Science.gov

Sample records for al films comparison

  1. Solution based prompt inorganic condensation and atomic layer deposition of Al{sub 2}O{sub 3} films: A side-by-side comparison

    SciTech Connect

    Smith, Sean W.; Conley, John F.; Wang, Wei; Keszler, Douglas A.

    2014-07-15

    A comparison was made of Al{sub 2}O{sub 3} films deposited on Si via prompt inorganic condensation (PIC) and atomic layer deposition (ALD). Current–voltage measurements as a function of annealing temperature indicate that the solution-processed PIC films, annealed at 500 °C, exhibit lower leakage and roughly equivalent breakdown strength in comparison to ALD films. PIC films are less dense than as-deposited ALD films and capacitance–voltage measurements indicate a lower relative dielectric constant. On the basis of x-ray photoelectron spectroscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy, it is found that the 500 °C anneal results in the formation of a ∼6 nm thick interfacial SiO{sub 2} layer at the Si interface. This SiO{sub 2} interfacial layer significantly affects the electrical performance of PIC Al{sub 2}O{sub 3} films deposited on Si.

  2. Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

    SciTech Connect

    Chan, J.; Fu, T.; Cheung, N.W.; Ross, J.; Newman, N.; Rubin, M.

    1993-04-01

    Crystalline aluminum nitride (AlN) thin films were formed on various substrates by using RF magnetron sputtering of an A1 target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AlN/(111) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 C, while the crystallinity of AlN/(0001) A1{sub 2}O{sub 3} samples improved from 700 to 850 C. The optical absorption characteristics of the AlN/(0001) A1{sub 2}O{sub 3} films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

  3. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  4. Comparison of Magnetic Property of Cu-, Al-, and Li-DOPED ZnO Dilute Magnetic Semiconductor Thin Films

    NASA Astrophysics Data System (ADS)

    van, L. H.; Ding, J.; Hong, M. H.; Fan, Z. C.; Wang, L.

    The properties of Cu-, Al-, and Li-doped ZnO dilute magnetic semiconductor (DMS) have been analyzed and compared. Zincite with wurtzite structures have been synthesized successfully on SiO2 (101) and SiO2 (110) substrates in both the Cu-ZnO and Li-ZnO DMS. The highly textured ZnO (002) peaks were able to form in the Cu-ZnO system at 400°C. However, it formed at even much lower temperature in the Li-ZnO system, that is only 25°C. ZnO (002) peaks in both systems were formed without any impurity phases. However, no crystalline structure is synthesized in the Al-ZnO system. The thin films formed are amorphous. The structural and related magnetic properties of the films were analyzed by XRD, AFM, and VSM. The films were found to be at their highest magnetism at the value of 3.1 emu/cm3 for Co-ZnO and 2.5 emu/cm3 for Li-ZnO, synthesized at 400°C, and under 1 × 10-4 Torr oxygen partial pressure.

  5. A Comparison of MOCLD With PLD Ba(x)Sr(1-x)TiO3 Thin Films on LaAlO3 for Tunable Microwave Applications

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Mueller, C. H.; Romanofsky, R. R.; Warner, J. D.; Miranda, F. A.; Jiang, H.

    2002-01-01

    Historically, tunable dielectric devices using thin crystalline Ba(x)Sr(1-x)TiO3 (BST) films deposited on lattice-matched substrates, such as LaAlO3, have generally been grown using pulsed laser deposition (PLD). Highly oriented BST films can be grown by PLD but large projects are hampered by constraints of deposition area, deposition time and expense. The Metal-Organic Chemical Liquid Deposition (MOCLD) process allows for larger areas, faster turnover and lower cost. Several BST films deposited on LaAlO3 by MOCLD have been tested in 16 GHz coupled microstrip phase shifters. They can be compared with many PLD BST films tested in the same circuit design. The MOCLD phase shifter performance of 293 deg. phase shift with 53 V/micron dc bias and a figure of merit of 47 deg./dB is comparable to the most highly oriented PLD BST films. The PLD BST films used here have measured XRD full-width-at-half-maxima (FWHM) as low as 0.047 deg.. The best FWHM of these MOCLD BST films has been measured to be 0.058 deg.

  6. Comparison of the microstructure and magnetic properties of strontium hexaferrite films deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates by pulsed laser technique

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2014-01-01

    Strontium hexaferrite SrFe12O19 (SrM) films have been deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates. The (001) oriented SrFe12O19 films deposited on the Al2O3(0001) and Si(100)/Pt(111) substrates have been confirmed by X-ray diffraction patterns. Higher coercivity in perpendicular direction rather than in-plane direction of the SrM/Al2O3(0001) and SrM/Pt(111) films showed that the films had perpendicular magnetic anisotropy. The (001) orientation and similar microstructure and magnetic properties of the SrM/Al2O3(0001) and SrM/Pt(111) films show the Al2O3(0001) substrate can be replaced by the Si(100)/Pt(111) substrate.

  7. Ti-Cr-Al-O Thin Film Resistors

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-03-21

    Thin films of Ti-Cr-Al-O are produced for use as an electrical resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O{sub 2}. Vertical resistivity values from 10{sup 4} to 10{sup 10} Ohm-cm are measured for Ti-Cr-Al-O films. The film resistivity can be design selected through control of the target composition and the deposition parameters. The Ti-Cr-Al-O thin film resistor is found to be thermally stable unlike other metal-oxide films.

  8. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  9. AlN thin films prepared by DC arc deposition

    NASA Astrophysics Data System (ADS)

    Liang, Hai-feng; Yan, Yi-xin; Miao, Shu-fan

    2006-02-01

    Many researchers are interested in AlN films because of their novel thermal, chemical, mechanical, acoustic, and optical properties. Many methodsincluding such as DC/RF sputtering, chemical vapor deposition (CVD), laser chemical vapor deposition(LCVD), molecular beam epitaxy (MBE), thermal vapor deposition, can be used to prepare AlN films. In this paper, a new method, DC arc deposition, is used to deposite AlN films. It is an anti-reflective, protective film on optical elements. FTIR are used to determine the ALN structure and measure the transmittance spectrum. Ellipsometry is used to determine the films' refractive index, extinction index and thickness. The films' anti-wear properties are tested by pin-on-disc way and the anti-corrosion(anti-acid, anti-alkali, anti-salt) properties are also tested. The results show that the films is AlN films by the 670cm -1 typical peak, the films' extinction index is near to zero in the range of visible and infrared waveband, the films' refractive index is varied from 1.7 to 2.1 at range of visible and infrared waveband. The films have better anti-wear, anti-acid and anti-alkali properties, but their anti-salt properties are not good.

  10. A Comparison of MOCLD With PLD Ba(x)Sr(1-x)TiO3 Thin Films on LaAlO3 for Tunable Microwave Applications. Revised

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Mueller, C. H.; Romanofsky, R. R.; Warner, J. D.; Miranda, F. A.; Jiang, H.

    2003-01-01

    Historically, tunable dielectric devices using thin crystalline Ba(x)Sr(1-x),TiO3 (BST) films deposited on lattice-matched substrates, such as LaAlO3 have generally been grown using pulsed laser deposition (PLD). Highly oriented BST films can be grown by PLD but large projects are hampered by constraints of deposition area, deposition time and expense. The Metal-Organic Chemical Liquid Deposition (MOCLD) process allows for larger areas, faster turnover and lower cost. Several BST films deposited on LaAlO, by MOCLD have been tested in 16 GHz coupled microstrip phase shifters. They can be compared with many PLD BST films tested in the same circuit design. The MOCLD phase shifter performance of 293 degree phase shift with 53 V/micron dc bias and a figure of merit of 47 degree/dB is comparable to the most highly oriented PLD BST films. The PLD BST films used here have measured XRD full-width-at-half-maxima (FWHM) as low as 0.047 degrees. The best FWHM of these MOCLD BST films has been measured to be 0.058 degrees.

  11. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  12. Pit initiation in AlO{sub x}/Al thin films

    SciTech Connect

    Son, K.A.; Barbour, J.C.; Missert, N.; Wall, F.D.; Copeland, R.G.; Martinez, M.A.; Minor, K.G.; Buchheit, R.G.; Isaacs, H.S.

    1998-12-31

    The electrochemical responses of AlO{sub x}/Al thin films have been investigated as a function of film growth conditions which produce films with different grain orientation, size and morphology. Films with smooth, 150 nm diameter, randomly oriented grains show a higher pitting potential and lower passive current than those films with large grain-boundary grooving from a mixture of smooth micron-sized, (200)-oriented grains and 300--500 nm diameter, (220)-oriented grains. These results suggest that surface roughness from grain-boundary grooving affects the pitting resistance more strongly than does the grain boundary density.

  13. Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shao, Yongliang; Hao, Xiaopeng; Wu, Yongzhong; Qu, Shuang; Chen, Xiufang; Xu, Xiangang

    2011-11-01

    In this paper, GaN films were successfully grown on the samples of MOCVD-GaN/Al2O3 (MGA) and MOCVD-GaN/6H-SiC (MGS) by HVPE method. We compare the strain of GaN films grown on the two samples by employing various characterization techniques. The surface morphology of GaN films were characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The variations of strain characteristic were also microscopically identified using the Z scan of Raman spectroscopy. The Raman peak (E2) shift indicates that the stress enhanced gradually as a function of increasing the measurement depth. The strain of GaN grown on MGA sample is compressive strain, while on MGS is tensile strain. The stress of GaN films grown on MGA and MGS sample are calculated. The difference in the value of stress between calculation and measurement was interpreted.

  14. Diamond/AlN Thin Films for Optical Applications

    SciTech Connect

    Knoebber, F.; Bludau, O.; Williams, O. A.; Sah, R. E.; Kirste, L.; Baeumler, M.; Nebel, C. E.; Ambacher, O.; Cimalla, V.; Lebedev, V.; Leopold, S.; Paetz, D.

    2010-11-01

    In this work we report on membranes made of nanocrystalline diamond (NCD) and AlN for the use in tunable micro-optics. For the growth of the AlN and NCD thin films, magnetron sputtering and chemical vapor deposition techniques have been used, respectively. A chemical-mechanical polishing process of NCD layers has been introduced, which is crucial for the growth of c-oriented, fiber textured AlN films. AlN layers deposited on as grown and polished nanocrystalline diamond along with free standing membranes have been compared by studying microstructure, surface morphology, piezoelectrical response as well as optical properties.

  15. Phase formation in Au-Al and Cu-Al thin-film systems under ion beam bombardment

    SciTech Connect

    Chang, C.T.; Campisano, S.U.; Cannavo, S.; Rimini, E.

    1984-05-01

    Au-Al and Cu-Al thin film bilayers were bombarded at 80 K with Kr/sup +/ ions of 60--240 keV energy. The Au/sub 2/Al+AuAl/sub 2/ and Al/sub 4/Cu/sub 9/ phases formed during bombardment and they were investigated by backscattering and x-ray diffraction techniques. In all the cases the growth kinetics is linear with the parameter (fluence x interfacial deposited energy density)/sup 1//sup ///sup 2/ suggesting a correlation with a diffusion-like process. Comparison with calculations of diffusion enhanced within the collision cascade gives good agreement with the experimental results.

  16. Comparison of Multilayer Dielectric Thin Films for Future Metal-Insulator-Metal Capacitors: Al2O3/HfO2/Al2O3 versus SiO2/HfO2/SiO2

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Kwon, Hyuk-Min; Han, In-Shik; Jung, Yi-Jung; Kwak, Ho-Young; Choi, Woon-Il; Ha, Man-Lyun; Lee, Ju-Il; Kang, Chang-Yong; Lee, Byoung-Hun; Jammy, Raj; Lee, Hi-Deok

    2011-10-01

    In this paper, two kinds of multilayered metal-insulator-metal (MIM) capacitors using Al2O3/HfO2/Al2O3 (AHA) and SiO2/HfO2/SiO2 (SHS) were fabricated and characterized for radio frequency (RF) and analog mixed signal (AMS) applications. The experimental results indicate that the AHA MIM capacitor (8.0 fF/µm2) is able to provide a higher capacitance density than the SHS MIM capacitor (5.1 fF/µm2), while maintaining a low leakage current of about 50 nA/cm2 at 1 V. The quadratic voltage coefficient of capacitance, α gradually decreases as a function of stress time under constant voltage stress (CVS). The parameter variation of SHS MIM capacitors is smaller than that of AHA MIM capacitors. The effects of CVS on voltage linearity and time-dependent dielectric breakdown (TDDB) characteristics were also investigated.

  17. Growth of ZnO:Al thin films onto different substrates

    SciTech Connect

    Prepelita, Petronela; Medianu, R.; Garoi, F.; Moldovan, A.

    2010-11-01

    In this paper we present some results regarding undoped and doped ZnO thin films deposited on various substrates like glass, silicon and kapton by rf magnetron sputtering. The influence of the amount of aluminum as well as the usage of different substrates on the final photovoltaic properties of the thin films is studied. For this, structural-morphological and optical investigations on the thin films are conducted. It was found that three important factors must be taken into account for adjusting the final desired application intended for the deposited thin films. These factors are: deposition conditions, the nature of both the dopant material and the substrate. A comparison study between undoped and doped case is also realized. Smooth Al doped ZnO thin films with a polycrystalline structure and a lower roughness than undoped ZnO are obtained.

  18. Mössbauer and SEM study of Fe Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    2006-04-01

    Fe Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 × 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  19. Al/Al-N/AlN compositional gradient film synthesized by ion-beam assisted deposition method

    SciTech Connect

    Amamoto, Yoshiki; Uchiyama, Shingo; Watanabe, Yoshihisa; Nakamura, Yoshikazu

    1997-12-01

    Al/Al-N-AlN compositional gradient thin film was deposited on a Si(100) substrate at room temperature by ion-beam assisted deposition method, with a diminishing ion beam current from 1.4 to 0 mA at increments of 0.3 mA in order to gradually decrease the nitrogen to aluminum ratio at the substrate. The gradual Al and AlN variation in composition was shown by the change of the Al/N atomic ratio analyzed by the energy dispersive X-ray spectroscopy (EDX) and the X-ray photoelectron spectroscopy (XPS) in the cross section of the film. The formation of crystalline Al metal and AlN ceramic layer on the Si substrate was revealed by X-ray diffraction (XRD). The cross sectional image taken by high resolution transmission electron microscope (HRTEM) showed a nano-sized crystalline Al-N ceramic material and the flat interface between the Si substrate and the AlN film.

  20. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  1. High noise suppression using magnetically isotropic (CoFe-AlN)/(AlN) multilayer films

    NASA Astrophysics Data System (ADS)

    Kijima, Hanae; Ohnuma, Shigehiro; Masumoto, Hiroshi; Shimada, Yutaka; Endo, Yasushi; Yamaguchi, Masahiro

    2015-05-01

    Magnetically isotropic (CoFe-AlN)n/(AlN)n+1 multilayer films, in which the number of CoFe-AlN magnetic layers n ranged from 1 to 27, were prepared by radio frequency sputtering to achieve noise suppression at gigahertz frequencies. The soft CoFe-AlN magnetic layers consisted of nanometer-sized CoFe ferromagnetic grains embedded in an insulating AlN amorphous matrix, while the insulating AlN layers comprised AlN columnar crystals. All films showed a similar frequency dependence of permeability and ferromagnetic resonance of 1.7 GHz. Noise suppression was evaluated using a microstrip line as a noise source by determining the in-line conductive loss and the near-field intensity picked up by magnetic field detective probes. High noise suppression effects were observed in every direction in the film plane. Maximum noise suppression values amounted to 60% for the in-line conductive loss and -20 dB for the magnetic near-field intensity at around 1.7 GHz in the 27-layer film. These high-frequency noise suppression levels may be attributed to eddy current losses and ferromagnetic resonance.

  2. Properties of AlN film grown on Si (111)

    NASA Astrophysics Data System (ADS)

    Dai, Yiquan; Li, Shuiming; Sun, Qian; Peng, Qing; Gui, Chengqun; Zhou, Yu; Liu, Sheng

    2016-02-01

    Stress and strain in an AlN film grown on Si (111) substrate have been evaluated by measuring Raman frequency shifts. Mechanical properties and phonon deformation potentials of AlN are evaluated by first principles calculations. The calculation model is verified by comparing the calculated Raman frequencies and frequencies detected from a bulk single crystal. Results show that the two sets of frequencies agree very well with each other. Thus, with the same verified model and parameters, elastic constants and phonon deformation potentials are calculated. Additionally, we successfully develop a numerical model to verify the calculation above and the model itself is also useful to predict properties of crystal films. Finally, the stress, strain, and piezoelectric properties are analyzed and compared for films on different substrates.

  3. Gilbert damping parameter characterization in perpendicular magnetized Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Wolf, Stuart

    2013-03-01

    Materials with perpendicular magnetic anisotropy(PMA) have gotten extensive recent attention because of their potential application in spintronic devices such as spin transfer torque random access memory (STT-RAM). It was shown that a much lower switching current density(JC) is required to write STT-RAM tunnel junctions with perpendicular magnetic anisotropy ferromagnetic electrodes (p-MTJ). Additionally Heusler alloy Co2FeAl is expected to further reduce JC due to its ultra low Gilbert damping parameter. In our study, Heusler alloy Co2FeAl films were prepared using a Biased Target Ion Beam Deposition (BTIBD) technique. We demonstrated a low Gilbert damping parameter achieved in thick B2-Co2FeAl films. Besides, we achieved an interfacial PMA in ultra thin Co2FeAl films by rapid thermal annealing (RTA) with no external field presented. Annealing conditions were carefully adjusted to maximize the interfacial PMA. However it was noticed that a higher annealing temperature was required for a low damping parameter which to some extent sacrificed the interfacial PMA. We also deposited ultra thin CoFeB films and characterized their damping parameters for comparison. We acknowledge the financial support from DARPA.

  4. Surface acoustic wave properties of (100) AlN films on diamond with different IDT positions.

    PubMed

    Lin, Zhi-Xun; Wu, Sean; Ro, Ruyen; Lee, Maw-Shung

    2009-06-01

    (100) AlN films have better surface acoustic wave (SAW) properties than (002) AlN films. In this research, (100) AlN films were combined with diamonds as a new composite SAW substrate. The SAW properties of (100) AlN films on diamonds were analyzed with 4 composite structures: interdigital transducer (IDT)/(100) AlN/diamond, (100) AlN/IDT/diamond, IDT/(100) AlN/metal/diamond, and metal/IDT/(100) AlN/diamond, and they exhibited some excellent SAW properties. Our research results provide a predictable and theoretical basis for further application on high-velocity SAW devices. PMID:19574132

  5. Interlaboratory Comparison of Magnetic Thin Film Measurements.

    PubMed

    da Silva, F C S; Wang, C M; Pappas, D P

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment m s, the remanent moment m r, and the intrinsic coercivity H c of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (m r/m s > 90 %), H c ≈ 400 A·m(-1) (5 Oe), and m s ≈ 2 × 10(-7) A·m(2) (2 × 10(-4) emu). PMID:27413599

  6. Interlaboratory Comparison of Magnetic Thin Film Measurements

    PubMed Central

    da Silva, F. C. S.; Wang, C. M.; Pappas, D. P.

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment ms, the remanent moment mr, and the intrinsic coercivity Hc of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (mr/ms > 90 %), Hc ≈ 400 A·m−1 (5 Oe), and ms ≈ 2 × 10−7 A·m2 (2 × 10−4 emu). PMID:27413599

  7. Berkovich Nanoindentation on AlN Thin Films

    PubMed Central

    2010-01-01

    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm−3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young’s modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young’s modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple “pop-ins” observed in the load–displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load–displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices. PMID:20672096

  8. Study on properties of Al film on CFRP after cryogenic-thermal cycling

    NASA Astrophysics Data System (ADS)

    Sheng-hu, Wu; Zhan-ji, Ma; Geng-jie, Xiao; Dong-cai, Zhao; Ni, Ren

    Al film on CFRP has been tested by cryogenic-thermal cycling according to the especial condition of space. Properties of aluminum film have been characterized by electron pull apparatus, XRD and SEM. The result shows that the adhesion of Al film increases slowly at early stage of cryogenic-thermal cycling. When the times of cryogenic-thermal cycling exceed 50, the adhesion of Al film becomes stability, and then the adhesion of Al film decrease slowly when cycling times from 100 to 600. After 600 times, the adhesion of Al film becomes stability again. The microcrack appears on the surface of Al film after 50 times, and the amounts of microcrack increase and microcrack is coarsening versus times of cryogenic-thermal cycling. The structure of Al film is changing slowly during cryogenic-thermal cycling.

  9. Catalytic effect of Al and AlN interlayer on the growth and properties of containing carbon films

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Liu, Zhubo; Tang, Bin; Rogachev, A. V.

    2015-01-01

    Diamond-like carbon (DLC) and carbon nitride (CNx) bilayer films with Al and AlN interlayer were fabricated by pulse cathode arc technique. The structure, composition, morphology and mechanical properties of the films were investigated by Raman, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Knoop sclerometer and surface profilometer. The results indicated that the complete diffusion between C and Al atoms occurs in the Al/DLC and Al/CNx bilayer. Al interlayer induces the increase of the size and ordering of Csp2 clusters in the films but AlN interlayer increases the disordering degree of Csp2 clusters. XPS results showed that a higher content of Csp3/Csp2 bonds presents in the Al/CNx bilayer, and Al and AlN interlayer decreases the atomic ratio of N/C. AFM with phase contrast mode illustrated the morphologic characteristics of the bilayer films. All the bilayers show a nano-structural surface. The morphology changes of the bilayer were well explained by the surface state of the substrate and the growth mechanism of DLC films. The hardness of Al/DLC bilayer decreases but it increases for the other bilayers compared to the corresponding DLC (CNx) monolayer. The internal stress of the bilayer is significantly lower than that of the monolayer except for the AlN/CNx bilayer. These studies could make the difference at the time of choosing a suitable functional film for certain application.

  10. New half-film method for measuring Al2O3 film MTF of 3rd generation image intensifier

    NASA Astrophysics Data System (ADS)

    Cheng, Yaojin; Shi, Feng; Bai, Xiaofeng; Zhu, Yufeng; Yan, Lei; Liu, Feng; Li, Min

    2012-10-01

    In 3rd generation image intensifier, Al2O3 film on the input of MCP is a serious influence factor on device MTF due to its electron scattering process. There are no reportes about how to measure the MTF of Al2O3 film. In this paper a new Half-film comparssion test method is creatively established for determing the film MTF, which overcomes the difficulty of measuring super thin film less than a few nm. In this way, the MTF curves of 10nm Al2O3 film can be accurately obtained. The measurement results show that 10nm Al2O3 film obviously decay the MTF performance of the 3rd generation image intensifier and take an important role in the improvement work of 3rd generation image intensifier MTF and resolution performances.

  11. Wide bandgap engineering of (AlGa){sub 2}O{sub 3} films

    SciTech Connect

    Zhang, Fabi; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Guo, Qixin; Arita, Makoto

    2014-10-20

    Bandgap tunable (AlGa){sub 2}O{sub 3} films were deposited on sapphire substrates by pulsed laser deposition (PLD). The deposited films are of high transmittance as measured by spectrophotometer. The Al content in films is almost the same as that in targets. The measurement of bandgap energies by examining the onset of inelastic energy loss in core-level atomic spectra using X-ray photoelectron spectroscopy is proved to be valid for determining the bandgap of (AlGa){sub 2}O{sub 3} films as it is in good agreement with the bandgap values from transmittance spectra. The measured bandgap of (AlGa){sub 2}O{sub 3} films increases continuously with the Al content covering the whole Al content range from about 5 to 7 eV, indicating PLD is a promising growth technology for growing bandgap tunable (AlGa){sub 2}O{sub 3} films.

  12. Comparison of Tribological Properties of NiAl Matrix Composites Containing Graphite, Carbon Nanotubes, or Graphene

    NASA Astrophysics Data System (ADS)

    Xu, Zengshi; Zhang, Qiaoxin; Shi, Xiaoliang; Zhai, Wenzheng; Zhu, Qingshuai

    2015-05-01

    To better understand respective lubrication effects and mechanisms of graphite, multi-walled carbon nanotubes (MWNTs), and multilayer graphene (MLG), comparison of tribological properties of NiAl matrix composites (NAMC) containing graphite, MWNTs, or MLG is investigated. Tribological results clearly indicate that the incorporation of solid lubricant remarkably improves the tribological properties of NAMC. NAMC containing MWNTs have better tribological properties than that containing graphite. NAMC containing MLG have the best tribological properties. EPMA, AFM, and FESEM analyses of worn surfaces suggest that the discontinuous island-like solid lubricant-rich films with different compacting extent forms on the worn surfaces of NAMC containing solid lubricant. The worn surface of NAM shows the slighter delamination and comparatively more compact films than that of NAC; in contrast, the worn surface of NAG presents the slightest delamination and the most compact films. It is concluded that graphite, MWNTs, and MLG indeed possess different lubrication effects and mechanisms.

  13. Enhanced TC in granular and thin film Al-Al2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Greene, R. L.

    It is known since the 1970s that the superconducting transition temperature of granular aluminum films can be as high as two to three times the transition temperature of bulk aluminum, depending on the grain size and how strongly the nanometer size grains are connected1,2. As the strength of the grain connectivity becomes increasingly weak, the enhanced TC is suppressed. The mechanism behind this enhancement is still under debate. Recently, work on larger aluminum nanoparticles (18nm) embedded in an insulating Al2O3 matrix showed an onset of the superconducting transition as high as three times that of bulk aluminum3. In this situation, the Al grains are electrically disconnected and in a regime far removed from that of the granular films. Here we compare the two situations through electronic and thermal measurements in order to help elucidate the mechanism behind the enhancements. 1S. Pracht, et al., arXiv:1508.04270v1 [cond-mat.supr-con] (2015). 2G. Deutscher, New Superconductors From Granular to High TC, New Jersey: World Scientific, 2006, p. 72-74. 3V. N. Smolyaninova, et al., Sci. Rep. 5, 15777 (2015). Funding by NSF DMR # 1410665.

  14. Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films.

    PubMed

    Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun

    2015-12-01

    Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare

  15. Effect of AC target power on AlN film quality

    SciTech Connect

    Knisely, Katherine Grosh, Karl

    2014-09-01

    The influence of alternating current (AC) target power on film stress, roughness, and x-ray diffraction rocking curve full width half maximum (FWHM) was examined for AlN films deposited using S-gun magnetron sputtering on insulative substrates consisting of Si wafers with 575 nm thermal oxide. As the AC target power was increased from 5 to 8 kW, the deposition rate increased from 9.3 to 15.9 A/s, film stress decreased from 81 to −170 MPa, and the rocking curve FWHM increased from 0.98 to 1.03°. AlN film behavior is observed to change with target life; films deposited at 200 kWh target life were approximately 40 MPa more compressive and had 0.02° degree higher rocking curve FWHM values than films deposited at 130 kWh. AlN films deposited in two depositions were compared with films deposited in a single deposition, in order to better characterize the growth behavior and properties of AlN films deposited on an existing AlN film, which is not well understood. Two deposition films, when compared with single deposition films, showed no variation in residual stress trends or grain size behavior, but the average film roughness increased from 0.7 to 1.4 nm and rocking curve FWHM values increased by more than 0.25°.

  16. Composition and Structure Control of Cu-Al-O Films Prepared by Reactive Sputtering and Annealing

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nozomu; Itoh, Yuji; Ogata, Junya; Kobayashi, Satoshi; Shimizu, Hidehiko; Kato, Keizo; Kaneko, Futao

    2007-01-01

    Cu-Al-O films were prepared on quartz glass substrates at 500-700 °C by sputtering the Cu and Al targets alternately on atomic-layer scale under an Ar-diluted O2 (5-20%) gas atmosphere, and then annealed at 1050 °C under a nitrogen atmosphere. The [Cu]/[Al] ratio was controlled by changing the Cu and Al deposition periods. The composition of as-deposited films corresponded to the slightly oxygen-rich region of the CuO-CuAl2O4-Al2O3 system. Films as-deposited at 500 °C had an amorphous structure, while films as-deposited at 700 °C had CuAl2O4 and CuO phases. After thermal annealing in a nitrogen atmosphere, the composition of the films approached that of the Cu2O-CuAlO2-Al2O3 system line, causing a noticeable appearance of the CuAlO2 phase along with the disappearance of the CuAl2O4 and CuO phases. Cu- and Al-rich annealed films had in addition a Cu2O phase and an amorphous Al2O3 phase, respectively. All annealed films exhibited p-type conductivity. The annealed films with [Cu]/[Al]≈ 1 had an absorption edge corresponding to the energy gap of CuAlO2. These results indicate that the change in the Cu ion from divalent to monovalent through nitrogen annealing results in the preparation of transparent conductive films dominated by CuAlO2.

  17. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides. PMID:21389384

  18. Energy dissipation of highly charged ions on Al oxide films

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Pomeroy, J. M.; Sosolik, C. E.

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xeq + for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  19. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  20. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  1. Charge Compensated (Al, N) Co-Doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application

    SciTech Connect

    Shet, S.

    2012-01-01

    ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100oC. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance.

  2. Investigation on low thermal emittance of Al films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ning, Yuping; Wang, Wenwen; Sun, Ying; Wu, Yongxin; Liu, Yingfang; Man, Hongliang; Wang, Cong; Zhang, Yong; Zhao, Shuxi; Tomasella, Eric; Bousquet, Angélique

    2016-03-01

    A series of Al films with different thicknesses were deposited on polished stainless steel by direct current (DC) magnetron sputtering as a metal IR-reflector layer in solar selective absorbing coating (SSAC). The effects of the film thickness and the temperature on the thermal emittance of the Al films are studied. An optimal thickness 78 nm of the Al film for the lowest total thermal emittance is obtained. The thermal emittance of the optimal Al film keeps close to 0.02 from 25 °C to 400 °C, which are low enough to satisfy the optical requirements in SSAC. The optical constants of the Al film are deduced by fitting the reflectance and transmission spectra using SCOUT software.

  3. Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111).

    PubMed

    Teng, Jing; Zhang, Lixin; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Ebert, Philipp; Sakurai, T; Wu, Kehui

    2010-07-01

    The formation mechanism of monolayer Al(111)1x1 film on the Si(111) radical3x radical3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the radical3x radical3-Al substrate play important roles in the growth process. The growth of Al-1x1 islands is mediated by the formation and decomposition of SiAl(2) clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. PMID:20614981

  4. Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-lu; Zhang, Jun; Zhang, Zhen; Wang, Shuang-hong; Zhang, Zheng-gui

    2014-01-01

    (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N bilayer films were deposited on cemented carbide (WC-8%Co) substrates by multi-arc ion plating (MAIP) using two Ti-Al-Zr alloy targets and one pure Cr target. To investigate the composition, morphology, and crystalline structure of the bilayer films, a number of complementary methods of elemental and structural analysis were used, namely, scanning electron microscopy (SEM), energy disperse X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Adhesive strength and mechanical properties of the films were evaluated by scratch testing and Vickers microindentation, respectively. It is shown that the resulting films have a TiN-type face-centered cubic (FCC) structure. The films exhibit fully dense, uniform, and columnar morphology. Furthermore, as the bias voltages vary from -50 to -200 V, the microhardness (max. Hv0.01 4100) and adhesive strength (max. > 200 N) of the bilayer films are superior to those of the (Ti,Al,Zr)N and (Ti,Al,Zr,Cr)N monolayer films.

  5. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  6. Structure and optical properties of aSiAl and aSiAlHx magnetron sputtered thin films

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Stange, Marit; Jensen, Ingvild J. T.; Røyset, Arne; Ulyashin, Alexander; Diplas, Spyros

    2016-03-01

    Thin films of homogeneous mixture of amorphous silicon and aluminum were produced with magnetron sputtering using 2-phase Al-Si targets. The films exhibited variable compositions, with and without the presence of hydrogen, aSi1-xAlx and aSi1-xAlxHy. The structure and optical properties of the films were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy, UV-VisNIR spectrometry, ellipsometry, and atomistic modeling. We studied the effect of alloying aSi with Al (within the range 0-25 at. %) on the optical band gap, refractive index, transmission, and absorption. Alloying aSi with Al resulted in a non-transparent film with a low band gap (<1 eV). Hydrogenation of the films increased the band gap to values >1 eV. Variations of the Al and hydrogen content allowed for tuning of the optoelectronic properties. The films are stable up to a temperature of 300 °C. At this temperature, we observed Al induced crystallization of the amorphous silicon and the presence of large Al particles in a crystalline Si matrix.

  7. Evaluating the adhesion of SU-8 thin films using an AlN/Si surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    El Gowini, Mohamed M.; Moussa, Walied A.

    2015-03-01

    A new approach is developed for evaluating the adhesion of SU-8 thin films using a surface acoustic wave (SAW) sensor. The SAW sensor consists of a silicon (Si) substrate coated with a thin aluminum nitride (AlN) film and two sets of inter-digital electrodes (IDT) patterned on the AlN surface. Two sensor configurations are developed in order to evaluate the adhesion of SU-8. In the first configuration the SU-8 layer is patterned on top of a gold film that is deposited on the AlN surface. In the second configuration the gold film is coated with an omnicoat layer prior to patterning the SU-8 film. Omnicoat is an adhesion promoter for SU-8, which is used to increase its adhesion to gold. The frequency responses from both configurations are measured and the shift in the center frequency value is evaluated. The results illustrate that without omnicoat the center frequency shifts to a higher value indicating an increase in the wave velocity. This is because the poor adhesion of the SU-8 layer without omnicoat causes the wave to be more concentrated in the AlN/Si structure and AlN has a higher acoustic wave velocity in comparison to the SU-8 layer. In addition, four SAW sensors operating at four different center frequencies are developed to investigate the change in sensor sensitivity with the increase in center frequency. The results indicate that the sensor sensitivity increases proportionally to the increase in operating frequency. Finally, a theoretical model is developed to calculate the wave dispersion profile for the SU-8/AlN/Si configuration. The interface of the SU-8/AlN layers is modeled as a layer of mass-less springs with stiffness K(N m-3). The shifts in the wave dispersion profile at different levels of interface spring stiffness are compared to the experimental values to evaluate the adhesion of the SU-8 layer.

  8. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    SciTech Connect

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhou, Shizhong; Lin, Zhiting; Li, Guoqiang

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is a direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.

  9. Property characterization of AlN thin films in composite resonator structure

    NASA Astrophysics Data System (ADS)

    Chen, Qingming; Qin, Lifen; Wang, Qing-Ming

    2007-04-01

    AlN thin films with c-axis orientation have been investigated for fabricating thin film bulk acoustic wave resonators in the past few years. Characterization of thin film material properties including density, elastic modulus, and piezoelectric coefficient is essential in processing study and for predicting the performance of the acoustic devices. In this paper, we present our results on the fabrication of highly c-axis oriented AlN thin films on Pt /Ti/Si (100) substrates by dc reactive magnetron sputtering method. The crystalline structure and the surface morphology of AlN films are characterized by x-ray diffraction and scanning electron microscopy. The effective piezoelectric coefficient d33eff of the AlN films was measured by a laser interferometer method and the piezoelectric coefficient d33 was estimated. A recently developed resonance spectrum method is applied to characterize the electromechanical properties of AlN thin films based on the input electrical impedance equation derived by one-dimensional transmission line theory for composite resonators. Using the experimental impedance spectrum data, the density and elastic constant of the piezoelectric AlN thin film in the four-layer composite resonator structure are evaluated. The calculated results reveal that the piezoelectric coefficient d33, density, and velocity of the c-axis oriented AlN thin film are 4.19pm/V, 3187.3kg/m3, and 10631m/s, respectively.

  10. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  11. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    DOE PAGESBeta

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; Brochu, Mathieu

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bondsmore » between the films and the substrates.« less

  12. Interfacial development of electrophoretically deposited graphene oxide films on Al alloys

    SciTech Connect

    Jin, Sumin; Dickerson, James H.; Pham, Viet Hung; Brochu, Mathieu

    2015-07-28

    Adhesion between film and substrate is critical for electronic device and coating applications. Interfacial development between electrophoretically deposited graphene oxide films on Al 1100 and Al 5052 alloys were investigated using FT-IR and XPS depth profiling techniques. Obtained results suggest metal ion permeation from the substrates into deposited graphene oxide films. The interface between the films and the substrates were primarily composed of Al-O-C bonds from oxygenated defects on graphene oxide plane rather than expected Al-C formation. Films heat treated at 150 °C had change in microstructure and peak shifts in XPS spectra suggesting change in chemical structure of bonds between the films and the substrates.

  13. Optical characterization of sol-gel ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2015-09-01

    This work presents a sol-gel approach for ZnO:Al films deposition. The effect of Al component and annealing treatments (from 500 to 800 °C) on the film structural and optical properties has been studied. Sol-gel ZnO and Al2O3 films are used for comparative analyses. Structural evolution as a function of annealing temperatures is investigated by using X-ray diffraction (XRD). XRD analysis of ZnO:Al films revealed that the predominant crystal phase is a wurtzite ZnO. It can be seen that the addition of Al leads to decaying of the film crystallinity. Fourier Transform Infrared (FTIR) and UV-VIS spectrophotometry are applied for characterization of the vibrational and optical properties. The Al component influences the shapes of the absorption bands. The optical properties of the sol-gel ZnO, ZnO:Al and Al2O3 films reveal very interesting features. Increasing Al component results in significantly higher film transparency.

  14. Reactive sputter-deposition of AlN films by dense plasma focus

    SciTech Connect

    Sadiq, Mehboob; Ahmad, S.; Shafiq, M.; Zakaullah, M.; Ahmad, R.; Waheed, A.

    2006-11-15

    A low energy (1.45 kJ) dense plasma focus device is used to deposit thin films of aluminum nitride (AlN) at room temperature on silicon substrates. For deposition of films, a conventional hollow copper anode is replaced with a solid aluminum anode and nitrogen is used as fill gas. The films are deposited using a multiple number of focus shots by placing the substrate in front of the anode. The deposited films are characterized using x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, and a microhardness test. The XRD analysis of the films shows that the deposited films show strong c-axis alignment. The Raman spectra of the films indicate that the deposited films are under compressive stress and crystalline quality decreases with increasing number of focus shots. The microhardness results point toward the uniform deposition of hard AlN layers on silicon substrates.

  15. Effect of Al Doping Concentration on Microstructure, Photoelectric Properties and Doped Mechanism of Azo Films

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Cai, Yanqing; Hou, Linyan; Ma, Penghua

    2014-05-01

    Al doped ZnO (AZO) thin films were deposited on a glass substrate by atmospheric pressure chemical vapor deposition (APCVD) method. Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO thin films were investigated. The analysis results revealed that the structural properties of the films possessed crystalline structure with a preferred (002) orientation. The best crystallization quality and minimum electrical resistivity was obtained at 5 at.% Al doped films and the minimum resistivity was 6.6 × 10-4 Ω ṡ cm. Uniform granular grains were observed on the surface of AZO films, and the average optical transmittance was above 80% in the visible range. The doped mechanism of AZO films was analyzed as follows. With Al doping in ZnO films, AlZn substitute and Ali interstice were produced, which decreased the resistivity of films. While after the limit value and with the continuing increase of Al doping concentration, free electrons were consumed and the resistivity of films increased.

  16. Epitaxial growth and optical properties of Al- and N-polar AlN films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Jia, C. H.; Chen, Y. H.; Wang, H. T.; Zhang, W. F.

    2014-03-01

    Epitaxial aluminum nitride (AlN) films with c-axis orientation were grown on both (1 1 1) MgO and c-sapphire substrates by laser molecular beam epitaxy. The in-plane epitaxial relationships were determined to be [1 1 \\bar{{2}} 0]AlN‖[0 \\bar{{1}} 1]MgO and [1 \\bar{{1}} 0 0]AlN‖[1 1 \\bar{{2}} 0]sapphire, and the lattice mismatch was 4.2% and 13.2% for AlN films on MgO and sapphire, respectively. The AlN films were shown to be Al- and N-polar on MgO and sapphire, respectively. The former is assumed to be caused by the centre of inversion symmetry of (1 1 1) MgO substrate, while the latter is due to the O polarity of sapphire. The full-width at half-maximum of the ω-scanning spectrum for AlN film on (1 1 1) MgO substrate is smaller than that on the c-sapphire substrate. The optical band-gap energies for AlN films grown on MgO and sapphire were found to be 5.93 and 5.84 eV, close to the standard band gap of 6.2 eV, and the calculated Urbach energies were 0.27 eV and 0.53 eV, respectively. These results indicate a lower amorphous content and/or less defects/impurities in Al-polar than N-polar AlN.

  17. Effects of water absorption of dielectric underlayers on Al-Si-Cu film properties and electromigration performance in Al-Si-Cu/Ti/TiN/Ti interconnects

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoyuki; Hashimoto, Shoji; Ohwaki, Takeshi; Mitsushima, Yasuichi; Taga, Yasunori

    1998-01-01

    The effects of underlying dielectric (phosphosilicate glass and borophosphosilicate glass) films to a humid air ambient on Al-Si-Cu film properties and electromigration (EM) performance in Al-Si-Cu/Ti/TiN/Ti layered films have been investigated as a function of the boron content and exposure time of the dielectric films. The Al(111) orientation in the layered films was found to improve drastically with increasing boron content and exposure time. The full width at half maximum value of an Al(111) x-ray rocking curve reached less than 1°. It was also found that the Al-Si-Cu surface becomes smoother and grain sizes increase as the Al(111) orientation improves. The improved Al(111) orientation was attributed to the improved Ti(002) orientation of the bottom Ti films. Further, it was demonstrate that interconnects fabricated from the improved layered film have excellent EM performance.

  18. Structure of liquid Al and Al67Mg33 alloy: comparison between experiment and simulation

    NASA Astrophysics Data System (ADS)

    Kramer, M. J.; Mendelev, M. I.; Asta, M.

    2014-06-01

    We report data on the structure of liquid Al and an Al67Mg33 alloy obtained from state-of-the-art X-ray diffraction experiments and ab initio molecular dynamics (AIMD) simulations. To facilitate a direct comparison between these data, we develop a method to elongate the AIMD pair correlation function in order to obtain reliable AIMD structure factors. The comparison reveals an appreciable level of discrepancy between experimental and AIMD liquid structures, with the latter being consistently more ordered than the former at the same temperature. The discrepancy noted in this study is estimated to have significant implications for simulation-based calculations of liquid transport properties and solid-liquid interface kinetic properties.

  19. Improved performances of AlN/polyimide hybrid film and its application in redistribution layer

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Ding, Guifu; Luo, Jiangbo; Lu, Wen; Zhao, Xiaolin; Cheng, Ping; Wang, Yanlei

    2016-08-01

    The AlN/polyimide (PI) hybrid film was studied as the dielectric layer in the redistribution layer (RDL) in this work. The incorporation of the AlN into the PI matrix was achieved by mechanical ball-milling process. The spin-coating process was used to fabricate the AlN/PI hybrid film, which is compatible with micro-electro-mechanical system (MEMS) technology for fabricating RDL. The AlN/PI hybrid film was characterized by Fourier transform infrared (FTIR) spectrum and thermogravimetric analysis (TGA). The effect of the AlN content on the thermal stability, thermal expansion coefficient, hardness and water adsorption of the AlN/PI hybrid film was studied. The results indicated that the addition of AlN nanoparticles improved the thermal stability and hardness, but decreased the thermal expansion coefficient and water absorption of the pure PI film. As an example of its typical application, the AlN/PI hybrid film with 8 wt.% AlN was patterned using micromachining technology and used as the dielectric layer in RDL successfully. [Figure not available: see fulltext.

  20. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  1. Surface acoustic wave devices fabricated on epitaxial AlN film

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Hao, Zhibiao; Yanxiong E.; Niu, Lang; Wang, Lai; Sun, Changzheng; Xiong, Bin; Han, Yanjun; Wang, Jian; Li, Hongtao; Luo, Yi; Li, Guoqiang

    2016-04-01

    This paper reports surface acoustic wave (SAW) devices fabricated on AlN epitaxial film grown on sapphire, aiming to avoid the detrimental polarization axis inconsistency and refrained crystalline quality of the normally used polycrystalline AlN films. Devices with center frequency of 357 MHz and 714 MHz have been fabricated. The stop band rejection ratio of the as-obtained device reaches 24.5 dB and the pass band ripple is profoundly smaller compared to most of the reported AlN SAW devices with the similar configuration. Judging from the rather high edge dislocation level of the film used in this study, the properties of the SAW devices have great potential to be improved by further improving the crystalline quality of the film. It is then concluded that the AlN epitaxial film is favorable for high quality SAW devices to meet the high frequency and low power consumption challenges facing the signal processing components.

  2. Optical properties of post-annealed ZnO:Al thin films studied by spectroscopic ellipsometry

    SciTech Connect

    Hwang, Y.H.; Kim, H.M.; Um, Y.H.; Park, H.Y.

    2012-10-15

    In this paper, effects of the thermal annealing on the structural, electrical, and optical properties of Al-doped ZnO (ZnO:Al) thin films prepared by reactive radio-frequency sputtering were investigated. From the X-ray diffraction observations, the orientation of ZnO:Al films was found to be a c-axis in the hexagonal structure. The optical properties of the films were investigated by optical transmittance and spectroscopic ellipsometry characterization. Based on Tauc–Lorentz model, the optical constants of ZnO:Al films were extracted in the photon energy ranging from 1.0 to 4.5 eV. Our result showed that the refractive index and extinction coefficient of the films changed consistently with annealing temperature.

  3. Laser-Assisted Growth Of AlGaAs Films

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1989-01-01

    Films of aluminum gallium arsenide grown on gallium arsenide by laser-assisted organometallic chemical-vapor deposition. Films single-crystal and contain no detectable oxygen or carbon. Laser beam impinges on substrate in quartz reaction chamber surrounded by radio-frequency induction coils. Film grows much more rapidly at 500 degree C than 450 degree C. Slight amount of interfacial oxygen detectable in film deposited at lower temperature.

