked through common corners and edges, forming [Fe(6)O(28)](∞) chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported SrFe(3)(PO(4))(3)O and Bi(0.4)Fe(3)(PO(4))(3)O structures, in which the Ca(2+) cations occupy a single symmetry non-equivalent cavity. PMID:21583300

  9. Phonons and stability of infinite-layer iron oxides SrFeO2 and CaFeO2

    NASA Astrophysics Data System (ADS)

    Gupta, M. K.; Mittal, R.; Chaplot, S. L.; Tassel, Cédric; Kageyama, Hiroshi; Tomiyasu, K.; Taylor, Jon

    2016-09-01

    We present detailed ab-initio lattice dynamical analysis of the Fe-O infinite-layer compounds CaFeO2 and SrFeO2 in various magnetic configurations. These indicate strong spin-phonon coupling in SrFeO2 in contrast to that in case of CaFeO2. From our ab-initio calculations in SrFeO2 as a function of volume, we suggest that the distortion in SrFeO2 above 300 K is similar to that in CaFeO2 at ambient conditions. The distortion of the planer structure of CaFeO2 involves doubling of the planer unit cell that may be usually expected to be due to a soft phonon mode at the M-point (1/2 1/2 0). However, our ab-initio calculations show quite unusually that all the M-point (1/2 1/2 0) phonons are stable, but two stable M3+ and M2- modes anharmonically couple with an unstable Bu mode at the zone center and lead to the cell doubling and the distorted structure. Magnetic exchange interactions in both the compounds have been computed on the basis of the ideal planar structure (P4/mmm space group) and with increasing amplitude of the Bu phonon mode. These reveal that the magnetic exchange interactions reduce significantly with increasing distortion. We have extended the ab-initio phonon calculation to high pressures, which reveal that, above 20 GPa of pressure, the undistorted planer CaFeO2 becomes dynamically stable. We also report computed phonon spectra in SrFeO3 that has a cubic structure, which is useful to understand the role of the difference in geometry of oxygen atoms around the Fe atom with respect to planer SrFeO2. Finally, powder neutron inelastic scattering experiments on SrFeO2 have also been performed at temperatures from 5 K to 353 K in the antiferromagnetic phase. The 5-K data are compared to the ab-initio calculations.

  10. Effect of Trace Fe3+ on Luminescent Properties of CaWO4: Pr3+ Phosphors

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Feng, Xu; Feng, Wenlin; Shi, Shasha; Li, Yao; Zhang, Chao

    2016-01-01

    Fe3+ undoped and doped CaWO4: Pr3+ phosphors have been successfully synthesised by using the solid-state reaction method. The products were characterised by powder X-ray diffraction (XRD), photoluminescence (PL) and fluorescence lifetime testing techniques, respectively. The mean crystallite size (50.7 nm) of CaWO4: Pr3+ is obtained from powder XRD data. PL spectra of both Fe3+ undoped and doped CaWO4: Pr3+ phosphors exhibit excitation peaks at 214, 449, 474, and 487 nm under monitor wavelength at 651 nm, and emission peaks at 532, 558, 605, 621, 651, 691, 712, and 736 nm under blue light (λem=487 nm) excitation. The effect of trace Fe3+ on luminescence properties of CaWO4: Pr3+ phosphor is studied by controlling the doping concentration of Fe3+. The results show that radioactive energy transfers from luminescence centre Pr3+ to quenching centre Fe3+ occurred in Fe3+ doped CaWO4: Pr3+ phosphors. With the increasing concentration of Fe3+, the energy transfer from Pr3+ to Fe3+ is enhanced, and the emission intensity of CaWO4: Pr3+ will be lower. The decay times (5.22 and 4.99 μs) are obtained for typical samples Ca0.995WO4: Pr3+0.005 and Ca0.99275WO4: Pr3+0.005, Fe3+0.00225, respectively. This work shows that nonferrous phosphors can improve the luminescent intensity of the phosphors.

  11. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-04-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  12. Mechanically - induced disorder in CaFe2As2: a 57Fe Mössbauer study

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'Ko, Sergey L.

    57 Fe Mössbauer spectroscopy was used to study an extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. The quadrupole shift in the magnetic phase approachs zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position. Supported by US DOE under the Contract No. DE-AC02-07CH11358 and by the China Scholarship Council.

  13. High noise suppression using magnetically isotropic (CoFe-AlN)/(AlN) multilayer films

    NASA Astrophysics Data System (ADS)

    Kijima, Hanae; Ohnuma, Shigehiro; Masumoto, Hiroshi; Shimada, Yutaka; Endo, Yasushi; Yamaguchi, Masahiro

    2015-05-01

    Magnetically isotropic (CoFe-AlN)n/(AlN)n+1 multilayer films, in which the number of CoFe-AlN magnetic layers n ranged from 1 to 27, were prepared by radio frequency sputtering to achieve noise suppression at gigahertz frequencies. The soft CoFe-AlN magnetic layers consisted of nanometer-sized CoFe ferromagnetic grains embedded in an insulating AlN amorphous matrix, while the insulating AlN layers comprised AlN columnar crystals. All films showed a similar frequency dependence of permeability and ferromagnetic resonance of 1.7 GHz. Noise suppression was evaluated using a microstrip line as a noise source by determining the in-line conductive loss and the near-field intensity picked up by magnetic field detective probes. High noise suppression effects were observed in every direction in the film plane. Maximum noise suppression values amounted to 60% for the in-line conductive loss and -20 dB for the magnetic near-field intensity at around 1.7 GHz in the 27-layer film. These high-frequency noise suppression levels may be attributed to eddy current losses and ferromagnetic resonance.

  14. Corrosion performance of Fe-Cr-Al and Fe aluminide alloys in complex gas environments

    SciTech Connect

    Natesan, K.; Johnson, R.N.

    1995-05-01

    Alumina-forming structural alloys can offer superior resistance to corrosion in the presence of sulfur-containing environments, which are prevalent in coal-fired fossil energy systems. Further, Fe aluminides are being developed for use as structural materials and/or cladding alloys in these systems. Extensive development has been in progress on Fe{sub 3}Al-based alloys to improve their engineering ductility. In addition, surface coatings of Fe aluminide are being developed to impart corrosion resistance to structural alloys. This paper describes results from an ongoing program that is evaluating the corrosion performance of alumina-forming structural alloys, Fe-Al and Fe aluminide bulk alloys, and Fe aluminide coatings in environments typical of coal-gasification and combustion atmospheres. Experiments were conducted at 650-1000{degrees}C in simulated oxygen/sulfur gas mixtures. Other aspects of the program are corrosion evaluation of the aluminides in the presence of HCl-containing gases. Results are used to establish threshold Al levels in the alloys for development of protective alumina scales and to determine the modes of corrosion degradation that occur in the materials when they are exposed to S/Cl-containing gaseous environments.

  15. Screened moments and absence of ferromagnetism in FeAl

    NASA Astrophysics Data System (ADS)

    Galler, A.; Taranto, C.; Wallerberger, M.; Kaltak, M.; Kresse, G.; Sangiovanni, G.; Toschi, A.; Held, K.

    2015-11-01

    While the stoichiometric intermetallic compound FeAl is found to be paramagnetic in experiment, standard band-theory approaches predict the material to be ferromagnetic. We show that this discrepancy can be overcome by a better treatment of electronic correlations with density-functional plus dynamical mean-field theory. Our results show no ferromagnetism down to 100 K and since the susceptibility is decreasing at the lowest temperatures studied we also do not expect ferromagnetism at even lower temperatures. This behavior is found to originate from temporal quantum fluctuations that screen short-lived local magnetic moments of 1.6 μB on Fe.

  16. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1987-04-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  17. Actinide chemistry in Allende Ca-Al-rich inclusions

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1987-01-01

    Fission track radiography is used to investigate the U and Th microscale distribution in a set of Allende-meteorite Ca-Al-rich inclusions. In the Type B inclusions, the major phases melilite and fassaite are important actinide host phases, and on the rims of Type B inclusions and throughout all other inclusions studied, perovskite is the dominant actinide host phase. Results suggest that neither alteration nor loss or gain of an actinide-rich phase appears to have been an important Th/U fractionation mechanism, and that volatility differences may be the dominant factor. Th/U and rare earth element abundance patterns for the spinel and perovskite rim suggest rim formation by volatilization of interior material, and within the constraints of the brief time scale required for this heating, several mechanisms for spinel-perovskite rim formation are possible.

  18. Physical properties of Rh substituted CaFe2As2 tuned by annealing/quenching

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul

    2014-03-01

    Our previous work on CaFe2As2 single crystal grown out of FeAs flux has shown that a process of annealing and quenching can be used as an additional control parameter which can tune the ground state of CaFe2As2 systematically. We have also shown that CaFe2As2 is very pressure sensitive. Therefore, unlike the BaFe2As2 system, the effect of 4d transition metal substitution on CaFe2As2 is expected to be largely different from that of 3d transition metal substitution (e.g. cobalt or nickel substitution). In this talk we will present results of measurements on a Rh substituted CaFe2As2 system with different annealing/quenching temperatures. Phase diagrams with substitution level and annealing/quenching temperature as independent parameters are constructed and compared with that of other transition metal substitutions. Supported by the U.S. Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  19. Study of the electronic structure of CaFeO3

    NASA Astrophysics Data System (ADS)

    Yang, J. B.; Kim, M. S.; Cai, Q.; Zhou, X. D.; Anderson, H. U.; James, W. J.; Yelon, W. B.

    2005-05-01

    We have studied the charge disproportionation phenomenon in CaFeO3 using the local-spin density approximation with the on-site Coulomb interaction parameter U and exchange parameter J. The calculation reveals that the total number of the 3d electrons is about 5.1 for both Fe(1)(Fe5+) and Fe(2)(Fe3+) atoms, and that there are about 0.25 electron holes in the O-2p band. Therefore, the charge disproportionation can be more accurately described as 2d5L(Fe4+)=d5L2(Fe5+)+d5(Fe3+), where L denotes a hole in the oxygen 2p band, instead of 2d4(Fe4+)=d3(Fe5+)+d5(Fe3+). The hybridization between the Fe-3d and O-2p orbitals is stronger for Fe(1) than for Fe(2) due to the shorter Fe(1)-O bond. The hyperfine magnetic field contributed from conduction electron polarization is larger for Fe(2), resulting from a stronger s-d hybridization between the s orbital of Fe(2) and the d orbitals of its neighboring Fe(1) atoms. The on-site Coulomb repulsion and the exchange interaction increase the splitting between the occupied spin up and unoccupied spin down bands of Fe atoms. Fe-3d electrons become localized and the occupied d-band shifts to a lower energy range, even below the O-2p level. The calculated magnetic moments, hyperfine fields, and electron charge density agree well with the experimental data.

  20. Ca. 2.7 Ga ferropicritic magmatism: A record of Fe-rich heterogeneities during Neoarchean global mantle melting

    NASA Astrophysics Data System (ADS)

    Milidragovic, Dejan; Francis, Don

    2016-07-01

    Although terrestrial picritic magmas with FeOTOT ⩾13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread. Neoarchean ferropicrites form two distinct groups in terms of their trace element geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low Al2O3/TiO2 (<8) and Sc/Fe (⩽3 × 10-4) ratios, and were enriched in Ni relative to primary pyrolite mantle-derived melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is characterized by decisively non-alkaline primary trace element profiles that range from flat to LREE-depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher Al2O3/TiO2 (8-25) and Sc/Fe (⩾4 × 10-4) ratios, and

  1. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  2. Microstructure selection maps for Al-Fe alloys

    SciTech Connect

    Gilgien, P.; Zryd, A.; Kurz, W.

    1995-09-01

    The solidification microstructures for Al-0.5-4 at.% Fe alloys under constrained growth conditions have been calculated using analytical models of the growth kinetics of dendritic, eutectic and plane front interface morphologies of stable and metastable phases. Laser remelting experiments are carried out on an Al-4 at.% Fe alloy with low beam velocity (10 mm/s) in order to complete previous experimental results on the solidification microstructures obtained at intermediate growth rates by Bridgman experiments and at a high growth rates by rapid laser resolidification. Comparison of predicted with experimentally determined solidification microstructure maps shows satisfactory agreement in view of the limited knowledge of the thermophysical properties of this system. These maps are useful for the interpretation of microstructures and phases forming under medium to high solidification rates and for the understanding and development of rapid solidification processing. Further the modeling is useful for improving available phase diagram information.

  3. Tensile properties of Fe-16 at. % Al alloys

    SciTech Connect

    Sikka, V.K.

    1995-02-01

    A newly developed melting method for Fe-16 at. % Al alloy (FAPY) is described. Tensile data on the air-induction-melted (AIM) and vacuum-induction-melted (VIM) heats of FAPY after identical processing are presented. Optical, scanning electron micrographs (SEM), and microprobe analysis were carried out to explain the lower room-temperature ductility and more scatter in the data for the AIM material as opposed to the VIM material.

  4. Synthesis and characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Gyawali, Parshu; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2012-06-01

    We report the growth and characterization of Co2FeAl nanowires. Nanowires are grown using electrospinning method and the diameters range from 50 to 500 nm. These nanowires exhibit cubic crystal structure with a lattice constant of a =5.639 Å. The nanowires exhibit ferromagnetic behavior with a very high Curie temperature. The temperature dependent magnetization behavior displays an anomaly in the temperature range 600-850 K, which disappears at higher external magnetic fields.

  5. Melting and casting of FeAl-based cast alloy

    SciTech Connect

    Sikka, V.K.; Wilkening, D.; Liebetrau, J.; Mackey, B.

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  6. Yield stress anomaly in B2 FeAl

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1996-12-31

    The studies on yield stress anomaly of B2 FeAl single crystals are reviewed in this paper. A positive temperature dependence of yield stress, so-called yield stress anomaly, is observed in B2 FeAl in which excess vacancies are fully annealed out. Associated with the anomaly, characteristic asymmetry is found between tension and compression. While the strain-rate sensitivity is almost zero in the temperature range of the yield stress anomaly, the stress relaxation becomes significant with increasing temperature, indicating that a recovery process is thermally activated. It is ascertained by the two-surface trace analysis that slip transition from <111> direction at intermediate temperature to <100> at high temperature occurs around the peak temperature. Even at the peak temperature, in addition, operative slip vector for yielding is confirmed to be predominantly <111> by TEM. Also, it is observed that <111>-type superdislocations are frequently climb-dissociated in the temperature range of the anomaly. APB formation on {l_brace}111{r_brace} plane is energetically favorable, which is in agreement with the Flinn`s calculation for the B2 superlattice that APB energy on {l_brace}111{r_brace} plane is lower than that on {l_brace}110{r_brace} plane. Such an anisotropy of APB energy would offer specific driving force for the climb dissociation on <111> superdislocations. On the basis of the observed results, the anomalous strengthening behavior of B2 FeAl single crystals is discussed.

  7. Mechanically-induced disorder in CaFe2As2: A 57Fe Mössbauer study

    DOE PAGESBeta

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-10-17

    57Fe Mössbauer spectroscopy was used to perform a microscopic study on the extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that themore » antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. Additional electronic and asymmetry information was obtained from the isomer shift and quadrupole splitting. Similar isomer shift values in the magnetic phase for samples with different degrees of strain, indicate that the stain does not bring any significant variation of the electronic density at 57Fe nucleus position. As a result, the absolute values of quadrupole shift in the magnetic phase decrease and approach zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position.« less

  8. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species

    NASA Astrophysics Data System (ADS)

    Al-Jaberi, Muayad; Naille, Sébastien; Dossot, Manuel; Ruby, Christian

    2015-12-01

    Ca-Fe layered double hydroxide (LDH) intercalated with chloride and nitrate ions has been synthesized with varying CaII:FeIII molar ratios of the initial solution. Phase pure LDH is observed with CaII:FeIII molar ratio of 2:1 and a mixture of LDH and Ca(OH)2 is formed for CaII:FeIII molar ratios higher than 2:1. Vibrational spectroscopies (Raman and IR) were used successfully to understand the interaction between the cationic and anionic sheets. The Raman bands positions at lower frequencies (150-600 cm-1) are intimately correlated to the nature of the divalent and trivalent ions but also to the nature of the anions. Indeed, a shift of ˜9 cm-1 is observed for the Raman double bands situated in the 300-400 cm-1 region when comparing Raman spectra of CaFe-LDH containing either nitrate or chloride ions. Two types of nitrate environments are observed namely free (non-hydrogen bonded) nitrate and nitrate hydrogen bonded to the interlayer water or to the 'brucite-like' hydroxyl surface. Multiple types of water structure are observed and would result from different hydrogen bond structures. Water bending modes are identified at 1645 cm-1 greater than the one observed for LDH intercalated with chloride anions (1618 cm-1), indicating that the water is strongly hydrogen bonded to the nitrate anions.

  9. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-04-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  10. Evolution of Fe Bearing Intermetallics During DC Casting and Homogenization of an Al-Mg-Si Al Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Grant, P. S.; O'Reilly, K. A. Q.

    2016-06-01

    The evolution of iron (Fe) bearing intermetallics (Fe-IMCs) during direct chill casting and homogenization of a grain-refined 6063 aluminum-magnesium-silicon (Al-Mg-Si) alloy has been studied. The as-cast and homogenized microstructure contained Fe-IMCs at the grain boundaries and within Al grains. The primary α-Al grain size, α-Al dendritic arm spacing, IMC particle size, and IMC three-dimensional (3D) inter-connectivity increased from the edge to the center of the as-cast billet; both α c-AlFeSi and β-AlFeSi Fe-IMCs were identified, and overall α c-AlFeSi was predominant. For the first time in industrial billets, the different Fe-rich IMCs have been characterized into types based on their 3D chemistry and morphology. Additionally, the role of β-AlFeSi in nucleating Mg2Si particles has been identified. After homogenization, α c-AlFeSi predominated across the entire billet cross section, with marked changes in the 3D morphology and strong reductions in inter-connectivity, both supporting a recovery in alloy ductility.

  11. FeAl and NbAl3 Intermetallic-HVOF Coatings: Structure and Properties

    NASA Astrophysics Data System (ADS)

    Guilemany, J. M.; Cinca, N.; Dosta, S.; Cano, I. G.

    2009-12-01

    Transition metal aluminides in their coating form are currently being explored in terms of resistance to oxidation and mechanical behavior. This interest in transition metal aluminides is mainly due to the fact that their high Al content makes them attractive for high-temperature applications. This is also a reason to study their resistance to wear; they may be suitable for use in applications that produce a lot of wear in aggressive environments, thus replacing established coating materials. In this study, the microstructure, microhardness, and wear and oxidation performance of FeAl and NbAl3 coatings produced by high-velocity oxy-fuel spraying are evaluated with two main aims: (i) to compare these two coating systems—a commonly studied aluminide (FeAl) and, NbAl3, an aluminide whose deposition by thermal spraying has not been attempted to date—and (ii) to analyze the relationship between their microstructure, composition and properties, and so clarify their wear and oxidation mechanisms. In the present study, the higher hardness of niobium aluminide coatings did not correlate with a higher wear resistance and, finally, although pesting phenomena (disintegration in oxidizing environments) were already known of in bulk niobium aluminides, here their behavior in the coating form is examined. It was shown that such accelerated oxidation was inevitable with respect to the better resistance of FeAl, but further improvements are foreseen by addition of alloying elements in that alloy.

  12. Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    2004-01-01

    The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.

  13. Identification of an incommensurate FeAl{sub 2} overlayer on FeAl(110) using x-ray diffraction and reflectivity

    SciTech Connect

    Baddorf, A.P.; Chandavarkar, S.S.

    1995-06-30

    FeAl, like NiAl, crystallizes in the CsCl structure. Consequently the (110) planes contain equal amounts of Fe and Al distributed as interlocking rectangles. Unlike the NiAI(110) surface, which retains the (1{times}l) in-plane symmetry of the bulk, FeAl(l10) reconstructs to form an ordered, incommensurate overlayer. The reconstructed layer introduces x-ray diffraction rods at half-order positions along the [1{bar 1}0] direction, and displaced {plus_minus}0.2905 from integer positions along the [001] direction. Peak widths reveal excellent long range order. Specular reflectivity measurements above and below the Fe K{alpha} edge can be reproduced using a model containing a single reconstructed overlayer with an Fe:Al ratio of 1:2, consistent with FeA{sub I}2.

  14. Modeling of the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts at 1300 K

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshu; Wu, Xiaoxia; Rapp, Robert A.

    2004-02-01

    Experiments to measure the solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 were performed, and the results confirmed existing literature values. The solubilities of NiAl2O4 and FeAl2O4 in Al2O3-saturated cryolite melts at 1300 K were modeled thermodynamically in terms of the Ni-containing complexes Na2NiF4 and Na4NiF6, and the Fe-containing solutes FeF2, Na2FeF4, and Na4FeF6. The experimental solubility data were fitted to multiple simultaneous equilibria. Equilibrium constants and ΔG f 0 values for the formation reactions of the these solutes were thereby estimated. The solubilities of NiO/NiAl2O4 and FeO/FeAl2O4 and solute distributions in Al2O3-undersaturated cryolite melts were calculated for a number of melt compositions from the present model. The existence of several competitive solute species is inherent to highly buffered ionic cryolite solutions where the traditional log-log methodology had previously failed to identify dominant single solutes. In such solutions, individual solutes of oxides are not likely to dominate over a wide composition range so that a more global modeling is required. The principal solute species identified in the present study exhibit reasonable three-dimensional (3-D) anion geometries.

  15. Erosion behavior of Fe-Al intermetallic alloys

    SciTech Connect

    Kim, Y.S.; Song, J.H.; Chang, Y.W.

    1997-04-01

    The Fe-rich Fe-Al intermetallics have generated some interest, especially during the last decade, due to their excellent resistance for oxidation and sulfidation, high specific strength, and low material cost. The aluminide is therefore considered as one of the promising candidates for high-temperature structural materials in a corrosive atmosphere. Research effort has been focused mainly on process, development, and enhancement of room-temperature ductility together with the characterization of physical properties such as mechanical properties, oxidation, corrosion, and abrasive wear behavior. However, there have been only a few works reported to date in regard to the erosion characteristics of the alloy, one of the most important material property of this ordered intermetallic alloy for the use in a fossil-fuel plant. In this study, the solid-particle erosion behavior of the Fe-Al intermetallic alloys containing the various aluminum contents ranging from 25 to 30 at.% has been investigated to clarify the effect of aluminum content and different ordered structures, viz. DO{sub 3} and B2, on the erosion behavior. An attempt has been made to correlate the erosion behavior of these intermetallics to their mechanical properties by carrying out tensile tests together with SEM observation of the eroded surfaces.

  16. Hydrogen permeation characteristics of some Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Van Deventer, E. H.; Maroni, V. A.

    1983-01-01

    Hydrogen permeation data are reported for two Fe-Cr-Al alloys, Type-405 SS (Cr 14-A1 0.2) and a member of the Fecralloy family of alloys (Cr 16-A1 5). The hydrogen permeability of each alloy (in a partially oxidized condition) was measured over a period of several weeks at randomly selected temperatures (between 150 and 850°C) and upstream H 2 pressures (between 2 and 1.5 × 10 4 Pa). The permeabilities showed considerable scatter with both time and temperature and were 10 2 to 10 3 times lower than those of pure iron, even in strongly reducing environments. The exponent, n, for the relationship between upstream H 2 pressure, P, and permeability, φ, ( φ ~ Pn) was closer to 0.7 than to the expected 0.5, indicating a process limited by surface effects (e.g., surface oxide films) as opposed to bulk material effects. Comparison of these results with prior permeation measurements on other Fe-Cr-Al alloys, on Fe-Cr alloys, and on pure iron shows that the presence of a few weight percent aluminum offers the best prospects for achieving low tritium permeabilities with martensitic and ferritic steels used in fusion-reactor first wall and blanket applications.

  17. Equilibrium point defects in intermetallics with the [ital B]2 structure: NiAl and FeAl

    SciTech Connect

    Fu, C.L.; Ye, Y.; Yoo, M.H. ); Ho, K.M. )

    1993-09-01

    Equilibrium point defects and their relation to the contrasting mechanical behavior of NiAl and FeAl are investigated. For NiAl, the defect structure is dominated by two types of defects---monovacancies on the Ni sites and substitutional antisite defects on the Al sites. The defect structure of FeAl differs from that of NiAl in the occurrence of antisite defects at the transition-metal sites for Al-rich alloys and the tendency for vacancy clustering. The strong ordering (and brittleness) of NiAl is attributed mainly to the difference in atomic size between constituent atoms.

  18. Structure, phase composition, and strengthening of cast Al-Ca-Mg-Sc alloys

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Alekseeva, E. V.

    2016-02-01

    The structure and phase composition of Al-Ca-Mg-Sc alloys containing 0.3 wt % Sc, up to 10 wt % Ca, and up to 10 wt % Mg have been investigated in the cast state and state after heat treatment. It has been shown that only binary phases Al4Ca, Al3Sc, and Al3Mg2 can be in equilibrium with the aluminum solid solution. It has been found that the maximum strengthening effect caused by the precipitation of Al3Sc nanoparticles for all investigated alloys is attained after annealing at 300-350°C.

  19. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2.).

    PubMed

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances. PMID:26966938

  20. Inverse Charge Transfer in the Quadruple Perovskite CaCu3Fe4O12.

    PubMed

    Yamada, Ikuya; Murakami, Makoto; Hayashi, Naoaki; Mori, Shigeo

    2016-02-15

    Structural and spectroscopic analyses revealed that the quadruple perovskite CaCu3Fe4O12 undergoes an "inverse" electron charge transfer in which valence electrons move from B-site Fe to A'-site Cu ions (∼3Cu(∼2.4+) + 4Fe(∼3.65+) → ∼3Cu(∼2.2+) + 4Fe(∼3.8+)) simultaneously with a charge disproportionation transition (4Fe(∼3.8+) → ∼2.4Fe(3+) + ∼1.6Fe(5+)), on cooling below 210 K. The direction of the charge transfer for CaCu3Fe4O12 is opposite to those reported for other perovskite oxides such as BiNiO3 and ACu3Fe4O12 (A = Sr(2+) or the large trivalent rare-earth metal ions), in which the electrons move from A/A'-site to B-site ions. This finding sheds a light on a new aspect in intermetallic phenomena for complex transition metal compounds. PMID:26815133

  1. Role of hydrogen in the electronic properties of CaFeAsH-based superconductors

    NASA Astrophysics Data System (ADS)

    Huang, Y. N.; Liu, D. Y.; Zou, L. J.; Pickett, W. E.

    2016-05-01

    The electronic and magnetic properties of the hydride superconductor CaFeAsH, which superconducts up to 47 K when electron doped with La, and the isovalent alloy system CaFeAsH1 -xFx are investigated using density functional based methods. The Q ⃗=(π ,π ,0 ) peak of the nesting function ξ (q ⃗) is found to be extremely strong and sharp, and the additional structure in ξ (q ⃗) associated with the near-circular Fermi surfaces (FSs) that may impact low energy excitations is quantified. The unusual band introduced by H, which shows strong dispersion perpendicular to the FeAs layers, is shown to be connected to a peculiar van Hove singularity just below the Fermi level. This band provides a three-dimensional electron ellipsoid Fermi surface not present in other Fe-based superconducting materials nor in CaFeAsF. Electron doping by 25% La or Co has a minor effect on this ellipsoid Fermi surface, but suppresses FS nesting strongly, consistent with the viewpoint that eliminating strong nesting and the associated magnetic order allows high Tc superconductivity to emerge. Various aspects of the isovalent alloy system CaFeAsH1 -xFx and means of electron doping are discussed in terms of influence of incipient bands.

  2. Aluminium Electrolysis with Fe-Ni-Al2O3 Inert Anodes at 850 °C

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Junli, Junli; Gao, Bingliang; Hu, Xianwei; Wang, Zhaowen

    2011-06-01

    Fe-Ni-Al2O3 cermet materials were prepared, and the electrolysis with these anodes were performed in cryolite-based electrolyte consisted of 44NaF-40AlF3-8NaCl-5CaF2-3Al2O3(wt%) at 850 °C. The purity of produced aluminium is 97-98%, while the calculated anodic corrosion rate is 18.2 mm/a-24.0 mm/a. The EPMA analysis showed that there is an oxide scale consisting of Fe2O3 and FeAl2O4 on the anode working surface. The homeostasis of dissolution and formation of oxide scale makes the thickness of the oxide scale and the cell voltage stable within a certain range. The dissolution of oxide scale results in the presence of FeF3 in the electrolyte. By analysis of the corrosion process, it shows that low temperature, high alumina concentration and low CR electrolysis is preferred for using Fe-Ni-Al2O3 inert anodes for aluminium electrolysis.

  3. Chemical mixing at “Al on Fe” and “Fe on Al” interfaces

    SciTech Connect

    Süle, P.; Horváth, Z. E.; Kaptás, D.; Bujdosó, L.; Balogh, J.; Nakanishi, A.

    2015-10-07

    The chemical mixing at the “Al on Fe” and “Fe on Al” interfaces was studied by molecular dynamics simulations of the layer growth and by {sup 57}Fe Mössbauer spectroscopy. The concentration distribution along the layer growth direction was calculated for different crystallographic orientations, and atomically sharp “Al on Fe” interfaces were found when Al grows over (001) and (110) oriented Fe layers. The Al/Fe(111) interface is also narrow as compared to the intermixing found at the “Fe on Al” interfaces for any orientation. Conversion electron Mössbauer measurements of trilayers—Al/{sup 57}Fe/Al and Al/{sup 57}Fe/Ag grown simultaneously over Si(111) substrate by vacuum evaporation—support the results of the molecular dynamics calculations.

  4. Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.).

    PubMed

    Zhang, Xian-Chen; Gao, Hong-Jian; Wu, Hong-Hong; Yang, Tian-Yuan; Zhang, Zheng-Zhu; Mao, Jing-Dong; Wan, Xiao-Chun

    2015-11-01

    Tea plant (Camellia sinensis (L.) O. kuntze) is known to be a fluoride (F) and aluminum (Al(3+)) hyper-accumulator. Previous study showed that pre-treatment of Al(3+) caused a significant increase of F accumulation in tea plants. However, less is known about the intricate network of Al(3+) promoted F accumulation in tea plants. In this study, the involvement of endogenous Ca(2+) and CaM in Al(3+) pretreatment-promoted F accumulation in tea plants was investigated. Our results showed that Al(3+) induced the inverse change of intracellular Ca(2+) fluorescence intensity and stimulated Ca(2+) trans-membrane transport in the mature zone of tea root. Also, a link between internal Ca(2+) and CaM was found in tea roots under the presence of Al(3+). In order to investigate whether Ca(2+) and CaM were related to F accumulation promoted by Al(3+) pretreatment, Ca(2+) chelator EGTA and CaM antagonists CPZ and TFP were used. EGTA, CPZ, and TFP pretreatment inhibited Al(3+)-induced increase of Ca(2+) fluorescence intensity and CaM content in tea roots, and also significantly reduced Al(3+)-promoted F accumulation in tea plants. Taken together, our results suggested that the endogenous Ca(2+) and CaM are involved in Al(3+) pretreatment-promoted F accumulation in tea roots. PMID:26318146

  5. ALS-like skin changes in mice on a chronic low-Ca/Mg high-Al diet.

    PubMed

    Kihira, Tameko; Yoshida, Sohei; Kondo, Tomoyoshi; Yase, Yoshiro; Ono, Seiitsu

    2004-04-15

    Epidemiologic studies of endemic foci of amyotrophic lateral sclerosis (ALS) have shown low concentrations of Ca/Mg and high concentrations of Al/Mn in the drinking water and garden soil, which may play a causative role in the pathogenesis of endemic ALS. We studied the effects of chronic exposure to a low-Ca/Mg high-Al maltol diet on the skin of experimental animals. In ALS patients, atrophy of the epidermis, edematous changes with separated collagen fibrils and an accumulation of amorphous materials between collagen bundles were regarded as pathognomonic skin changes of ALS. Mice chronically fed a low-Ca/Mg high-Al maltol diet showed neuronal degeneration and loss in the spinal cords and cerebral cortices, as well as skin changes including atrophy, separation of collagen fibrils and accumulation of amorphous materials, similar to the skin changes characteristic of ALS. This is the first report of skin changes in animal models similar to those of ALS. We speculate that environmental factors such as chronic low-Ca/Mg high-Al condition play some causative role in the pathogenesis of Kii-ALS. PMID:15050431

  6. Isotopic fractionation of Mg 2+(aq), Ca 2+(aq), and Fe 2+(aq) with carbonate minerals

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-01

    Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/ 24Mg and 44Ca/ 40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 10 3ln ( K) at 25 °C, of -5.3, -1.1, and +1.2 for 26Mg/ 24Mg exchange between calcite (CaCO 3), magnesite (MgCO 3), and dolomite (Ca 0.5Mg 0.5CO 3), respectively, and Mg 2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/ 40Ca exchange between calcite and Ca 2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca 2+(aq) in 6-fold coordination and +4.1 for Ca 2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO)610- and M(HO)62+ embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe 3+-hematite and Fe 2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe 3+(aq) and Fe 2+(aq) species.

  7. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals

    SciTech Connect

    Rustad, James R.; Casey, William H.; Yin, Qing-Zhu; Bylaska, Eric J.; Felmy, Andrew R.; Bogatko, Stuart A.; Jackson, Virgil E.; Dixon, David A.

    2010-11-15

    Density functional electronic structure calculations are used to compute the equilibrium constant (the isotope fractionation factor) for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln(K) at 25 °C, of -5.3, -1.1, and +1.1 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq), the calculations predict values of +1.5 for Ca2+(aq) in six-fold coordination and +4.1 for Ca2+(aq) in seven-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)610- and M2+(H2O)6 embedded in a set of fixed atoms representing the 2nd shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using 2 the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.

  8. [Matrix Effect of Fe and Ca on EDXRF Analysis of Ce Concentration in Bayan Obo Ores].

    PubMed

    Qi, Hai-jun; Wang, Jian-ying; Zhang, Xue-feng; Wang, Yang

    2015-12-01

    When Energy-Dispersive X-RayFluorescence (EDXRF) used for measuring cerium (Ce) content in the Bayan Obo ores, matrix effect mainly comes from iron (Fe) and calcium (Ca). Due to extensive concentration variability of the two elements, commonly employed standard sample method for matrix effect correction is invalid. To overcome the problem, testing samples were prepared based on the average contents of elements in the Bayan Obo ores, and the influence of Fe and Ca on the coefficient in a linear relationship between Ce content and XRF signal was determined by linear least squares fitting for multivariate analysis. The coefficients thus determined reflected the matrix effect on Ce emitted fluorescence from Fe emitted fluorescence and Ca absorption. When the coefficients were used in analyzing Ce content in Bayan Obo mine by EDXRF, the relative error is less than 10%. PMID:26964240

  9. Complex temperature evolution of the electronic structure of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Adhikary, Ganesh; Biswas, Deepnarayan; Sahadev, Nishaina; Bindu, R.; Kumar, Neeraj; Dhar, S. K.; Thamizhavel, A.; Maiti, Kalobaran

    2014-03-01

    Employing high resolution photoemission spectroscopy, we investigate the temperature evolution of the electronic structure of CaFe2As2, which is a parent compound of high temperature superconductors—CaFe2As2 exhibits superconductivity under pressure as well as doping of charge carriers. Photoemission results of CaFe2As2 in this study reveal a gradual shift of an energy band, α away from the chemical potential with decreasing temperature in addition to the spin density wave (SDW) transition induced Fermi surface reconstruction across SDW transition temperature. The corresponding hole pocket eventually disappears at lower temperatures, while the hole Fermi surface of the β band possessing finite p orbital character survives till the lowest temperature studied. These results, thus, reveal signature of complex charge redistribution among various energy bands as a function of temperature.

  10. Magnetotransport Properties of Co2FeAl Nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab; Gyawali, P.; Dahal, Bishnu; Dulal, R.; Pegg, I. L.; Philip, John

    2013-03-01

    Co2FeAl (CFA) nanowire (NW) exhibit interesting magnetic behavior with temperature, which arises from the granular structure.[2] To understand the magnetotransport properties, single CFA NW devices were fabricated using standard electron beam lithography. The magnetoresistance measurements of single CFA NW device were carried out at different temperatures. The magnetoresistance measurements show oscillations as a function of applied external magnetic field. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  11. MOKE Study of Fe/Co/Al Multilayers

    SciTech Connect

    Jani, Snehal; Lakshmi, N.; Venugopalan, K.; Rajput, Parasmani; Zajaoc, M.; Rueffer, R.; Reddy, V. R.; Gupta, Ajay

    2011-07-15

    The multilayer system (MLS)-[{sup 57}Fe{sub 25}A/Co{sub 11}A/Al{sub 17}A]x20 has been deposited by Ion beam sputtering (IBS) technique. The MLS has been annealed at 700 deg. C for 1 h. Overall composition of as deposited and annealed MLS have been characterized by EDX and magnetic properties have been studied through angular dependent magneto optic Kerr effect (MOKE) hysteresis curves. The study shows that the as-deposited MLS has excellent soft magnetic properties coupled with perpendicular magnetic isotropy which is destroyed on annealing.

  12. Zener Relaxation Peak in an Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng-Cun; Cheng, He-Fa; Gong, Chen-Li; Wei, Jian-Ning; Han, Fu-Sheng

    2002-11-01

    We have studied the temperature spectra of internal friction and relative dynamic modulus of the Fe-(25 wt%)Cr-(5 wt%)Al alloy with different grain sizes. It is found that a peak appears in the internal friction versus temperature plot at about 550°C. The peak is of a stable relaxation and is reversible, which occurs not only during heating but also during cooling. Its activation energy is 2.5 (+/- 0.15) eV in terms of the Arrhenius relation. In addition, the peak is not obvious in specimens with a smaller grain size. It is suggested that the peak originates from Zener relaxation.

  13. Annealing of cold-rolled Fe-40Al single crystals

    SciTech Connect

    Yang, Y.; Baker, I.