  4. Electrical characterization of Si doped AlN films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Simeonov, Simeon; Bakalova, Silvia; Szekeres, Anna; Minkov, Ivaylo; Socol, Gabriel; Ristoscu, Carmen; Mihailescu, Ion

    2015-04-01

    The electrical properties of thin AlN films doped with Si (AlN:Si) have been investigated. The films were synthesized on Si substrates at 800 °C by pulsed laser deposition in low-pressure nitrogen ambient. The AlN:Si films exhibit non-ohmic I-V characteristics and the current through these films is controlled by space charge limited current. The C-V dependence of metal-insulator-silicon (MIS) structures with AlN:Si films exhibits an excess capacitance around zero bias voltage. This excess capacitance indicates the presence of deep acceptor levels situated at the boundaries of adjacent grains in the AlN:Si films. The Si donor density in the AlN:Si films, estimated from the 1 MHz C-V characteristics, is of the order of 1018 cm-3. The impedance measurements of these AlN:Si structures at different test voltage frequencies reveal that the charge transport mechanism is dominated by either thermally-activated hopping or electron tunneling from occupied to nearest unoccupied deep levels.

  5. Magnetic anisotropy and high frequency permeability of multilayered nanocomposite FeAlO thin films

    SciTech Connect

    Ma, Y. G.; Liu, Y.; Tan, C. Y.; Liu, Z. W.; Ong, C. K.

    2006-09-01

    A cool-down step deposition process (multistep deposition with cool-down interval) was used to grow nanocomposite FeAlO thin films of various thicknesses up to 440 nm by magnetron sputtering at a substrate temperature of 15 deg. C. The effect of the number of cool-down steps on the soft magnetic properties and high frequency characteristics of the nanocomposite FeAlO films were investigated. The deposition process was proved very effective in improving the soft magnetic properties and high frequency characteristics of the films. The eight-layered samples, fabricated by eight cool-down step deposition process, of thicknesses of 220 and 440 nm had obvious in-plane uniaxial anisotropies while the single-layered films were nearly isotropic. The resulting real permeability value of the eight-layered films was larger than 300 for the 220 nm film and between 200 and 300 for the 440 nm film.

  6. Atomic layer controlled deposition of Al 2O 3 films using binary reaction sequence chemistry

    NASA Astrophysics Data System (ADS)

    Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S. M.

    1996-11-01

    Al 2O 3 films with precise thicknesses and high conformality were deposited using sequential surface chemical reactions. To achieve this controlled deposition, a binary reaction for Al 2O 3 chemical vapor deposition (2Al(CH 3) 3 + 3H 2O → Al 2O 3 + 6CH 4) was separated into two half-reactions: (A) AlOH ∗ + Al(CH 3) 3 → AlOAl(CH 3) 2∗ + CH 4, (B) AlCH 3∗ + H 2O → AlOH ∗ + CH 4, where the asterisks designate the surface species. Trimethylaluminum (Al(CH 3) 3) (TMA) and H 2O reactants were employed alternately in an ABAB … binary reaction sequence to deposit Al 2O 3 films on single-crystal Si(100) and porous alumina membranes with pore diameters of ˜ 220 Å. Ellipsometric measurements obtained a growth rate of 1.1 Å/AB cycle on the Si(100) substrate at the optimal reaction conditions. The Al 2O 3 films had an index of refraction of n = 1.65 that is consistent with a film density of ϱ = 3.50 g/cm 3. Atomic force microscope images revealed that the Al 2O 3 films were exceptionally flat with a surface roughness of only ±3 Å ( rms) after the deposition of ˜ 270 Å using 250 AB reaction cycles. Al 2O 3 films were also deposited inside the pores of Anodisc alumina membranes. Gas flux measurements for H 2 and N 2 were consistent with a progressive pore reduction versus number of AB reaction cycles. Porosimetry measurements also showed that the original pore diameter of ˜ 220 Å was reduced to ˜ 130 Å after 120 AB reaction cycles.

  7. Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Minamino, Youhei; Ida, Satoshi; Minami, Tadatsugu

    2004-07-01

    A vacuum arc plasma evaporation (VAPE) method using both oxide fragments and gas sources as the source materials is demonstrated to be very effective for the preparation of multicomponent oxide thin films. Highly transparent and conductive Al-doped ZnO (AZO) thin films were prepared by the VAPE method using a ZnO fragment target and a gas source Al dopant, aluminum acethylacetonate (Al(C5H7O2)3) contained in a stainless steel vessel. The Al content in the AZO films was altered by controlling the partial pressure (or flow rate) of the Al dopant gas. High deposition rates as well as uniform distributions of resistivity and thickness on the substrate surface were obtained on large area glass substrates. A low resistivity on the order of 10-4 Ω cm and an average transmittance above 80% in the visible range were obtained in AZO thin films deposited on glass substrates. .

  8. Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor.

    PubMed

    Tong, Chong; Yun, Juhyung; Chen, Yen-Jen; Ji, Dengxin; Gan, Qiaoqiang; Anderson, Wayne A

    2016-02-17

    Here, we report an approach to realize highly transparent low resistance Al-doped ZnO (AZO) films for broadband transparent conductors. Thin Al films are deposited on ZnO surfaces, followed by thermal diffusion processes, introducing the Al doping into ZnO thin films. By utilizing the interdiffusion of Al, Zn, and O, the chemical state of Al on the surfaces can be converted to a fully oxidized state, resulting in a low sheet resistance of 6.2 Ω/sq and an excellent transparency (i.e., 96.5% at 550 nm and higher than 85% up to 2500 nm), which is superior compared with some previously reported values for indium tin oxide, solution processed AZO, and many transparent conducting materials using novel nanostructures. Such AZO films are also applied as transparent conducting layers for AZO/Si heterojunction solar cells, demonstrating their applications in optoelectronic devices. PMID:26807664

  9. Optical characterization of Sol-Gel ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-03-01

    This paper presents a sol-gel technological process for preparing thin films of ZnO and ZnO:Al. The effect of annealing treatments (500, 600, 700 and 800 °C) on their properties was studied. The structural evolution with the temperature was investigated by using X-Ray diffraction (XRD). Fourier Transform Infrared (FTIR) and UV-VIS spectrophotometry were applied to characterizing the films' vibrational and optical properties. The ZnO and ZnO:Al films possessed a polycrystalline structure. The films studied are highly transparent in the visible spectral range. The optical band gap values and the haze parameter were also determined.

  10. Characteristics of Ti-Nb, Ti-Zr and Ti-Al containing hydrogenated carbon nitride films

    NASA Astrophysics Data System (ADS)

    Balaceanu, M.; Braic, V.; Braic, M.; Vladescu, A.; Zoita, C. N.; Grigorescu, C. E. A.; Grigore, E.; Ripeanu, R.

    2009-10-01

    Nanocomposite Me-C-N:H coatings (Me is TiNb, TiZr or TiAl), with relatively high non-metal/metal ratios, were prepared by cathodic arc method using TiNb, TiZr and TiAl alloy cathodes in a CH 4 + N 2 atmosphere. For comparison purposes, a-C-N:H films were also produced through evaporating a graphite cathode in a similar atmosphere. The films were characterized in terms of elemental and phase compositions, chemical bonds, texture, hardness, adhesion and friction behavior by GDOES, XPS, Raman spectroscopy and XRD techniques, surface profilometry, hardness and scratch adhesion measurements, and tribological tests. The nanocomposite films consisted of a mixture of crystalline metal carbonitride and amorphous carbon nitride. The non-metal/metal ratio in the films composition was found to range between 1.8 and 1.9. For the metal containing nanocomposites, grain size in the range 7-23 nm, depending on the metal nature, were determined. As compared with the a-C-N:H, the Me-C-N:H films exhibited a much higher hardness (up to about 39 GPa for Ti-Zr-C-N:H) and a better adhesion strength, while the coefficients of friction were somewhat higher (0.2-0.3 for Me-C-N:H and 0.1 for a-C-N:H).

  11. Comparison of AlGaInP-VECSEL gain structures

    NASA Astrophysics Data System (ADS)

    Baumgärtner, Stefan; Kahle, Hermann; Bek, Roman; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-03-01

    We present a comparison of epitaxial designs for barrier pumped vertical external-cavity surface-emitting lasers in the red spectral range. The VECSEL chips are grown by metal-organic vapor-phase epitaxy as GaInP/AlGaInP multi-quantum well structures with 20 and 21 compressively strained quantum wells, respectively. The QWs are placed in various packages in a separate confinement heterostructure with quaternary AlGaInP-barrier and cladding layers. Beneath the active region there is a distributed Bragg reflector consisting of 55 λ / 4 pairs of Al0.5Ga0.5As/AlAs. We compare three different QW distributions: one design includes 20 QWs arranged in 10 pairs, the second one contains 20 QWs arranged in 10 pairs with tensile strained barriers to compensate the compressive strain of the QWs, the third one has an exponential distribution of the QWs in tensile strained barriers. Laser parameters such as wavelength, differential efficiency, optical output power and absorption of the pump laser were measured for the different designs. By using the exponential distribution of QWs we could improve the differential efficiency by 42% and the output power by 20% compared to the not strain compensated 10×2 QW design. Furthermore we could improve the absorption efficiency by 60 % at nearly the same laser wavelength.

  12. Deposition of ultrathin AlN films for high frequency electroacoustic devices

    SciTech Connect

    Felmetsger, Valery V.; Laptev, Pavel N.; Graham, Roger J.

    2011-03-15

    The authors investigate the microstructure, crystal orientation, and residual stress of reactively sputtered aluminum nitride (AlN) films having thicknesses as low as 200 down to 25 nm. A two-step deposition process by the dual cathode ac (40 kHz) powered S-gun magnetron enabling better conditions for AlN nucleation on the surface of the molybdenum (Mo) bottom electrode was developed to enhance crystallinity of ultrathin AlN films. Using the two-step process, the residual in-plane stress as well as the stress gradient through the film thickness can be effectively controlled. X-ray rocking curve measurements have shown that ultrathin films grown on Mo using this technology are highly c-axis oriented with full widths at half maximum of 1.8 deg. and 3.1 deg. for 200- and 25-nm-thick films, respectively, which are equal to or even better than the results previously reported for relatively thick AlN films. High-resolution transmission electron microscopy and fast Fourier transform analyses have confirmed strong grain orientation in 25-100-nm-thick films. A fine columnar texture and a continuous lattice microstructure within a single grain from the interface with the Mo substrate through to the AlN surface have been elicited even in the 25-nm-thick film.

  13. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang; Shen, Ruiqi; Ye, Yinghua; Zhu, Peng; Hu, Yan; Wu, Lizhi

    2011-11-01

    An investigation on the influence of Al/CuO reactive multilayer films (RMFs) additives on exploding foil initiator was performed in this paper. Cu film and Cu/Al/CuO RMFs were produced by using standard microsystem technology and RF magnetron sputtering technology, respectively. Scanning electron microscopy characterization revealed the distinct layer structure of the as-deposited Al/CuO RMFs. Differential scanning calorimetry was employed to ascertain the amount of heat released in the thermite reaction between Al films and CuO films, which was found to be 2024 J/g. Electrical explosion tests showed that 600 V was the most matching voltage for our set of apparatus. The explosion process of two types of films was observed by high speed camera and revealed that compared with Cu film, an extra distinct combustion phenomenon was detected with large numbers of product particles fiercely ejected to a distance of about six millimeters for Cu/Al/CuO RMFs. By using the atomic emission spectroscopy double line technique, the reaction temperature was determined to be about 6000-7000 K and 8000-9000 K for Cu film and Cu/Al/CuO RMFs, respectively. The piezoelectricity of polyvinylidene fluoride film was employed to measure the average velocity of the slapper accelerated by the explosion of the films. The average velocities of the slappers were calculated to be 381 m/s and 326 m/s for Cu film and Cu/Al/CuO RMFs, respectively, and some probable reasons were discussed with a few suggestions put forward for further work.

  14. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    SciTech Connect

    Kumar, Manish Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-15

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (∼1 × 10{sup 11} cm{sup −3}) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10{sup −4} Ω cm along the carrier concentration 5.6 × 10{sup 20} cm{sup −3} is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  15. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Wen, Long; Sahu, Bibhuti B.; Han, Jeon Geon

    2015-06-01

    Simultaneously achieving higher carriers concentration and mobility is a technical challenge against up-scaling the transparent-conductive performances of transparent-conductive oxides. Utilizing one order higher dense (˜1 × 1011 cm-3) plasmas (in comparison to the conventional direct current plasmas), highly c-axis oriented Al-doped ZnO films have been prepared with precise control over relative composition and chemical states of constituting elements. Tailoring of intrinsic (O vacancies) and extrinsic (ionic Al and zero-valent Al) dopants provide simultaneous enhancement in mobility and concentration of charge carriers. Room-temperature resistivity as low as 4.89 × 10-4 Ω cm along the carrier concentration 5.6 × 1020 cm-3 is obtained in 200 nm thick transparent films. Here, the control of atomic Al reduces the charge trapping at grain boundaries and subdues the effects of grain boundary scattering. A mechanism based on the correlation between electron-hole interaction and carrier mobility is proposed for degenerately doped wide band-gap semiconductors.

  16. Deposition and Characterization of Al:ZnO Thin Films for Optoelectronic Applications

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Mishra, Swati; Bajpai, P. K.

    2016-07-01

    Transparent aluminum-doped zinc oxide (Al:ZnO) thin films have been successfully synthesized on silicon substrates at room temperature using a sol-gel spin-coating method. The structural and optical properties and surface morphology of the synthesized films were characterized using x-ray diffraction (XRD) analysis, ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, micro-Raman spectroscopy, and atomic force microscopy (AFM). The prepared Al:ZnO retained the hexagonal wurtzite structure of ZnO. FTIR and Raman spectra clearly revealed a major peak at 437 cm-1, associated with the ZnO bond. UV-Vis spectra showed that the Al:ZnO films were transparent from the near-ultraviolet to near-infrared region. The effect of film thickness on the physical and optical properties of the Al:ZnO thin films for 2.0 at.% aluminum concentration was investigated. Measurements revealed that the film transparency, optical energy bandgap, Urbach energy, extinction coefficient, and porosity varied with the film thickness. The energy bandgap values for the prepared thin films increased in the range of 3.18 eV to 3.2 eV with increasing film thickness.

  17. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  18. Comparison of transferred freely-suspended films and LB-films of liquid crystals

    SciTech Connect

    Decher, G.; Reibel, J.; Sohling, U.

    1993-12-31

    Amphiphilic liquid crystalline (LC) compounds offer the possibility to obtain similar layered structures such as LB mono- and multilayers, freely suspended and transferred freely-suspended films or bulk LC-phases from a single compound. This way a structural comparison of all types of assemblies can be achieved, combining the experience from both the LB-and the LC-fields. There is a remarkable similarity of the structures of the transferred freely-suspended (TFS) and LB-films. Nevertheless both types of multilayer assemblies, prepared from the same substance (ethyl-4`-n-octyloxybiphenyl-4-carboxylate), show a different thermal behavior. Whereas the TFS-films undergo reversible phase transitions and are stable up to the clearing point of the bulk material (110{degrees}C), the LB-films show only one irreversible phase transition and start to melt already 30{degrees}C below the clearing point of the bulk material.

  19. Polarized XAFS study of Al K-edge for m-plane AlGaN films

    NASA Astrophysics Data System (ADS)

    Miyanaga, T.; Azuhata, T.; Nakajima, K.; Nagoya, H.; Hazu, K.; Chichibu, S. F.

    2014-04-01

    Local structures around Al atoms in high-quality m-plane AlxGa1-xN films (x=0.32 and 0.58) deposited on m-plane GaN substrates by the NH3 source molecular beam epitaxy method were investigated by Al K-edge X-ray absorption fine structure (XAFS) for the first time. XAFS spectra were measured using a linearly-polarized X-ray source from synchrotron radiation for three different directions; along the c-, a-, and m-axes. The interatomic distances along the a-axis are close to Ga-Ga distance in GaN, indicating that the local structures are strongly affected by GaN substrates. The localization of Al atoms was observed for the Al0.32Ga0.68N film.

  20. RF reactive sputter deposition and characterization of transparent CuAlO2 thin films

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; He, Y. B.; Yang, B.; Polity, A.; Volbers, N.; Neumann, C.; Hasselkamp, D.; Meyer, B. K.

    2006-09-01

    CuAlO2 thin films have been prepared on quartz glass and sapphire substrates by radio-frequency (RF) reactive sputtering using a CuAlO2 ceramic target. The deposition process was optimized by varying the sputter parameters, such as the substrate temperature and the oxygen flow. In addition a post-growth annealing has been carried out. X-ray diffraction (XRD) revealed that the as-sputtered films are amorphous, and crystallize in the delafossite-type CuAlO2 or in a phase mixture of CuAlO2 and CuAl2O4 after annealing in air at 1100°C. The surface morphology of the films was characterized by scanning electron microscopy (SEM). The as-grown films are nearly stoichiometric in terms of Cu to Al ratio and have good depth homogeneity as examined by Rutherford backscattering spectroscopy (RBS) and secondary ion mass spectroscopy (SIMS), respectively. The optical bandgap of the films was estimated by wavelength-dependent transmission measurements at room temperature, which revealed a direct bandgap of 3.38 and 3.80 eV for the as-sputtered and post-growth annealed CuAlO2 films, respectively.

  1. Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Manoharan, C.; Pavithra, G.; Bououdina, M.; Dhanapandian, S.; Dhamodharan, P.

    2016-08-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass substrates using spray pyrolysis technique with the substrate temperature of 400 °C. X-ray diffraction analysis indicated that the films were polycrystalline with hexagonal wurtzite structure preferentially oriented along (002) direction. Surface morphology of the films obtained by scanning electron microscopy showed that the grains were of nanoscale size with porous nature for 6 at.% of Al. Atomic force microscopy observations revealed that the particles size and surface roughness of the films decreased with Al-doping. Optical measurements indicated that ZnO:Al (6 at.%) exhibited a band gap of 3.11 eV, which is lower than that of pure ZnO film, i.e. 3.42 eV. Photoluminescence analysis showed weak NBE emission at 396 nm for Al-doped films. The low resistivity, high hall mobility and carrier concentration values were obtained at a doping ratio of 6 at.% of Al. The effective incorporation of 6 at.% of Al into ZnO lattice by occupying Zn sites yielded a well-pronounced antibacterial activity against Staphylococcus aureus.

  2. Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Manoharan, C.; Pavithra, G.; Bououdina, M.; Dhanapandian, S.; Dhamodharan, P.

    2015-08-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass substrates using spray pyrolysis technique with the substrate temperature of 400 °C. X-ray diffraction analysis indicated that the films were polycrystalline with hexagonal wurtzite structure preferentially oriented along (002) direction. Surface morphology of the films obtained by scanning electron microscopy showed that the grains were of nanoscale size with porous nature for 6 at.% of Al. Atomic force microscopy observations revealed that the particles size and surface roughness of the films decreased with Al-doping. Optical measurements indicated that ZnO:Al (6 at.%) exhibited a band gap of 3.11 eV, which is lower than that of pure ZnO film, i.e. 3.42 eV. Photoluminescence analysis showed weak NBE emission at 396 nm for Al-doped films. The low resistivity, high hall mobility and carrier concentration values were obtained at a doping ratio of 6 at.% of Al. The effective incorporation of 6 at.% of Al into ZnO lattice by occupying Zn sites yielded a well-pronounced antibacterial activity against Staphylococcus aureus.

  3. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Khodadadi, Behrouz; Schäfer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-01

    B2-ordered Co2FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering ˜81.2% with a low damping parameter (α) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 °C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co2FeAl films annealed at 350 °C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing α significantly. However, the observed damping of Co2FeAl films was still lower than that of Co60Fe20B20 films prepared at the same thickness and annealing temperature.

  4. Direct coating adherent diamond films on Fe-based alloy substrate: the roles of Al, Cr in enhancing interfacial adhesion and promoting diamond growth.

    PubMed

    Li, X J; He, L L; Li, Y S; Yang, Q; Hirose, A

    2013-08-14

    Direct CVD deposition of dense, continuous, and adherent diamond films on conventional Fe-based alloys has long been considered impossible. The current study demonstrates that such a deposition can be realized on Al, Cr-modified Fe-based alloy substrate (FeAl or FeCrAl). To clarify the fundamental mechanism of Al, Cr in promoting diamond growth and enhancing interfacial adhesion, fine structure and chemical analysis around the diamond film-substrate interface have been comprehensively characterized by transmission electron microscopy. An intermediate graphite layer forms on those Al-free substrates such as pure Fe and FeCr, which significantly deteriorates the interfacial adhesion of diamond. In contrast, such a graphite layer is absent on the FeAl and FeCrAl substrates, whereas a very thin Al-rich amorphous oxide sublayer is always identified between the diamond film and substrate interface. These comparative results indicate that the Al-rich interfacial oxide layer acts as an effective barrier to prevent the formation of graphite phase and consequently enhance diamond growth and adhesion. The adhesion of diamond film formed on FeCrAl is especially superior to that formed on FeAl substrate. This can be further attributed to a synergetic effect including the reduced fraction of Al and the decreased substrate thermal-expansion coefficient on FeCrAl in comparison with FeAl, and a mechanical interlocking effect due to the formation of interfacial chromium carbides. Accordingly, a mechanism model is proposed to account for the different interfacial adhesion of diamond grown on the various Fe-based substrates. PMID:23829602

  5. Thermal conductivity and mechanical properties of AlN-based thin films

    NASA Astrophysics Data System (ADS)

    Moraes, V.; Riedl, H.; Rachbauer, R.; Kolozsvári, S.; Ikeda, M.; Prochaska, L.; Paschen, S.; Mayrhofer, P. H.

    2016-06-01

    While many research activities concentrate on mechanical properties and thermal stabilities of protective thin films, only little is known about their thermal properties being essential for the thermal management in various industrial applications. Based on the 3ω-method, we show the influence of Al and Cr on the temperature dependent thermal conductivity of single-phase cubic structured TiN and single-phase wurtzite structured AlN thin films, respectively, and compare them with the results obtained for CrN thin films. The dc sputtered AlN thin films revealed a highly c-axis oriented growth for deposition temperatures of 250 to 700 °C. Their thermal conductivity was found to increase strongly with the film thickness, indicating progressing crystallization of the interface near amorphous regions during the sputtering process. For the 940 nm AlN film, we found a lower boundary for the thermal conductivity of 55.3 W m-1 K-1 . By the substitution of only 10 at. % Al with Cr, κ significantly reduces to ˜5.0 W m-1 K-1 , although the single-phase wurtzite structure is maintained. The single-phase face centered cubic TiN and Ti0.36Al0.64N thin films exhibit κ values of 3.1 W m-1 K-1 and 2.5 W m-1 K-1 , respectively, at room temperature. Hence, also here, the substitutional alloying reduces the thermal conductivity, although at a significantly lower level. Single-phase face centered cubic CrN thin films show κ values of 3.6 W m-1 K-1 . For all nitride based thin films investigated, the thermal conductivity slightly increases with increasing temperature between 200 and 330 K. This rather unusual behavior is based on the high defect density (especially point defects) within the thin films prepared by physical vapor deposition.

  6. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect

    Britson, Jason Curtis

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  7. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  8. Superhydrophobic hierarchical surfaces fabricated by anodizing of oblique angle deposited Al-Nb alloy columnar films

    NASA Astrophysics Data System (ADS)

    Fujii, Takashi; Aoki, Yoshitaka; Habazaki, Hiroki

    2011-07-01

    A combined process of oblique angle magnetron sputtering and anodizing has been developed to tailor superhydrophobic surfaces with hierarchical morphology. Isolated submicron columns of single-phase Al-Nb alloys are deposited by magnetron sputtering at several oblique deposition angles on a scalloped substrate surface, with the gaps between columns increasing with an increase in the deposition angle from 70° to 110°. Then, the columnar films have been anodized in hot phosphate-glycerol electrolyte to form a nanoporous anodic oxide layer on each column. Such surfaces with submicron-/nano-porous structure have been coated with a fluoroalkyl phosphate layer to reduce the surface energy. The porous surface before coating is superhydrophilic with a contact angle for water is less than 10°, while after coating the contact angles are larger than 150°, being superhydrophobic. The beneficial effect of dual-scale porosity to enhance the water repellency is found from the comparison of the contact angles of the submicron columnar films with and without nanoporous oxide layers. The larger submicron gaps between columns are also preferable to increase the water repellency.

  9. Comparison between LaGaO/sub 3/, LaAlO/sub 3/, KTaO/sub 3/, and SrTiO/sub 3/ substrates for the epitaxial growth of YBa/sub 2/Cu/sub 3/O/sub 7/minus/x/ thin films by a ''BaF/sub 2/ process''

    SciTech Connect

    Feenstra, R.; Budai, J.D.; Galloway, M.D.; Boatner, L.A.

    1989-01-01

    YBa/sub 2/Cu/sub 3/O/sub 7/minus/x/ films with thicknesses in the range 60--320 nm were grown on LaGaO/sub 3/, LaAlO/sub 3/, KTaO/sub 3/, and SrTiO/sub 3/ single-crystal substrates by coevaporation of Y, Cu, and BaF/sub 2/ followed by annealing at 850/degree/C in wet oxygen. Films formed with a thickness of 160 nm or greater on SrTiO/sub 3/, KTaO/sub 3/, and LaGaO/sub 3/ exhibited sharp superconducting transitions near T/sub c/ = 91 K. For films on LaAlO/sub 3/, T/sub c/ was typically reduced by 6--8 K. For films with a thickness less than 120 nm, the superconducting transition broadens for every film-substrate combination investigated, and T/sub c/ shifts to lower temperatures with decreasing film thickness. 6 refs., 1 fig.

  10. Properties of Cu(In,Ga,Al)Se{sub 2} thin films fabricated by magnetron sputtering

    SciTech Connect

    Hameed, Talaat A.; Cao, Wei; Mansour, Bahiga A.; Elzawaway, Inas K.; Abdelrazek, El-Metwally M.; Elsayed-Ali, Hani E.

    2015-05-15

    Cu(In,Ga,Al)Se{sub 2} (CIGAS) thin films were studied as an alternative absorber layer material to Cu(In{sub x}Ga{sub 1−x})Se{sub 2}. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ values with increasing Al content. Scanning electron microscopy images revealed dense and well-defined grains, as well as sharp CIGAS/Si(100) interfaces for all films. Atomic force microscopy analysis indicated that the roughness of CIGAS films decreases with increasing Al content. The bandgap of CIGAS films was determined from the optical transmittance and reflectance spectra and was found to increase as Al content increased.

  11. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  12. Synthesis of c-axis oriented AlN thin films on different substrates: A review

    SciTech Connect

    Iriarte, G.F.

    2010-09-15

    Highly c-axis oriented AlN thin films have been deposited by reactive sputtering on different substrates. The crystallographic properties of layered film structures consisting of a piezoelectric layer, aluminum nitride (AlN), synthesized on a variety of substrates, have been examined. Aluminum nitride thin films have been deposited by reactive pulsed-DC magnetron sputtering using an aluminum target in an Ar/N{sub 2} gas mixture. The influence of the most critical deposition parameters on the AlN thin film crystallography has been investigated by means of X-ray diffraction (XRD) analysis of the rocking curve Full-Width at Half Maximum (FWHM) of the AlN-(0 0 0 2) peak. The relationship between the substrate, the synthesis parameters and the crystallographic orientation of the AlN thin films is discussed. A guide is provided showing how to optimize these conditions to obtain highly c-axis oriented AlN thin films on substrates of different nature.

  13. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    NASA Astrophysics Data System (ADS)

    Wang, W. B.; Fu, Y. Q.; Chen, J. J.; Xuan, W. P.; Chen, J. K.; Wang, X. Z.; Mayrhofer, P.; Duan, P. F.; Bittner, A.; Schmid, U.; Luo, J. K.

    2016-07-01

    This paper reports the characterization of scandium aluminum nitride (Al1‑x Sc x N, x  =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients (K 2, ~2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices.

  14. Preparation and characterization of thin films of MgO, Al2O3 and MgAl2O4 by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ron; Kitai, Adrian H.

    1993-02-01

    MgO, Al2O3 and MgAl2O4 thin films were deposited on silicon substrates at various temperatures by the atomic layer deposition (ALD) method using bis(cyclopentadienyl)magnesium, triethylaluminum, and H2O and were characterized systematically. High-quality polycrystalline MgO films were deposited for a substrate temperature above 500°C, and amorphous thin films were deposited around 400°C. The deposited Al2O3 and MgAl2O4 thin films were characterized as amorphous in structure. Applicability of ALD to complex oxides is discussed.

  15. Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.

    PubMed

    Yokoyama, Tsuyoshi; Iwazaki, Yoshiki; Onda, Yosuke; Nishihara, Tokihiro; Sasajima, Yuichi; Ueda, Masanori

    2015-06-01

    We report piezoelectric materials composed of charge-compensated co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) thin films. The effect of the dopant element into AlN on the crystal structure, and piezoelectric properties of co-doped AlN was determined on the basis of a first-principles calculation, and the theoretical piezoelectric properties were confirmed by experimentally depositing thin films of magnesium (Mg) and zirconium (Zr) co-doped AlN (Mg-Zr-doped AlN). The Mg-Zrdoped AlN thin films were prepared on Si (100) substrates by using a triple-radio-frequency magnetron reactive co-sputtering system. The crystal structures and piezoelectric coefficients (d33) were investigated as a function of the concentrations, which were measured by X-ray diffraction and a piezometer. The results show that the d33 of Mg-Zr-doped AlN at total Mg and Zr concentrations (both expressed as β) of 0.35 was 280% larger than that of pure AlN. The experimentally measured parameter of the crystal structure and d33 of Mg-Zr-doped AlN (plotted as functions of total Mg and Zr concentrations) were in very close agreement with the corresponding values obtained by the first-principle calculations. Thin film bulk acoustic wave resonators (FBAR) employing (Mg,Zr)0.13Al0.87N and (Mg, Hf)0.13 Al0.87N as a piezoelectric thin film were fabricated, and their resonant characteristics were evaluated. The measured electromechanical coupling coefficient increased from 7.1% for pure AlN to 8.5% for Mg-Zr-doped AlN and 10.0% for Mg- Hf-doped AlN. These results indicate that co-doped (Mg, β)(x)Al(1-x)N (β = Zr or Hf) films have potential as piezoelectric thin films for wideband RF applications. PMID:26067035

  16. Electrical characteristics of SrTiO3/Al2O3 laminated film capacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Yao, Manwen; Chen, Jianwen; Xu, Kaien; Yao, Xi

    2016-07-01

    The electrical characteristics of SrTiO3/Al2O3 (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO3 is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO3/Al2O3 laminated films can effectively suppress the demerits of pure SrTiO3 films under low electric field, but the leakage current value reaches to 0.1 A/cm2 at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO3/Al2O3 laminated films. Compared to laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10-4 A/cm2) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.

  17. Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying Laser Doppler Vibrometry and FEM simulations☆

    PubMed Central

    Mayrhofer, P.M.; Euchner, H.; Bittner, A.; Schmid, U.

    2015-01-01

    Piezoelectric scandium aluminium nitride (ScxAl1−xN) thin films offer a large potential for the application in micro electromechanical systems, as advantageous properties of pure AlN thin films are maintained, but combined with an increased piezoelectric actuation and sensing potential. ScxAl1−xN thin films with x = 27% have been prepared by DC reactive magnetron sputtering to find optimized deposition parameters to maximize the piezoelectric constants d33 and d31. For the accurate and simultaneous measurement of these constants Laser Doppler Vibrometry has been applied and compared to finite element (FEM) simulations. The electrode design has been optimized to rotational symmetric structures enabling a 180° phase shifted excitation, so that a straight-forward comparison of experimental displacement curves with those obtained from FEM is feasible. PMID:26109748

  18. Characterization of AlF3 thin films at 193 nm by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2005-12-01

    Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 °C. The LIDT of the films prepared at a deposition rate of 2 Å/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.

  19. Characterization of AlF3 thin films at 193 nm by thermal evaporation.

    PubMed

    Lee, Cheng-Chung; Liu, Ming-Chung; Kaneko, Masaaki; Nakahira, Kazuhide; Takano, Yuuichi

    2005-12-01

    Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 degrees C. The LIDT of the films prepared at a deposition rate of 2 A/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress. PMID:16353803

  20. Non-equilibrium Dynamics in Zeeman-Limited Superconducting Al Films

    NASA Astrophysics Data System (ADS)

    Prestigiacomo, J. C.; Adams, P. W.

    2016-05-01

    We report non-equilibrium dynamics in the tunneling density of states of ultra-thin Al films in high Zeeman fields. We have measured the transport and tunneling density of states of the films through the first-order Zeeman critical field transition. Films with sheet resistances of a few hundred ohms exhibit slow, non-exponential relaxation in the hysteretic critical field region. The relaxation traces are interspersed with abrupt avalanche-like collapses of the condensate on the superheating branch of the critical field hysteresis loop but not on the supercooling branch. We believe that film dynamics reflects an inhomogeneous order parameter that emerges in the critical field region.

  1. Performance, structure, and stability of SiC/Al multilayer films for extreme ultraviolet applications.

    PubMed

    Windt, David L; Bellotti, Jeffrey A

    2009-09-10

    We report on the performance, structure and stability of periodic multilayer films containing silicon carbide (SiC) and aluminum (Al) layers designed for use as reflective coatings in the extreme ultraviolet (EUV). We find that SiC/Al multilayers prepared by magnetron sputtering have low stress, good temporal and thermal stability, and provide good performance in the EUV, particularly for applications requiring a narrow spectral bandpass, such as monochromatic solar imaging. Transmission electron microscopy reveals amorphous SiC layers and polycrystalline Al layers having a strong <111> texture, and relatively large roughness associated with the Al crystallites. Fits to EUV reflectance measurements also indicate large interface widths, consistent with the electron microscopy results. SiC/Al multilayers deposited by reactive sputtering with nitrogen comprise Al layers that are nearly amorphous and considerably smoother than films deposited nonreactively, but no improvements in EUV reflectance were obtained. PMID:19745857

  2. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L.; Moghaddam, Saeed

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{sub 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.

  3. Mechanical and physicochemical properties of AlN thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cibert, C.; Tétard, F.; Djemia, P.; Champeaux, C.; Catherinot, A.; Tétard, D.

    2004-10-01

    AlN thin films have been deposited on Si(100) substrates by a pulsed laser deposition method. The deposition parameters (pressure, temperature, purity of target) play an important role in the mechanical and physicochemical properties. The films have been characterized using X-ray diffraction, atomic force microscopy, Brillouin light scattering, Fourier transform infrared spectroscopy and wettability testing. With a high purity target of AlN and a temperature deposition of 750 ∘C, the measured Rayleigh wave velocity is close to the one previously determined for AlN films grown at high temperature by metal-organic chemical vapour deposition. Growth of nanocrystalline AlN at low temperature and of AlN film with good crystallinity for samples deposited at higher temperature is confirmed by infrared spectroscopy, as it was by atomic force microscopy, in agreement with X-ray diffraction results. A high hydrophobicity has been measured with zero polar contribution for the surface energy. These results confirm that films made by pulsed laser deposition of pure AlN at relatively low temperature have good prospects for microelectromechanical systems applications.

  4. Mixed Al and Si doping in ferroelectric HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Moghaddam, Saeed; Jones, Jacob L.; Nishida, Toshikazu

    2015-12-01

    Ferroelectric HfO2 thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO2 greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ˜20 μC/cm2 and a coercive field strength of ˜1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO2 thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO2 thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO2 thin films exhibit a remanent polarization greater than 15 μC/cm2 up to 108 cycles.

  5. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    NASA Astrophysics Data System (ADS)

    Canulescu, S.; Borca, C. N.; Rechendorff, K.; Davidsdóttir, S.; Pagh Almtoft, K.; Nielsen, L. P.; Schou, J.

    2016-04-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys. The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the electrical resistivity.

  6. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    SciTech Connect

    Flötotto, D. Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  7. Al:ZnO thin film: An efficient matrix for cholesterol detection

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Gupta, Vinay

    2012-12-01

    Al doped ZnO thin film (Al:ZnO) has been realized as a potential matrix for the development of efficient cholesterol biosensor. The correlation between the structural and electrical properties of ZnO thin film with varying Al doping concentration (1% to 5%) and their cyclic voltammetric (CV) response has been studied. 2% Al doped ZnO films were found to give the best CV response and were further utilized for immobilization of cholesterol oxidase (ChOx) to detect cholesterol. Amperometric and photometric studies reveal that the prepared bioelectrode based on 2% Al doped ZnO matrix (ChOx/Al:ZnO/Pt/glass) is highly sensitive (sensitivity = 173 μAmM-1 cm-2) to the detection of cholesterol in the wide range from 0.6-12.9 mM (25-500 mg/dl). A relatively low value of enzyme's kinetic parameter (Michaelis menten constant, 2.53 mM) indicates enhanced affinity of the immobilized ChOx toward cholesterol. The prepared bioelectrode is found to be exhibiting high shelf life (10 weeks) having negligible interference with the presence of other biomolecules in human serum indicating promising application of Al doped ZnO thin films for cholesterol biosensing.

  8. FeAl underlayers for CoCrPt thin film longitudinal media

    SciTech Connect

    Lee, L.; Laughlin, D.E.; Lambeth, D.N.

    1997-04-01

    B2 ordered FeAl films with a small, uniform grain size have been produced by rf diode sputter deposition on glass substrates. CoCrPt films grown on FeAl underlayers were found to have the (10{bar 1}0) lamellar texture. The in-plane coercivities (H{sub c}) of the CoCrPt/FeAl films are comparable to those of the CoCrPt/Cr films and they can be further improved by inserting a thin Cr intermediate layer between the CoCrPt and the FeAl layers. By employing a MgO seed layer or a (002) textured Cr seed layer, (001) textured FeAl can be obtained. However, the (001) FeAl underlayer only induces a weak (11{bar 2}0) textured CoCrPt. Thus no improvement in H{sub c} over those produced on unseeded FeAl underlayers was observed. {copyright} {ital 1997 American Institute of Physics.}

  9. Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotian; Li, Yueqing; Du, Yin; Dai, Xuefang; Liu, Guodong; Liu, Enke; Liu, Zhongyuan; Wang, Wenhong; Wu, Guangheng

    2014-08-01

    We report on a systematic study of the structural, magnetic properties and the anomalous Hall effect, in the Heusler alloy Co2FeAl (CFA) epitaxial films on MgO (001), as a function of film thickness. It was found that the epitaxial CFA films show a highly ordered B2 structure with an in-plane uniaxial magnetic anisotropy. The electrical transport properties reveal that the lattice and magnon scattering contributions to the longitudinal resistivity. Independent on the thickness of films, the anomalous Hall resistivity of CFA films is found to be dominated by skew scattering only. Moreover, the anomalous Hall resistivity shows weakly temperature dependent behavior, and its absolute value increases as the thickness decreases. We attribute this temperature insensitivity in the anomalous Hall resistivity to the weak temperature dependent of tunneling spin-polarization in the CFA films, while the thickness dependence behavior is likely due to the increasing significance of interface or free surface electronic states.

  10. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  11. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    SciTech Connect

    Gareso, P. L. Rauf, N. Juarlin, E.; Sugianto,; Maddu, A.

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes. The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.

  12. Fabrication of thermally evaporated Al thin film on cylindrical PET monofilament for wearable computing devices

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Kim, Eunju; Han, Jeong In

    2016-01-01

    During the initial development of wearable computing devices, the conductive fibers of Al thin film on cylindrical PET monofilament were fabricated by thermal evaporation. Their electrical current-voltage characteristics curves were excellent for incorporation into wearable devices such as fiber-based cylindrical capacitors or thin film transistors. Their surfaces were modified by UV exposure and dip coating of acryl or PVP to investigate the surface effect. The conductive fiber with PVP coating showed the best conductivities because the rough surface of the PET substrate transformed into a smooth surface. The conductivities of PET fiber with and without PVP were 6.81 × 103 Ω-1cm-1 and 5.62 × 103 Ω-1cm-1, respectively. In order to understand the deposition process of Al thin film on cylindrical PET, Al thin film on PET fiber was studied using SEM (Scanning Electron Microscope), conductivities and thickness measurements. Hillocks on the surface of conductive PET fibers were observed and investigated by AFM on the surface. Hillocks were formed and grown during Al thermal evaporation because of severe compressive strain and plastic deformation induced by large differences in thermal expansion between PET substrate and Al thin film. From the analysis of hillock size distribution, it turns out that hillocks grew not transversely but longitudinally. [Figure not available: see fulltext.

  13. Cubic AlN thin film formation on quartz substrate by pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Biju, Zheng; Wen, Hu

    2016-06-01

    Cubic AlN thin films were obtained on quartz substrate by pulse laser deposition in a nitrogen reactive atmosphere. A Nd-YAG laser with a wavelength of 1064 nm was used as the laser source. In order to study the influence of the process parameters on the deposited AlN film, the experiments were performed at various technique parameters of laser energy density from 70 to 260 J/cm2, substrate temperature from room temperature to 800 °C and nitrogen pressure from 0.1 to 50 Pa. X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy were applied to characterize the structure and surface morphology of the deposited AlN films. It was found that the structure of AlN films deposited in a vacuum is rocksalt under the condition of substrate temperature 600-800 °C, nitrogen pressure 10-0.1 Pa and a moderate laser energy density (190 J/cm2). The high quality AlN film exhibited good optical property. Project supported by the Yunnan Provincial Natural of Science Foundation of China (No. KKSY201251089).

  14. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation. PMID:22966566

  15. A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jian, Y. C.; Jiang, J. H.

    2008-02-01

    This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H 2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10 -3 Ω cm to 3.0 × 10 -3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.

  16. Decomposition of methanol on partially alumina-encapsulated Pt nanoclusters supported on thin film Al2O3/NiAl(1 0 0)

    NASA Astrophysics Data System (ADS)

    Chao, C. S.; Li, Y. D.; Liao, T. W.; Hung, T. C.; Luo, M. F.

    2014-08-01

    Various surface probe techniques were applied to investigate the decomposition of methanol on partially alumina-encapsulated Pt nanoclusters on an ordered thin film of Al2O3/NiAl(1 0 0). The alumina-encapsulated Pt clusters were prepared on annealing Pt clusters (grown by vapor deposition onto the Al2O3/NiAl(1 0 0) at 300 K) to 650 K under UHV conditions. The annealed cluster became a Pt1+-Pt2+ state and partially encapsulated with inert alumina. Methanol on the partially encapsulated Pt clusters decomposed only on the uncovered Pt sites, and through both dehydrogenation to CO and scission of the C-O bond. In comparison to the reactions on Pt clusters, the C-O bond scission was altered little on the partially encapsulated clusters whereas the dehydrogenation was hindered to a certain extent. The quantities of CO and hydrogen produced from the dehydrogenation per surface Pt on the partially encapsulated clusters amounted to only half those on Pt clusters. The altered methanol decomposition was correlated to both electronic and ensemble effects.

  17. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rong, Xin; Wang, Xinqiang; Chen, Guang; Pan, Jianhai; Wang, Ping; Liu, Huapeng; Xu, Fujun; Tan, Pingheng; Shen, Bo

    2016-05-01

    Residual stress in AlN films grown by molecular beam epitaxy (MBE) has been studied by Raman scattering spectroscopy. A strain-free Raman frequency and a biaxial stress coefficient for E2(high) mode are experimentally determined to be 657.8 ± 0.3 cm-1 and 2.4 ± 0.2 cm-1 / GPa, respectively. By using these parameters, the residual stress of a series of AlN layers grown under different buffer layer conditions has been investigated. The residual compressive stress is found to be obviously decreased by increasing the Al/N beam flux ratio of the buffer layer, indicating the generation of tensile stress due to stronger coalescence of AlN grains, as also confirmed by the in-situ reflection high energy electron diffraction (RHEED) monitoring observation. The stronger coalescence does lead to improved quality of AlN films as expected.

  18. Nanoscale analysis on interfacial reactions in Al-Si-Cu alloys and Ti underlayer films

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Mo; Lee, Sukjae; Park, Ju-Chul; Lee, Deok-Won; Lee, Tae-Kwon; Choi, Jin-Tae; Lee, Soun-Young; Kawasaki, Masahiro; Oikawa, Tetsuo

    2003-01-01

    Solid-phase reactions at the interface between sputtered Al-Si-Cu alloys and Ti films were investigated at the atomic scale by high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS) coupled with a field-emission (scanning) transmission electron microscope. The analysis results showed that the interface is composed of an amorphous-like Ti-Si layer, an intermediate-crystalline layer, and a Si-dissolved TiAl3 layer containing dissolved Si TiAl3 with a crystallographic relationship with the Al film. The nanometer-scaled interlayers effectively play a role as a barrier suppressing the interdiffusion reaction of Al and Ti during annealing treatment. Further, the quantitative composition of the interlayers was revealed by the analysis of the intensity profiles obtained from EDS elemental maps.

  19. Preparation of the c-axis oriented AlN film by laser chemical vapor deposition using a newly proposed Al(acac)3 precursor

    NASA Astrophysics Data System (ADS)

    You, Yu; Ito, Akihiko; Tu, Rong; Goto, Takashi

    2013-02-01

    Highly oriented AlN film was prepared on a c-plane sapphire substrate by laser chemical vapor deposition using a newly proposed aluminum acetylacetonate precursor and ammonia gas as source reactants. The c-axis oriented AlN films were obtained on the c-plane sapphire substrate at deposition temperatures from 900 to 1230 K. AlN film prepared at 1047 K showed an epitaxial relation as (//( [//[. The full width at half maximum (FWHM) of the X-ray rocking curve for AlN (0002) plane increased with increasing deposition temperature. The c-axis lattice parameter decreased with increasing deposition temperature.

  20. Pyroelectric and piezoelectric responses of thin AlN films epitaxy-grown on a SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Sergeeva, O. N.; Kiselev, D. A.; Bogomolov, A. A.; Solnyshkin, A. V.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.