    1997-12-31

    Single crystals of Fe-40Al were cold-rolled to plastic strains in the range 5% to 48%. Discs cut from the rolled crystals at different rolling strains were heated at 10 K/min in a differential scanning calorimeter from room temperature to 973 K. Three exothermic peaks were observed in the temperature ranges of 440--550 K, 610--650 K, and 860--930 K, all the peaks shifting to lower temperatures with increasing strain. The origins of these peaks are discussed in terms of the disorder and vacancies introduced during rolling.

  14. A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds

    NASA Astrophysics Data System (ADS)

    Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.

    2016-02-01

    The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.

  15. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  16. Thermal Conductivity of the Molten CaO-SiO2-FeO x System

    NASA Astrophysics Data System (ADS)

    Kang, Youngjo; Nomura, Kiyoshi; Tokumitsu, Kazuto; Tobo, Hiroyuki; Morita, Kazuki

    2012-12-01

    Thermal conductivity measurements were carried out on synthetic steelmaking slag using the hot-wire method. Furthermore, local structure analysis in the melts was carried out in order to investigate the relationship with the composition dependence. The thermal conductivity of the CaO-SiO2-FeO x melts significantly decreased as the content of FeO x increases, particularly at lower basicity. Both chemical analysis and the observation show that the amount of Fe2+ increases when CaO/SiO2 is smaller, implying more basic behavior of FeO than FeO1.5. According to further analyses by Mössbauer spectroscopy, the degree of basicity of FeO1.5 remains virtually unchanged in the composition range of interest. From the experimental results, it could be concluded that the thermal conductivity of the silicate melt containing iron oxide is highly dependent on the valence of the Fe ion and comparatively independent of the amphoteric behavior of FeO1.5.

  17. Ca2O3Fe2.6S2: an antiferromagnetic Mott insulator at proximity to bad metal

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Wu, Xiaozhi; Li, Dandan; Jin, Shifeng; Chen, Xiao; Zhang, Tao; Lin, Zhiping; Shen, Shijie; Yuan, Duanduan; Chen, Xiaolong

    2016-04-01

    We report here the first layered iron oxychalcogenide Ca2O3Fe2.6S2 that contains both planar [Ca2FeO2]2+ and [Fe2OS2]2- layers with the shortest Fe-Fe bond length. This compound is a narrow band gap (~0.073 eV) Mott insulator. The observed antiferromagnetic (AFM) transition at 77 K is due to the ordered Fe vacancies, which can be suppressed by partial substitution of Se for S. We show that the vacancy-free phase Ca2O3Fe3S2 may become a metal with moderate electron correlation comparable to the parent compound LaOFeAs of corresponding superconductors. Our results imply that iron oxychalcogenide can be converted from an AFM Mott insulator into a bad metal like iron pnictides through Fe-Fe bond length shrinking.

  18. Phase Separation kinetics in an Fe-Cr-Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Chao, J.

    2012-01-01

    The {alpha}-{alpha}{prime} phase separation kinetics in a commercial Fe-20 wt.% Cr-6 wt.% Al oxide dispersion-strengthened PM 2000{trademark} steel have been characterized with the complementary techniques atom probe tomography and thermoelectric power measurements during isothermal aging at 673, 708, and 748 K for times up to 3600 h. A progressive decrease in the Al content of the Cr-rich {alpha}{prime} phase was observed at 708 and 748 K with increasing time, but no partitioning was observed at 673 K. The variation in the volume fraction of the {alpha}{prime} phase well inside the coarsening regime, along with the Avrami exponent 1.2 and activation energy 264 kJ mol{sup -1}, obtained after fitting the experimental results to an Austin-Rickett type equation, indicates that phase separation in PM 2000{trademark} is a transient coarsening process with overlapping nucleation, growth, and coarsening stages.

  19. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGESBeta

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  20. Surface investigation of Ca1-xPrxFe2As2 by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Dennis; Zeljkovic, Ilija; Song, Can-Li; Lv, Bing; Chu, Ching-Wu; Hoffman, Jennifer E.

    2013-03-01

    Rare-earth-doped CaFe2As2 exhibits small volume-fraction superconductivity up to 49 K of unknown origin. We use scanning tunneling microscopy to locally probe possible sources of this phase in Ca1-xPrxFe2As2. We encounter three kinds of surface morphologies and infer their chemical identities with local work function measurements. We also image Pr3+ dopants as positive-energy resonances in tunneling conductance and examine their relationship with an observed inhomogeneous spectral gap.

  1. Bonding of WC with an iron aluminide (FeAl) intermetallic

    SciTech Connect

    Schneibel, J.H.; Subramanian, R.

    1996-08-01

    FeAl, which has high oxidation and sulfidation resistance, was shown to be thermodynamically compatible with WC. Calculations indicate that soly. of WC in liq. Fe-40at.%Al at 1450 C is about 2 at.%. Since liquid FeAl wets WC very well, the WC/FeAl system lends itself to liquid-phase sintering, resulting in close to theoretical densities. Almost fully dense cermets with 20.6 wt% FeAl binder were produced. With one-step infiltration, 98% dense cermets with only 7 wt% FeAl binder were fabricated. RT bend strengths and fracture toughness for WC-20.6 wt% FeAl reached 1680 MPa and 22 MPa{center_dot}m{sup 1/2}. Ductile binder fracture was observed on the fracture surfaces. Pores containing oxide inclusions were found, suggesting that improvements in processing are likely to further improve the mechanical properties. Insufficient process control may explain why WC/FeAlNi cermets did not show improved mechanical properties, although Ni strengthens FeAl. For WC bonded with FeAl, mechanical properties were measured at RT and 800 C. Bend strengths at 800 C in air increased with WC volume fraction, and fracture toughness were higher than at RT.

  2. Impact behavior of FeAl alloy FA-350

    SciTech Connect

    Alexander, D.J.

    1994-09-01

    The tensile properties and impact behavior of the iron aluminide FeAl-type alloy FA-350 [Fe-35.8Al-0.05Zr-0.24B (at. %)] have been studied over the temperature range of {minus}100 to 800C. Half-size Charpy specimens were either oil quenched from 700C or furnace cooled. The energy absorbed during the impact test showed a maximum value at 100 to 200C, with decreasing energy as the temperature was increased, for both heat treatments. The furnace-cooled material had greater energy absorption than the oil-quenched material. The tensile tests showed increasing ductility (as measured by total elongation) with increasing temperature. The furnace-cooled material had lower strength and higher ductility than the oil-quenched material. Fractographic examination of the oil-quenched impact specimens revealed that several different fracture modes operated, depending on the test temperature. Fracture occurred by intergranular and quasicleavage fracture at low temperatures, predominantly quasicleavage at intermediate temperatures, and intergranular fracture at 800C. For the furnace-cooled material fracture was predominantly quasicleavage at all temperatures. The higher ductility and energy absorption for the furnace-cooled material is believed to be the result of softening due to a decrease in the retained vacancy concentration.

  3. Weldability of Fe[sub 3]Al-type Aluminide

    SciTech Connect

    David, S.A.; Zacharia, T. )

    1993-05-01

    An investigation was carried out to determine the weldability of a series of Fe[sub 3]Al-type alloys. Autogenous welds were made on thin sheets of iron aluminide alloys using gas tungsten arc (GTA) and electron beam (EB) welding processes at different travel speeds and power levels. The results indicate that although these alloys can be successfully welded using the EB welding process, some compositions may hot crack during GTA welding. Boron and zirconium additions have been found to promote hot cracking in these alloys. Among the alloys investigated, Fe[sub 3]Al modified with chromium, niobium and carbon (FA-129) showed the most promise for good weldability. Hot-cracking severity of this alloy was further investigated using the Sigmajig test. The minimum threshold stress of 25 ksi measured is within the material range of other aluminides and some commercial stainless steels. Also, some of these alloys exhibited a tendency for cold cracking. This is related to severe hydrogen embrittlement associated with this class of alloys.

  4. Effect of adsorbed iron on thermoluminescence and electron spin resonance spectra of Ca-Fe-exchanged montmorillonite

    NASA Technical Reports Server (NTRS)

    Coyne, Lelia M.; Banin, Amos

    1986-01-01

    The ESR spectra and the natural and gamma-induced thermoluminescence (TL) glow curves of a series of variably cation-exchanged Fe-Ca-clays prepared from SWy-1 montmorillonite were examined. The ESR signal intensity associated with surface Fe increased linearly with surface Fe content up to a nominal concentration of 50 percent exchangeable Fe. At above 50 percent exchangeable Fe, no appreciable increase in the signal was noted. The TL intensity decreased linearly with increasing surface Fe up to 50 percent nominal exchangeable Fe. At above 50 percent, the signal was not appreciably further diminished. Possible effects of Fe on quenching of TL are considered.

  5. Complex structures of different CaFe2As2 samples

    PubMed Central

    Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; II, William Ratcliff; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.

    2014-01-01

    The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed. PMID:24844399

  6. Complex structures of different CaFe2As2 samples

    NASA Astrophysics Data System (ADS)

    Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; , William Ratcliff, II; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.

    2014-02-01

    The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed.

  7. Adhesion of Escherichia coli to nano-Fe/Al oxides and its effect on the surface chemical properties of Fe/Al oxides.

    PubMed

    Liu, Zhao-Dong; Li, Jiu-Yu; Jiang, Jun; Hong, Zhi-Neng; Xu, Ren-Kou

    2013-10-01

    We investigated the adhesion of Escherichia coli to α-Fe2O3 and γ-Al2O3 and the effects of adhesion on the surface properties of the oxides in batch experiments, where we conducted potentiometric titration, zeta potential measurements, and FTIR spectroscopy. The adhesion isotherms fitted a Langmuir equation well. γ-Al2O3 had a higher adhesion capacity than α-Fe2O3 because of the higher positive charge on γ-Al2O3. The adhesion of E. coli to Fe/Al oxides decreased with increasing pH. Adhesion increased with increasing NaCl concentration, reaching its maximum at 0.05M for α-Fe2O3 and at 0.1M for γ-Al2O3, after which it decreased with further increases in NaCl concentration. Therefore, the electrostatic force plays an important role in the adhesion of E. coli to Fe/Al oxides. The zeta potential-pH curves of the binary-system fell between that for bacteria and those for Fe/Al oxides. Thus, overlapping of the diffuse layers of the electric double layers on the negatively-charged E. coli and positively-charged Fe/Al oxides reduced the effective surface charge density of the minerals and bacteria. E. coli adhesion decreased the point of zero salt effect and the isoelectric point of the Fe/Al oxides. The FTIR spectra indicated that non-electrostatic force also contributed to the interaction between E. coli and Fe/Al oxides, in addition to the electrostatic force between them. PMID:23732807

  8. P- T- X controls on Ca and Na distribution between Mg-Al tourmaline and fluid

    NASA Astrophysics Data System (ADS)

    Berryman, Eleanor J.; Wunder, Bernd; Rhede, Dieter; Schettler, Georg; Franz, Gerhard; Heinrich, Wilhelm

    2016-04-01

    Ca-Na partitioning between tourmaline and a coexisting fluid is investigated in the system CaO-Na2O-B2O3-Al2O3-MgO-SiO2-H2O-Cl between 0.2-4.0 GPa and 500-700 °C. The synthesis experiments produced a mineral assemblage of tourmaline, coesite/quartz, and in some cases additional phases, typically comprising <1 wt% of the solid product. The synthesized tourmalines are solid solutions of dravite [NaMg3Al6Si6O18(BO3)3(OH)3(OH)], "oxy-uvite" (i.e. "Ca-Mg-O root name") [CaMg3Al6Si6O18(BO3)3(OH)3O], and magnesio-foitite [☐(Mg2Al)Al6Si6O18(BO3)3(OH)3(OH)]. Starting materials comprised a fluid of constant ionic strength (2.00 m) and an oxide mixture with a constant Mg/Al ratio. As a result, the number of vacancies at the X site and the Mg/Al ratio of tourmaline crystals synthesized at the same temperature vary only slightly. The major solid solution is Ca-Na exchange at the X site via the exchange vector X Ca W O[ X Na W (OH)]-1, with the exchange vector X (Ca☐)[ X Na2]-1 serving as a secondary Ca-incorporation mechanism. Tourmaline's X-site composition reflects the fluid composition, whereby the Ca (or Na) concentration in the fluid corresponds with the Ca (or Na) content in tourmaline at each pressure and temperature. At 0.2 GPa, 700 °C, Ca preferentially partitions into tourmaline, producing the most Ca-rich tourmaline crystals synthesized here. At pressures >1.0 GPa, Ca partitions preferentially into the fluid, resulting in Na-dominant tourmaline compositions. Temperature has a secondary effect on Ca-Na partitioning, with higher temperatures correlating with increased Ca incorporation in tourmaline. Based on the experimental findings, tourmaline is expected to have Ca-rich compositions when it forms in low pressure, high-temperature Ca-rich rocks, consistent with the current record of tourmaline occurrence. The bulk Mg/Al ratio and the pH of the tourmaline-forming system may also affect Ca incorporation in tourmaline, but remain to be investigated experimentally.

  9. Thermodynamic Assessment of the Aluminum Corner of the Al-Fe-Mn-Si System

    NASA Astrophysics Data System (ADS)

    Lacaze, Jacques; Eleno, Luiz; Sundman, Bo

    2010-09-01

    A new assessment of the aluminum corner of the quaternary Al-Fe-Mn-Si system has been made that extends beyond the COST-507 database. This assessment makes use of a recent, improved description of the ternary Al-Fe-Si system. In the present work, modeling of the Al-rich corner of the quaternary Al-Fe-Mn-Si system has been carried out by introducing Fe solubility into the so-called alpha-AlMnSi and beta-AlMnSi phases of the Al-Mn-Si system. A critical review of the data available on the quaternary system is presented and used for the extension of the description of these ternary phases into the quaternary Al-Fe-Mn-Si.

  10. Influence of testing environment on the room temperature ductility of FeAl alloys

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Nathal, M. V.

    1990-01-01

    The effects of testing atmospheres (air, O2, N2, and vacuum) on the room-temperature ductility of Fe-40Al, Fe-40Al-0.5B, and Fe-50Al alloys were investigated. The results confirmed the decrease in room-temperature ductility of Fe-rich FeAl alloys by the interaction of the aluminide with water vapor, reported previously by Liu et al. (1989). The highest ductilities were measured in the atmosphere with the lowest moisture levels, i.e., in vacuum. It was found that significant ductility is still restricted to Fe-rich alloys (Fe-40Al), as the Fe-50Al alloy remained brittle under all testing conditions. It was also found that slow cooling after annealing was beneficial, and the effect was additive to the environmental effect. The highest ductility measurements in this study were 9 percent elongation in furnace-cooled Fe-40Al and in Fe-40Al-0.5B, when tested in vacuum.

  11. Composition and mineralogy of refractory-metal-rich assemblages from a Ca,Al-rich inclusion in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    Bischoff, A.; Palme, H.

    1987-10-01

    Four refractory metal-rich samples (10-190 micrograms) were separated from a single Ca,Al inclusion of the Allende meteorite. Chemical analyses were carried out by INAA; mineral phases from six large fremdlinge and the surrounding inclusion were analyzed by EDS. It is found that three of the four separated samples have variable absolute but similar relative abundances of refractory metals. All six fremdlinge are made up of Ni-rich metal containing 2-9 percent Ir, surrounded by a fine-grained intergrowth of V-magnetite and FeS.

  12. Structural investigation of the (010) surface of the Al13 Fe4 catalyst.

    PubMed

    Ledieu, J; Gaudry, É; Loli, L N Serkovic; Villaseca, S Alarcón; de Weerd, M-C; Hahne, M; Gille, P; Grin, Y; Dubois, J-M; Fournée, V

    2013-02-15

    We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as "glue" atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al(13)Fe(4) catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster et al., Nat. Mater. 11, 690 (2012)]. PMID:25166385

  13. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  14. Infrared spectroscopy of rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Xing, Zhen; Huffman, T. J.; Xu, Peng; Qazilbash, M. M.; Saha, S. R.; Drye, Tyler; Paglione, J.

    2014-03-01

    Recently, rare-earth doping in CaFe2As2 has been used to tune its electronic, magnetic, and structural properties. The substitution of rare-earth ions at the alkaline-earth sites leads to the suppression of the spin-density wave (SDW) phase transition in CaFe2As2. For example, Pr substitution results in a paramagnetic metal in the tetragonal phase that is susceptible to a low temperature structural transition to a collapsed tetragonal phase. However, La-doped CaFe2As2 remains in the uncollapsed tetragonal structure down to the lowest measured temperatures. Both the uncollapsed and collapsed tetragonal structures exhibit superconductivity with maximum Tc reaching 47 K, the highest observed in inter-metallics albeit with a small superconducting volume fraction. In this work, we perform ab-plane infrared spectroscopy of rare-earth-doped CaFe2As2 at different cryogenic temperatures. Our aim is to ascertain the contributions of electron doping and chemical pressure to the charge and lattice dynamics of this iron-arsenide system.

  15. The c/a Ratio in Quenched Fe-C and Fe-N steels - a Heuristic Story

    SciTech Connect

    Sherby, O; Wadsworth, J; Lesuer, D; Syn, C

    2006-01-31

    The body-centered tetragonal (BCT) structure in quenched Fe-C steels is usually illustrated to show a linear change in the c and a axes with an increase in carbon content from 0 to 1.4%C. The work of Campbell and Fink, however, shows that this continuous linear relationship is not correct. Rather, it was shown that the body-centered-cubic (BCC) structure is the stable structure from 0 to 0.6 wt%C with the c/a ratio equal to unity. An abrupt change in the c/a ratio to 1.02 occurs at 0.6 wt%C. The BCT structure forms, and the c/a ratio increases with further increase in carbon content. An identical observation is noted in quenched Fe-N steels. This discontinuity is explained by a change in the transformation process. It is proposed that a two-step transformation process occurs in the low carbon region, with the FCC first transforming to HCP and then from HCP to BCC. In the high carbon region, the FCC structure transforms to the BCT structure. The results are explained with the Engel-Brewer theory of valence and crystal structure of the elements. An understanding of the strength of quenched iron-carbon steels plays a key role in the proposed explanation of the c/a anomaly based on interstitial solutes and precipitates.

  16. Thermoelectric Properties of Mn-Doped Ca5Al2Sb6

    NASA Astrophysics Data System (ADS)

    Zevalkink, Alex; Swallow, Jessica; Snyder, G. Jeffrey

    2012-05-01

    Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2- x Mn x Sb6 samples ( x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.

  17. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  18. Thermoelasticity of Fe3+- and Al-bearing bridgmanite: Effects of iron spin crossover

    NASA Astrophysics Data System (ADS)

    Shukla, Gaurav; Cococcioni, Matteo; Wentzcovitch, Renata M.

    2016-06-01

    We report ab initio (LDA + Usc) calculations of thermoelastic properties of ferric iron (Fe3+)- and aluminum (Al)-bearing bridgmanite (MgSiO3 perovskite), the main Earth forming phase, at relevant pressure and temperature conditions and compositions. Three coupled substitutions, namely, [Al]Mg-[Al]Si, [Fe3+]Mg-[Fe3+]Si, and [Fe3+]Mg-[Al]Si have been investigated. Aggregate elastic moduli and sound velocities are successfully compared with limited experimental data available. In the case of [Fe3+]Mg-[Fe3+]Si substitution, the high-spin (S = 5/2) to low-spin (S = 1/2) crossover in [Fe3+]Si induces a volume collapse and elastic anomalies across the transition region. However, the associated anomalies should disappear in the presence of aluminum in the most favorable substitution, i.e., [Fe3+]Mg-[Al]Si. Calculated elastic properties along a lower mantle model geotherm suggest that the elastic behavior of bridgmanite with simultaneous substitution of Fe2O3 and Al2O3 in equal proportions or with Al2O3 in excess should be similar to that of (Mg,Fe2+)SiO3 bridgmanite. However, excess of Fe2O3 should produce elastic anomalies in the crossover pressure region.

  19. Effect of nitrogen upon structural and magnetic properties of FePt in FePt/AlN multilayer structures

    SciTech Connect

    Gao, Tenghua Zhang, Cong; Sannomiya, Takumi; Muraishi, Shinji; Nakamura, Yoshio; Shi, Ji

    2014-09-01

    This paper investigates the effect of the addition of nitrogen in FePt layers for ultrathin FePt/AlN multilayer structures. X-ray diffraction results reveal that a compressive stress relaxation occurs after annealing owing to the release of interstitial nitrogen atoms in the FePt layers. The introduction of nitrogen also induces a large in-plane compressive strain during grain growth not seen in FePt deposited without nitrogen. This strain is considered to decrease the driving force for (111) grain growth and FePt ordering.

  20. Annealing study of (Ca,R)Fe2 As2 single crystals synthesized using Sn flux

    NASA Astrophysics Data System (ADS)

    Roncaioli, Connor; Drye, Tyler; Saha, Shanta; Paglione, Johnpierre

    2014-03-01

    The superconducting parent compound CaFe2As2 displays an AFM transition at 168 K that is closely linked to an orthorhombic structural distortion. Studies on self-flux (FeAs) grown crystals have revealed the ability to tune the structural and magnetic properties of this system by annealing, resulting in a phase diagram that spans from tetragonal/orthorhombic antiferromagnetism to the non-magnetic collapsed tetragonal phase. In this study, we investigate the effects of annealing on (Ca,R)Fe2As2 (R =rare earth) crystals grown in Sn flux in order to understand the role of growth conditions on the resultant phase diagram. We present investigations of x-ray, EDS, electrical transport and magnetization measurements and compare the resultant phase diagram with that of the self-flux case.

  1. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  2. Structure and high temperature oxidation of mechanical alloyed Fe-Al coating

    NASA Astrophysics Data System (ADS)

    Aryanto, Didik; Sudiro, Toto; Wismogroho, Agus S.

    2016-04-01

    The structure and high temperature oxidation resistance of Fe-Al coating on low carbon steel were investigated. The Fe-Al coating was deposited on the surface of low carbon steel using a mechanical alloying method. The coating was then annealed at 600°C for 2 hour in a vacuum of 5 Pa. The cyclic-oxidation tests of low carbon steel, Fe-Al coatings with and without annealing were performed at 600°C for up to 60h in air. The structure of oxidized samples was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy X-ray spectroscopy (EDS). The results show that the Fe-Al coatings exhibit high oxidation resistance compared to the uncoated steel. After 60 h exposure, the uncoated steel formed mainly Fe3O4 and Fe2O3 layers with the total thickness of around 75.93 µm. Fe-Al coating without annealing formed a thin oxide layer, probably (Fe,Al)2O3. Meanwhile, for annealed sample, EDX analysis observed the formation of two Fe-Al layers with difference in elements concentration. The obtained results suggest that the deposition of Fe-Al coating on low carbon steel can improve the oxidation resistance of low carbon steel.

  3. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation

    SciTech Connect

    Jiao, Z.; Huang, H.; Zhou, Y. E-mail: nzhou@uwaterloo.ca; Liu, L.; Hu, A.; Duley, W.; He, P. E-mail: nzhou@uwaterloo.ca

    2014-04-07

    The joining of Al-Fe nanoparticles (NPs) by femtosecond (fs) laser irradiation is reported in this paper. Fe and Al NPs were deposited on a carbon film in vacuum via fs laser ablation. Particles were then exposed to multiple fs laser pulses at fluences between 0.5 and 1.3 mJ/cm{sup 2}. Transmission Electron Microscopy (TEM) and Electron Diffraction X-ray observations indicate that Al and Fe NPs bond to each other under these conditions. For comparison, bonding of Al to Al and Fe to Fe NPs was also investigated. The nanostructure, as observed using TEM, showed that individual Al NPs were monocrystalline while individual Fe NPs were polycrystalline prior to joining and that these structures are retained after the formation of Al-Al and Fe-Fe NPs. Al-Fe NPs produced by fs laser joining exhibited a mixed amorphous and crystalline phase at the interface. Bonding is suggested to originate from intermixing within a region of high field intensity between particles.

  4. Characterization of Co2FeAl nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Pegg, I. L.; Philip, J.

    2011-03-01

    Heusler alloy, Co 2 FeAl (CFA) is a potentially useful material in the field of spintronics due to its high spin polarization. The CFA nanowires are grown for the first time by the electrospinning method. The diameters of the wires formed are ranging from 80 -- 100 nm. The structural characterization of the nanowires is done using X-Ray diffraction and Raman spectroscopy. The nanowires exhibit cubic structure with a lattice constant, a = 2.44 Å. Parallel arrays of nanowires are grown for magnetic characterization using electric field applied at the collector plate. The nanowires exhibit ferromagnetic behavior with a Curie temperature higher than 400 K. Nanoscale devices are fabricated with single CFA nanowire to understand the magnetotransport properties. This work has been supported by funding from NSF under CAREER Grant No. ECCS-0845501 and NSF-MRI, DMR-0922997.

  5. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  6. Spectroscopic study of red-light-emitting centers in K2Al2B2O7: Fe single crystals

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, I. N.; Pustovarov, V. A.; Yakovlev, S. A.; Isaenko, L. I.

    2013-04-01

    We report on spectroscopic study of red-light-emitting centers in K2Al2B2O7 (KABO) single crystals containing ca. 2 ppm of Fe3+. Owing to the low Fe3+-concentration, KABO does not show noticeable absorption due to Fe3+d-d-transitions in the visible spectral region, but it exhibits the charge-transfer (CT) UV-absorption bands O-Fe at 4.7, 5.7 and 6.5 eV. The red photoluminescence at 1.675 eV (FWHM = 0.173 eV) is due to intracenter 4T1 (4G) → 6A1 (6S) transitions in Fe3+ ions. Because of partial overlapping of the fundamental absorption edge of the crystal, where mobile excitons are created, and a broad CT absorption band at 6.5 eV, the most intensive red emission occurs at 7 K upon excitation in the excitonic energy region. The presence of two nonequivalent Al2O7 clusters in KABO lattice provides two different types of red-light-emitting centers in the form of Fe3+ ion occupied the Al3+ tetrahedral site. Superposition of their luminescence bands determines both the spectrum and temperature dependence of red emission in KABO at T = 7-80 K: two bands with the ratio of intensities of ca. 2:1 are 20 meV-shifted relative to each other; two-stage thermal quenching obeys the Mott law with ET = 9 and 20 meV.

  7. Zirconium doped nano-dispersed oxides of Fe, Al and Zn for destruction of warfare agents

    SciTech Connect

    Stengl, Vaclav; Houskova, Vendula; Bakardjieva, Snejana; Murafa, Nataliya; Marikova, Monika; Oplustil, Frantisek; Nemec, Tomas

    2010-11-15

    Zirconium doped nano dispersive oxides of Fe, Al and Zn were prepared by a homogeneous hydrolysis of the respective sulfate salts with urea in aqueous solutions. Synthesized metal oxide hydroxides were characterized using Brunauer-Emmett-Teller (BET) surface area and Barrett-Joiner-Halenda porosity (BJH), X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). These oxides were taken for an experimental evaluation of their reactivity with sulfur mustard (HD or bis(2-chloroethyl)sulfide), soman (GD or (3,3'-Dimethylbutan-2-yl)-methylphosphonofluoridate) and VX agent (S-[2-(diisopropylamino)ethyl]-O-ethyl-methylphosphonothionate). The presence of Zr{sup 4+} dopant can increase both the surface area and the surface hydroxylation of the resulting doped oxides, decreases their crystallites' sizes thereby it may contribute in enabling the substrate adsorption at the oxide surface thus it can accelerate the rate of degradation of warfare agents. Addition of Zr{sup 4+} converts the product of the reaction of ferric sulphate with urea from ferrihydrite to goethite. We found out that doped oxo-hydroxides Zr-FeO(OH) - being prepared by a homogeneous hydrolysis of ferric and zirconium oxo-sulfates mixture in aqueous solutions - exhibit a comparatively higher degradation activity towards chemical warfare agents (CWAs). Degradation of soman or VX agent on Zr-doped FeO(OH) containing ca. 8.3 wt.% of zirconium proceeded to completion within 30 min.

  8. The microstructure-strength relationship in a deformation processed Al-Ca composite

    SciTech Connect

    Tian, Liang; Kim, Hyongjune; Anderson, Iver; Russell, Alan

    2013-02-07

    An Al-9 vol% Ca composite was produced by powder metallurgy and deformation processing. The Al–Ca composite was extruded, swaged and wire drawn to a deformation true strain of 13.8. Both Al and Ca are face-centered cubic, so the Ca second phase deformed into continuous, nearly cylindrical filaments in the Al matrix. The formation of intermetallic compounds, filament coarsening, and spheriodization at elevated temperature was observed by scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. Both the thickness and spacing of the Ca filaments decreased exponentially with increasing deformation. The ultimate tensile strength of the composite increased rapidly with increased deformation, especially at high deformation processing strains. The relation between deformation true strain and ultimate tensile strength is underestimated by the rule of mixtures; a modified Hall–Petch barrier strengthening model was found to fit the data better.

  9. Structural Investigation of the (010) Surface of the Al13Fe4 Catalyst

    NASA Astrophysics Data System (ADS)

    Ledieu, J.; Gaudry, É.; Loli, L. N. Serkovic; Villaseca, S. Alarcón; de Weerd, M.-C.; Hahne, M.; Gille, P.; Grin, Y.; Dubois, J.-M.; Fournée, V.

    2013-02-01

    We have investigated the structure of the Al13Fe4(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al atoms, each centered by a protruding Fe atom. These motifs are interconnected via additional Al atoms referred to as “glue” atoms which partially desorb above 873 K. The surface structure of lower atomic density compared to the bulk P plane is explained by a strong Fe-Al-Fe covalent polar interaction that preserves intact clusters at the surface. The proposed surface model with identified Fe-containing atomic ensembles could explain the Al13Fe4 catalytic properties recently reported in line with the site-isolation concept [M. Armbrüster , Nat. Mater. 11, 690 (2012)NMAACR1476-1122].

  10. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    PubMed

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  11. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity.

    PubMed

    Chang, Po-Hsueh; Chang, Yen-Po; Chen, San-Yuan; Yu, Ching-Tsung; Chyou, Yau-Pin

    2011-12-16

    We present the design and synthesis of Ca-rich Ca-Al-O oxides, with Ca(2+)/Al(3+) ratios of 1:1, 3:1, 5:1, and 7:1, which were prepared by hydrothermal decomposition of coprecipitated hydrotalcite-like Ca-Al-CO(3) precursors, for high-temperature CO(2) adsorption at 500-700 °C. In situ X-ray diffraction measurements indicate that the coprecipitated, Ca-rich, hydrotalcite-like powders with Ca(2+)/Al(3+) ratios of 5:1 and 7:1 contained Ca(OH)(2) and layered double hydroxide (LDH) phases. Upon annealing, LDH was first destroyed at approximately 200 °C to form an amorphous matrix, and then at 450-550 °C, the Ca(OH)(2) phase was converted into a CaO matrix with incorporated Al(3+) to form a homogeneous solid solution without a disrupted lattice structure. CaO nanocrystals were grown by thermal treatment of the weakly crystalline Ca-Al-O oxide matrix. Thermogravimetric analysis indicates that a CO(2) adsorption capacity of approximately 51 wt. % can be obtained from Ca-rich Ca-Al-O oxides prepared by calcination of 7:1 Ca-Al-CO(3) LDH phases at 600-700 °C. Furthermore, a relatively high CO(2) capture capability can be achieved, even with gas flows containing very low CO(2) concentrations (CO(2)/N(2) = 10 %). Approximately 95.6 % of the initial CO(2) adsorption capacity of the adsorbent is retained after 30 cycles of carbonation-calcination. TEM analysis indicates that carbonation-promoted CaCO(3) formation in the Ca-Al-O oxide matrix at 600 °C, but a subsequent desorption in N(2) at 700 °C, caused the formation CaO nanocrystals of approximately 10 nm. The CaO nanocrystals are widely distributed in the weakly crystalline Ca-Al-O oxide matrix and are present during the carbonation-calcination cycles. This demonstrates that Ca-Al-O sorbents that developed through the synthesis and calcination of Ca-rich Ca-Al LDH phases are suitable for long-term cyclic operation in severe temperature environments. PMID:22072595

  12. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  13. Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes.

    PubMed

    Minzanova, S T; Mironov, V F; Vyshtakalyuk, A B; Tsepaeva, O V; Mironova, L G; Mindubaev, A Z; Nizameev, I R; Kholin, K V; Milyukov, V A

    2015-12-10

    New water-soluble pectin complexes with Ca(2+), Mg(2+), Co(2+), Cu(2+), Fe(2+), Mn(2+), Zn(2+) on the basis of pectin biopolymer have been synthesized and successfully tested on white rats. For a starting, we have obtained a sodium pectate to enhance solubility of target complexes as a whole. Shortly afterwards, running the reaction of ligand exchange of Nа(+) ions with corresponding s-, d- metal cations we were able to synthesize new pectin complexes. The ranges of s-, d-metals salts concentrations were detected experimentally, in which the selective formation of water-soluble complexes occurred. Antianemic effect of new pectin complexes with Na, Fe and Na, Ca, Fe was investigated on white rats with posthemorrhagic anemia. Under the effect of complexes, the improvement of animals and prevention of erythropoiesis disorders were observed. Antianemic effect of the complexes manifested itself in the doses equivalent to 25% or 50% of the iron daily rate, recommended in the treatment of iron-deficiency anemia with the drugs based on iron sulphate. PMID:26428154

  14. Local structures of Ca, Ti and Fe in meteorite fusion crusts

    NASA Astrophysics Data System (ADS)

    Tobase, T.; Yoshiasa, A.; Hiratoko, T.; Hongu, H.; Isobe, H.; Nakatsuka, A.; Arima, H.; Sugiyama, K.

    2016-05-01

    The local structures of meteorite fusion crusts were studied by Ca, Ti and Fe K-edge XANES and EXAFS spectroscopy. The surface of meteorites were melted and volatilized with extreme high temperature and large temperature gradient when meteorites were rushed into atmosphere. This study indicated that meteorite fusion crusts have unique local structures. The local structures of fusion crusts differ from tektites especially in intensity of the shoulder in the rising flank of the edge in Ca XANES spectra. It is consistent with chemical composition change by the volatilization of Si at fusion during atmospheric entry. The high estimated Fe3+/ (Fe2++Fe3+) ratio in meteorite fusion crusts indicates that meteorite fusion crusts are formed into atmospheric oxidation condition. The Ca-O distances in meteorite fusion crusts are 2.612.66 A and are extremely longer than in other natural glasses. The fusion crusts have unique local structure since they experienced extremely high temperature and short quenching time. The XAFS method is effective in distinction of meteorite fusion crusts and classification of natural glass.

  15. Effects of Interfacial Layers Fracture on the Dissolution Mechanism of Solid Fe in Liquid Al

    NASA Astrophysics Data System (ADS)

    Rezaei, H.; Akbarpour, M. R.; Shahverdi, H. R.

    2015-07-01

    Solid Fe and liquid Al interaction was studied in the temperature range of 750-900°C by immersion tests in the absence of convection to better understand interfacial reactions during the first instances of immersion (10-80 s). Solidified interface profiles were characterized using a scanning electron microscope and an electron probe micro-analyzer. The results showed the formation of a transition layer with a composition close to pure Fe on the Fe side as a result of Al diffusion from the melt into the solid at initial times of the immersion test, before the formation of an intermetallic compound. At longer immersion times, two intermetallic layers were observed, Fe2Al5 and FeAl3. With increasing immersion time, the intermetallic compounds were thickened, and cracks formed at the interface layers. The formation of cracks accelerated the fracture of the interfacial layers and enhanced the Al diffusion toward solid Fe. As a result of the detachment and dissolution of the intermetallic phases in liquid Al, precipitates of FeAl3 with needle-like morphology were found in the Al phase. A model is proposed for the interface reaction of solid Fe with liquid Al at the first instance of immersion.

  16. Vitality and chemistry of roots of red spruce in forest floors of stands with a gradient of soil Al/Ca ratios in the northeastern United States

    USGS Publications Warehouse

    Wargo, P.M.; Vogt, K.; Vogt, D.; Holifield, Q.; Tilley, J.; Lawrence, G.; David, M.

    2003-01-01

    Number of living root tips per branch, percent dead roots, percent mycorrhizae and mycorrhizal morphotype, response of woody roots to wounding and colonization by fungi, and concentrations of starch, soluble sugars, phenols, percent C and N and C/N ratio, and Al Ca, Fe, K, Mg, Mn, and P were measured for 2 consecutive years in roots of red spruce (Picea rubens Sarg.) in stands in the northeastern United States (nine in 1993 and two additional in 1994) dominated by red spruce and with a gradient of forest floor exchangeable Al/Ca ratios. Root vitality was measured for nonwoody and coarse woody roots; chemical variables were measured for nonwoody (<1 mm), fine woody (1 to <2 mm), and coarse woody (2 to <5 mm) roots. There were significant differences among sites for all variables, particularly in 1993, although few were related to the Al/Ca ratio gradient. Percent mycorrhizae decreased, while some morphotypes increased or decreased as the Al/Ca ratio increased. In nonwoody roots, N increased as the Al/Ca ratio increased. Most sampled trees appeared to be in good or fair health, suggesting that an adverse response of these root variables to high Al concentrations may be apparent only after a significant change in crown health.

  17. The effect of H2O gas on volatilities of planet-forming major elements. I - Experimental determination of thermodynamic properties of Ca-, Al-, and Si-hydroxide gas molecules and its application to the solar nebula

    NASA Technical Reports Server (NTRS)

    Hashimoto, Akihiko

    1992-01-01

    The vapor pressures of Ca(OH)2(g), Al(OH)3(g), and Si(OH)4(g) molecules in equilibrium with solid calcium-, aluminum, and silicon-oxides, respectively, were determined, and were used to derive the heats of formation and entropies of these species, which are expected to be abundant under the currently postulated physical conditions in the primordial solar nebula. These data, in conjunction with thermodynamic data from literature, were used to calculate the relative abundances of M, MO(x), and M(OH)n gas species and relative volatilities of Fe, Mg, Si, Ca, and Al for ranges of temperature, total pressure, and H/O abundance ratio corresponding to the plausible ranges of physical conditions in the solar nebula. The results are used to explain how Ca and Al could have evaporated from Ca,Al-rich inclusions in carbonaceous chondrites, while Si, Mg, and Fe condensed onto them during the preaccretion alteration of CAIs.

  18. The synthesized and thermally modified Mn-Ca-FeOOH composite in persulfate system: Its role to discolor methylene blue

    NASA Astrophysics Data System (ADS)

    Jo, Young-Hoon; Hong, Seong-Ho; Park, Tae-Jin; Do, Si-Hyun

    2014-05-01

    Methylene blue (MB) discoloration was performed using persulfate (PS) activated with the synthesized composites. Four types of composites, which were synthesized by the immobilization of Mn on iron oxides (hematite and goethite) using either NaOH or Ca(OH)2, were evaluated as PS activator. The synthesized Mn-Ca-FeOOH composite was selected and it was thermally modified at 300 and 700 °C (denoted Mn-Ca-FeOOH_300 and Mn-Ca-FeOOH_700). The BET surface area of Mn-Ca-FeOOH_300 was similar to that of Mn-Ca-FeOOH while that of Mn-Ca-FeOOH_700 was dramatically lower. XRD and XPS analysis indicated that the thermal modification transformed iron oxides from goethite to hematite and changed amorphous manganese oxide to crystalline. MB discoloration at pH 3 indicated that Mn-Ca-FeOOH acted as an oxidant to degrade MB, and the thermally modified composites (i.e. Mn-Ca-FeOOH_300 and Mn-Ca-FeOOH_700) acted as a catalyst to activate PS. Moreover, incomplete MB discoloration was observed in PS/composite system at pH 3. However, a whole tested wavelength of MB was reduced when MB discoloration was tested in PS/composite system above pH 7. Moreover, the increasing pH of solution increased MB discoloration. The higher MB discoloration in heterogeneous system at pH 12 could suggest that superoxide anion (O2•-) was dominant reactive oxygen species.

  19. The effect of Ti addition on oxidation behavior of FeAl intermetallic alloy

    SciTech Connect

    Li, D.; Lin, D.

    1997-12-31

    The influence of Ti addition on the high temperature oxidation behaviors of FeAl intermetallic alloys in air at 1,000 C and 1,100 C have been investigated. The oxidation kinetics of FeAl alloys were examined by the weight gain method and oxide products were examined by XRD, SEM, EDS and EPMA. The results showed that the oxidation kinetic curves of both Ti-doped and binary Fe-36.5Al alloys were described as different parabolas followed the formula: ({Delta}W/S){sup 2} = K{sub p}t. The parabolic rate constant, K{sub p} values are about 2.4 and 3.3 mg{sup 2}cm{sup {minus}4}h{sup {minus}1} for Fe-36.5Al alloy and about 1.3 and 2.0 mg{sup 2}cm{sup {minus}4}h{sup {minus}1} for Fe-36.5Al-2Ti alloy when oxidizing at 1,000 C and 1,100 C respectively. The difference between Fe-36.5Al and Fe-36.5Al-2Ti alloy is not only in the surface morphology but also in the phase components. In the surface there is only {alpha}-Al{sub 2}O{sub 3} oxide for the Fe-36.5Al alloy while there are {alpha}-Al{sub 2}O{sub 3} and TiO oxide for the Fe-36.5Al-2Ti alloy. The effects of Ti addition on the oxidation resistance of FeAl alloy were discussed based on the microstructural evidence.

  20. Determination of Gibbs Free Energy of Formation from Elements for Ca4Fe9O17 by Solid-state Galvanic Cell

    NASA Astrophysics Data System (ADS)

    Li, Hui-Yu; Guo, Xing-Min

    2015-02-01

    Aiming to fill the thermodynamic blank in CaO-FeO-Fe2O3 system, the determination of the Gibbs free energy of formation from elements for ternary Ca4Fe9O17 was carried out using a solid-state galvanic cell with air and calcium zirconate material, respectively, as the reference electrode and electrolyte. The ternary system Ca2Fe2O5-CaFe2O4-Ca4Fe9O17 was selected as the measuring electrode and its equilibrium was confirmed. The essential thermodynamic data of Ca2Fe2O5 and CaFe2O4 were cited from the reassessed data from a previous investigation. The reversible electromotive forces of the cell were determined from 1273 K to 1473 K (1000 °C to 1200 °C). The Gibbs free energy of formation from elements for Ca4Fe9O17 was derived and given by: The increment of enthalpy and entropy of formation from elements for Ca4Fe9O17 at 298 K (25 °C) are calculated to be and . The Ellingham diagram was developed in temperature range 1273 K to 1473 K (1000 °C to 1200 °C). The oxygen potential of Ca4Fe9O17 was found to be slightly higher than CaFe2O4 and much higher than Ca2Fe2O5.

  1. Stripes and antiphase boundaries in CaFe2O4

    NASA Astrophysics Data System (ADS)

    Stock, Chris; Rodriguez, Efrain; Green, Mark; Lee, Nara; Cheong, S.-W.

    2015-03-01

    We report on the magnetic structure and spin dynamics in CaFe2O4 based upon an orthorhombic structure. The magnetic structure consists of two competing magnetic phases based upon stripes of S =5/2 Fe3+ ions. The magnetic dynamics illustrate that the coupling is primarily two dimensional. On application of a magnetic field, antiphase magnetic boundaries can be introduced into the lattice and frozen in at low temperatures. We investigate the structure and dynamics of these domains using polarized and unpolarized neutron scattering and discuss how the triangular geometry allow these localized defects to be energetically favorable. Carnegie Trust for the Universities of Scotland, Royal Society, and EPSRC.

  2. Mössbauer and XRD study of intercalated CaFe-layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Sipiczki, Mónika; Kuzmann, Ernő; Pálinkó, István; Homonnay, Zoltán; Sipos, Pál; Kukovecz, Ákos; Kónya, Zoltán

    2014-04-01

    N-containing fully saturated (L-prolinate) or aromatic (indole-2-carboxylate) heterocyclic anions were immobilised in CaFe-layered double hydroxide with the dehydration-rehydration method from aqueous ethanol or acetone. The structure of the resulting organic-inorganic hybrids was characterised mainly with powder X-ray diffraction and 57Fe Mössbauer spectroscopy, and as supplementary analysis scanning electron microscopy, energy dispersive X-ray spectroscopy with elemental mapping and molecular modelling were also applied. It was found that the solvent mixture used for the synthesis caused enormous difference in the interlayer spacings of the obtained inorganic-organic hybrids.

  3. Phonons of Fe-based superconductor Ca10Pt4As8(Fe1-x Pt x As)10.

    PubMed

    Ikeuchi, K; Kobayashi, Y; Suzuki, K; Itoh, M; Kajimoto, R; Bourges, P; Christianson, A D; Nakamura, H; Machida, M; Sato, M

    2015-11-25

    We report the results of inelastic neutron scattering measurements on particular phonons of a superconducting (SC) Ca10Pt4As8(Fe1-x Pt x As)10 with the onset transition temperature T c ~ 33 K to investigate mainly what roles orbital fluctuation plays in Cooper pairing, where we observed a slight softening of the in-plane transverse acoustic mode corresponding to the elastic constant C 66. This softening starts at temperature T well above the SC T c, as T decreases. An anomalously strong change of the scattering intensity of in-plane optical modes was observed at the M point of the pseudo tetragonal reciprocal space in the range of 35  <  ω  <  40 meV with decreasing T from far above T c. Because this ω region mainly corresponds to the motion of Fe and As atoms in the FeAs planes, the finding presents information on the coupling between the orbital fluctuation of Fe 3d electrons and the lattice system, useful for studying the possible roles of orbital fluctuation in the pairing mechanism and/or the appearance of the so-called nematic phase. PMID:26510184

  4. Enhanced spin signal in nonlocal devices based on a ferromagnetic CoFeAl alloy

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Costache, M. V.; Van de Vondel, J.; Neumann, I.; Valenzuela, S. O.

    2011-09-01

    We systematically study the nonlocal spin signal in lateral spin valves based on CoFeAl injectors and detectors and compare the results with identically fabricated devices based on CoFe. The devices are fabricated by electron beam evaporation at room temperature. We observe a > 10-fold enhancement of the spin signal in the CoFeAl devices. We explain this increase as due to the formation of a highly spin-polarized Co2FeAl Heusler compound with large resistivity. These results suggest that Heusler compounds are promising candidates as spin polarized electrodes in lateral spin devices for future spintronic applications.

  5. Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing

    NASA Astrophysics Data System (ADS)

    Amorim, B. F.; Morales, M. A.; Bohn, F.; Carriço, A. S.; de Medeiros, S. N.; Dantas, A. L.

    2016-05-01

    We report the synthesis of Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing from α-Fe2O3 and CaCO3. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca2Fe2O5. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe3+ in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700-1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca2Fe2O5 nanoparticles.

  6. Ca(2+) -Induced Oxygen Generation by FeO4(2-) at pH 9-10.

    PubMed

    Ma, Li; Lam, William W Y; Lo, Po-Kam; Lau, Kai-Chung; Lau, Tai-Chu

    2016-02-24

    Although FeO4(2-) (ferrate(IV)) is a very strong oxidant that readily oxidizes water in acidic medium, at pH 9-10 it is relatively stable (<2 % decomposition after 1 h at 298 K). However, FeO4(2-) is readily activated by Ca(2+) at pH 9-10 to generate O2. The reaction has the following rate law: d[O2]/dt=kCa [Ca(2+) ][FeO4(2-)](2). (18)O-labeling experiments show that both O atoms in O2 come from FeO4(2-). These results together with DFT calculations suggest that the function of Ca(2+) is to facilitate O-O coupling between two FeO4 (2-) ions by bridging them together. Similar activating effects are also observed with Mg(2+) and Sr(2+). PMID:26798981

  7. Effect of silicon alloying additions on growth temperature and primary spacing of Al{sub 3}Fe in Al-8wt%Fe alloy

    SciTech Connect

    Liang, D.; Jones, H.; Gilgien, P.

    1995-05-15

    Alloys of Al-8.4Fe-1.7Si, Al-8.5Fe-3.4Si and Al-8.5Fe-5.6Si (wt%) designated A, B and C, respectively, were prepared from high purity (99.99%) aluminum, Japanese electrolytic iron (99.9%) and superpure silicon (99.99%). Melting was carried out in a recrystallized alumina crucible by using a Radyne induction furnace and was followed by chill casting under flowing argon into steel molds of cavity dimension 15 mm thick, 50 mm wide and 150 mm high. Rods 3 mm in diameter were fabricated directly from the ingots. Lengths of the rods, which were contained in 3 mm bore tubular alumina crucibles, were melted in a Bridgman growth facility. After maintaining the melt at 100K above the liquidus temperatures liquidus: 1,118, 1,108 and 1,092 K for 1.7, 3.4 and 5.6 wt%Si, respectively, for about 10 minutes, crucibles containing the melt were withdrawn at a speed of 0.34 mm/s into a water bath. The following conclusions can be drawn from analysis of the specimens. Addition of silicon to Al-8wt%Fe alloy results in an increase in growth undercooling and primary spacing of Al{sub 3}Fe dendrites Bridgman grown at 0.34 mm/s and 10K/mm. This increase in growth undercooling, relative to predicted local liquidus temperatures which have been corrected for observed macrosegregation of Fe, is in good accord with the predictions of the Kurz-Giovanola-Trivedi model for needle-like dendrite growth. The silicon content of the Al{sub 3}Fe dendrites obtained is consistent with previously reported measurements for a range of cast Al-Fe-Si alloys.

  8. Optically stimulated luminescence in K2SO4:AEu (A=Ca,Na,Al)

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Patil, R. R.; Wankhede, S. P.; Kulkarni, M. S.; Kumar, Munish; Bhatt, B. C.; Moharil, S. V.

    2015-08-01

    Optically stimulated luminescence in doped K2SO4 is reported. K2SO4 was prepared by simple melt quenched process using readymade potassium sulphate. Samples were doped with Eu and AEu (A=Ca, Na and Al). Out of these samples K2SO4:Eu and K2SO4:Ca,Eu shows good OSL response to 470 nm optical stimulation. K2SO4:Eu and K2SO4:Ca,Eu have the sensitivities comparable with that of commercial phosphor Al2O3:C (Landauer).

  9. Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity.

    PubMed

    Chitrakar, Ramesh; Makita, Yoji; Sonoda, Akinari; Hirotsu, Takahiro

    2011-02-15

    This study presents a rare use of layered double hydroxides of Fe(II) and Al(III) (Fe-Al LDH), as reported for the first time for bromate removal from aqueous solutions. The Fe-Al LDH samples were prepared with Fe/Al molar ratios of 1-4 using a co-precipitation method at pH 7, with subsequent hydrothermal treatment at 120°C. The Fe-Al LDH (molar ratio of Fe/Al=1, 2) with a layered structure exhibited nearly complete removal of bromate from initial concentration of 100μmol/dm(3) at a wide pH range of 4.0-10.5 over a 2h reaction period; the residual bromate concentration in the solution was lower than the detection limit of 0.07μmol/dm(3) (9μg-BrO(3)(-)/dm(3)). During the reaction period, bromide was released into the solution via a reduction process. Reactivity of Fe-Al LDH with a Fe/Al molar ratio of 2 did not decrease the bromate reduction efficiency during 30days. PMID:21126742

  10. Preparation of Al-Cr-Fe Coatings by Heat Treatment of Electrodeposited Cr/Al Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Chen, Chang'an; Zhang, Guikai; Rao, Yongchu; Ling, Guoping

    Al-Cr-Fe coatings have been widely used in the surface engineering field of materials, due to their excellent corrosion resistance to water vapor and fused salt deposits. In this study, a new two-step approach was developed to prepare Al-Cr-Fe coatings on surfaces of SUS430 stainless steels. First, the Cr/Al composite coatings were prepared by electrodepositing Cr from aqueous solution then electrodepositing Al from AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid on SUS430 stainless steel substrate. In the second, heat treatment of the Cr/Al composite coatings was carried out to acquire Al-Cr-Fe coatings. Effects of the thickness of Cr/Al composite coatings, the time and temperature of heat treatment on composition and phase structure of alloy layers were studied by using scanning electron microscope (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The structure transformation process and formation mechanism of Al-Cr-Fe coatings were discussed.

  11. Aluminum Deoxidation Equilibria in Liquid Iron: Part III—Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O System

    NASA Astrophysics Data System (ADS)

    Paek, Min-Kyu; Do, Kyung-Hyo; Kang, Youn-Bae; Jung, In-Ho; Pak, Jong-Jin

    2016-06-01

    Deoxidation equilibria in high-Mn- and high-Al-alloyed liquid steels were studied over the entire Fe-Mn-Al composition range by both experiments and thermodynamic modeling. Effect of Mn on the Al deoxidation equilibria in liquid iron was measured by the different experimental techniques depending on the Al content. In order to confirm the reproducibility of the experimental results, the deoxidation experiments were carried out reversibly from high oxygen state by addition of Al as a deoxidizer, and from low oxygen state by addition of Fe2O3 or MnO as an oxygen source. For the Al-rich side, CaO flux was added on top of liquid iron in order to remove suspended Al2O3 inclusions in the melt. Based on the present experimental result and available critically evaluated literature data, the Al deoxidation equilibria in Fe-Mn-Al-O liquid alloy were thermodynamically modeled. The Modified Quasichemical Model was used in order to take into account a strong short-range ordering of atoms in molten state. Deoxidation equilibria and inclusion stability diagram for entire Fe-Mn-Al melt were successfully reproduced by the present model.

  12. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  13. Study of Al impurity induced magnetic instability in CeFe{sub 2}

    SciTech Connect

    Das, Rakesh; Srivastava, S. K.

    2015-05-15

    We report experimental and computational studies on Al impurity induced magnetic instabilities in CeFe{sub 2}. The work is based on the reported first order magneto-structural phase transition in Ce(Fe{sub 1-x}Al{sub x}){sub 2}, with 0.02 ≤ x ≤ 0.08, below 90 K. We performed first-principles calculations of electronic and magnetic properties of Ce(Fe{sub 1-x}Al{sub x}){sub 2} for x = 0.031 and 0.25. A concentration dependence of Fe and Ce moments is observed, while the Al impurity does not carry any appreciable moment in either case. We investigated spin-polarised partial density of states of Ce(Fe{sub 1-x}Al{sub x}){sub 2} and their various hybridizations in order to find an answer for an antiferromagnetic kind of order at low temperatures.

  14. Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Grossman, J. N.

    1985-01-01

    Electron microscopic examinations were carried out on various chondrites to re-examine previously reported anomalously high Al/Ca ratios. Polished thin sections of the three CV3, two CO3 and the Krymka LL3 chondrites were scanned to characterize the phosphate-sulfide inclusions. The formation of the assemblages was interpreted as proceeding in five steps, starting with the formation of metal grains with early nebular material and finishing with a reaction between schreibersite with Ca, O and Cl to form merrillite and chloropatite. The abundances of the observed assemblages were not high enough to imply Al/Ca ratios similar to whole-rocks. It is concluded that the specimens were originally examined with a broader electron beam than used to examine standard samples, and resulted in the anomalously high Al/Ca ratios.

  15. Thermal expansion of CaFe2As2: effect of annealing and cobalt doping

    NASA Astrophysics Data System (ADS)

    Bud'Ko, Sergey L.; Ran, Sheng; Canfield, Paul C.

    2013-03-01

    Careful choice of Co concentration and annealing/quenching temperature in the Ca(Fe1-xCox)2As2 series allows for tuning the ground state of the from orthorhombic-antiferromagnetic to superconducting to collapsed tetragonal.In this talk temperature-dependent, c-axis, thermal expansion measurements on several sets of Co-doped CaFe2As2 single crystals that were subjected to a variety of annealing conditions will be presented. These samples were chosen to cover all salient regions of the 3D x -Tanneal - T phase diagram. The thermal expansion signatures of different types of phase transitions observed in these series will be discussed and comparison with the other measurements will be made. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract No. DE-AC02-07CH11358.

  16. Fermi-Surface Reconstruction and Complex Phase Equilibria in CaFe2As2

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Saparov, B.; Durakiewicz, T.; Chikina, A.; Danzenbächer, S.; Vyalikh, D. V.; Graf, M. J.; Sefat, A. S.

    2014-05-01

    Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.

  17. CaFe2As2 Under In-Plane Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Frampton, Miles; Zieve, Rena; Dioguardi, Adam

    2014-03-01

    Many unconventional superconductors have a planar crystal structure, with a resulting two-dimensional character that favors superconductivity. They tend to have anisotropic behavior and can be very sensitive to uniaxial pressure. Since these materials often grow preferentially as platelets perpendicular to the crystalline c axis, applying in-plane pressure is challenging. We present a new setup for studying thin samples under uniaxial pressure and our results on CaFe2As2. CaFe2As2 undergoes a magnetic transition simultaneously with a tetragonal-to-orthorhombic structural transition. In-plane uniaxial pressure detwins the orthorhombic phase and accentuates the difference between the axes. We find a significant change in Ts as well as anisotropy of the in-plane resistivity that increases with pressure.

  18. High Pressure Synthesis and properties of (Ca,Pr)Fe2As2

    NASA Astrophysics Data System (ADS)

    Drye, Tyler; Taufour, Valentin; Kaluarachchi, Udhara; Ran, Sheng; Canfield, Paul; Paglione, Johnpierre

    2014-03-01

    Despite impressively high superconducting transition temperatures approaching 50 K, superconductivity in rare earth-doped CaFe2As2 appears to only involve a small volume fraction as determined by shielding fraction. In addition, the amount of Pr that can be doped into the system via ambient pressure flux synthesis is limited to <15%, due to a width of formation limitation. We report a study using high-pressure flux growth to substitute higher levels of Pr approaching 40% concentration. The superconducting properties of the resultant crystals are presented, including chemical composition, resistivity, and magnetization measurements. The final result is a complete phase diagram for the Pr-doped CaFe2As2 system. Work supported by an ICAM Junior Scientist Travel Award and an AFOSR MURI grant.

  19. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-08-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  20. Formation Mechanism of CaS-Bearing Inclusions and the Rolling Deformation in Al-Killed, Low-Alloy Steel with Ca Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Jiang, Zhouhua; Li, Yang

    2016-05-01

    The existing form of CaS inclusion in Ca-treated, Al-killed steel during secondary refining process was investigated with scanning electron microscopy and an energy-dispersive spectrometer (EDS). The results of 12 heats industrial tests showed that CaS has two kinds of precipitation forms. One form takes place by the direct reaction of Ca and S, and the other takes place by the reaction of CaO in calcium aluminates with dissolved Al and S in liquid steel. Thermodynamic research for different precipitation modes of CaS under different temperature was carried out. In particular, CaO-Al2O3-CaS isothermal section diagrams and component activities of calcium aluminates were calculated by the thermodynamic software FactSage. By thermodynamic calculation, a precipitation-area diagram of oxide-sulfide duplex inclusion was established by fixing the sulfur content. The quantity of CaS, which was precipitated in a reaction between [Al], [S] and (CaO), can be calculated and predicted based on the precipitation-area diagram of oxide-sulfide duplex inclusion. Electron probe microanalysis and EDS were used for observing rolling deformation of different types of CaS-bearing inclusions during the rolling process. Low modification of calcium aluminates wrapped by CaS has different degrees of harm to steel in the rolling process. A thick CaS layer can prevent some fragile calcium aluminates from being crushed during the rolling process. Some oxide-sulfide duplex inclusion contains little CaS performed better deformation during the rolling process, but when CaS in oxide-sulfide duplex inclusion becomes more, it will cause the whole inclusion to lose plastic yielding ability. The plastic deformation region of CaS-bearing inclusion in a CaO-Al2O3-CaS isothermal section diagram is confirmed.

  1. FeMn Metal Droplet Behavior in the MnO-SiO2-CaO Slag System

    NASA Astrophysics Data System (ADS)

    Jang, Hyoung-Soon; Ryu, Jae Wook; Sohn, Il

    2015-04-01

    Optimization of the MnO-SiO2-CaO-based slag composition in the FeMn decarburization refining process to minimize metal droplet entrainment has been studied. FeMn spherical droplets with average diameter of 2.5 mm were dispersed within the refining slag of the medium carbon grade ferro-manganese alloy process. Approximately 4.2 pct of the slag existed as FeMn droplets contributing to the overall metal yield loss in the current process. Sedimentation tests of slags with various SiO2 content ranging from 26 to 47 pct using Al2O3 crucibles held at 1773 K (1500 °C) for 30 minutes showed an improvement of the metal/slag separation. Estimated and measured viscosity of the slags showed SiO2 at 32 pct to be optimal for metal/slag separation. Changes in the SiO2 content to 32 pct in actual plant trials allowed significant decrease in the amount of metal droplet entrainment resulting in a decrease of metal in slag to 1.3 pct. Refining times for this optimized slag composition required at least 20 minutes holding for increased separation according to Stokes' law.

  2. X-ray absorption and x-ray magnetic dichroism study on Ca3CoRhO6 and Ca3FeRhO6

    NASA Astrophysics Data System (ADS)

    Burnus, T.; Hu, Z.; Wu, Hua; Cezar, J. C.; Niitaka, S.; Takagi, H.; Chang, C. F.; Brookes, N. B.; Lin, H.-J.; Jang, L. Y.; Tanaka, A.; Liang, K. S.; Chen, C. T.; Tjeng, L. H.

    2008-05-01

    By using x-ray absorption spectroscopy at the RhL2,3 , CoL2,3 , and FeL2,3 edges, we find a valence state of Co2+/Rh4+ in Ca3CoRhO6 and of Fe3+/Rh3+ in Ca3FeRhO6 . X-ray magnetic circular dichroism spectroscopy at the CoL2,3 edge of Ca3CoRhO6 reveals a giant orbital moment of about 1.7μB , which can be attributed to the occupation of the minority-spin d0d2 orbital state of the high-spin Co2+ (3d7) ions in trigonal prismatic coordination. This active role of the spin-orbit coupling explains the strong magnetocrystalline anisotropy and Ising-type magnetism of Ca3CoRhO6 .

  3. Investigation of Fe and Ca in non-stimulated human saliva using NAA

    NASA Astrophysics Data System (ADS)

    de Medeiros, J. A. G.; Zamboni, C. B.; Kovacs, L.; Lewgoy, H. R.

    2015-07-01

    In this study we investigated non-stimulated human whole saliva of healthy subjects and patients with periodontal disease using Neutron Activation Analysis technique (NAA). The measurements were performed in the IEA-R1 nuclear reactor at IPEN-CNEN/SP. We found considerable metabolic changes mainly in Fe and Ca concentration in whole saliva of periodontal patients. These data are useful for identifying or preventing this oral disease in the Brazilian population.

  4. High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)

    NASA Astrophysics Data System (ADS)

    Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora

    2016-05-01

    High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.

  5. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  6. Third element effect in the surface zone of Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Airiskallio, E.; Nurmi, E.; Heinonen, M. H.; Väyrynen, I. J.; Kokko, K.; Ropo, M.; Punkkinen, M. P. J.; Pitkänen, H.; Alatalo, M.; Kollár, J.; Johansson, B.; Vitos, L.

    2010-01-01

    The third element effect to improve the high temperature corrosion resistance of the low-Al Fe-Cr-Al alloys is suggested to involve a mechanism that boosts the recovering of the Al concentration to the required level in the Al-depleted zone beneath the oxide layer. We propose that the key factor in this mechanism is the coexistent Cr depletion that helps to maintain a sufficient Al content in the depleted zone. Several previous experiments related to our study support that conditions for such a mechanism to be functional prevail in real oxidation processes of Fe-Cr-Al alloys.

  7. Structural disorder and magnetism in the spin-gapless semiconductor CoFeCrAl

    NASA Astrophysics Data System (ADS)

    Choudhary, Renu; Kharel, Parashu; Valloppilly, Shah R.; Jin, Yunlong; O'Connell, Andrew; Huh, Yung; Gilbert, Simeon; Kashyap, Arti; Sellmyer, D. J.; Skomski, Ralph

    2016-05-01

    Disordered CoFeCrAl and CoFeCrSi0.5Al0.5 alloys have been investigated experimentally and by first-principle calculations. The melt-spun and annealed samples all exhibit Heusler-type superlattice peaks, but the peak intensities indicate a substantial degree of B2-type chemical disorder. Si substitution reduces the degree of this disorder. Our theoretical analysis also considers several types of antisite disorder (Fe-Co, Fe-Cr, Co-Cr) in Y-ordered CoFeCrAl and partial substitution of Si for Al. The substitution transforms the spin-gapless semiconductor CoFeCrAl into a half-metallic ferrimagnet and increases the half-metallic band gap by 0.12 eV. Compared CoFeCrAl, the moment of CoFeCrSi0.5Al0.5 is predicted to increase from 2.01 μB to 2.50 μB per formula unit, in good agreement with experiment.

  8. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  9. High strain-rate plastic flow in Fe and Al

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Eggert, Jon; Rudd, Robert; Bolme, Cynthia; Collins, Gilbert

    2011-06-01

    Understanding the nature and time-dependence of material deformation at high strain rates is an important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain is determined by the flow of dislocations through the crystal lattice and is a complex function of time, distance, sample purity, temperature, internal stresses, microstructure and strain rate. Under shock compression time-dependent plasticity is typically inferred by fitting elastic precursor stresses as a function of propagation distance with a phenomenologically based dislocation kinetics model. We employ a laser-driven ramp wave loading technique to compress 6-70 micron thick samples of bcc-Fe and fcc-Al over a strain rate range of 1e6-1e8 1/s. Our data show that for fixed sample thickness, stresses associated the onset of plasticity are highly dependent on the strain rate of compression and do not readily fit into the elastic stress - distance evolution descriptive of instantaneous shock loading. We find that the elastic stress at the onset of plasticity is well correlated with the strain rate at the onset of plastic flow for both shock- and ramp-wave experiments. Our data, combined with data from other dynamic compression platforms, reveal a sharp increase in the peak elastic stress at high strain rates, consistent with a transition in dislocation flow dominated by phonon drag. smith248@llnl.gov

  10. Multiple diffraction in an icosahedral Al-Cu-Fe quasicrystal

    NASA Astrophysics Data System (ADS)

    Fan, C. Z.; Weber, Th.; Deloudi, S.; Steurer, W.

    2011-07-01

    In order to reveal its influence on quasicrystal structure analysis, multiple diffraction (MD) effects in an icosahedral Al-Cu-Fe quasicrystal have been investigated in-house on an Oxford Diffraction four-circle diffractometer equipped with an Onyx™ CCD area detector and MoKα radiation. For that purpose, an automated approach for Renninger scans (ψ-scans) has been developed. Two weak reflections were chosen as the main reflections (called P) in the present measurements. As is well known for periodic crystals, it is also observed for this quasicrystal that the intensity of the main reflection may significantly increase if the simultaneous (H) and the coupling (P-H) reflections are both strong, while there is no obvious MD effect if one of them is weak. The occurrence of MD events during ψ-scans has been studied based on an ideal structure model and the kinematical MD theory. The reliability of the approach is revealed by the good agreement between simulation and experiment. It shows that the multiple diffraction effect is quite significant.

  11. Machining of Fe[sub 3]Al intermetallics

    SciTech Connect

    Woodyard, J.R.

    1992-01-01

    Scientists at the US Bureau of Mines are studying iron aluminides as possible substitutes for stainless steels to reduce the Nation's dependence on imported strategic and critical materials. In a Bureau investigation on the mechanical properties of Fe-28Al, it was found that the material's machining properties were significantly improved at slow tool and feed speeds. Machining techniques normally used for brittle materials failed or were costly. Further experiments using a 5-in (12.7-cm) mill cutter with carbide inserts, operating dry at minimum machining speeds, produced visually smooth sample surfaces with no tool damage. As a result of these experiments and a review of published data on hydrogen embrittlement of iron aluminide under tension, non-water-based (e.g., sulfur-based) lubricants were chosen for production machining. Four-flute, 3/4-in(19-mm) carbide end mills were used at slow speed under lubrication. This latter procedure reduced tool wear and breakage by a factor of 2. Machined surfaces and specimen cross sections were analyzed by scanning electron microscopy to detect microcracking. Tensile tests gave the expected yield and ultimate strengths, indicating that no degradation by low-speed machining occurred. This study extends this work to show that the alloy can be machined at higher speeds using high-speed steel end mills, and that water-soluble cutting oil is a suitable lubricant and coolant. 11 figs., 1 tab.

  12. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    NASA Astrophysics Data System (ADS)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  13. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. PMID:25842341

  14. Erosion studies on a Fe sub 3 Al-based iron aluminide and 1100 Al

    SciTech Connect

    Rao, M.; Keiser, J.

    1991-01-01

    Samples of a Fe{sub 3}Al-based iron aluminide alloy were eroded using nominally spherical steel shot. Two distinct erosion mechanisms were observed: (1) extrusion of platelets resulting from spherical particle impacts and (2) cutting of the target by angular particles either present in the initial erodent or formed on impact by fracture of the shot. The overall erosion resistance of the alloy was judged to be relatively good and may be improved by increasing the alloy's ductility. Measurements using a mechanical properties microprobe (MPM) showed that significant work hardening occurred due to erosion, but the hardness dropped off near the surface, apparently due to thermal effects. In contrast no sub-surface softening was observed in samples of 1100 Al which were also eroded by steel shot. In order to model the impact process, single 343 {mu}m WC spheres were shot at the two alloys at velocities between 20 m/s and 900 m/s. Compared to the iron aluminide, the craters on 1100 Al show better developed lips and features indicative of sustained plastic deformation. Both alloys showed thermally induced subsurface softening at high velocities. At lower velocities, only the iron aluminide showed clear thermal effects. Results of the single particle and multiple particle impact tests are reconciled in terms of deformation behavior and thermal effects. 22 refs., 7 figs.

  15. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  16. Electronic structure and magnetism on FeSiAl alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Cardoso Schwindt, V.; Sandoval, M.; Ardenghi, J. S.; Bechthold, P.; González, E. A.; Jasen, P. V.

    2015-09-01

    Density functional theory (DFT) calculation has been performed to study the electronic structure and chemical bonding in FeSiAl alloy. These calculations are useful to understand the magnetic properties of this alloy. Our results show that the mean magnetic moment of Fe atoms decreases due to the crystal structure and the effect of Si and Al. Depending on the environment, the magnetic moment of one Fe site (Fe1) increases to about 14.3% while of the other site (Fe2) decreases to about 25.9% (compared with pure bcc Fe). All metal-metal overlap interactions are bonding and slightly weaker than those found in the bcc Fe structure. The electronic structure (DOS) shows an important hybridization among Fe, Si and Al atoms, thus making asymmetric the PDOS with a very slight polarization of Al and Si atoms. Our study explains the importance of crystal structure in determining the magnetic properties of the alloys. FeSiAl is a good candidate for electromagnetic interference shielding combining low price and good mechanical and magnetic properties.

  17. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  18. Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Gharsallah, Hana Ibn; Sekri, Abderrahmen; Azabou, Myriam; Escoda, Luiza; Suñol, Joan Josep; Khitouni, Mohamed

    2015-08-01

    Nanostructured iron-aluminum alloy of Fe-25 at. pct Al composition doped with 0.2 at. pct B was prepared by mechanical alloying. The phase transformations and structural changes occurring in the studied material during mechanical alloying and during subsequent heating were investigated by SEM, XRD, and DSC techniques. The patterns so obtained were analyzed using the Rietveld program. The alloyed powders were disordered Fe(Al) solid solutions and Fe2B boride phase. The Fe2B boride phase is formed after 4 hours of milling. The crystallite size reduction to the nanometer scale (5 to 8 nm) is accompanied by an increase in lattice strains. The powder milled for 40 hours was annealed at temperatures of 523 K, 823 K, 883 K, and 973 K (250 °C, 550 °C, 610 °C, and 700 °C) for 2 hours. Low temperatures annealing are responsible for the relaxation of the disordered structure, while high temperatures annealing enabled supersaturated Fe(Al) solid solutions to precipitate out fines Fe3Al, Fe2Al5, and Fe4Al13 intermetallics and, also the recrystallization and the grain growth phenomena.

  19. Magnetism and electronic structures of novel layered CaFeAs{sub 2} and Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2}

    SciTech Connect

    Huang, Yi-Na; Zou, Liang-Jian; Yu, Xiang-Long; Liu, Da-Yong

    2015-05-07

    The magnetic and electronic properties of the parent material CaFeAs{sub 2} of new superconductors are investigated using first-principles calculations. We predict that the ground state of CaFeAs{sub 2} is a spin-density-wave (SDW)-type striped antiferromagnet driven by Fermi surface nesting. The magnetic moment around each Fe atom is about 2.1 μ{sub B}. We also present electronic and magnetic structures of electron-doped phase Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2}, the SDW order was suppressed by La/Pr substitution. The As in arsenic layers is negative monovalent and acts as blocking layers enhancing two-dimensional character by increasing the spacing distance between the FeAs layers. This favors strong antiferromagnetic fluctuations mediated pairing, implying higher T{sub c} in Ca{sub 0.75}(Pr/La){sub 0.25}FeAs{sub 2} than Ca{sub 0.75}(Pr/La){sub 0.25}Fe{sub 2}As{sub 2}.

  20. Studies on water transport through the sweet cherry fruit surface. 7. Fe3+ and Al3+ reduce conductance for water uptake.

    PubMed

    Beyer, Marco; Peschel, Stefanie; Weichert, Holger; Knoche, Moritz

    2002-12-18

    The effects of the chloride salts LiCl, CaCl(2), MgCl(2), AlCl(3), EuCl(3), and FeCl(3) and the iron salts FeCl(2), FeCl(3), Fe(NO(3))(3), FeSO(4), and Fe(2)(SO(4))(3) on water conductance of exocarp segments (ES) and rates of water uptake into detached sweet cherry fruit (Prunus avium L. cv. Adriana, Early Rivers, Namare, Namosa, and Sam) were studied. ES were excised from the cheek of mature fruit and mounted in stainless steel diffusion cell; water penetration was monitored gravimetrically from donor solutions containing the above mineral salts into a PEG 6000 (osmolality = 1.14 osM, pH 4.8, 25 degrees C) receiver solution. Conductance of ES was calculated from the amount of water taken up per unit of surface area and time by dividing by the gradient in water activity across ES. LiCl, CaCl(2), MgCl(2), FeCl(2), and FeSO(4) had no significant effect on conductance, but AlCl(3), FeCl(3), Fe(NO(3))(3), and Fe(2)(SO(4))(3) significantly reduced conductance compared to water only as a donor. Also, EuCl(3) lowered conductance; however, this effect was not always significant. Effects of salts on water conductance of ES and rates of water uptake into detached fruit were closely related (R 2 = 0.97***). Upon application of an FeCl(3)-containing donor conductance decreased instantaneously. FeCl(3) concentrations of <6.6 x 10(-)(4) M had no effect on conductance, but concentrations at or above this threshold decreased conductance. FeCl(3) lowered water conductance at a receiver pH of 4.8, but not at pH < or =2.6. The effect of FeCl(3) on conductance was largest in cv. Namare and smallest in cv. Adriana. There was no significant effect of FeCl(3) on conductance for transpiration. Formation of aluminum and iron oxides and hydroxides in the exocarp as a result of a pH gradient between donor and receiver solution is discussed as the potential mechanism for Fe(3+) and Al(3+) reducing conductance for water uptake. PMID:12475277

  1. Development of ODS FeCrAl alloys for accident-tolerant fuel cladding

    SciTech Connect

    Dryepondt, Sebastien N.; Hoelzer, David T.; Pint, Bruce A.; Unocic, Kinga A.