    2016-05-01

    This paper presents the results of pyroelectric and piezoelectric studies of AlN films formed by chloride-hydride epitaxy (CHE) and molecular beam epitaxy (MBE) on epitaxial SiC nanolayers grown on Si by the atom substitution method. The surface topography and piezoelectric and pyroelecrtric responses of AlN films have been analyzed. The results of the study have shown that the vertical component of the piezoresponse in CHE-grown AlN films is more homogeneous over the film area than that in MBE-grown AlN films. However, the signal from the MBE-synthesized AlN films proved to be stronger. The inversion of the polar axis (polarization vector) on passage from MBE-grown AlN films to CHE-grown AlN films has been found experimentally. It has been shown that the polar axis in MBE-grown films is directed from the free surface of the film toward the Si substrate while, in CHE-grown films, the polarization vector is directed toward the free surface.

  1. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  2. Epitaxial growth and electronic properties of mixed valence YbAl3 thin films

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shouvik; Sung, Suk Hyun; Baek, David J.; Kourkoutis, Lena F.; Schlom, Darrell G.; Shen, Kyle M.

    2016-07-01

    We report the growth of thin films of the mixed valence compound YbAl3 on MgO using molecular-beam epitaxy. Employing an aluminum buffer layer, epitaxial (001) films can be grown with sub-nm surface roughness. Using x-ray diffraction, in situ low-energy electron diffraction, and aberration-corrected scanning transmission electron microscopy, we establish that the films are ordered in the bulk as well as at the surface. Our films show a coherence temperature of 37 K, comparable to that reported for bulk single crystals. Photoelectron spectroscopy reveals contributions from both f13 and f12 final states establishing that YbAl3 is a mixed valence compound and shows the presence of a Kondo Resonance peak near the Fermi-level.

  3. LPE growth of Mn, Ni- and Al-substituted copper ferrite films

    NASA Astrophysics Data System (ADS)

    van der Straten, P. J. M.; Metselaar, R.

    1980-06-01

    Single-crystalline Mn-, Ni-, and Al-substituted copper ferrite films are grown by the LPE method from a PbO-B2O3 flux on (111)-MgO substrates. Solid solutions between copper ferrite and Mn3O4, NiFe2O4, and CuAl2O4 are obtained. The segregation coefficients for Ni and Al are shown to be linearly dependent on the growth temperature. From domain-structure observations and from torque measurements it is concluded that a positive uniaxial anisotropy is present in the copper ferrite films. After stress relief at the deposition temperature a stress develops during cooling to room temperature due to a difference in thermal expansion coefficients of film and substrate. This stress is responsible for the observed anisotropy.

  4. Mössbauer and SEM study of Fe-Al film

    NASA Astrophysics Data System (ADS)

    Sebastian, Varkey; Sharma, Ram Kripal; Lakshmi, N.; Venugopalan, K.

    Fe-Al alloy with Fe/Al ratio of 3:1 was first prepared by argon arc melting. It was subsequently coated on glass slide and cellophane tape using an electron beam gun system to have a thickness of 2,000 Å. X-ray diffraction spectrum of the coated sample indicates a definite texture for the film with a preferential growth along the Fe(110) plane. SEM micrographs of the film showed the presence of nano islands of nearly 3 x 1012/m2 surface density. Composition of different parts of the film was determined using EDAX. Room temperature Fe-57 Mössbauer spectrum of coated sample showed the presence a quadrupole doublet with a splitting of 0.46 mm/s, which is typical of Al-rich iron compounds. MOKE study shows an in-plane magnetic moment.

  5. Depth-resolved cathodoluminescence of a homoepitaxial AlN thin film

    NASA Astrophysics Data System (ADS)

    Silveira, E.; Freitas, J. A.; Slack, G. A.; Schowalter, L. J.; Kneissl, M.; Treat, D. W.; Johnson, N. M.

    2005-07-01

    In the present work we will report on the optical properties of an AlN film homoepitaxially grown on a high-quality large bulk AlN single crystal. The latter was grown by a sublimation-recondensation technique, while the film was grown by organometallic vapor-phase epitaxy. Cathodoluminescence measurements were performed using electron beam energies between 2 and 10 keV in order to excite the sample and so to probe different sample depths, making it possible to differentiate between different features which originate in the AlN homoepitaxial film. The penetration depth has been determined through the calculation of the Bohr-Bethe maximum range of excitation using the approximation to the Everhart-Hoff expression for the energy loss within a solid.

  6. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  7. Rhombohedral AlPt films formed by self-propagating, high temperature synthesis.

    SciTech Connect

    Adams, David Price; Rodriguez, Mark Andrew; Kotula, Paul Gabriel

    2005-11-01

    High-purity AlPt thin films prepared by self-propagating, high temperature combustion synthesis show evidence for a new rhombohedral phase. Sputter deposited Al/Pt multilayers of various designs are reacted at different rates in air and in vacuum, and each form a new trigonal/hexagonal aluminide phase with unit cell parameters a = 15.571(8) {angstrom}, c = 5.304(1) {angstrom}, space group R-3 (148), and Z, the number of formula units within a unit cell, = 39. The lattice is isostructural to that of the AlPd R-3 lattice as reported by Matkovic and Schubert (Matkovic, 1977). Reacted films have a random in-plane crystallographic texture, a modest out-of-plane (001) texture, and equiaxed grains with dimensions on the order of film thickness.

  8. Structure of ultrathin Ag films on the Al(100) surface

    SciTech Connect

    Choi, D. S.; Kopczyk, M.; Kayani, A.; Smith, R. J.; Bozzolo, Guillermo

    2006-09-15

    The structure for submonolayer amounts of Ag deposited on the Al(100) surface at room temperature has been studied using low-energy electron diffraction (LEED) and low-energy ion-scattering spectroscopy (LEIS/ISS). The Ag coverage was determined using Rutherford backscattering spectroscopy. We conclude that the Ag atoms form two domains of a buckled, quasihexagonal coincident lattice structure on the Al(100) surface, having a repeat distance of 5 Al interatomic spacings in the [110] direction. The LEED pattern shows a double-domain (5x1) structure with additional intensity in those spots corresponding to a (111) close-packed hexagonal layer. The analysis of the ISS results suggests that the heights of the adsorbed Ag atoms above the Al surface are not all the same, leading to the proposed buckling model that is in agreement with recent scanning tunneling microscopy measurements. In addition, some Al atoms move from the substrate up into the Ag adlayer to form a surface alloy. Model calculations using the quantum approximate Bozzolo-Ferrante-Smith (BFS) method indicate that the hexagonal layer is energetically preferred as a result of increased nearest-neighbor coordination within the Ag layer.

  9. X-ray photoelectron spectroscopy study of thin TiO2 films cosputtered with Al

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Cherng; Wang, Paul W.; Lee, Cheng-Chung

    2006-06-01

    In this study, titanium dioxide (TiO2) films were fabricated by cosputtering of a titanium (Ti) target and an aluminum (Al) slice in a smaller area by an ion-beam sputtering deposition method. The sputtered films were postannealed at 450 °C. The x-ray photoelectron spectroscopy spectra were categorized by their oxygen bonding variations, which include high-binding-energy oxygen, (HBO), bridging oxygen, low-binding-energy oxygen, and shifts of the binding energies (BEs) of oxygen (O) and Ti signals. The enhancement of HBO and higher BE shifts of the O 1s spectra as a function of cosputtered Al in the film imply the formation of an Al—O—Ti linkage. Corresponding changes in the Ti 2p spectra further confirm the modification of properties of the cosputtered film that results from the variation of the chemical bonding environment. An observed correlation between the chemical structure and optical absorption of the Al cosputtered films can be used to modify the optical properties of the film.

  10. Characterization of CuAlO2 Thin Films Prepared on Sapphire Substrates by Reactive Sputtering and Annealing

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nozomu; Moriya, Tomohiro; Kobayashi, Satoshi; Shimizu, Hidehiko; Kato, Keizo; Kaneko, Futao

    2008-01-01

    As-deposited films were prepared on sapphire substrates at 500-680 °C by alternately sputtering Cu and Al targets in Ar-diluted O2 gas atmosphere. The composition of the as-deposited films corresponded to that of the slightly oxygen-rich region of the CuO-CuAl2O4-Al2O3 system. The films as-deposited at 500 °C had an amorphous structure, while the films as-deposited at 680 °C had CuAl2O4 phase but no CuAlO2 phase. Annealing at 1050 °C in nitrogen flow caused a reduction in the molar fraction of oxygen, i.e., the composition of the annealed films with [Cu]/[Al] ≈1 corresponded to CuAlO2. The annealed films were predominated by the CuAlO2 phase. The preferential orientation of the films toward the c-axis normal to the substrate surface is due to the small lattice mismatch between the rhombohedral [010] of delafossite-type CuAlO2 and the hexagonal [1100] of the sapphire substrate. The annealed films had an absorption edge corresponding to the energy gap of CuAlO2 and exhibited p-type conductivity.

  11. Static and dynamic magnetic property of MBE-grown Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Huo, Yan; Zhao, Jianhua; Wu, Yizheng; Zhang, Xinhui

    2014-08-01

    In this work, the static and dynamic magnetic properties of Co2FeAl films grown by molecular beam epitaxy (MBE) were studied by employing the magneto-optical Kerr rotation and ferromagnetic resonance (FMR) measurements. The growth temperature dependent magnetocrystalline anisotropy of MBE-grown Co2FeAl films were first investigated by employing the rotating magneto-optical Kerr effect. Then the magnetization dynamics and Gilbert damping property for high quality Co2FeAl films were investigated in detail by combining both the FMR and time-resolved magneto-optical Kerr rotation techniques. The apparent damping parameter was found to show strong dependence on the strength of the applied magnetic field at low-field regime, but decrease drastically with increasing magnetic field and eventually become a constant value of 0.004 at high-field regime. The inhomogeneity of magnetocrystalline anisotropy and two-magnon scattering are suggested to be responsible for the observed abnormal damping properties observed especially at low field regime. The intrinsic damping parameter of 0.004 is deduced for our highly-ordered Co2FeAl film. Our results provide essential information for highly-ordered MBE-grown Co2FeA film and its possible application in spintronic devices.

  12. Oxide film defects in Al alloys and the formation of hydrogen- related porosity

    NASA Astrophysics Data System (ADS)

    Griffiths, W. D.; Gerrard, A. J.; Yue, Y.

    2016-03-01

    Double oxide film defects have also been held responsible for the origins of hydrogen porosity, where hydrogen dissolved in the Al melt passes into the interior atmosphere of the double oxide film defect causing it to inflate. However, this is in opposition to long- established evidence that H cannot readily diffuse through aluminium oxide. To investigate this further, samples of commercial purity Al were first degassed to remove their initial H content, and then heated to above their melting point and held in atmospheres of air and nitrogen respectively, to determine any differences in H pick-up. The experiment showed that samples held in an oxidising atmosphere, and having an oxide skin, picked up significantly less H than when the samples were held in a nitrogen atmosphere, which resulted in the formation of AlN in cracks in the oxide skin of the sample. It is suggested that double oxide film defects can give rise to hydrogen-related porosity, but this occurs more quickly when the oxygen in the original oxide film defect has been consumed by reaction with the surrounding melt and nitrogen reacts to form AlN, which is more permeable to H than alumina, more easily allowing the oxide film defect to give rise to a hydrogen pore. This is used to interpret results from an earlier synchrotron experiment, in which a small pore was seen to grow into a larger pore, while an adjacent large pore remained at a constant size.

  13. A transition in the magneto-transport in the L10 MnAl thin films

    NASA Astrophysics Data System (ADS)

    Luo, Linqiang; Lu, Jiwei; Dao, Nam; Cui, Yishen; Wolf, Stuart A.

    2015-03-01

    In this talk we will report on L10 MnAl thin films with perpendicular magnetic anisotropy prepared on single crystal MgO substrates by co-sputtering Mn and Al targets. A Cr seeding layer enabled the epitaxial growth of the MnAl films. The magneto-resistance (MR) of these films was measured using a Hall bar structure. When the external magnetic field was applied perpendicular to the thin film surface, a change of the sign of MR was observed as will be discussed below. Above 175K, a negative magnetoresistance was observed with two maxima occuring at the coercivity fields of the MnAl thin films. Below 175K, the MR became positive, and the MR ratio increased with decreasing temperature. The possible mechanisms for the transition in the MR will be discussed in detail in this talk. They include the effects of inhomogeneity, chemical ordering and the underlying domain structure. The authors gratefully acknowledge financial support provided by INSPIRE program.

  14. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping.

    PubMed

    Wu, Xuefei; Wu, Zhiming; Ji, Chunhui; Zhang, Huafu; Su, Yuanjie; Huang, Zehua; Gou, Jun; Wei, Xiongbang; Wang, Jun; Jiang, Yadong

    2016-05-11

    Due to the insulator-metal transition (IMT) performance covering the full terahertz (THz) band, VO2 films were extensively investigated as an excellent candidate for modulating, switching, and memory devices. However, some remarkable absorption peaks owing to the infrared-active phonon modes suppressed the films' modulation ability and restricted the films' application in high THz frequency. Here we prepared Al-doped VO2 films on (111) directional silicon substrate, which rapidly counteracted the absorption peak and exhibited widely modulating properties. Al dopants introduced into the films brought a significant shift to high frequency in Raman spectra. The result was attributed to the effect of modifying VO2 crystal, leading the V-O bond to be strained more intensively, contracting the distance of the V-V dimers. All the Raman results indicated an oxidation effect by Al doping. However, the XPS results showed a valence reduction of the vanadium element, which was caused by the valence difference between V and Al atoms. In addition to the surface morphology characterization, the IMT properties of the shrinkage of hysteresis width and resistance variations in both electrical and THz optical aspects have been systemically analyzed. An additional difference is that the temperature of the optical transition behaves lower than the electrical transition observed, which resulted from the mechanism of transition propagation and boundary barriers. PMID:27096418

  15. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance. PMID:25950271

  16. Deposition of highly textured AlN thin films by reactive high power impulse magnetron sputtering

    SciTech Connect

    Moreira, Milena A.; Törndahl, Tobias; Katardjiev, Ilia; Kubart, Tomas

    2015-03-15

    Aluminum nitride thin films were deposited by reactive high power impulse magnetron sputtering (HiPIMS) and pulsed direct-current on Si (100) and textured Mo substrates, where the same deposition conditions were used for both techniques. The films were characterized by x-ray diffraction and atomic force microscopy. The results show a pronounced improvement in the AlN crystalline texture for all films deposited by HiPIMS on Si. Already at room temperature, the HiPIMS films exhibited a strong preferred (002) orientation and at 400 °C, no contributions from other orientations were detected. Despite the low film thickness of only 200 nm, an ω-scan full width at half maximum value of 5.1° was achieved on Si. The results are attributed to the high ionization of sputtered material achieved in HiPIMS. On textured Mo, there was no significant difference between the deposition techniques.

  17. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  18. Structural, mechanical and piezoelectric properties of polycrystalline AlN films sputtered on titanium bottom electrodes

    NASA Astrophysics Data System (ADS)

    Pătru, M.; Isac, L.; Cunha, L.; Martins, P.; Lanceros-Mendez, S.; Oncioiu, G.; Cristea, D.; Munteanu, D.

    2015-11-01

    Polycrystalline AlN coatings were deposited on Ti-electrode films by reactive magnetron sputtering. During the deposition, processing parameters such as the reactive gas pressure and time of deposition have been varied. The purpose was to obtain an optimized AlN/Ti system coating with suitable properties for applications such as piezoelectric sensors, which could monitor the wear rate and the remaining coating life of a specific part. The chemical composition, the structure, and the morphology of the multilayered films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy and atomic force microscopy techniques, respectively. These measurements showed the formation of highly (1 0 1), (1 0 2) and (1 0 3) oriented AlN films with piezoelectric and mechanical properties suitable for the desired purpose. A densification of the AlN coating was also observed, caused by lower nitrogen pressures, which has led to an improvement of the crystallinity along with an increase of hardness. The coating stability at high temperatures was also examined. Consequently, an improvement of the piezoelectric properties of the AlN films was observed, inferred from the enhancement of c-axis (0 0 2) orientation after annealing. Furthermore, the mechanical characteristics (hardness and Young's modulus) were significantly improved after heat treatment. These two parameters decrease rapidly with the increase of the indentation depth, approaching constant values close to those of the substrate after annealing. Thus, thermal annealing promotes not only the rearrangement of Al-N network, but also a surface hardening of the film, caused by a nitriding process of unsaturated Al atoms.

  19. Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation

    NASA Astrophysics Data System (ADS)

    Futong, Chu; Chao, Chen; Xingzhao, Liu

    2014-03-01

    A novel AlGaN/GaN high electric mobility transistor (HEMT) with polyimide (PI)/chromium (Cr) as the passivation layer is proposed for enhancing breakdown voltage and its DC performance is also investigated. The Cr nanoparticles firstly introduced in PI thin films by the co-evaporation can be used to increase the permittivity of PI film. The high-permittivity PI/Cr passivation acting as field plate can suppress the fringing electric field peak at the drain-side edge of the gate electrode. This mechanism is demonstrated in accord with measured results. The experimental results show that in comparison with the AlGaN/GaN HEMTs without passivation, the breakdown voltage of HEMTs with the PI/Cr composite thin films can be significantly improved, from 122 to 248 V.

  20. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  1. Electronic properties and bonding characteristics of AlN:Ag thin film nanocomposites

    SciTech Connect

    Lekka, Ch. E.; Patsalas, P.; Komninou, Ph.; Evangelakis, G. A.

    2011-03-01

    We present theoretical and experimental results on the bonding and structural characteristics of AlN:Ag thin film nanocomposites obtained by means of density functional theory (DFT) computations, high resolution transmission electron microscopy (HRTEM) observations, Auger electron spectroscopy (AES), and x-ray diffraction (XRD) measurements. From the theoretical calculations it was determined that the presence of the Ag substitutional of N or Al atoms affects the electronic density of states (EDOS) of the resulting systems. In particular, occupied energy states are introduced (between others) that lie within the energy gap of the AlN matrix due to Ag-d, Al-p (accompanied with a charge transfer from Al to Ag), Ag-p, and N-p hybridizations, respectively. The effect is predicted to be even more pronounced in the case of Ag nanoparticle inclusions affecting the EDOS of the composite system. These predictions were verified by the HRTEM images that gave unequivocal evidence for the presence and stability of Ag nanoparticles in the AlN matrix. In addition, the AES data suggested a metal-metal (Ag-Al) bonding preference, while the XRD patterns revealed that the atomic Ag dispersions in the AlN thin films results in a small elongation of the Wurtzite lattice, which is in agreement with the DFT predictions. These results may useful in tailoring the electronic response of AlN-based systems and the design of devices for various opto-electronic applications.

  2. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films

    PubMed Central

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-01-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ∙cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ∙cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance. PMID:27075955

  3. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films.

    PubMed

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-01-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ∙cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ∙cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance. PMID:27075955

  4. Structural, electron transportation and magnetic behavior transition of metastable FeAlO granular films

    NASA Astrophysics Data System (ADS)

    Bai, Guohua; Wu, Chen; Jin, Jiaying; Yan, Mi

    2016-04-01

    Metal-insulator granular film is technologically important for microwave applications. It has been challenging to obtain simultaneous high electrical resistivity and large saturation magnetization due to the balance of insulating non-magnetic and metallic magnetic components. FeAlO granular films satisfying both requirements have been prepared by pulsed laser deposition. The as-deposited film exhibits a high resistivity of 3700 μΩ•cm with a negative temperature coefficient despite that Fe content (0.77) exceeds the percolation threshold. This originates from its unique microstructure containing amorphous Fe nanoparticles embedded in Al2O3 network. By optimizing the annealing conditions, superior electromagnetic properties with enhanced saturation magnetization (>1.05 T), high resistivity (>1200 μΩ•cm) and broadened Δf (>3.0 GHz) are obtained. Phase separation with Al2O3 aggregating as inclusions in crystallized Fe(Al) matrix is observed after annealing at 673 K, resulting in a metallic-like resistivity. We provide a feasible way to achieve both high resistivity and large saturation magnetization for the FeAlO films with dominating metallic component and show that the microstructure can be tuned for desirable performance.

  5. Bondability of Al-Si thin film in thermosonic gold wire bonding. [integrated circuits

    NASA Technical Reports Server (NTRS)

    Nakagawa, K.; Miyata, K.; Banjo, T.; Shimada, W.

    1985-01-01

    The bondability of two kinds of Al-Si thin films in thermosonic Au wire bonding was examined by means of microshear tests. One type of film was formed by sputtering an Al-2% Si alloy, and the other was formed by depositing an 0.05 micrometer-thick polysilicon layer on SiO2 by chemical vapor deposition (CVD) and then depositing a 1.2 micrometer-thick Al layer on them by evaporation. After heat-treatment at 450 deg for 30 min., Si in the Al-Si film crystallized. The grain size of the crystallized Si affects the thermosonic wire bondability, i.e., for Al-2% Si sputtered films, good bondability was obtained under relatively small (1.0 micrometer) grain size conditions. In the successive layer process, on the other hand, the grain size of crystallized Si varies with the polysilicon CVD temperature. The optimum CVD temp. was determined from the standpoint of bondability with respect to grain size.

  6. Sputter deposition of stress-controlled piezoelectric AlN and AlScN films for ultrasonic and energy harvesting applications.

    PubMed

    Barth, Stephan; Bartzsch, Hagen; Gloess, Daniel; Frach, Peter; Herzog, Thomas; Walter, Susan; Heuer, Henning

    2014-08-01

    This paper reports on the deposition and characterization of piezoelectric AlN and AlXSc1-XN layers. Characterization methods include XRD, SEM, active thermo probe, pulse echo, and piezometer measurements. A special focus is on the characterization of AlN regarding the mechanical stress in the films. The stress in the films changed between -2.2 GPa (compressive) and 0.2 GPa (tensile) and showed a significant dependence on film thickness. The cause of this behavior is presumed to be the different mean grain sizes at different film thicknesses, with bigger mean grain sizes at higher thicknesses. Other influences on film stress such as the sputter pressure or the pulse mode are presented. The deposition of gradient layers using those influences allowed the adjustment of film stress while retaining the piezoelectric properties. PMID:25073140

  7. Carbon diffusion in alumina from carbon and Ti{sub 2}AlC thin films

    SciTech Connect

    Guenette, Mathew C.; Tucker, Mark D.; Bilek, Marcela M. M.; McKenzie, David R.; Ionescu, Mihail

    2011-04-15

    Carbon diffusion is observed in single crystal {alpha}-Al{sub 2}O{sub 3} substrates from carbon and Ti{sub 2}AlC thin films synthesized via pulsed cathodic arc deposition. Diffusion was found to occur at substrate temperatures of 570 deg. C and above. The diffusion coefficient of carbon in {alpha}-Al{sub 2}O{sub 3} is estimated to be of the order 3x10{sup -13} cm{sup 2}/s for deposition temperatures in the 570-770{sup o}C range by examining elastic recoil detection analysis (ERDA) elemental depth profiles. It is suggested that an appropriate diffusion barrier may be useful when depositing carbon containing thin films on {alpha}-Al{sub 2}O{sub 3} substrates at high temperatures.

  8. Tribological Properties of CrN/AlN Films Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Rojo, A.; Solís, J.; Oseguera, J.; Salas, O.; Reichelt, R.

    2010-04-01

    The microstructure of CrN/AlN films, prepared by reactive magnetron sputtering under various conditions, was analyzed and related to the wear behavior of the films. One set of films was prepared by conventional reactive magnetron sputtering, a second set adding an extra amount of reactive gas to the initial Ar + N2 mixture and a third set adding an extra source of nitrogen near the substrate during sputtering. The samples were analyzed by scanning electron microscopy + energy dispersive microanalysis, high resolution scanning electron microscopy, atomic force microscopy, and x-ray diffraction. The results of the microstructural analysis revealed a clear difference in the morphology growth of the films when extra nitrogen was used compared to the conventionally prepared films. Formation of CrN was significantly faster than that of AlN. The most effective method to produce AlN was to introduce extra nitrogen. Pin-on-disk wear experiments were carried out in ambient air, to investigate the tribological behavior of the CrN/AlN system against a steel ball under dry conditions for various loads and a constant sliding speed. The results revealed that tribological properties of the layers improved unlike those of the untreated H13 steel. The friction behavior is closely related to the structure of the deposited films. The thicker CrN layer contributed to the higher load capacity of the coated steel when compared to the unmodified steel. However, wear life for the coating system was very short, denoted by the fairly poor adhesion of the film system to the steel substrate.

  9. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xu, Bajin; Ling, Guoping

    2015-03-01

    In this paper, α-Al2O3 film was prepared by low temperature thermal oxidation of Al8Cr5 coating. The Al8Cr5 alloy coating was prepared on SUS430 stainless steel through a two-step approach including electrodepositing Cr/Al composite coating and subsequent heat treatment at 740 °C for 16 h. After mechanical polishing removal of voids on the surface, the Al8Cr5 coating was thermal oxidized at 720 °C in argon for 100 h. The samples were characterized by SEM, EDX, XRD, XPS and TEM. XPS detection on the surface of oxidized Al8Cr5 coating showed that the oxide film mainly consisted of Al2O3. TEM characterization of the oxide film showed that it was α-Al2O3 films ca. 110 nm. The formation of α-Al2O3 films at low temperature can be attributed to the formation of Cr2O3 nuclei at the initial stage of oxidation which lowers the nucleation energy barrier of α-Al2O3.

  10. Electronic state of Er in sputtered AlN:Er films determined by magnetic measurements

    SciTech Connect

    Narang, V.; Seehra, M. S.; Korakakis, D.

    2014-12-07

    The optoelectronic and piezoelectric properties of AlN:Er thin films have been of great recent interest for potential device applications. In this work, the focus is on the electronic state of Er in AlN:Er thin films prepared by reactive magnetron sputtering on (001) p-type Si substrate. X-ray diffraction shows that Er doping expands the lattice and the AlN:Er film has preferential c-plane orientation. To determine whether Er in AlN:Er is present as Er metal, Er{sub 2}O{sub 3}, or Er{sup 3+} substituting for Al{sup 3+}, detailed measurements and analysis of the temperature dependence (2 K–300 K) of the magnetization M at a fixed magnetic field H along with the M vs. H data at 2 K up to H = 90 kOe are presented. The presence of Er{sub 2}O{sub 3} and Er metal is ruled out since their characteristic magnetic transitions are not observed in the AlN:Er sample. Instead, the observed M vs. T and M vs. H variations are consistent with Er present as Er{sup 3+} substituting for Al{sup 3+} in AlN:Er at a concentration x = 1.08% in agreement with x = 0.94% ± 0.20% determined using x-ray photoelectron spectroscopy (XPS). The larger size of Er{sup 3+} vs. Al{sup 3+}explains the observed lattice expansion of AlN:Er.

  11. A comparison of the performance of new screen-film and digital mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Gutierrez, D.; Castella, C.; Lepori, D.; Verdun, F. R.

    2006-03-01

    This work compares the detector performances of the recent Kodak Min-R EV 190/Min-R EV and current Kodak Min-R 2190/Min-R 2000 mammography screen-film combinations with the Kodak CR 850M system using the new EHR-M and standard HR plates. Basic image quality parameters (MTF, NNPS and DQE) were evaluated according to ISO 9236-3 conditions (i.e. 28 kV; Mo/Mo; HVL = 0.64 mm eq. Al) at an entrance air kerma level of 60 μGy. Compared with the Min-R 2000, the Kodak Min-R EV screen-film system has a higher contrast and an intrinsically lower noise level, leading to a better DQE. Due to a lower noise level, the new EHR-M plate improves the DQE of the CR system, in comparison with the use of the standard HR plate (30 % improvement) in a mammography cassette. Compared with the CR plates, screen-film systems still permit to resolve finer details and have a significantly higher DQE for all spatial frequencies.

  12. The influence of Cu /Al ratio on properties of chemical-vapor-deposition-grown p-type Cu-Al-O transparent semiconducting films

    NASA Astrophysics Data System (ADS)

    Cai, Jianling; Gong, Hao

    2005-08-01

    Transparent p-type copper aluminum oxide (Cu-Al-O) semiconducting thin films, with Cu /Al atomic ratios ranging from 1.0 to 4.3, were deposited by plasma-enhanced metal-organic chemical-vapor deposition. The films were grown on z-cut single-crystal quartz substrates, at a substrate temperature of 450°C. Crystalline CuAlO2 was found dominant in the films, including small amounts of CuAl2O4, Al2O3, and amorphous Cu2O. The effect of varying Cu /Al ratio on the structural, electrical, and optical properties of the films were studied by x-ray diffraction, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, and Seebeck technique, and discussed. We were able to optimize the Cu /Al ratio for the p-type conductivity and transmittance in copper aluminum oxide thin films, and the best conductive film, with a room-temperature conductivity of 0.289Scm-1 and a transparency of 80%, was found to have a Cu /Al ratio of 1.4±0.3. In addition, the mechanism of the p-type conduction of copper aluminum oxide was discussed.

  13. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  14. Nb/sub 3/Al thin-film synthesis by electron-beam coevaporation

    SciTech Connect

    Kwo, J.; Hammond, R.H.; Geballe, T.H.

    1980-03-01

    Nb/sub 3/Al thin films have been prepared and characterized with varying deposition parameters, including substrate temperature, deposition rate, gas doping, and epitaxial growth. Nb-Al samples made with the optimum substrate temperature have lattice constants following the prediction of Geller radii and a systematic T/sub c/ increment with Al composition, namely, a ..delta..T/sub c//..delta..C of 1.9 K/at% Al. Employment of the self-epitaxial method results in extending the A15 phase boundary by 1 at% Al and an enhancement of T/sub c/ by 2.4 K at a given substrate temperature. By extrapolating from T/sub c/ =16.7 K, the highest transition temperature observed in this work, stoichiometric Nb/sub 3/Al is predicted to have an T/sub c/ onset of 20.7 K.

  15. Si adatoms as catalyst for the growth of monolayer Al film on Si(111)

    NASA Astrophysics Data System (ADS)

    Teng, Jing; Zhang, Lixin; Wu, Kehui; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Ebert, Philipp; Sakurai, Toshio; Wang, Enge

    2010-03-01

    Recently, we reported the growth of atomically smooth Al(111) films on Si(111) with continuously controllable thickness down to the extreme level of 1 ML. Here, we study the underlying unexpected Si adatom-mediated clustering-melting mechanism by scanning tunneling microscopy and by the first-principles calculations. The Si adatoms in the initial Si(111)3x3-Al surface act as seeds to form SiAl2 clusters. The clusters are then transformed into Al(111)1x1 by incorporating further incoming Al atoms and spontaneously releasing the Si atoms, which then participate in the next cycle of the process. As a result, a two-dimensional growth of monolayer Al(111) is achieved.

  16. Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films

    NASA Astrophysics Data System (ADS)

    Do, Young Ho; Kwak, June Sik; Hong, Jin Pyo; Jung, Kyooho; Im, Hyunsik

    2008-12-01

    Stable bipolar resistive switching was demonstrated in polycrystalline TiO2 films involving two different top and bottom Al electrodes of two different structures (Al/TiO2/Pt and Pt/TiO2/Al) after a forming process. With an Al electrode, the transition to bipolar resistive switching was clearly observed, together with counterclockwise and clockwise switching directions, which depended on the position of the Al electrode. The transition from unipolar to bipolar resistive switching seems to be attributable to the redox reaction and trap/detrap at the interfaces between the Al electrode and TiO2 layer due to the migration of oxygen ions and electrons. However, current level analysis of devices reveals that the forming process method basically leads to the formation of conducting paths inside the TiO2 layers. The electrical device properties of the two different structures, the effects of compliance currents, and the operation voltages are also analyzed.

  17. Enhancement of photoinduced electrical properties of Al-doped ZnO/BiFeO3 layered thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Katayama, Takeshi; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2015-10-01

    Polycrystalline BiFeO3 and Al-doped ZnO/BiFeO3 bilayered thin films were prepared on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Their photoinduced electrical properties under blue light irradiation were characterized. The rapid on/off response of the photocurrent to light in unpoled BiFeO3 (BFO) and Al-doped ZnO/BiFeO3 (AZO/BFO) thin films was demonstrated. The AZO/BFO layered film exhibited an approximately triple-digit larger photocurrent in comparison with a BFO single-layer film. This is attributable to the photoexcited carrier generation effect at the interface between AZO (n-type) and BFO (p-type) films. Furthermore, in the AZO/BFO layered structure, the direction of the internal bias electric field caused by the space charge distribution in the unpoled BFO film is the same as that of the built-in electric field by forming a p-n junction of AZO and BFO layers. Photovoltaic properties were also improved by fabricating such a layered film. On the other hand, when the placement of BFO to AZO was reversed, the photoelectric current decreased to approximately one-tenth of that of the BFO single-layer film. In the BFO/AZO film, the internal electric field at the p-n junction between BFO and AZO is considered to have an orientation opposite to the self-bias field formed in the BFO film.

  18. [Comparison of screens and screen-film-systems (author's transl)].

    PubMed

    Maurer, H J; Goos, F

    1979-06-01

    Important details are to be payed attention in comparison of different scrreens resp. screen-film-systems: 1. Physical characteristics of different groups of luminescent materials: f.i. calcium tung-state, rare-earths compounds, double halogenides. - 2. Different types of screens: highest details up to highest speed intensifying screens, have to be defined more specifically and differentiated against to each other too. - 3. Besides intensification, resolution has to be included into consideration since one of these dates alone does not allow any statement on the total function of a screen or a screen-film-system. - 4. The technical methodological conditions of apparatuses, object and its positioning have to be defined, f.i. X-ray quality, distances, grid, and in automatically controlled exposition, if necessary, position of ionization chamber as well as absorption of cassetts and screen. - 5. Considering these points gradation curves have to include the whole necessary or interesting diagnostic range. - 6. Due to functional correlation between intensification and resolution, the resolution has to be taken in consideration due to application; its interdependence of density and object (f.i. scattered radiation) is often not taken enough in consideration. PMID:461776

  19. Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy

    NASA Astrophysics Data System (ADS)

    Sarraf, M.; Zalnezhad, E.; Bushroa, A. R.; Hamouda, A. M. S.; Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A. R.

    2014-12-01

    In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.

  20. Same Initial States Attack in Yang et al.'s Quantum Private Comparison Protocol and the Improvement

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Liu, Chao; Liu, Zhi-Hao; Liu, Jing-Fa; Geng, Huan-Tong

    2014-01-01

    In Yang et al.'s literatures (J. Phys. A: Math. 42, 055305, 2009; J. Phys. A: Math. 43, 209801, 2010), a quantum private comparison protocol based on Bell states and hash function is proposed, which aims to securely compare the equality of two participants' information with the help of a dishonest third party (TP). However, this study will point out their protocol cannot resist a special kind of attack, TP's same initial states attack, which is presented in this paper. That is, the dishonest TP can disturb the comparison result without being detected through preparing the same initial states. Finally, a simple improvement is given to avoid the attack.

  1. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  2. The chemisorption of H2O, HCOOH and CH3COOH on thin amorphous films of Al2O3

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Weinberg, W. H.; Mosesman, M.

    1974-01-01

    Investigation of the irreversible chemisorption of water, formic acid and acetic acid on a thin amorphous aluminum oxide film, using inelastic tunneling spectroscopy. All of the tunnel junctions employed were Al-Al2O3-Pb junctions with the adsorbate on the Al2O3 surface between the Al2O3 and the Pb electrode. The results obtained include the finding that all Al2O3 surfaces prepared by oxidation of Al have free CH groups present on them.

  3. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Sanden, M. C. M. van de

    2008-02-01

    In situ spectroscopic ellipsometry (SE) was applied to study the pyramidlike and pillarlike growth of Al doped ZnO (AZO) films deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition for transparent conductive oxide applications. Real time SE studies in the visible region allowed discerning between the two growth modes by addressing the time evolution of the bulk and surface roughness layer thickness. While the pillarlike mode is characterized by a constant growth rate, a slower rate in the initial stage (up to 150-200 nm film thickness), compared to the bulk, is observed for the growth of pyramidlike AZO films. The two modes differ also in terms of surface roughness development: a saturation behavior is observed for film thickness above 150-200 nm in the case of the pyramidlike films, while a slow linear increase with film thickness characterizes the pillarlike mode. By extending the SE analysis of the AZO films to the near infrared region, valuable information about the in grain properties could be extracted: excellent in grain mobility values, i.e., larger than 100 and 50 cm{sup 2}/V s, are determined for the pyramidlike and pillarlike AZO layers, respectively. The comparison between the outcome of the in situ real time SE studies and the ex situ electrical and chemical characterization highlights the limitations in the electron transport occurring in both types of films and allows one to address routes toward further improvement in AZO conductivity.

  4. [Cathodoluminescent characteristics of green-emitting ZnAl2O4:Mn thin film phosphors].

    PubMed

    Lou, Zhi-dong; Xu, Zheng; Yi, Lan-jie; Yang, Sheng-yi

    2008-06-01

    Green electroluminescence was obtained from thin films of ZnAl2O4: Mn prepared by rf magnetron sputtering onto thick insulating ceramic sheets. Photoluminescence and stress-stimulated luminescence was obtained for Mn-doped ZnAl2O4 powder synthesized by the solid phase reaction. Since it is extremely stable chemically and thermally, ZnAl2O4 may emerge as an alternative choice to sulphide-based phosphors. In the present paper, thin films of ZnAl2O4: Mn were grown on aluminosilicate ceramic plates using spray pyrolysis of aqueous solutions. The cathodoluminescence (CL) properties of the films under low to medium excitation voltage (<5 kV) were investigated. The films exhibited green CL after being annealed at temperatures above 550 degrees C, which corresponds to the transition between 4 T1 and (6)A1 of Mn2+ ions located in the tetra coordination of the Zn2+ site in the spinel structure. The chromaticity coordinates were x = 0.150 and y = 0.734 with a dominant wavelength of 525 nm and an 82% color purity. The CL luminance and efficiency depended on the excitation voltage and current density. Saturation effects were observed as the current density increased. A luminance of 540 cd x m(-2) and an efficiency of 4.5 lm x W(-1) were obtained at an excitation voltage of 4 kV with a current density of 38 microA x cm(-2). PMID:18800691

  5. Ion-beam-assisted deposition of Al films with strong preferential orientation

    NASA Astrophysics Data System (ADS)

    Susumu, Masaki; Hiroshi, Kobayashi; Hiroshi, Morisaki

    1991-07-01

    Preferential crystal orientation of Al films deposited under simultaneous argon-ion irradiation has been investigated by changing both the ion-to-atom arrival rate ratio (ion-atom ratio) and the ion energy. The intensity of the <111> reflection, I(111), obtained from X-ray diffraction shows a drastic increase with ion irradiation, although the effect on other reflection peaks such as I(200) is only slight. The intensity ratio I(111)/I(200), a parameter for the electromigration resistance of Al films, has shown the highest value at a certain optimum ion-atom ratio. This optimum ion-atom ratio for each ion energy is found to shift toward lower values with increasing ion energy. Under the optimum conditions, the average ion energy per neutral atom after cascade collisions is found to be about 1.2 eV irrespective of the primary ion energy, which is comparable with the energy for the self-diffusion of Al (1.4 eV). The electrical measurements have shown that the resistivity of Al films increases considerably with simultaneous ion irradiation, however, it recovers to a level comparable with that of unassisted films by annealing at 400° C.

  6. Structural and Magnetic Properties of Fe Films Electrodeposited on Al Substrates

    NASA Astrophysics Data System (ADS)

    Mebarki, M.; Layadi, A.; Khelladi, M. R.; Azizi, A.; Tiercelin, N.; Preobrazhensky, V.; Pernod, P.

    2016-07-01

    Series of Fe films have been prepared by electrodeposition in a solution of iron chloride onto Al substrate. Different deposition times were used in the elaboration process. The texture, the strain, and the grain size values were derived from X-ray diffraction experiments. Scanning electron microscopy (SEM) has been used to get the surface and the cross section images. Vibrating Sample magnetometer has been used to obtain the hysteresis curves; the external magnetic field was applied in different directions in the film plane, and also perpendicular to the film. Hysteresis curves have been obtained at low temperatures [120 K (-153 °C) to room temperature]. The <100> texture, small strain, and grain size ranging from 58 to 113 nm are found for these Fe/Al films. All samples show an in-plane magnetic anisotropy, with no preferred orientation within the film plane. Depending on the film thickness range, different mechanisms have been found to be responsible for the coercive field H C behavior. These magnetic properties are correlated with the structural ones and with the SEM observations.

  7. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  8. Effect of B content on structure and magnetic properties of FeCoB-Al2O3 nanogranular films

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Zhang, Xudong; Li, Jiangong; Tian, Qiang; Kou, Xinli

    2011-07-01

    The effect of B content on the structure, soft magnetic properties, and high frequency characteristics of as-deposited FeCoB-Al2O3 nanogranular films fabricated by radio frequency magnetron co-sputtering was studied in this work. The introduction of B into the FeCo-Al2O3 films leads to a refinement of granular microstructure. The FeCoB-Al2O3 nanogranular films consist of the FeCoB nanoparticles uniformly embedded in the amorphous Al2O3 matrix. An addition of a small amount of B into the FeCo-Al2O3 films can markedly decrease the coercivity of the films. The excellent magnetic softness with a low coercivity of about 0.08 kA/m was achieved in the FeCoB-Al2O3 films. The Henkel plots confirm the existence of intergranular exchange coupling in the FeCoB-Al2O3 films. The FeCoB-Al2O3 films with low B content exhibit a high permeability over 200 at low frequency and a high-resonance frequency of 3.2 GHz, implying a high cut-off frequency for high frequency applications.

  9. Effect of In/Al ratios on structural and optical properties of InAlN films grown on Si(100) by RF-MOMBE

    PubMed Central

    2014-01-01

    In x Al1-x N films were deposited on Si(100) substrate using metal-organic molecular beam epitaxy. We investigated the effect of the trimethylindium/trimethylaluminum (TMIn/TMAl) flow ratios on the structural, morphological, and optical properties of In x Al1-x N films. Surface morphologies and microstructure of the In x Al1-x N films were measured by atomic force microscopy, scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM), respectively. Optical properties of all films were evaluated using an ultraviolet/visible/infrared (UV/Vis/IR) reflection spectrophotometer. XRD and TEM results indicated that In x Al1-x N films were preferentially oriented in the c-axis direction. Besides, the growth rates of In x Al1-x N films were measured at around 0.6 μm/h in average. Reflection spectrum shows that the optical absorption of the In x Al1-x N films redshifts with an increase in the In composition. PMID:24855462

  10. Zn/Al complex-SWCNT ink for transparent and conducting homogeneous films by scalable bar coating method

    NASA Astrophysics Data System (ADS)

    Kukobat, Radovan; Hayashi, Takuya; Matsuda, Takafumi; Sunaga, Motoo; Sakai, Toshio; Futamura, Ryusuke; Kaneko, Katsumi

    2016-04-01

    It is shown that the viscosity of SWCNT inks is essential to produce highly homogeneous SWCNT films on the PET substrate with bar coating method. The Zn/Al complex-aided SWCNT ink has a viscosity threshold of 1.30 mPa s for the preparation of homogeneous films. The local flows of the film are suppressed above this viscosity, allowing homogeneous film formation. The Zn/Al complex dispersant can be easily removed from SWCNTs coated on PET by 1 M HNO3, giving a pure SWCNT film with the sheet resistance of 150 ohm/sq and transmittance of 90% at 550 nm immediately after HNO3 treatment.

  11. Grain growth in thin Al films during deposition from partially ionized vapor

    NASA Astrophysics Data System (ADS)

    Gusev, I. V.; Mokhniuk, A. A.

    2016-07-01

    Grain growth in thin Al films during deposition from partially ionized vapor flux with simultaneous self-ion bombardment was studied in this work. The films were deposited at constant ion energy of 940 eV and total specific power of 0.4 W/cm2 while the deposition time t of 6 s to 246 s and the resulting substrate temperature (Ts/Tm of 0.35-0.96) were varied. Thin continuous Al films exhibited normal grain growth through the entire experimental range of deposition time without limitation of grain growth by the film thickness effect. Three kinetic stages of the grain growth were observed within 100 s of deposition time: the first one exhibits very slow grain growth, accelerated grain growth occurs in the second stage and then it rapidly changes to a retardation and stagnation mode in the third stage. Large average grain sizes Dg up to 11.3 μm at film thickness of 1.4 μm and integral grain growth rates up to 0.16 μm/s were observed in this study. The experimental results were evaluated against various mechanisms of inhibition of grain growth. An estimate of the effective activation energy of the grain growth yields a value of 0.27 eV which is lower than that of the bulk Al and much higher than the activation energy of surface self-diffusion on (1 1 1)Al monocrystal. The power law Dg = (k t)0.5 gives good match with experimental results in the initial deposition phase preceding the grain growth retardation, while another model that is based on the grain size dependent pinning force adequately explains the entire grain size dependence on time. It is deemed both ion enhanced film/surface interaction and impurities on one side and thermal grooves on another side contribute to the rapid retardation of the grain grooves commencing the second growth stage.

  12. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  13. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    SciTech Connect

    Valenti, Ilaria; Valeri, Sergio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  14. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200 °C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.2–21.5 MV/m), Schottky emission (23.6–39.5 MV/m), Frenkel-Poole emission (63.8–211.8 MV/m), trap-assisted tunneling (226–280 MV/m), and Fowler-Nordheim tunneling (290–447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  15. Industrial Application of Thin Films (TiAl)N Deposited on Thermo-Wells

    SciTech Connect

    Velez, G.; Jaramillo, S.; Arango, Y. C.; Devia, D.; Quintero, J.; Devia, A.

    2006-12-04

    The thermo-well is formed by two layers, one layer is a ceramic and the other layer is anviloy (comprised tungsten). They are used to coat the thermocouple in the control temperature system during the Aluminum-Silicon alloy melting process. After two weeks of continuous work at 750 deg. C of temperature (the alloy temperature), a high wear in this material is observed, affecting the ceramic. (TiAl)N thin films are deposited directly on the anviloy substrates by the PAPVD (Plasma Assisted Physics Vapor Deposition) in arc pulsed technique, using a TiAl target in a mono-vaporizer system, composed by a reactor and a power controlled system. Two opposite electrodes are placed into the reactor and discharge is produced by a controlled power system. The XRD (X-ray diffraction) patterns show the presence of the (TiAl)N thin film peaks. The morphological characteristics are studied by the scanning probe microscopy (SPM)

  16. Magnetic damping and spin polarization of highly ordered B2 Co2FeAl thin films

    NASA Astrophysics Data System (ADS)

    Cui, Yishen; Lu, Jiwei; Schäfer, Sebastian; Khodadadi, Behrouz; Mewes, Tim; Osofsky, Mike; Wolf, Stuart A.

    2014-08-01

    Epitaxial Co2FeAl films were synthesized using the Biased Target Ion Beam Deposition technique. Post annealing yielded Co2FeAl films with an improved B2 chemical ordering. Both the magnetization and the Gilbert damping parameter were reduced with increased B2 ordering. A low damping parameter, ˜0.002, was attained in B2 ordered Co2FeAl films without the presence of the L21 Heusler phase, which suggests that the B2 structure is sufficient for providing low damping in Co2FeAl. The spin polarization was ˜53% and was insensitive to the chemical ordering.

  17. Magnetization Dynamics Through Magnetoimpedance Effect in Isotropic Co2FeAl/Au/Co2FeAl Full-Heusler Alloy Trilayer Films

    NASA Astrophysics Data System (ADS)

    Assolin Corrêa, Marcio; Montardo Escobar, Vivian; Trigueiro-Neto, Osvaldo; Bohn, Felipe; Daiane Sossmeier, Kelly; Gomes Bezerra, Claudionor; Chesman, Carlos; Pearson, John; Hoffmann, Axel

    2013-09-01

    We investigate the magnetization dynamics in low damping parameter α systems by measuring the magnetoimpedance effect over a wide range of frequencies, from 0.1 to 3.0 GHz, in Co2FeAl/Au/Co2FeAl full-Heusler alloy trilayer films grown by magnetron sputtering on glass and MgO substrates. We show that the film produced on the glass substrate presents high magnetoimpedance performance, while that grown on the MgO substrate has low magnetoimpedance performance. Since both films are polycrystalline and have isotropic in-plane magnetic properties, we interpret the magnetoimpedance results in terms of the low damping parameter α and strain effects in the films. Thus, we verified that our films present good magnetoimpedance performance and showed that high performance can be achieved even in films with isotropic in-plane magnetic properties, since they present low damping parameter α.

  18. Near-bandedge cathodoluminescence of an AlN homoepitaxial film

    NASA Astrophysics Data System (ADS)

    Silveira, E.; Freitas, J. A.; Kneissl, M.; Treat, D. W.; Johnson, N. M.; Slack, G. A.; Schowalter, L. J.

    2004-05-01

    Cathodoluminescence experiments were performed on a high-quality AlN epitaxial film grown by organometallic vapor phase epitaxy on a large single crystal AlN substrate. The low-temperature near-bandedge spectra clearly show six very narrow lines. The thermal quenching behavior of these emission lines provides insight on how to assign them to free and bound exciton recombination processes. The binding energy for the free-exciton-A in AlN was found to be nearly twice that in GaN. The observation of the free-exciton-A first excited state permitted us to estimate its reduced effective mass and, by using recent reported values for the hole effective mass in Mg-doped AlN, the electron effective mass in AlN has been deduced.

  19. Spontaneous lateral phase separation of AlInP during thin film growth and its effect on luminescence

    SciTech Connect

    Mukherjee, Kunal; Fitzgerald, Eugene A.; Norman, Andrew G.; Akey, Austin J.; Buonassisi, Tonio

    2015-09-21

    The occurrence of spontaneous lateral phase separation during thin film growth of Al{sub x}In{sub 1−x}P by metal-organic chemical vapor deposition was investigated using a combination of transmission electron microscopy and atom probe tomography to obtain a quantitative view of this phenomenon. An anisotropic and coherent composition modulation was observed in the nearly lattice-matched films deposited below 750 °C with a quasi-linear amplification with thickness that was inversely proportional to the growth temperature. The periodicity of the modulation increased exponentially with the growth temperature. A comparison of photoluminescence from phase separated and homogenous direct band gap Al{sub x}In{sub 1−x}P deposited on metamorphic In{sub y}Ga{sub 1−y}As graded buffers showed a lowering of peak-emission energy in accordance with the atom probe compositional characterization without any degradation in luminous intensity. Additionally, indications of carrier trapping in the low band gap regions were observed even at room-temperature. While some of these results are in qualitative agreement with theoretical models of kinetic instability in unstrained alloy growth in the literature, significant discrepancies remain.

  20. Comparative studies of CdS, CdS:Al, CdS:Na and CdS:(Al-Na) thin films prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Yılmaz, S.; Atasoy, Y.; Tomakin, M.; Bacaksız, E.

    2015-12-01

    In the present study, the spray pyrolysis technique was used to prepare pure CdS, 4 at.% Al-doped CdS, 4 at.% Na-doped CdS and (4 at.% Al, 4 at.% Na)-co-doped CdS thin films. It was found from X-ray diffraction data that all the specimens showed hexagonal wurtzite structure with the preferred orientation of (101). Scanning electron microscopy results indicated that 4 at.% Al-doping caused a grain growth in the morphology of CdS thin films whereas the 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping led to porous structure with small grains. The band gap value of CdS thin films increased to 2.42 eV after 4 at.% Al-doping. However, it reduced to 2.30 eV and 2.08 eV for 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping, respectively. The room temperature photoluminescence measurements illustrated that the peak intensity of CdS thin films enhanced with 4 at.% Al-doping while 4 at.% Na-doping and (4 at.% Al, 4 at.% Na)-co-doping caused a decline in the intensity. The maximum carrier concentration and minimum resistivity were obtained for 4 at.% Al-doped CdS thin films, which is associated with the grain growth. Furthermore, (4 at.% Al, 4 at.% Na)-co-doping gave rise to a slight reduction in the carrier concentration and a slight increment in the resistivity. As a result, it can be said that 4 at.% Al-doped CdS thin films exhibited the best electrical and optical properties, which is important for the opto-electronic applications.

  1. Epitaxial growth and in situ ARPES of ultrathin YbAl3 thin films

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shouvik; Schlom, Darrell; Shen, Kyle

    YbAl3 is a well-known intermediate valence compound that shows emergence of Fermi liquid behavior below a coherence temperature of ~34K - 40K. Transport, thermodynamic and photoemission measurements have established limitations of Single Impurity Anderson model in describing this material system, suggesting the importance of lattice effects. However, microscopic mechanisms underlying these properties are yet to be properly understood, one reason being that the direct experimental determination of its electronic band structure is still lacking. In this talk I will present our recent efforts in stabilizing thin films of YbAl3 and insitu angle-resolved photoemission spectroscopy (ARPES) of these films. With the aid of an Al buffer layer crystalline, phase pure and fully oriented epitaxial thin films can be grown with sub-nm surface roughness. By using ARPES, we, for the first time have been able to map out its band structure and Fermi surface. Moreover, by growing ultra thin films we have been able to drive this material system towards its 2D limit. Evolution of its electronic structure with temperature and dimensionality will be discussed.

  2. Developing new manufacturing methods for the improvement of AlF3 thin films.

    PubMed

    Lee, Cheng-Chung; Liao, Bo-Huei; Liu, Ming-Chung

    2008-05-12

    In this research, the plasma etching mechanism which is applied to deposit AlF(3) thin films has been discussed in detail. Different ratios of O(2) gas were injected in the sputtering process and then the optical properties and microstructure of the thin films were examined. The best optical quality and smallest surface roughness was obtained when the AlF(3) thin films were coated with O(2):CF(4) (12 sccm:60 sccm) at 30 W sputtering power. To increase the deposition rate for industrial application, the sputtering power was increased to 200 W with the best ratio of O(2)/CF(4) gas. The results show that the deposition rate at 200W sputtering power was 7.43 times faster than that at 30 W sputtering power and the extinction coefficients deposited at 200 W are less than 6.8 x 10(-4) at the wavelength range from 190 nm to 700 nm. To compare the deposition with only CF(4) gas at 200 W sputtering power, the extinction coefficient of the thin films improve from 4.4 x 10(-3) to 6 x 10(-4) at the wavelength of 193 nm. In addition, the structure of the film deposited at 200W was amorphous-like with a surface roughness of 0.8 nm. PMID:18545394

  3. Growth dynamics of reactive-sputtering-deposited AlN films

    SciTech Connect

    Auger, M.A.; Vazquez, L.; Sanchez, O.; Jergel, M.; Cuerno, R.; Castro, M.

    2005-06-15

    We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films are homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent {beta}=0.37{+-}0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent {alpha}=1.2{+-}0.2 and {beta}=0.37{+-}0.03 and coarsening exponent 1/z=0.32{+-}0.05; (ii) local exponents: {alpha}{sub loc}=1, {beta}{sub loc}=0.32{+-}0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.

  4. Effect of stacking sequence on crystallization in Al/a-Ge bilayer thin films

    SciTech Connect

    Zhang, Tianwei; Zhang, Weilin; Ma, Fei E-mail: kwxu@mail.xjtu.edu.cn; Huang, Yuhong; Xu, Kewei E-mail: kwxu@mail.xjtu.edu.cn

    2014-05-15

    Two types of bilayer thin films with different deposition sequences, i.e., amorphous Ge under Al (a-Ge/Al) and the inverse (Al/a-Ge), were prepared by magnetron sputtering at room temperature. In-situ and ex-situ thermal annealing were compared to study the effect of the stacking sequence on crystallization of amorphous Ge. Although metal-induced crystallization occurred in both cases at low temperature, layer exchange was observed only in a-Ge/Al. In fact, compressive stress could usually be produced when Ge atoms diffused into Al grain boundaries and crystallized there. In the a-Ge/Al system, the stress could be released through diffusion of Al atoms onto the surface and formation of hillocks. Thus, grain boundary (GB) mediated crystallization was dominant in the whole process and layer exchange occurred. However, in the Al/a-Ge system, it was difficult for stress to be relaxed because the Ge sublayer and substrate restricted the diffusion of Al atoms. GB-mediated crystallization was, therefore, considerably suppressed and interface-mediated crystallization was preferred without layer exchange. This leads to distinct morphologies of dendrites in the two systems.

  5. Effect of film thickness on structural and mechanical properties of AlCrN nanocompoite thin films deposited by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prakash, Ravi; Kaur, Davinder

    2016-05-01

    In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with different deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.

  6. Mechanical and corrosion properties of Al/Ti film on magnesium alloy AZ31B

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Jiang, Ke; Li, Shuo-Qi; Zhang, Fen; Cui, Hong-Zhi; Han, En-Hou

    2015-03-01

    Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the Mg/Al/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively. The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210°C. The diffusion mechanism of the interfaces of Mg/Al and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HTat a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.

  7. Effect of substrate roughness on c-oriented AlN thin films

    NASA Astrophysics Data System (ADS)

    Artieda, Alvaro; Barbieri, Michela; Sandu, Cosmin Silviu; Muralt, Paul

    2009-01-01

    (001)-textured AlN thin films as needed for bulk acoustic wave devices exhibit large mechanical stress variations as a function of growth substrate properties. We studied the relationship between stress and the surface morphology of a thermally oxidized silicon substrate that was modified by a thin amorphous silicon layer. A rms roughness of 0.1-1.1 nm of the latter resulted in an increase in mechanical stress in the subsequently sputtered AlN thin film going from -700 to +200 MPa. At the same time, the x-ray rocking curve width of AlN increased from 1.3° to 2.3°. The roughness of the Si interlayer was controlled by the Ar sputter pressure. Interestingly, the maximal roughness is obtained at an intermediate pressure. This is explained by an interplay of nucleation and diffusion phenomena governed by the kinetics of impinging atoms and ions. The Si interlayer was essential to avoid cracking of membranes exhibiting mixed Pt and SiO2 surfaces below the AlN film.

  8. Effects of hydrogen ambient and film thickness on ZnO:Al properties

    SciTech Connect

    Duenow, Joel N.; Gessert, Timothy A.; Wood, David M.; Dillon, Anne C.; Coutts, Timothy J.

    2008-07-15

    Undoped ZnO and ZnO:Al (0.1, 0.2, 0.5, 1.0, and 2.0 wt. % Al{sub 2}O{sub 3}) films were deposited by rf magnetron sputtering. Controlled incorporation of H{sub 2} in the Ar sputtering ambient for films grown at substrate temperatures up to 200 deg. C results in mobilities exceeding 50 cm{sup 2} V{sup -1} s{sup -1} when using targets containing 0.1 and 0.2 wt. % Al{sub 2}O{sub 3}. Temperature-dependent Hall measurements show evidence of phonon scattering as the dominant scattering mechanism in these lightly Al-doped films, while ionized impurity scattering appears increasingly dominant at higher doping levels. A combination of compositional and structural analysis shows that hydrogen expands the ZnO lattice normal to the plane of the substrate and desorbs from ZnO at {approx}250 deg. C according to temperature-programmed desorption and annealing experiments.

  9. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  10. Interaction of oxygen with samarium on Al{sub 2}O{sub 3} thin film grown on Ni{sub 3}Al(111)

    SciTech Connect

    Cheng, Dingling; Xu, Qian E-mail: jfzhu@ustc.edu.cn; Han, Yong; Ye, Yifan; Pan, Haibin; Zhu, Junfa E-mail: jfzhu@ustc.edu.cn

    2014-03-07

    The interaction between oxygen and samarium (Sm) on the well-ordered thin Al{sub 2}O{sub 3} film grown on Ni{sub 3}Al(111) has been investigated by X-ray photoelectron spectroscopy and synchrotron radiation photoemission spectroscopy. At Sm coverage higher than one monolayer, exposure of oxygen to the Sm films at room temperature leads to the formation of both samarium peroxide (O{sub 2}{sup 2−}) states and regular samarium oxide (O{sup 2−}) states. By contrast, when exposing O{sub 2} to Sm film less than one monolayer on Al{sub 2}O{sub 3}, no O{sub 2}{sup 2−} can be observed. Upon heating to higher temperatures, these metastable O{sub 2}{sup 2−} states dissociate, supplying active O atoms which can diffuse through the Al{sub 2}O{sub 3} thin film to further oxidize the underlying Ni{sub 3}Al(111) substrate, leading to the significant increase of the Al{sub 2}O{sub 3} thin film thickness. Therefore, it can be concluded that Sm, presumably in its peroxide form, acts as a catalyst for the further oxidation of the Ni{sub 3}Al substrate by supplying the active oxygen species at elevated temperatures.

  11. Microstructural dependence of annealing temperature in magnetron-sputtered Al-Si-Cu films

    NASA Astrophysics Data System (ADS)

    Liang, Ming-Kaan; Ling, Yong-Chien

    1993-09-01

    The effect of sputtering temperature, sputtering bias, and annealing temperature upon the sheet resistance, WO3 formation at the Al-Si-Cu/Ti-W interface, and diffraction intensity of the Al2Cu precipitates of magnetron-sputtered Al-Si-Cu films were investigated. Statistical methods and microcharacterization techniques were applied to study these effects. Statistical analysis verifies the effect of annealing temperature on the measured sheet resistance. Annealing temperature alone is the dominant factor upon the WO3 formation at the Al-Si-Cu/Ti-W interface and the Al2Cu (211) plane diffraction intensity. Annealed samples are of higher sheet resistance. Increase in sheet resistance is ascribed to the formation of interfacial WO3. Reduced electromigration is related to the formation of Al2Cu precipitates. Secondary ion mass spectrometry (SIMS) analysis of the as-deposited sample depicts the presence of an excess amount of oxygen atoms at the surface and the Al-Si-Cu/Ti-W and Ti-W/Ti interfaces. Rutherford backscattering spectrometry and SIMS analyses reveal the outdiffusion of W from the Ti-W layer toward the Al-Si-Cu layer, the presence of Si nodules at the Al-Si-Cu/Ti-W interface, and the formation of Ti silicides at the Ti/Si interface. These phenomena are confirmed by transmission electron microscopy, energy dispersive x-ray analysis, and scanning electron microscopy analyses. It is concluded that interfacial oxygen, which reacts with W to form WO3 upon annealing, warrants further reduction to yield films of better sheet resistance.

  12. Nano porous Al2O3-TiO2 thin film based humidity sensor prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandrashekara, H. D.; Angadi, Basavaraj; Ravikiran, Y. T.; Poornima, P.; Shashidhar, R.; Murthy, L. C. S.

    2016-05-01

    The nano porous surface structured TiO2 and Al2O3-TiO2 thin films were prepared using spray pyrolysis technique at 350°C. The XRD pattern of Al2O3-TiO2 film shows anatase phase and mixed phase of Al2TiO5. The surface morphology of films show a uniformly distributed nano porous structure. The elemental analysis through EDAX shows good stoichiometry. The sensitivity for humidity sensing were determined for both films of TiO2 and Al2O3-TiO2 and corresponding values are found to be 74.2% and 84.02%, this result reveal that Al2O3-TiO2 films shows higher sensing percent than the TiO2 due to the nano porous surface nature. The Al2O3-TiO2 film shows fast response time and long recovery time than the TiO2 film, this may be due to the meso-porous morphology of these films.

  13. Epitaxial growth and orientation of AlN thin films on Si(001) substrates deposited by reactive magnetron sputtering

    SciTech Connect

    Valcheva, E.; Birch, J.; Persson, P. O. A ring .; Tungasmita, S.; Hultman, L.

    2006-12-15

    Epitaxial domain formation and textured growth in AlN thin films deposited on Si(001) substrates by reactive magnetron sputtering was studied by transmission electron microscopy and x-ray diffraction. The films have a wurtzite type structure with a crystallographic orientation relationship to the silicon substrate of AlN(0001)(parallel sign)Si(001). The AlN film is observed to nucleate randomly on the Si surface and grows three dimensionally, forming columnar domains. The in-plane orientation reveals four domains with their a axes rotated by 15 deg. with respect to each other: AlN<1120>(parallel sign)Si[110], AlN<0110>(parallel sign)Si[110], AlN<1120>(parallel sign)Si[100], and AlN<0110>(parallel sign)Si[100] An explanation of the growth mode based on the large lattice mismatch and the topology of the substrate surface is proposed.

  14. Reliability and microstructure of Al-Si-V-Pd alloy films for use in ultralarge scale integration

    NASA Astrophysics Data System (ADS)

    Dirks, A. G.; Augur, R. A.

    1994-02-01

    New data on a highly reliable interconnect material based on aluminum will be presented. As compared with conventional Al-Si-Cu alloy films, quaternary Al-Si-V-Pd films with only 0.1 at. % vanadium and 0.1 at. % palladium combine excellent plasma etchability with good corrosion resistance. Electromigration tests of Al-Si-V-Pd films have shown a surprisingly high stability at 180 °C. Studies of microstructural attributes show: (a) for Al-Si-V-Pd relative to Al-Si, texture is not significantly changed and average grain size is slightly increased, and (b) the dominant factor leading to a highly stable microstructure is the combined presence of finely dispersed, small precipitates of both (Al,V) and (Al,Pd) phases.

  15. Magnetic and resistance measurements on boron-doped and undoped Ni(3)Al thin films*

    NASA Astrophysics Data System (ADS)

    Henry, L. L.; Patterson, Edward C.

    2000-03-01

    We report preliminary results of magnetization and I-V measurements of the effects of boron doping on the magnetic and electron transport properties of Ni3Al thin films. Magnetization and resistance measurements in magnetic fields up to 5 T were performed on 500 Ånominal) thick films that were fabricated by ion beam sputtering of compound targets. Both a doped ( ~200 ppm B) and undoped film were investigated. For the boron-doped film, the magnetization is enhanced with a broad transition that occurs in several stages over the temperature range from 27 K to 56 K. Further, as the temperature is increased through the transition range dM/dT fluctuates between negative and positive values, and the magnetization changes from positive to negative near T = 52 K. Results of I-V measurements performed on the samples with the current in the plane of the film, and an applied magnetic field parallel to the plane of the film, are consistent with these results. *Work supported by the LEQSF and the Dept. of Physics, Southern U. and A&M College, Baton Rouge campus.

  16. Investigation of thermal atomic layer deposited TiAlX (X = N or C) film as metal gate

    NASA Astrophysics Data System (ADS)

    Xiang, Jinjuan; Zhang, Yanbo; Li, Tingting; Wang, Xiaolei; Gao, Jianfeng; Yin, Huaxiang; Li, Junfeng; Wang, Wenwu; Ding, Yuqiang; Xu, Chongying; Zhao, Chao

    2016-08-01

    TiAlX (X = N or C) films are developed by thermal atomic layer deposition (ALD) technique as metal gate. The TiAlX films are deposited by using four different combinations of precursors: A: TiCl4-NH3-TMA-NH3, B: TiCl4-TMA-NH3, C: TiCl4-NH3-TMA and D: TiCl4-TMA. The physical characteristics of the TiAlX films such as chemical composition, growth rate, resistivity and surface roughness are estimated by X-ray photoemission spectroscopy, scanning electron microscope, four point probe method and atomic force microscopy respectively. Additionally, the electrical characteristics of the TiAlX films are investigated by using metal-oxide-semiconductor (MOS) capacitor structure. It is shown that NH3 presence in the reaction makes the film more like TiAlN(C) while NH3 absence makes the film more like TiAlC. The TiAlC film deposited by TiCl4-TMA has effective work function close to mid-gap of Si, which is rather potential for low power FinFET device application.

  17. Structural and electrical properties of ternary Ru-AlN thin films prepared by plasma-enhanced atomic layer deposition

    SciTech Connect

    Shin, Yu-Ri; Kwack, Won-Sub; Park, Yun Chang; Kim, Jin-Hyock; Shin, Seung-Yong; Moon, Kyoung Il; Lee, Hyung-Woo; Kwon, Se-Hun

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Ru-AlN thin films were grown by plasma-enhanced atomic layer deposition (PEALD). Black-Right-Pointing-Pointer Structural properties were systematically investigated by XRD, BF-STEM and EDX. Black-Right-Pointing-Pointer A drastic decrease in resistivity was due to the microstructural change of the films. -- Abstract: Ruthenium-aluminum-nitride (Ru-AlN) thin films were grown by plasma-enhanced atomic layer deposition (PEALD) at 300 Degree-Sign C. The Ru intermixing ratio of Ru-AlN thin films was controlled by the number of Ru unit cycles, while the number of AlN unit cycles was fixed to one cycle. The electrical resistivity of Ru-AlN thin film decreased with increasing the Ru intermixing ratio, but a drastic decrease in electrical resistivity was observed when the Ru intermixing ratio was around 0.58-0.78. Bright-field scanning transmission electron microscope (BF-STEM) and energy-dispersive X-ray spectroscopy (EDX) element mapping analysis revealed that the electrical resistivity of Ru-AlN thin film was strongly dependent on the microstructures as well as on the Ru intermixing ratio. Although the electrical resistivity of Ru-AlN thin films decreased with increasing the Ru intermixing ratio, a drastic decrease in electrical resistivity occurred where the electrical paths formed as a result of the coalescence of Ru nanocrystals.

  18. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  19. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  20. Co2FeAl films with perpendicular magnetic anisotropy in multilayer structure

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Xu, X. G.; Yin, S. Q.; Zhang, D. L.; Miao, J.; Jiang, Y.

    2011-01-01

    We have fabricated Co2FeAl (CFA) films with perpendicular magnetic anisotropy (PMA) in a (Co2FeAl/Ni)6 multilayer structure. The effects of underlayer Cu thickness (tCu), Co2FeAl thickness (tCFA) and Ni thickness (tNi) on the magnetic properties have been studied. The PMA is realized with a large anisotropy energy density K = 3.7×106 ergs/cm3, a high squareness Mr/Ms = 1 and a small perpendicular coercivity Hc = 60 Oe, while tCu, tCFA and tNi are 9 nm, 0.2 nm and 0.6 nm respectively. The PMA remains after 300 °C annealing, which demonstrates better thermal stability of the (Co2FeAl/Ni)6 multilayer than that of (Co/Ni)n.

  1. Properties of AlF3 and LaF3 films at 193nm

    NASA Astrophysics Data System (ADS)

    Xue, Chunrong; Shao, Jianda

    2010-10-01

    In order to develop low loss, high-performance 193nm Fluoride HR mirrors and anti-reflection coatings, LaF3 and AlF3 materials, used for a single-layer coating, were deposited by a molybdenum boat evaporation process. Various microstructures that formed under different substrate temperatures and with deposition rates were investigated. The relation between these microstructures (including cross section morphology, surface roughness and crystalline structure), the optical properties (including refractive index and optical loss) and mechanical properties (stress) were investigated. Furthermore, AlF3 used as a low-index material and LaF3 used as a high-index material were designed and deposited for multilayer coatings. Transmittance, reflectance, stress, and the laser-induced damage threshold (LIDT) were studied. It is shown that AlF3 and LaF3 thin films, deposited on the substrate at a temperature of 300 °C, obtained good quality thin films with high transmittance and little optical loss at 193 nm. For multilayer coatings, the absorption mainly comes from LaF3. Based on these studies, The thickness of 193nm films was controled by a 1/3 baffle with pre-coating technology. the LaF3/AlF3 AR coantings and HR mirrors at 193nm were designed and deposited. Under the present experimental conditions, the reflectance of LaF3/AlF3 HR mirror is up to 96%, and its transmittance is 1.5%. the LaF3/AlF3 AR coanting's residual reflectance is less than 0.14%, and single-sided transmittance is 93.85%. To get a high-performance 193nm AR coating, super-polished substrate is the best choice.

  2. Study on XRDK Optical and Electrical performance of Transparent Conducting ZnO:Al(ZAO) Thin Films

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Cheng-hai, Xu; Li-shi, Wen

    2011-02-01

    The ZAO (ZnO: Al) thin films were prepared by DC reactive magnetron sputtering technique. The XRD electrical and optical properties of films are particular investigated. The results show that ZAO films are polycrystalline hexagonal wurtzite structure, and we are not find Al2O3 crystal phase. At the same time, we gained the high quality ZAO films with the minimum resistivuty of 4.5×10-4 Ω · cm, the transmittance in visible region above 80% and the reflectivity in IR region above 70%.

  3. Electrochemical hydrogen storage in LaNi{sub 4.25}Al{sub 0.75} alloys: A comparative study between film and powder materials

    SciTech Connect

    Wang, Z.M. Li, Chi Ying Vanessa; Zhou Huaiying; Liu Shi; Chan, S.L.I.

    2008-04-15

    A comparison is made of the electrochemical and structural properties of LaNi{sub 4.25}Al{sub 0.75} alloys in thin film and powder forms. X-ray diffraction (XRD) revealed that both the LaNi{sub 4.25}Al{sub 0.75} thin film and powder materials are crystalline. Atomic force microscopy (AFM) and focused ion beam microscopy (FIB) proved that the film appeared to have a hill-like surface morphology, but was rather dense with a thickness of about 4.2 {mu}m. Simulated battery tests indicate that both exhibit similar electrochemical behavior, possibly due to their crystal structure, as it requires a primary activation to reach its fully active state. However it took a longer activation period for the film to be activated; an apparent initial decrease of charging voltage with cycle number was observed, as were abnormal discharge processes during activation. After 30 charge/discharge cycles, small needle-shaped aluminium oxide particles were formed on both the powder and film surfaces.

  4. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    NASA Astrophysics Data System (ADS)

    Slusar, Tetiana; Cho, Jin-Cheol; Kim, Bong-Jun; Yun, Sun Jin; Kim, Hyun-Tak

    2016-02-01

    We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT) of vanadium dioxide (VO2) thin films synthesized on aluminum nitride (AlN)/Si (111) substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010) ‖ AlN (0001) with VO2 [101] ‖ AlN [ 2 1 ¯ 1 ¯ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ˜130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  5. Thermal conductivity of PVD TiAlN films using pulsed photothermal reflectance technique

    NASA Astrophysics Data System (ADS)

    Ding, Xing-Zhao; Samani, M. K.; Chen, George

    2010-11-01

    In the present work, we have measured thermal-conductivity of industrial thin film TiAlN with a thickness of around 3 μm. These films are used in machining industry for cutting tools in order to increase their service life. A series of TiAlN coating with a different Al/Ti atomic ratio were deposited on Fe-304 stainless steel (AISI304) substrate by a lateral rotating cathode arc process. The samples were then coated with a 0.8 μm gold layer on top by magnetron sputtering. We present the thermal-conductivity measurement of these samples using pulsed photothermal reflectance (PPR) technique at room temperature. The thermal conductivity of the pure TiN coating is about 11.9 W/mK. A significant decrease in thermal conductivity was found with increasing Al/Ti atomic ratio. A minimum thermal conductivity of about 4.63 W/mK was obtained at the Al/Ti atomic ratio of around 0.72.

  6. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Kim, Kyunghun; Park, Seonuk; Jeong, Yong Jin; Kim, Haekyoung; Chung, Dae Sung; Kim, Se Hyun; Park, Chan Eon

    2014-05-14

    Organic electronic devices require a passivation layer that protects the active layers from moisture and oxygen because most organic materials are very sensitive to such gases. Passivation films for the encapsulation of organic electronic devices need excellent stability and mechanical properties. Although Al2O3 films obtained with plasma enhanced atomic layer deposition (PEALD) have been tested as passivation layers because of their excellent gas barrier properties, amorphous Al2O3 films are significantly corroded by water. In this study, we examined the deformation of PEALD Al2O3 films when immersed in water and attempted to fabricate a corrosion-resistant passivation film by using a PEALD-based Al2O3/TiO2 nanolamination (NL) technique. Our Al2O3/TiO2 NL films were found to exhibit excellent water anticorrosion and low gas permeation and require only low-temperature processing (<100 °C). Organic thin film transistors with excellent air-stability (52 days under high humidity (a relative humidity of 90% and a temperature of 38 °C)) were fabricated. PMID:24712401

  7. The in-plane anisotropic magnetic damping of ultrathin epitaxial Co2FeAl film

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Yan, Wei; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2015-08-01

    The in-plane orientation-dependent effective damping of ultrathin Co2FeAl film epitaxially grown on GaAs(001) substrate by molecular beam epitaxy (MBE) has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co2FeAl thin films.

  8. Properties of AlN films deposited by reactive ion-plasma sputtering

    SciTech Connect

    Bert, N. A.; Bondarev, A. D.; Zolotarev, V. V.; Kirilenko, D. A.; Lubyanskiy, Ya. V.; Lyutetskiy, A. V.; Slipchenko, S. O.; Petrunov, A. N.; Pikhtin, N. A. Ayusheva, K. R.; Arsentyev, I. N.; Tarasov, I. S.

    2015-10-15

    The properties of SiO{sub 2}, Al{sub 2}O{sub 3}, and AlN dielectric coatings deposited by reactive ion-plasma sputtering are studied. The refractive indices of the dielectric coatings are determined by optical ellipsometry. It is shown that aluminum nitride is the optimal material for achieving maximum illumination of the output mirror of a semiconductor laser. A crystalline phase with a hexagonal atomic lattice and oxygen content of up to 10 at % is found by transmission electron microscopy in the aluminum-nitride films. It is found that a decrease in the concentration of residual oxygen in the chamber of the reactive ion-plasma sputtering installation makes it possible to eliminate the appearance of vertical pores in the bulk of the aluminum-nitride film.

  9. Microstructural evolution of Al-Cu thin-film conducting lines during post-pattern annealing

    NASA Astrophysics Data System (ADS)

    Kang, S. H.; Morris, J. W., Jr.

    1997-07-01

    This work reports a statistical analysis of the evolution of polygranular segment lengths during high-temperature annealing of Al(Cu) thin-film interconnects with quasi-bamboo microstructures. To create samples of Al(Cu) lines that could be imaged by transmission electron microscopy without breaking or thinning, the lines were deposited on electron-transparent silicon nitride films (the "silicon nitride window" technique). The microstructures of the lines were studied as a function of annealing time and temperature. In particular, the distribution of polygranular segment lengths was measured. The results show that the longer polyglranular segments are preferentially eliminated during post-pattern annealing. As a consequence, the segment-length distribution narrows monotonically during annealing, and changes in shape. The preferential loss of the longest polygranular segments leads to a dramatic increase in resistance to electromigration failure.

  10. The adsorption of water on Cu2O and Al2O3 thin films

    SciTech Connect

    Deng, Xingyi; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-06-27

    The initial stages of water condensation, approximately 6 molecular layers, on two oxide surfaces, Cu{sub 2}O and Al{sub 2}O{sub 3}, have been investigated by using ambient pressure X-ray photoelectron spectroscopy at relative humidity values (RH) from 0 to >90%. Water adsorbs first dissociatively on oxygen vacancies producing adsorbed hydroxyl groups in a stoichiometric reaction: O{sub lattic} + vacancies + H{sub 2}O = 2OH. The reaction is completed at {approx}1% RH and is followed by adsorption of molecular water. The thickness of the water film grows with increasing RH. The first monolayer is completed at {approx}15% RH on both oxides and is followed by a second layer at 35-40% RH. At 90% RH, about 6 layers of H{sub 2}O film have been formed on Al{sub 2}O{sub 3}.

  11. Physical characterization of thin ALD-Al 2O 3 films

    NASA Astrophysics Data System (ADS)

    Jakschik, Stefan; Schroeder, Uwe; Hecht, Thomas; Krueger, Dietmar; Dollinger, Guenther; Bergmaier, Andreas; Luhmann, Claudia; Bartha, Johann W.

    2003-04-01

    Aluminum oxide was deposited using atomic layer deposition on either a silicon oxide or a silicon nitride interface. Water vapor or ozone were used as oxidation precursors. The structural properties of these films were investigated by time-of-flight secondary-ion-mass-spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and elastic recoil detection (ERD). Special attention was given to contamination issues of the film and the interface, bonding conditions and temperature influence on diffusion. The results suggest that the silicon most likely diffused along grain boundaries of polycrystalline Al 2O 3. Carbon and hydrogen were located at the interface and furthermore hydrogen diffused out of the film to some extent due to anneal. Carbon content in the layer was reduced when using O 3 as an oxidant. The formation of metallic aluminum clusters was not observed for any of the investigated process conditions.

  12. Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods.

    PubMed

    Crossingham, Yazmin J; Kerr, Philip G; Kennedy, Ross A

    2014-10-01

    Sodium alginate (SA) is a naturally occurring, non-toxic, polysaccharide that is able to form gels after exposure to calcium. These gels have been used in food and biomedical industries. This is the first direct comparison of two different methods of calcium alginate film production, namely interfacial gelation (IFG) and dry cast gelation (DCG). IFG films were significantly thicker than DCG films, and were more extensively rehydrated in water and 0.1M HCl than the DCG films. During rehydration in 0.1M HCl almost all calcium ions were lost. Under scanning electron microscopy, IFG films appeared less dense than DCG films. IFG films were mechanically weaker than DCG films, and both types of film were weaker after rehydration in 0.1M HCl compared with deionized water. Permeation of theophylline (TPL) was evaluated in-vitro; the diffusion coefficient (D) of the TPL was almost 90 times lower in DCG films than IFG films when both were rehydrated in water. Although the 0.1M HCl rendered both gels more permeable to TPL, D of TPL was still about five times lower in DCG compared to IFG films. The evaluation of selected physico-chemical properties of films is important, since this information may inform the choice of gelation technique used to produce calcium alginate coatings on pharmaceutical products. PMID:24974988

  13. Kinetics of phase formation in binary thin films: The Ni/Al case

    SciTech Connect

    Garcia, V.H.; Mors, P.M.; Scherer, C.

    2000-03-14

    The growth and/or dissociation of the intermetallic phases which are produced by interdiffusion in metallic thin film multilayers is studied by an approach based on a concentration-dependent diffusivity. No assumption is made on the a priori presence of seed layers of the phases that are expected to grow. Application to the Ni/Al system gives a good agreement with the experimental data reported in the literature.

  14. Chemical-Vapor (cvd) Aluminium Film on Steel Surface with the Disproportionation Reaction of Al2S

    NASA Astrophysics Data System (ADS)

    Wu, Guoyuan; Dai, Yongnian

    2011-06-01

    The filming on steel using the disproportionation reaction of sub-sulphide of Al was studied. The chemical vaporization depositions were realized using (2Al2O3+6C+Al2S3) or (4Al+Al2S3) as reaction mixture at 1100°C and the pressure of 5 Pa. It is indicated that the coating formed by evaporation of (2Al2O3+6C+Al2S3) consists of α-Fe and Al13Fe4, possesses thin diffusion layer and dark rough surface, and is resistant to solution of nitric acid with alcohol; But the coating formed by evaporation of (4Al+Al2S3) consists of Fe3Al and AlFe, and possesses thick diffusion layer and bright smooth surface.

  15. A Technical, User and Cost Comparison Study of Microfiche Duplicate Film Material. Final Report.

    ERIC Educational Resources Information Center

    Prevel, James J.

    A technical, user and cost comparison study was undertaken to provide the Educational Resources Information Clearinghouse (ERIC) staff with data on silver halide, diazo, and vesicular type films for microfiche duplication. This information will allow ERIC to determine if diazo and/or vesicular films should be considered in producing ERIC duplicate…

  16. Study on amorphous TiAlN films produced by radiofrequency reactive sputtering

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, L.; Morales-Hernandez, J.; Bartolo-Perez, J. P.; Ceh-Soberanis, O.; Munoz-Saldana, J.; Espinoza-Beltran, F. J.

    2004-06-01

    Using the reactive magnetron rf sputtering technique, we prepared TiAlN films with amorphous structure on Corning glass and steel substrates in a reactive atmosphere of nitrogen and argon using a target of Ti-Al (40/60 wt. %). The average temperature of the substrates was about 25degreesC, with the purpose of obtaining amorphous films. The ratio of partial pressure of nitrogen to argon, P-N/P-Ar, was varied according to these values: 0.14, 0.28, and 0.43; fixing these values during whole the evaporation. Further on, films were prepared introducing nitrogen in periodic pulses with maximum values of P-N/P-Ar approximate to 4.7 during 45 seconds, with fixed periods of 10, 15 and 20 minutes. In all cases amorphous films were obtained, according to X-ray Diffraction. The chemical composition of the samples was measured by electron dispersive spectroscopy, showing a clear dependence with the evaporation conditions. In spite of the amorphous structure of the material, atomic force microscopy measurements showed a surface morphology dependent on the nitrogen content. Additionally, measurements of electronic spectroscopy for chemical analysis and Raman scattering spectroscopy for identification of chemical bonds were carried out. Measurements of mechanical properties of the samples were carried out using nanoindentation and micro-hardness Vicker's tests.

  17. DLC and AlN thin films influence the thermal conduction of HPLED light

    NASA Astrophysics Data System (ADS)

    Hsu, Ming Seng; Hsu, Ching Yao; Huang, Jen Wei; Shyu, Feng Lin

    2015-08-01

    Thermal dissipation had an important influence in the effect and life of light emitting diodes (LED) because it enables transfer the heat away from electric device to the aluminum plate that can be used for heat removal. In the industrial processing, the quality of the thermal dissipation decides by the gumming technique between the PCB and aluminum plate. In this study, we fabricated double layer ceramic thin films of diamond like carbon (DLC) and alumina nitride (AlN) by vacuum sputtering soldered the substrate of high power light emitting diodes (HPLED) light to check the heat conduction. The ceramic dielectric coatings were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray photoelectron spectroscopy (XPS) patterns reveal those ceramic phases were successfully grown onto the substrate. The work temperatures show DLC and AlN films coating had limited the heat transfer by the lower thermal conductivity of these ceramic films. Obviously, it hadn't transferred heat and limited work temperature of HPLED better than DLC thin film only.

  18. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  19. Phase separations of amorphous CoW films during oxidation and reactions with Si and Al

    SciTech Connect

    Wang, S.Q.; Mayer, J.W.

    1989-03-01

    Reactions of thin Co/sub 55/ W/sub 45/ films in contact with Si(100) substrates and aluminum overlayers annealed in vacuum in the temperature ranges of 625--700 /sup 0/C and 500--600 /sup 0/C, respectively, and of thin Co/sub 55/W/sub 45/ films in air from 500 to 600 /sup 0/C were investigated by Rutherford backscattering spectrometry, glancing angle x-ray diffraction, and scanning electron microscope techniques. CoW alloy films were amorphous and have a crystallization temperature of 850 /sup 0/C on SiO/sub 2/ substrates. The compound formed is Co/sub 7/ W/sub 6/. Phase separations were found in all the reactions. A layer of cobalt compounds (CoSi/sub 2/ in Si/CoW, Co/sub 2/ Al/sub 9/ in CoW/Al, and Co/sub 3/ O/sub 4/ in CoW with air) was found to form at the reaction interfaces. In addition, a layer of mainly tungsten compounds (WSi/sub 2/ in Si/CoW, WAl/sub 12/ in CoW/Al, and WO/sub 3/ in CoW with air) was found next to cobalt compound layers, but further away from the reaction interfaces. The reactions started at temperatures comparable to those required for the formation of corresponding tungsten compounds.

  20. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, Darrel R.; Michael, Joseph R.; Romig, Jr., Alton D.

    1994-01-01

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200.degree. C. to 300.degree. C. for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H.sub.2 in N.sub.2 by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200.degree. C. and 300.degree. C. have .theta.-phase Al.sub.2 Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of .theta.-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the .theta.-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process.

  1. Microstructure control of Al-Cu films for improved electromigration resistance

    DOEpatents

    Frear, D.R.; Michael, J.R.; Romig, A.D. Jr.

    1994-04-05

    A process for the forming of Al-Cu conductive thin films with reduced electromigration failures is useful, for example, in the metallization of integrated circuits. An improved formation process includes the heat treatment or annealing of the thin film conductor at a temperature within the range of from 200 C to 300 C for a time period between 10 minutes and 24 hours under a reducing atmosphere such as 15% H[sub 2] in N[sub 2] by volume. Al-Cu thin films annealed in the single phase region of a phase diagram, to temperatures between 200 C and 300 C have [theta]-phase Al[sub 2] Cu precipitates at the grain boundaries continuously become enriched in copper, due, it is theorized, to the formation of a thin coating of [theta]-phase precipitate at the grain boundary. Electromigration behavior of the aluminum is, thus, improved because the [theta]-phase precipitates with copper hinder aluminum diffusion along the grain boundaries. Electromigration, then, occurs mainly within the aluminum grains, a much slower process. 5 figures.

  2. Defects in Mg doped (Al,In)GaN thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Shahedipour-Sandvik, Fatemeh

    2009-03-01

    Development of p-type (Al,In)GaN revolutionized the field of solid state lighting in the way that it was hard to imagine, development and introduction to market of light emitters in short period of time and tremendous amount of progress in other areas that was enabled by such development. Although many studies have been done to understand the defects related to Mg incorporation in epitaxially grown AlInGaN films, there are still many open questions. These include the relationship between the defects (type and density) and Mg incorporated and the electrical property of the film. An interesting open question is how optical characteristics of Mg doped (Al, In) GaN can predict its electrical property. In this presentation, we try to address this question. Recent advances in development of nanostructures based on III-nitrides include growth of high quality GaN nanowires. Although large body of work exists in growth and characterization of Si doped GaN nanowires the report work on Mg doped GaN is scarce. In the present work, we will discuss our recent progress in studying optical and electrical characteristics of Mg doped GaN nanowires and defect stabilization in nanostructure and thin films.[4pt] In collaboration with M. Reshchikov, Department of Physics, Virginia Commonwealth University, Richmond, VA 23284; N. Tripathi, B. J. Messer, and M. Tungare, College of Nanoscale Science and Engineering, UAlbany-State University of New York, Albany, NY 12203

  3. Effect of internal stresses and microstructure of sputtered TiN films on solid-phase reactions with Al-Si-Cu alloy films

    NASA Astrophysics Data System (ADS)

    Yamauchi, T.; Yamaoka, T.; Yashiro, K.; Sobue, S.

    1995-08-01

    Solid-phase reactions at the interface between Al-Si-Cu and reactively sputtered TiN thin films have been investigated by cross-sectional transmission electron microscopy, Auger electron spectroscopy, and x-ray diffraction. In the case in which the internal stress in the TiN thin film is extremely compressive at 209 MPa, a very thin amorphous Al-Ti-Si ternary compound layer (a-Al-Ti-Si) containing microcrystallites, about 4 nm thick, is found to form at the Al-Si-Cu/TiN interface by annealing at the temperature of 450 °C for 30 min. On the other hand, in the case of a minimally compressive stress of 21 MPa, it is in a marked contrast to form a polycrystalline TiAl3 layer (c-TiAl3) on the amorphous intermediate layer ununiformly. Behavior of the internal stress in the latter TiN film as a function of heating and cooling temperature shows nonlinear characteristics, indicating that a rearrangement of the TiN film actively occurs even at low temperatures below 300 °C. Monte Carlo simulations of internal microstructures based on a ballistic aggregation model suggest to us that a short migration length corresponding to the condition of low internal stress brings about numerous vacancies and disordered regions in the TiN films. It is considered that the rearrangement of the TiN films with a diffusion of Ti atoms governs the solid-phase reactions at the Al-Si-Cu/TiN interfaces and that the formation of the bilayer of c-TiAl3/a-Al-Ti-Si originates in phase separation of the resultant Al-Ti mixing layer.

  4. Epitaxial growth of homogeneous single-crystalline AlN films on single-crystalline Cu (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Lin, Yunhao; Zhou, Shizhong; Qian, Huirong; Gao, Fangliang; Yang, Hui; Li, Guoqiang

    2014-03-01

    The homogeneous and crack free single-crystalline AlN thin films have been epitaxially grown on single-crystalline Cu (1 1 1) substrates with an in-plane alignment of AlN [11-20]//Cu [1-10] by pulsed laser deposition (PLD) technology with an integrated laser rastering program. The as-grown AlN films are studied by spectroscopic ellipsometry, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), polarized light microscopy, high-resolution X-ray diffraction, and high-resolution transmission electron microscopy (HRTEM). The spectroscopic ellipsometry reveals the excellent thickness uniformity of as-grown AlN films on the Cu (1 1 1) substrates with a root-mean-square (RMS) thickness inhomogeneity less than 2.6%. AFM and FESEM measurements indicate that very smooth and flat surface AlN films are obtained with a surface RMS roughness of 2.3 nm. The X-ray reflectivity image illustrates that there is a maximum of 1.2 nm thick interfacial layer existing between the as-grown AlN and Cu (1 1 1) substrates and is confirmed by HRTEM measurement, and reciprocal space mapping shows that almost fully relaxed AlN films are achieved only with a compressive strain of 0.48% within ˜321 nm thick films. This work demonstrates a possibility to obtain homogeneous and crack free single-crystalline AlN films on metallic substrates by PLD with optimized laser rastering program, and brings up a broad prospect for the application of acoustic filters that require abrupt hetero-interfaces between the AlN films and the metallic electrodes.