    2015-09-18

    FeCrAl alloys are prime candidates for accident-tolerant fuel cladding due to their excellent oxidation resistance up to 1400 C and good mechanical properties at intermediate temperature. Former commercial oxide dispersion strengthened (ODS) FeCrAl alloys such as PM2000 exhibit significantly better tensile strength than wrought FeCrAl alloys, which would alloy for the fabrication of a very thin (~250 m) ODS FeCrAl cladding and limit the neutronic penalty from the replacement of Zr-based alloys by Fe-based alloys. Several Fe-12-Cr-5Al ODS alloys where therefore fabricated by ball milling FeCrAl powders with Y2O3 and additional oxides such as TiO2 or ZrO2. The new Fe-12Cr-5Al ODS alloys showed excellent tensile strength up to 800 C but limited ductility. Good oxidation resistance in steam at 1200 and 1400 C was observed except for one ODS FeCrAl alloy containing Ti. Rolling trials were conducted at 300, 600 C and 800 C to simulate the fabrication of thin tube cladding and a plate thickness of ~0.6mm was reached before the formation of multiple edge cracks. Hardness measurements at different stages of the rolling process, before and after annealing for 1h at 1000 C, showed that a thinner plate thickness could likely be achieved by using a multi-step approach combining warm rolling and high temperature annealing. Finally, new Fe-10-12Cr-5.5-6Al-Z gas atomized powders have been purchased to fabricate the second generation of low-Cr ODS FeCrAl alloys. The main goals are to assess the effect of O, C, N and Zr contents on the ODS FeCrAl microstructure and mechanical properties, and to optimize the fabrication process to improve the ductility of the 2nd gen ODS FeCrAl while maintaining good mechanical strength and oxidation resistance.

  2. Microstructural stability of Fe-Cr-Al alloys at 450-550 °C

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Thuvander, Mattias; Olsson, Pär; Rave, Fernando; Szakalos, Peter

    2015-02-01

    Iron-Chromium-Aluminium (Fe-Cr-Al) alloys have been widely investigated as candidate materials for various nuclear applications. Albeit the excellent corrosion resistance, conventional Fe-Cr-Al alloys suffer from α-α‧ phase separation and embrittlement when subjected to temperatures up to 500 °C, due to their high Cr-content. Low-Cr Fe-Cr-Al alloys are anticipated to be embrittlement resistant and provide adequate oxidation properties, yet long-term aging experiments and simulations are lacking in literature. In this study, Fe-10Cr-(4-8)Al alloys and a Fe-21Cr-5Al were thermally aged in the temperature interval of 450-550 °C for times up to 10,000 h, and the microstructures were evaluated mainly using atom probe tomography. In addition, a Kinetic Monte Carlo (KMC) model of the Fe-Cr-Al system was developed. No phase separation was observed in the Fe-10Cr-(4-8)Al alloys, and the developed KMC model yielded results in good agreement with the experimental data.

  3. FeAl underlayers for CoCrPt thin film longitudinal media

    SciTech Connect

    Lee, L.; Laughlin, D.E.; Lambeth, D.N.

    1997-04-01

    B2 ordered FeAl films with a small, uniform grain size have been produced by rf diode sputter deposition on glass substrates. CoCrPt films grown on FeAl underlayers were found to have the (10{bar 1}0) lamellar texture. The in-plane coercivities (H{sub c}) of the CoCrPt/FeAl films are comparable to those of the CoCrPt/Cr films and they can be further improved by inserting a thin Cr intermediate layer between the CoCrPt and the FeAl layers. By employing a MgO seed layer or a (002) textured Cr seed layer, (001) textured FeAl can be obtained. However, the (001) FeAl underlayer only induces a weak (11{bar 2}0) textured CoCrPt. Thus no improvement in H{sub c} over those produced on unseeded FeAl underlayers was observed. {copyright} {ital 1997 American Institute of Physics.}

  4. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys

    NASA Astrophysics Data System (ADS)

    Todd, I.; Tate, B. J.; Davies, H. A.; Gibbs, M. R. J.; Kendall, D.; Major, R. V.

    2000-06-01

    The effects of up to 10 at% substitution of Fe by Al on the microstructure and DC and AC magnetic properties of nanocrystalline FeSiBCuNb alloy ribbon are summarised and analysed. The minimum DC H c developed during annealing decreases by 40% for 2 at% Al (to 0.3 A/m) and remains roughly constant for larger Al contents. The largest peak value of μ 0.4 at 50 Hz also corresponds to 2 at% Al. The best frequency response for μ 0.4 occurs for 6 at% Al while there was no improvement in AC power loss behaviour over the 0% Al alloy. The improvements in DC H c and AC μ 0.4 are ascribed to a reduction in K 1 of the Fe-Si-based nanocrystallites by the introduction of Al.

  5. Electronic structure and soft magnetic properties of Se/FeSiAl (110) films

    NASA Astrophysics Data System (ADS)

    Schwindt, V. Cardoso; Ardenghi, J. S.; Bechthold, P.; Juan, A.; Batic, B. Setina; Jenko, M.; González, E. A.; Jasen, P. V.

    2015-11-01

    The Se adsorption at different coverages on DO3 FeSiAl(110) surface is studied using density functional theory (DFT). Se adsorption is favorable in almost all surface high-symmetry sites, except for the bridge site formed by Fe-Si atoms. The most stable is a hollow site formed by four Fe atoms with adsorption energy of -5.30 eV. When the coverages increase, the energies decrease in the case of hollow sites. The surface present a reconstruction after Se adsorption, being the most important at 1/2 ML. The local magnetic moment for Fe atoms increase for the type A (all nearst neighbours (nn) are Fe atoms) and decrease for the type B (nn are Fe, Si and Al atoms). The most affected metal orbitals are Fe 4s and 4p. In the case of the hollow site the surface Fe-Fe bond is weakened after Se adsorption. A Fe-Se bond is developed at all coverages in both sites being the most important on top (dFe-Se = 2.23 Å, OP: 0.774 at 1/4 ML). The first and second layer Fe-Fe bond increase at 1/4 ML and decrease at 1/2 and 1 ML. Small Se-Se bonding interaction appear at 1/2 ML and increase noticeable for 1 ML. For the top site, the Se-Se bond appears at all coverage. The Fe-Fe surface bonds also decrease its strength with respect to the clean surface at all coverage. The first and second layer Fe-Fe bond increase at all coverage.

  6. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Peng, Jian; Nyberg, Eric A.; Pan, Fu-sheng

    2016-04-01

    The microstructures and corrosion resistance of magnesium-5 wt% aluminum-0.3 wt% manganese alloys (Mg-Al-Mn) with different Ca additions (0.2-4 wt%) were investigated. Results showed that with increasing Ca addition, the grain of the alloys became more refined, whereas the corrosion resistant ability of the alloys initially increased and then decreased. The alloy with 2 wt% Ca addition exhibited the best corrosion resistance, attributed to the effect of the oxide film and (Mg,Al)2Ca phases which were discontinuously distributed on the grain boundaries. These phases acted as micro-victims, they preferentially corroded to protect the α-Mg matrix. The oxide film formed on the alloy surface can hinder the solution further to protect the α-Mg matrix.

  7. Assessing the elastic properties and ductility of Fe-Cr-Al alloys from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L.

    2016-01-01

    Fe-Al is one of the best corrosion resistant alloys at high temperatures. The flip side of Al addition to Fe is the deterioration of the mechanical properties. This problem can be solved by adding a suitable amount of third alloying component. In the present work, we use ab initio calculations based on density functional theory to study the elastic properties of Fe?Cr?Al? alloys for Al and Cr contents up to 20 at.%. We assess the ductility as a function of chemistry by making use of the semi-empirical correlations between the elastic parameters and mechanical properties. In particular, we derive the bulk modulus to shear modulus ratio and the Cauchy pressure and monitor their trends in terms of chemical composition. The present findings are contrasted with the previously established oxidation resistance of Fe-Cr-Al alloys.

  8. Synthesis and characterization of quasicrystals in an Al-Fe-W alloy

    SciTech Connect

    Mukhopadhyay, N.K.; Weatherly, G.C.; Embury, J.D. ); Lloyd, D.J. )

    1992-07-01

    After the discovery of quasicrystals (QC) in an al-14% Mn alloy, many attempts have been made to find alloy systems which form quasicrystals. Much effort has been devoted to the study of the Al-Fe system and its modification by Cu and other elements such as Mn, Cr, Mo and Ta to improve the ease of forming icosahedral quasicrystals (IQC). Although the Al-Fe system does not form IQC, the formation of a decagonal quasicrystal (DQC) being favored, these elements promote the IQC phase. This paper considers the Al-Fe system and its modification by W and demonstrates the existence of IQC in an Al-Fe-W ternary alloy.

  9. Point defect behavior in B2-type intermetallic compound FeAl

    SciTech Connect

    Haraguchi, T.; Kogachi, M.

    1999-07-01

    Point defect behavior in B2-type FeAl alloys is investigated from a thermodynamic point of view, based on the Bragg-Williams method. The model is developed by taking new defect formation mechanisms, random vacancy distribution (RVD), and antisite atom recovering (ASAR), into consideration, which were proposed based on the current findings in in situ neutron and X-ray diffraction studies for the B2 FeAl. The condition for appearance of the RVD and ASAR states is given. Application of this model to B2 FeAl alloys shows that the RVD-like behavior is reproduced in the Fe-rich composition region and also a rapid increase in vacancy concentration observed in the Al-rich region can be interpreted by the ASAR process by antisite Al atoms.

  10. Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Zhang, Guo-Hua; Chu, Shao-Jun

    2016-02-01

    In the present study, the dephosphorization of Fe-Ni-Si melt by CaO-saturated CaO-CaF2 slag was investigated, from which it was found that the dephosphorization efficiency increases as increasing the silicon content, meanwhile the increase rate becomes rapid when the silicon content is more than 10 mass pct. By analyzing the phase compositions of the dephosphorization slag of a high silicon Fe-Ni-Si melt, it was first found the dephosphorization products change with the silicon content. When Si contents are 10.5, 31.48, 34.71, and 43.15 mass pct, the de-P products are Ca2P2, Ca10+ x Si12-2 x P16, Ca4SiP4, and Ca10+ x Si12-2 x P16, as well as Ca4SiP4, respectively. The corresponding dephosphorization mechanism can be described as (2x)(CaO) + (x + 2y)[Si] + 2z[P] = x(SiO2 ) + 2(Cax Siy Pz ).

  11. Magnetoresistance effect in Ag-Fe3O4 and Al-Fe3O4 composite films

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hwa; Chen, Shang-Yi; Chang, Wen-Ming; Jian, T. S.; Chang, Ching-Ray; Lee, Shan-Fan

    2003-05-01

    The Agx-(Fe3O4)1-x and Agx-(Fe3O4)1-x composite films were prepared by dc sputtering on Si(100) substrates. The x-ray diffraction results show that the films contain essentially only the cubic inverse spinal phase from Fe3O4 and face-centered cubic phase from Ag or Al. The transmission electron microscopy images indicate that the metal granules are randomly distributed with Fe3O4 grains. The resistivity determined from the four-probe method decreases rapidly with increasing metal content. At x≒0.5, a percolation occurs. The conducting path is formed from metal granules in series with Fe3O4 grains. The magnetoresistance (MR) is defined to be {R(H=0.8 T)-R(H=0)}/R(H=0). It has been found that MR is isotropic and the appearance of Ag granules has significant impact on the MR effect. Furthermore, a positive MR region appears with 0.011Fe3O4)1-x. On the contrary, the incorporation of Al granules does not have the same effect on MR as in Agx-(Fe3O4)1-x. A slow increase of MR with Al content might be due to Coulomb blockade. The extra contribution to MR in Agx-(Fe3O4)1-x can be attributed to spin injection from Fe3O4 into Ag granules so that spin accumulation in Ag granules impedes the current causing a larger resistance under a field.

  12. Room-temperature serrated-flow behavior in Fe-rich FeAl under vacancy supersaturation

    SciTech Connect

    Yoshimi, K.; Yoo, M.H.; Hanada, S.

    1998-11-01

    In Fe-rich FeAl, serrated plastic-flow behavior has been observed for the first time at room temperature. Serration on the tensile stress-strain curve occurs in single crystals that retained supersaturation of thermal vacancies after fast-cooling from the annealing temperature of 1173 K. In contrast to conventional serrated flow, the serrated flow in FeAl is associated with work hardening, and it becomes more pronounced with increasing Al content from 33 to 44 mol.%. The experimental results are interpreted in terms of the dynamic interaction of ({bar 1}01)[111] superdislocations with the excess thermal vacancies and their clusters, and the successive double cross-slip of screw superdislocations at the moving front of a slip band. The strong dependence on alloy composition and the lack of strain-rate sensitivity are discussed.

  13. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  14. Heat capacities of synthetic hedenbergite, ferrobustamite and CaFeSi2O6 glass

    USGS Publications Warehouse

    Haselton, H.T., Jr.; Robie, R.A.; Hemingway, B.S.

    1987-01-01

    Heat capacities have been measured for synthetic hedenbergite (9-647 K), ferrobustamite (5-746 K) and CaFeSi2O6 glass (6-380 K) by low-temperature adiabatic and differential scanning calorimetry. The heat capacity of each of these structural forms of CaFeSiO6 exhibits anomalous behavior at low temperatures. The X-peak in the hedenbergite heat-capacity curve at 34.5 K is due to antiferromagnetic ordering of the Fe2+ ions. Ferrobustamite has a bump in its heat-capacity curve at temperatures less than 20 K, which could be due to weak cooperative magnetic ordering or to a Schottky anomaly. Surprisingly, a broad peak with a maximum at 68 K is present in the heat-capacity curve of the glass. If this maximum, which occurs at a higher temperature than in hedenbergite is caused by magnetic ordering, it could indicate that the range of distortions of the iron sites in the glass is quite small and that coupling between iron atoms is stronger in the glass than in the edge-shared octahedral chains of hedenbergite. The standard entropy change, So298.15 - So0, is 174.2 ?? 0.3, 180.5 ?? 0.3 and 185.7 ?? 0.4 J/mol??K for hedenbergite, ferrobustamite and CaFeSi2O6 glass, respectively. Ferrobustamite is partially disordered in Ca-Fe distribution at high temperatures, but the dependence of the configuratonal entropy on temperature cannot be evaluated due to a lack of information. At high temperatures (298-1600 K), the heat capacity of hedenbergite may be represented by the equation Cop(J/mol??K) = 3l0.46 + 0.01257T-2039.93T -1 2 - 1.84604?? l06T-2 and the heat capacity of ferrobustamite may be represented by Cop(J/mol??K) = 403.83-0.04444T+ 1.597?? 10-5T2-3757.3T -1 2. ?? 1987.

  15. Effect of surface roughness on the development of protective Al 2O 3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Hou, P. Y.; Gesmundo, F.; Niu, Y.

    2006-11-01

    The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al 2O 3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al 2O 3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al 2O 3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al 2O 3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.

  16. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    SciTech Connect

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-15

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO{sub 3}{sup -} compound and its H{sub 2}PO{sub 4}{sup -}-intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO{sub 4}{sup 2-} caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO{sub 4}{sup 2-} and H{sub 2}PO{sub 4}{sup -}. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil. -- Graphical abstract: We synthesized phosphate-intercalated Ca-Fe-LDH materials that can act as bifunctional inorganic vectors for the slow release of phosphate fertilizer and also the neutralization of acid soil. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. Display Omitted Research Highlights: {yields} The phosphate forms of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) were synthesized via co-precipitation method. The crystal structure, bonding character, and release kinetics of phosphate of the phosphate-intercalates were investigated. These Ca-Fe-LDH materials are applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  17. Two-Step Suppression of Charge Disproportionation in CaCu3Fe4O12 under High Pressure

    NASA Astrophysics Data System (ADS)

    Kawakami, Takateru; Sekiya, Yoshihiro; Mimura, Ayano; Kobayashi, Kana; Tokumichi, Keita; Yamada, Ikuya; Mizumaki, Masaichiro; Kawamura, Naomi; Shimakawa, Yuichi; Ohishi, Yasuo; Hirao, Naohisa; Ishimatsu, Naoki; Hayashi, Naoaki; Takano, Mikio

    2016-03-01

    The electronic properties of a perovskite Fe4+ oxide, CaCu3Fe4O12, pressurized in a diamond anvil cell at pressures up to 50 GPa, were investigated by X-ray diffraction, electrical resistance measurements, X-ray absorption spectroscopy, and 57Fe Mössbauer spectroscopy. The first transformation from a charge-disproportionated (Fe3+ and Fe5+) semiconducting high-spin state to an approximately charge-uniform (Fe(4-δ)+ and Fe(4+δ)+) metallic high-spin state occurred at ˜15 GPa. This was followed by a second transformation to a completely charge-uniform (Fe4+) metallic low-spin state at ˜30 GPa. This is the first observation of pressure-induced two-step suppression of charge disproportionation in perovskite iron oxides.

  18. Tribological Properties of the Fe-Al-Cr Alloyed Layer by Double Glow Plasma Surface Metallurgy

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Wang, Zhangzhong

    2016-07-01

    A Fe-Al-Cr alloyed layer was deposited onto the surface of Q235 low-carbon steel via double glow plasma surface metallurgy (DGPSM) to improve the steel's wear resistance. After the DGPSM treatment, the Fe-Al-Cr alloyed layer grown on the Q235 low-carbon steel was homogeneous and compact and had a thickness of 25 µm. The layer was found to be metallurgically adhered to the substrate. The frictional coefficient and specific wear rate of the sample with a Fe-Al-Cr alloyed layer (treated sample) were both lower than those of the bare substrate (untreated sample) at the measured temperatures (25, 250 and 450 °C). The results indicated that the substrate and the alloyed layer suffered oxidative wear and abrasive wear, respectively, and that the treated samples exhibited much better tribological properties than did the substrate. The formation of Fe2AlCr, Fe3Al(Cr), FeAl(Cr), Fe(Cr) sosoloid and Cr23C6 phases in the alloyed layer dramatically enhanced the wear resistance of the treated sample. In addition, the alloyed layer's oxidation film exhibited a self-healing capacity with lubrication action that also contributed to the improvement of the wear resistance at high temperature. In particular, at 450 °C, the specific wear rate of treated sample was 2.524 × 10-4 mm3/N m, which was only 45.2% of the untreated sample.

  19. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    SciTech Connect

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J.

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  20. Estimated daily intake of Fe, Cu, Ca and Zn through common cereals in Tehran, Iran.

    PubMed

    Kashian, S; Fathivand, A A

    2015-06-01

    This paper presents the findings of study undertaken to estimate the dietary intake of iron (Fe), copper (Cu), calcium (Ca) and zinc (Zn) through common cereals in Tehran, Iran. 100 samples of rice, wheat and barley were collected from various brands between August and October 2013. The samples were analyzed performing instrumental neutron activation analysis (INAA). The dietary intake for adults was estimated by a total cereal study. Calculations were carried out on the basis of the reported adults' average food consumption rate data. The total daily intake estimated in mgd(-1) for Tehran population were 3.6 (Fe), 10.2 (Zn), 0.3 (Cu) and 234.5 (Ca). Wheat showed the highest contribution to Zn, Cu and Ca intakes. Furthermore, intakes were compared with recommended dietary allowance (RDA). Zn total intake (10.2mgd(-1)) was comparable with RDA values for males (11mgd(-1)) and was higher than recommended value for females (8mgd(-1)). The intakes of other studied elements were below the respective RDAs. PMID:25624223

  1. Corrosion Resistance of Fe-Al/Al2O3 Duplex Coating on Pipeline Steel X80 in Simulated Oil and Gas Well Environment

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Wang, Ping-Gu; Shi, Qin-Yi; Zhang, Meng-Xian

    2015-04-01

    Corrosion resistant Fe-Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe-Al coating and Fe-Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investigated. Mono-layer Fe-Al coating consists of Fe2Al5 and FeAl, which is a suitable transitional layer for the preparation of ceramic coating by MAO on the surface of pipeline steel X80. Under the same corrosion condition at 373 K for 168 h with 1 MPa CO2 and 0.1 MPa H2S, corrosion weight loss rate of pipeline steel X80 with Fe-Al/Al2O3 duplex coating decreased to 23% of original pipeline steel X80, which improved by 10% than that of pipeline steel X80 with mono-layer Fe-Al coating. It cannot find obvious cracks and pits on the corrosion surface of pipeline steel X80 with Fe-Al/Al2O3 duplex coating.

  2. Theoretical analysis of compatibility of several reinforcement materials with NiAl and FeAl matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1989-01-01

    Several potential reinforcement materials were assessed for their chemical, coefficient of thermal expansion (CTE), and mechanical compatibility with the intermetallic matrices based on NiAl and FeAl. Among the ceramic reinforcement materials, Al2O3, TiC, and TiB2, appear to be the optimum choices for NiAl and FeAl matrices. However, the problem of CTE mismatch with the matrix needs to be solved for these three reinforcement materials. Beryllium-rich intermetallic compounds can be considered as potential reinforcement materials provided suitable reaction barrier coatings can be developed for these. Based on preliminary thermodynamic calculations, Sc2O3 and TiC appear to be suitable as reaction barrier coatings for the beryllides. Several reaction barrier coatings are also suggested for the currently available SiC fibers.

  3. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ([ge]10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 [plus minus] 2)Al - (0.3 [plus minus] 0.2)Mo - (0.2 [plus minus] 0.15)Zr - (0.3 [plus minus] 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  4. Alloy development of FeAl aluminide alloys for structural use in corrosive environments

    SciTech Connect

    Liu, C.T.; Sikka, V.K.; McKamey, C.G.

    1993-02-01

    Objectives include adequate ductilities ({ge}10%) at ambient temperature, high-temperature strength better than stainless steels (types 304 and 316), and fabricability and weldability by conventional techniques (gas tungsten arc). The alloys should be capable of being corrosion resistant in molten nitrate salts with rates lower than other iron-base structural alloys and coating materials (such as Fe-Cr-Al alloys). Such corrosion rates should be less than 0.3 mm per year. The FeAl aluminide containing 35.8 at. % Al was selected as base composition. Preliminary studies indicate that additions of B and Zr, increase the room-temperature ductility of FeAl. Further alloying with 0.2% Mo, and/or 5% Cr, improves the creep. Our preliminary alloying effort has led to identification of the following aluminide composition with promising properties: Fe - (35 {plus_minus} 2)Al - (0.3 {plus_minus} 0.2)Mo - (0.2 {plus_minus} 0.15)Zr - (0.3 {plus_minus} 0.2)B- up to 5Cr, at. %. However, this composition is likely to be modified in future work to improve the weldability of the alloy. The FeAl alloy FA-362 (Fe-35.8% Al-0.2% Mo-0.05% Zr-0.24% B) produced by hot extrusion at 900C showed a tensile ductility of more than 10% at room temperature and a creep rupture life longer than unalloyed FeAl by more than an order of magnitude at 593C at 138 MPa. Melting and processing of scaled-up heats of selected FeAl alloys are described. Forging, extruding, and hot-rolling processes for the scale-up heats are also described.

  5. Microstructure and mechanical behavior of Fe30Ni 20Mn35Al15 and modified Fe30Ni 20Mn35Al15 alloys

    NASA Astrophysics Data System (ADS)

    Meng, Fanling

    A novel alloy with nominal composition Fe30Ni 20Mn35Al15 has been found to show good room-temperature strength and significant ductility. The current project is to study the wear properties of as-cast Fe30Ni20Mn35Al 15 and discuss the possibility of further improving the mechanical properties of this alloy. The dry sliding wear of as-cast Fe30Ni20Mn 35Al15 was studied in in four different environments, i.e. air, dry oxygen, dry argon and a 4% hydrogen/nitrogen mixture. Two-body and three-body abrasive wear mechanism was found for tests in oxygen-containing environments, while plastic flow mechanisms dominated the wear behavior for tests in argon. Hydrogen embrittlement led to 1000% increase of wear loss by causing more rapid crack nucleation of the asperities. The effects of different additions of chromium (≤ 8 at. %) on both microstructure and fracture behavior of Fe30Ni20Mn 35Al15 were investigated. All alloys consisted of (Ni, Al)-rich B2 and (Fe, Mn)-rich f.c.c. phases with most of the Cr residing in the f.c.c. phase. The addition of 6 at. % Cr not only increased the room temperature ductility, but also completely suppressed the environmental embrittlement observed in the Cr-free alloy at low strain rates. The effects of varying the Al concentration on the microstructures and tensile properties of six two-phase FeNiMnAl alloys with a composition close to Fe30Ni20Mn35Al15 were studied. The increase in f.c.c. volume fraction and f.c.c. lamellar width led to an increase in ductility and a decrease in yield strength. The correlation between the yield stress and f.c.c. lamellar spacing lambda obeyed a Hall-Petch-type relationship, i.e. sigmay=252+0.00027lambda-1, where the units for sigmay and lambda are MPa and meter, respectively. FeNiMnAl alloy with B2 and f.c.c. phases aligned along was reported to show high strength at room temperature. The mechanical properties of Fe 28Ni18Mn33Al21, consisting of (Ni, Al)-enriched B2 and (Fe, Mn)-enriched f.c.c. phases with

  6. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGESBeta

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  7. Tensile properties of cast and mechanically alloyed FeAl with high boron content

    SciTech Connect

    Kim, M.H.; Kwun, S.I.

    1996-08-01

    The FeAl with B2 structure has been considered as a potential structural material for use at elevated temperatures and severe environment. Two major problems with this polycrystalline aluminide are its brittleness through cleavage or grain boundary failure at ambient temperature and rapid strength drop at high temperatures above 750K. In order to expand the use of iron aluminide, these two problems must be overcome. Making a grain size small might be one of the effective ways as the stress distribution is more homogeneous throughout the material. Another method to increase the ductility of iron rich FeAl seems to add small amount of boron. Webb reported that the optimum B content for ambient temperature ductility enhancement was approximately 12 wppm in FeAl(40at%Al). With these points in mind, the authors have tried to modify room and high temperature mechanical properties of FeAl by mechanical alloying. The mechanical alloying is a unique process in that it is an entirely solid state process, permitting fine distribution of insoluble phases and fine grain size material. This paper compares the mechanical properties of the cast and the mechanically alloyed FeAl with B as much as 0.3wt%. The highest B content added in iron rich FeAl was reported to be 0.2wt% up to now.

  8. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  9. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. PMID:26780135

  10. A preliminary investigation for an Al/AlCl3-NaCl/FeS2 secondary cell

    NASA Astrophysics Data System (ADS)

    Koura, N.

    1980-07-01

    The development of an Al/AlCl3-NaCl/FeS2 cell as a potential candidate for advanced secondary cells is investigated, considering that aluminum has a negative potential and a high theoretical capacity, and the system has a low melting point and is stable as molten salt not in the presence of air or moisture. Discharge curves at various temperatures showed a high plateau at about 0.9 V and a low plateau at about 0.6 V; it was also shown that the more the current density increased, the greater was the high plateau capacity. In addition, FeS was detected from the FeS2 electrode discharged up to 0.65 V, and Al2S3 was detected up to 0.20 V by X-ray analysis.

  11. Determination of Gibbs Free Energy of Formation from Elements for Ca4Fe9O17 by Solid-state Galvanic Cell

    NASA Astrophysics Data System (ADS)

    Li, Hui-Yu; Guo, Xing-Min

    2014-09-01

    Aiming to fill the thermodynamic blank in CaO-FeO-Fe2O3 system, the determination of the Gibbs free energy of formation from elements for ternary Ca4Fe9O17 was carried out using a solid-state galvanic cell with air and calcium zirconate material, respectively, as the reference electrode and electrolyte. The ternary system Ca2Fe2O5-CaFe2O4-Ca4Fe9O17 was selected as the measuring electrode and its equilibrium was confirmed. The essential thermodynamic data of Ca2Fe2O5 and CaFe2O4 were cited from the reassessed data from a previous investigation. The reversible electromotive forces of the cell were determined from 1273 K to 1473 K (1000 °C to 1200 °C). The Gibbs free energy of formation from elements for Ca4Fe9O17 was derived and given by: Δ_{{f}} G_{{m}}^{circ } ({{Ca}}4 {{Fe}}9 {{O}}_{17} ) = -6218.862 × 103 + 1247.762T + 31.32T ln T ± 2694({{J}} {{mol}}^{-1} ) The increment of enthalpy and entropy of formation from elements for Ca4Fe9O17 at 298 K (25 °C) are calculated to be Δ_{{f}} H_{{{{m}},298}}^{ circ } = -6209.529 × 103 ({{J}} {{mol}}^{-1} ) and Δ_{{f}} S_{{{{m}},298}}^{ circ } = -1038.009({{J}} {{mol}}^{-1} {{K}}^{-1} ) . The Ellingham diagram was developed in temperature range 1273 K to 1473 K (1000 °C to 1200 °C). The oxygen potential of Ca4Fe9O17 was found to be slightly higher than CaFe2O4 and much higher than Ca2Fe2O5.

  12. Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: Interdependent effects of phosphate, silicate and Ca

    NASA Astrophysics Data System (ADS)

    Senn, Anna-Caterina; Kaegi, Ralf; Hug, Stephan J.; Hering, Janet G.; Mangold, Stefan; Voegelin, Andreas

    2015-08-01

    We studied the interdependent effects of phosphate, silicate and Ca on the formation of Fe(III)-precipitates by oxidation of 0.5 mM Fe(II) in near-neutral bicarbonate-buffered aqueous solutions at concentrations relevant for natural water resources. Complementary results obtained by a suite of analytical techniques including X-ray absorption spectroscopy and transmission electron microscopy showed that the ratio of initially dissolved phosphate over Fe(II) ((P/Fe)init) had a major impact on precipitate formation. At (P/Fe)init above a critical ratio ((P/Fe)crit) of ∼0.5 in 8 mM NaHCO3 and ∼0.8 in 4 mM Ca(HCO3)2 electrolyte, Fe(II) oxidation led to exclusive formation of amorphous basic Fe(III)-phosphate or Ca-Fe(III)-phosphate ((Ca-)Fe(III)-phosphate) with maximum precipitate P/Fe ratios ((P/Fe)ppt) of ∼0.7 in Na and ∼1.1 in Ca electrolyte. Enhanced phosphate uptake in the presence of Ca was due to phosphate-Ca interactions coupled to Fe precipitation, mainly formation of mitridatite-like Ca-Fe(III)-phosphate polymers and Ca-phosphate polymers. At (P/Fe)init < (P/Fe)crit, in the absence of silicate, (Ca-)Fe(III)-phosphate precipitation was followed by the formation of poorly crystalline lepidocrocite and concomitant transformation of the (Ca-)Fe(III)-phosphate into a phosphate-rich ferrihydrite-type precipitate with a (P/Fe)ppt of ∼0.25. In the presence of 0.5 mM silicate, initially formed (Ca-)Fe(III)-phosphate nanoparticles became coated with silicate-rich ferrihydrite during continuing Fe(II) oxidation and only limited transformation of the (Ca-)Fe(III)-phosphate occurred. The results from this study indicate the complexity of Fe(III)-precipitate formation in the presence of interfering solutes and its consequences for precipitate structure and phosphate sequestration. The findings provide a solid basis for further studies of the reactivity of different Fe(III)-precipitate types and for the systematic assessment of their impact on Fe, phosphate and

  13. Magnetization reversal and negative volume thermal expansion in Fe doped Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Qi, T. F.; Yuan, S. J.; Ye, F.; Chi, S.; Terzic, J.; Zhang, H.; Zhao, Z.; Liu, X.; Parkin, S.; Mao, W. L.; Cao, G.

    We report structural, magnetic, transport and thermal properties of single-crystal Ca2Ru1-xFexO4 (0 <= x <= 0.2) as functions of pressure, magnetic field and temperature. The central findings of this work are a pronounced magnetization reversal and a negative thermal expansion that are induced by Fe doping. Our results including neutron diffraction data suggest that the magnetization reversal is primarily a result of different temperature dependences of two antiparallel, competing Ru and Fe sublattices and that the negative thermal expansion is achieved via magnetic and metal-insulator transitions. We will present and discuss our results with comparison drawn with relevant systems. This work was supported by the NSF via Grant No. DMR-1265162.

  14. First-principles study of CaFe2As2 under pressure

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Quader, Khandker

    2013-07-01

    We perform first-principles calculations on CaFe2As2 under hydrostatic pressure. Our total-energy calculations show that though the striped antiferromagnetic (AFM) orthorhombic (OR) phase is favored at P=0, a nonmagnetic collapsed tetragonal (cT) phase with diminished c parameter is favored for P>0.36 GPa, in agreement with experiments. Rather than a mechanical instability, this is an enthalpically driven transition from the higher volume OR phase to the lower volume cT phase. A simple thermodynamic model provides an interpretation of the finite-temperature phase boundaries of the cT phase. Calculations of electronic density of states reveal pseudogaps in both OR and cT phases. Band-structure analysis provides insight into the origin of the pseudogaps while revealing the location and nature of hybridized Fe-d and As-p bonding orbitals.

  15. Mott transition in CaFe2O4 at around 50 GPa

    NASA Astrophysics Data System (ADS)

    Greenberg, Eran; Rozenberg, Gregory Kh.; Xu, Weiming; Pasternak, Moshe P.; McCammon, Catherine; Glazyrin, Konstantin; Dubrovinsky, Leonid S.

    2013-12-01

    Electrical transport and magnetic properties of CaFe2O4 have been studied at pressures up to 70 GPa using Fe57 Mössbauer spectroscopy (MS), Raman spectroscopy, and electrical resistance measurements. These studies have shown the onset of the Mott transition (MT) at a pressure of around 50 GPa, leading to the collapse of Fe3+ magnetic moments and to the insulator-metal (IM) transition. The observed onset of the MT corroborates with the recently reported isostructural transition accompanied by a 12% decrease in the Fe polyhedral volume. An analysis of the alterations of the electrical transport, magnetic, and structural properties with pressure increase and at the transition range suggests that the coinciding IM transition, magnetic moment, and volume collapse at around 50 GPa are caused by the closure of the Hubbard gap driven by the high-spin to low-spin (HS-LS) transition. At that, since MS did not reveal any evidence of a preceding LS state, it could be inferred that the HS-LS transition immediately leads to an IM transition and complete collapse of magnetism.

  16. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  17. Microdomain Formation, Oxidation, and Cation Ordering in LaCa2Fe3O8+y

    DOE PAGESBeta

    Price, Patrick M.; Browning, Nigel D.; Butt, Darryl P.

    2015-03-23

    The compound LaCa2Fe3O8+y, also known as the Grenier phase, is known to undergo an order-disorder transformation (ODT) at high temperatures. Oxidation has been observed when the compound is cooled in air after the ODT. In this study, we have synthesized the Grenier compound in air using traditional solid state reactions and investigated the structure and composition before and after the ODT. Thermal analysis showed that the material undergoes an order-disorder transformation in both oxygen and argon atmospheres with dynamic, temperature dependent, oxidation upon cooling. Results from scanning transmission electron microscopy (STEM) suggest that the Grenier phase has preferential segregation ofmore » Ca and La on the two crystallographic A-sites before the ODT, but a random distribution above the ODT temperature. Furthermore, STEM images suggest the possibility that oxygen excess may exist in La-rich regions within microdomains rather than at microdomain boundaries.« less

  18. An NMR investigation of superconductivity and antiferromagnetism in CaFe2As2 under pressure

    SciTech Connect

    Baek, Seung H; Lee, Han O; Bauer, E D; Ronning, F; Park, T; Thompson, J D; Brown, S E; Curro, N J

    2009-01-01

    We report {sup 75}As NMR measurements in CaFe{sub 2}As{sub 2}, made under applied pressures up to 0.83 CPa produced by a standard clamp pressure cell. Our data reveal phase segregation of paramagnetic (PM) and antiferromagnetic (AFM) phases over a range of pressures, with the AFM phase more than 90% dominant at low temperatures. In situ RF susceptibility measurements indicate the presence of superconductivity. {sup 75}As spin-lattice relaxation experiments indicate that the {sup 75}As nuclei sample the superconductivity while in the magnetically-ordered environment.

  19. Local inhomogeneity and filamentary superconductivity in Pr-doped CaFe2As2.

    PubMed

    Gofryk, Krzysztof; Pan, Minghu; Cantoni, Claudia; Saparov, Bayrammurad; Mitchell, Jonathan E; Sefat, Athena S

    2014-01-31

    We use multiscale techniques to determine the extent of local inhomogeneity and superconductivity in Ca0.86Pr0.14Fe2As2 single crystal. The inhomogeneity is manifested as a spatial variation of the praseodymium concentration, local density of states, and superconducting order parameter. We show that the high-Tc superconductivity emerges from cloverlike defects associated with Pr dopants. The highest Tc is observed in both the tetragonal and collapsed tetragonal phases, and its filamentary nature is a consequence of nonuniform Pr distribution that develops localized, isolated superconducting regions within the crystals. PMID:24580484

  20. Magnetism, structure and superconductivity in CaFe2As2

    SciTech Connect

    Park, Tuson O; Lee, Han; Ronning, Filip; Bauer, Eric D; Thompson, Joe D

    2008-01-01

    Tbe spin-density-wave (SDW) anti ferromagnet CaFe{sub 2}As{sub 2} becomes superconducting under pressure. By measuring electrical resistivity and magnetic susceptibility under pressure, we show that bulk superconductivity is present in a narrow pressure range where a collapsed tetrgaonal structure is favored. At higher pressures, a new low-temperature structure appears, with the boundary between this new structure and the collapsed tetragonal structure strongly dependent on pressure history. Magnetic fluctuations in the collapsed phase appear to be important for superconductivity.

  1. Nanofibers of Ca2Fe2O5: A novel material for aqueous supercapacitor

    NASA Astrophysics Data System (ADS)

    Sundriyal, Sandeep Kumar; Bhagwan, Jai; Sharma, Yogesh

    2016-05-01

    Porous, aligned and high aspect ratio nanofibers of Ca2Fe2O5 (CFO) have been fabricated by varying various system and process parameter of electrospinning technique for the first time. CFO nanofibers are further characterized by XRD, FESEM and BET surface area. The diameter of as-spun nanofibers of CFO was found to be polymer concentration dependent. Heating profile is found to be responsible for alignment of CFO nanofibers. For the first time, novel CFO nanofibers were subjected to cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) cycling to investigate its energy storage performance as electrode material for aqueous supercapacitor, and accordingly preliminary results are discussed.

  2. Local Inhomogeneity and Filamentary Superconductivity in Pr-Doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Gofryk, Krzysztof; Pan, Minghu; Cantoni, Claudia; Saparov, Bayrammurad; Mitchell, Jonathan E.; Sefat, Athena S.