  5. Surface Characteristics of Quasicrystal Thin Films of AlCuFe

    NASA Astrophysics Data System (ADS)

    Symko, Orest G.; Abdel-Rahman, Ehab; Emmi, Matthew; Zudova, Snezhana

    2000-03-01

    We have investigated the surface energy and surface structure of thin films of i-AlCuFe. Such films are important for applications and in particular for coatings. The films investigated ranged in thickness from 10 nm to 300 nm; they were deposited on various substrates such as sapphire, silicon, stainless steel, and others. The surface energy was determined by contact angle measurements using the drop method. Results show contact angles comparable to Teflon. Studies were extended to the surface structure using an Atomic Force Microscope at ambient conditions. Images show extremely smooth surfaces which at certain locations provide evidence for the icosahedral symmetries of the quasicrystal. Such images were enhanced by auto-correlation techniques thus revealing more clearly the symmetries at the surface of the films. Other techniques such as x-ray diffraction, TEM, XPS and ToF-SIMS were used to determine the quality of the quasicrystal films and the nature of the surface. This characterization is essential for biomedical applications of our QC coatings.

  6. Characteristics of nanocomposite ZrO2/Al2O3 films deposited by plasma-enhanced atomic layer deposition.

    PubMed

    Yun, Sun Jin; Lim, Jung Wook; Kim, Hyun-Tak

    2007-11-01

    Nanocomposite ZrO2/Al2O3 (ZAO) films were deposited on Si by plasma-enhanced atomic layer deposition and the film characteristics including interfacial oxide formation, dielectric constant (k), and electrical breakdown strength were investigated without post-annealing process. In both the mixed and nano-laminated ZAO films, the thickness of the interfacial oxide layer (T(IL)) was considerably reduced compared to ZrO2 and Al2O3 films. The T(IL) was 0.8 nm in nano-composite films prepared at a mixing ratio (ZrO2:Al2O3) of 1:1. The breakdown strength and the leakage current level were greatly improved by adding Al2O3 as little as 7.9% compared to that of ZrO2 and were enhanced more with increasing content of Al2O3. The k of ZrO2 and mixed ZAO (Al2O3 7.9%) films were 20.0 and 16.5, respectively. These results indicate that the addition of Al2O3 to ZrO2 greatly improves the electrical properties with less cost of k compared to the addition of SiO2. PMID:18047146

  7. Capping layer-tailored interface magnetic anisotropy in ultrathin Co2FeAl films

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Gabor, M. S.; Petrisor, T.; Zighem, F.; Chérif, S. M.; Tiusan, C.

    2015-01-01

    Co2FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of -0.46 erg/cm2 and 0.74 erg/cm2 for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  8. Deposition of nanocrystalline thin TiO2 films for MOS capacitors using Sol-Gel spin method with Pt and Al top electrodes

    NASA Astrophysics Data System (ADS)

    Rathee, Davinder; Kumar, Mukesh; Arya, Sandeep K.

    2012-10-01

    Nanocrystalline titanium dioxide (TiO2) films were deposited by Sol-Gel spin coating method on well clean P<1 0 0> Si substrate. Titanium isoproxide Ti(OC3H7O2)4 (TIP) was used as the Titania precursor. The thickness, composition, and surface morphology of the thin films were characterized using Stylus profilometer, X-ray diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscope (AFM). The crystallite sizes of the TiO2 grains were measured from the typical diffraction peaks and were found to be approximately 23-54 nm. The XRD pattern and Raman spectrum analysis of the deposited film confirmed the polymorphism nature of TiO2 thin films. After annealing at high temperature; the phase transition, improvement in crystallinity, structure and property of the films were being observed. The six Raman peaks were analyzed at 145 cm-1, 199 cm-1, 397 cm-1, 516 cm-1 (doublet) and 637 cm-1 corresponding to active mode of anatase phase. Capacitance-Voltage (C-V) measurement analysis was performed to obtain various devices and process parameters. Metal Oxide Semiconductor (MOS) capacitors with Pt and Al as the top electrode were fabricated to explore electrical characteristics. The refractive index by ellipsometry was found 2.36 and dielectric constant was calculated as 58. In this study, the comparison of the leakage current for TiO2 thin films fabricated by various methods has also been reported.

  9. Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co{sub 2}FeAl films

    SciTech Connect

    Cui, Yishen; Khodadadi, Behrouz; Schaefer, Sebastian; Mewes, Tim; Lu, Jiwei; Wolf, Stuart A.

    2013-04-22

    B2-ordered Co{sub 2}FeAl films were synthesized using an ion beam deposition tool. A high degree of chemical ordering {approx}81.2% with a low damping parameter ({alpha}) less than 0.004 was obtained in a 50 nm thick film via rapid thermal annealing at 600 Degree-Sign C. The perpendicular magnetic anisotropy (PMA) was optimized in ultra thin Co{sub 2}FeAl films annealed at 350 Degree-Sign C without an external magnetic field. The reduced thickness and annealing temperature to achieve PMA introduced extrinsic factors thus increasing {alpha} significantly. However, the observed damping of Co{sub 2}FeAl films was still lower than that of Co{sub 60}Fe{sub 20}B{sub 20} films prepared at the same thickness and annealing temperature.

  10. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.

    PubMed

    Bai, Zhijun; Filiaggi, M J; Sanderson, R J; Lohstreter, L B; McArthur, M A; Dahn, J R

    2010-02-01

    Systematic studies of protein adsorption onto metallic biomaterial surfaces are generally lacking. Here, combinatorial binary library films with compositional gradients of Ti(1-x)Cr(x), Ti(1-x)Al(x), Ti(1-x)Ni(x) and Al(1-x)Ta(x), (0 Al(1-y)Zr(y) (0 < y <0.5) as well as corresponding pure metal films were sputtered onto clean Si surfaces. Bulk and surface chemistry, film microstructure, and surface roughness were subsequently correlated to fibrinogen or albumin adsorption measured using a high throughput wavelength dispersive spectroscopy technique. X-ray diffraction revealed these binary films to have crystalline phases present primarily at either extreme of the compositional library and an amorphous zone dominating along the gradient. These mirror-like films were generally found by atomic force microscopy to have a roughness of less than 8 nm, with any relative increases in roughness consistent with the development of crystalline phases. Surface chemistry by quantitative high-resolution X-ray photoelectron spectroscopy differed significantly from bulk film composition as measured by electron microprobe, with TiO(2) and Al(2)O(3) preferentially forming on the binary film surfaces. Correspondingly, protein adsorption onto these films closely correlated with their surface oxide fractions. Aluminum deposited as either a constant-composition film or as part of a binary library consistently adsorbed the least amount of albumin and fibrinogen, with alumina-enrichment of the surface oxide correlating with this adsorption. Overall, this combinatorial materials approach coupled with high-throughput surface analytical methods provides an efficient method of screening potential metallic biomaterials that may enable as well systematic studies of surface properties driving protein adsorption on these metal / metal oxide systems. PMID:19235218

  11. Ferromagnetism studies of Cu-doped and (Cu, Al) co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Yang, H. L.; Xu, X. G.; Miao, J.; Jiang, Y.

    2011-01-01

    We have studied the room temperature ferromagnetism (FM) in Cu-doped and (Cu, Al) co-doped ZnO thin films which were grown on quartz substrates by chemical method based on a sol-gel process combining with spin-coating technology. X-ray diffraction (XRD) patterns demonstrate that both the Cu-doped and (Cu, Al) co-doped ZnO films have the hexagonal wurtzite structure with c-axis orientation. Alternating Gradient Magnetometer (AGM) measurements confirm that all the doped ZnO samples are ferromagnetic at room temperature. When the doped Cu content is 1 %, the Cu-doped ZnO film has the strongest FM. The FM significantly decreases in the (Cu, Al) co-doped ZnO films. The doping of Al ions suppresses the FM induced by the doped Cu ions.

  12. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization

    NASA Astrophysics Data System (ADS)

    Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W.

    2016-02-01

    In this study, pure ZnO and Al-doped ZnO thin films were developed on glass by sol-gel process followed by drying and annealing in air at 170 and 400 °C, respectively. The surface morphology and structural characteristics were determined through scanning electron microscopy, atomic force microscopy and X-ray diffraction. The Fourier transform infrared spectroscopy validated the formation of Al-doped ZnO film on glass substrate. It was evaluated that 1 at% aluminum (Al) doping in ZnO film showed low electrical resistivity and higher charge carrier concentration due to uniformly dispersed regular shape crystallites as compared to pure ZnO and 2 at% `Al'-doped thin films.

  13. Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition

    SciTech Connect

    Pollock, Evan B. Lad, Robert J.

    2014-07-01

    Aluminum-doped zinc oxide (AZO) films were deposited onto amorphous silica substrates using an atomic layer deposition process with diethyl zinc (DEZ), trimethyl aluminum (TMA), and deionized water at 200 °C. Three different Al doping sequences were used at a ZnO:Al ratio of 11:1 within the films. A minimum film resistivity of 1.6 × 10{sup −3} Ω cm was produced using sequential dosing of DEZ, TMA, DEZ, followed by H{sub 2}O for the Al doping step. This “ZAZW” sequence yielded an AZO film resistivity that is independent of film thickness, crystallographic texture, and grain size, as determined by high resolution x-ray diffraction (XRD). A pseudo-Voigt analysis method yields values for grain sizes that are smaller than those calculated using other XRD methods. Anisotropic grain sizes or variations in crystallographic texture have minimal influence on film resistivity, which suggests that factors other than film texture, such as intragrain scattering, may be important in influencing film resistivity.

  14. Effect Of Process Gas Mixture On Reactively DC Magnetron Sputtered (Al1_xSix)OyNz Thin Films

    NASA Astrophysics Data System (ADS)

    Bjornard, Erik

    1989-02-01

    (A1 1-x Si x )0yNz films have properties which make them desirable as durable overcoats and corrosion barriers in optical thin film structures. (Al, Si )O N films were reactively DC sputtered from Al, Si targets (x = 0.0, 0.117, 0.30) in Ar/N2/O2 atmospheres. Nitride films had sputter efficiencies three times that of the oxides and ESCA analysis of the films showed that the film composition varied non-linearly with reactive gas ratio and sputter rate, incorporating more oxygen than nitrogen for a given gas flow. This behavior is correlated with the hysteresis curves for the oxide and nitride states. Optical properties of the films were also found to vary with index dropping disproportionately to the 0/(0+N) flow ratio, but linearly with the ratio of atomic percent of 0 and N in the films. Durability properties of (A1 1_x Si x)0 NZ films were tested at several compositions. It was found that with high nitrogen context the wear resistance increased with Si content and the oxides were generally less wear resistant than the nitrides. The corrosion resistance also increased with Si content, but in this case, the oxides were generally more stable. Film stress became more compressive with 0 and Si content. Analysis of ESCA binding energy data indicates that the Si forms alumino-silicate bonds in the film, which apparently contributes to the durability properties.

  15. Single dominant distribution of Ge nanogranule embedded in Al oxide thin film

    SciTech Connect

    Abe, Seishi; Ohnuma, Shigehiro; Ohnuma, Masato; Ping, D. H.

    2008-11-15

    This paper investigates size distribution of Ge nanogranules embedded in Al oxide thin film prepared by rf reactive sputtering method. It is found from the results of x-ray diffraction and small angle x-ray diffraction spectroscopy that their mean sizes distribute bimodally or single dominantly with respect to sputtering process parameter of additional oxygen ratio in Ar and Ge concentrations. Compositional plane of these distribution types reveals that single dominant distribution appears along the line of stoichiometric composition of Al{sub 2}O{sub 3}, and deviation from stoichiometry results in bimodal distribution. Thus, size uniformity of Ge nanogranules seems to be enhanced when the Al oxide matrix forms stoichiometric composition.

  16. Structural properties of ZnO:Al films produced by the sol–gel technique

    SciTech Connect

    Zaretskaya, E. P. Gremenok, V. F.; Semchenko, A. V.; Sidsky, V. V.; Juskenas, R. L.

    2015-10-15

    ZnO:Al films are produced by sol–gel deposition at temperatures of 350–550°C, using different types of reagents. Atomic-force microscopy, X-ray diffraction analysis, Raman spectroscopy, and optical transmittance measurements are used to study the dependence of the structural, morphological, and optical properties of the ZnO:Al coatings on the conditions of deposition. The optical conditions for the production of ZnO:Al layers with preferred orientation in the [001] direction and distinguished by small surface roughness are established. The layers produced in the study possess optical transmittance at a level of up to 95% in a wide spectral range and can be used in optoelectronic devices.

  17. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    PubMed Central

    2011-01-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz. PMID:22136081

  18. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates.

    PubMed

    Wang, Xianghu; Li, Rongbin; Fan, Donghua

    2011-01-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices.PACS: 88.40.jp; 73.40.Lq; 73.50.Pz. PMID:22136081

  19. Nanostructured Al-ZnO/CdSe/Cu2O ETA solar cells on Al-ZnO film/quartz glass templates

    NASA Astrophysics Data System (ADS)

    Wang, Xianghu; Li, Rongbin; Fan, Donghua

    2011-12-01

    The quartz/Al-ZnO film/nanostructured Al-ZnO/CdSe/Cu2O extremely thin absorber solar cell has been successfully realized. The Al-doped ZnO one-dimensional nanostructures on quartz templates covered by a sputtering Al-doped ZnO film was used as the n-type electrode. A 19- to 35-nm-thin layer of CdSe absorber was deposited by radio frequency magnetron sputtering, coating the ZnO nanostructures. The voids between the Al-ZnO/CdSe nanostructures were filled with p-type Cu2O, and therefore, the entire assembly formed a p-i-n junction. The cell shows the energy conversion efficiency as high as 3.16%, which is an interesting option for developing new solar cell devices. PACS: 88.40.jp; 73.40.Lq; 73.50.Pz.

  20. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition

    PubMed Central

    2013-01-01

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology. PMID:23537274

  1. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface. PMID:20355462

  2. Determination of the Lifetime of a Double-Oxide Film in Al Castings

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mahmoud Ahmed; Salem, Hanadi A. G.; Kandeil, Abdelrazek Youssef; Griffiths, W. D.

    2014-08-01

    One of the most important casting defects in Al alloys is thought to be the double-oxide film defect (bifilm) which has been reported to have a deleterious effect on the reproducibility of the mechanical properties of Al castings. Previous research has suggested that the atmosphere inside such bifilms could be consumed by reaction with the surrounding melt, which might decrease the size of the defects and reduce their harmful effect on mechanical properties. In order to follow the change in the composition of the interior atmosphere of a bifilm, analog air bubbles were held inside Al alloy melts, for varying lengths of time, and subjected to stirring, followed by solidification. The bubble contents were then analyzed using a mass spectrometer to determine the changes in their compositions with time. The results suggested that initially oxygen and then nitrogen inside the bubble were consumed, and hydrogen dissolved in the melt diffused into the bubble. The consumption rates of O and N as well as the rate of H diffusion were dependent upon the type of oxide, which was dependent on the alloy composition. The reaction rates were the fastest with MgO (in an Al-5Mg alloy), slower with alumina (in commercial-purity Al alloy), and the slowest with MgAl2O4 spinel (in an Al-7Si-0.3Mg alloy). It was estimated that the times required for typical bifilm defects in the different alloys to lose their entire oxygen and nitrogen contents were about 345 seconds (~6 minutes), in the case of Al-5Mg; 538 seconds (~9 minutes), in the case of a commercial purity alloy; and 1509 seconds (~25 minutes), in the case of the Al-7Si-0.3Mg alloy (2L99) due to the different oxides that the different alloys would be expected to form.

  3. Properties of LaAlO Film after Waterless Process Using Organic Solvent Containing Anhydrous Hydrofluoric Acid

    NASA Astrophysics Data System (ADS)

    Masatomo Honjo,; Naoyoshi Komatsu,; Takuro Masuzumi,; Hidemitsu Aoki,; Daisuke Watanabe,; Chiharu Kimura,; Takashi Sugino,

    2010-04-01

    Lanthanum (La)-based oxide films have been studied as high-k (high dielectric constant) gate dielectrics. However, moisture absorption is a serious problem for oxide films containing La. We have attempted to use waterless solutions instead of water-based solutions to remove high-k films to suppress the moisture absorption of the lanthanum aluminate (LaAlO) film. We report the effect of an anhydrous hydrofluoric acid (AHF) and isopropyl alcohol (IPA) mixed solution as an etching solution and hydrofluoro-ether (HFE) as a rising solution on the properties of LaAlO films. We have succeeded in suppressing the moisture absorption of LaAlO films by using waterless solutions for a front end of line (FEOL) process. In addition, the selectivity (LaAlO/SiO2), the etching ratio of LaAlO to SiO2, was improved using this process. It is considered that this technology will be useful for the next-generation devices with lanthanum-based oxide films.

  4. Enhanced adhesion and conductivity of Cu electrode on AlN substrate for thin film thermoelectric device

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxiong; Chen, Xin; Deng, Yuan; Wang, Yao; Gao, Hongli; Zhu, Wei; Cao, Lili; Luo, Bingwei; Zhu, Zhixiang; Ma, Guang; Han, Yu

    2015-02-01

    The Cu thin film electrode grown on aluminum nitride (AlN) substrate is widely used in the thin film thermoelectric devices due to its high electrical conductivity. We have developed a new type of buffer layer by co-sputtering Ti and Cu forming Ti-Cu layer. The Ti-Cu layer was sputtered on the Ti buffered AlN substrate so that the adhesion and electrical conductivity properties of the Cu film electrode on AlN substrate could be improved. The interface between the thin films and the substrate were characterized by the scanning electron microscope (SEM). Nanoscratch tests were conducted on a nanomechanical test system to investigate the adhesion between the Cu film electrodes and AlN substrate. Meanwhile, accelerated ageing test under thermal cycling was conducted to evaluate the reliability of the thin film electrode. The results show that the adhesion and the reliability of Cu film electrode on AlN substrate have been greatly improved by employing Ti-Cu/Ti buffer layers.

  5. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  6. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-06-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage (C-V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage (R-V) characteristics of variable-area photodiodes. The minority carrier lifetime, C-V characteristics, and R-V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  7. Co-Sputtered and Rapid-Thermal-Annealed CIAS Thin Films Using CuSe2/ln/Al Triple Targets of Varying Ln/Al Compositions.

    PubMed

    Kim, Nam-Hoon; Jun, Young-Kil; Lee, Woo-Sun

    2016-02-01

    The 20.9% conversion efficiency of I-III-VI chalcopyrite-based solar cells, the highest in the world, makes them promising candidates for high-efficiency thin film solar cells. However, Ga is one of the most expensive rare materials with the critical degradation in device efficiency. Cu(ln(1-X)Al(X))Se2 (CIAS) is considered an alternative to Cu(ln(1-X)Ga(X))Se2 because of its good structural suitability and the low cost of Al. CIAS thin films were formed using triple targets of CuSe2/ln/Al in a co-sputtering system to control the composition ratio, x = [Al]/([ln]+[Al), by varying each RF power for In/Al with rapid thermal annealing. The chalcopyrite peaks shifted toward higher 2theta as x increased. The CIAS thin films had 74.24-86.81% absorption with band gap, Eg, of 2.28-2.50 eV in the 400-1600 nm range. A low resistivity of 1.1 x 10(-2) omega(-cm) was obtained in the CIAS thin films with x of 0.74. PMID:27433625

  8. The feasibility of Sn, In, or Al doped ZnSb thin film as candidates for phase change material

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Shen, Xiang; Wang, Guoxiang; Xu, Tiefeng; Wang, Rongping; Dai, Shixun; Nie, Qiuhua

    2016-07-01

    The potentials of Sn, In, or Al doped ZnSb thin film as candidates for phase change materials have been studied in this paper. It was found that the Zn-Sb bonds were broken by the addition of the dopants and homopolar Zn-Zn bonds and other heteropolar bonds, such as Sn-Sb, In-Sb, and Al-Sb, were subsequently formed. The existence of homopolar Sn-Sn and In-In bonds in Zn50Sb36Sn14 and Zn41Sb36In23 films, but no any Al-Al bonds in Zn35Sb30Al35 film, was confirmed. All these three amorphous films crystallize with the appearance of crystalline rhombohedral Sb phase, and Zn35Sb30Al35 film even exhibits a second crystallization process where the crystalline AlSb phase is separated out. The Zn35Sb30Al35 film exhibits a reversible phase change behavior with a larger Ea (˜4.7 eV), higher Tc (˜245 °C), better 10-yr data retention (˜182 °C), less incubation time (20 ns at 70 mW), and faster complete crystallization speed (45 ns at 70 mW). Moreover, Zn35Sb30Al35 film shows the smaller root-mean-square (1.654 nm) and less change of the thickness between amorphous and crystalline state (7.5%), which are in favor of improving the reliability of phase change memory.

  9. High-temperature oxidation resistant (Cr, Al)N films synthesized using pulsed bias arc ion plating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Lin, Guoqiang; Lu, Guoying; Dong, Chuang; Kim, Kwang Ho

    2008-09-01

    (Cr, Al)N films were deposited by pulsed bias arc ion plating on HSS and 316L stainless steel substrates. With pulsed substrate bias ranging from -100 V to -500 V, the effect of pulsed bias on film composition, phase structure, deposition rate and mechanical properties was investigated by EDX, XRD, SEM, nanoindentation and scratch measurements. The high-temperature (up to 900 °C) oxidation resistance of the films was also evaluated. The results show that Al contents and deposition rates decrease with increasing pulsed bias and the ratio of (Cr + Al)/N is almost constant at 0.95. The as-deposited (Cr, Al)N films crystallize in the pseudo-binary (Cr, Al)N and Al phases. The film hardness increases with increasing bias and reaches the maximum 21.5 GPa at -500 V. The films deposited at -500 V exhibit a high adhesion force, about 70 N, and more interestingly good oxidation resistance when annealed in air at 900 °C for 10 h.

  10. Impact of graphene–graphite films on electrical properties of Al2O3 metal–insulator–semiconductor structure

    NASA Astrophysics Data System (ADS)

    Choi, Kyeong-Keun; Kee, Jong; Park, Chan-Gyung; Kim, Deok-kee

    2016-08-01

    The diffusion barrier property of directly grown graphene–graphite films between Al2O3 films and Si substrates was evaluated using metal–insulator–semiconductor (MIS) structures. The roughness, morphology, sheet resistance, Raman spectrum, chemical composition, and breakdown field strength of the films were investigated after rapid thermal annealing. About 2.5-nm-thick graphene–graphite films effectively blocked the formation of the interfacial layer between Al2O3 films and Si, which was confirmed by the decreased breakdown field strength of graphene–graphite film structures. After annealing at 975 °C for 90 s, the increase in the mean breakdown field strength of the structure with the ∼2.5-nm-thick graphene–graphite film was about 91% (from 8.7 to 16.6 MV/cm), while that without the graphene–graphite film was about 187% (from 11.2 to 32.1 MV/cm). Si atom diffusion into Al2O3 films was reduced by applying the carbon-based diffusion barrier.

  11. Thermal protection of H13 steel by growth of (TiAl)N films by PAPVD pulsed arc technique

    SciTech Connect

    Jimenez, H.; Devia, D.M.; Benavides, V.; Devia, A. Arango, Y.C.; Arango, P.J.; Velez, J.M.

    2008-08-15

    (TiAl)N Films were grown on H13 steel by a plasma assisted repetitive pulsed arc discharge. To grow the coatings, a TiAl sintered cathode was used, 50% Ti-50% Al. The deposition system consists of a reaction chamber with two electrodes placed face to face. A pulsed power supply, which allows for control of parameters like time active arc, time between arcs, arc energy, and others, is used to generate the discharge. Thermal changes were carried out on H13 steel before and after growing the (TiAl)N films. X-ray diffraction (XRD) was employed to study the coatings, observing the H13 steel and (TiAl)N oxidation temperature. Morphological characteristics were analyzed by means of an Atomic Force Microscopy (AFM). Scanning electron microscopy (SEM) revealed the surface chemical composition of the films and morphological details of the samples.

  12. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  13. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  14. Characteristics of AZO thin films prepared at various Al target input current deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Hae; Park, Chang-Wook; Lee, Jin-Woo; Lee, Dong Myung

    2015-03-01

    Transparent conductive oxide is a thin film to be used in numerous applications throughout the industry in general. Transparent electrode materials used in these industries are in need of light transmittance with excellent high and low electrical characteristics, substances showing the most excellent physical properties while satisfying all the characteristics such as indium tin oxide film. However, reserves of indium are very small, there is an environmental pollution problem. So the study of zinc oxide (ZnO) is actively carried out in an alternative material. This study analyzed the characteristics by using a direct current (DC) magnetron sputtering system. The electric and optical properties of these films were studied by Hall measurement and optical spectroscopy, respectively. When the Al target input current is 2 mA and 4 mA, it demonstrates about 80% transmittance in the range of the visible spectrum. Also, when Al target input current was 6 mA, sheet resistance was the smallest on PET substrate. The minimum resistivity is 3.96×10-3 ohm/sq.

  15. Microstructure and cathodoluminescence study of sprayed Al and Sn doped ZnS thin films

    NASA Astrophysics Data System (ADS)

    El Hichou, A.; Addou, M.; Bubendorff, J. L.; Ebothé, J.; El Idrissi, B.; Troyon, M.

    2004-02-01

    Here we report on the study of ZnS and X-doped ZnS (with 4 at% of X = Al, Sn) thin films, prepared by spray pyrolysis technique using chloride precursors. Cathodoluminescence imaging and spectroscopy, x-ray diffraction, x-ray energy dispersive spectrometry and spectrophotometry have been used for their characterization. Deposited at their optimal substrate temperature (Ts = 773 K), these films are polycrystalline and consist of mixed hexagonal (agr) and cubic (bgr) phases with a predominance of the cubic phase. Their growth is preferentially oriented along the (111)bgr direction and their optical bandgap always remains close to 3.56 eV regardless of the sample considered. The cathodoluminescence spectra of ZnS and Al-ZnS films are similar and are characterized by a blue emission peak at 407 nm (3.05 eV) and a broad blue-green one located at 524 nm (2.36 eV) due to the presence of chlorine. The insertion of Sn2+ ions in the ZnS material leads to the formation of the SnCl2 compound and to the disappearance of the blue-green emission associated with Cl ionized donors.

  16. Growth of highly oriented γ- and α-Al2O3 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Babu, R. Venkatesh; Shin, K. S.; Song, J. I.

    2014-03-01

    Highly oriented aluminum oxide (Al2O3) thin films were grown on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) single crystal substrates at an optimized oxygen partial pressure of 3.5×10-3 mbar and 700 °C by pulsed laser deposition. The films were characterized by X-ray diffraction and atomic force microscopy. The X-ray diffraction studies indicated the highly oriented growth of γ-Al2O3 (400) ǁ SrTiO3 (100), α-Al2O3 (024) ǁ α-Al2O3 (11¯02), α-Al2O3 (006) ǁ α-Al2O3 (0001) and α-Al2O3 (006) ǁ MgO (100). Formation of nanostructures with dense and smooth surface morphology was observed using atomic force microscopy. The root mean square surface roughness of the films were 0.2 nm, 0.5 nm, 0.7 nm and 0.3 nm on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) substrates, respectively.

  17. Structural and optical properties of Al-doped ZnO films coated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Bo; Huang, Bo; Zhang, Liang-Tang; Li, Jing; Wu, Sun-Tao

    2007-12-01

    The Al-doped ZnO (AZO) films were deposited on glass by RF magnetron sputtering under different sputtering power: 75W, 120W, 160W and 200W. During the films deposition, the other sputtering conditions were maintained constant. The crystal structures of the AZO films were characterized and analyzed by X-ray diffraction. The surface morphologies of the films were observed by SEM. The transmission spectra of the films were measured using a spectrophotometer within the range from 200 to 800 nm at room temperature. The results indicate each of the films has a preferential c-axis orientation and the grain size increases with the increase of sputtering power. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics.

  18. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  19. Thermal stability of nanocrystalline (Ti,Zr)0.54Al0.46N films implanted by He+ ions

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Abadias, G.; Rovbut, A. Y.; Zlotski, S. V.; Saladukhin, I. A.; Skuratov, V. A.; Petrovich, S.

    2015-07-01

    The influence of irradiation with He+ ions on the thermal stability of TiZrN and (Ti,Zr)0.54Al0.46N nanocrystalline films was studied. The TiZrN and (Ti,Zr)0.54Al0.46N films were prepared by reactive magnetron sputtering. XRD research showed that the TiZrN and (Ti,Zr)0.54Al0.46N films were single-phase systems (based on cubic c-(Ti,Zr)N and cubic c-(Ti,Zr,Al)N solid solutions) with nanocrystalline (grain size 30 and 21 nm, respectively) structure. The irradiation with He+ ions and thermal annealing up to 800 °C do not affect the structure and phase composition of the (Ti,Zr)0.54Al0.46N film. The prior irradiation of the (Ti,Zr)0.54Al0.46N film with He+ ions activates spinodal decomposition of the c-(Ti,Zr,Al)N solid solution after thermal annealing at 1000 °C due to redistribution of the components of the solid solution inside the grains.

  20. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr.

    2013-08-19

    Thin AlN layers were grown at 200–650 °C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ≤0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 °C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 °C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ≤ 400 °C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ≥ 500 °C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 °C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  1. Ferromagnetic resonance experiments in an obliquely deposited FeCo-Al2O3 film system

    NASA Astrophysics Data System (ADS)

    Lesnik, N. A.; Oates, C. J.; Smith, G. M.; Riedi, P. C.; Kakazei, G. N.; Kravets, A. F.; Wigen, P. E.

    2003-11-01

    Granular cermet films (Fe50Co50)x-(Al2O3)1-x fabricated using the electron-beam coevaporation technique at oblique incidence of FeCo and alumina atom fluxes have been found to exhibit both oblique and in-plane uniaxial magnetic anisotropy. This anisotropy first appears just below the percolation threshold due to a magnetic coupling of particles taking place at a certain stage of their growth and coalescence. The FeCo content x varied from 0.07 to 0.49. A simple model of the film microstructure is presented based on the results of magnetization measurements and ferromagnetic resonance at intermediate (9.4 GHz) and high (94 GHz) frequencies. At 94 GHz the concentration dependence of the effective anisotropy field follows the solid solution law, since then the magnetic field is sufficient to magnetize the films close to saturation. The 9.4 GHz data points deviate from the solid solution line below the percolation threshold due to both modification of the resonance fields by intergranular interactions in nonsaturated films and the reduction of the average magnetization of granules, comparing to the saturation magnetization, at room temperature. Different mechanisms of line broadening observed at frequencies used in experiments are also discussed.

  2. Adsorption properties of Mg-Al layered double hydroxides thin films grown by laser based techniques

    NASA Astrophysics Data System (ADS)

    Matei, A.; Birjega, R.; Vlad, A.; Filipescu, M.; Nedelcea, A.; Luculescu, C.; Zavoianu, R.; Pavel, O. D.; Dinescu, M.

    2012-09-01

    Powdered layered double hydroxides (LDHs) have been widely studied due to their applications as catalysts, anionic exchangers or host materials for inorganic and/or organic molecules. Assembling nano-sized LDHs onto flat solid substrates forming thin films is an expanding area of research due to the prospects of novel applications as sensors, corrosion-resistant coatings, components in optical and magnetic devices. Continuous and adherent thin films were grown by laser techniques (pulsed laser deposition - PLD and matrix assisted pulsed laser evaporation - MAPLE) starting from targets of Mg-Al LDHs. The capacity of the grown thin films to retain a metal (Ni) from contaminated water has been also explored. The thin films were immersed in an Ni(NO3)2 aqueous solutions with Ni concentrations of 10-3% (w/w) (1 g/L) and 10-4% (w/w) (0.1 g/L), respectively. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) were the techniques used to characterize the prepared materials.

  3. Large-area CdTe/Al(sub)2O(sub)3 epitaxial films

    NASA Astrophysics Data System (ADS)

    Senokosev, E. A.; Sushkevich, K. D.; Usatyy, A. N.; Federov, V. M.

    1986-08-01

    In the group of A II B IV wide band gap semiconductor compounds, cadmium telluride is one of the most promising materials for converting solar energy into electricity. The wide practical use of CdTe for photoconverters has been restricted primarily by difficulties in growing high quality crystals with a large working surface area. The efficiency factor of polycrystalline film photocells does not exceed 5%. The search for and development of an effective technology for growing monocrystalline layers of CdTe having a large area with specified physical properties is one of the important directions in improving the operational characteristics of photocells. The production, study of the structure and emissive properties of epitaxial n-CdTe/Al2O3 films with an area of approximately equal 20 sq cm is discussed. Films with a thickness of 10 to 50 microns, which were grown in a quasiclosed container under conditions close to thermal equilibrium, were investigated. n-CdTe crystals with a specific resistance of 100,000 to 1,000,000 ohms x cm were used for deposition. A correlation between the type and resistance of the films and the parent material was discovered.

  4. Heavily-doped ZnO:Al thin films prepared by using magnetron Co-sputtering: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun

    2016-07-01

    Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.

  5. Thermoelectric properties optimization of Al-doped ZnO thin films prepared by reactive sputtering Zn-Al alloy target

    NASA Astrophysics Data System (ADS)

    Fan, Ping; Li, Ying-zhen; Zheng, Zhuang-hao; Lin, Qing-yun; Luo, Jing-ting; Liang, Guang-xing; Zhang, Miao-qin; Chen, Min-cong

    2013-11-01

    Al-doped ZnO (AZO) has practical applications in the industry for thermoelectric generation, owing to its nontoxicity, low-cost and stability at high temperatures. In this study, AZO thin films with high quality were deposited on BK7 glass substrates at room-temperature by direct current reactive magnetron sputtering using Zn-Al alloy target. The deposited thin films were annealed at various temperatures ranging from 623 K to 823 K with a space of 50 K. It is found that the absolute value of Seebeck coefficient of AZO thin film annealed at 723 K increases stably with increasing of measuring temperature and reaches a value of ∼60 μV/K at 575 K. After that, Al-doping content was varied to further optimize the thermoelectric properties of AZO thin films. The power factor of AZO thin films with Al content of 3 wt% increased with increase of measuring temperature and the maximum power factor of 1.54 × 10-4 W m-1K-2 was obtained at 550 K with the maximum absolute values of Seebeck coefficient of 99 μV/K, which is promising for high temperature thermoelectric application.

  6. Multilayered TiAlN films on Ti6Al4V alloy for biomedical applications by closed field unbalanced magnetron sputter ion plating process.

    PubMed

    Yi, Peiyun; Peng, Linfa; Huang, Jiaqiang

    2016-02-01

    Ti6Al4V alloy has been widely used as a suitable material for surgical implants such as artificial hip joints. In this study, a series of multilayered gradient TiAlN coatings were deposited on Ti6Al4V substrate using closed field unbalanced magnetron sputter ion plating (CFUBMSIP) process. Taguchi design of experiment approach was used to reveal the influence of depositing parameters to the film composition and performance of TiAlN coatings. The phase structure and chemical composition of the TiAlN films were characterized by X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). Mechanical properties, including hardness, Young's modulus, friction coefficient, wear rate and adhesion strength were systematically evaluated. Potentiodynamic tests were conducted to evaluate the corrosion resistance of the coated samples in Ringer's solution at 37°C to simulate human body environment. Comprehensive performance of TiAlN films was evaluated by assigning different weight according to the application environment. S8, deposited by Ti target current of 8A, Al target current of 6A, bias voltage of -60V and nitrogen content with OEM (optical emission monitor) value of 45%, was found to achieve best performance in orthogonal experiments. Depositing parameters of S8 might be practically applied for commercialization of surgical implants. PMID:26652421

  7. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification.

    PubMed

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-11-21

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison. PMID:26512917

  8. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    NASA Astrophysics Data System (ADS)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  9. Studies on the properties of Al2O3:Cr2O3 (50:50) thin film

    NASA Astrophysics Data System (ADS)

    Ponmudi, S.; Sivakumar, R.; Sanjeeviraja, C.

    2016-05-01

    Aluminium oxide (Al2O3) and chromium oxide (Cr2O3) thin films have received great attention of researchers because of their unique properties of corrosion/oxidation resistance and high dielectric constant. In addition, chromium aluminium oxide has been considered as a best candidate for deep-ultraviolet optical masks. In the present work, thin films of Al2O3:Cr2O3 (50:50) were deposited on pre-cleaned microscopic glass substrate by RF magnetron sputtering technique. The substrate temperature and RF power induced changes in structural, surface morphological, compositional and optical properties of the films have been studied.

  10. The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, Andre; Welzel, Thomas; Ellmer, Klaus

    2013-06-17

    In order to study the impact of negative oxygen ion bombardment on the electronic transport properties of ZnO:Al films, a systematic magnetron sputtering study from ceramic targets with excitation frequencies from DC to 27 MHz, accompanied by strongly varying discharge voltages, has been performed. Higher plasma excitation frequencies significantly improve the transport properties of ZnO:Al films. The effect of the bombardment of the films by energetic particles (negative oxygen ions) can be explained by the dynamic equilibrium between the formation of acceptor-like oxygen interstitials compensating the extrinsic donors and the self-annealing of the interstitial defects at higher deposition temperatures.

  11. [Preparation of NiAl-MMO Films Electrode and Its Capacitive Deionization Property].

    PubMed

    Wang, Ting; Zhu, Chun-shan; Hu, Cheng-zhi

    2016-02-15

    Hydrotalcites are not only considered as important absorbents in water treatment and but also widely used as super capacitor materials. In this study, NiAl metal oxide (NiAl-MMO) films, which were the calcined products of hydrotalcite-like compounds, were grown on the surface of a foam nickel by an in-situ growth method using a foam nickel substrate as the nickel source. The prepared NiAl-MMO films electrodes materials had stable electrochemical capability, remarkable electrochemical capacitor, and gave a highest specific capacitance of 667 F x g(-1). The desalination performance of material indicated high voltage and weakly alkaline solution were favored for desalination. A highest desalination efficiency was up to 58.17% when the initial concentration of Cl- was 0.003 mol x L(-1), the voltage value was 1.0 V and pH value was 8. The adsorption saturated electrodes could be rapidly regenerated with a desorption rate of 87.96% by electrodes reversion. This study provides a new choice for desalination in wastewater treatment. PMID:27363150

  12. Enhancement of ferromagnetic resonance in Al2O3-doped Co2FeAl Heusler alloy film prepared by oblique sputtering

    NASA Astrophysics Data System (ADS)

    Li, Shan-Dong; Cai, Zhi-Yi; Xu, Jie; Cao, Xiao-Qin; Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Xie, Shi-Ming

    2014-10-01

    Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeAl)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post annealing. The in-plane uniaxial magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe = 79.5775 Am-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.

  13. Determination of the coincidence lattice of an ultra thin Al 2O 3 film on Ni 3Al(1 1 1)

    NASA Astrophysics Data System (ADS)

    Degen, S.; Krupski, A.; Kralj, M.; Langner, A.; Becker, C.; Sokolowski, M.; Wandelt, K.

    2005-02-01

    Spot profile analysis low energy electron diffraction (SPA-LEED) and low temperature scanning tunneling microscopy (LT-STM) measurements were performed on an ultra thin alumina film grown at 1000 K in an oxygen atmosphere on Ni 3Al(1 1 1). By the aid of these two experimental techniques it has been shown that the alumina film exhibits a large superstructure with a lattice constant of 4.16 nm. The unit cell of this superstructure has a commensurate (√67 × √67)R47.784° relation to the Ni 3Al(1 1 1) substrate lattice.

  14. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-05-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8-17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9-5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  15. Static and dynamic magnetic properties of epitaxial Co2FeAl Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Gabor, M. S.; Petrisor, T., Jr.; Boust, F.; Issac, F.; Tiusan, C.; Hehn, M.; Bobo, J. F.

    2011-04-01

    Structural and magnetic properties of epitaxial Co2FeAl Heusler alloy thin films were investigated. Films were deposited on single crystal MgO (001XS) substrates at room temperature, followed by an annealing process at 600 °C. MgO and Cr buffer layers were introduced in order to enhance crystalline quality, and improve magnetic properties. Structural analyses indicate that samples have grown in the B2 ordered epitaxial structure. VSM measures show that the MgO buffered sample displays a magnetization saturation of 1010 ± 30 emu/cm3, and Cr buffered sample displays a magnetization saturation of 1032 ± 40 emu/cm3. Damping factor was studied by strip-line ferromagnetic resonance measures. We observed a maximum value for the MgO buffered sample of about 8.5 × 10-3, and a minimum value of 3.8 × 10-3 for the Cr buffered one.

  16. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  17. Large lateral photovoltaic effect observed in nano Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Wang, Hui

    2011-07-01

    Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

  18. Sputtering deposition of Al-doped zinc oxide thin films using mixed powder targets

    NASA Astrophysics Data System (ADS)

    Ohshima, Tamiko; Maeda, Takashi; Tanaka, Yuki; Kawasaki, Hiroharu; Yagyu, Yoshihito; Ihara, Takeshi; Suda, Yoshiaki

    2016-01-01

    Sputtering deposition generally uses high-density bulk targets. Such a fabrication process has various problems including deterioration of the material during heating and difficulty in mixing a large number of materials in precise proportions. However, these problems can be solved by using a powder target. In this study, we prepared Al-doped ZnO (AZO) as transparent conductive thin films by radio-frequency magnetron sputtering with powder and bulk targets. Both the powder and bulk targets formed crystalline structures. The ZnO (002) peak was observed in the X-ray diffraction measurements. The mean transparency and resistivity of the films prepared with the powder target were 82% and 0.548 Ω · cm, respectively. The deposition rate with the powder target was lower than that with the bulk target.

  19. Comparison of topotactic fluorination methods for complex oxide films

    SciTech Connect

    Moon, E. J. Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J.; Barbash, D.

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  20. Modeling and Experimental Analysis on the Temperature Response of AlN-Film Based SAWRs.

    PubMed

    Chen, Shuo; You, Zheng

    2016-01-01

    The temperature responses of aluminum nitride (AlN) based surface acoustic wave resonator (SAWR) are modeled and tested. The modeling of the electrical performance is based on a modified equivalent circuit model introduced in this work. For SAWR consisting of piezoelectric film and semiconducting substrate, parasitic parameters from the substrate is taken into consideration for the modeling. By utilizing the modified model, the high temperature electrical performance of the AlN/Si and AlN/6H-SiC based SAWRs can be predicted, indicating that a substrate with a wider band gap will lead to a more stable high temperature behavior, which is further confirmed experimentally by high temperature testing from 300 K to 725 K with SAWRs having a wavelength of 12 μm. Temperature responses of SAWR's center frequency are also calculated and tested, with experimental temperature coefficient factors (TCF) of center frequency being -29 ppm/K and -26 ppm/K for the AlN/Si and AlN/6H-SiC based SAWRs, which are close to the predicted values. PMID:27483286

  1. The structure and properties of the nanocomposite films Nb-Al-N

    NASA Astrophysics Data System (ADS)

    Ivashenko, V. I.; Pogrebnyak, A. D.; Skrinski, P. L.; Rogoz, V. N.; Plotnikov, S. V.; Erdybaeva, N. K.; Tleukenov, E. O.

    2015-04-01

    Nanocompositefilms Nb-Al-N produced by magnetron sputtering were researched in this work. Two stable crystalline structural states were found in the films: NbNch and solid solution B1-NbxAl1-xNyO1-y, and also an amorphous component associated with aluminum oxynitride with reactive magnetron sputtering. Sensitivity of substructural characteristics was set up to the current supplied to Al target and their relationship with the characteristic nanohardness and Knoop hardness. Recent changes in the range of 29-33.5 GPa and 46-48 GPa, respectively. Initial principle calculations of phases NbN and Nb2AlN and also heterostructures of NbN/AlN were carried out for the interpretation of the results. The work was performed as a part of two complex state programs: "Development of nanostructured superhard coatings formation foundations with high physical-mechanical properties" (number 0112u001382) and "Physical principles of plasma technologies for complex processing of multicomponent materials and coatings" (number 0113u000137c).

  2. Homoepitaxial AlN thin films deposited on m-plane ( 1 1 ¯ 00) AlN substrates by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Bobea, Milena; Hussey, Lindsay; Kirste, Ronny; Collazo, Ramón; Sitar, Zlatko

    2014-10-01

    AlN homoepitaxial films were grown by metalorganic chemical vapor deposition on chemo-mechanically polished ( 1 1 ¯ 00)-oriented single crystalline AlN substrates. The dependence of the surface morphology, structural quality, and unintentional impurity concentrations on the growth temperature was studied in order to determine the most appropriate growth conditions for high quality ( 1 1 ¯ 00) AlN epitaxial layers. Optically smooth surfaces (RMS roughness of 0.4 nm) and high crystalline quality, as demonstrated by the presence of FWHM values for ( 10 1 ¯ 0) rocking curves along [ 0001] of less than 25 arc.sec, were achieved for films grown above 1350 °C. Furthermore, sharp and intense near band edge luminescence was observed in these high quality films. A reduction in unintentional oxygen impurity levels was seen with an increase in growth temperature. These high crystalline quality films are suitable for device applications and hold great potential for providing an ideal platform for deep UV emitters with high Al content AlGaN without polarization related effects.

  3. Stoichiometry of LaAlO3 films grown on SrTiO3 by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Golalikhani, M.; Lei, Q. Y.; Chen, G.; Spanier, J. E.; Ghassemi, H.; Johnson, C. L.; Taheri, M. L.; Xi, X. X.