    2014-01-01

    We use multiscale techniques to determine the extent of local inhomogeneity and superconductivity in Ca0.86Pr0.14Fe2As2 single crystal. The inhomogeneity is manifested as a spatial variation of the praseodymium concentration, local density of states, and superconducting order parameter. We show that the high-Tc superconductivity emerges from cloverlike defects associated with Pr dopants. The highest Tc is observed in both the tetragonal and collapsed tetragonal phases, and its filamentary nature is a consequence of nonuniform Pr distribution that develops localized, isolated superconducting regions within the crystals.

  3. Impact of densification on microstructure and transport properties of CaFe5O7

    NASA Astrophysics Data System (ADS)

    Delacotte, C.; Hébert, S.; Hardy, V.; Bréard, Y.; Maki, R.; Mori, T.; Pelloquin, D.

    2016-04-01

    Monophasic CaFe5O7 ceramic has been synthesized by solid state route. Its microstructural features have been studied by diffraction techniques and electron microscopy images before and after Spark Plasma Sintering (SPS) annealings. This work is completed by measurements of electrical and thermal properties. Especially, attention is focused around the structural and electronic transition at 360 K for which specific heat measurements have revealed a sharp peak. Densification by SPS techniques led to a significant improvement of electrical conductivity above 360 K.

  4. Microstructure and Mechanical Properties of the Ti-45Al-5Fe Intermetallic Alloy

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.

    2015-10-01

    Microstructure including changes in the phase composition and mechanical compression properties of the Ti-45Al-5Fe (at.%) intermetallic alloy manufactured by casting and subjected to homogenization annealing are investigated as functions of the temperature. The initial alloy has a homogeneous predominantly lamellar structure with relatively small size of colonies of three intermetallic phases: γ(TiAl), τ2(Al2FeTi), and α2(Ti3Al) in the approximate volume ratio 75:20:5. Compression tests have revealed the enhanced strength at room temperature and the improved hot workability at 800°C compared to those of TNM alloys of last generation.

  5. Aluminum Coprecipitates with Fe (hydr)oxides: Does Isomorphous Substitution of Al3plus for Fe3plus in Goethite Occur

    SciTech Connect

    E Bazilevskaya; D Archibald; M Aryanpour; J Kubicki; C Martinez

    2011-12-31

    Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitates were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the

  6. Photoluminescence Properties of CaAlBO4:M (M: Pb2+, Dy3+, and Sm3+)

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.; Pekgözlü, İ.

    2014-07-01

    Pb2+, Dy3+, and Sm3+ doped CaAlBO4 materials were synthesized by the conventional solid state reaction. The synthesized phosphors were characterized by X-Ray powder diffraction. The emission and excitation spectra of these phosphors were measured at room temperature. The emission band of CaAlBO4:Pb2+ appeared as a broad band at 339 nm upon excitation with 272 nm. The second phosphor, CaAlBO4: Dy3+, emits at 477, 570, and 670 nm upon 347 nm excitation. The third phosphor, CaAlBO4:Sm3+, emits at 563, 594, 643, and 705 nm upon 236 nm excitation.

  7. Interatomic force interaction in an i-AlCuFe quasicrystal

    SciTech Connect

    Parshin, P. P.; Zemlyanov, M. G. Brand, R. A.

    2007-11-15

    Partial spectra of thermal vibrations of Al, Cu, and Fe atoms in an icosahedral quasicrystal have been obtained by the isotopic-contrast method in inelastic neutron scattering. Joint analysis of these results and the published data on the atomic and electronic structures of the icosahedral i-AlCuFe quasicrystal has been performed. A physical model of the quasicrystal structure is proposed that is in agreement with the existing experimental data and qualitatively describes the peculiarities of interatomic interaction.

  8. Superconductivity in 1111-type CaFeAsF1-xHx induced by selective hydrogen elimination

    NASA Astrophysics Data System (ADS)

    Hanna, Taku; Muraba, Yoshinori; Matsuishi, Satoru; Hosono, Hideo

    2013-09-01

    The difference in thermal stability of F- and H- in 1111-type iron based superconductors allows selective hydrogen elimination from non-superconductive CaFeAsF0.8H0.2 by thermal annealing. The analyzed chemical composition of the resulting samples indicates that incorporated hydrogen was selectively eliminated by thermal annealing at 553 K for 72 h. The resulting hydrogen-eliminated sample shows bulk superconductivity with Tc = 29 K. This technique may be used for indirect electron doping for AeFeAeF (Ae, alkali-earth metal) iron based superconductor described by CaFeAsF1-xHx → CaFeAsF1-x + xe- + 1/2xH2↑.

  9. Morphology Control for Al2O3 Inclusion Without Ca Treatment in High-Aluminum Steel

    NASA Astrophysics Data System (ADS)

    He, Shengping; Chen, Gujun; Guo, Yintao; Shen, Boyi; Wang, Qian

    2015-04-01

    Nozzle blockage is a major problem during continuous casting of Al-containing steel. Herein, we analyzed the thermodynamic equilibrium behavior between aluminum and oxygen in steel at 1873 K (1600 °C) and demonstrated that, the dissolved [O] initially decreases with increasing the dissolved [Al] until approximately 0.1 wt pct [Al], and after that, the dissolved [O] increases with dissolved [Al]. Thus, for high-aluminum steel with 1.0 wt pct dissolved [Al], the precipitation of Al2O3 inclusion can be avoided during cooling from deoxidation temperature to the liquidus temperature, if the actual dissolved [O] can be kept from increasing when the dissolved [Al] further increases from 0.1 to 1.0 wt pct. Hence, a method of inclusion control for high-aluminum steel without traditional Ca treatment technology was proposed based on the thermodynamic analysis. Industrial tests confirmed that low-melting point Ca-aluminate inclusions were observed typically through a slag washing with SiO2-minimized high-basicity slag during tapping, accompanied by two-step Al-adding process for production of high-aluminum steel. Moreover, there was no nozzle clogging occurred for five heats of continuous casting.

  10. Local probe studies of Fe hyperfine field in CaFe2As2 by time differential perturbed angular distribution (TDPAD) spectroscopy and ab initio methods

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.

    2013-03-01

    Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).

  11. Optically stimulated luminescence in LiCaAlF6:Eu2+ phosphor.

    PubMed

    More, Y K; Wankhede, S P; Moharil, S V; Kumar, Munish; Chougaonkar, M P

    2015-09-01

    Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu(2+) are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu(2+). Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu(2+) with the characteristic Eu(2+) emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu(2+) was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF-TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. PMID:25620581

  12. Pre-Accretionary Distribution of Ca and Al Between Matrix and Chondrules in CV Chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, D. C.; Palme, H.

    2007-03-01

    Ca/Al-ratios in Y-86751 (CV) chondrules are super- and in matrix sub-chondritic. The opposite is true for Allende and Efremovka. Incorporation of spinel in Allende and Efremovka chondrule precursors in a nebular setting can explain this observation.

  13. The first observation of SRS in a trigonal LiCaAlF{sub 6} crystal

    SciTech Connect

    Kaminskii, Alexandr A; Eichler, H J; Gad, G M; Ueda, Ken-ichi; Reiche, P

    2000-12-31

    The Raman parametric generation is excited for the first time in a trigonal LiCaAlF{sub 6} fluoride crystal pumped by picosecond pulses. The energy of the {chi}{sup (3)}-active vibrational mode is determined and all Stokes and anti-Stokes components of SRS are detected for this crystal in the visible region. (letters)

  14. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    SciTech Connect

    Anh, Le Duc Kaneko, Daiki; Tanaka, Masaaki; Hai, Pham Nam

    2015-12-07

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al{sub 1−x},Fe{sub x})Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al{sub 1−x},Fe{sub x})Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al{sub 1−x},Fe{sub x})Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (T{sub C}) of 40 K. In the (Al{sub 1−x},Fe{sub x})Sb thin film with x = 14%, a sudden drop of the hole mobility and T{sub C} was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  15. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  16. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    DOE PAGESBeta

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory insidemore » the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.« less

  17. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    SciTech Connect

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-03-19

    FeCrAl is an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In our study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. Also, the total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  18. Formation Mechanism of CaS-Al2O3 Inclusions in Low Sulfur Al-Killed Steel After Calcium Treatment

    NASA Astrophysics Data System (ADS)

    Xu, Jianfei; Huang, Fuxiang; Wang, Xinhua

    2016-04-01

    The laboratory experiments of alumina inclusions modified by calcium treatment in Al-killed steel were carried out at 1873 K (1600 °C), and the inclusions in steel samples were characterized at 1, 5, and 10 minutes after calcium addition. The results show that the type of inclusions after calcium treatment was determined by the sulfur and T.O contents of steel. CaS-Al2O3 inclusions were obtained in steels with high sulfur and low T.O contents. The mass ratio between CaS and Al2O3 was determined by T.Ca and T.O contents of steel. The influence of holding time after calcium addition on the composition of inclusions was negligible. The thermodynamics for the formation of CaS-Al2O3 inclusions after calcium treatment was discussed, and a simple formation mechanism was proposed. Moreover, the CaO, Al2O3, and CaS contents in the inclusions were predicted through the sulfur, total calcium (T.Ca), and T.O contents, and it was found that the CaO content decreases with increasing S/T.O, while (pctCaS)/(pctAl2O3)1/3 increases with increasing T.Ca/T.O.

  19. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  20. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  1. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products

    SciTech Connect

    Perez, M.R.; Barriga, C.; Fernandez, J.M.; Rives, V.; Ulibarri, M.A.

    2007-12-15

    Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 deg. C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl{sub 2}O{sub 4}, Cd{sub 1-x}Fe{sub 2+x}O{sub 4}, or Cd{sub x}Fe{sub 2.66}O{sub 4}) depends on location and concentration of iron in the parent material or precursor. - Graphical abstract: Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange. Calcination at 800 deg. C shows diffraction lines corresponding to CdO and to spinel-type materials. SEM micrograph of sample CdAlFe-N-0.

  2. Corrosion behaviour of sintered NdFeB coated with Al/Al 2O 3 multilayers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mao, Shoudong; Yang, Hengxiu; Huang, Feng; Xie, Tingting; Song, Zhenlun

    2011-02-01

    Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.

  3. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  4. Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys

    NASA Astrophysics Data System (ADS)

    Anawati, Asoh, Hidetaka; Ono, Sachiko

    2016-04-01

    Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.

  5. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by μ-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  6. Effect of Slag Composition on the Distribution Behavior of Pb between FetO-SiO2 (-CaO, Al2O3) Slag and Molten Copper

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Park, Soo-Sang; Park, Joo Hyun

    2012-10-01

    The distribution behavior of Pb between molten copper and FetO-SiO2 (-CaO, Al2O3) slags was investigated at 1473 K (1200 °C) and p_{{{{O}}2 }} = 10^{ - 10} {{atm}} in view of the reaction mechanism of Pb dissolution into the slag. Furthermore, the lead capacity of the slag was estimated from the experimental results. The distribution ratio of Pb ( L Pb) decreases with increasing CaO content ( 6 mass pct) irrespective of Fe/SiO2 ratio (1.4 to 1.7). However, the addition of alumina into a slag with Fe/SiO2 = 1.5 linearly decreases the L Pb, whereas a minimum value is observed at about 4 mass pct Al2O3 at Fe/SiO2 = 1.3. The log L Pb continuously decreases with increasing Fe/SiO2 ratio, and the addition of Al2O3 (5 to 15 mass pct) into the silica-saturated iron silicate slag (Fe/SiO2 < 1.0) yields the highest Pb distribution ratio. This is mainly due to a decrease in the FeO activity even at silica saturation. The log L Pb linearly decreases by increasing the log (Fe3+/Fe2+) value. The Pb distribution ratio increases and the excess free energy of PbO decreases with increasing Cu2O content in the slag. However, from the viewpoint of copper loss into the slag, the silica-saturated system containing small amounts of alumina is strongly recommended to stabilize PbO in the slag phase at a low Cu2O content. The lead capacity was defined in the current study and shows a linear correlation with the activity of FeO in a logarithmic scale, indicating that the concept of lead capacity is a good measure of absorption ability of Pb in iron silicate slags, and the activity of FeO can be a good basicity index in iron silicate slag.

  7. Spinel-to-CaFe2O4-type structural transformation in LiMn2O4 under high pressure.

    PubMed

    Yamaura, Kazunari; Huang, Qingzhen; Zhang, Lianqi; Takada, Kazunori; Baba, Yuji; Nagai, Takuro; Matsui, Yoshio; Kosuda, Kosuke; Takayama-Muromachi, Eiji

    2006-07-26

    A new form of LiMn2O4 is reported. The structure is the CaFe2O4-type and 6% denser than the spinel. The structure transformation was achieved by heating at 6 GPa. Analysis of the neutron diffraction pattern confirmed an average of the structure; the unit cell was orthorhombic at a = 8.8336(5) angstroms, b = 2.83387(18) angstroms, and c = 10.6535(7) angstroms (Pnma). Electron diffraction patterns indicated an order of superstructure 3a x b x c, which might be initiated by Li vacancies. The exact composition is estimated at Li(0.92)Mn2O4 from the structure analysis and quantity of intercalated Li. The polycrystalline CaFe2O4-type compound showed semiconducting-like characters over the studied range above 5 K. The activation energy was reduced to approximately 0.27 eV from approximately 0.40 eV at the spinel form, suggesting a possible enhancement of hopping mobility. Magnetic and specific-heat data indicated a magnetically glassy transition at approximately 10 K. As the CaFe2O4-type transition was observed for the mineral MgAl2O4, hence the new form of the lithium manganese oxide would provide valuable opportunities to study not only the magnetism of strongly correlated electrons but also the thermodynamics of the phase transition in the mantle. PMID:16848482

  8. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  9. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  10. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  11. Activities of MnO in CaO-SiO2-Al2O3-MnO (<10 Pct)-FetO(<3 pct) slags saturated with liquid iron

    NASA Astrophysics Data System (ADS)

    Ohta, Hiroki; Suito, Hideaki

    1995-04-01

    Activity coefficients of MnO and Fe,0 in CaO-SiO2-Al2O3-MnO(<10 mass pct)-Fe,O(<3 mass pct) slags were determined at 1873 K in an Al2O3 or CaO crucible by using the reported values for the activities of Al2O3 and SiO2 or the analyzed contents of oxygen. The activity coefficients of MnO and FetO were found to be constant in the studied concentration range of MnO and FetO. The former increased with an increase in the CaO content, while the latter increased with an increase in the SiO2 content.

  12. Precipitation and fracture behaviour of Fe-Mn-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Lee, Hu-Chul

    2013-12-01

    The effects of Al addition on the precipitation and fracture behaviour of Fe-Mn-Ni alloys were investigated. With the increasing of Al concentration, the matrix and grain boundary precipitates changed from L10 θ-MnNi to B2 Ni2MnAl phase, which is coherent and in cube-to-cube orientation relationship with the α‧-matrix. Due to the suppression of the θ-MnNi precipitates at prior austenite grain boundaries (PAGBs), the fracture mode changed from intergranular to transgranular cleavage fracture. Further addition of Al resulted in the discontinuous growth of Ni2MnAl precipitates in the alloy containing 4.2 wt.% Al and fracture occurred by void growth and coalescence, i.e. by ductile dimple rupture. The transition of the fracture behaviour of the Fe-Mn-Ni-Al alloys is discussed in relation to the conversion of the precipitates and their discontinuous precipitation behaviour at PAGBs.

  13. Hydrogen sorption behavior of CaAl1.5Li0.5

    NASA Astrophysics Data System (ADS)

    Bereznitsky, Matvey; Mogilyanski, Dmitry; Jacob, Isaac

    2016-04-01

    The hydrogen sorption properties of an alloy with nominal composition CaAl1.5Li0.5 have been investigated in a pursuit for hydrogen-absorbing Li-containing intermetallics. X-ray analysis of the original alloy indicated a coexistence of three closely related Laves phases. The maximum hydrogen capacity, recorded at about 6 MPa and 300 °C, was approximately 2.5 H atoms per formula unit (f.u.). Pressure-composition (p-c) isotherm measurements were taken in the temperature range between 350 and 450 °C up to pressures of 133 kPa. Thermodynamic parameters are derived for two plateau regions in the p-c isotherms. Analysis of these parameters and supporting evidence from X-ray patterns of hydrogenated and dehydrogenated samples suggest: (a) an initial irreversible disproportionation of the original alloy and (b) subsequent reversible hydrogenations, featuring reversible disproportionations of CaAl2 and LiAl intermetallic compounds. Attempts to form additional Li-containing intermetallics, namely CaAlLi, TiMn2- x Li x (x = 0.2, 0.3, 0.4, 0.6) and TiAl2- x Li x (x = 0.3, 0.5), and to hydrogenate them, are reported in brief.

  14. Perpendicular magnetic anisotropy in Ta|Co40Fe40B20|MgAl2O4 structures and perpendicular CoFeB|MgAl2O4|CoFeB magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.; Liu, H. F.; Ali, S. S.; Feng, J. F.; Wei, H. X.; Han, X. F.; Liu, Y.; Zhao, Y. G.; Zhang, Q.; Guo, Z. B.; Zhang, X. X.

    2014-09-01

    Magnetic properties of Co40Fe40B20 (CoFeB) thin films sandwiched between Ta and MgAl2O4 layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl2O4 structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy Ki = 1.22 erg/cm2, which further increases to 1.30 erg/cm2 after annealing, while MgAl2O4/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a core structure of CoFeB/MgAl2O4/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.

  15. Comparative study of the Raman vibrational modes in pure and Fe-doped La2/3Ca1/3MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Arnache, O.; Osorio, J.

    2016-04-01

    A comparative study of Raman spectra at room temperature of La2/3Ca1/3MnO3 (LCMO) and La2/3Ca1/3Mn0.97Fe0.03O3 (LCMFO) thin films, grown on monocrystalline substrates LaAlO3, is presented. The films were grown with thickness between 30 and 130 nm under identical deposition conditions by DC magnetron sputtering system at high O2 pressure. In order to observe changes in the vibration modes of the lattice due to the substitution of Mn by Fe ions, we compared the different values of wave numbers obtained from the fittings of each Raman spectrum. The results show that the characteristic-and most intense-peak at ∼486 cm-1 corresponds to the substrate. In the LCMO thick films, Raman modes are very weak and mix up with the substrate one, whereas in LCMFO, these modes were found in three intervals around 220-250 cm-1 (υ1), 450-520 cm-1 (υ2) and 610-720 cm-1 (υ3). A mode at ∼717 cm-1 is associated to structural disorder due to Fe doping effect. In both LCMO and LCMFO films, the conduction mechanism are related with electron localization and the electronic transition is mediated by phonons. According to the T* values from resistivity data fit (Variable Range Model -VRH), it is observed once more that the Fe doping relaxes the strain effects.

  16. Relationship between Fe2+ Ca2+ ions and cyclodextrin in olive trees infected with sooty mold

    NASA Astrophysics Data System (ADS)

    Aragão, P. H. A.; Andrade, C. G. T. J.; Ota, A. T.; Costa, M. F.

    2012-07-01

    In this work, Energy Dispersive X-ray Fluorescence (EDXRF) was used to observe the peak areas of chemical elements present in healthy and infected samples and a Scanning Electron Microscopy (SEM) to study the damage caused by sooty mold on olive tree leaves from the Mediterranean. Leaves infected with sooty mold presented a high concentration of Fe2+ and a low concentration of Ca2+. Our results show that the infected leaves cause a metabolic imbalance in the plants due to an anomalous behavior of macronutrients and micronutrients. Infected leaves start to develop a thin layer of glucose (Cyclodextrin) on their surface. Cyclodextrin (CD) molecules are oligosaccharides consisting of α-D-glucopyranose units linked to glucosides. The most common is β-cyclodextrin (β-CD), which has seven units of α-D-glucopyranose. There are different CDs which are widely used as molecular reactors. In this work, some connections between CD molecules conformations that were obtained in order to observe the relationship of Fe2+ and Ca2+ in the olive tree infected with sooty mold were studied. The results are discussed in terms of number of ions found inside and outside the cavity formed by the CD molecules.

  17. Evolution of superconductivity in Ca1-xLaxFe2As2 under pressure

    NASA Astrophysics Data System (ADS)

    Saha, Shanta

    2013-03-01

    The evolution of superconductivity in single crystals of the aliovalent La-doped CaFe2As2 is studied with both quasi-hydrostatic and hydrostatic applied pressures measuring transport, magnetic, and neutron scattering properties. The application of pressure to under doped samples of Ca1-xLaxFe2As2 suppresses the antiferromagnetic (AFM) transition and causes an abrupt appearance of superconductivity with Tc values similar to those (about 45 K) recently been reported at ambient pressure. This superconducting phase appears under both quasi-hydrostatic and hydrostatic pressures, indicating an intrinsic property of the observed superconducting state. Unlike transition metal-doped 122 iron-superconductors where superconductivity happily coexists with AFM, the little coexistence of SC and AFM appears to mimic that found in 1111 iron-superconductors, suggesting a similar phase diagram. The unusual dichotomy between lower-Tc systems that happily coexist with AFM and tendency for the highest-Tc systems to show phase separation provides an important clue to the pairing mechanism in iron-based superconductors. This work was supported by AFOSR-MURI, NSF, and NIST.

  18. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    SciTech Connect

    Yang, Chan Ho; Seidel, Jan; Kim, S. Y.; Rossen, P. B.; Yu, Pu; Gajek, Martin; Chu, Ying-Hao; Martin, Lane W; Holcromb, M. B.; He, Q; Maksymovych, Petro; Balke, Nina; Kalinin, Sergei V; Baddorf, Arthur P; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-01-01

    Many interesting materials phenomena such as the emergence of high-T{sub c} superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO{sub 3} through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of {approx} 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO{sub 3}.

  19. An overview of the welding of Ni{sub 3}Al and Fe{sub 3}Al alloys

    SciTech Connect

    Santella, M.L.

    1996-12-31

    Weldability (degree to which defect formation is resisted when an alloy is welded) is an issue in fabrication of Ni{sub 3}Al and Fe{sub 3}Al. Work to define and improve welding of Ni{sub 3}Al and Fe{sub 3}Al alloys is reviewed and progress illustrated by examples of current activities. The cast Ni{sub 3}Al alloys currently under development, IC221M and IC396M, have low resistance to solidification cracking and hence difficult to weld. Modifications to the composition of both base alloys and weld deposits,however, increase their resistance to cracking. Crack-free, full-penetration welds were made in centrifugally cast tubes of IC221M. Tensile and stress- rupture properties of the weldments compare favorably with base metal properties. Weldability issues have limited the use of Fe{sub 3}Al alloys to weld overlay applications. Filler metal compositions suitable for weld overlay cladding were developed, and the preheat and postweld heat treatment needed to avoid cracking, were determined experimentally.

  20. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  1. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  2. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-01

    B2-ordered Co2FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering ˜81.2% with a low damping parameter (α) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 °C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co2FeAl films annealed at 350 °C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing α significantly. However, the observed damping of Co2FeAl films was still lower than that of Co60Fe20B20 films prepared at the same thickness and annealing temperature.

  3. Mössbauer and SEM study of Fe-Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    Fe-Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 x 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  4. Investigation of Ca substitution on the gas sensing potential of LaFeO3 nanoparticles towards low concentration SO2 gas.

    PubMed

    Palimar, Sowmya; Kaushik, S D; Siruguri, V; Swain, Diptikanta; Viegas, Alison E; Narayana, Chandrabhas; Sundaram, Nalini G

    2016-09-14

    The present work investigates the superior ability of LaFeO3 (LaFeO) and La0.8Ca0.2FeO2.95 (LaCaFeO) nanoparticles to detect 3 ppm SO2 gas. The influence of calcium substitution on the sensing behaviour of LaFeO has been studied. High resolution TEM images show that the particle sizes of LaFeO and LaCaFeO are less than 100 nm and SEM images show the agglomeration of interconnected nanoparticles. Both LaFeO and LaCaFeO crystallize in the orthorhombic crystal system with the space group Pbnm. Rietveld analysis of neutron diffraction data showed that LaCaFeO has lattice oxygen vacancies. In addition, magnetic refinements on both the samples have been carried out. The presence of lattice oxygen vacancies in LaCaFeO is qualitatively supported by Raman and XPS measurements. Electrical characterization showed increased conductivity for the LaCaFeO sample, influencing their sensing performance significantly. The LaCaFeO nanoparticles exhibit higher sensitivity, faster response time, rapid recovery time and good recyclability for sensing 3 ppm SO2 gas. This enhanced sensing behaviour is attributed to the increased oxygen vacancies in the lattice as well as the surface. As a consequence, increased active sites are created in LaCaFeO, promoting redox reaction between the analyte and the sensing material. The results demonstrated that while LaFeO is a good gas sensor, p-type substitution by Ca(2+) renders this material an improved resistivity based gas sensor to detect low concentration SO2. PMID:27507535

  5. Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Learman, D. R.; Lentini, C. J.; Ekstrom, E. B.

    2011-08-01

    The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and

  6. Electronic and magnetic properties of Ca(Fe1-xCox)2 As2 studied by 75As NMR

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuji; Roy, Beas; Ran, Shen; Bud'Ko, Sergey L.; Canfield, Paul C.

    2014-03-01

    Recently much attention has been paid to CaFe2As2 because the magnetic and electronic properties of the system can be controlled by changing the heat treatment conditions. CaFe2As2 annealed at 400 C for 24 hours undergoes a phase transition from a high-temperature tetragonal paramagnetic state to a low temperature orthorhombic antiferromagnetic state at TN ~ 160K. On the other hand, CaFe2As2 quenched from 960 C to room temperature shows a transition to a collapsed tetragonal non-magnetic phase below Ts ~ 90 K. In order to investigate the difference in electronic and magnetic properties of the two different CaFe2As2 samples from a microscopic point of view, we have carried 75As-NMR spectra and spin-lattice relaxation measurements. We also performed 75As-NMR measurements on Co-doped CaFe2As2 superconductor. Based on our NMR data, we will discuss similarities and difference in magnetic fluctuations in the systems, and compare the NMR data with inelastic neutron scattering data. Supported by USDOE under the Contract No. DE-AC02-07CH11358.

  7. Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5

    SciTech Connect

    Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet; Tian, Wei; Ni, N; Cava, R J; McQueeney, Robert J; Goldman, Alan I; Kreyssig, Andreas

    2014-09-01

    Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of the Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.

  8. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  9. Combined effects of annealing/quenching and transition metal substitution on physical properties of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Ran, Sheng; Bud'Ko, Sergey; Canfield, Paul

    2013-03-01

    Our previous work on CaFe2As2 single crystals grown out of FeAs flux has shown that a process of annealing and quenching can be used as an additional control parameter which can tune the ground state of CaFe2As2 systematically, in a manner similar to applied pressure. With combined effect of annealing/quenching and transition metal substitution, CaFe2As2 system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal. In this talk we will present systematic studies of the combined effects of annealing/quenching and chemical substitution with various transition metals (Co, Ni, Rh) on the physical properties of CaFe2As2 and construct phase diagrams for different substitution levels and different annealing/quenching temperatures. Supported by the U.S. Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  10. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-07-01

    We have investigated the electronic states of single-crystal CaFe2As2 under hydrostatic pressure using 57Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe2As2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe2As2 below ˜8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe2As2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe2As2.

  11. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  12. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half

  13. Growth and characterization of millimeter-sized single crystals of CaFeAsF

    NASA Astrophysics Data System (ADS)

    Ma, Yonghui; Zhang, Hui; Gao, Bo; Hu, Kangkang; Ji, Qiucheng; Mu, Gang; Huang, Fuqiang; Xie, Xiaoming

    2015-08-01

    High-quality and sizable single crystals are crucial for studying the intrinsic properties of unconventional superconductors, which are lacking in the 1111 phase of Fe-based superconductors. Here we report the successful growth of CaFeAsF single crystals with sizes of 1-2 mm using the self-flux method. Owing to the availability of the high-quality single crystals, the structure and transport properties were investigated with a high reliability. The structure was refined by using single-crystal x-ray diffraction data, which confirms earlier reports on the basis of powder data. A clear anomaly associated with the structural transition was observed at 121 K from the resistivity, magnetoresistance, and magnetic susceptibility measurements. Another kink-feature at 110 K, most likely an indication of antiferromagnetic transition, was also detected in the resistivity data. Our results supply a basis from which to propel physical investigations of the 1111 phase of Fe-based superconductors.

  14. Paramagnetic Spin Correlations in CaFe2As2 Single Crystals

    SciTech Connect

    Omar Diallo, Souleymane; Pratt, Daniel; Fernandes, Rafael; Tian, Wei; Zarestky, J. L.; Lumsden, Mark D; Perring, T. G.; Broholm, C.; Ni, Ni; Budko, S L; Canfield, Paul; Li, Haifeng; Vaknin, D; Kreyssig, A.; Goldman, A. I.; Mcqueeney, R J

    2010-01-01

    Magnetic correlations in the paramagnetic phase of CaFe2As2(TN=172 K) have been examined by means of inelastic neutron scattering from 180 K ( 1.05TN) up to 300 K (1.8TN). Despite the first-order nature of the magnetic ordering, strong but short-ranged antiferromagnetic (AFM) correlations are clearly observed. These correlations, which consist of quasielastic scattering centered at the wave vector QAFM of the low-temperature AFM structure, are observed up to the highest measured temperature of 300 K and at high energy transfer ( >60 meV). The L dependence of the scattering implies rather weak interlayer coupling in the tetragonal c direction corresponding to nearly two-dimensional fluctuations in the (ab) plane. The spin correlation lengths within the Fe layer are found to be anisotropic, consistent with underlying fluctuations of the AFM stripe structure. Similar to the cobalt-doped superconducting BaFe2As2 compounds, these experimental features can be adequately reproduced by a scattering model that describes short-ranged and anisotropic spin correlations with overdamped dynamics.

  15. The Al-Rich Part of the System CaO-Al 2O 3-MgO . Part I. Phase Relationships

    NASA Astrophysics Data System (ADS)

    Göbbels, M.; Woermann, E.; Jung, J.

    1995-12-01

    In the Al-rich part of the ternary system CaO-Al 2O 3MgO two new ternary phases Ca 2Mg 2Al 28O 46 (CAM-I) and CaMg 2Al 16O 27 (CAM-II) with limited solid solution ranges were found. Due to the fact that the compositions of the Mg-rich end members of these solid solutions lie on the join between hibonite (CaAl 12O 19) and spinel (MgAl 2O 4), the model of the crystal structures of these phases can be constructed by a suitable combination of hibonite and spinel units. Both phases, CAM-I and CAM-II, exhibit solid solution ranges described by a substitution mechanism also found in the binary spinel phase, MgAl 2O 4: 3 Mg 2+ = 2 Al 3+ + □. Thus the ternary phases can be expressed by the chemical formulas. Ca 2Mg 2-3 xAl 28+2 x□ xO 46 for CAM-I with 0 ≤ x ≤ 0.30 and CaMg 2-3 yAl 16+2 y□ yO 27 for CAM-II with 0 ≤ y ≤ 0.2.

  16. Magnetic properties of Nd-Fe-Co(Cu)-Al-B amorphous alloys prepared by nonequilibrium techniques

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Eckert, J.; Roth, S.; Löser, W.; Ram, S.; Schultz, L.

    2002-03-01

    The amorphous alloys Nd40Fe40Co5Al8B7, Nd57Fe20Co5Al10B8, and Nd57Fe20Cu5Al10B8 were prepared by copper mold casting, melt spinning, and mechanical alloying. Despite their similar x-ray diffraction patterns, samples display different magnetic and thermal behavior correlated with the method of preparation. The fully amorphous melt-spun ribbons exhibit relatively soft magnetic properties with coercivities ≈40 kA/m at room temperature and a Curie temperature (TC)≈474 K. Apparently only the mold-cast cylinders of 3 mm diameter show hard magnetic behavior with a coercivity in the range of 258-270 kA/m (depending on composition) and have approximately the same TC as that of the melt-spun ribbons. An additional magnetic transition at 585 K due to the presence of Nd2Fe14B phase in the case of Nd40Fe40Co5Al8B7 cast rod has been observed. Heat treatment above crystallization temperature in as-cast Nd57Fe20Co5Al10B8 and Nd57Fe20Cu5Al10B8 samples destroys the hard magnetic properties. In contrast, mechanically alloyed amorphous samples are soft magnetic with maximum coercivity up to 11 kA/m but show an entirely different TC≈680-740 K, which is rather characteristic of an Fe solid solution. The magnetic properties are discussed in terms of different local atomic environment and cluster sizes in amorphous samples prepared by different methods.

  17. Methane oxidation over mixed-conducting SrFe(Al)O3-delta-SrAl2O4 composite.

    PubMed

    Yaremchenko, A A; Kharton, V V; Valente, A A; Veniaminov, S A; Belyaev, V D; Sobyanin, V A; Marques, F M B

    2007-06-01

    The steady-state CH4 conversion by oxygen permeating through mixed-conducting (SrFe)0.7(SrAl2)0.3Oz composite membranes, comprising strontium-deficient SrFe(Al)O3-delta perovskite and monoclinic SrAl2O4-based phases, occurs via different mechanisms in comparison to the dry methane interaction with the lattice oxygen. The catalytic behavior of powdered (SrFe)0.7(SrAl2)0.3Oz, studied by temperature-programmed reduction in dry CH4 at 523-1073 K, is governed by the level of oxygen nonstoichiometry in the crystal lattice of the perovskite component and is qualitatively similar to that of other perovskite-related ferrites, such as Sr0.7La0.3Fe0.8Al0.2O3-delta. While extensive oxygen release from the ferrite lattice at 700-900 K leads to predominant total oxidation of methane, significant selectivity to synthesis gas formation, with H2/CO ratios close to 2, is observed above 1000 K, when a critical value of oxygen deficiency is achieved. The steady-state oxidation over dense membranes at 1123-1223 K results, however, in prevailing total combustion, particularly due to excessive oxygen chemical potential at the membrane surface. In combination with surface-limited oxygen permeability, mass transport limitations in a porous layer at the membrane permeate side prevent reduction and enable stable operation of (SrFe)0.7(SrAl2)0.3Oz membranes under air/methane gradient. Taking into account the catalytic activity of SrFeO3-delta-based phases for the partial oxidation of methane to synthesis gas and the important role of mass transport-related effects, one promising approach for membrane development is the fabrication of thick layer of porous ferrite-based catalyst at the surface of dense (SrFe)0.7(SrAl2)0.3Oz composite. PMID:17627318

  18. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO{sub 3} nanoparticles

    SciTech Connect

    Dhir, Gitanjali Uniyal, Poonam; Verma, N. K.

    2015-06-24

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO{sub 3} nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size.

  19. Multiferroic properties of (Bi, Ca)FeO3 films on glass substrates

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Shen, C. Y.; Yuan, F. T.; Tu, K. T.; Lo, Y. C.; Tu, S. Y.; Wang, C. R.; Tu, C. S.; Ouyang, H.; Shih, C. W.; Chang, W. C.; Jen, S. U.

    2015-11-01

    Effect of Ca substitution on the multiferroic properties of non-epitaxially grown polycrystalline Bi1-xCaxFeO3 (BCFO) films on refined Pt(1 1 1) electrode buffered glass substrates is studied. The structural analysis shows that a pure perovskite phase with isotropic orientation is present for BCFO films (x = 0.05-0.15). The grain size and surface roughness are reduced with increasing x. Different from the BCFO ceramics, good ferroelectric properties with the remanent polarization (2Pr) of 91-124 μC/cm2 and electrical coercive field (Ec) of 294-394 kV/cm are obtained in BCFO polycrystalline thin films. Furthermore, the substitution of Ca2+ for Bi3+ effectively enhance the ferromagnetic properties with magnetization (Ms) of 5.9-8.2 emu/cm3 and coercivity (Hc) of 1224-1258 Oe. The ferromagnetic and ferroelectric properties and leakage behavior as functions of Ca content x are discussed.

  20. Superconductivity in Sm-doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Dong-Yun, Chen; Bin-Bin, Ruan; Jia, Yu; Qi, Guo; Xiao-Chuan, Wang; Qing-Ge, Mu; Bo-Jin, Pan; Tong, Liu; Gen-Fu, Chen; Zhi-An, Ren

    2016-06-01

    In this article, the Sm-doping single crystals Ca1 ‑ x Sm x Fe2As2 (x = 0 ∼ 0.2) were prepared by the CaAs flux method, and followed by a rapid quenching treatment after the high temperature growth. The samples were characterized by structural, resistive, and magnetic measurements. The successful Sm-substitution was revealed by the reduction of the lattice parameter c, due to the smaller ionic radius of Sm3+ than Ca2+. Superconductivity was observed in all samples with onset T c varying from 27 K to 44 K upon Sm-doping. The coexistence of a collapsed phase transition and the superconducting transition was found for the lower Sm-doping samples. Zero resistivity and substantial superconducting volume fraction only happen in higher Sm-doping crystals with the nominal x > 0.10. The doping dependences of the c-axis length and onset T c were summarized. The high-T c observed in these quenched crystals may be attributed to simultaneous tuning of electron carriers doping and strain effect caused by lattice reduction of Sm-substitution. Project supported by the National Natural Science Foundation of China (Grant No. 11474339), the National Basic Research Program of China (Grant Nos. 2010CB923000 and 2011CBA00100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020100).

  1. Influence of Cr doping on the magnetic structure of the FeAs-strips compound CaFe4As3: A single-crystal neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Manuel, P.; Chapon, L. C.; Trimarchi, G.; Todorov, I. S.; Chung, D. Y.; Ouladdiaf, B.; Gutmann, M. J.; Freeman, A. J.; Kanatzidis, M. G.

    2013-09-01

    We have studied the magnetic structure of a Cr-doped iron-arsenide compound CaFe4As3 by means of single crystal neutron diffraction. The neutron data reveal that below 90 K, an antiferromagnetic structure with propagation vector k=0 is adopted. Refinement of the magnetic structure using one of the modes allowed by symmetry analysis indicates that two of the four Fe sites, including the one where the selective substitution Fe/Cr happens, bear reduced magnetic moments. Density functional theory calculations confirm the stability of such a magnetic arrangement.