    2013-07-01

    We have studied the stoichiometry of epitaxial LaAlO3 thin films on SrTiO3 substrate grown by pulsed laser deposition as a function of laser energy density and oxygen pressure during the film growth. Both x-ray diffraction (θ-2θ scan and reciprocal space mapping) and transmission electron microscopy (geometric phase analysis) revealed a change of lattice constant in the film with the distance from the substrate. Combined with composition analysis using x-ray fluorescence we found that the nominal unit-cell volume expanded when the LaAlO3 film was La-rich, but remained near the bulk value when the film was La-poor or stoichiometric. La excess was found in all the films deposited in oxygen pressures lower than 10-2 Torr. We conclude that the discussion of LaAlO3/SrTiO3 interfacial properties should include the effects of cation off-stoichiometry in the LaAlO3 films when the deposition is conducted under low oxygen pressures.

  4. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    PubMed

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals. PMID:26436289

  5. Structural investigation of Cr(Al)N/SiOx films prepared on Si substrates by differential pumping cosputtering.

    PubMed

    Kawasaki, Masahiro; Takabatake, Hiroshi; Onishi, Ichiro; Nose, Masateru; Shiojiri, Makoto

    2013-05-01

    Analytical electron microscopy revealed the structure and growth of hard coating Cr(Al)N/SiOx nanocomposite films prepared in a differential pumping cosputtering (DPCS) system, which has two chambers to sputter different materials and a rotating substrate holder. The substrate holder was heated at 250 °C and rotated at a speed as low as 1 rpm. In order to promote the adhesion between the substrate and composite film, transition layers were deposited on a (001) Si substrate by sputtering from the CrAl target with an Ar flow and a mixture flow of Ar and N2 (Ar/N2) gases, subsequently, prior to the composite film deposition. Then, the Cr(Al)N/SiOx nanocomposite film was fabricated on the transition layers by cosputtering from the CrAl target with the Ar/N2 gas flow and from the SiO2 target with the Ar gas flow. The film had a multilayer structure of ∼1.6 nm thick crystallite layers of Cr(Al)N similar to NaCl-type CrN and ∼1 nm thick amorphous silicon oxide layers. The structure of the transition layers was also elucidated. These results can help with the fabrication of new hard nanocomposite films by DPCS. PMID:23582015

  6. Method for Fabricating Textured High-Haze ZnO:Al Transparent Conduction Oxide Films on Chemically Etched Glass Substrates.

    PubMed

    Park, Hyeongsik; Nam, Sang-Hun; Shin, Myunghun; Ju, Minkyu; Lee, Youn-Jung; Yu, Jung-Hoon; Jung, Junhee; Kim, Sunbo; Ahn, Shihyun; Boo, Jin-Hyo; Yi, Junsin

    2016-05-01

    We developed a technique for forming textured aluminum-doped zinc oxide (ZnO:Al) transparent conductive oxide (TCO) films on glass substrates, which were etched using a mixture of hydrofluoric (HF) and hydrochloric (HCl) acids. The etching depth and surface roughness increased with an increase in the HF content and the etching time. The HF-based residues produced insoluble hexafluorosilicate anion- and oxide impurity-based semipermeable films, which reduced the etching rate. Using a small amount of HCl dissolved the Ca compounds, helping to fragment the semipermeable film. This formed random, complex structures on the glass substrates. The angled deposition of three layers of ZnO:Al led to the synthesis of multiscaled ZnO:Al textures on the glass substrates. The proposed approach resulted in textured ZnO:Al TCO films that exhibited high transmittance (-80%) and high haze (> 40%) values over wavelengths of 400-1000 nm, as well as low sheet resistances (< 18 Ω/sq)..Si tandem solar cells based on the ZnO:Al textured TCO films exhibited photocurrents and cell efficiencies that were 40% higher than those of cells with conventional TCO films. PMID:27483840

  7. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  8. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    PubMed

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al. PMID:26682390

  9. Current-Voltage Characteristics and Deposition of AlTiN Thin Films by High Power Impulse Magnetron Sputtering Process

    NASA Astrophysics Data System (ADS)

    Wu, Wan-Yu; Su, Amei; Liu, Yawei; Yeh, Chi-Ming; Chen, Wei-Chih; Chang, Chi-Lung

    2015-09-01

    In this study, AlTiN thin films were deposited using a high power impulse magnetron sputtering (HiPIMS) process under a unipolar mode. The AlTi target had a composition of 70 at% Al and 30 at% Ti. Nitrogen was used as the reactive gas to deposite AlTiN thin films along with Ar gas at a working pressure of 1 ×10-3 torr. The target voltage and current were measured at different conditions including various duty cycles from 1 to 5%, pulse durations from 50 to 400 μs, target powers from 0.6 to 1.8 kW, and N2/Ar ratios from 0 to 1. Depending on the deposition condition, peak powers in the range of 104 to 105 W were observed. The effect of deposition conditions were discussed. For film deposition, the pulse duration and the duty cycle were fixed at 100 μs and 3%, respectively. A fixed bias of -150 V was applied to the substrates, including Si wafer, 304 stainless steel, and tungsten carbide.It was found that the nitrogen content increases with the N2/Ar ratio and then saturates. With increasing target power, a higher N2/Ar ratio was required for the AlTiN thin films to have a better mechanical properties. Meanwhile, the hardness of the AlTiN thin films also increases with the target power. The highest hardness of 41 GPa was observed as the N2/Ar ratio was 0.9 and the power was 1.8 kW. It was found that the amount Al-N bonding and the distribution of AlN phase within the AlTiN thin films play an important role in determining the mechanical properties.

  10. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    NASA Astrophysics Data System (ADS)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-05-01

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnO thin films. The minimum resistivity of 2.54 × 10-3 Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.

  11. Bending strain-tunable magnetic anisotropy in Co2FeAl Heusler thin film on KaptonxAE

    NASA Astrophysics Data System (ADS)

    Gueye, M.; Wague, B. M.; Zighem, F.; Belmeguenai, M.; Gabor, M. S.; Petrisor, T.; Tiusan, C.; Mercone, S.; Faurie, D.

    2014-08-01

    Bending effect on the magnetic anisotropy in 20 nm Co2FeAl Heusler thin film grown on Kapton® has been studied by ferromagnetic resonance and glued on curved sample carrier with various radii. The results reported in this Letter show that the magnetic anisotropy is drastically changed in this system by bending the thin films. This effect is attributed to the interfacial strain transmission from the substrate to the film and to the magnetoelastic behavior of the Co2FeAl film. Moreover, two approaches to determine the in-plane magnetostriction coefficient of the film, leading to a value that is close to λCFA= 14 × 10-6, have been proposed.

  12. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    SciTech Connect

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H. Wu, G. H.; Zhang, H. G.

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  13. Comparison of chemically and electrochemically synthesized polyaniline films

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.

    1999-12-01

    The electrochemical growth of thick ({approximately}2 mm) emeraldine, polyaniline (PANI{sup E}) films from solutions containing 2 M HBF{sub 4} and 0.25 M aniline is demonstrated. Electrochemically and chemically prepared PANI{sup E} films, cast from formic acid solutions, are compared. The combination of electrochemical results with Fourier transform infrared spectroscopic data indicates that pure and homogeneous standard material can be reproducibly prepared electrochemically.

  14. Magnetic microstructure and magnetotransport in Co2FeAl Heusler compound thin films

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Czeschka, Franz D.; Brandlmaier, Andreas; Imort, Inga-Mareen; Reiss, Günter; Thomas, Andy; Woltersdorf, Georg; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2011-01-01

    We correlate simultaneously recorded magnetotransport and spatially resolved magneto-optical Kerr effect (MOKE) data in Co2FeAl Heusler compound thin films micropatterned into Hall bars. Room temperature MOKE images reveal the nucleation and propagation of domains in an externally applied magnetic field and are used to extract a macrospin corresponding to the mean magnetization direction in the Hall bar. The anisotropic magnetoresistance calculated using this macrospin is in excellent agreement with magnetoresistance measurements. This suggests that the magnetotransport in Heusler compounds can be adequately simulated using simple macrospin models, while the magnetoresistance contribution due to domain walls is of negligible importance.

  15. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    NASA Astrophysics Data System (ADS)

    Zhuang, Chunqiang; Li, Zhipeng; Lin, Songsheng

    2015-12-01

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  16. Atomic-scale microstructure underneath nanoindentation in Al-Cr-N ceramic films

    SciTech Connect

    Zhuang, Chunqiang Li, Zhipeng; Lin, Songsheng

    2015-12-15

    In this work, Al-Cr-N ceramic films deformed by nanoindentation were peeled off from silicon substrates and their atomic-scale microstructures underneath the indenter were investigated by high resolution transmission electron microscope (HR-TEM). Dislocations were formed underneath the indenter and they accumulated along nano-grain boundaries. The accumulative dislocations triggered the crack initiation along grain boundaries, and further resulted in the crack propagation. Dislocations were also observed in nano-grains on the lateral contact area. A model was proposed to describe the variation of microstructures under nanoindentation.

  17. Emotion Elicitation: A Comparison of Pictures and Films

    PubMed Central

    Uhrig, Meike K.; Trautmann, Nadine; Baumgärtner, Ulf; Treede, Rolf-Detlef; Henrich, Florian; Hiller, Wolfgang; Marschall, Susanne

    2016-01-01

    Pictures and film clips are widely used and accepted stimuli to elicit emotions. Based on theoretical arguments it is often assumed that the emotional effects of films exceed those of pictures, but to date this assumption has not been investigated directly. The aim of the present study was to compare pictures and films in terms of their capacity to induce emotions verified by means of explicit measures. Stimuli were (a) single pictures presented for 6 s, (b) a set of three consecutive pictures with emotionally congruent contents presented for 2 s each, (c) short film clips with a duration of 6 s. A total of 144 participants rated their emotion and arousal states following stimulus presentation. Repeated-measures ANOVAs revealed that the film clips and 3-picture version were as effective as the classical 1-picture method to elicit positive emotions, however, modulation toward positive valence was little. Modulation toward negative valence was more effective in general. Film clips were less effective than pictorial stimuli in producing the corresponding emotion states (all p < 0.001) and were less arousing (all p ≤ 0.02). Possible reasons for these unexpected results are discussed. PMID:26925007

  18. Emotion Elicitation: A Comparison of Pictures and Films.

    PubMed

    Uhrig, Meike K; Trautmann, Nadine; Baumgärtner, Ulf; Treede, Rolf-Detlef; Henrich, Florian; Hiller, Wolfgang; Marschall, Susanne

    2016-01-01

    Pictures and film clips are widely used and accepted stimuli to elicit emotions. Based on theoretical arguments it is often assumed that the emotional effects of films exceed those of pictures, but to date this assumption has not been investigated directly. The aim of the present study was to compare pictures and films in terms of their capacity to induce emotions verified by means of explicit measures. Stimuli were (a) single pictures presented for 6 s, (b) a set of three consecutive pictures with emotionally congruent contents presented for 2 s each, (c) short film clips with a duration of 6 s. A total of 144 participants rated their emotion and arousal states following stimulus presentation. Repeated-measures ANOVAs revealed that the film clips and 3-picture version were as effective as the classical 1-picture method to elicit positive emotions, however, modulation toward positive valence was little. Modulation toward negative valence was more effective in general. Film clips were less effective than pictorial stimuli in producing the corresponding emotion states (all p < 0.001) and were less arousing (all p ≤ 0.02). Possible reasons for these unexpected results are discussed. PMID:26925007

  19. Effect of [Al] and [In] molar ratio in solutions on the growth and microstructure of electrodeposition Cu(In,Al)Se2 films

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Chan; Liu, Chien-Lin; Hung, Pin-Kun; Houng, Mau-Phon

    2013-05-01

    In this paper, the cyclic voltammetric studies were used to realize the element's reduction potential and chemical reaction mechanism for presuming the formation routes of quaternary Cu(In,Al)Se2 crystals. Thereafter, the prior adjustment of deposited potential from -0.6 V to -1.0 V can be identified a suitable potential as co-electrodeposition. The material characteristics of Cu(In,Al)Se2 films are dominated by the percentage of aluminum content. Thus, the influence of aluminum and indium concentrations in solutions on the percentage composition, surface morphology, structural and crystal properties, and optical energy band gap of Cu(In,Al)Se2 films were investigated. Energy dispersive X-ray spectroscopy (EDS) indicated that the ratio of Al to (Al + In) in Cu(In,Al)Se2 films varied from 0.21 to 0.42 when adjusting aluminum and indium concentrations in solutions. Scanning electron microscopy (SEM) shows that the surface morphology changed from round-like structures into cauliflower-like structures and became rough when the aluminum concentration increased and indium concentration decreased in solutions. X-ray diffraction (XRD) patterns revealed three preferred growth orientations along the (1 1 2), (2 0 4/2 2 0), and (1 1 6/3 1 2) planes for all species. The (αhυ)2 versus hυ plots (UV-Visible) shows that the optical energy band gap of the Cu(In,Al)Se2 films can be successfully controlled from 1.17 eV to 1.48 eV by adjusting the aluminum and indium concentrations. Furthermore, the shift of the (1 1 2) peak in the XRD patterns and variation of optical band gap are evidence that the incorporation of aluminum atoms into the crystallitic CuInSe2 forms Cu(In,Al)Se2 crystals.

  20. Structural and optical properties of low temperature grown AlN films on sapphire using helicon sputtering system

    SciTech Connect

    Chen, Meei-Ru; Chen, Hou-Guang; Kao, Hui-Ling Wu, Ming-Guei; Tzou, An-Jye; Chen, Jyh Shin; Chou, Hsiung

    2015-05-15

    AlN thin films have been deposited directly on c-plane sapphire substrates at low temperatures by a helicon sputtering system. The structural quality of AlN epitaxial films was characterized by x-ray diffractometry and transmission electron microscopy. The films exhibit smooth surface with root-mean-square roughness as small as 0.7 nm evaluated by atomic force microscope. The optical transmittance spectra show a steep absorption edge at the wavelength of 200 nm and a high transmittance of over 80% in the visible range. The band-edge transition (6.30 eV) of AlN film was observed in the cathodoluminescence spectrum recorded at 11 K. The spectral response of metal–semiconductor–metal photodetectors constructed with AlN/sapphire reveals the peak responsivity at 200 nm and a UV/visible rejection ratio of about two orders of magnitude. The results of this low temperature deposition suggest the feasibility of the epitaxial growth of AlN on sapphire substrates and the incorporation of the AlN films in the surface acoustic wave devices and the optical devices at deep ultraviolet region.

  1. The thickness-dependent dynamic magnetic property of Co2FeAl films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2014-10-01

    Co2FeAl films with different thickness were prepared at different temperature by molecular beam epitaxy. Their dynamic magnetic property was studied by the time-resolved magneto-optical Kerr effect measurements. It is observed that the intrinsic damping factor of Co2FeAl for [100] orientation is not related to the film's thickness and magnetic anisotropy as well as temperature at high-field regime, but increases with structural disorder of Co2FeAl. The dominant contribution from the inhomogeneous magnetic anisotropy is revealed to be responsible for the observed extremely nonlinear and drastic field-dependent damping factors at low-field regime.

  2. Effect of thermal annealing on the structure of ZnSe/Al2O3 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. A.; Krylov, P. N.; Kostenkov, N. V.; Zakirova, R. M.; Fedotova, I. V.

    2016-04-01

    The ZnSe/Al2O3 nanocomposite films synthesized by laser evaporation followed by heat treatment are studied. X-ray diffraction and electron-microscopic investigations of the as-deposited films demonstrate the presence of ZnSe crystallites in an Al2O3 amorphous matrix. Annealing changes the structures of ZnSe and Al2O3, increases the ZnSe crystallite size, and causes the appearance of the ZnSeO4 phase. The presence of aluminum oxide layers decreases the phase transformation temperature of zinc selenide.

  3. Polarity-inverted ScAlN film growth by ion beam irradiation and application to overtone acoustic wave (000-1)/(0001) film resonators

    SciTech Connect

    Suzuki, Masashi; Yanagitani, Takahiko; Odagawa, Hiroyuki

    2014-04-28

    Polarity inversion in wurtzite film is generally achieved by the epitaxial growth on a specific under-layer. We demonstrate polarity inversion of c-axis oriented ScAlN films by substrate ion beam irradiation without using buffer layer. Substrate ion beam irradiation was induced by either sputtering a small amount of oxide (as a negative ion source) onto the cathode or by applying a RF bias to the substrate. Polarity of the films was determined by a press test and nonlinear dielectric measurement. Second overtone thickness extensional mode acoustic resonance and suppression of fundamental mode resonance, indicating complete polarity inversion, were clearly observed in bilayer highly oriented (000-1)/(0001) ScAlN film.

  4. Transparent and conductive Al/F and In co-doped ZnO thin films deposited by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hadri, A.; Taibi, M.; El hat, A.; Mzerd, A.

    2016-02-01

    In doped ZnO (IZO), In-Al co-doped ZnO (IAZO) and In-F co-doped ZnO (IFZO) were deposited on glass substrates at 350 °C by spray pyrolysis technique. The structural, optical and electrical properties of as-deposited thin films were investigated and compared. A polycrystalline and (002) oriented wurtzite crystal structure was confirmed by X-ray patterns for all films; and the full width at half -maximum (FWHM) of (002) diffraction peak increased after co-doping. The investigation of the optical properties was performed using Uv-vis spectroscopy. The average transmittances of all the films were between 70 and 85%. Hall Effect measurements showed that the electrical conductivity of co-doped films increased as compared with IZO thin film. The highest conductivity of about 16.39 Ω-1 cm-1 was obtained for as-deposited IFZO thin film. In addition, the thin films were annealed at 350 °C for two hour under Ar atmosphere and their optical, electrical properties and the associated photoluminescence (PL) responses of selected films were analysed. After annealing, the electrical conductivity of all thin films was improved and the optical transmittance remained above 70%. Room temperature PL revealed that the annealed IAZO thin film had a strong green emission than that of IZO film.

  5. Magnetic damping and spin polarization of highly ordered B2 Co{sub 2}FeAl thin films

    SciTech Connect

    Cui, Yishen; Lu, Jiwei; Schäfer, Sebastian; Khodadadi, Behrouz; Mewes, Tim; Osofsky, Mike; Wolf, Stuart A.

    2014-08-21

    Epitaxial Co{sub 2}FeAl films were synthesized using the Biased Target Ion Beam Deposition technique. Post annealing yielded Co{sub 2}FeAl films with an improved B2 chemical ordering. Both the magnetization and the Gilbert damping parameter were reduced with increased B2 ordering. A low damping parameter, ∼0.002, was attained in B2 ordered Co{sub 2}FeAl films without the presence of the L2{sub 1} Heusler phase, which suggests that the B2 structure is sufficient for providing low damping in Co{sub 2}FeAl. The spin polarization was ∼53% and was insensitive to the chemical ordering.

  6. Deposition of AlN Thin Films with Cubic Crystal Structures on Silicon Substrates at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ren, Zhong-Min; Lu, Yong-Feng; Goh, Yeow-Whatt; Chong, Tow-Chong; Ng, Mei-Ling; Wang, Jian-Ping; Cheong, Boon-Aik; Liew, Yun-Fook

    2000-05-01

    Cubic AlN thin films were deposited at room temperature by nitrogen-ion-assisted pulsed laser ablation of a hexagonal AlN target. The full-width at half maximum (FWHM) of the X-ray diffraction peak in the θ˜ 2θ scan can reach a value of 0.27 degrees. In the Raman spectroscopy measurement, a new peak at 2333 cm-1 originating from cubic AlN polycrystalline was observed. Nitrogen ions not only effectively promote the formation of stable Al-N bonds but also improve the crystal properties of the deposited thin films. A nitrogen ion energy of 400 eV is proposed for the thin-film deposition.

  7. X-ray Reciprocal Space Mapping of Graded Al x Ga1 - x N Films and Nanowires.

    PubMed

    Stanchu, Hryhorii V; Kuchuk, Andrian V; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Zytkiewicz, Zbigniew R; Belyaev, Alexander E; Salamo, Gregory J

    2016-12-01

    The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls. Finally, we demonstrate that the developed X-ray reciprocal space map model allows for reliable depth profiles of strain and Al composition determination in both Al x Ga1 - x N films and NWs. PMID:26860714

  8. Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al,Sc)N superlattices

    SciTech Connect

    Saha, Bivas; Lawrence, Samantha K.; Bahr, David F.; Schroeder, Jeremy L.; Birch, Jens; Sands, Timothy D.

    2014-10-13

    High hardness TiAlN alloys for wear-resistant coatings exhibit limited lifetimes at elevated temperatures due to a cubic-AlN to hexagonal-AlN phase transformation that leads to decreasing hardness. We enhance the hardness (up to 46 GPa) and maximum operating temperature (up to 1050 °C) of TiAlN-based coatings by alloying with scandium nitride to form both an epitaxial TiAlScN alloy film and epitaxial rocksalt TiN/(Al,Sc)N superlattices on MgO substrates. The superlattice hardness increases with decreasing period thickness, which is understood by the Orowan bowing mechanism of the confined layer slip model. These results make them worthy of additional research for industrial coating applications.

  9. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  10. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  11. Passivation analysis of silicon surfaces via sol—gel derived Al-rich ZnO film

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2015-01-01

    Electronic recombination losses can be reduced via passivation of silicon surfaces. Most techniques available in the literature are either not cost effective or not applicable for solar cell applications. We investigate low cost sol-gel derived Al-rich zinc oxide (ZnO:Al) film and its effective passivation of p-type silicon surfaces. Herein, we present the elemental composition of the film and interfacial structure of ZnO:Al/Si using FTIR, XPS, TEM, and SIMS characterizations. ZnO:Al is polycrystalline and contains some very small amorphous regions of Al2O3. At the ZnO:Al/c-Si interface, a thin SiOx layer with a thickness of ˜6 nm is formed. The XPS analyses reveal that the Al/Zn molar ratio in the ZnO:Al increases from ˜10% at the surface to ˜80% at the ZnO:Al/c-Si interface. The hydrogen content also gradually increases from the surface to the interface. The FTIR absorption area corresponding to the Si-H bonding is ˜2.89 au. The obtained hydrogen concentration is ˜3.93 × 1022 atoms cm-3. A fixed negative charge is created by ZnO:Al on ZnO//SiOx interface. The thermal equilibrium was established between Si and ZnO:Al through SiOx by electron tunneling current. Here, the c-Si may be passivated for two reasons: (i) Al creates defects on the ZnO:Al/c-Si interface and H is attached to the defects (dangling bonds) and (ii) due to the field effect passivation via the negative charged ZnO:Al film.

  12. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  13. Effect of substrate temperature on the properties of transparent conductive ZnO:Al thin films prepared by RF sputtering

    SciTech Connect

    Deng Xueran; Deng Hong; Wei Min; Chen Jinju; Chen Han

    2011-09-15

    Transparent conductive ZnO:Al thin films were successfully deposited on glass substrates via radio frequency sputtering with a ceramic target in ambient argon. X-ray diffraction, profilometry, Hall-effect measurement, and spectrophotometry were employed to investigate the structural, electrical, and optical properties of films. The electrical and optical properties were found to be strongly dependent on the crystalline quality, grain size, and thickness of the films. X-ray diffraction spectra indicated that the crystalline quality of the films improved and grains became larger with increasing substrate temperature. Transmission spectra revealed that films possessed a higher transmittance in the visible range with an increase of the substrate temperature, but the band gap did not broaden obviously. Films with a resistivity of about 2.66 x 10{sup -4}{Omega} cm and an average transmittance above 90% in the visible range were obtained at the optimum temperature of 450 deg. C.

  14. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  15. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  16. Texture of Al thin films deposited by magnetron sputtering onto epitaxial W(001)

    SciTech Connect

    Madsen, Lynnette D.; Svedberg, Erik B.; Bergstrom, Daniel B.; Petrov, Ivan; Greene, Joseph E.

    2000-01-01

    Highly textured epitaxial metallizations will be required for the next generation of devices with the main driving force being a reduction in electromigration. Herein a model system of 190 nm of Al on a 140 nm layer of W grown on MgO <00l> substrates was studied. The W layer was <00l> oriented and rotated 45 degree sign with respect to the MgO substrate to minimize the misfit; the remaining strain was accommodated by dislocations, evident in transmission electron microscopy images. From high-resolution x-ray diffraction (XRD) measurements, the out-of-plane lattice parameter was determined to be 3.175 Aa, and the in-plane parameter was 3.153 Aa, i.e., the W film sustained a strain resulting in a tetragonal distortion of the lattice. XRD pole figures showed that the Al had four fold symmetry and two dominant orientations, <016> and <3 9 11>, which were twinned with multiple placements on the epitaxial W layer. The driving force for the tilted <001> and <011> orientations of Al on W is due to strain minimization through lattice matching. These results show that <00l> Al deposited at ambient conditions onto W is difficult to achieve and implies that electromigration difficulties are inherent. (c) 2000 American Institute of Physics.

  17. Effects of AlN buffer layer thickness on the crystallinity and surface morphology of 10-µm-thick a-plane AlN films grown on r-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hung; Tamaki, Shinya; Yamashita, Yasuhiro; Miyake, Hideto; Hiramatsu, Kazumasa

    2016-08-01

    10-µm-thick a-plane AlN(11\\bar{2}0) films containing a low-temperature AlN (LT-AlN) buffer layer and a high-temperature AlN (HT-AlN) film were prepared on r-plane sapphire (1\\bar{1}02) substrates. The crystallinity of all the samples with different LT-AlN buffer layer thicknesses was improved after thermal annealing and HT-AlN growth, mainly owing to the elimination of domain boundaries and the concurrent suppression of facet formation. The optimum crystallinity of HT-AlN films was obtained with full widths at half maximum of the X-ray rocking curves of 660 arcsec for AlN(11\\bar{2}0)\\parallel [1\\bar{1}00]AlN and 840 arcsec for (0002) using a 200-nm-thick LT-AlN buffer layer.

  18. A comparison of defect size and film quality obtained from Film digitized image and digital image radiographs

    NASA Astrophysics Data System (ADS)

    Kamlangkeng, Poramate; Asa, Prateepasen; Mai, Noipitak

    2014-06-01

    Digital radiographic testing is an acceptable premature nondestructive examination technique. Its performance and limitation comparing to the old technique are still not widely well known. In this paper conducted the study on the comparison of the accuracy of the defect size measurement and film quality obtained from film and digital radiograph techniques by testing in specimens and known size sample defect. Initially, one specimen was built with three types of internal defect; which are longitudinal cracking, lack of fusion, and porosity. For the known size sample defect, it was machined various geometrical size for comparing the accuracy of the measuring defect size to the real size in both film and digital images. To compare the image quality by considering at smallest detectable wire and the three defect images. In this research used Image Quality Indicator (IQI) of wire type 10/16 FE EN BS EN-462-1-1994. The radiographic films were produced by X-ray and gamma ray using Kodak AA400 size 3.5x8 inches, while the digital images were produced by Fuji image plate type ST-VI with 100 micrometers resolution. During the tests, a radiator GE model MF3 was implemented. The applied energy is varied from 120 to 220 kV and the current from 1.2 to 3.0 mA. The intensity of Iridium 192 gamma ray is in the range of 24-25 Curie. Under the mentioned conditions, the results showed that the deviation of the defect size measurement comparing to the real size obtained from the digital image radiographs is below than that of the film digitized, whereas the quality of film digitizer radiographs is higher in comparison.

  19. Clinical comparison of CR and screen film for imaging the critically ill neonate

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Cohen, Pierre A.; Rencken, Ingo R.; Huang, H. K.

    1996-05-01

    A clinical comparison of computed radiography (CR) versus screen-film for imaging the critically-ill neonate is performed, utilizing a modified (hybrid) film cassette containing a CR (standard ST-V) imaging plate, a conventional screen and film, allowing simultaneous acquisition of perfectly matched CR and plain film images. For 100 portable neonatal chest and abdominal projection radiographs, plain film was subjectively compared to CR hardcopy. Three pediatric radiologists graded overall image quality on a scale of one (poor) to five (excellent), as well as visualization of various anatomic structures (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) and pathological findings (i.e., pulmonary interstitial emphysema, pleural effusion, pneumothorax). Results analyzed using a combined kappa statistic of the differences between scores from each matched set, combined over the three readers showed no statistically significant difference in overall image quality between screen- film and CR (p equals 0.19). Similarly, no statistically significant difference was seen between screen-film and CR for anatomic structure visualization and for visualization of pathological findings. These results indicate that the image quality of CR is comparable to plain film, and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest and abdominal examinations.

  20. Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.

    PubMed

    Thomas, S C; Birss, V I; Steele, D; Tessier, D

    1995-07-01

    A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

  1. Growth and Characterization of Polyimide-Supported AlN Films for Flexible Surface Acoustic Wave Devices

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liu, Hongyan; Li, Gen; Zeng, Fei; Pan, Feng; Luo, Jingting; Qian, Lirong

    2016-06-01

    Highly c-axis oriented aluminum nitride (AlN) films, which can be used in flexible surface acoustic wave (SAW) devices, were successfully deposited on polyimide (PI) substrates by direct current reactive magnetron sputtering without heating. The sputtering power, film thickness, and deposition pressure were optimized. The characterization studies show that at the optimized conditions, the deposited AlN films are composed of columnar grains, which penetrate through the entire film thickness (~2 μm) and exhibit an excellent (0002) texture with a full width at half maximum value of the rocking curve equal to 2.96°. The film surface is smooth with a root mean square value of roughness of 3.79 nm. SAW prototype devices with a center frequency of about 520 MHz and a phase velocity of Rayleigh wave of about 4160 m/s were successfully fabricated using the AlN/PI composite structure. The obtained results demonstrate that the highly c-axis oriented AlN films with a smooth surface and low stress can be produced on relatively rough, flexible substrates, and this composite structure can be possibly used in flexible SAW devices.

  2. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films.

    PubMed

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H B; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  3. Magnetic and structural properties of Co2FeAl thin films grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Belmeguenai, Mohamed; Tuzcuoglu, Hanife; Gabor, Mihai; Petrisor, Traian; Tiusan, Coriolan; Berling, Dominique; Zighem, Fatih; Mourad Chérif, Salim

    2015-01-01

    The correlation between magnetic and structural properties of Co2FeAl (CFA) thin films of different thicknesses (10 nmfilms. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field, measured with the applied field along the easy axis direction, and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-plane anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2.

  4. Helium-Charged La-Ni-Al Thin Films Deposited by Magnetron Sputtering

    SciTech Connect

    Shi Liqun; Chen Deming; Xu Shilin; Liu Chaozhu; Hao Wanli; Zhou Zhuyin

    2005-07-15

    An advanced implantation of low energy helium-4 atoms during the La-Ni-Al film growth by adopting magnetron sputtering with Ar/He mixture gases is discussed. Both proton backscattering spectroscopy (PBS) and elastic recoil detection (ERD) analyses were adopted to measure helium concentration of the films and distribution in the near-surface region. Helium atoms with a high concentration incorporate evenly in deposited film. The introduction of the helium with no extra irradiation damage is expected by choosing suitable deposition conditions. It was found that amorphous and crystalline LaNi{sub 5}-type structures can be achieved when sputtered with pure Ar and Ar/He mixture gases at room temperature, respectively. Thermal desorption experiments proposes that a part of hydrogen atoms are bound to trapped helium at crystal and releases together with helium. Only a small fraction of helium is released from the helium-vacancy clusters in lower temperature range and most of helium is released from small size helium bubbles in the high temperature range.

  5. Effect of Hf on structure and age hardening of Ti–Al-N thin films

    PubMed Central

    Rachbauer, R.; Blutmager, A.; Holec, D.; Mayrhofer, P.H.

    2012-01-01

    Protective coatings for high temperature applications, as present e.g. during cutting and milling operations, require excellent mechanical and thermal properties during work load. The Ti1 − xAlxN system is industrially well acknowledged as it covers some of these requirements, and even exhibits increasing hardness with increasing temperature in its cubic modification, known as age hardening. The thermally activated diffusion at high temperatures however enables for the formation of wurtzite AlN, which causes a rapid reduction of mechanical properties in Ti1 − xAlxN coatings. The present work investigates the possibility to increase the formation temperature of w-AlN due to Hf alloying up to 10 at.% at the metal sublattice of Ti1 − xAlxN films. Ab initio predictions on the phase stability and decomposition products of quaternary Ti1 − x − yAlxHfyN alloys, as well as the ternary Ti1 − xAlxN, Hf1 − xAlxN and Ti1 − zHfzN systems, facilitate the interpretation of the experimental findings. Vacuum annealing treatments from 600 to 1100 °C indicate that the isostructural decomposition, which is responsible for age hardening, of the Ti1 − x − yAlxHfyN films starts at lower temperatures than the ternary Ti1 − xAlxN coating. However, the formation of a dual phase structure of c-Ti1 − zHfzN (with z = y/(1 − x)) and w-AlN is shifted to ~ 200 °C higher temperatures, thus retaining a film hardness of ~ 40 GPa up to ~ 1100 °C, while the Hf free films reach the respective hardness maximum of ~ 38 GPa already at ~ 900 °C. Additional annealing experiments at 850 and 950 °C for 20 h indicate a substantial improvement of the oxidation resistance with increasing amount of Hf in Ti1 − x − yAlxHfyN. PMID:22319223

  6. Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate (a-plane Al2O3)

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Phillips, L.; Reece, C. E.; Seo, Kang; Krishnan, M.; Valderrama, E.

    2011-08-01

    An energetic condensation technique, cathodic arc discharge deposition, is used to grow epitaxial Niobium (Nb) thin films on a-plane sapphire (hexagonal-closed-packed Al2O3) at moderate substrate heating temperature (<400 °C). The epitaxial Nb(110)/Al2O3(1,1,-2,0) thin films reached a maximum residual resistance ratio (RRR) value 214, despite using a reactor-grade Nb cathode source whose RRR was only 30. The measurements suggest that the film's density of impurities and structural defects are lower when compared to Nb films produced by other techniques, such as magnetron sputtering, e-beam evaporation or molecular-beam-epitaxy. At lower substrate temperature, textured polycrystalline Nb thin films were created, and the films might have twin symmetry grains with {110} orientations in-plane. The texture was revealed by x-ray diffraction pole figures. The twin symmetry might be caused by a combination effect of the Nb/Al2O3 three-dimensional epitaxial relationship ("3D-Registry" Claassen's nomenclature) and the "Volmer-Weber" (Island) growth model. However, pole figures obtained by electron backscattering diffraction (EBSD) found no twin symmetry on the thin films' topmost surface (˜50 nm in depth). The EBSD pole figures showed only one Nb{110} crystal plane orientation. A possible mechanism is suggested to explain the differences between the bulk (XRD) and surface (EBSD) pole figures.

  7. Low substrate temperature deposition of transparent and conducting ZnO:Al thin films by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Waykar, Ravindra; Amit, Pawbake; Kulkarni, Rupali; Jadhavar, Ashok; Funde, Adinath; Waman, Vaishali; Dewan, Rupesh; Pathan, Habib; Jadkar, Sandesh

    2016-04-01

    Transparent and conducting Al-doped ZnO (ZnO:Al) films were prepared on glass substrate using the RF sputtering method at different substrate temperatures from room temperature (RT) to 200 °C. The structural, morphological, electrical and optical properties of these films were investigated using a variety of characterization techniques such as low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), Hall measurement and UV–visible spectroscopy. The electrical properties showed that films deposited at RT have the lowest resistivity and it increases with an increase in the substrate temperature whereas carrier mobility and concentration decrease with an increase in substrate temperature. Low angle XRD and Raman spectroscopy analysis reavealed that films are highly crystalline with a hexagonal wurtzite structure and a preferred orientation along the c-axis. The FE-SEM analysis showed that the surface morphology of films is strongly dependent on the substrate temperature. The band gap decreases from 3.36 to 3.29 eV as the substrate temperature is increased from RT to 200 °C. The fundamental absorption edge in the UV region shifts towards a longer wavelength with an increase in substrate temperature and be attributed to the Burstein-Moss shift. The synthesized films showed an average transmission (> 85%) in the visible region, which signifies that synthesized ZnO:Al films can be suitable for display devices and solar cells as transparent electrodes.

  8. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  9. Comparison of non-screen techniques (medical vs. industrial film) for fine-detail skeletal radiography.

    PubMed

    Genant, H K; Doi, K; Mall, J C

    High resolution radiographic techniques for imaging the peripheral skeleton (hand and foot) have gained wide clinical acceptance. The two procedures receiving widest attention are non-screen techniques: one uses medical film (Kodak RP); and the other uses industrial film (Kodak Type M) combined with optical magnification. The imaging properties and clinical applications of these two techniques were examined. The modulation transfer functions (MTF's) of the recording systems, Wiener spectrum analyses of noise, and film sensitometry were obtained. Clinical comparisons were made from 200 consecutive patients radiographed with both techniques and the relative merits in metabolic, arthritic and traumatic afflictions were assessed. The results demonstrate the superiority of the industrial film compared to medical film technique in all parameters of image quality. However, the inconveniences of special processing and viewing necessitated by this technique, as well as the increased radiation exposure, limit its clinical application to small, selection groups of patients as determined from the clinical comparative study. PMID:977266

  10. Quality Imaging - Comparison of CR Mammography with Screen-Film Mammography

    SciTech Connect

    Gaona, E.; Azorin Nieto, J.; Iran Diaz Gongora, J. A.; Arreola, M.; Casian Castellanos, G.; Perdigon Castaneda, G. M.; Franco Enriquez, J. G.

    2006-09-08

    The aim of this work is a quality imaging comparison of CR mammography images printed to film by a laser printer with screen-film mammography. A Giotto and Elscintec dedicated mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in screen-film mammography. Four CR mammography units from two different manufacturers and three dedicated x-ray mammography units with fully automatic exposure and a nominal large focal spot size of 0.3 mm were used for the image acquisition of phantoms in CR mammography. The tests quality image included an assessment of system resolution, scoring phantom images, Artifacts, mean optical density and density difference (contrast). In this study, screen-film mammography with a quality control program offers a significantly greater level of quality image relative to CR mammography images printed on film.

  11. A comparison study of textural features between FFDM and film mammogram images

    NASA Astrophysics Data System (ADS)

    Jing, Hao; Yang, Yongyi; Wernick, Miles N.; Yarusso, Laura M.; Nishikawa, Robert M.

    2011-03-01

    In this work, we conducted an imaging study to make a direct, quantitative comparison of image features measured by film and full-field digital mammography (FFDM). We acquired images of cadaver breast specimens containing simulated microcalcifications using both a GE digital mammography system and a screen-film system. To quantify the image features, we calculated and compared a set of 12 texture features derived from spatial gray-level dependence matrices. Our results demonstrate that there is a great degree of agreement between film and FFDM, with the correlation coefficient of the feature vector (formed by the 12 textural features) being 0.9569 between the two; in addition, a paired sign test reveals no significant difference between film and FFDM features. These results indicate that textural features may be interchangeable between film and FFDM for CAD algorithms.

  12. High-quality eutectic-metal-bonded AlGaAs-GaAs thin films on Si substrates

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, R.; Timmons, M. L.; Humphreys, T. P.; Keyes, B. M.; Ahrenkiel, R. K.

    1992-02-01

    Device quality GaAs-AlGaAs thin films have been obtained on Si substrates, using a novel approach called eutectic-metal-bonding (EMB). This involves the lattice-matched growth of GaAs-AlGaAs thin films on Ge substrates, followed by bonding onto a Si wafer. The Ge substrates are selectively removed by a CF4/O2 plasma etch, leaving high-quality GaAs-AlGaAs thin films on Si substrates. A minority-carrier lifetime of 103 ns has been obtained in a EMB GaAs-AlGaAs double heterostructure on Si, which is nearly forty times higher than the state-of-the-art lifetime for heteroepitaxial GaAs on Si, and represents the largest reported minority-carrier lifetime for a freestanding GaAs thin film. In addition, a negligible residual elastic strain in the EMB GaAs-AlGaAs films has been determined from Raman spectroscopy measurements.

  13. Magnetic properties and anisotropic coercivity in nanogranular films of Co/Al2O3 above the percolation limit

    NASA Astrophysics Data System (ADS)

    Kulyk, M. M.; Kalita, V. M.; Lozenko, A. F.; Ryabchenko, S. M.; Stognei, O. V.; Sitnikov, A. V.; Korenivski, V.

    2014-08-01

    Magnetic properties of nanogranular ferromagnetic Co/Al2O3 films with 74.5 at% Co, which is above the percolation limit, are investigated. It is established that the films have perpendicular magnetic anisotropy and a weaker in-plane anisotropy. The magnetization curves show that the film consists of two magnetic components: a dominating contribution from magneto-anisotropic isolated grains with the anisotropy axis perpendicular to the film plane and a weaker contribution from the percolated part of the film. This two-component magnetic composition of the films, with the dominating contribution from the nanograins, is confirmed by transmission electron microscopy as well as by ferromagnetic resonance spectroscopy. It is further established that the coercive field of the film is almost entirely determined by the percolated part of the film. In this, the angular dependence of the coercive force, Hc (θH), is essentially proportional to sin-1θH, where θH is the angle between the applied field and the film's normal. However, for θH → 0, Hc (θH) there is a narrow minimum with Hc approaching zero. Such non-linear dependence agrees well with our modelling results for a two-component magnetic system of the film, where the non-percolated nanograins have a distinct perpendicular anisotropy. The reported results should be important for in-depth characterization and understanding the magnetism and anisotropy in inhomogeneous systems as well as for applications, specifically in perpendicular magnetic recording.

  14. Investigation of the thermal diffusion during the formation of a quasicrystalline phase in thin Al-Pd-Re films

    SciTech Connect

    Seregin, A. Yu. Makhotkin, I. A.; Yakunin, S. N.; Erko, A. I.; Tereshchenko, E. Yu.; Shaitura, D. S.; Chikina, E. A.; Tsetlin, M. B.; Mikheeva, M. N.; Ol'shanskii, E. D.

    2011-05-15

    The layer mixing during the formation of the Al{sub 70}Pd{sub 20}Re{sub 10} icosahedral quasicrystalline phase in thin (55 nm) Al-Pd-Re layered film systems subjected to vacuum annealing has been studied. It is shown that a combined layer of Pd and Al atoms (with the Al{sub 3}Pd{sub 2} phase dominating) is formed in the first stage (at 350 Degree-Sign C), while the rhenium layer remains invariable. In the second annealing stage (at 450 Degree-Sign C), the {beta} Prime -AlPd phase is formed and the Re layer is diffused. In the third stage (700 Degree-Sign C), Pd and Re atoms are uniformly distributed throughout the film with the formation of a quasicrystalline phase.

  15. High temperature oxidation of ZrO2/Al2O3 thin films deposited on steel.

    PubMed

    Lee, Jae Chun; Kim, Sun Kyu; Van Trung, Trinh; Lee, Dong Bok

    2013-11-01

    Thin ZrO2/Al2O3 films that consisted of alternating monoclinic ZrO2 nanolayers and amorphous Al2O3 nanolayers were deposited on a tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system, and then oxidized at 600-900 degrees C in air for up to 50 h. The ZrO2/Al2O3 films effectively suppressed the oxidation of the substrate up to 800 degrees C by acting as a barrier layer against the outward diffusion of the substrate elements and inward diffusion of oxygen. However, rapid oxidation occurred at 900 degrees C due mainly to the increased diffusion and subsequent oxidation of steel as well as the crystallization of amorphous Al2O3. PMID:24245292

  16. Effects of the interfacial layer on electrical characteristics of Al 2O 3/TiO 2/Al 2O 3 thin films for gate dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Chang Eun; Yun, Ilgu

    2012-01-01

    Effects of thermal annealing on the electrical properties of Al2O3/TiO2/Al2O3 (ATA) dielectric thin films prepared by atomic layer deposition are investigated. The structural properties and chemical states in the interfacial layer are analyzed with varying the annealing temperature. The dielectric constant and leakage current are affected by the formation of Al2O3-TiO2 composite and interfacial layer including SiOx in the interface by the annealing. The transformation of interfacial layer at the interface of the ATA/Si substrate due to the annealing is a critical point to apply ATA thin films as gate dielectric layers.

  17. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Jin, Hongmei; Chai, Jianwei; Pan, Jisheng; Seng, Hwee Leng; Goh, Glen Tai Wei; Wong, Lai Mun; Sullivan, Michael B.; Wang, Shi Jie

    2016-04-01

    Ti2AlN MAX-phase thin films have been deposited on MgO (1 1 1) substrates between 500 and 750 °C using DC reactive magnetron sputtering of a Ti2Al compound target in a mixed N2/Ar plasma. The composition, crystallinity, morphology and hardness of the thin films have been characterized by X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and nano-indentation, respectively. The film initially forms a mixture of Ti, Al and (Ti,Al)N cubic solid solution at 500 °C and nucleates into polycrystalline Ti2AlN MAX phases at 600 °C. Its crystallinity is further improved with an increase in the substrate temperature. At 750 °C, a single-crystalline Ti2AlN (0 0 0 2) thin film is formed having characteristic layered hexagonal surface morphology, high hardness, high Young's modulus and low electrical resistivity. The mechanism behind the evolution of the microstructure with growth temperature is discussed in terms of surface energies, lattice mismatch and enhanced adatom diffusion at high growth temperatures.

  18. High temperature stability of ScxAl1-xN (x=0.27) thin films

    NASA Astrophysics Data System (ADS)

    Mayrhofer, P. M.; Bittner, A.; Schmid, U.

    2015-05-01

    The stability of piezoelectric scandium aluminium nitride (ScxAl1-xN) thin films with x= 27% was investigated after post deposition annealings up to 1000°C. The ScxAl1-xN thin films targeted for applications in micro-electromechanical systems (MEMS) were deposited close to room-temperature applying DC magnetron sputtering. Varying deposition parameters yielded films with different microstructural properties and piezoelectric constants. Upon annealing, the crystalline quality of thin films with c-axis orientation increased, as found via characterization techniques such as X-ray diffractometry and fourier transform infrared absorbance measurements. Additionally, piezoelectric constants after annealing steps up to 1000°C are reported as obtained via a Berlincourt measurement principle. Furthermore, modifications in chemical composition during temperature loads up to 1000°C were recorded by thermal effusion measurements.

  19. Optical, Structural and Electrochemical Properties of CeO2--Al2O3--SiO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Saygin Hinczewski, Dursen; Hinczewski, Michael; Sorar, Idris; Pehlivan, Esat; Tepehan, Fatma Z.; Tepehan, Galip G.

    2008-03-01

    CeO2 thin films can be used as counter-electrodes in electrochromic devices, but have the disadvantage of slow reaction kinetics. Thus research has shifted to composite CeO2 films as more promising ion-storage candidates. In this work, we examine the sol-gel coating and characterization of CeO2--Al2O3--SiO2 transparent thin films deposited onto glass microslides and indium-tin-oxide-coated conducting glass. We investigate the evolution of the surface morphology, and the optical, structural and electrochemical properties of the films with varying Si-Al-Ce mol ratios. In particular we find the formation of novel complex phase-segregated structures at the surface, which have the potential for enhancing Li ion insertion/extraction.

  20. Space-charge-controlled field emission model of current conduction through Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  1. Synthesis of n-type boron phosphide films and formation of Schottky diode: Al/n-BP/Sb

    NASA Astrophysics Data System (ADS)

    Dalui, S.; Pal, A. K.

    2008-03-01

    Phosphorous rich BP in thin film form was deposited onto fused silica substrates by co-evaporating boron (99.99%) and phosphorous (99.995%) from a tantalum boat and indirectly heated alumina crucible, respectively. Schottky diode structures for n-type BP (Al/n-BP/Sb) were fabricated out of these films. Corresponding current-voltage and capacitance-voltage characteristics of the Schottky diodes were recorded and analyzed in the light of the existing theories.

  2. Origin of leakage paths driven by electric fields in Al-doped TiO2 films.

    PubMed

    Park, Gyeong-Su; Park, Seong Yong; Heo, Sung; Kwon, Ohseong; Cho, Kyuho; Han, Kwan-Young; Kang, Sung Jin; Yoon, Aram; Kim, Miyoung

    2014-12-23

    The growth of leakage current paths in Al-doped TiO2 (ATO) films is observed by in situ TEM under negative bias stress. Through systematic HAADF-STEM, STEM-EDS, and STEM-EELS studies, it is confirmed that the electric field-induced growth of the Ru-doped TiO2 phase is the main reason for the ATO film's negative leakage. PMID:25366700

  3. Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films.

    PubMed

    Khenifi, Aicha; Derriche, Zoubir; Forano, Claude; Prevot, Vanessa; Mousty, Christine; Scavetta, Erika; Ballarin, Barbara; Guadagnini, Lorella; Tonelli, Domenica

    2009-11-10

    An amperometric sensor based on Ni(1-x)Al(x)(OH)(2)NO(3x).nH(2)O layered double hydroxide (LDH) has been developed for the electrochemical analysis in one step of two herbicides: glyphosate (N-(phosphonomethyl)glycine, Glyp) and glufosinate ((DL-homoalanine-4-yl)-methylphosphinic acid, Gluf). NiAl-LDH was prepared by coprecipitation or by electrodeposition at the Pt electrode surface. Inorganic films were fully characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Adsorption isotherms of Glyp onto this inorganic lamellar material have been established. Electrocatalytic oxidation of Glyp and Gluf is possible at the Ni(3+) centres of the structure. The electrochemical responses of the NiAl-LDH modified electrode were obtained by cyclic voltammetry and chronoamperometry at 0.49V/SCE as a function of herbicide concentration in 0.1M NaOH solution. The electrocatalytic response showed a linear dependence on the Glyp concentration ranging between 0.01 and 0.9mM with a detection limit of 1muM and sensitivity 287mA/Mcm(2). The sensitivity found for Gluf was lower (178mA/Mcm(2)). PMID:19854339

  4. Perpendicular Magnetic Anisotropy of Full-Heusler Films in Pt/Co2FeAl/MgO Trilayers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Yin, Shaoqian; Liu, Yupeng; Zhang, Delin; Xu, Xiaoguang; Miao, Jun; Jiang, Yong

    2011-04-01

    We report on perpendicular magnetic anisotropy (PMA) in a Pt/Co2FeAl/MgO sandwiched structure with a thick Co2FeAl layer of 2-2.5 nm. The PMA is thermally stable and the anisotropy energy density Ku is 1.3×106 erg/cm3 for the structure with 2 nm Co2FeAl after annealing at 350 °C. The annealing temperature and Co2FeAl thickness greatly affect the PMA. Our results provide an effective way to realize relatively thick perpendicularly magnetized Heusler alloy films.

  5. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film

    NASA Astrophysics Data System (ADS)

    Qin, Yongkun; Xiong, Dangsheng; Li, Jianliang

    2015-08-01

    Laser surface-textured Ti6Al4V substrate was treated by plasma electrolytic oxidation process to prepare an oxide ceramic coating and then burnished with a thin MoS2 film. The area densities of textured dimples and the surface roughness of oxide ceramic underlay which affected the longevity of MoS2 films were thoroughly investigated. The results showed that a mixed surface pattern combining large textured dimples (diameter 150 μm) with small discharged dimples (diameter 5-17 μm) was fabricated by the LST/PEO duplex treatment and it contributed to prolonging the lubricating life of MoS2 film in comparison to the LST or PEO treatment. Wherein, the mixed dimples acted as lubricant reservoirs and the hard oxide coatings provided high load supports for the lubricating films. A much longer life of low friction was provided by the LST/PEO/MoS2 coatings with higher density of textured dimples (S = 55%) and lower roughness of LST/PEO surface (Ra = 1.0 μm).

  6. Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law

    NASA Astrophysics Data System (ADS)

    Avery, A. D.; Mason, S. J.; Bassett, D.; Wesenberg, D.; Zink, B. L.

    2015-12-01

    We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness <200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L , suppressed from the free-electron value by 10 %to20 % . For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T . This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L .

  7. Magnetic and electron-transport properties of spin-gapless semiconducting CoFeCrAl films

    NASA Astrophysics Data System (ADS)

    Sellmyer, David; Jin, Yunlong; Kharel, Parashu; Valloppilly, Shah; George, Tom; Balasubramanian, Balamurugan; Skomski, Ralph

    Recently, spin-gapless semiconductors (SGS) with a semiconducting or insulating gap in one spin channel and zero gap in the other at the Fermi level have attracted much attention due to their new functionalities such as voltage-tunable spin polarization, the ability to switch between spin-polarized n-type and p-type conduction, high spin polarization and carrier mobility. For the development of spintronic devices utilizing SGS, it is necessary to have a better understanding of the magnetic and transport properties of the thin films of these materials. In this study, the structural, magnetic, and electron-transport properties of a SGS material CoFeCrAl in the thin film geometry have been investigated. CoFeCrAl films were grown on atomically flat SiO2 substrates using magnetron sputtering. The Curie temperature was measured to be 550 K very close to the value reported for bulk CoFeCrAl. Electron-transport measurements on the oriented films revealed a negative temperature coefficient of resistivity, small anomalous Hall conductivity and linear field dependence of magnetoresistance, which are transport signatures of SGS. The effect of elemental compositions and structural ordering on the SGS properties of the CoFeCrAl films will be discussed. Research supported by NSF (Y. J.), DoE (B. B., D. J. S), ARO (T. A. G., S. R. V.), SDSU (P. K.), and NRI (Facilities).

  8. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study. PMID:25852428

  9. In-situ TEM crystallization of anorthite-glass films on {alpha}-Al{sub 2}O{sub 3}

    SciTech Connect

    Mallamaci, M.P.; Carter, C.B.; Bentley, J.

    1993-12-31

    Anorthite-glass films have been grown by pulsed-laser deposition on single-crystal {alpha}-Al{sub 2}O{sub 3} substrates which were pre-thinned to electron transparency. The glass films were crystallized in the transmission electron microscope (TEM), which allowed direct observation and video-recording of the crystallization process. Crystallization of these films in the TEM resulted in the formation of hexagonal and orthorhombic anorthite. The orthorhombic phase was the predominant product of glass films grown at elevated substrate temperatures and displayed strong epitaxy with the underlying substrate. In contrast, the hexagonal phase was the major constituent of films grown at ambient substrate temperature and displayed no clear epitaxy with the substrate. The difference in degree of epitaxy and phase structure may be evidence of ordering at the original glass/oxide interface.

  10. Effects of atomic oxygen treatment on structures, morphologies and electrical properties of ZnO:Al films

    NASA Astrophysics Data System (ADS)

    Wang, Wenwen; Li, Chunzhi; Zhang, Junying; Diao, Xungang

    2010-05-01

    ZnO:Al (ZAO) film has a potential application in providing spacecrafts the protection against atomic oxygen (AO) erosion. To advance the understanding of the AO resisting mechanisms and the relationships between the structures, morphologies and conductive properties of ZAO film, direct current magnetron sputtered ZAO films with different thicknesses were treated with AO in a ground-based simulation facility. The microstructure, surface chemical state, morphologies and electrical properties of pristine films and irradiated ones were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and Hall measurement. It is found that AO exposure produces novel, oriented recrystallization of the surface particles. It also increases the content of oxygen ions in fully oxidized stoichiometric surroundings on the surface, resulting in the decrease of the conductivity. As the thickness of ZAO film increases, the crystallinity, conductivity and resistance to AO erosion are all improved.

  11. Studies on Al:ZnO thin films for TCO applications in flexible amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Rayerfrancis, Arokiyadoss; Bhargav, P. Balaji; Ahmed, Nafis; C, Balaji

    2015-06-01

    Al doped ZnO thin films are deposited by DC magnetron sputtering on corning glass substrates at different process parameters. The effects of Ar flow rate and power density on the structural, optical and electrical properties are investigated by using XRD, UV-Vis spectroscopy, Four-point probe method and surface roughness of the deposited films were examined by AFM analysis. All the films deposited at different process conditions have a strong c-axis preferred orientation and the transmittance of ˜85% in the visible range. Thickness and Refractive Index (η) values are measured using ellipsometry.

  12. Growth temperature dependent structural and magnetic properties of epitaxial Co2FeAl Heusler alloy films

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2013-06-01

    The structural and magnetic properties of a series of Co2FeAl Heusler alloy films grown on GaAs(001) substrate by molecular beam epitaxy have been studied. The epitaxial Co2FeAl films with an ordered L21 structure have been successfully obtained at growth temperature of 433 K, with an in-plane cubic magnetic anisotropy superimposed with an unusual uniaxial magnetic anisotropy. With increasing growth temperature, the ordered L21 structure degrades. Meanwhile, the uniaxial anisotropy decreases and eventually disappears above 673 K. The interfacial bonding between As and Co or Fe atom is suggested to be responsible for the additional uniaxial anisotropy.

  13. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    PubMed

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors. PMID:26726471

  14. A model-base comparison - GaAs/GaAlAs HBT versus silicon bipolar

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Katoh, R.; Yoshida, J.; Akagi, J.

    1986-10-01

    A pure model-base comparison is made between the GaAs/GaAlAs heterojunction bipolar transistor and the silicon bipolar transistor for the high-speed switching performance under ring oscillator operation. Full utilization is made of the earlier developed (Kurata et al., 1984 and 1985) modeling tools, which include a 'physical' one-dimensional transistor model, a hybrid model to represent a realistic device structure, and a circuit simulator to allow direct access to the physical model. Delay time versus power characteristics, as well as dynamic carrier profiles are demonstrated, with discussion about limiting factors for the switching speed.

  15. Electric field tunability of microwave soft magnetic properties of Co2FeAl Heusler alloy film

    NASA Astrophysics Data System (ADS)

    Li, Shandong; Xu, Jie; Xue, Qian; Du, Honglei; Li, Qiang; Chen, Caiyun; Yang, Ru; Xie, Shiming; Liu, Ming; Nan, Tianxiang; Sun, Nian X.; Shao, Weiquan

    2015-05-01

    Co2FeAl Heusler alloy film with 100 nm in thickness was sputtered on (011)-cut lead zinc niobate-lead titanate (PZN-PT) single crystal slabs. It was revealed that this multiferroic laminate shows very large electric field (E-field) tunability of microwave soft magnetic properties. With the increase of electric field from 0 to 8 kV/cm on PZN-PT, the anisotropy field, HK, of the Co2FeAl film along [100] direction of PZN-PT is dramatically enhanced from 65 to 570 Oe due to the strong magnetoelectric (ME) coupling between ferromagnetic Co2FeAl film and ferroelectric substrate. At the same time, the damping constant α of Co2FeAl film dramatically decreases from 0.20 to 0.029. As a result, a significantly shift of self-biased ferromagnetic resonance frequency, fFMR, from 1.86 to 6.68 GHz with increment of 3.6 times was obtained. These features demonstrate that Co2FeAl/PZN-PT multiferroic laminate is promising in fabrication of E-field tunable microwave components.

  16. Magnetic and structural anisotropies of Co2FeAl Heusler alloy epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Gabor, M. S.; Petrisor, T., Jr.; Tiusan, C.; Hehn, M.; Petrisor, T.

    2011-10-01

    This paper shows the correlation between chemical order, lattice strains, and magnetic properties of Heusler Co2FeAl films epitaxially grown on MgO(001). A detailed magnetic characterization is performed using vector-field magnetometery combined with a numerical Stoner-Wohlfarth analysis. We demonstrate the presence of three types of in-plane anisotropies: one biaxial, as expected for the cubic symmetry, and two uniaxial. The three anisotropies show different behavior with the annealing temperature. The biaxial anisotropy shows a monotonic increase. The uniaxial anisotropy that is parallel to the hard biaxial axes (related to chemical homogeneity) decreases, while the anisotropy that is supposed to have a magnetostatic origin remains constant.

  17. Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation

    NASA Astrophysics Data System (ADS)

    Tokumoto, Yuki; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro

    2012-11-01

    To elucidate dislocation generation and propagation processes in AlN films containing a high density of grown-in threading dislocations (TDs), in situ nanoindentation (NI) was performed in a transmission electron microscope at room temperature. Dislocations with the Burgers vector b = 1/3<12¯10> were introduced not only on the primary slip plane, i.e., the (0001) basal planes, but also on the {101¯1} and {101¯2} pyramidal planes. The results are explained by considering the distribution of the resolved shear stress. It was found that the dislocations induced by NI interact with grown-in TDs: (1) for the NI-induced dislocations on pyramidal planes, edge grown-in TDs induce cross slip to basal planes, and (2) for the NI-induced dislocations on basal planes, screw grown-in TDs prevent their propagation, while edge grown-in TDs do not.

  18. High performance ZnO:Al films deposited on PET substrates using facing target sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Tingting; Dong, Guobo; Gao, Fangyuan; Xiao, Yu; Chen, Qiang; Diao, Xungang

    2013-10-01

    ZnO:Al (ZAO) thin films have been deposited on flexible PET substrates using a plasma damage-free facing target sputtering system at room temperature. The structure, surface morphology, electrical and optical properties were investigated as a function of working power. All the samples have a highly preferred orientation of the c-axis perpendicular to the PET substrate and have a high quality surface. With increased working power, the carrier concentration changes slightly, the mobility increases at the beginning and decreases after it reaches a maximum value, in line with electrical conductivity. The figure of merit has been significantly improved with increasing of the working power. Under the optimized condition, the lowest resistivity of 1.3 × 10-3 Ω cm with a sheet resistance of 29 Ω/□ and the relative visible transmittance above 93% in the visible region were obtained.

  19. Deep-UV sensors based on SAW oscillators using low-temperature-grown AlN films on sapphires.

    PubMed

    Laksana, Chipta; Chen, Meei-Ru; Liang, Yen; Tzou, An-Jyeg; Kao, Hui-Ling; Jeng, Erik; Chen, Jyh; Chen, Hou-Guang; Jian, Sheng-Rui

    2011-08-01

    High-quality epitaxial AlN films were deposited on sapphire substrates at low growth temperature using a helicon sputtering system. SAW filters fabricated on the AlN films exhibited excellent characteristics, with center frequency of 354.2 MHz, which corresponds to a phase velocity of 5667 m/s. An oscillator fabricated using AlN-based SAW devices is presented and applied to deep-UV light detection. A frequency downshift of about 43 KHz was observed when the surface of SAW device was illuminated by a UV source with dominant wavelength of around 200 nm. The results indicate the feasibility of developing remote sensors for deep-UV measurement using AlN-based SAW oscillators. PMID:21859589

  20. Growth and characterisation of NiAl and N-doped NiAl films deposited by closed field unbalanced magnetron sputtering ion plating using elemental ni and Al targets.

    PubMed

    Said, R; Ahmed, W; Abuain, T; Abuazza, A; Gracio, J

    2010-04-01

    Closed Field Unbalanced Magnetron Sputtering Ion Plating (CFUBMSIP) has been used to deposit undoped and nitrogen doped NiAI thin films onto glass and stainless steel 316 substrates. These films have potential applications in tribological, electronic media and thermal barrier coatings. The surface characteristics, composition, mechanical and structural properties have been investigated using stylus profilometry, X-ray diffraction (XRD), Energy dispersive spectroscopy (EDAX), Atomic force microscopy (AFM) and nanoindentation. The average thickness of the films was approximately 1 microm. The X-ray diffraction spectra revealed the presence of the beta NiAl phase. The EDAX results revealed that all of the undoped and nitrogen doped NiAl thin films exhibited the near equiatomic NiAl composition with the best results being achieved using 300 Watts DC power for Ni and 400 Watts DC power for Al targets respectively. AFM results of both types of films deposited on glass samples exhibited a surface roughness of less than 100 nm. The nanoindenter results for coatings on glass substrates displayed hardness and elastic modulus of 7.7 GPa and 100 GPa respectively. The hardest coatings obtained were obtained at 10% of nitrogen. PMID:20355470

  1. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  2. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    NASA Astrophysics Data System (ADS)

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-07-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices.

  3. Enhanced spin Hall ratios by Al and Hf impurities in Pt thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Zhao, Mengnan; Ralph, Daniel C.; Buhrman, Robert A.

    The spin Hall effect (SHE) in Pt has been reported to be strong and hence promising for spintronic applications. In the intrinsic SHE mechanism, which has been shown to be dominant in Pt, the spin Hall conductivity σSH is constant, dependent only on the band structure of the spin Hall material. The spin Hall ratio θSH =σSH . ρ , on the other hand, should be proportional to the electrical resistivity ρ of the spin Hall layer. This suggests the possibility of enhancing the spin Hall ratio by introducing additional diffusive scattering to increase the electrical resistivity of the spin Hall layer. Our previous work has shown that this could be done by increasing the surface scattering by growing thinner Pt films in contact with higher resistivity materials such as Ta. In this talk, we discuss another approach: to introduce impurities of metals with negligible spin orbit torque into the Pt film. Our PtAl and PtHf alloy samples exhibit strong enhancement of the spin Hall torque efficiency with impurity concentration due to increased electrical resistivity. Supported in part by Samsung Electronics.

  4. Texture and microstructure in co-sputtered Mg-M-O (M = Mg, Al, Cr, Ti, Zr, and Y) films

    NASA Astrophysics Data System (ADS)

    Saraiva, M.; Depla, D.

    2012-05-01

    Mg-M-O solid solution films (M = Mg, Al, Cr, Ti, Zr, and Y) with various M contents are grown employing reactive co-sputtering by varying the target-to-substrate distance. It is shown that all films are biaxially aligned. When the two cathodes are equipped with the same target material (Mg), the in-plane alignment is determined by the cathode closest to the substrate, i.e., by the largest material flux. In the case of nearly equal material fluxes from the two cathodes, double in-plane orientation is observed. This is also the case for the Mg-Al-O and Mg-Cr-O films, while the Mg-Ti-O, Mg-Zr-O and Mg-Y-O films exhibit single in-plane orientation. Pole figures indicate that the grains in Mg-M-O (M different than Mg) are titled; in the Mg-Al-O, Mg-Cr-O, and Mg-Ti-O films, the grains tilt towards the Al, Cr, and Ti metal flux, respectively, while the grain tilt of the Mg-Zr-O and Mg-Y-O films is found to be towards the Mg metal flux. Furthermore, SEM cross-sectional images of the Mg-M-O films reveal columnar microstructure with columns tilted to the same direction as the grains. A mechanism which is based on the cation radius change upon the incorporation of an M atom in the MgO lattice is proposed to explain the tilting.

  5. Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films.

    PubMed

    Jeon, Woojin; Rha, Sang Ho; Lee, Woongkyu; Yoo, Yeon Woo; An, Cheol Hyun; Jung, Kwang Hwan; Kim, Seong Keun; Hwang, Cheol Seong

    2014-05-28

    The role of Al dopant in rutile-phased TiO2 films in the evaluation of the mechanism of leakage current reduction in Al-doped TiO2 (ATO) was studied in detail. The leakage current of the ATO film was strongly affected by the Al concentration at the interface between the ATO film and the RuO2 electrode. The conduction band offset of the interface increased with the increase in the Al dopant concentration in the rutile TiO2, which reduced the leakage current in the voltage region pertinent to the next-generation dynamic random access memory application. However, the Al doping in the anatase TiO2 did not notably increase the conduction band offset even with a higher Al concentration. The detailed analyses of the leakage conduction mechanism based on the quantum mechanical transfer-matrix method showed that Schottky emission and Fowler-Nordheim tunneling was the dominant leakage conduction mechanism in the lower and higher voltage regions, respectively. The chemical analyses using X-ray photoelectron spectroscopy corroborated the electrical test results. PMID:24749990

  6. Comparison of the Sputter Rates of Oxide Films Relative to the Sputter Rate of SiO2

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.; Lea, Alan S.; Nachimuthu, Ponnusamy; Droubay, Timothy C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, Laxmikant V.; Stickle, William F.; Wallace, Robert; Wright, B. S.

    2010-09-02

    Because of the increasing technological importance of oxide films for a variety of applications, there is a growing interest in knowing the sputter rates for a wide variety of oxides. To support needs of users of the Environmental Molecular Sciences Laboratory (EMSL) User facility as well as our research programs, we have made a series of measurements of the sputter rates for oxide films that have been grown by oxygen plasma assisted molecular beam epitaxy (OPA-MBE), pulsed laser deposition (PLD), Atomic Layer Deposition (ALD), electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison to the sputter rates for thermally grown SiO2, a common sputter rate reference material. The film thicknesses and densities of these films were usually measured using x-ray reflectivity (XRR). These samples were mounted in an x-ray photoelectron spectroscopy (XPS) system or an Auger electron spectrometer for sputtering measurements using argon ion sputtering. Although the primary objective was to determine relative sputter rates at a fixed angle, the measurements were also used to determine: i) the angle dependence of the relative sputter rates; ii) the energy dependence of the relative sputter rates; and iii) the extent of ion beam reduction for the various oxides. Materials examined include: SiO2 (reference films), Al2O3, CeO2, Cr2O3, Fe2O3, HfO2, ITO (In-Sn-oxide) Ta2O5, TiO2 (anatase and rutile) and ZnO. We find that the sputter rates for the oxides can vary up to a factor of two (usually slower) from that observed for SiO2. The ratios of sputter rates to SiO2 appear to be relatively independent of ion beam energy for the range of 1kV to 4 kV and for incident angles of less than 50º. As expected, the ion beam reduction of the oxides varies with the sputter angle. These studies demonstrate that we can usually obtain sputter rate reproducibility better than 5% for similar oxide films.

  7. Growth mechanisms of GaSb heteroepitaxial films on Si with an AlSb buffer layer

    SciTech Connect

    Vajargah, S. Hosseini; Botton, G. A.; Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1; Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1 ; Ghanad-Tavakoli, S.; Preston, J. S.; Kleiman, R. N.; Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario L8S 4L7; Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7

    2013-09-21

    The initial growth stages of GaSb epilayers on Si substrates and the role of the AlSb buffer layer were studied by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Heteroepitaxy of GaSb and AlSb on Si both occur by Volmer-Weber (i.e., island mode) growth. However, the AlSb and GaSb islands have distinctly different characteristics as revealed through an atomic-resolution structural study using Z-contrast of HAADF-STEM imaging. While GaSb islands are sparse and three dimensional, AlSb islands are numerous and flattened. The introduction of 3D island-forming AlSb buffer layer facilitates the nucleation of GaSb islands. The AlSb islands-assisted nucleation of GaSb islands results in the formation of drastically higher quality planar film at a significantly smaller thickness of films. The interface of the AlSb and GaSb epilayers with the Si substrate was further investigated with energy dispersive X-ray spectrometry to elucidate the key role of the AlSb buffer layer in the growth of GaSb epilayers on Si substrates.

  8. Infrared properties of Pt/Al2O3 cermet films

    NASA Astrophysics Data System (ADS)

    MacMillan, M. F.; Devaty, R. P.; Mantese, J. V.

    1991-06-01

    The room-temperature transmittance and front reflectance of mid- and near-infrared radiation (400-15 000 cm-1) by thin Pt/Al2O3 cermet films prepared by electron-beam evaporation onto sapphire substrates were measured using a Fourier-transform spectrometer. The high value of the dc percolation threshold fc (0.50<=fc<=0.59) for the Pt/Al2O3 system is evidence for correlations in the positions of the particles that can be described by coated-grain topologies. The data were compared with the predictions of five effective-medium models, which feature different microstructural topologies and values of fc. Published data on the dielectric functions of the component materials were used in the modeling. The Maxwell-Garnett and Bruggeman models do not describe the data adequately. A simplified version of a model by Sheng (fc~=0.455) provides an improved description. The best agreement is achieved for two models with adjustable, high values of fc. We conclude that an effective-medium theory is able to describe the infrared optical properties of a cermet system over a wide range of composition if proper account is taken of both the microstructure and the value of fc.

  9. Low stiffness tactile transducers based on AlN thin film and polyimide

    NASA Astrophysics Data System (ADS)

    Mastronardi, V. M.; Ceseracciu, L.; Guido, F.; Rizzi, F.; Athanassiou, A.; De Vittorio, M.; Petroni, S.

    2015-04-01

    In this paper, we propose a flexible piezoelectric MEMS transducer based on aluminum nitride thin film grown on polyimide soft substrate and developed for tactile sensing purposes. The proposed device consists of circular micro-cells, with a radius of 350 μm, made of polycrystalline c-axis textured AlN. The release of compressive stress by crystalline layers over polymer substrate allows an enhanced transduction response when the cell is patterned in circular dome-shaped geometries. The fabricated cells show an electromechanical response within the full scale range of 80 mN (≃200 kPa) both for dynamic and static load. The device is able to detect dynamic forces by exploiting both piezoelectric and flexoelectric capabilities of the aluminum nitride cells in a combined and synergistic sensing that occurs as voltage generation. No additional power supply is required to provide the electrical readout signals, making this technology suitable candidate when low power consumption is demanding. Moreover a capacitance variation under constant stress is observed, allowing the detection of static forces. The sensing ability of the AlN-based cells has been tested using an ad hoc setup, measuring both the applied load and the generated voltage and capacitance variation.

  10. ZnO:Al thin films deposited by RF-magnetron sputtering with tunable and uniform properties.

    PubMed

    Miorin, E; Montagner, F; Battiston, S; Fiameni, S; Fabrizio, M

    2011-03-01

    Nanostructured, high quality and large area Al-doped ZnO (ZnO:Al) thin films were obtained by radiofrequency (RF) magnetron sputtering. The sample rotation during deposition has resulted in excellent spatial distribution of thickness and electro-optical properties compared to that obtained under static conditions. ZnO:Al thin films are employed in a large number of devices, including thin film solar cells, where the uniformity of the properties is a key factor for a possible up-scaling of the research results to industrially relevant substrate sizes. A chemical post etching treatment was employed achieving tunable surface nanotextures to generate light scattering at the desired wavelength for improved cell efficiency. Since the film resistivity is only slightly increased by the etching, this post-deposition step allows separating the optimization of electro-optical properties from light scattering behavior. The thin films were characterized by FE-SEM, XRD, UV-VIS spectroscopy, four probe and van der Paw techniques. PMID:21449368

  11. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    SciTech Connect

    Van Bui, Hao Wiggers, Frank B.; Gupta, Anubha; Nguyen, Minh D.; Aarnink, Antonius A. I.; Jong, Michel P. de; Kovalgin, Alexey Y.

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution of the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.

  12. Microwave Band-Pass Filter with Aerosol-Deposited Al2O3-Polytetrafluoroethylene Composite Thick Films.

    PubMed

    Lee, Ji-Won; Koh, Jung-Hyuk

    2015-03-01

    Fabrication of microwave band-pass filter with coplanar waveguide with ground structure was realized by employing Al2O3-polytetrafluoroethylene (Al2O3-PTFE) composite thick films for integrated substrates produced by aerosol deposition (AD). In order to predict the performance of the band-pass filter, 3-D electromagnetic simulations were performed by high-frequency structure analysis. The thick Al2O3-PTFE composite films prepared by the AD process had submicron-sized Al2O3 crystallites due to the shock-absorbing effect of PTFE during the film growth. The thick films were characterized by X-ray diffraction and scanning electron microscopy. The Cu transmission lines with the thickness of 300 nm were deposited by electron-beam evaporation to form the band-pass filter. The fabricated band-pass filter showed similar characteristics to the simulation results. The insertion loss and resonance frequency were 9.5 dB and 2.3 GHz, respectively. PMID:26413656

  13. The investigation of Ni-Al and Co-Al based layered double hydroxides and their derived mixed oxides thin films deposited by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Birjega, R.; Matei, A.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Colceag, D.; Zavoianu, R.; Pavel, O. D.; Dinescu, M.

    2013-08-01

    Layered Double Hydroxides (LDHs) are host-guest materials consisting of positively charged metal/hydroxides sheets with intercalated anions and water molecules. LDHs can be described by the generic formula [[ṡmHO and their structure is formed by layers containing divalent cations (M2+: Mg, Zn, Ni, Co,…) and trivalent cations (M3+: Al, Ga, Cr,…) with an octahedral coordination. LDH films with well-oriented structure and controlled thickness are needed for numerous applications like sensors, protective coatings, catalysts, components for optoelectronics etc. In this work, we report on the deposition of Ni-Al and Co-Al based LDHs and their derived mixed oxides by pulsed laser deposition as a new approach to fabricate oriented LDHs or highly dispersed metallic mixed oxides. The influence of the laser characteristics, such as wavelength and fluence, on the films properties was studied. The films investigation techniques were X-Ray Diffraction, Atomic Force Microscopy, Scanning Electron Microscopy combined with energy dispersive X-ray analysis, and Secondary Ions Mass Spectrometry.

  14. Structural and magnetic properties of ion beam sputtered Co2FeAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Kumar, Ankit; Chaudhary, Sujeet; Svedlindh, Peter

    2016-05-01

    Co2FeAl full Heusler alloy thin films grown at different temperatures on Si(100) substrates using ion beam sputtering system have been investigated. X-ray diffraction (XRD) patterns revealed the A2 disordered phase in these films. The deduced lattice parameter slightly increases with increase in the growth temperature. The saturation magnetization it is found to increase with increase in growth temperature. The magnetic anisotropy has been studied using angle dependent magneto-optical Kerr effect. In the room temperature deposited film, the combination of cubic and uniaxial anisotropy have been observed with weak in-plane uniaxial anisotropy which increases with growth temperature. The uniaxial anisotropy is attributed to the anisotropic interfacial bonding in these Co2FeAl /Si(100) heterostructures.

  15. High TIMT insulator-to-metal transition of the VO2 films on AlN/Si substrate

    NASA Astrophysics Data System (ADS)

    Slusar, Tetiana; Cho, Jin-Cheol; Kim, Bong-Jun; Kim, Hyun-Tak

    Electronical and structural properties of the VO2 thin films are strongly affected by growth conditions and underlying substrate providing a flexibility of their functional parameters. We present a new VO2/AlN/Si heterostructure, where VO2 is characterized by an excellent insulator-to-metal transition (IMT) occurred at a higher temperature TIMT than that typical for single crystals. Mentioned characteristics are associated with growth mechanism of the film and its epitaxial alignment with respect to the substrate. In particular, the TIMT upshift in VO2/AlN/Si is explained by a stable crystallographic configuration in the plane of the VO2 film as well as a tensile deformation of a monoclinic a-axis formed by tilted and dimerized V4+-V4+, responsible for strong electron correlations. Moreover, proposed synergy of VO2 and Si is able to make new results for advanced materials fabrication and development of switching devices of new generation.

  16. Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Xue-Yong; Li, Hong-Jian; Wang, Zhi-Jun; Xia, Hui; Xiong, Zhi-Yong; Wang, Jun-Xi; Yang, Bing-Chu

    2009-01-01

    ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al 2O 3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap ( Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.

  17. Impact of the surface-near silicon substrate properties on the microstructure of sputter-deposited AlN thin films

    SciTech Connect

    Schneider, M.; Bittner, A.; Patocka, F.; Schmid, U.; Stoeger-Pollach, M.

    2012-11-26

    In micro-/nanomachined devices and systems, aluminum nitride (AlN) thin films are widely used due to their piezoelectric properties. This work evaluates the potential of modifying the interface between the AlN thin film and the silicon (Si) wafer serving as bottom electrode for optimized crystallographic orientation and, hence, improved electrical and piezoelectric properties. The films were analyzed using temperature-dependant leakage current measurements, transmission electron microscopy, and x-ray diffraction. By preconditioning of the Si substrate surface applying sputter etching prior to film deposition, leakage current levels are substantially decreased and an increased (002) orientation of the AlN grains is observed.

  18. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    NASA Astrophysics Data System (ADS)

    Hirvikorpi, Terhi; Vähä-Nissi, Mika; Harlin, Ali; Salomäki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  19. Elastomer damper performance - A comparison with a squeeze film for a supercritical power transmission shaft

    NASA Technical Reports Server (NTRS)

    Zorzi, E. S.; Burgess, G.; Cunningham, R.

    1980-01-01

    This paper describes the design and testing of an elastomer damper on a super-critical power transmission shaft. The elastomers were designed to provide acceptable operation through the fourth bending mode and to control synchronous as well as nonsynchronous vibration throughout the operating range. The design of the elastomer was such that it could be incorporated into the system as a replacement for a squeeze-film damper without a reassembly, which could have altered the imbalance of the shaft. This provided a direct comparison of the elastomer and squeeze-film dampers without having to assess the effect of shaft imbalance changes.

  20. Influences of defects evolvement on the properties of sputtering deposited ZnO:Al films upon hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Yin, Shiliu; Shirolkar, Mandar M.; Li, Jieni; Li, Ming; Song, Xiao; Dong, Xiaolei; Wang, Haiqian

    2016-06-01

    Understanding how the defects interact with each other and affect the properties of ZnO:Al films is very important for improving their performance as a transparent conductive oxide (TCO). In the present work, we studied the effects of hydrogen annealing on the structural, optical and electrical properties of ZnO:Al films prepared by magnetron sputtering. High resolution transmission electron microscopy observations reveal that annealing at ˜300 oC induces the formation of partial dislocations (PD) and stacking faults (SF), which disrupt the lattice periodicity leading to decreased grain size. Annealing at temperatures above ˜500 oC can remove the PD and SF, but large number of zinc vacancies will be generated. Our results show that when films are annealed at ˜500 oC, the oxygen-related defects (interstitials Oi, etc.) in the as-grown films can be remarkably removed or converted, which lead to increments in the carrier concentration, mobility, and the transmittance in the visible range. At annealing temperatures above 550 oC, the hydrogen etching effect becomes predominant, and Al donors are deactivated by zinc vacancies. We also find an abnormal endothermic process by thermal analysis and an abnormal increase in the resistivity during heating the sample under hydrogen atmosphere, based on which the interaction of Oi with the defects (mainly Al donors and PD) is discussed. It is also demonstrated that by annealing the as-grown AZO films at ˜500 oC under hydrogen atmosphere, high performance TCO films with a low resistivity of 4.48 × 10-4 Ωcm and high transmittance of above 90% in the visible light are obtained.

  1. Preparation of highly c-axis oriented AlN thin films on Hastelloy tapes with Y2O3 buffer layer for flexible SAW sensor applications

    NASA Astrophysics Data System (ADS)

    Peng, Bin; Jiang, Jianying; Chen, Guo; Shu, Lin; Feng, Jie; Zhang, Wanli; Liu, Xinzhao

    2016-02-01

    Highly c-axis oriented aluminum nitrade (AlN) films were successfully deposited on flexible Hastelloy tapes by middle-frequency magnetron sputtering. The microstructure and piezoelectric properties of the AlN films were investigated. The results show that the AlN films deposited directly on the bare Hastelloy substrate have rough surface with root mean square (RMS) roughness of 32.43nm and its full width at half maximum (FWHM) of the AlN (0002) peak is 12.5∘. However, the AlN films deposited on the Hastelloy substrate with Y2O3 buffer layer show smooth surface with RMS roughness of 5.46nm and its FWHM of the AlN (0002) peak is only 3.7∘. The piezoelectric coefficient d33 of the AlN films deposited on the Y2O3/Hastelloy substrate is larger than three times that of the AlN films deposited on the bare Hastelloy substrate. The prepared highly c-axis oriented AlN films can be used to develop high-temperature flexible SAW sensors.

  2. Preparation of epitaxial AlN films by electron cyclotron resonance plasma-assisted chemical vapor deposition on Ir- and Pt-coated sapphire substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vargas, Roberto; Goto, Takashi; Someno, Yoshihiro; Hirai, Toshio

    1994-03-01

    AlN epitaxial films have been fabricated on Ir- and Pt-coated α-Al2O3 substrates via electron cyclotron resonance plasma-assisted chemical vapor deposition (ECRPACVD) using an AlBr3-N2-H2-Ar gas system at substrate temperatures ranging from 500 to 700 °C. The epitaxial relationships between AlN films and substrates were determined by x-ray diffraction, x-ray pole figure, and reflection high-energy electron diffraction. The results are useful in practical applications, such as AlN/metal/α-Al2O3 structure in surface acoustic wave (SAW) devices.

  3. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-03-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  4. Substrate Heating Effect on c-Axis Texture and Piezoelectric Properties of AlN Thin Films Deposited by Unbalanced Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Hasheminiasari, Masood; Lin, Jianliang

    2016-06-01

    Aluminum nitride (AlN) thin films with highly preferred (002) orientations have been reactively deposited by a pulsed-closed field unbalanced magnetron sputtering system using TiN/Ti as the seed/adhesion layer with various substrate temperatures. The texture, orientation and piezoelectric properties of AlN films were characterized by means of x-ray diffraction, rocking curves and laser interferometry. A Michelson laser interferometer was designed and built to obtain the converse piezoelectric response of the deposited AlN thin films. It was found that a slight substrate temperature increase would significantly affect the (002) orientation and the piezoelectric coefficient of AlN thin films compared to the coating obtained with no intentional substrate heating, while higher temperature applications on substrate deteriorated the c-axis texture of the coatings without significant improvement in the piezoelectric response of AlN films.

  5. High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition

    SciTech Connect

    Anders, Andre; Lim, Sunnie H.N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna; McFarland, Mike; Brown, Jeff

    2009-04-24

    Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide (ITO). In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on the growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200?C, have resistivities in the low to mid 10-4 Omega cm range with a transmittance better than 85percent in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method.

  6. Comparison of the creep properties of cast and powder metallurgy-extruded binary NiAl

    SciTech Connect

    Raj, S.V.; Garg, A.; Bieler, T.R.

    1997-12-31

    The current emphasis in developing NiAl-based alloys for use in gas-turbine aircraft engines requires a fundamental understanding of the creep mechanisms dominant in these materials. Here, a comparison of published creep data on binary NiAl showed that there is a discrepancy in the reported magnitudes of the stress exponents, n, which usually vary between about 4.5 and 6.5. In general, a close examination of the data suggested that n {approx} 4.5 for cast materials and 6.5 for powder-metallurgy extruded NiAl. Constant load compression creep tests were conducted on a cast and extruded binary NiAl between 800 and 1,200 K over a wide range of initial applied stresses varying between 4.0 and 200 MPa. The microstructures were characterized by transmission electron microscopy. The observed variations in the creep behavior of the extruded cast and powder-metallurgy NiAl appeared to be due to a grain size effect. Despite similarities in the values of n, no significant substructure was observed in most of the grains in the cast and extruded specimens at 1,100 and 1,200 K in contrast to the PM-extruded alloy, which revealed a wide range of substructural features in the power-law creep region. However, extensive subgrain formation and dislocations were widely observed at lower temperatures and higher stresses in the cast and extruded material.

  7. Phase-coherent electron transport in (Zn, Al)O{sub x} thin films grown by atomic layer deposition

    SciTech Connect

    Saha, D. E-mail: pmisra@rrcat.gov.in; Misra, P. E-mail: pmisra@rrcat.gov.in; Ajimsha, R. S.; Joshi, M. P.; Kukreja, L. M.

    2014-11-24

    A clear signature of disorder induced quantum-interference phenomena leading to phase-coherent electron transport was observed in (Zn, Al)O{sub x} thin films grown by atomic layer deposition. The degree of static-disorder was tuned by varying the Al concentration through periodic incorporation of Al{sub 2}O{sub 3} sub-monolayer in ZnO. All the films showed small negative magnetoresistance due to magnetic field suppressed weak-localization effect. The temperature dependence of phase-coherence length (l{sub φ}∝T{sup −3/4}), as extracted from the magnetoresistance measurements, indicated electron-electron scattering as the dominant dephasing mechanism. The persistence of quantum-interference at relatively higher temperatures up to 200 K is promising for the realization of ZnO based phase-coherent electron transport devices.

  8. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    SciTech Connect

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G.; Mankad, Ravin; Haight, Richard; Gunawan, Oki; Mitzi, David B.

    2014-11-17

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10{sup 19} to 10{sup 20} cm{sup −3} with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10{sup 19} to 10{sup 14} cm{sup −3} for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications.

  9. Bipolar resistive switching properties of AlN films deposited by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Qilong; Yang, Hui; Wu, Huayu; Zhou, Juehui; Hu, Liang

    2014-10-01

    AlN thin films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate the resistive switching (RS) behavior. The bipolar RS properties were observed in the Cu/PEALD-AlN/Pt devices, which are induced upon the formation/disruption of Cu conducting filaments, as confirmed by the temperature dependent resistances relationships at different resistance states. The resistance ratio of the high and low resistance states (HRS/LRS) is 102-105. The dominant conduction mechanisms at HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. This study demonstrated that the PEALD-AlN films have a great potential for the applications in high-density resistance random access memory.

  10. Characterization and mechanical properties investigation of TiN-Ag films onto Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Du, Dongxing; Liu, Daoxin; Zhang, Xiaohua; Tang, Jingang; Xiang, Dinggen

    2016-03-01

    To investigate their effect on fretting fatigue (FF) resistance of a Ti-6Al-4V alloy, hard solid lubricating composite films of TiN with varying silver contents (TiN-Ag) were deposited on a Ti-6Al-4V alloy using ion-assisted magnetron sputtering. The surface morphology and structure were analyzed by atomic force microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, and transmission electron microscopy. The hardness, bonding strength, and toughness of films were tested using a micro-hardness tester, scratch tester, and a repeated press-press test system that was manufactured in-house, respectively. The FF resistance of TiN-Ag composite films was studied using self-developed devices. The results show that the FF resistance of a titanium alloy can be improved by TiN-Ag composite films, which were fabricated using hard TiN coating doped with soft Ag. The FF life of Ag0.5, Ag2, Ag5, Ag10 and Ag20 composite films is 2.41, 3.18, 3.20, 2.94 and 2.87 times as great as that of the titanium alloy, respectively. This is because the composite films have the better toughness, friction lubrication, and high bonding strength. When the atomic fraction of Ag changes from 2% to 5%, the FF resistance of the composite films shows the best performance. This is attributed to the surface integrity of the composite film is sufficiently fine to prevent the initiation and early propagation of FF cracks.

  11. Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Birkett, Martin; Penlington, Roger

    2016-07-01

    We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10–1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10–25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25–40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs–Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10–1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of ‑55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C‑1.

  12. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    NASA Astrophysics Data System (ADS)

    Vunnam, S.; Ankireddy, K.; Kellar, J.; Cross, W.

    2014-05-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10-2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  13. Orthogonal optimization for room temperature magnetron sputtering of ZnO:Al films for all-solid electrochromic devices

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Diao, Xungang; Ding, Peng

    2011-02-01

    In order to obtain competent and quality (high transparency, conductivity and stability) aluminium-doped zinc oxide (ZnO:Al, ZAO) films for all solid electrochromic devices, ZAO films were prepared by direct current (D.C.) reactive magnetron sputtering at room temperature based on orthogonal design. Optical and electrical property dependences of the films on the four dominant sputtering parameters: sputtering time, target-substrate distance, sputtering power and O2 flow ratio were simultaneously investigated with measured results using mathematical and statistical method. Optimal Parameters to fabricate ZAO films with optimum comprehensive performances were obtained ultimately. Resistivity and carrier concentration of ZAO film deposited with optimized parameters were 3.89 × 10-4 Ω cm and 1.09 × 1021 cm-3, respectively. ZAO films with these superior properties were employed as transparent electrodes eventually in a WO3 based all-solid electrochromic device which displayed good electrochromic performance. The regulation range for transmittance in the visible region of the device was more than 50%, which was comparable to that of the device adopting indium tin oxide (ITO) films as electrodes.

  14. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  15. Observations of Guinier-Preston zones in an as-deposited Al-1wt.%Si-0.5wt.%Cu thin film

    SciTech Connect

    Tung, C.H.; Chiu, R.L.; Chang, P.H.

    1996-05-01

    Aluminum-copper (Al-Cu) and aluminum-silicon-copper (Al-Si-Cu) films are widely used as interconnects and contacts in contemporary very large scale integration (VLSI) technology. Cu alloying in Al results in the formation of intermetallic Al{sub 2}Cu precipitates, which increase corrosion susceptibility as well as process difficulty. Understanding the formation of Al2Cu theta-phase precipitates within Al alloy thin films is thus of great scientific and technical value. For the first time Guinier-Preston zones are observed by HRTEM to form on Al{l_brace}111{r_brace} planes in an as-deposited Al-1wt%Si-0.5wt%Cu thin films sputtered on oxidized Si substrate. At present time the chemical nature (Si or Cu) of the precipitation in the observed GP zones is still uncertain.