  2. Crystal structure study of (Ca, Gd){sub 2}(Al, Ti)O{sub 4}

    SciTech Connect

    Sawada, Haruo; Marumo, Fumiyuki; Kodama, Nobuhiro

    1998-08-01

    The crystal structures of two crystals of (Ca, Gd){sub 2} (Al, Ti)O{sub 4} [tetragonal I4/mmm; Z = 4], one strongly fluorescent and the other weakly fluorescent, having minor differences in their precise compositions have been studied with single-crystal X-ray diffraction methods. The unit cell is significantly smaller for the weakly fluorescent crystal, which also shows alteration of the coordination polyhedraon around the (Ca, Gd) site, suggesting the formation of vacancies at an oxygen site.

  3. Metal Nitrides Grown from Ca/Li Flux: Ca6Te3N2 and New Nitridoferrate(I) Ca6(LixFe1-x)Te2N3.

    PubMed

    Dickman, Matthew J; Latturner, Susan E

    2016-08-24

    Two new tellurium-containing nitrides were grown from reactions in molten calcium and lithium. The compound Ca6Te3N2 crystallizes in space group R3̅c (a = 12.000(3)Å, c = 13.147(4)Å; Z = 6); its structure is an anti-type of rinneite (K3NaFeCl6) and 2H perovskite related oxides such as Sr3Co2O6. The compound Ca6(LixFe1-x)Te2N3 where x ≈ 0.48 forms in space group P42/m (a = 8.718(3)Å, c = 6.719(2)Å; Z = 2) with a new stuffed anti-type variant of the Tl3BiCl6 structure. Band structure calculations and easily observable red/green dichroic behavior indicate that Ca6Te3N2 is a highly anisotropic direct band gap semiconductor (Eg = 2.5 eV). Ca6(LixFe1-x)Te2N3 features isolated linear N-Fe-N units with iron in the rare Fe(1+) state. The magnetic behavior of the iron site was characterized by magnetic susceptibility measurements, which indicate a very high magnetic moment (5.16μB) likely due to a high degree of spin-orbit coupling. Inherent disorder at the Fe/Li mixed site frustrates long-range communication between magnetic centers. PMID:27479366

  4. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite

    PubMed Central

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-01-01

    The physical and chemical properties of Earth’s mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron–bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  5. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite.

    PubMed

    Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Cerantola, Valerio; McCammon, Catherine; Boffa Ballaran, Tiziana; Bobrov, Andrei; Sinmyo, Ryosuke; Dubrovinskaia, Natalia; Glazyrin, Konstantin; Liermann, Hanns-Peter; Kupenko, Ilya; Hanfland, Michael; Prescher, Clemens; Prakapenka, Vitali; Svitlyk, Volodymyr; Dubrovinsky, Leonid

    2016-07-01

    The physical and chemical properties of Earth's mantle, as well as its dynamics and evolution, heavily depend on the phase composition of the region. On the basis of experiments in laser-heated diamond anvil cells, we demonstrate that Fe,Al-bearing bridgmanite (magnesium silicate perovskite) is stable to pressures over 120 GPa and temperatures above 3000 K. Ferric iron stabilizes Fe-rich bridgmanite such that we were able to synthesize pure iron bridgmanite at pressures between ~45 and 110 GPa. The compressibility of ferric iron-bearing bridgmanite is significantly different from any known bridgmanite, which has direct implications for the interpretation of seismic tomography data. PMID:27453945

  6. Investigation of slective laser melting of mecanically alloyed metastable Al5Fe2 powder

    NASA Astrophysics Data System (ADS)

    Montiel, Hugo

    Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were investigated by test series experiments. Results indicate that metastable Al5Fe2 alloy can be processed and stabilized under a 200 W laser scanning and a relative high scanning speed of 1000 mm/s. Thus, the internal energy of metastable powder contributes in reducing laser energy for SLM process for Al alloys.

  7. Growth and characterization of insulating ferromagnetic semiconductor (Al,Fe)Sb

    NASA Astrophysics Data System (ADS)

    Anh, Le Duc; Kaneko, Daiki; Hai, Pham Nam; Tanaka, Masaaki

    2015-12-01

    We investigate the crystal structure, transport, and magnetic properties of Fe-doped ferromagnetic semiconductor (Al1-x,Fex)Sb thin films up to x = 14% grown by molecular beam epitaxy. All the samples show p-type conduction at room temperature and insulating behavior at low temperature. The (Al1-x,Fex)Sb thin films with x ≤ 10% maintain the zinc blende crystal structure of the host material AlSb. The (Al1-x,Fex)Sb thin film with x = 10% shows intrinsic ferromagnetism with a Curie temperature (TC) of 40 K. In the (Al1-x,Fex)Sb thin film with x = 14%, a sudden drop of the hole mobility and TC was observed, which may be due to the microscopic phase separation. The observation of ferromagnetism in (Al,Fe)Sb paves the way to realize a spin-filtering tunnel barrier that is compatible with well-established III-V semiconductor devices.

  8. Mechanically-induced disorder in CaFe2As2: A 57Fe Mössbauer study

    SciTech Connect

    Ma, Xiaoming; Ran, Sheng; Canfield, Paul C.; Bud'ko, Sergey L.

    2015-10-17

    57Fe Mössbauer spectroscopy was used to perform a microscopic study on the extremely pressure and strain sensitive compound, CaFe2As2, with different degrees of strain introduced by grinding and annealing. At the base temperature, in the antiferromagnetic/orthorhombic phase, compared to a sharp sextet Mössbauer spectrum of single crystal CaFe2As2, which is taken as an un-strained sample, an obviously broadened sextet and an extra doublet were observed for ground CaFe2As2 powders with different degrees of strain. The Mössbauer results suggest that the magnetic phase transition of CaFe2As2 can be inhomogeneously suppressed by the grinding induced strain to such an extent that the antiferromagnetic order in parts of the grains forming the powdered sample remain absent all the way down to 4.6 K. However, strain has almost no effect on the temperature dependent hyperfine magnetic field in the grains with magnetic order. Additional electronic and asymmetry information was obtained from the isomer shift and quadrupole splitting. Similar isomer shift values in the magnetic phase for samples with different degrees of strain, indicate that the stain does not bring any significant variation of the electronic density at 57Fe nucleus position. As a result, the absolute values of quadrupole shift in the magnetic phase decrease and approach zero with increasing degrees of strain, indicating that the strain reduces the average lattice asymmetry at Fe atom position.

  9. The effect of boron doping on the Hall-Petch slope of FeAl (40 at. % Al)

    SciTech Connect

    Pike, L.M.; Liu, C.T. )

    1991-12-01

    This paper reports on the iron aluminide, FeAl, which has good oxidation resistance, low density, and low material cost. However, this aluminide shows limited ductility when tested in air at ambient temperatures. This embrittlement involves the reaction of the moisture in air with the aluminide and the generation of hydrogen at crack tips. By testing in dry oxygen, the environmental effect can be eliminated, but an intergranular fracture mode is still seen. This suggests that the grain boundaries of FeAl are intrinsically weak. It has been shown in both air and oxygen tests of FeAl that microapplying with boron suppresses intergranular fracture and subsequently increases ductility. For Ni{sub 3}Al, in which boron also suppresses intergranular fracture, two explanations of the beneficial effect of boron have been proposed. One claims that boron increases the cohesive strength of the grain boundaries. The other claims that boron enhances slip transfer at the grain boundaries. The primary experimental evidence for increased slip transfer was based on the observation that for powder-extruded (PE) Ni{sub 3}Al, the Hall-Petch slope, k{sub y}, was lowered by the addition of boron. The Hall-Petch equation, which relates yield stress, {sigma}{sub y} = {sigma}{sub o} + k{sub y}d{sup {minus} -.5}, where the intercept stress, {sigma}{sub o}, and the Hall-Petch slope, K{sub y}, are material constants.

  10. Origin of Ca-Al-rich inclusions. II - Sputtering and collisions in the three-ph8se interstellar medium

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1981-01-01

    The theory put forward by Clayton (1977) for the formation of the Ca-Al-rich inclusions within C3 meteorites is extended to an evolutionary history in a three-phase interstellar medium. Widespread supersonic turbulence in the hot interstellar medium is maintained by supernova shock waves, giving rise to heavy sputtering of the refractory dust. Subsequent reaccumulation with varying dust/gas ratios or varying particle sizes produces isotopically fractionated Ca-Al-rich accumulates. It is thought that the Ca-Al-rich inclusions themselves are formed by the following sequence in the solar system: (1) cold accumulation of larger-than-average Ca-Al-rich particles containing supernova condensate cores into macroscopic (approximately 1 cm) Ca-Al-rich agglomerates, probably by sedimentation; and (2) fusion of the supernova condensates into macroscopic minerals by exothermic chemical reactions that begin when the accumulate has been warmed, thereby releasing energy from the unequilibrated forms accumulated from the interstellar medium.

  11. Advanced treatment of stabilized landfill leachate after biochemical process with hydrocalumite chloride (Ca/Al-Cl LDH).

    PubMed

    Chen, Hua; Sun, Ying; Ruan, Xiuxiu; Yu, Ying; Zhu, Minying; Zhang, Jia; Zhou, Jizhi; Xu, Yunfeng; Liu, Jianyong; Qian, Guangren

    2016-06-01

    This study investigated the effectiveness of Ca/Al-Cl LDH for the treatment of stabilized landfill leachate. Experiments were performed including different dosage of Ca/Al-Cl LDH and comparison with different reagents, such as CaCl2 and AlCl3. As a result, Ca/Al-Cl LDH efficiently removed organic matters in stabilized landfill leachate with the maximum removal (59.41% COD, 62.06% DOC and 70.56% UV254) at the dose of 30g/L. According to UV254 and EEM, it is remarkable that the formation of Ca/Al-LDH has a greater beneficial to organic removal than other reagents, especially for fulvic acid-like and humic acid-like compounds. Moreover, the removal of fulvic acid-like compounds was much better than humic acid-like compounds. The previous compounds had more carboxylic groups, thus had a better removal selectivity. PMID:26920626

  12. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    NASA Technical Reports Server (NTRS)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  13. Geochemistry of dissolved aluminum at low pH: Extent and significance of Al-Fe(III) coprecipitation below pH 4.0

    NASA Astrophysics Data System (ADS)

    Sánchez-España, Javier; Yusta, Iñaki; Gray, Jennifer; Burgos, William D.

    2016-02-01

    This work examines the geochemical behavior of dissolved aluminum in sulfate-rich acidic waters. Our observations were obtained during several years of geochemical and mineralogical research in the San Telmo acidic pit lake and other pit lakes of SW Spain. The work includes scanning and transmission electron microscopy (SEM, TEM) of suspended mineral colloids found in deep lake waters. Energy dispersive spectroscopy (EDS) coupled to scanning and high resolution transmission electron microscopy (STEM, HRTEM) revealed not only the presence and formation of discrete, sub-micron Al solids like alunite, but also the abundance and distribution of Al into Fe(III) phases typical of acid mine drainage, such as schwertmannite and jarosite, at a nanometric resolution. The main conclusion emerging from our work is that the fate and transport of Al at low pH (<4.0) can be largely influenced by adsorption on and/or coprecipitation with both schwertmannite and jarosite. Under the geochemical conditions studied (SO42- = 10-2 M, Fe(III) ∼ Al = 10-3 M), alunite formation may occur at pH > 3.3, as suggested by mineralogical observations and geochemical modelling. Below this pH, and contrary to the extended assumption, Al is not truly conservative, and in the presence of ferric iron, both metals may co-precipitate at a substantial extent to form either particles of Al-rich schwertmannite (containing up to ca. 8 at.% Al with [Fe/(Fe + Al)] = 0.77) and/or crystals of H3O+- to K+-jarosite (containing up to ca. 10 at.% Al with [Fe/(Fe + Al)] = 0.54). This Al incorporation seems to take place by adsorption on particle surfaces in schwertmannite and by atomic substitution for Fe3+ in jarosite. Alunite is also unstable at this low pH range with respect to jarosite, which may lead either to isomorphic transformation and/or to chemically zoned crystals with jarositic rims around previously formed alunite cores. As a whole, the compositional spectrum of the analyzed jarosites and alunites

  14. Predictions of the Hunt-Lu array model compared with measurements for the growth undercooling of Al{sub 3}Fe dendrites in Al-Fe alloys

    SciTech Connect

    Liang, D.; Jones, H.

    1997-10-01

    Earlier contributions by the authors reported the first measurements of growth temperature as a function of growth velocity V and alloy concentration C{sub 0} for a dendritic intermetallic phase (Al{sub 3}Fe, in Al-rich Al-Fe alloys). Comparison with predictions of the model of Kurz, Giovanola and Trivedi (KGT model) of dendrite growth of a needle gave predicted {Delta}T a factor between 1.1 and 2.5 above the measured values. A subsequent paper presented evidence that the Al{sub 3}Fe dendrite tips were indeed needle-like under the conditions studied, as distinct from the plate-like morphology that develops behind the dendrite tips. The KGT model predicts T{sub G} and {Delta}T on the basis that marginal stability determines the operating condition at the dendrite tip. The present purpose is to compare the measurements with predictions of the more recently developed array model of Hunt and Lu.

  15. Effects of Interstitial Boron and Alloy Stoichiometry on Environmental Effects in FeAl

    SciTech Connect

    Cohron, J.W.; George, E.P.; Zee, R.H.

    1998-04-22

    Room-temperature tensile tests were conducted on B-doped (300 wppm) and B-free polycrystalline FeAl alloys containing 37, 40, 45, and 48 at. % aluminum in pure hydrogen gas at pressures in the range of 10 sup minus 8 to 10 sup 3 Pa. The ductilities of both B-free and B-doped FeAl decreased with increasing Al content. However, at a given Al level, the ductility of B-doped FeAl was higher than that of its B-free counterpart. Fracture mode was independent of environment and dependent mainly on stoichiometry. Ductility was found to be very sensitive to environment, particularly in the lower Al alloys. Alloys that exhibited >10% ductility in UHV showed a decrease in elongation to fracture with increasing hydrogen pressure. Tests conducted in dry hydrogen gas result in greater ductilities than those conducted in air, indicating that water vapor is more detrimental than H sub 2 to the ductility of FeAl alloys.

  16. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films

    PubMed Central

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-01-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ∙cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ∙cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance. PMID:27075955

  17. Electronic structures and the spin polarization of Heusler alloy Co2FeAl surface

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Yankai; Zhang, Delin; Jiang, Yong

    2011-01-01

    The electronic structures of the Heusler alloy Co2FeAl surface are studied theoretically via first-principles calculations. The space localization of the surface states is the key effect on the electronic structures of the Co2FeAl surface. At the surface, the lattice parameter shrinks to minimize the total energy, and the minority spin gap disappears and shows a metallic band gap character. However, with the depth increasing, the lattice parameter equals to that of bulk phase, and there shows an energy gap opening at the Fermi level in the minority spin states. As a result, the spin polarization at the surface is lower than that of the bulk Co2FeAl, while it is close to that of bulk phase beneath the surface. According to the calculations, it is clear that the half-metallic property fading of the Co2FeAl films is caused by the surface states. Therefore, it is important to minimize the lattice mismatch at the interface of Co2FeAl in order to obtain a high tunneling magnetoresistance.

  18. Study of thickness-dependent magnetic and transport properties of Fe/Al nanostructures

    NASA Astrophysics Data System (ADS)

    Vyas, Anupam; Rajan, Sandeep; Kumar, Anil; Brajpuriya, Ranjeet

    2014-09-01

    The paper presents magnetic and transport properties of compositionally modulated Fe/Al multilayer structures (MLS), with an overall atomic concentration ratio of Fe:Al = 3:1, 2:1 and 1:1. All MLS show soft ferromagnetic behaviour at room temperature (RT) with an in-plane easy axis of magnetization. In each case, coercivity increases continuously and magnetization decreases with an increase in temperature due to enhancement in the anisotropy as a result of non-uniform and disordered formation of thin intermixed (dead) FeAl layer at the interfaces. The Curie temperature obtained for the MLS is much less than that of bcc Fe but is well above RT. The observed magnetic behaviour is mainly attributed to the formation of different FeAl phases and increase in anti-ferromagnetic interlayer coupling with addition of Al. The formation of these phases is also supported by resistivity results. The results of this research enabled us to understand that by controlling of layers thickness and temperature in multilayer systems, the nanogranular thin films with good resistive and soft magnetic properties can be obtained.

  19. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films.

    PubMed

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-01-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ∙cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ∙cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance. PMID:27075955

  20. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films

    NASA Astrophysics Data System (ADS)

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-04-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ•cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ•cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance.

  1. Exchange bias-like effect in TbFeAl induced by atomic disorder

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Strydom, André M.

    2016-05-01

    The exchange bias-like effect observed in the intermetallic compound TbFeAl, which displays a magnetic phase transition at T^hc ≈ 198 \\text{K} and a second one at T^lc ≈ 154 \\text{K} , is reported. Jump-like features are observed in the isothermal magnetization, M (H) , at 2 K which disappear above 8 K. The field-cooled magnetization isotherms below 10 K show loop shifts that are reminiscent of exchange bias, also supported by the training effect. A significant coercive field, Hc ≈ 1.5 \\text{T} at 2 K, is observed in TbFeAl which, after an initial increase, shows a subsequent decrease with temperature. The exchange bias field, H eb , shows a slight increase and a subsequent leveling off with temperature. It is argued that the inherent crystallographic disorder among Fe and Al and the high magnetocrystalline anisotropy related to Tb3+ lead to the exchange bias effect. TbFeAl has been recently reported to show the magnetocaloric effect and the present discovery of exchange bias makes this compound a multifunctional one. The result obtained on TbFeAl generalizes the observation of exchange bias in crystallographically disordered materials and gives impetus for the search for materials with exchange bias induced by atomic disorder.

  2. Synthesis of TiB2/Fe-Cr-Al nanocomposite powder.

    PubMed

    Sachan, Ritesh; Park, Jong-Woo

    2008-10-01

    In this study, a route for synthesizing TiB2/Fe-Cr-Al nanocomposite is proposed via high energy ball milling by using directly coarse powders of TiB2, Fe, Cr and Al. Various compositions of these powder mixtures are milled up to 48 hrs to investigate the effect of composition on the crystalline refinement. The crystalline size is analyzed by an X-ray diffractometer for powder samples containing 30 to 100 wt% TiB2 (the rest of the powder consists of Fe-20 wt%Cr-5 wt%Al composition). The crystalline size after 48 hrs of ball milling decreases with increasing TiB2, and then again increases after reaching a minimum value of 18 nm at 70% TiB2. By transmission electron microscopic analysis, it is confirmed that particles of TiB2 are significantly reduced and finely dispersed in the Fe-Cr-Al matrix. The particle size of TiB2 is found around 20-25 nm, reinforced in the matrix. Considering the results of this study, the proposed mechanical milling route can be recommended as a promising way for fabrication of TiB2/Fe-Cr-Al nanocomposite powder. PMID:19198473

  3. Development of a new graded-porosity FeAl alloy by elemental reactive synthesis

    SciTech Connect

    Shen, P Z; He, Y H; Gao, H Y; Zou, J; Xu, N P; Jiang, Y; Huang, B; Lui, C T

    2009-01-01

    A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3 5 m diameter onto porous FeAl support and then sintered at 1100 C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 m, the changes of maximum pore size decreased from 23.6 m to 5.9 m and the permeability decreased from 184.2 m3m 2kPa 1h 1 to 76.2 m3m 2kPa 1h 1, respectively, for a sintering temperature equal to 1100 C. The composite membranes have potential application for excellent filters in severe environments.

  4. Precipitation during infiltration of A201 aluminum alloy into Al-Fe-V-Si preform

    SciTech Connect

    Yang, C.C.; Chen, Y.C.; Chang, E.

    1996-04-01

    The newly developed Al-Fe-V-Si aluminum alloy, produced by melt spinning into ribbons, comminution of ribbon to particles, and then consolidation of particles by extrusion and forging, is being considered for high temperature applications due to the material`s characteristics of high elevated temperature strength, low density, good toughness and thermal stability. In order to extend the near-net shaping capability of the material, the authors have proposed a new process that Al-Fe-V-Si aluminum alloy particles can be consolidated by casting, in which the liquid aluminum alloy was infiltrated around the Al-Fe-V-Si particles to form a FVS1212/A201 composite material. Preliminary study of the Al-Fe-V-Si particle reinforced A201 aluminum alloy composite demonstrated that the compression strength at 300 C can be twice as high as A201 aluminum alloy. This work constitutes a continuation of the previous efforts to understand the microstructural evolution sequences, particularly the precipitation events during infiltration of the liquid aluminum into Al-Fe-V-Si preform.

  5. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis.

    PubMed

    Han, Hengda; Hu, Song; Lu, Chaofeng; Wang, Yi; Jiang, Long; Xiang, Jun; Su, Sheng

    2016-10-01

    This work aimed to investigate effects and reaction mechanisms of CaO/Fe2O3 on emission behaviors of arsenic during sewage sludge pyrolysis. The results showed that 24.8-54.2%, 26.4-60.4% and 27.7-63.1% of arsenic escaped from three samples when pyrolysis process happened at 723, 923 and 1123K respectively. And the sludge which contained higher calcium and iron contents released less arsenic than others. External CaO and Fe2O3 were added into the sewage sludge to study their effects on arsenic emissions during pyrolysis, where both of them inhibited arsenic emission effectively, especially at high temperatures. With the help of thermogravimetry analysis and X-ray fluorescence, inhibitory mechanisms of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis were studied. CaO could react with As2O3, As2S3 and NaAsO2 to form nonvolatile substances, such as Ca(AsO2)2; while Fe2O3 could react with NaAsO2 to generate certain substances which was stable below 1123K. PMID:27359062

  6. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  7. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  8. Sr isotopic fractionation in Ca-Al inclusions from the Allende meteorite

    USGS Publications Warehouse

    Patchett, P.J.

    1980-01-01

    True relative Sr isotopic compositions, determined by double spiking on Ca-Al inclusions from the Allende meteorite show up to 1.5??? per mass unit mass fractionation relative to the Earth and bulk chondrites. All abnormal inclusions are light-isotope enriched. A lack of isotopically heavy Sr in inclusions would place constraints on the time, place and mechanism of origin of these objects. ?? 1980 Nature Publishing Group.

  9. Electromagnetic properties of LaCa3Fe5Oi2 in the microwave range

    NASA Astrophysics Data System (ADS)

    Golenkina, V. V.; Ghyngazov, S. A.; Suslyaev, V. I.; Korovin, E. Yu; Kuleshov, G. E.; Kaykenov, D. A.; Mustafin, E. S.; Mylnikova, T. S.

    2016-02-01

    The X-ray diffraction analysis of the LaCa3Fe5O12 ferrite (lanthanum ferrite) prepared through high-temperature synthesis via ceramic technology was performed. It was found that ferrites belong to tetragonal system. The electromagnetic response from a flat layer of the composite based on this material under electromagnetic radiation in the frequency range of 0.01-18 GHz was investigated. It is shown that the developed material effectively interacts with electromagnetic radiation. The interaction effectiveness is directly proportional to ferrite concentration. Increased concentration of ferrite leads to growth of the reflection coefficient due to high conductivity of the material and visible decrease in the transmission coefficient in the frequency range of 4-14 GHz.

  10. Solitary Magnons in the S =5/2 Antiferromagnet CaFe2O4

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Lee, N.; Green, M. A.; Demmel, F.; Ewings, R. A.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Rodriguez-Rivera, J. A.; Cheong, S.-W.

    2016-07-01

    CaFe2O4 is a S =5/2 anisotropic antiferromagnet based upon zig-zag chains having two competing magnetic structures, denoted as the A (↑↑↓↓) and B (↑↓↑↓) phases, which differ by the c -axis stacking of ferromagnetic stripes. We apply neutron scattering to demonstrate that the competing A and B phase order parameters result in magnetic antiphase boundaries along c which freeze on the time scale of ˜1 ns at the onset of magnetic order at 200 K. Using high resolution neutron spectroscopy, we find quantized spin wave levels and measure 9 such excitations localized in regions ˜1 - 2 c -axis lattice constants in size. We discuss these in the context of solitary magnons predicted to exist in anisotropic systems. The magnetic anisotropy affords both competing A +B orders as well as localization of spin excitations in a classical magnet.

  11. The effect of heat treatments on the microstructure and properties of FeAl+Cr

    SciTech Connect

    Munroe, P.R.; Kong, C.H.

    1997-12-31

    Microstructural studies were performed on an alloy of composition Fe{sub 45}Cr{sub 5}Al{sub 50} heat treated at 950 C and oil-quenched and then given isothermal annealing treatments for times up to 200 hours at either 400 C or 500 C. The observed microstructures were correlated with variations in hardness during isothermal annealing. It was deduced that the thermal vacancies retained following the initial heat treatment are removed relatively rapidly from the lattice, which leads to an initial drop in hardness. However, during prolonged annealing, the coarsening of both FeAl{sub 2} particles and a disordered {alpha}(Fe,Cr) phase leads to further softening. It was also deduced that the chromium atoms, which remain in solution, are effective solute strengtheners. The {alpha}(Fe,Cr) phase, which is coherent with the B2 matrix, appears to coarsen by a ledge growth mechanism.

  12. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  13. Crystallization of Ca-Al-Rich Inclusions: Experimental Studies on the Effects of Repeated Heating Events

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Lofgren, Gary E.; Le, Loan

    2000-01-01

    The observed textures and chemistry of Ca-Al-rich inclusions (CAIs) are presumed to be the culmination of a series of repeated heating and cooling events in the early history of the solar nebula. We have examined the effects of these heating/cooling cycles experimentally on a bulk composition representing an average Type B Ca-Al-rich inclusion composition. We have tested the effect of the nature of the starting material. Although the most recent and/or highest temperature event prior to incorporation into the parent body dominates the texture and chemistry of the CAI, prior events also affect the phase compositions and textures. We have determined that heating precursor grains to about 1275 C prior to the final melting event increases the likelihood of anorthite crystallization in subsequent higher temperature events and a prior high temperature even that produced dendritic melilite results in melilite that shows evidence of rapid crystallization in subsequent lower temperature events. Prior low temperature pre-crystallization events produce final ran products with pyroxene compositions similar to Type B Ca-Al-rich inclusions, and the glass (residual liquid) composition is more anorthitic than any other experiments to date. The addition of Pt powder to the starting material appears to enhance the ability of anorthite to nucleate from this composition.

  14. Crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Xu, X. D.; Xia, C. T.; Zheng, L. H.; Aka, G.; Yu, H. H.; Sai, Q. L.; Guo, X. Y.; Zhu, L.

    2016-04-01

    In this paper, the crystal growth, polarized spectra, and laser performance of Yb:CaGdAlO4 crystal were reported. The segregation coefficient of Yb3+ ions was calculated to be 0.47. The cell parameters were determined to be a  =  b  =  0.3658 nm, c  =  1.1985 nm. The peak absorption cross-section was calculated to be 2.65  ×  10-20 cm2 at 979 nm and the peak stimulated emission cross-section was 2.23  ×  10-20 cm2 at 980 nm for the π polarization. The continuous-wave (CW) laser operations of uncoated Yb:CaGdAlO4 crystals with 5  ×  5  ×  3 mm3 in size were demonstrated. A maximum output power of 1.6 W at 1048 nm was obtained with a slope efficiency of 28%. The results show that Yb:CaGdAlO4 crystal is a promising laser medium.

  15. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    PubMed Central

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-01-01

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement. PMID:25490138

  16. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  17. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.

    PubMed

    Norton, Stephen A; Coolidge, Kyle; Amirbahman, Aria; Bouchard, Roy; Kopácek, Jirí; Reinhardt, Raquel

    2008-10-15

    Sequential extraction of sediments [Psenner R, Pucsko R. Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten. Arch Hydrobiol/Suppl 1988. 70(1): 111-155.] from short, (210)Pb-dated cores from three lakes in Maine USA demonstrates that sediment P is dominantly associated with the NaOH-extractable fraction (P-NaOH(25)) and less with the bicarbonate-dithionite extractable fraction (P-BD). The ratios (Al-NaOH(25))/(Fe-BD) and (Al-NaOH(25))/(P-NH(4)Cl+P-BD) for upper sediment for two oligo-mesotrophic lakes exceeded 3 and 25, the thresholds for preventing substantial release of P from sediments during hypolimnetic anoxia [Kopácek J, Borovec J, Hejzlar J, Ulrich K-U, Norton SA, Amirbahman A. Aluminum control of phosphorus sorption by lake sediments. Environ Sci Technol 2005a;39:8784-8789.]. Hypolimnetic water chemistry verifies this effect. The third lake, currently eutrophic, has values for the ratios that are below the thresholds and this lake has substantial release of P from recent sediment. The sediment characteristics remain relatively constant over the last 150+ years, indicating that the processes responsible for P retention have operated long before atmospheric acidification of watersheds might have influenced the flux of Al and Fe to the lake. In 2002, the pH of inlets and the lakes was generally between 6 and 8. Input to the lakes had high concentrations of acid-soluble particulate and dissolved Al, Fe, and P, and dissolved Al and Fe complexed with dissolved organic carbon (DOC). Lake water column and outlet Al, Fe, and P were typically 90-95% lower than inlet concentrations over a 12 month period. Photo-oxidation of Al-DOC and Fe-DOC in the lake, liberation of inorganic Al and Fe, precipitation of Al(OH)(3) and Fe(OH)(3), adsorption of P by the hydroxides, and sedimentation are responsible for the changes in water quality and long-term sediment characteristics. PMID:18440053

  18. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

    NASA Astrophysics Data System (ADS)

    Zúñiga, Alejandro; Ajdelsztajn, Leonardo; Lavernia, Enrique J.

    2006-04-01

    The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S' Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S' Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

  19. Thermoelectric properties of Fe and Al double substituted MnSiγ (γ~1.73)

    NASA Astrophysics Data System (ADS)

    Barczak, S. A.; Downie, R. A.; Popuri, S. R.; Decourt, R.; Pollet, M.; Bos, J. W. G.

    2015-07-01

    Two series of Fe and Al double substituted MnSiγ chimney ladders with a nominal valence electron count, VEC=14 per transition metal were prepared (γ=1.75). Simultaneous replacement of Mn with Fe and Si with Al yielded the Mn1-xFexSi1.75-xAlx series while the second Mn1-xFexSi1.75-1.75xAl2x series follows the pseudo-binary between MnSi1.75 and FeAl2. Scanning electron microscopy and elemental mapping revealed that ~60% of the nominal Al content ends up in the product with the remainder lost to sublimation, and that up to 7% Al can be substituted in the main group sublattice. Profile analysis of X-ray powder diffraction data revealed gradual changes in the cell metrics, consistent with the simultaneous substitution of Fe and Al in a fixed ratio. All samples are p-type with VEC≈13.95 from the structural data and ~1×1021 holes cm-3 from variable temperature Seebeck measurements. The substituted samples have lower electrical resistivities (ρ300 K=2-5 mΩ cm) due to an improved microstructure. This leads to increased thermoelectric power factors (largest S2/ρ=1.95 mW m-1 K-2) compared to MnSiγ. The thermal conductivity for the Mn0.95Fe0.05Si1.66Al0.1 sample is 2.7 W m-1 K-1 between 300 and 800 K, and is comparable to literature data for the parent material.

  20. Morphology and phase evolution in microwave synthesized Al/FeO4 system.

    PubMed

    Chuan, Lee Chang; Yoshikawaa, Noboru; Taniguchia, Shoji

    2011-01-01

    Thermite reaction between Al/Fe3O4 raised by microwave (MW) heating under N2 atmosphere has been investigated, and compared with that by the electric furnace. In addition to the stoichiometric ratio for the production of metallic iron and alumina, mixture with slightly Lower in Al content is also studied. As thermite reaction is highly exothermic, melting of reaction product and destruction of microstructure may occur, which corresponds to the enthalpy and adiabatic temperature of the reaction. Hence, to avoid this problem, reaction coupled with a smaller driving force by controlling the MW ignition condition at low temperature exotherm has been investigated. The phase and microstructure evolution during the reaction were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Thermogram of the DTA analysis, irrespective of their mole ratio, recorded two exothermic peaks, one at - 1310 degrees C and another one at - 1370 degrees C. When heated by microwave at 955 degrees C, the main products were identified as Al, FeO and Fe, minor amount of Fe3O4 and some Fe and alumina were detected. When heating to 1155 degrees C, Al and Fe3O4 peaks disappeared, formation of Fe-Al alloy was observed. For sample heated at 1265 degrees C, a porous body was obtained. Micron sized metal particles with complex morphology, irregular in size and shapes were formed, uniformly distributed within the spinel hercynite and/or alumina matrix. In contrast, conventional heating produced no porous products. Formation of alumina is also observed around the metal particles. Controlling of the reaction progress was possible while heating the sample by MW around the low temperature exotherm region, whereas the combustion wave could not be self-propagated. PMID:24427878

  1. Electronic correlations, magnetism, and structure of Fe-Al subsystems: An LDA+U study

    NASA Astrophysics Data System (ADS)

    Lechermann, F.; Fähnle, M.; Meyer, B.; Elsässer, C.

    2004-04-01

    The influence of electronic correlations on the intimate relations between magnetism and structure of Fe-Al subsystems is investigated by the LDA+U method in the two currently used versions, around mean field (AMF) and fully localized limit (FLL). The calculations were performed with the new Stuttgart spin-polarized ab initio mixed-basis pseudopotential LDA+U code which is able to calculate both total energies and forces and thus to deal with structural relaxations. Both LDA+U versions yield coherent results concerning the energetical hierarchy for Fe3Al, i.e., a stabilization of the experimentally stable D03 structure against the L12 structure at moderate values of U, although the details concerning absolute energy shifts, lattice constant, and magnetism differ. For Fe impurities in Al the AMF result resembles the local-spin-density approximation result of a vanishing magnetic moment through structural relaxations, whereas with the FLL functional the magnetic moment remains finite.

  2. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGESBeta

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

    2016-02-17

    Model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) have been neutron irradiated at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. This is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from themore » α' precipitates was also observed.« less

  3. Fatigue behavior of Fe-48 at.% Al polycrystals with B2 structure at high temperatures

    SciTech Connect

    Yasuda, H.Y.; Behgozin, A.; Umakoshi, Y.

    1998-12-18

    In FeAl alloys with the B2 structure, slip transition from <111> at low temperature to <001> at high temperature occurs depending on crystal orientation, alloying composition and lattice defects such as excess thermal vacancies. The slip transition strongly influences the strength, ductility and fracture mode in these alloys. According to recent results using FeAl single crystals containing a low density of excess thermal vacancies, yield stress increased with increasing temperature showing an anomalous peak between 823 and 873K. The anomalous strengthening peak corresponded to the slip transition: <111> superlattice dislocations were dominantly operative at temperatures below the peak, while <001> dislocations appeared above the peak. In this article, the authors report on the fatigue behavior of an Fe-48at.%Al polycrystalline alloy deformed at high temperatures, focusing on the effect of anomalous strengthening and the transition in slip direction.

  4. A new tetragonal boride phase in FeAl+B type alloys

    SciTech Connect

    Pierron, X.; Baker, I.

    1997-12-31

    The structure and composition of a previously unreported second phase were investigated in both Fe-43Al-0.12B and Fe-48Al-0.12B alloys. Energy dispersive x-ray and electron energy loss spectroscopy showed that the precipitates contained boron and were enriched in iron. This new boride phase had a tetragonal symmetry, with a{sub t} = 4a{sub B2} and c{sub t} = a{sub B2}, where a{sub B2} is the matrix lattice parameter. The effect of iron content and heat treatments on the microstructure of those two boron-doped FeAl alloys are discussed.

  5. The precipitation in annealing and its effect on permittivity of Fe-Si-Al powders

    NASA Astrophysics Data System (ADS)

    Li, Gang; Cui, Yin; Zhang, Nan; Wang, Xin; Xie, Jian Liang

    2016-01-01

    SEM images show that some precipitates distributed on the surface of as-annealed Fe-Si-Al powders. Subsequent experimental results indicate that both morphology and microstructure of as-annealed Fe-Si-Al powders change with increasing annealing temperature. Meanwhile, dielectric properties analysis suggesting that both real part ε‧ and imaginary part ε″ of the Fe-Si-Al powders decrease significantly after annealed at 450 °C or higher temperature. We assume that it's the precipitates with low electrical conductivity developed on the surface of powders that increase the surface resistivity of as-annealed powders and leading to a lower imagine part of permittivity. The drop of real part ε‧ ascribed to the weakened interfacial polarization which resulted from the decrease of structural defects such as grain boundaries and interfaces during annealing process.

  6. Preparation and Charge Density in (Co, Fe)-Doped La-Ca-Based Chromite

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Thenmozhi, N.; Fu, Yen-Pei

    2016-05-01

    Transition metal-doped lanthanum chromites (La0.8Ca0.2)(Cr0.9-x Co0.1Fe x )O3 (x = 0.03, 0.06, 0.09, 0.12) have been synthesized by solid state reaction method. The synthesized samples were characterized for their structural properties using powder x-ray diffraction analysis, which shows that the grown samples are orthorhombic in structure with single phase. The nature of bonding and the charge distribution of the grown samples have been analyzed by maximum entropy method. Further, the samples were characterized for their optical and magnetic properties using ultraviolet-visible spectra and vibrating sample magnetometry. The microstructural studies were carried by scanning electron microscopy/electron dispersive x-ray spectroscopy techniques. From the optical absorption spectra, it was found that the energy band gap of the samples ranges from 2.135 eV to 2.405 eV. From vibrating sample magnetometer measurements, ferromagnetic like behaviour with large coercive field was observed for Fe doping concentration of x = 0.12. Since the doped lanthanum chromites have good mechanical properties and electrical conductivity at high temperature, these materials are used in solid oxide fuel cells.

  7. Preparation and Charge Density in (Co, Fe)-Doped La-Ca-Based Chromite

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Thenmozhi, N.; Fu, Yen-Pei

    2016-08-01

    Transition metal-doped lanthanum chromites (La0.8Ca0.2)(Cr0.9- x Co0.1Fe x )O3 ( x = 0.03, 0.06, 0.09, 0.12) have been synthesized by solid state reaction method. The synthesized samples were characterized for their structural properties using powder x-ray diffraction analysis, which shows that the grown samples are orthorhombic in structure with single phase. The nature of bonding and the charge distribution of the grown samples have been analyzed by maximum entropy method. Further, the samples were characterized for their optical and magnetic properties using ultraviolet-visible spectra and vibrating sample magnetometry. The microstructural studies were carried by scanning electron microscopy/electron dispersive x-ray spectroscopy techniques. From the optical absorption spectra, it was found that the energy band gap of the samples ranges from 2.135 eV to 2.405 eV. From vibrating sample magnetometer measurements, ferromagnetic like behaviour with large coercive field was observed for Fe doping concentration of x = 0.12. Since the doped lanthanum chromites have good mechanical properties and electrical conductivity at high temperature, these materials are used in solid oxide fuel cells.

  8. Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Kim, Junyeon; Sukegawa, Hiroaki; Hayashi, Masamitsu; Mitani, Seiji

    2016-05-01

    We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru layers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field (ΔHL) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field (ΔHT) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of ΔHL observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while ΔHT shows the same sign with a small magnitude. The opposite directions of ΔHL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.

  9. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  10. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  11. Unique local structures of Ca, Ti, Fe and Zr in natural glasses formed by meteorite impact

    NASA Astrophysics Data System (ADS)

    Yoshiasa, Akira; Tobase, Tsubasa; Okube, Maki; Wang, Ling; Isobe, Hiroshi; Mashimo, Tsutomu; Graduate School of Science; Technology Collaboration; Materials; Structures Laboratory, Tokyo Institute of Technology Collaboration

    2015-06-01

    The local structures of cation in tektite from six strewn fields, impact-related glass, and non-impact-related glass were studied by Ca, Ti, Fe and Zr K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Shock compression also causes local structural changes of gest and minor elements as well as transition of host structures. How to be left a record is peculiar by each element. The XAFS measurements were performed at the beam lines BL-NW10A and BL-9C, KEK, Japan. The comparison of XANES spectra and bonding distances between crystalline reference minerals and natural glasses was done. Based on the different valence states of iron, the degrees of oxidation states were estimated. The local structures of Ca, Ti and Zr ions are useful probe for physical conditions and formation process of glasses. Tektites experienced high quenching rates and a reduced atmospheric environment when they were ejected into outer space. Other impact-related glass, which was remained close to the crater, experienced a more complicated environment. The local structural changes of cation in the impact-related glass are rich in a variety. Analysis of local structure is help to compare their formation process and distinguish them.

  12. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10.

    PubMed

    Khandelwal, Ashish; Chattopadhyay, M K; Roy, S B

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions. PMID:27385638

  13. Interstitial trapping in Fe-implanted Al after excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Swanson, M. L.; Howe, L. M.; Quenneville, A. F.; Nilson, J. A.

    1983-12-01

    Laser annealing was used to create a supersaturated solution of Fe atoms in Al, in order that channeling measurements of self-interstitial trapping could be made. A single crystal of Al was implanted with 40 keV 56Fe to a fluence of 1.6×10 15 ions cm -2. A 4 mm diameter region of the crystal was annealed in air with a XeCl excimer laser at an energy density of ˜ 6 J cm -2. This treatment produced a relatively perfect crystal; the normalized yield of 1 MeV He + ions from near-surface Al atoms for <110> alignment at 35 K was 0.04. The Fe atoms were ˜ 90% substitutional, corresponding to a solubility of ˜ 0.3 at%, as compared with only ˜ 0.02 at% obtained by a water quench from 873 K. The crystal was then irradiated with 1 MeV He + at 70 K to a fluence of ˜ 5 × 10 15 ions cm -2, in order to create mobile Al self-interstitial atoms which could be trapped by the Fe atoms. A channeling analysis of the resulting displacement of Fe atoms indicated that they trapped self-interstitials strongly, as observed for other small solute atoms in Al. As no flux peaking in the backscattering yield from Fe atoms was observed for a <110> angular scan, the results indicate that the trapping configuration may differ from that observed for Cr, Mn or Cu solute atoms in Al. The trapped interstitials were annihilated by vacancy migration near 200 K.

  14. Magnetotransport and magnetothermal properties of the ternary intermetallic compound TbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Chattopadhyay, M. K.; Roy, S. B.

    2016-09-01

    We have studied the temperature and field dependences of electrical resistivity and heat capacity of TbFe2Al10, and have also complimented the above studies with low field magnetization measurements. In zero magnetic field, TbFe2Al10 exhibits paramagnetic (PM) to ferrimagnetic (Ferri-I) and Ferri-I to antiferromagnetic (AFM) phase transitions below 17.6 and 10 K respectively. We have found that the electrical resistivity of TbFe2Al10 exhibits a sharp rise across the PM to Ferri-I phase transition in this compound. Our analysis indicates that this sharp rise of electrical resistivity is related to the formation of new zone boundaries (across the PM to Ferri-I phase transition) that reduce the area of the Fermi surface. We have found that TbFe2Al10 exhibits large magnetoresistance (MR) below 100 K. Overall, the MR behaviour of TbFe2Al10 below 17.6 K in different magnetic fields reveals strong competition between AFM and ferromagnetic (FM) correlations, which seems to be quite intrinsic to the magnetic structure of the compound. Our analysis indicates that the large MR and magnetocaloric effect persisting deep inside the PM regime of TbFe2Al10 is mainly related to the presence of FM spin fluctuations and the formation of a Griffiths like (GL) phase consisting of FM clusters within the PM regime. The formation of the GL phase may be mediated by the static crystal defects in the midst of the competing inter and intra layer magnetic interactions.

  15. Hydrothermal Transformation of the Calcium Aluminum Oxide Hydrates CaAl2O4 . 10H2O and Ca2Al2O. 8H2O to Ca3Al2(OH)12 Investigated by In Situ Synchrotron X-ray Powder Diffraction

    SciTech Connect

    Jensen,T.; Christensen, A.; Hanson, J.

    2005-01-01

    The hydrothermal transformation of calcium aluminate hydrates were investigated by in situ synchrotron X-ray powder diffraction in the temperature range 25 to 170 C. This technique allowed the study of the detailed reaction mechanism and identification of intermediate phases. The material CaAl{sub 2}O{sub 4}{center_dot}10H{sub 2}O converted to Ca{sub 3}Al{sub 2}(OH){sub 12} and amorphous aluminum hydroxide. Ca{sub 2}Al{sub 2}O{sub 5}{center_dot}8H{sub 2}O transformed via the intermediate phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}13H{sub 2}O to Ca{sub 3}Al{sub 2}(OH){sub 12} and gibbsite, Al(OH){sub 3}. The phase Ca{sub 4}Al{sub 2}O{sub 7}{center_dot}19H{sub 2}O reacted via the same intermediate phase to Ca{sub 3}Al{sub 2}(OH){sub 12} and mainly amorphous aluminum hydroxide. The powder pattern of the intermediate phase is reported.

  16. Gilbert damping parameter characterization in perpendicular magnetized Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Wolf, Stuart

    2013-03-01

    Materials with perpendicular magnetic anisotropy(PMA) have gotten extensive recent attention because of their potential application in spintronic devices such as spin transfer torque random access memory (STT-RAM). It was shown that a much lower switching current density(JC) is required to write STT-RAM tunnel junctions with perpendicular magnetic anisotropy ferromagnetic electrodes (p-MTJ). Additionally Heusler alloy Co2FeAl is expected to further reduce JC due to its ultra low Gilbert damping parameter. In our study, Heusler alloy Co2FeAl films were prepared using a Biased Target Ion Beam Deposition (BTIBD) technique. We demonstrated a low Gilbert damping parameter achieved in thick B2-Co2FeAl films. Besides, we achieved an interfacial PMA in ultra thin Co2FeAl films by rapid thermal annealing (RTA) with no external field presented. Annealing conditions were carefully adjusted to maximize the interfacial PMA. However it was noticed that a higher annealing temperature was required for a low damping parameter which to some extent sacrificed the interfacial PMA. We also deposited ultra thin CoFeB films and characterized their damping parameters for comparison. We acknowledge the financial support from DARPA.

  17. Static and dynamic magnetic property of MBE-grown Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Huo, Yan; Zhao, Jianhua; Wu, Yizheng; Zhang, Xinhui

    2014-08-01

    In this work, the static and dynamic magnetic properties of Co2FeAl films grown by molecular beam epitaxy (MBE) were studied by employing the magneto-optical Kerr rotation and ferromagnetic resonance (FMR) measurements. The growth temperature dependent magnetocrystalline anisotropy of MBE-grown Co2FeAl films were first investigated by employing the rotating magneto-optical Kerr effect. Then the magnetization dynamics and Gilbert damping property for high quality Co2FeAl films were investigated in detail by combining both the FMR and time-resolved magneto-optical Kerr rotation techniques. The apparent damping parameter was found to show strong dependence on the strength of the applied magnetic field at low-field regime, but decrease drastically with increasing magnetic field and eventually become a constant value of 0.004 at high-field regime. The inhomogeneity of magnetocrystalline anisotropy and two-magnon scattering are suggested to be responsible for the observed abnormal damping properties observed especially at low field regime. The intrinsic damping parameter of 0.004 is deduced for our highly-ordered Co2FeAl film. Our results provide essential information for highly-ordered MBE-grown Co2FeA film and its possible application in spintronic devices.

  18. Mode of formation of hibonite (CaAl12O19) within the U-Th skarns from the granulites of S-E Madagascar

    NASA Astrophysics Data System (ADS)

    Rakotondrazafy, Michel A. F.; Moine, B.; Cuney, M.

    1996-03-01

    In Madagascar, hibonite occurs as a rather frequent mineral within thorianite-bearing skarns which are widespread in the Pan African granulitic formations constituting the S-E part of the Island (Tranomaro area). In these skarns, leucocratic segregations made up of CO3-scapolite to meionite (Anequivalent=89 95% which implies T≥850° C), spinel and corundum were formed at stage 1 of metasomatism in a titanite-bearing matrix consisting of scapolite (Aneq=77 88) and aluminous diopside. During stage 2 of metasomatism, scapolite from the lenses were altered to anorthite+calcite while the less calcic scapolite remained stable which indicates T≈800° C. Hibonite crystallized at the expense of corundum and spinel. Expressed as mol% of the CaAl12O19/Ca(Al10TiR2+)O19/REE(Al11R2+)O19 [+Th (Al10R2+ 2)O19] end-members ( R 2+=Mg, Fe2+, Zn2+; Al=Al, Fe3+; Ti=Ti, Si), its composition varies from 26/72/2 to 50/23/27. The ideal activity of the CaAl12O19 component is about 0.25. Fluid inclusions in corundum, hibonite and anorthite are composed of nearly pure CO2. In corundum, the isochores for primary inclusions are in agreement with the P-T estimates for regional metamorphism and stage 1 metasomatism ( T≈850° C, P≈5 kbar). Inclusions with the highest density in hibonite and anorthite constrain P to about 3 3.5 kbar for T=800° C. Thermodynamic calculations indicate that, in addition to a low activity of CaAl12O19, stability of hibonite in equilibrium with anorthite and calcite implies an extremely low activity of silica (below the zircon-baddeleyite buffer). By contrast the activity of CO2 may be high, in agreement with the observed fluid compositions. These results are corroborated by a short comparison with the other granulite occurrences of hibonite in Tanzania and South India.

  19. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    PubMed

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. PMID:26952395

  20. Magnetic damping and spin polarization of highly ordered B2 Co2FeAl thin films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Schäfer, Sebastian; Khodadadi, Behrouz; Mewes, Tim; Osofsky, Mike; Wolf, Stuart A.

    2014-08-01

    Epitaxial Co2FeAl films were synthesized using the Biased Target Ion Beam Deposition technique. Post annealing yielded Co2FeAl films with an improved B2 chemical ordering. Both the magnetization and the Gilbert damping parameter were reduced with increased B2 ordering. A low damping parameter, ˜0.002, was attained in B2 ordered Co2FeAl films without the presence of the L21 Heusler phase, which suggests that the B2 structure is sufficient for providing low damping in Co2FeAl. The spin polarization was ˜53% and was insensitive to the chemical ordering.

  1. Perpendicular Magnetic Anisotropy of Full-Heusler Films in Pt/Co2FeAl/MgO Trilayers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Yin, Shaoqian; Liu, Yupeng; Zhang, Delin; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2011-04-01

    We report on perpendicular magnetic anisotropy (PMA) in a Pt/Co2FeAl/MgO sandwiched structure with a thick Co2FeAl layer of 2-2.5 nm. The PMA is thermally stable and the anisotropy energy density Ku is 1.3×106 erg/cm3 for the structure with 2 nm Co2FeAl after annealing at 350 °C. The annealing temperature and Co2FeAl thickness greatly affect the PMA. Our results provide an effective way to realize relatively thick perpendicularly magnetized Heusler alloy films.

  2. Oxide scales formed on Fe-Cr-Al-based model alloys exposed to oxygen containing molten lead

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Jianu, A.; Doyle, S.; Bruns, M.; Fetzer, R.; Heinzel, A.; DelGiacco, M.; An, W.; Müller, G.

    2013-06-01

    Based on the state of the art oxide maps concerning oxidation behavior of Fe-Cr-Al model alloys at 800 and 1000 °C in oxygen atmosphere, ten compositions, belonging to this alloy system, were designed in order to tap the borders of the alumina stability domain, during their exposure to oxygen (10-6 wt.%) containing lead, at 400, 500 and 600 °C. Eight alloys, Fe-6Cr-6Al, Fe-8Cr-6Al, Fe-10Cr-5Al, Fe-14Cr-4Al, Fe-16Cr-4Al, Fe-6Cr-8Al, Fe-10Cr-7Al and Fe-12Cr-5Al, were found to be protected against corrosion in oxygen containing lead, either by a duplex layer (Fe3O4 + (Fe1-x-yCrxAly)3O4) or by (Fe1-x-yCrxAly)3O4, depending on the temperature at which they were exposed. Two alloys namely Fe-12Cr-7Al and Fe-16Cr-6Al were found to form transient aluminas, κ-Al2O3 (at 400 and 500 °C) and θ-Al2O3 (at 600 °C), as protective oxide scale against corrosion in oxygen containing lead. An oxide map illustrating the stability domain of alumina, grown on Fe-Cr-Al alloys when exposed to molten, oxygen containing lead, was drawn. The map includes also additional points, extracted from literature and corresponding to alumina forming alloys, when exposed to HLMs, which fit very well with our findings. Chromium and aluminium contents of 12.5-17 wt.% and 6-7.5 wt.%, respectively, are high enough to obtain thin, stable and protective alumina scales on Fe-Cr-Al-based alloys exposed to oxygen containing lead at 400, 500 and 600 °C. For the temperature range and exposure times used during the current evaluation, the growth rate of the alumina scale was low. No area with detached scale was observed and no trace of α-Al2O3 was detected.

  3. Why Tc of (CaFeAs)10Pt3.58As8 is twice as high as (CaFe0.95Pt0.05As)10Pt3As8

    NASA Astrophysics Data System (ADS)

    Thirupathaiah, S.; Stürzer, T.; Zabolotnyy, V. B.; Johrendt, D.; Büchner, B.; Borisenko, S. V.

    2013-10-01

    Recently discovered (CaFe1-xPtxAs)10Pt3As8 and (CaFeAs)10Pt4-yAs8 superconductors are very similar materials having the same elemental composition and structurally similar superconducting FeAs slabs. Yet the maximal critical temperature achieved by changing Pt concentration is approximately twice higher in the latter. Using angle-resolved photoemission spectroscopy (ARPES) we compare the electronic structure of their optimally doped compounds and find drastic differences. Our results highlight the sensitivity of critical temperature to the details of fermiology and point to the decisive role of band-edge singularities in the mechanism of high-Tc superconductivity.

  4. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  5. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    SciTech Connect

    Thompson, Zachary T.; Terrani, Kurt A.; Yamamoto, Yukinori

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  6. Spin Hall magnetoresistance in an ultrathin Co2FeAl system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-qing; Fu, Hua-rui; Sun, Niu-yi; Che, Wen-ru; Ding, Ding; Qin, Juan; You, Cai-yin; Shan, Rong; Zhu, Zhen-gang

    2016-08-01

    Spin Hall magnetoresistance (SMR) is observed in an ultrathin Co2FeAl layer covered by a thin Pt film. The Co2FeAl layer grown on a MgO substrate should be too thin to be continuous. The result reveals that the magnetic insulator layer, such as yttrium iron garnet (YIG) substrate which is frequently used so far, is actually not a requisite for the observation of SMR. This work may greatly help to understand the true nature of SMR effect.

  7. Solid state amorphization in the Al-Fe binary system during high energy milling

    SciTech Connect

    Urban, P. Montes, J. M.; Cintas, J.

    2013-12-16

    In the present study, mechanical alloying (MA) of Al75Fe25 elemental powders mixture was carried out in argon atmosphere, using a high energy attritor ball mill. The microstructure of the milled products at different stages of milling was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results showed that the amorphous phase content increased by increasing the milling time, and after 50 hours the amorphization process became complete. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of the equilibrium intermetallic compounds Al{sub 5}Fe{sub 2}.

  8. The effect of chromium on the weldability and microstructure of Fe-Cr-Al weld cladding

    SciTech Connect

    Regina, J.R.; Dupont, J.N.; Marder, A.R.

    2007-06-15

    Iron-aluminum-based weld cladding is currently being considered as corrosion-resistant coatings for boiler tubes in coal-fired power plants. Although these alloys could potentially be good coating candidates due to their excellent high-temperature corrosion resistance, Fe-Al weld cladding is susceptible to cracking due to hydrogen embrittlement at elevated aluminum concentrations. Additions of chromium to these iron-aluminum alloys have been shown to improve the corrosion resistance of the alloys and could potentially increase the lifetimes of the coatings. The current study investigated the effect of chromium on the hydrogen cracking susceptibility of Fe-Al weld cladding.

  9. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Simion, Cristian; Lee, Byeong Kyu

    2015-10-30

    This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ((133)Cs) and radioactive cesium species ((134)Cs and (137)Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO4], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant (133)Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO4], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped (134)Cs and (137)Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that (134)Cs and (137)Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO4] treated soil were characterized using SEM-EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil included Ca/PO4 associated crystalline complexes. These results suggest that simple grinding treatment with nano-Fe/Ca/CaO/[PO4] under dry conditions might be an extremely efficient separation and immobilization method for radioactive cesium contaminated soil. PMID:25942697

  10. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  11. Microstructure and Creep Behavior of Fe-27Al-1Nb Alloys with Added Carbon

    NASA Astrophysics Data System (ADS)

    Dobeš, Ferdinand; Kratochvíl, Petr; Pešička, Josef; Vodičková, Věra

    2015-04-01

    The effect of Nb and C additions on the phase composition, microstructure, and creep resistance of Fe3Al-type alloys is investigated. Two alloys, which contained (at. pct) (i) 27.6 Al, 1.15 Nb and 0.19 C (Fe balance) and (ii) 27.1 Al, 1.11 Nb, and 0.76 C (Fe balance), were studied in a temperature range from 873 K to 1073 K (600 °C to 800 °C). The carbide in both alloys was identified as Nb6C5. The creep data can be rationalized by introducing a threshold stress, below which, the creep rate is negligible. The threshold stress and an effective stress exponent were found simultaneously by a numerical method. Using the obtained values of the threshold stress, the activation energy of creep was determined to be 328 kJ/mol. The effective stress exponent varied from 2.0 to 3.1. A breakdown of power-law behavior was observed at higher stresses. The transition occurred at the normalized creep rate of , which agrees with the rule suggested by Sherby and Burke and the diffusion coefficient D corresponding to the diffusion of Al in Fe-Al.

  12. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  13. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    NASA Astrophysics Data System (ADS)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  14. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  15. Calorimetric study of the superconducting and normal state properties of Ca(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Abdel-Hafiez, M.; Harnagea, L.; Singh, S.; Stockert, U.; Wurmehl, S.; Leps, N.; Klingeler, R.; Wolter, A. U. B.; Büchner, B.

    2012-12-01

    We present a calorimetric study on single crystals of Ca(Fe1-xCox)2As2 (x = 0, 0.032, 0.051, 0.056, 0.063, and 0.146). The combined first order spin-density wave/structural transition occurs in the parent CaFe2As2 compound at 168 K and gradually shifts to lower temperature for low doping levels (x = 0.032 and x = 0.051). It is completely suppressed upon higher doping x >= 0.056. Simultaneously, superconductivity appears at lower temperature with a transition temperature around Tc ~ 14.1 K for Ca(Fe0.937Co0.063)2As2. The phase diagram of Ca(Fe0.937Co0.063)2As2 has been derived and the upper critical field is found to be μ0H(c)2 = 11.5 T and μ0H(ab)c2 = 19.4 T for the c and ab directions, respectively.

  16. CaMoO4:TbatFe3O4 hybrid nanoparticles for luminescence and hyperthermia applications

    NASA Astrophysics Data System (ADS)

    Parchur, A. K.; Kaurav, N.; Ansari, A. A.; Prasad, A. I.; Ningthoujam, R. S.; Rai, S. B.

    2013-02-01

    We have prepared CaMoO4:Tb@Fe3O4 hybrid nanoparticles by co-precipitation and polyol method. Their temperature kinetics for hyperthermia temperature ˜43 °C under different applied AC fields and the luminescence properties under UV-radiation are investigated. A strong green emission is observed due to the presence of Tb3+ ions.

  17. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-07-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1-x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1-x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1-x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1-x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  18. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Maryam; Meka, Sai Ramudu; Jägle, Eric A.; Kurz, Silke J. B.; Bischoff, Ewald; Mittemeijer, Eric J.

    2016-09-01

    The effect of the initial microstructure (recrystallized or cold-rolled) on the nitride precipitation process upon gaseous nitriding of ternary Fe-4.3 at. pct Cr-8.1 at. pct Al alloy was investigated at 723 K (450 °C) employing X-ray diffraction (XRD) analyses, transmission electron microscopy (TEM), atom probe tomography (APT), and electron probe microanalysis (EPMA). In recrystallized Fe-Cr-Al specimens, one type of nitride develops: ternary, cubic, NaCl-type mixed Cr1- x Al x N. In cold-rolled Fe-Cr-Al specimens, precipitation of two types of nitrides occurs: ternary, cubic, NaCl-type mixed Cr1- x Al x N and binary, cubic, NaCl-type AlN. By theoretical analysis, it was shown that for the recrystallized specimens an energy barrier for the nucleation of mixed Cr1- x Al x N exists, whereas in the cold-rolled specimens no such energy barriers for the development of mixed Cr1- x Al x N and of binary, cubic AlN occur. The additional development of the cubic AlN in the cold-rolled microstructure could be ascribed to the preferred heterogeneous nucleation of cubic AlN on dislocations. The nitrogen concentration-depth profile of the cold-rolled specimen shows a stepped nature upon prolonged nitriding as a consequence of instantaneous nucleation of nitride upon arrival of nitrogen and nitride growth rate-limited by nitrogen transport through the thickening nitrided zone.

  19. Phosphate enrichment mechanism in CaO-SiO2-FeO-Fe2O3-P2O5 steelmaking slags with lower binary basicity

    NASA Astrophysics Data System (ADS)

    Li, Jin-yan; Zhang, Mei; Guo, Min; Yang, Xue-min

    2016-05-01

    The addition of silica to steelmaking slags to decrease the binary basicity can promote phosphate enrichment in quenched slag samples. In this study, we experimentally investigated phosphate enrichment behavior in CaO-SiO2-FeO-Fe2O3-P2O5 slags with a P2O5 content of 5.00% and the binary basicity B ranging from 1.0 to 2.0, where the (%Fe t O)/(%CaO) mass percentage ratio was maintained at 0.955. The experimental results are explained by the defined enrichment degree R_{C_2 S - C_3 P} of solid solution 2CaO·SiO2-3CaO·P2O5 (C2S-C3P), where R_{C_2 S - C_3 P} is a component of the developed ion and molecule coexistence theory (IMCT)- N i model for calculating the mass action concentrations N i of structural units in the slags on the basis of the IMCT. The asymmetrically inverse V-shaped relation between phosphate enrichment and binary basicity B was observed to be correlated in the slags under applied two-stage cooling conditions. The maximum content of P2O5 in the C2S-C3P solid solution reached approximately 30.0% when the binary basicity B was controlled at 1.3.

  20. Iron spin state and site distribution in FeAlO3-bearing bridgmanite

    NASA Astrophysics Data System (ADS)

    Mohn, Chris E.; Trønnes, Reidar G.

    2016-04-01

    DFT at the GGA, GGA + U and hybrid functional levels were used to investigate thousands of different Al and Fe3+ configurations of MgSiO3-FeAlO3 (MS-FA) and MgSiO3-FeAlO3-Al2O3 bridgmanite at deep mantle conditions. Comparison of the different functionals and atomic charge analysis suggests that GGA, frequently used to explain high to low spin transitions observed in several Mössbauer and X-ray emission spectroscopy experiments, is hampered by spurious self-interaction errors in the exchange-correlation energy. Configurational Boltzmann averaging shows that the B site is thermally inaccessible to Fe3+ at the GGA + U and hybrid levels, and we find no evidence for a spin-pairing transition in fully (thermodynamically) equilibrated samples of bridgmanite, even at the lowermost mantle conditions. The comparison of the cation radii of Fe3+ and Mg supports a spin transition accompanied by a site exchange, but the flexibility of Fesbnd O bonds to locally adapt promotes the incorporation of iron in the irregularly coordinated A-site. The concept of ionic radii is therefore unsuitable for analysis of spin state and site exchange in bridgmanite at these conditions. Consistent with previous computational work and experimental studies with glass and gel as starting material, we find that ferric iron kinetically trapped at the B site undergoes a spin transition under lowermost mantle conditions. In bridgmanite with mole fraction of Fe3+ >Al a charge-balancing amount of low spin Fe3+ will be thermodynamically stable at the B site, but because bridgmanite in peridotitic and basaltic lithologies mostly has Al/Fetotal above unity, FA with high spin Fe3+ in the A-site will be the dominant iron component. The lack of a Fe3+ spin transition in the FA-component has important implications for bridgmanite-ferropericlase partitioning of iron and magnesium and the mineral physics of the lowermost mantle.

  1. Structural and Magnetic Phase Coexistence in Oxygen Deficient Perovskites (Sr,Ca)FeO 2 . 5 + δ

    NASA Astrophysics Data System (ADS)

    Carlo, J. P.; Evans, M. E.; Anczarski, J. A.; Ock, J.; Boyd, K.; Pollichemi, J. R.; Leahy, I. A.; Vogel, W.; Viescas, A. J.; Papaefthymiou, G. C.

    A variety of compounds crystallize into perovskite and similar structures, making them versatile laboratories for many phenomena and applications, including multiferroicity, superconductivity, and photovoltaics. Oxygen-deficient perovskites ABOx have attracted interest for use in fuel cells and related applications due to high oxygen mobility and the possibility of charge disproportionation. Vast chemical flexibility is obtained through reductions in lattice symmetry and rotation/distortion of the BO6 octahedra, as well as ordering of oxygen vacancies. We have synthesized and studied the structural and magnetic properties of oxygen-deficient perovskites (Sr,Ca)FeO2 . 5 + δ using x-ray diffraction and Mossbauer spectroscopy. While the ideal perovskite has δ = 0.5, this requires Fe4+, and hence strongly oxidizing environments. When grown in air, Fe3+ is favored, yielding δ ~ 0. SrFeO2 . 5 + δ exhibits cubic symmetry and paramagnetism at 300K, but CaFeO2 . 5 + δ crystallizes into the orthorhombic brownmillerite structure, and is magnetically ordered at 300K. In the doped intermediaries we find coexistence of cubic/paramagnetic and orthorhombic/magnetic phases over a wide range of Ca content. Financial support from the Villanova Undergraduate Research Fellowship program and the Research Corporation for Science Advancement.

  2. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Pereloma, E. V.; Stohr, R. A.; Miller, M. K.; Ringer, S. P.

    2009-12-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 °C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe)3Ti and (Ni,Fe)3(Al,Mn) precipitates eventually form after isothermal aging for ~60 seconds. The morphology of the (Ni,Fe)3Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe)3(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe)3Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  3. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

    SciTech Connect

    Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

    2009-01-01

    We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

  4. 3D characterization by tomography of beta Al9Fe2Si2 phase precipitation in a Al6.5Si1Fe alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Salvo, L.; Lacaze, J.; Tenailleau, C.; Duployer, B.; Malard, B.

    2016-03-01

    The microstructure evolution of beta phase during solidification of a synthetic Al6.5Si1Fe (wt.%) alloy has been investigated by in-situ synchrotron micro-tomography and post-mortem tomography. In-situ solidification was observed at a constant cooling rate of 10°C min-1, from above the alloy's liquidus with the melt at 618°C down to 575°C which is just above the (Al)-Si-beta invariant eutectic reaction. Primary (Al) dendrites nucleated at 608°C, followed by the formation of beta-Al9Fe2Si2 phase starting at 593°C. After a rapid growth stage until 587°C as thin plates, beta phase continued to grow at a paced rate. Thickening of the plates was also evaluated and it was observed that the decrease in the lateral growth rate of the plates did not lead to an increase of their thickening rate. It was noted that the interconnectivity between beta precipitates increased as the solidification progressed. While nucleation of beta phase has previously been reported to occur on the alumina scale formed at the outer surface of the material, it is shown from post mortem tomography that bulk nucleation can occur as well.

  5. Microstructure and properties of the composite magnets fabricated with Nd-Fe-B powders coated with CaF2

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Xin, Honghui; Bi, Wenchao; Zhu, Minggang; Li, Wei; Zhou, Dong

    2014-05-01

    Nd-Fe-B powders were coated with CaF2 by three different chemical synthesis methods, named as A: One-step direct precipitation, B: One-step slow dropping, and C: Two-step process. The CaF2-coated Nd-Fe-B powders were hot-pressed and then hot-deformed to fabricate composite magnets. The microstructures, electrical resistivities, and magnetic properties of the Nd-Fe-B composite magnets obtained with different coating methods and parameters were investigated. The results showed that the thickness and continuity of CaF2 coating depended on the coating methods with different Ca(NO3)2 concentrations and coating time. When the Ca(NO3)2 concentration was 2 mol/l, the CaF2 coating synthesized by one-step direct precipitation was a loose and discontinuous film, while the CaF2 coating synthesized by one-step dropping for 30 min was a continuous and dense film, and its thickness reached to 410-450 nm. If the Ca(NO3)2 concentration was further increased to 5.5 mol/l, the thickness of CaF2 reached to 710-900 nm. The electrical resistivities of the composite magnets prepared by one-step slow dropping for 30 min with the Ca(NO3)2 concentrations of 2 and 5.5 mol/l were approximately 680 and 890 μΩ cm, which was a 195% and 287% increase, respectively, compared to that of the corresponding magnet prepared with uncoated Nd-Fe-B powders. The coercivities of the composite magnets decreased with increasing thickness of CaF2, while the remanence had only a slight reduction. The composite magnet fabricated by a two-step process achieved both higher maximum energy product ((BH)m = 47.2 MG Oe) and electrical resistivity (847 μΩ cm).

  6. Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Perez-Gonzalez, Teresa; Bazylinski, Dennis A.; Lauer, Howard V.; Romanek, Christopher S.

    2012-06-01

    It has never been demonstrated whether magnetite synthesized through the heat-dependent decomposition of carbonate precursors retains the chemical and structural features of the carbonates. In this study, synthetic (Ca,Mg,Fe)CO3 was thermally decomposed by heating from 25 to 700 °C under 1 atm CO2, and by in situ exposure under vacuum to the electron beam of a transmission electron microscope. In both cases, the decomposition of the carbonate was topotactic and resulted in porous pseudomorphs composed of oriented aggregates of magnetite nanocrystals. Both calcium and magnesium were incorporated into nanophase magnetite, forming (Ca,Mg)-magnetites and (Ca,Mg)-ferrites when these elements were present in the parent material, thus preserving the chemical signature of the precursor. These results show that magnetites synthesized in this way acquire a chemical and structural inheritance from their carbonate precursor that indicates how they were produced. These results are not only important in the determination of the origin of chemically-impure, oriented nanophase magnetite crystals in general, but they also provide important insights into the origin of the large, euhedral, chemically-pure, [111]-elongated magnetites found within Ca-, Mg- and Fe-rich carbonates of the Martian meteorite ALH84001. Based on our experimental results, the chemically-pure magnetites within ALH84001 cannot be genetically related to the Ca-, Mg- and Fe-rich carbonate matrix within which they are embedded, and an alternative explanation for their occurrence is warranted.

  7. Resonant Ultrasound studies of double perovskites A2FeReO6 (A=Ba, Ca)

    NASA Astrophysics Data System (ADS)

    Li, Ling; Yan, Jiaqiang; Mandrus, David; Keppens, Veerle

    2013-03-01

    The elastic response as a function of temperature (50-380) K and magnetic field (0-2) T has been studied using Resonant Ultrasound Spectroscopy (RUS) for the polycrystalline double perovskites A2FeReO6 (A= Ba, Ca). An elastic softening over a wide temperature range is observed below the Curie temperature (Tc ~ 305K) of Ba2FeReO6, which is suppressed upon the application of a magnetic field. For Ca2FeReO6, both the longitudinal and shear modulus show a step-like softening starting around 140K, indicative of a structural transition. A large change in the magnetoelastic coupling constant is observed at this temperature, suggesting that this transition is strongly coupled to the magnetic properties of this material. Work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  8. First order magnetic transition in single crystal CaFe2As2 detected by 75As NMR

    SciTech Connect

    Baek, Seung Ho; Curro, Nicholas J

    2008-01-01

    We report {sup 75}As Nuclear Magnetic Resonance data in a single crystal of CaFe{sub 2}As{sub 2}. The Knight shift, the electric field gradient, and the spin lattice relaxation rate are strongly temperature dependent in the paramagnetic state, and change discontinuously at the structural transition temperature, T{sub S} = T{sub N} = 167 K. Immediately below, the NMR spectra reveal an internal field at the As site associated with the presence of a commensurate magnetic order. These results indicate that the structural and magnetic transitions in CaFe{sub 2}As{sub 2} are first order and strongly coupled, and that the electron density in the FeAs plane is highly sensitive to the out-of-plane structure.

  9. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  10. A potentially new type of nonchondritic interplanetary dust particle with hematite, organic carbon, amorphous Na,Ca-aluminosilicate, and FeO-spheres

    NASA Astrophysics Data System (ADS)

    Muñoz Caro, Guillermo M.; Rietmeijer, Frans J. M.; Souza-Egipsy, Virginia; Valles-González, Maria Pilar

    2012-02-01

    We used a combination of different analytical techniques to study particle W7190-D12 using microinfrared spectroscopy, micro-Raman spectroscopy, and field emission scanning electron microscopy (FESEM) energy dispersive X-ray spectroscopy (EDS). The particle consists mainly of hematite (α-Fe2O3) with considerable variations in structural disorder. It further contains amorphous (Na,K)-bearing Ca,Al-silicate and organic carbon. Iron-bearing spherules (<150 nm in diameter) cover the surface of this particle. At local sites of structural disorder at the hematite surface, the hematite spheres were reduced to FeO in the presence of organic carbons forming FeO-spheres. However, metallic Fe spheres cannot be excluded based on the available data. To the best of our knowledge, this particle is the first detection of such spherules at the surface of a stratospheric dust particle. Although there is no definitive evidence for an extraterrestrial origin of particle W7190-D12, we suggest that it could be an IDP that had moved away from the asteroid-forming region of the early solar system into the outer solar system of the accreting Kuiper Belt objects. After it was released from a Jupiter family comet, this particle became part of the zodiacal cloud. Atmospheric entry flash-heating caused (1) the formation of microenvironments of reduced iron oxide when indigenous carbon materials reacted with hematite covering its surface resulting in the formation of FeO-spheres and (2) Na-loss from Na,Al-plagioclase. The particle of this study, and other similar particles on this collector, may represent a potentially new type of nonchondritic IDPs associated with Jupiter family comets, although an origin in the asteroid belt cannot be ignored.

  11. Formation and Yield of Multi-Walled Carbon Nanotubes Synthesized via Chemical Vapour Deposition Routes Using Different Metal-Based Catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH

    PubMed Central

    Hussein, Mohd Zobir; Mohamad Jaafar, Adila; Hj. Yahaya, Asmah; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  12. Formation and yield of multi-walled carbon nanotubes synthesized via chemical vapour deposition routes using different metal-based catalysts of FeCoNiAl, CoNiAl and FeNiAl-LDH.

    PubMed

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Masarudin, Mas Jaffri; Zainal, Zulkarnain

    2014-01-01

    Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a quartz tube. The materials were subsequently characterized through X-ray diffraction, Fourier transform infrared spectroscopy, surface area analysis, field emission scanning electron microscopy and transmission electron microscopy. It was determined that size and yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. PMID:25380526

  13. Interstitial precipitation in Fe-Cr-Al alloys

    NASA Astrophysics Data System (ADS)

    Spear, W. S.; Polonis, D. H.

    1994-06-01

    Two separate stages of precipitation have been identified during the aging of ternary Fel8Cr3Al and Fel8Cr5Al alloys at temperatures in the vicinity of 475 °C. The first stage involves the formation of interstitial precipitates resulting from C and N impurities; the second and slower stage is the formation of the Cr-rich α' phase. Transmission electron microscopy (TEM) results show that carbonitride precipitation occurs preferentially at dislocations, stacking faults, and grain boundaries, and also uniformly through the matrix. Aging for times in excess of 400 hours at 475 °C promotes coarsening of the heterogeneous precipitates and dissolution of the uniformly distributed matrix particles. A resistometric analysis shows that the kinetics of the initial stages of precipitation can be described by a (time)2/3 relation. This kinetic behavior is explained in terms of stress-assisted diffusion in the highly stressed matrix resulting from coherency strains accompanying carbonitride precipitation. Experimental values of the activation energy for the first stage reaction correlate closely with those reported for the interstitial diffusion of C and N in alpha iron.

  14. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T., Jr.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  15. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  16. Stabilization of microbial residues by co-precipitation with Fe and Al oxides

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Achtenhagen, Jan; Kästner, Matthias

    2016-04-01

    Recent studies have shown that microbial residues contribute significantly to soil organic matter (SOM) formation. This material, however, is readily degradable and thus needs to be stabilized in soil. We hypothesize that the interaction with minerals, in particular co-precipitation with metal oxyhydroxides, plays an important role in stabilization of cell envelope material. We therefore analyzed the mineralization of 14C-labelled Escherichia coli cells and cell envelope fragments during incubation of the cell materials alone or after co-precipitation with either Fe or Al oxyhydroxide. We also tested the effect of environmental conditions, in particular oxygen supply and redox potential, on the stabilizing effect of the mineral phases. Co-precipitation with both Fe and Al oxyhydroxides decreased the mineralization significantly, indicating strong protection of biomass and biomass-derived fragments. Surprisingly, the mineralization of intact cells was higher than that of cell envelope fragments. This points to a higher recalcitrance of the cell envelope fragments, which therefore may be selectively enriched in SOM. Reductive conditions obtained after water-logging combined with excessive supply of an easily available carbon source resulted in increased mineralization in the treatments containing Fe oxyhydroxides, due to reductive dissolution of the Fe oxyhydroxide and thus loss of the stabilizing agent. We therefore conclude that co-precipitation with and incrustation by Fe or Al oxyhydroxides is a relevant stabilization mechanism for microbial residues. The same mechanism also may apply for SOM in general.

  17. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  18. Effect of Al Addition on ω Precipitation and Age Hardening of Ti-Al-Mo-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Li, Chenglin; Lee, Dong-Geun; Mi, Xujun; Ye, Wenjun; Hui, Songxiao; Lee, Yongtai

    2016-05-01

    The effect of Al addition on ω precipitation and age-hardening behavior of Ti-9.2Mo-2Fe and Ti-2Al-9.2Mo-2Fe alloy during aging treatment was investigated. The results showed that athermal and isothermal ω phase formation in Ti-2Al-9.2Mo-2Fe alloy was suppressed to a certain extent due to Al addition. In addition, a small amount of athermal ω phase was observed in the β matrix with a size of about ~5 nm during water quenching from above the β transus temperature for both alloys. Isothermal ω formation was also found during aging at temperatures ranging from 573 K to 773 K (300 °C to 500 °C) in both alloys, although it had a limited time of stability at 773 K (500 °C). The hardening due to isothermal ω precipitation exhibited no over-aging as long as ω phase existed in both alloys, and ω phase played a more important role in hardening than α phase. And the ω phase in 50 to 100 nm size exhibited the best hardening effect in Ti-9.2Mo-2Fe alloy. Similarly, α phase with 100 to 200 nm in length showed better hardening effects in Ti-2Al-9.2Mo-2Fe alloy. Both the alloys showed stronger age hardening at an intermediate temperature of 673 K (400 °C) and in the first aging stage at a higher temperature of 773 K (500 °C) due to the sufficiently fine size (50 nm), while they exhibited weaker age hardening at a lower temperature of 573 K (300 °C) and long period aging at a higher temperature of 773 K (500 °C) due to incomplete ω formation and/or coarsening of α phase. No over or peak aging stage was found at 573 K and 673 K (300 °C and 400 °C) during the aging for 72 hours, while the peak hardness values of both alloys aged at 773 K (500 °C) were obtained in the first stage of aging. The hardness of the alloys was very sensitive to size and volume fraction of ω phase, which depends on aging temperature, time, and composition of the involved alloys.

  19. Heat capacity and phase equilibria of almandine, Fe 3Al 2Si 3O 12

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Essene, E. J.; Metz, G. W.; Bohlen, S. R.; Westrum, E. F., Jr.; Hemingway, B. S.

    1993-09-01

    The heat capacity of a synthetic almandine, Fe 3Al 2Si 3O 12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ± 1.4 J/mol · K and S298o = 342.60 J/mol · K. Mössbauer characterizations show the almandine to contain less than 2 ± 1% of the total iron as Fe 3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ± 0.001 Å and V298o = 115.11 +- 0.01 cm 3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ΔGf,298 o = -4938.3 kJ/mol and ΔHf,298 o= - 5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T/P for almandine and is metastably located at ca. 570°C at P = 1 bar, with a dP/dT of +17 bars/°C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In ‖ O2- T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartzandalmandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks.

  20. Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Essene, E.J.; Metz, G.W.; Bohlen, S.R.; Westrum, E.F., Jr.; Hemingway, B.S.

    1993-01-01

    The heat capacity of a synthetic almandine, Fe3Al2Si3O12, was measured from 6 to 350 K using equilibrium, intermittent-heating quasi-adiabatic calorimetry and from 420 to 1000 K using differential scanning calorimetry. These measurements yield Cp298 = 342.80 ?? 1.4 J/mol ?? K and S298o = 342.60 J/mol ?? K. Mo??ssbauer characterizations show the almandine to contain less than 2 ?? 1% of the total iron as Fe3+. X-ray diffraction studies of this synthetic almandine yield a = 11.521 ?? 0.001 A?? and V298o = 115.11 +- 0.01 cm3/mol, somewhat smaller than previously reported. The low-temperature Cp data indicate a lambda transition at 8.7 K related to an antiferromagnetic-paramagnetic transition with TN = 7.5 K. Modeling of the lattice contribution to the total entropy suggests the presence of entropy in excess of that attributable to the effects of lattice vibrations and the magnetic transition. This probably arises from a low-temperature electronic transition (Schottky contribution). Combination of the Cp data with existing thermodynamic and phase equilibrium data on almandine yields ??Gf,298o = -4938.3 kJ/mol and ??Hf,298o= -5261.3 kJ/mol for almandine when calculated from the elements. The equilibrium almandine = hercynite + fayalite + quartz limits the upper T P for almandine and is metastably located at ca. 570??C at P = 1 bar, with a dP dT of +17 bars/??C. This agrees well with reversed experiments on almandine stability when they are corrected for magnetite and hercynite solid-solutions. In {norm of matrix}O2-T space, almandine oxidizes near QFM by the reactions almandine + O2 = magnetite + sillimanite + quartz and almandine + 02 = hercynite + magnetite + quartz. With suitable correction for reduced activities of solid phases, these equilibria provide useful oxygen barometers for medium- to high-grade metamorphic rocks. ?? 1993.

  1. Femtosecond laser-induced subwavelength ripples on Al, Si, CaF2 and CR-39

    NASA Astrophysics Data System (ADS)

    Bashir, Shazia; Shahid Rafique, M.; Husinsky, Wolfgang

    2012-03-01

    The formation of self-organized subwavelength ripples on Al, Si, CaF2 and CR-39 induced by 25 fs laser pulses at central wavelength of 800 nm has been observed under certain experimental conditions. In case of Al subwavelength gratings with periodicities ranging from 20 to 220 nm are reported. For CaF2 the periodicity goes up to 625 nm. In case of Si, nano-gratings have the periodicity of 10-100 nm. The interspacing of these gratings is 60 nm in case of CR-39. These features which are significantly shorter than incident laser wavelength are observed at the irradiation fluence slightly higher than the ablation threshold regardless of the target material. In addition to these nanoripples, classical or microripples with an average spacing of 1-2 μm have also been registered on irradiated surfaces of Al and Si. These microripples have appeared at fluence higher than that is required for nanoripple-formation. It has been found that the formation of the laser-induced ripples is strongly dependent and quite sensitive to the incident laser fluence and the selection of material.

  2. Surface micromorphology of dental composites [CE-TZP]-[Al2O3] with Ca(+2) modifier.

    PubMed

    Berezina, Sofia; Il'icheva, Alla Alexandrovna; Podzorova, Lyudmila Ivanovna; Ţălu, Ştefan

    2015-09-01

    The objective of this study was to characterize the three-dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t-ZrO2) with addition of Ca(+2) for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM-images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non-modified ceramic sample was characterized by the rather big (1-2 μm) grains of α-Al2O3 phase with a habit close to hexagonal drowned in solid solution of t-ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α-Al2O3-grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca(+2) modifier but the most regular one is of the non-modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. PMID:26190812

  3. CaMn2Al10: Itinerant Mn magnetism on the verge of magnetic order

    DOE PAGESBeta

    Steinke, L.; Simonson, J. W.; Yin, W. -G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-24

    We report the discovery of CaMn2Al10, a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83μB/Mn, significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈ 9% of Rln2. These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010]/χ[001] ≈ 3.5. A strong power-lawmore » divergence χ(T) ~ T–1.2 below 20 K implies incipient ferromagnetic order, an Arrott plot analysis of the magnetization suggests a vanishing low Curie temperature TC ~ 0. Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.« less

  4. CaMn2Al10 : Itinerant Mn magnetism on the verge of magnetic order

    NASA Astrophysics Data System (ADS)

    Steinke, L.; Simonson, J. W.; Yin, W.-G.; Smith, G. J.; Kistner-Morris, J. J.; Zellman, S.; Puri, A.; Aronson, M. C.

    2015-07-01

    We report the discovery of CaMn2Al10 , a metal with strong magnetic anisotropy and moderate electronic correlations. Magnetization measurements find a Curie-Weiss moment of 0.83 μB/Mn , significantly reduced from the Hund's rule value, and the magnetic entropy obtained from specific heat measurements is correspondingly small, only ≈9 % of R ln 2 . These results imply that the Mn magnetism is highly itinerant, a conclusion supported by density functional theory calculations that find strong Mn-Al hybridization. Consistent with the layered nature of the crystal structure, the magnetic susceptibility χ is anisotropic below 20 K, with a maximum ratio of χ[010 ]/χ[001 ]≈3.5 . A strong power-law divergence χ (T ) ˜T-1.2 below 20 K implies incipient ferromagnetic order with a low Curie temperature TC<2 K . Our experiments indicate that CaMn2Al10 is a rare example of a system where the weak and itinerant Mn-based magnetism is poised on the verge of order.

  5. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  6. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  7. The internal-nitriding behavior of Co-Fe-Al alloys

    SciTech Connect

    Chen, I.C.; Douglass, D.L.

    1999-10-01

    Co-10Fe, Co-20Fe, and Co-40Fe alloys containing 3 at.% Al were internally nitrided in NH{sub 3}/H{sub 2} mixtures over the range 700--1000 C. The kinetics of thickening of the internal-reaction zone followed the parabolic rate law, suggesting that solid-state diffusion was rate controlling. Nitrogen permeabilities were obtained for each alloy. AlN was the only nitride to form for all materials and at all temperatures. At high temperature, the nitride precipitates formed hexagonal plates near the surface, the precipitates becoming more blocky near the reaction front. Precipitate size increased with increasing depth in the alloy and increasing temperature, because of competition between nucleation and growth processes. Increasing iron content increased the reaction kinetics due to increased nitrogen solubility with increasing iron content.

  8. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE PAGESBeta

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  9. High-temperature sulfidation of Fe{sub 3}Al thermal spray coatings at 600 C

    SciTech Connect

    Luer, K.R.; DuPont, J.N.; Marder, A.R.

    2000-02-01

    Sulfidation behavior of Fe{sub 3}Al thermal spray coatings was studied in Ar-3.5% H{sub 2}-0.1{degree} hydrogen sulfide (H{sub 2}S) at 600 C for 500 h. Coatings were processed from the same lot of gas atomized Fe{sub 3}Al powder using a high-velocity oxygen fuel (HVOF) process and an air plasma spray (APS) process. In general, the Fe{sub 3}Al-type composition displayed excellent resistance to sulfidation corrosion at 600 C, which correlated with the reported literature on wrought Fe{sub 3}Al alloys. However, the method of processing affected the corrosion response. Particle degradation and porosity were two important factors that affected corrosion resistance. HVOF processing did not degrade significantly the composition of the powder and produced coatings with low porosity, low oxide content, high sulfidation resistance, and high resistance to sulfur penetration. HVOF coatings produced from finer sized powders exhibited slightly more corrosion damage because a greater percentage of the consumable was degraded. In contrast, APS processing caused significant degradation to the consumable and created coatings with a significant quantity of alloy-depleted regions, high oxide content, and high porosity. As a result, sulfur attached alloy-depleted regions within the splats and permeated through the porous splat boundaries to the coating-substrate interface.

  10. FeAl and Mo-Si-B Intermetallic Coatings Prepared by Thermal Spraying

    SciTech Connect

    Totemeier, T.C.; Wright, R.N.; Swank, W.D.

    2003-04-22

    FeAl and Mo-Si-B intermetallic coatings for elevated temperature environmental resistance were prepared using high-velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques. For both coating types, the effect of coating parameters (spray particle velocity and temperature) on the microstructure and physical properties of the coatings was assessed. Fe-24Al (wt.%) coatings were prepared using HVOF thermal spraying at spray particle velocities varying from 540 m/s to 700 m/s. Mo-13.4Si-2.6B coatings were prepared using APS at particle velocities of 180 and 350 m/s. Residual stresses in the HVOF FeAl coatings were compressive, while stresses in the APS Mo-Si-B coatings were tensile. In both cases, residual stresses became more compressive with increasing spray particle velocity due to increased peening imparted by the spray particles. The hardness and elastic moduli of FeAl coatings also increased with increasing particle velocity, again due to an increased peening effect. For Mo-Si-B coatings, plasma spraying at 180 m/s resulted in significant oxidation of the spray particles and conversion of the T1 phase into amorphous silica and {alpha}-Mo. The T1 phase was retained after spraying at 350 m/s.

  11. Ductility and fracture in B2 FeAl alloys. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Crimp, Martin A.

    1987-01-01

    The mechanical behavior of B2FeAl alloys was studied. Stoichiometric Fe-50Al exhibits totally brittle behavior while iron-rich Fe-40Al yields and displays about 3% total strain. This change in behavior results from large decreases in the yield strength with iron-rich deviations from stoichiometry while the fracture stress remains essentially constant. Single crystal studies show that these yield strength decreases are directly related to decreases in the critical resolved shear stress for a group of zone axes /111/ set of (110) planes slip. This behavior is rationalized in terms of the decrease in antiphase boundary energy with decreasing aluminum content. The addition of boron results in improvements in the mechanical behavior of alloys on the iron-rich side of stoichiometry. These improvements are increased brittle fracture stresses of near-stoichiometric alloys, and enhanced ductility of up to 6% in Fe-40Al. These effects were attributed to increased grain boundary adhesion as reflected by changes in fracture mode from intergranular to transgranular failure. The increases in yield strength, which are observed in both polycrystals and single crystals, result from the quenching in of large numbers of thermal vacancies. Hall-Petch plots show that the cooling rate effects are a direct result of changes in the Hall-Petch intercept/lattice resistance flow.

  12. Detection of Fe[superscript 3+] and Al[superscript 3+] by Test Paper

    ERIC Educational Resources Information Center

    Li, Lili; Xiang, Haifeng; Zhou, Xiangge; Li, Menglong; Wu, Di

    2012-01-01

    A porphyrin-based test paper has been designed and prepared. It can be used to analyze for Al[superscript 3+] and Fe[superscript 3+] in aqueous solution. An experiment employing the test paper can help students understand basic principles of spectrophotometry and how spectrophotometry is used in analyzing for metal ions. (Contains 1 scheme and 1…

  13. Spin freezing in the spin-liquid compound FeAl2O4

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Ramesh Kumar, K.; Strydom, André M.

    2015-02-01

    Spin freezing in the A -site spinel FeAl2O4 , which is a spin-liquid candidate, is studied using remnant magnetization and nonlinear magnetic susceptibility and isofield cooling and heating protocols. The remnant magnetization behavior of FeAl2O4 differs significantly from that of a canonical spin glass, which is also supported by analysis of the nonlinear magnetic susceptibility term χ3(T ) . Through the power-law analysis of χ3(T ) , a spin-freezing temperature Tg=11.4 ±0.9 K and critical exponent γ =1.48 ±0.59 are obtained. A Cole-Cole analysis of magnetic susceptibility shows the presence of broad spin relaxation times in FeAl2O4 , however, the irreversible dc susceptibility plot discourages an interpretation based on conventional spin-glass features. The magnetization measured using the cooling-and-heating-in-unequal-fields protocol brings more insight into the magnetic nature of this frustrated magnet and reveals unconventional glassy behavior. Combining our results, we arrive at the conclusion that the present sample of FeAl2O4 consists of a majority spin-liquid phase with "glassy" regions embedded.

  14. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGESBeta

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; Gao, Michael C.; Tang, Zhi; Poplawsky, Jonathan D.; Liaw, Peter K.

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  15. Shear faults and dislocation core structure simulations in B2 FeAl

    SciTech Connect

    Vailhe, C.; Farkas, D.

    1997-11-01

    Embedded atom potentials were derived for the Fe-Al system reproducing lattice and elastic properties of B2 FeAl. The structure and energy of vacancies, antisites and anti phase boundaries (APBs) were studied. A significant decrease in the APB energy was obtained for Fe-rich B2 alloys. Shear fault energies along the {l_brace}110{r_brace} and {l_brace}112{r_brace} planes were computed showing that stable planar faults deviated from the exact APB fault. Core structures and critical Peierls stress values were simulated for the <100> and <111> dislocations. The superpartials created in the dissociation reactions were not of the 1/2<111> type, but 1/8<334> in accordance with the stable planar fault in the {l_brace}110{r_brace} planes. The results obtained for these simulations are discussed in terms of the mechanical behavior of FeAl and in comparison with B2 NiAl.

  16. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  17. Al{sub 2}O{sub 3} composites containing Fe, Nb and Zr aluminides

    SciTech Connect

    Garcia, D.E.; Schicker, S.; Bruhn, J.; Krupp, A.; Janssen, R.; Claussen, N.

    1997-12-31

    A reactive powder-processing technique involving controlled exothermic solid-state reactions between Al and oxides has been used to produce nearly fully dense composites with interpenetrating networks of aluminides and Al{sub 2}O{sub 3}. The process consists of the in situ formation of aluminides and Al{sub 2}O{sub 32} from compacts of intensively milled oxide-Al powder mixtures followed by pressureless sintering. The reactions take place usually at temperatures below the melting point of Al. At temperatures >1,000 C, the reaction product start to sinter yielding microstructures with very fine and uniform phase distribution. The present paper discusses processing parameters such as attrition milling, heating cycle and atmosphere controlling microstructural development and mechanical properties of Al{sub 2}O{sub 3} composites containing Fe, Nb and Zr aluminides.

  18. Structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Lidbaum, Hans; Raanaei, Hossein; Papaioannou, Evangelos Th.; Leifer, Klaus; Hjörvarsson, Björgvin

    2010-02-01

    The structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers grown by using magnetron sputtering were investigated with X-ray reflectivity, transmission electron microscopy and magneto-optical Kerr effect. The Co68Fe24Zr8 form amorphous islands when the nominal thickness of the Co68Fe24Zr8 layers is 10 Å, exhibiting an isotropic superparamagnetic behavior. Continuous layers with mostly a nano-crystalline structure are instead formed when the nominal thickness of the Co68Fe24Zr8 layers is increased to 20 Å. The continuous layers exhibit random, in-plane, magnetic anisotropy resulting from the growth process. However, induced uniaxial anisotropy is obtained when growing the sample in the presence of an applied magnetic field, regardless of the combination of amorphous and nano-crystalline material.

  19. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  20. A nuclear microscopy study of trace elements Ca, Fe, Zn and Cu in atherosclerosis

    NASA Astrophysics Data System (ADS)

    Watt, F.; Rajendran, R.; Ren, M. Q.; Tan, B. K. H.; Halliwell, B.

    2006-08-01

    Quantitative mapping of trace elements Ca, Fe, Zn and Cu can be achieved in biological tissue using a nuclear microprobe. Presented here is a brief review of the work we have carried out in the last decade using the nuclear microscope to try and elucidate the role of trace elements Fe, Zn, Cu and Ca in induced atherosclerosis in New Zealand White rabbits fed on a 1% cholesterol diet. The lesions were studied using nuclear microscopy, incorporating a combination of ion beam techniques: particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and scanning transmission ion microscopy (STIM). Iron is present in early lesions at concentrations around seven times higher than the artery wall. Measurements of localized lesion iron concentrations were observed to be highly correlated with the depth of the lesion in the artery wall for each individual animal, implying that local elevated concentrations may provide an accelerated process of atherosclerosis in specific regions of the artery. When the rabbits were kept mildly anaemic, thereby reducing iron levels in the lesion, the progression of the disease was significantly slowed. Iron chelation using desferal showed that early treatment (three weeks into the high fat diet) for relatively long periods (nine weeks) significantly retarded the progression of the disease. Zinc is depleted in the lesion and is also observed to be anti-correlated with local lesion development and feeding the rabbits on a high fat diet with zinc supplements inhibited lesion development, although since no significant increase in lesion zinc levels was measured, this anti-atherosclerotic effect may be indirect. Copper, measured at low levels (∼3 ppm) in the early lesion, is also depleted compared to the artery wall, suggesting that it is not a major factor in atherogenesis. Calcium is also depleted in early lesions, although at a later stage mineral deposition (hydroxyapatite) is observed to take place in the lesion

  1. The structure-property relationships of powder processed Fe-Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Prichard, Paul Dehnhardt

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape PN processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic%). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (Dsb{84} < 32μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 mum. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 mum to 104 mum. Mechanical property testing was conducted on both extruded and sintered material using small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25sp°C to 550sp°C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase alpha + DOsb3 structure. The extruded material developed higher yield strength at temperatures below the DBTT, but the sintered material developed higher strengths above the DBTT. The fracture energy of these

  2. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  3. Critical Assessment and Thermodynamic Modeling of the Al-Fe-O System

    NASA Astrophysics Data System (ADS)

    Shishin, Denis; Prostakova, Viktoria; Jak, Evgueni; Decterov, Sergei A.

    2016-02-01

    A complete literature review, critical evaluation, and thermodynamic modeling of the phase diagrams and thermodynamic properties of phases in the Al-Fe-O system at 1 atm total pressure are presented. Optimized model equations for the thermodynamic properties of all phases are obtained, which reproduce all available thermodynamic and phase-equilibrium data within experimental error limits from 298.15 K (25 °C) to above the liquidus temperatures at all compositions and oxygen partial pressures from metal saturation to 1 atm. The complex phase relationships in the system have been elucidated, and discrepancies among the data have been resolved. The database of the model parameters can be used along with software for Gibbs-energy minimization in order to calculate all thermodynamic properties and any type of phase diagram section. The modified quasichemical model was used for the liquid oxide phase. A sublattice model, based upon the Compound Energy Formalism, was developed for spinel, which expands from magnetite, Fe3O4, to hercynite, FeAl2O4. The distribution of cations between octahedral and tetrahedral sites and oxygen nonstoichiometry in spinel are taken into account. The model for metallic liquid assumes random mixing of associates: Fe, Al, O, AlO, and Al2O. It describes well the minimum that is observed on the solubility of oxygen in liquid iron as a function of the Al content. The solid solution between hematite and corundum exhibiting a miscibility gap, as well as a small solubility of Al2O3 in wüstite are quantitatively described by a simple Bragg-Williams model.

  4. Performance of Al-Rich Oxidation Resistant Coatings For Fe-Base Alloys

    SciTech Connect

    Pint, Bruce A

    2010-01-01

    Aluminum-rich coatings made by chemical vapor deposition and pack cementation on ferritic (e.g. Fe-9Cr-1Mo) and austenitic (Type 304L) substrates are being evaluated at 650-800 C. For oxidation testing, a humid air environment was used to quantify coating performance, as uncoated substrates experience rapid oxidation at these temperatures. A main goal of this work is to demonstrate the potential benefits and problems with alumina-forming coatings. The higher exposure temperatures were selected to accelerate the degradation of the coating by interdiffusion with the substrate. A general conclusion of this testing was that coatings with less Al and a ferritic Fe(Al) structure could be more durable than higher Al content aluminide coatings which have a large thermal expansion mismatch with these substrates. A lifetime model has been developed using diffusion and oxidation observations to predict coating performance as a function of temperature and initial coating composition. To test and improve the model, additional experiments are now being conducted to determine the effect of substrate composition (e.g. Cr content using Fe-12Cr and Fe-9Cr-2W substrates) and exposure temperature on the critical Al content for coating failure. Because of the unexpectedly low level of Al measured at coating failure ({approx}3.5at.% at 700 C), exposures of specimens with thick ({approx}200 {mu}m) high Al content coatings were stopped after 10kh at 800 C and 20kh at 700 C because extremely long times to failure were predicted. Post-exposure Al concentration profiles for these specimens were measured using electron microprobe.

  5. Performance of Al-rich Oxidation Resistant Coatings for Fe-Base Alloys

    SciTech Connect

    Pint, Bruce A; Zhang, Ying

    2011-01-01

    Aluminum-rich coatings made by chemical vapor deposition and pack cementation on ferritic (e.g. Fe-9Cr-1Mo) and austenitic (Type 304L) substrates are being evaluated at 650-800 C. For oxidation testing, a humid air environment was used to quantify coating performance, as uncoated substrates experience rapid oxidation at these temperatures. A main goal of this work is to demonstrate the potential benefits and problems with alumina-forming coatings. The higher exposure temperatures were selected to accelerate the degradation of the coating by interdiffusion with the substrate. A general conclusion of this testing was that coatings with less Al and a ferritic Fe(Al) structure could be more durable than higher Al content aluminide coatings which have a large thermal expansion mismatch with these substrates. A lifetime model has been developed using diffusion and oxidation observations to predict coating performance as a function of temperature and initial coating composition. To test and improve the model, additional experiments are now being conducted to determine the effect of substrate composition (e.g. Cr content using Fe-12Cr and Fe-9Cr-2W substrates) and exposure temperature on the critical Al content for coating failure. Because of the unexpectedly low level of Al measured at coating failure ({approx}3.5 at.% at 700 C), exposures of specimens with thick ({approx}200 {micro}m) high Al content coatings were stopped after 10kh at 800 C and 20kh at 700 C because extremely long times to failure were predicted. Post-exposure Al concentration profiles for these specimens were measured using electron microprobe.

  6. Performance of Al-Rich Oxidation Resistant Coatings for Fe-Base Alloys

    SciTech Connect

    Pint, Bruce A; Zhang, Ying

    2009-01-01

    Aluminum-rich coatings made by chemical vapor deposition and pack cementation on ferritic (e.g. Fe-9Cr-1Mo) and austenitic (Type 304L) substrates are being evaluated at 650-800 C. For oxidation testing, a humid air environment was used to quantify coating performance, as uncoated substrates experience rapid oxidation at these temperatures. A main goal of this work is to demonstrate the potential benefits and problems with alumina-forming coatings. The higher exposure temperatures were selected to accelerate the degradation of the coating by interdiffusion with the substrate. A general conclusion of this testing was that coatings with less Al and a ferritic Fe(Al) structure could be more durable than higher Al content aluminide coatings which have a large thermal expansion mismatch with these substrates. A lifetime model has been developed using diffusion and oxidation observations to predict coating performance as a function of temperature and initial coating composition. To test and improve the model, additional experiments are now being conducted to determine the effect of substrate composition (e.g. Cr content using Fe-12Cr and Fe-9Cr-2W substrates) and exposure temperature on the critical Al content for coating failure. Because of the unexpectedly low level of Al measured at coating failure ({approx}3.5at.% at 700 C), exposures of specimens with thick ({approx}200 {micro}m) high Al content coatings were stopped after 10kh at 800 C and 20kh at 700 C because extremely long times to failure were predicted. Post-exposure Al concentration profiles for these specimens were measured using electron microprobe.

  7. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2013-04-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  8. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2014-01-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  9. Synthesis, microstructure and magnetic properties of Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Fan, Xi'an; Wu, Zhaoyang; Li, Guangqiang

    2015-11-01

    Fe3Si0.7Al0.3@SiO2 core-shell particles and Fe3Si/Al2O3 soft magnetic composite core have been synthesized via a modified stöber method combined with following high temperature sintering process. Most of conductive Fe3Si0.7Al0.3 particles could be uniformly coated by insulating SiO2 using the modified stöber method. The Fe3Si0.7Al0.3@SiO2 core-shell particles exhibited good soft magnetic properties with low coercivity and high saturation magnetization. The reaction 4Al+3SiO2=2α-Al2O3+3Si took place during the sintering process. As a result the new Fe3Si/Al2O3 composite was formed. The Fe3Si/Al2O3 composite core displayed more excellent soft magnetic properties, better frequency stability at high frequencies, much higher electrical resistivity and lower core loss than the pure Fe3Si0.7Al0.3 core. The method of introducing insulating layers surrounding magnetic particles provides a promising route to develop new and high compact soft magnetic materials with good magnetic and electric properties.

  10. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    NASA Astrophysics Data System (ADS)

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-03-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description.

  11. New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy

    PubMed Central

    He, Zhanbing; Ma, Haikun; Li, Hua; Li, Xingzhong; Ma, Xiuliang

    2016-01-01

    A new kind of decagonal quasicrystal (DQC) with a periodicity of 1.23 nm was observed in the as-cast quaternary Al60Cr20Fe10Si10 alloy. The intensity distribution of some spots in the selected-area electron diffraction pattern along the tenfold zone axis was found to be different from other Al-based DQCs. High-angle annular dark-field scanning transmission electron microscopy was adopted to reveal the structural features at an atomic level. Both the tenfold symmetry and symmetry-broken decagonal (D) clusters of 1.91 nm in diameter were found, but with structural characteristics different from the corresponding D clusters in the other Al-based DQCs. The neighboring D clusters are connected by sharing one edge rather than covering, suggesting the tiling model is better than the covering model for structural description. PMID:26928759

  12. Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements

    NASA Astrophysics Data System (ADS)

    Babicheva, Rita I.; Bachurin, Dmitry V.; Dmitriev, Sergey V.; Zhang, Ying; Kok, Shaw Wei; Bai, Lichun; Zhou, Kun

    2016-05-01

    The paper studies the elastic moduli of nanocrystalline (NC) Al and NC binary Al-X alloys (X is Fe, Co, Ti, Mg or Pb) by using molecular dynamics simulations. X atoms in the alloys are either segregated to grain boundaries (GBs) or distributed randomly as in disordered solid solution. At 0 K, the rigidity of the alloys increases with decrease in atomic radii of the alloying elements. An addition of Fe, Co or Ti to the NC Al leads to increase in the Young's E and shear μ moduli, while an alloying with Pb decreases them. The elastic moduli of the alloys depend on a distribution of the alloying elements. The alloys with the random distribution of Fe or Ti demonstrate larger E and μ than those for the corresponding alloys with GB segregations, while the rigidity of the Al-Co alloy is higher for the case of the GB segregations. The moduli E and μ for polycrystalline aggregates of Al and Al-X alloys with randomly distributed X atoms are estimated based on the elastic constants of corresponding single-crystals according to the Voigt-Reuss-Hill approximation, which neglects the contribution of GBs to the rigidity. The results show that GBs in NC materials noticeably reduce their rigidity. Furthermore, the temperature dependence of μ for the NC Al-X alloys is analyzed. Only the Al-Co alloy with GB segregations shows the decrease in μ to the lowest extent in the temperature range of 0-600 K in comparison with the NC pure Al.

  13. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  14. A diode pumped passively mode-locked Nd:CaGdAlO4 laser

    NASA Astrophysics Data System (ADS)

    Rao, H.; Cong, Z. H.; Qin, Z. G.; Feng, C.; Wang, Q. P.; Liu, Z. J.; Zhang, X. Y.; Zhang, S. S.; Liu, Y.; Men, S. J.; Xia, J. B.; Di, J. Q.; Xu, X. D.; Xu, J.

    2016-04-01

    A diode pumped passively mode-locked Nd:CaGdAlO4 (Nd:CGA) laser was demonstrated. By using a semiconductor saturable-absorber mirror (SESAM) as the modulator, stable mode-locked pulses with a duration of 6.0 ps and a repetition rate of 88.3 MHz have been achieved at a central wavelength of 1078.6 nm. The maximum output power of 452 mW was obtained under a pump power of 10 W.

  15. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong

    2014-11-01

    Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.

  16. Acid precipitation and food quality: Effects of dietary Al, Ca and P on bone and liver characteristics in American black ducks and mallards

    USGS Publications Warehouse

    Sparling, D.W.

    1991-01-01

    American black ducks (Anas rubripes) and mallards (A. platyrhynchos) were fed diets varying in concentrations of aluminum (Al). calcium (Ca), and phosphorus (P) for 10 weeks to identify toxic effects of Al under conditions representative of areas with acid precipitation. Femur and liver tissues were analyzed for Al. Ca, and P concentrations and structural characteristics. At two weeks of age, both species demonstrated pronounced differences in femur Al and P concentrations and femur mass from dietary Al and interaction between Ca:P regimen and Al:Low Ca:Low P enhanced Al storage and decreased P and mass in femurs. Femur Ca was lowest in the Low Ca:Low P regimen but was not affected by dietary Al. At 10 weeks, femur and liver Al continued to vary with dietary Al. Elevated Al and reduced Ca lowered modulus of elasticity. Femur P increased with elevated dietary P in black ducks. Elevated dietary P negated some of the effects of dietary A! on femur mass in black ducks. Reduced Ca concentrations weakened bones of both species and lowered both Ca and P. An array of clinical signs including lameness, discoloration of the upper mandible, complete and greenstick fractures, and death were responses to elevated Al and Ca:P regimen. Black ducks seemed to display these signs over a wider range of diets than mallards. Diets of 1,000 mg/kg Al had toxic effects on both species, particularly when combined with diets low in Ca and P.

  17. Local Structures of Mechanically Alloyed Al70Cu20Fe10 Nanocomposites Studied by XRD and XAFS

    SciTech Connect

    Yin Shilong; Qian Liying; He Bo; Zou Shaobo; Wei Shiqiang; Bian Qing

    2007-02-02

    Ternary Al70Cu20Fe10 alloy nano-composites prepared by mechanical alloying are characterized by X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results indicate that after milled for 10 hours, the coordination environment around Cu atoms is changed largely and becomes disordered, but the local structure of Fe atoms still remains as that of {alpha}-Fe. This indicates the forming of inter-metallic compound Al2Cu with body center cubic structure. Even if the milling time is extended to 40 hours, only small amount of {alpha}-Fe can be alloyed to produce Al-Fe-Cu alloy. However, the annealing treatment at 700 deg. C can drive the {alpha}-Fe to incorporate into the Al2Cu compound to form an icosahedral alloy phase.

  18. Chromium addition and environmental embrittlement in Fe[sub 3]Al

    SciTech Connect

    McKamey, C.G.; Liu, C.T. . Metals and Ceramics Division)

    1990-01-01

    Iron aluminides based on Fe[sub 3]Al afford excellent oxidation properties at relatively low cost, making them candidates for use as structural material in corrosive environments. Recently, efforts have been devoted to understanding and improving their ductility through control of grain structure, alloy additions and material processing. Studies at this laboratory have shown that the ambient temperature ductility can be increased significantly by additions of up to 6% Cr. This increase in ductility was earlier attributed to increased cleavage strength, easier cross slip due to lower antiphase boundary (APB) energy, and solid softening. Very recent studies of FeAl and Fe[sub 3]Al in various tensile testing environments have indicated that both alloy systems are relatively more ductile at room temperature when tested in vacuum or dry oxygen. Ductilities of 12--18% were attained in both iron aluminide systems in an oxygen pressure of 6.7 [times] 10[sup 4] Pa, while only 2--4% ductility was achieved in normal laboratory air. It seems appropriate to reexamine the mechanism by which chromium produces improved ductility at room temperature in laboratory air and to correlate it with the environmental effects on mechanical properties. In the current investigation, the authors have evaluated room temperature tensile properties of the binary alloy (Fe-28Al, at.%) and ternary alloy containing chromium (Fe-28Al-4Cr) as a function of surface condition and heat treatment. The results indicate that, although chromium may affect cleavage strength and APB energies, its most significant effect on room temperature ductility is to modify the protective surface oxide, resulting in a minimization of environmental embrittlement.

  19. Optimization of High Temperature Hoop Creep Response in ODS-Fe3Al Tubes

    SciTech Connect

    Kad, B.K.; Heatherington, J.H.; McKamey, C.; Wright, I.; Sikka, V.; Judkins, R.

    2003-04-22

    Oxide dispersion strengthened (ODS) Fe3Al alloys are currently being developed for heat-exchanger tubes for eventual use at operating temperatures of up to 1100 C in the power generation industry. The development challenges include (a) efforts to produce thin walled ODS-Fe3Al tubes, employing powder extrusion methodologies, with (b) adequate increased strength for service at operating temperatures to (c) mitigate creep failures by enhancing the as-processed grain size. A detailed and comprehensive research and development methodology is prescribed to produce ODS-Fe3Al thin walled tubes. Current single step extrusion consolidation methodologies typically yield 8ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness ODS-Fe3Al tubes. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Recrystallization treatments at 1200 C produce elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long. The dispersion distribution is unaltered on a micro scale by recrystallization, but the high aspect ratio grain shape typically obtained limits grain spacing and consequently the hoop creep response. Improving hoop creep in ODS-alloys requires an understanding and manipulating the factors that control grain alignment and recrystallization behavior. Current efforts are focused on examining the processing dependent longitudinal vs. transverse creep anisotropy, and exploring post-extrusion methods to improve hoop creep response in ODS-Fe3Al alloy tubes. In this report we examine the mechanisms of hoop creep failure and describe our efforts to improve creep performance via variations in thermal-mechanical treatments.

  20. Enhancement of alpha-oxygen formation and N2O decomposition on Fe/ZSM-5 catalysts by extraframework Al.

    PubMed

    Sun, Keqiang; Zhang, Haidong; Xia, Haian; Lian, Yuxiang; Li, Ying; Feng, Zhaochi; Ying, Pinliang; Li, Can

    2004-11-01

    The concentration of alpha-oxygen which can oxidize methane to methanol and benzene to phenol at RT, increases linearly with the amount of introduced extraframework Al on Fe/ZSM-5 catalysts prepared by solid-state exchange of FeCl3 and AlCl3 with H-ZSM-5. PMID:15514825