  16. Comparison of the sputter rates of oxide films relative to the sputter rate of SiO{sub 2}

    SciTech Connect

    Baer, D. R.; Engelhard, M. H.; Lea, A. S.; Nachimuthu, P.; Droubay, T. C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, L. V.; Stickle, W. F.; Wallace, R. M.; Wright, B. S.

    2010-09-15

    There is a growing interest in knowing the sputter rates for a wide variety of oxides because of their increasing technological importance in many different applications. To support the needs of users of the Environmental Molecular Sciences Laboratory, a national scientific user facility, as well as our research programs, the authors made a series of measurements of the sputter rates from oxide films that have been grown by oxygen plasma-assisted molecular beam epitaxy, pulsed laser deposition, atomic layer deposition, electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison with those from thermally grown SiO{sub 2}, a common reference material for sputter rate determination. The film thicknesses and densities for most of these oxide films were measured using x-ray reflectivity. These oxide films were mounted in an x-ray photoelectron or Auger electron spectrometer for sputter rate measurements using argon ion sputtering. Although the primary objective of this work was to determine relative sputter rates at a fixed angle, the measurements also examined (i) the angle dependence of the relative sputter rates, (ii) the energy dependence of the relative sputter rates, and (iii) the extent of ion beam induced reduction for some oxides. Oxide films examined include SiO{sub 2}, Al{sub 2}O{sub 3}, CeO{sub 2}, Cr{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, HfO{sub 2}, In-Sn oxide, Ta{sub 2}O{sub 5}, TiO{sub 2} (anatase, rutile, and amorphous), and ZnO. The authors found that the sputter rates for the oxides can vary up to a factor of 2 (usually lower) from that observed for SiO{sub 2}. The ratios of sputter rates relative to those of SiO{sub 2} appear to be relatively independent of ion beam energy in the range of 1-4 kV and for incident angles <50 deg. As expected, the extent of ion beam induced reduction of the oxides varies with the sputter angle.

  17. Subjective image quality comparison between two digital dental radiographic systems and conventional dental film

    PubMed Central

    Ajmal, Muhammed; Elshinawy, Mohamed I.

    2014-01-01

    Objectives Digital radiography has become an integral part of dentistry. Digital radiography does not require film or dark rooms, reduces X-ray doses, and instantly generates images. The aim of our study was to compare the subjective image quality of two digital dental radiographic systems with conventional dental film. Materials & methods A direct digital (DD) ‘Digital’ system by Sirona, a semi-direct (SD) digital system by Vista-scan, and Kodak ‘E’ speed dental X-ray films were selected for the study. Endodontically-treated extracted teeth (n = 25) were used in the study. Details of enamel, dentin, dentino-enamel junction, root canal filling (gutta percha), and simulated apical pathology were investigated with the three radiographic systems. The data were subjected to statistical analyzes to reveal differences in subjective image quality. Results Conventional dental X-ray film was superior to the digital systems. For digital systems, DD imaging was superior to SD imaging. Conclusion Conventional film yielded superior image quality that was statistically significant in almost all aspects of comparison. Conventional film was followed in image quality by DD, and SD provided the lowest quality images. Conventional film is still considered the gold standard to diagnose diseases affecting the jawbone. Recommendations Improved software and hardware for digital imaging systems are now available and these improvements may now yield images that are comparable in quality to conventional film. However, we recommend that studies still use more observers and other statistical methods to produce ideal results. PMID:25382946

  18. Are some risk comparisons more effective under conflict?: a replication and extension of Roth et al.

    PubMed

    Johnson, Branden B

    2003-08-01

    Despite many claims for and against the use of risk comparisons in risk communication, few empirical studies have explored their effect. Only one study, published by Roth et al. in this journal in 1990, has tested the 1988 predictions by Covello et al. as to the public's relative preferences for 14 kinds of risk comparisons as they might be used by a factory manager to explain risks of his ethylene oxide plant. That study found no correlations between the Covello predictions and seven different measures of "acceptability" of Covello's examples of each type of comparison. However, two critics of the Roth study, as well as its own authors, suggested that a scenario involving local risks, a conflict-ridden situation, and a plant manager unknown to the townspeople might better evoke Covello-like preferences than the distant, calm, friends-involving scenario used by Roth. The research reported here replicated the Roth study using the same scenario, risk comparison examples, and evaluation measures, and added a second scenario intended to replicate the conditions suggested by critics. Over 200 New Jersey residents answered the study questionnaire. The replication scenario reproduced Roth's results, and the conflict scenario also evoked no rankings correlated with Covello's predictions. Furthermore, neither agreement nor disagreement with five statements representing "conflict"--respondents' reports that the industrial-plant scenario made them angry, they lived near industry, they were concerned about industrial risks, people in their home town were angry about industrial pollution, and they worried "frequently" about long-term effects of pollution--correlated with Covello's predictions. Over half of all ratings ascribed to the comparisons in aggregate were positive, and most detailed comments offered by respondents also were positive, despite many criticisms and suggestions for their improvement. The wide variability in individuals' rankings also undermines the notion of

  19. Vertically aligned liquid crystals on a {gamma}-Al{sub 2}O{sub 3} alignment film using ion-beam irradiation

    SciTech Connect

    Park, Hong-Gyu; Kim, Young-Hwan; Oh, Byeong-Yun; Lee, Won-Kyu; Kim, Byoung-Yong; Seo, Dae-Shik; Hwang, Jeong-Yeon

    2008-12-08

    Using ion-beam (IB) irradiation, liquid crystals (LCs) were vertically aligned (VA) on a {gamma}-Al{sub 2}O{sub 3} alignment film. Atomic-layer deposition was used to orient the LCs on high-quality {gamma}-Al{sub 2}O{sub 3} alignment films. The LC molecule orientation indicates the vertical direction of the atomic-layer-deposited {gamma}-Al{sub 2}O{sub 3} alignment films. X-ray photoelectron spectroscopy showed that IB irradiation changed the chemical structure, shifting the Al-O binding energy and altering the Al-O bonding intensity. The low-voltage transmittance characteristics of the VA LC displays on the {gamma}-Al{sub 2}O{sub 3} alignment films were also measured, showing reduced voltage and power requirements.

  20. Novel silicon surface passivation by Al2O3/ZnO/Al2O3 films deposited by thermal atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang-Seok; Oh, Sung-Kwen; Shin, Hong-Sik; Yun, Ho-Jin; Kim, Seong-Hyeon; Lee, Ho-Ryeong; Han, Kyu-Min; Park, Ho-Yun; Lee, Hi-Deok; Lee, Ga-Won

    2014-01-01

    In this paper, a novel Al2O3/ZnO/Al2O3 stack is proposed as the silicon passivation layer for c-Si solar cell application. Recently, the Al2O3 film has been proved to be effective for passivating the p-type c-Si surface by forming the negative fixed oxide charge. It is confirmed by this experiment that the amount of negative fixed oxide charge can be controlled by inserting a ZnO interlayer (IL), which is explained by acceptor-like defect (VZn, Oi, and OZn) formation determined by the room-temperature photoluminescence (RTPL) analysis. The effect of ZnO IL is investigated using Al2O3 bottom layers of various thicknesses by electrical and physical analyses. The effective lifetime measurement shows that the electronic recombination losses at the silicon surface are reduced effectively by optimizing the Al2O3/ZnO/Al2O3 stack.

  1. Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers

    SciTech Connect

    Ciracì, Cristian Mock, Jack J.; McGuire, Felicia; Liu, Xiaojun; Smith, David R.; Chen, Xiaoshu; Oh, Sang-Hyun

    2014-01-13

    Film-coupled nanoparticle systems have proven a reliable platform for exploring the field enhancement associated with sub-nanometer sized gaps between plasmonic nanostructures. In this Letter, we present a side-by-side comparison of the spectral properties of film-coupled plasmon-resonant, gold nanoparticles, with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules). In either case, large area, uniform spacer layers with sub-nanometer thicknesses can be accurately deposited, allowing extreme coupling regimes to be probed. The observed spectral shifts of the nanoparticles as a function of spacer layer thickness are similar for the organic and inorganic films and are consistent with numerical calculations taking into account the nonlocal response of the metal.

  2. Mechanical properties of Ta-Al-N thin films deposited by cylindrical DC magnetron sputtering: Influence of N2% in the gas mixture

    NASA Astrophysics Data System (ADS)

    Darabi, Elham; Moghaddasi, Naghmeh; Reza Hantehzadeh, Mohammad

    2016-06-01

    Ta-Al-N thin films were deposited by cylindrical DC magnetron sputtering on a stainless steel substrate under varying nitrogen flow ratios ( N2 with respect to N2 + Ar in the range of 1.5%-9%. The effect of the N2 content in the reactive gas mixture on crystalline structure, surface morphology, and mechanical properties of Ta-Al-N thin films was investigated. The amount of Al and Ta in deposited films was obtained by energy dispersive X-ray spectroscopy (EDX) analysis and films thickness was measured by surface step profilometer. X-ray diffraction analysis (XRD) revealed that the crystalline structure of the Ta-Al-N polycrystalline thin film is a mixture of TaAl, TaN, and AlN crystalline phases. Surface morphology, roughness, and grain size were investigated by atomic force microscopy (AFM). The nano hardness of Ta-Al-N thin films, measured by the nanoindentation method, was about 9GPa maximum for samples prepared under 3% N2 , and the friction coefficient, obtained by nanoscratch analysis, was approximately 0.2 for all Ta-Al-N thin films. Other results were found to be affected considerably by increasing the N2 amount.

  3. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    SciTech Connect

    Kenanakis, G.; Katsarakis, N.

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  4. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    SciTech Connect

    Wang, Wenbo; He, Xingli; Ye, Zhi E-mail: jl2@bolton.ac.uk; Wang, Xiaozhi; Mayrhofer, Patrick M.; Gillinger, Manuel; Bittner, Achim; Schmid, Ulrich

    2014-09-29

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K{sup 2}, in the range of 2.0% ∼ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  5. Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films

    SciTech Connect

    Zukauskaite, Agne; Wingqvist, Gunilla; Palisaitis, Justinas; Jensen, Jens; Persson, Per; Matloub, Ramin; Muralt, Paul; Kim, Yunseok; Birch, Jens; Hultman, Lars

    2012-01-01

    Piezoelectric wurtzite ScxAl1 xN (x = 0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x 0.2 when substrate temperature is increased from 400 to 800 C. The piezoelectric response of epitaxial ScxAl1 xN films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x = 0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.

  6. Growth of epitaxial AlN films on (Mn,Zn)Fe 2O 4 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ohta, J.; Fujioka, H.; Takahashi, H.; Oshima, M.

    2002-09-01

    We have grown AlN on (Mn,Zn)Fe 2O 4 substrates by pulsed laser deposition (PLD) and investigated their structural properties using high resolution X-ray diffraction (HRXRD), reflection high energy electron diffraction (RHEED), and atomic force microscopy (AFM). We have observed the transition of the RHEED pattern from sharp streaks into clear spots at the early stage of the film growth, which indicates that the growth mode of AlN changed from the two-dimensional mode to the three-dimensional mode due to the stress buildup. RHEED and XRD observations have revealed that hexagonal AlN (0 0 0 1) grows on (Mn,Zn)Fe 2O 4 (1 1 1) with the in-plane epitaxial relationship of [1 1 -2 0]AlN//[0 1 -1](Mn,Zn)Fe 2O 4. The lattice mismatch for this alignment is calculated to be 6%. The FWHM value of the AlN (0 0 0 2) X-ray rocking curve is as low as 77 arcsec, which indicates that the density of the threading screw dislocations in the AlN film is quite low.

  7. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch (~3.2%) and thermal expansion coefficient difference (~7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  8. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE PAGESBeta

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  9. Effects of the ratio of O2/Ar pressure on wettability and optical properties of HfO2 films before and after doping with Al

    NASA Astrophysics Data System (ADS)

    Lin, Su-Shia; Liao, Chung-Sheng

    2016-09-01

    HfO2 films were doped with Al (HfO2:Al) by simultaneous RF magnetron sputtering of HfO2 and DC magnetron sputtering of Al. This method is characterized by its ability to independently control the Al content. According to XRD and XPS analyses, the HfO2:Al film had a structure similar to that of HfO2 film, and most of the Al atoms were not in the HfO2 crystalline. A small amount of Al3+ dopant could transform the hydrophobicity of HfO2 films into hydrophilicity. Moreover, the hydrophilicity of the HfO2:Al films improved as the ratio of O2/Ar pressure increased. The nonlinear refractive indices of HfO2 and HfO2:Al films deposited in a pure Ar or a mixed Ar-O2 atmosphere were measured by Moiré deflectometry, and were of the order of 10-8 cm2 W-1. A lower surface roughness, higher optical transmission in the UV-vis-NIR region, and higher linear refractive index were obtained at a higher ratio of O2/Ar pressure.

  10. Controlled direct growth of Al2O3-doped HfO2 films on graphene by H2O-based atomic layer deposition.

    PubMed

    Zheng, Li; Cheng, Xinhong; Yu, Yuehui; Xie, Yahong; Li, Xiaolong; Wang, Zhongjian

    2015-02-01

    Graphene has been drawing worldwide attention since its discovery in 2004. In order to realize graphene-based devices, thin, uniform-coverage and pinhole-free dielectric films with high permittivity on top of graphene are required. Here we report the direct growth of Al2O3-doped HfO2 films onto graphene by H2O-based atom layer deposition (ALD). Al2O3-onto-HfO2 stacks benefited the doping of Al2O3 into HfO2 matrices more than HfO2-onto-Al2O3 stacks did due to the micro-molecular property of Al2O3 and the high chemical activity of trimethylaluminum (TMA). Al2O3 acted as a network modifier, maintained the amorphous structure of the film even to 800 °C, and made the film smooth with a root mean square (RMS) roughness of 0.8 nm, comparable to the surface of pristine graphene. The capacitance and the relative permittivity of Al2O3-onto-HfO2 stacks were up to 1.18 μF cm(-2) and 12, respectively, indicating the high quality of Al2O3-doped HfO2 films on graphene. Moreover, the growth process of Al2O3-doped HfO2 films introduced no detective defects into graphene confirmed by Raman measurements. PMID:25519447

  11. Impact of titanium layer and silicon substrate properties on the microstructure of c-axis oriented AlN thin films

    NASA Astrophysics Data System (ADS)

    Wistrela, E.; Bittner, A.; Schmid, U.

    2015-05-01

    Highly c-axis orientated sputter deposited aluminium nitride (AlN) thin films are widely used as piezoelectric layers in micro-electro-mechanical systems (MEMS). Therefore, stable and reliable deposition and patterning of the AlN thin films in the fabrication process of such devices is of utmost importance. In this work, we study the wet chemical etching behavior of highly c-axis oriented AlN layers as well as the film-related residuals after the etching procedure. To investigate the impact of the underlying material on the quality of the AlN films they are either deposited on pure silicon (Si) substrates or on Si substrates covered with a sputter-deposited thin titanium (Ti) film. The 620 nm thin AlN layers are synthesized simultaneously onto both substrate types and subsequently wet-chemical etched in a phosphorous acid based etching solution at a temperature of 80°C. We demonstrate a significant difference in surface roughness of the untreated AlN films when sputter-deposited on Ti or pure Si. Furthermore, we analyze the piezoelectric properties of the deposited films. Although the XRD analyses indicate a high c-axis orientated wurtzite structure for all deposited films, the absolute value of the piezoelectric coefficients |d33| of AlN thin films synthesized on Ti are 0.4-4.3 pC/N, whereas corresponding values of 5.2-6 pC/N are determined at those deposited on pure Si substrates,. Finally, after wet chemically etching a porous, but homogeneous AlN microstructure is observed for samples synthesized onto Ti layers, whereas AlN layers deposited directly on Si substrate are either etched very inhomogenously or almost completely with some etch resistant pyramidal-shaped residues. This might be due to a local change in polarity within the AlN layer.

  12. Amorphous ZnAlSnO thin-film transistors by a combustion solution process for future displays

    SciTech Connect

    Jiang, Qingjun; Feng, Lisha; Wu, Chuanjia; Sun, Rujie; Lu, Bin; Ye, Zhizhen; Lu, Jianguo; Li, Xifeng

    2015-02-02

    A combustion solution method was developed to fabricate amorphous ZnAlSnO (a-ZATO) for thin-film transistors (TFTs). The properties of a-ZATO films and behaviors of a-ZATO TFTs were studied in detail. An appropriate Al content in the matrix could suppress the formation of oxygen vacancies efficiently and achieve densely amorphous films. The a-ZATO TFTs exhibited acceptable performances, with an on/off current ratio of ∼10{sup 6}, field-effect mobility of 2.33 cm{sup 2}·V{sup −1}·S{sup −1}, threshold voltage of 2.39 V, and subthreshold swing of 0.52 V/decade at an optimal Al content (0.5). The relation between on- and off-resistance of the ZATO TFT was also within the range expected for fast switching devices. More importantly, the introduced Al with an appropriate content had the ability to evidently enhance the device long-term stability under working bias stress and storage durations. The obtained indium- and gallium-free a-ZATO TFTs are very promising for the next-generation displays.

  13. Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels

    NASA Astrophysics Data System (ADS)

    Chen, Wanglin; Zheng, Jie; Lin, Yue; Kwon, Sikchol; Zhang, Shihong

    2015-03-01

    The AlCrN and AlCrTiSiN coatings were produced on the surface of plasma nitrocarburized T10 steels by multi-arc ion plating. The comparison of the microstructures and mechanical properties of the duplex coatings were investigated by means of X-ray diffraction, optical microscope, scanning electron microscope and transmission electron microscope, in association with mechanical property measurement. The results show that the AlCrN coatings with columnar grown are mainly composed of nanocrytalline fcc-(Cr,Al)N phases with {111} preferred orientation, whereas the superlattice and nanocomposite AlCrTiSiN coatings with planar growth mainly consist of nanocrystalline fcc-(Cr,Al)N phases with {100} perfected orientation, hcp-AlN and Si3N4 amorphous phases. The AlCrTiSiN duplex coating with the compound layer reveals higher hardness, adhesion strength, load capacity and lower friction coefficient when compared with the other duplex coatings, which is due to its superlattice and nanocomposite structure. Additionally, these improved properties are related to the appearance of the γ‧-phase which plays the nucleation sites for the coating nitrides and provides a strong supporting effect for the AlCrN and AlCrTiSiN coatings. The main wear mechanism of the duplex coatings without compound layer is spalling and chipping wear as well as tribooxidation wear, whereas the main wear mechanism of the duplex coatings with compound layer is tribooxidation wear.

  14. Orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films

    DOE PAGESBeta

    Zhu, L. J.; Nie, S. H.; Xiong, P.; Schlottmann, P.; Zhao, J. H.

    2016-02-24

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic- tomore » square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less

  15. Electrochemical Evaluation of Nanocrystalline Diamond Thin Films on Ti-6Al-4V Implant Alloy

    NASA Astrophysics Data System (ADS)

    Fries, Marc; Venugopalan, Ramakrishna; Vohra, Yogesh

    2002-03-01

    Some 186,000 hip replacement surgeries are peformed every year in the United States alone. About 10surgeries are revision operations to replace an implant that has most likely failed through mechanical-electrochemical interactions resulting in implant wear. The ability to enhance the resistance to such mechanical-electrochemical interaction and thereby reduce wear could result in significantly increased device lifespan. Nanocrystalline diamond (NCD) thin films were deposited on Ti-6Al-4V disk samples (processed per ASTM F86 standard for medical implant surface conditions) using microwave plasma chemical vapor deposition (MPCVD). As a first step, these samples (n=3/test per group) were subjected to electrochemical evaluation in inorganic neutral salt solution at 37 C. The electrochemical evaluation involved both impedence spectroscopy (per ASTM G106) and polarization testing (per ASTM G5). The impedence spectroscopy data indicated a significantly higher charge transfer resistance at the interface due to the protective NCD as compared to the bare or uncoated substrate. The polarization test data confirmed that this increased charge transfer resistance resulted in a decreased current density measurement. This decreased current density measurement resulted in an order of magnitude lower calculated static corrosion rate from the NCD coated samples as opposed to the uncoated controls. Future studies will focus on investigations that will facilitate transfer of these static electrochemical resistance results to a more relevant mechanical-electrochemical interaction milieu.

  16. Electronic properties of passive films grown on Al 7075 in solutions containing oxalate and chromate

    SciTech Connect

    Kobotiatis, L.; Kioupis, N.; Koutsoukos, P.G.

    1997-07-01

    Electronic properties of passive layers grown anodically on Al 7075 (UNS A97075) in chromate and oxalate solutions during polarization at 500 mV{sub SCE} were investigated using electrochemical impedance spectroscopy. Impedance results were analyzed in terms of capacitance-vs-frequency plots during reverse polarization from 500 mV{sub SCE} to more negative potentials. Plots yielded capacitance values dependent upon both frequency and applied potential. Increases in capacitance with decreasing potential were attributed to width variations of a space charge inside the passive film. Mott-Schottky plots gave slopes and intersection potentials dependent upon the imposed alternating current signal frequency. Data were interpreted on the basis of the amorphous semiconductor/electrolyte junction theory. Differences were found in semiconducting properties of the passive layers formed in solutions containing chromate and oxalate ions. These differences were related to the anticorrosive resistance toward pitting, since it is well known that chromate is a more effective inhibitor than oxalate. The oxide developed in the presence of chromate ions exhibited less noble flat-band potentials and lower average densities of states.

  17. Orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films

    PubMed Central

    Zhu, L. J.; Nie, S. H.; Xiong, P.; Schlottmann, P.; Zhao, J. H.

    2016-01-01

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic- to square-root temperature dependence and deviation from it in three distinct temperature regimes. Our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons. PMID:26905518

  18. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    PubMed

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved. PMID:26726680

  19. Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.

    PubMed

    Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina

    2015-04-01

    Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer. PMID:25934259

  20. Superconducting MgB2 thin films grown by pulsed laser deposition on Al2O3(0001) and MgO(100) substrates

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Dai, S. Y.; Zhou, Y. L.; Chen, Z. H.; Cui, D. F.; Xu, J. D.; He, M.; Lu, H. B.; Yang, G. Z.; Fu, G. S.; Han, L.

    2001-11-01

    Superconducting MgB2 thin films were fabricated on Al2O3(0001) and MgO(100) substrates by a two-step method. Boron thin films were deposited by pulsed laser deposition followed by an ex-situ annealing process. Resistance measurements of the deposited MgB2 films show a Tc of 38.6 K for MgB2/Al2O3 and 38.1 K for MgB2/MgO. Atomic force microscopy, scanning electron microscopy and x-ray diffraction were used to study the properties of the films. The results indicate that the MgB2/Al2O3 films consist of well-crystallized grains with a highly c-axis-oriented structure while the MgB2/MgO films have a dense uniform appearance with an unfixed orientation.

  1. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films

    PubMed Central

    Tao, X. D.; Wang, H. L.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Zhang, W.; Oepen, H. P.; Zhao, J. H.; Ding, H. F.

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis. PMID:26733075

  2. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films

    NASA Astrophysics Data System (ADS)

    Tao, X. D.; Wang, H. L.; Miao, B. F.; Sun, L.; You, B.; Wu, D.; Zhang, W.; Oepen, H. P.; Zhao, J. H.; Ding, H. F.

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis.

  3. Unveiling the Mechanism for the Split Hysteresis Loop in Epitaxial Co2Fe1-xMnxAl Full-Heusler Alloy Films.

    PubMed

    Tao, X D; Wang, H L; Miao, B F; Sun, L; You, B; Wu, D; Zhang, W; Oepen, H P; Zhao, J H; Ding, H F

    2016-01-01

    Utilizing epitaxial Co2Fe1-xMnxAl full-Heusler alloy films on GaAs (001), we address the controversy over the analysis for the split hysteresis loop which is commonly found in systems consisting of both uniaxial and fourfold anisotropies. Quantitative comparisons are carried out on the values of the twofold and fourfold anisotropy fields obtained with ferromagnetic resonance and vibrating sample magnetometer measurements. The most suitable model for describing the split hysteresis loop is identified. In combination with the component resolved magnetization measurements, these results provide compelling evidences that the switching is caused by the domain wall nucleation and movements with the switching fields centered at the point where the energy landscape shows equal minima for magnetization orienting near the easy axis and the field supported hard axis. PMID:26733075

  4. Influences of different structures on the characteristics of H2O-based and O3-based La x Al y O films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen-Xi, Fei; Hong-Xia, Liu; Xing, Wang; Dong-Dong, Zhao; Shu-Long, Wang; Shu-Peng, Chen

    2016-05-01

    H2O-based and O3-based La x Al y O nanolaminate films were deposited on Si substrates by atomic layer deposition (ALD). Structures and performances of the films were changed by different barrier layers. The effects of different structures on the electrical characteristics and physical properties of the La x Al y O films were studied. Chemical bonds in the La x Al y O films grown with different structures and different oxidants were also investigated with x-ray photoelectron spectroscopy (XPS). The preliminary testing results indicate that the La x Al y O films with different structures and different oxidants show different characteristics, including dielectric constant, equivalent oxide thickness (EOT), electrical properties, and stability. Project supported supported by the National Natural Science Foundation of China (Grant Nos. 61376099 and 61434007).

  5. In situ Crystallization of RF sputtered ITO thin films: A comparison with annealed samples

    SciTech Connect

    John, K. Aijo; Manju, T.

    2014-01-28

    Tin doped Indium Oxide (ITO) is a wide band gap semiconductor with high conductivity and transparency in the visible region of the solar spectrum. One of the most popular and exploited applications of ITO is the realization of the transparent conductive layers needed for the electrodes of light sensitive devices, such as photovoltaic cells. The thermal energy for the crystallization of ITO films is very low (150°C). The crystallization can be achieved by the continuous energetic bombardment of the ions in the sputtering chamber without annealing or substrate heating. The accumulated energy will ensure the thermal energy necessary for the crystallization. With the help of sufficiently high sputtering power and sufficient duration, crystallized ITO films can be produced without annealing. In this report, a comparison of the conductivity and transparency of ITO films under two crystallization conditions ((1) crystallization of the sputtered films by annealing; (2) in situ crystallization of the films by providing high sputtering power and long sputtering duration) will be presented.

  6. Comparison on the interaction of Al3+/nano-Al13 with calf thymus DNA /salmon sperm DNA

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Ma, Yue; Du, Changwen; Yang, Xiaodi; Shen, Renfang

    2015-11-01

    The conformation change, binding mode and binding site between Al3+/nano-Al13 and calf thymus DNA/salmon sperm DNA were investigated by UV-vis absorption, FTIR spectra, Raman spectroscopy and CD spectra, as well as melting curves measurement. The UV-vis spectra and circular dichroism spectra results suggested that the phosphate group structure was changed when Al3+ interacted with DNA, while the double-helix was distorted when nano-Al13 interacted with DNA. The FTIR and Raman spectroscopy revealed that the binding sites were Al3+ … PO2, Al3+ … N7/guanine PO2 … Al13 … N7-C8/guanine with calf thymus DNA, and Al3+ … N3-O2/cytosine, Al3+ … N7-C8/guanine, PO2 … Al13 … N7-C8/guanine, PO2 … Al13 … N1/adenine with salmon sperm DNA, respectively. The electrostatic binding was existed between Al3+ and DNA, and the electrostatic binding and complexing were found between nano-Al13 and DNA.

  7. Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties

    SciTech Connect

    SULLIVAN,JOHN P.; DUNN,ROBERTO G.; BARBOUR,J. CHARLES; WALL,FREDERICK D.; MISSERT,NANCY A.; BUCHHEIT,R.G.

    2000-06-01

    The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

  8. The effect of interfacial diffusion on the electrical resistivity of magnetron sputtered Al-Fe-Sn alloy thin film

    NASA Astrophysics Data System (ADS)

    Zhao, Guannan; Zhang, Qing; Zheng, Zeng; Zhang, Yong; Yan, Biao

    2016-03-01

    The effect of interfacial diffusion in post-deposition annealing on the electrical resistivity of AlFeSn alloy films was investigated for the first time. The microstructure of the film before and after annealing was characterized by Atomic Force Microscope and Transmission Electron Microscope. The temperature dependence of resistivity in the range from 30 to 300 K suggests the presence of electron localization in both as-deposited and annealed films. The electron localization in the as-deposited film could be attributed to structural discontinuity. However, the electron localization in the annealed samples could probably be attributed to the diffusion of Si atoms into the film. An electrical resistivity as low as 1.43 μΩ cm was achieved for a 60 nm thick sample, which is considerably lower than predicted and previously reported. We propose the supreme conductivity of the annealed films could be partly due to the contribution from the electron localization. Our results provide new insight into developing highly conductive metallic materials.

  9. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition

    PubMed Central

    2013-01-01

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD. PMID:23413804

  10. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Wang, Dongpo; Cheng, Fangjie; Wang, Ying

    2015-05-01

    The oxide-film structure on the 5052 Al alloy and the film-removal mechanism by activated CsF-AlF3 flux in brazing were studied. Characterisation of the oxide film shows that thermally activated Mg, segregated from the alloy's interior, was significantly enriched and oxidised during medium-temperature brazing. Thus, the outer oxide surface consisted of the amorphous MgO-like phase, and the interior of the oxide film comprised mainly the amorphous MgO-like phase and dispersely distributed and less-ordered MgAl2O4. The MgO-like phase was the main obstacle to oxide removal in brazing. The activated ZnCl2-containing CsF-AlF3 flux effectively removed the oxide film, and the 5052 Al alloy was successfully brazed by the Zn-Al filler metal and activated flux. When Zn2+ in the molten flux permeated the oxide film through cracks, its chemical reaction with the Al substrate loosened the oxide film, which was eventually pushed out as the filler metal spread over the alloy surface.

  11. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells.

    PubMed

    Lin, Qinxian; Su, Yantao; Zhang, Ming-Jian; Yang, Xiaoyang; Yuan, Sheng; Hu, Jiangtao; Lin, Yuan; Liang, Jun; Pan, Feng

    2016-09-14

    Increasing the open-circuit voltage (Voc) along with the fill factor (FF) is pivotal for the performance improvement of solar cells. In this work, we report the design and construction of a new structure of CdS/CdTe/Al2O3/Cu using the atomic layer deposition (ALD) method, and then we control Cu diffusion through the Al2O3 atomic layer into the CdTe layer. Surprisingly, this generates a novel p-type and metallic dual-functional Cu-Al2O3 atomic layer. Due to this dual-functional character of the Cu-Al2O3 layer, an efficiency improvement of 2% in comparison with the standard cell was observed. This novel dual-functional back contact structure could also be introduced into other thin film solar cells for their efficiency improvement. PMID:27384986

  12. Mössbauer spectroscopy study of Al distribution in BaAl{sub x}Fe{sub 12−x}O{sub 19} thin films

    SciTech Connect

    Przybylski, M. Żukrowski, J.; Harward, I.; Celiński, Z.

    2015-05-07

    Barium hexagonal ferrite (BaM) films grown on Si are a good candidate material for new-generations of on-wafer microwave devices operating at frequencies above 40 GHz. Doping BaM with Al increases the value of anisotropy field even more, and in combination with a large value of remanence, would allow one to create a self-biasing material/structure that would eliminate the need for permanent bias magnets in millimeter wave devices. To examine the occupation of Fe sublattices by Al ions, we carried out Conversion Electron Mössbauer Spectroscopy (CEMS) measurements at room temperature and zero magnetic field (after magnetizing the samples in a strong magnetic field). The spectra can be reasonably fitted with three components (sub-spectra) corresponding to different Fe sublattices. There are significant changes in the spectra with the addition of Al: The magnetic hyperfine field decreases for all three components, and their relative contributions also change remarkably. These observations are in agreement with the fact that the Al substitutes Fe, thus lowering the component contributions and the value of the hyperfine field. In addition, our previous XRD analysis indicates increasing grain misalignment with Al content, further supporting the CEMS data.

  13. Laser soldering of sapphire substrates using a BaTiAl6O12 thin-film glass sealant

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Tismer, S.; Benndorf, G.; Mittag, M.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2016-07-01

    Two sapphire substrates are tightly bonded through a BaTiAl6O12-glass thin film, by irradiation with a nanosecond laser. After the laser process, the composition of the glass sealant changes, due to incorporation of Al2O3 from the upper substrate. After annealing of the bonded samples (950 °C for 30 minutes) crystalline structures are observed by TEM which are attributed to crystalline BaTiAl6O12. These crystals together with Al2O3:Ti centers are the responsible of the observed strong blue luminescence of the laser irradiated region upon UV excitation. The structural and optical characterizations of the bonded samples clarify the laser soldering procedure as well as the origin of the luminescence. Bond quality and bond strength were evaluated by scanning acoustic microscopy (SAM) and tensile tests, which results in a tensile stress of nearly 13 MPa, which is an acceptable value for glass sealants.

  14. Luminescence of (Mg,Zn)Al2O4:Tb mixed spinel thin films prepared by spin-coating

    NASA Astrophysics Data System (ADS)

    Kroon, R. E.; Tabaza, W. A. I.; Swart, H. C.

    2015-03-01

    MgAl2O4 and ZnAl2O4 both have the spinel structure and similar lattice constants, but the bandgap of MgAl2O4 is about double that of ZnAl2O4, making it interesting to consider the mixed spinel (MgxZn1-x)Al2O4 as a possible host for luminescent ions. Prior to preparing thin films, the Mg:Zn ratio and Tb concentration were optimized for green luminescence from the 5D4 - 7F5 transition of Tb3+ ions using nanocrystalline samples prepared by combustion synthesis. Thin films with x = 0.75 and 0.5 mol% Tb were spin-coated on Si(100) substrates using a solution of the nitrates of Mg, Zn, Al and Tb in ethanol, with ethylene glycol as complexing agent. Samples about 200 nm thick were obtained by sequentially depositing 10 layers at 3000 rpm for 30 s. Samples were annealed for 1 h in air before measuring their luminescence properties. For the sample annealed at 600 °C, x-ray diffraction showed the thin film had a strong (111) preferential orientation. Atomic force microscopy revealed a root means square roughness of 1 nm and Auger electron spectroscopy depth profiles showed a uniform layer with a sharp interface at the Si substrate. With an increase in annealing temperature up to 1000 °C, the luminescence increased while the surface became slightly rougher and the layer-substrate interface more interdiffused. Annealing the samples at 1200 °C resulted in diffusion of Si through the layer and the formation of an additional phase. While the green Tb emission was slightly reduced, blue emission from the 5D3 level of Tb3+ was greatly enhanced in these samples.

  15. Structure and electrical properties of Al-doped HfO₂ and ZrO₂ films grown via atomic layer deposition on Mo electrodes.

    PubMed

    Yoo, Yeon Woo; Jeon, Woojin; Lee, Woongkyu; An, Cheol Hyun; Kim, Seong Keun; Hwang, Cheol Seong

    2014-12-24

    The effects of Al doping in atomic-layer-deposited HfO2 (AHO) and ZrO2 (AZO) films on the evolutions of their crystallographic phases, grain sizes, and electric properties, such as their dielectric constants and leakage current densities, were examined for their applications in high-voltage devices. The film thickness and Al-doping concentration were varied in the ranges of 60-75 nm and 0.5-9.7%, respectively, for AHO and 55-90 nm and 1.0-10.3%, respectively, for AZO. The top and bottom electrodes were sputtered Mo films. The detailed structural and electrical property variations were examined as functions of the Al concentration and film thickness. The AHO films showed a transition from the monoclinic phase (Al concentration up to 1.4%) to the tetragonal/cubic phase (Al concentration 2.0-3.5%), and finally, to the amorphous phase (Al concentration >4.7%), whereas the AZO films remained in the tetragonal/cubic phase up to the Al concentration of 6.4%. For both the AHO and AZO films, the monoclinic and amorphous phases had dielectric constants of 20-25, and the tetragonal/cubic phases had dielectric constants of 30-35. The highest electrical performance levels for the application to the high-voltage charge storage capacitors in flat panel displays were achieved with the 4.7-9.7% Al-doped AHO films and the 2.6% Al-doped AZO films. PMID:25423483

  16. Plasma-assisted hot filament chemical vapor deposition of AlN thin films on ZnO buffer layer: toward highly c-axis-oriented, uniform, insulative films

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Mehdipour, H.; Ganesh, V.; Ameera, A. N.; Goh, B. T.; Shuhaimi, A.; Rahman, S. A.

    2014-12-01

    c-Axis-oriented aluminum nitride (AlN) thin film with improved quality was deposited on Si(111) substrate using ZnO buffer layer by plasma-assisted hot filament chemical vapor deposition. The optical and electrical properties and surface morphology as well as elemental composition of the AlN films deposited with and without ZnO buffer layer were investigated using a host of measurement techniques: X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), and current-voltage (I-V) characteristic measurement. The XRD and XPS results reveal that the AlN/ZnO/Si films are free of metallic Al particles. Also, cross-sectional FESEM observations suggest formation of a well-aligned, uniform, continuous, and highly (002) oriented structure for a bi-layered AlN film when Si(111) is covered with ZnO buffer. Moreover, a decrease in full width at half maximum of the E2 (high)-mode peak in Raman spectrum indicates a better crystallinity for the AlN films formed on ZnO/Si substrate. Finally, I-V curves obtained indicate that the electrical behavior of the AlN thin films switches from conductive to insulative when film is grown on a ZnO-buffered Si substrate.

  17. Comparison of dynamic and quasi-static measurements of thin film adhesion

    NASA Astrophysics Data System (ADS)

    Tran, Phuong; Kandula, Soma S.; Geubelle, Philippe H.; Sottos, Nancy R.

    2011-01-01

    Adhesive failure and the attendant delamination of a thin film on a substrate is controlled by the fracture energy required to propagate a crack along the interface. Numerous testing protocols have been introduced to characterize this critical property, but are limited by difficulties associated with applying precise loads, introducing well-defined pre-cracks, tedious sample preparation and complex analysis of plastic deformation in the films. The quasi-static four-point bend test is widely accepted in the microelectronics industry as the standard for measuring adhesion properties for a range of multilayer thin film systems. Dynamic delamination methods, which use laser-induced stress waves to rapidly load the thin film interface, have recently been offered as an alternative method for extracting interfacial fracture energy. In this work, the interfacial fracture energy of an aluminium (Al) thin film on a silicon (Si) substrate is determined for a range of dynamic loading conditions and compared with values measured under quasi-static conditions in a four-point bend test. Controlled dynamic delamination of the Al/Si interface is achieved by efficient conversion of the kinetic energy associated with a laser-induced stress wave into fracture energy. By varying the laser fluence, the fracture energy is investigated over a range of stress pulse amplitudes and velocities. For lower amplitudes of the stress wave, the fracture energy is nearly constant and compares favourably with the critical fracture energy obtained using the four-point bend technique, about 2.5 J m-2. As the pulse amplitude increases, however, a rate dependence of the dynamic fracture energy is observed. The fracture energy increases almost linearly with pulse amplitude until reaching a plateau value of about 6.0 J m-2.

  18. Temperature dependent magnetic anisotropy of epitaxial Co2FeAl films grown on GaAs

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2015-03-01

    Co2FeAl films with different thickness were prepared at different temperature by molecular beam epitaxy. Their magnetic anisotropy was studied by rotating magneto-optical Kerr rotation measurements under different temperature. It is found that the cubic anisotropy depends only on the temperature-dependent fourth order magneto-elastic coefficients. However, the results of growth and measurement temperature-dependent uniaxial anisotropy suggest that the uniaxial anisotropy of Co2FeAl films may be attributed to contributions from both shear strain and anisotropic interfacial bonding. Our experimental findings proposed a new point of view to understand the origin of magnetic anisotropy in ferromagnet/GaAs(001) heterostructures.

  19. Magnetocrystalline anisotropy and Gilbert damping of Co2MnAl films epitaxially grown on GaAs

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Wang, Hailong; Du, Wenna; Zhao, Jianhua; Zhang, Xinhui

    2016-02-01

    The thickness dependence of both the magnetocrystalline anisotropy and Gilbert damping are investigated for L 21-ordered Co2MnAl films by time-resolved magneto-optical Kerr (TR-MOKE) measurements. The intrinsic damping parameter of 0.0039 is evaluated by applying both the in-plane and out-of-plane external magnetic field. The magnetocrystalline anisotropy and intrinsic damping parameter are found to show the similar dependence on film’s thickness, revealing their same physical origination related to the spin-orbit coupling. Our experimental findings provide essential information for the dynamic magnetization property of Co2MnAl films for its promising application in spintronic devices.

  20. The in-plane anisotropic magnetic damping of ultrathin epitaxial Co{sub 2}FeAl film

    SciTech Connect

    Qiao, Shuang; Yan, Wei; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2015-08-15

    The in-plane orientation-dependent effective damping of ultrathin Co{sub 2}FeAl film epitaxially grown on GaAs(001) substrate by molecular beam epitaxy (MBE) has been investigated by employing the time-resolved magneto-optical Kerr effect (TR-MOKE) measurements. It is found that the interface-induced uniaxial anisotropy is favorable for precession response and the anisotropy of precession frequency is mainly determined by this uniaxial anisotropy, while the magnetic relaxation time and damping factor exhibit the fourfold anisotropy at high-field regime. The field-independent anisotropic damping factor obtained at high fields indicates that the effective damping shows an intrinsic fourfold anisotropy for the epitaxial Co{sub 2}FeAl thin films.

  1. Investigation of the HA film deposited on the porous Ti6Al4V alloy prepared via additive manufacturing

    NASA Astrophysics Data System (ADS)

    Surmeneva, M.; Chudinova, E.; Syrtanov, M.; Koptioug, A.; Surmenev, R.

    2015-11-01

    This study is focused on the use of radio frequency magnetron sputtering to modify the surface of porous Ti6Al4V alloy fabricated via additive manufacturing technology. The hydroxyapatite (HA) coated porous Ti6Al4V alloy was studied in respect with its chemical and phase composition, surface morphology, water contact angle and hysteresis, and surface free energy. Thin nanocrystalline HA film was deposited while its structure with diamond-shaped cells remained unchanged. Hysteresis and water contact angle measurements revealed an effect of the deposited HA films, namely an increased water contact angle and contact angle hysteresis. The increase of the contact angle of the coating-substrate system compared to the uncoated substrate was attributed to the multiscale structure of the resulted surfaces.

  2. Morphology and properties of a hybrid organic-inorganic system: Al nanoparticles embedded into CuPc thin film

    SciTech Connect

    Molodtsova, O. V.; Babenkov, S. V.; Aristova, I. M.; Vilkov, O. V.; Aristov, V. Yu.

    2014-04-28

    The evolution of the morphology and the electronic structure of the hybrid organic-inorganic system composed of aluminum nanoparticles (NPs) distributed in an organic semiconductor matrix—copper phthalocyanine (CuPc)—as a function of nominal aluminum content was studied by transmission electron microscopy and by photoemission spectroscopy methods. The aluminum atoms deposited onto the CuPc surface diffuse into the organic matrix and self-assemble to NPs in a well-defined manner with a narrow diameter distribution, which depends on the amount of aluminum that is evaporated onto the CuPc film. We find clear evidence of a charge transfer from Al to CuPc and we have been able to determine the lattice sites where Al ions sit. The finally at high coverage about 64 Å the formation of metallic aluminum overlayer on CuPc thin film takes place.

  3. Temperature dependent magnetic anisotropy of epitaxial Co{sub 2}FeAl films grown on GaAs

    SciTech Connect

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2015-03-07

    Co{sub 2}FeAl films with different thickness were prepared at different temperature by molecular beam epitaxy. Their magnetic anisotropy was studied by rotating magneto-optical Kerr rotation measurements under different temperature. It is found that the cubic anisotropy depends only on the temperature-dependent fourth order magneto-elastic coefficients. However, the results of growth and measurement temperature-dependent uniaxial anisotropy suggest that the uniaxial anisotropy of Co{sub 2}FeAl films may be attributed to contributions from both shear strain and anisotropic interfacial bonding. Our experimental findings proposed a new point of view to understand the origin of magnetic anisotropy in ferromagnet/GaAs(001) heterostructures.

  4. Growth temperature dependent structural and magnetic properties of epitaxial Co{sub 2}FeAl Heusler alloy films

    SciTech Connect

    Qiao, Shuang; Nie, Shuaihua; Zhao, Jianhua; Zhang, Xinhui

    2013-06-21

    The structural and magnetic properties of a series of Co{sub 2}FeAl Heusler alloy films grown on GaAs(001) substrate by molecular beam epitaxy have been studied. The epitaxial Co{sub 2}FeAl films with an ordered L{sub 21} structure have been successfully obtained at growth temperature of 433 K, with an in-plane cubic magnetic anisotropy superimposed with an unusual uniaxial magnetic anisotropy. With increasing growth temperature, the ordered L{sub 21} structure degrades. Meanwhile, the uniaxial anisotropy decreases and eventually disappears above 673 K. The interfacial bonding between As and Co or Fe atom is suggested to be responsible for the additional uniaxial anisotropy.

  5. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Kong, W. Jiao, W. Y.; Kim, T. H.; Brown, A. S.; Roberts, A. T.; Fournelle, J.; Losurdo, M.; Everitt, H. O.

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  6. Tunable optoelectronic properties of pulsed dc sputter-deposited ZnO:Al thin films: Role of growth angle

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Singh, Ranveer; Nandy, Suman; Ghosh, Arnab; Rath, Satchidananda; Som, Tapobrata

    2016-07-01

    In this paper, we investigate the role of deposition angle on the physical properties and work function of pulsed dc sputter-deposited Al-doped zinc oxide (AZO) thin films. It is observed that average grain size and crystal quality increase with higher angle of deposition, yielding improved optical properties. A systematic blue shift as well as a decrease in the resistivity takes place with the increasing growth angle up to 70°, while an opposite trend is observed beyond that. In addition, the work function of AZO films is also measured using Kelvin probe force microscopy, which corroborates well with the optical and structural properties. The observed results are explained in the framework of growth angle induced diffusion and shadowing effects. The films deposited at higher angles will be important for rapid incorporation into new technological applications that require a transparent conductive oxide.

  7. Optimization of oxygen and pressure of ZnO:Al films deposited on PMMA substrates by facing target sputtering

    NASA Astrophysics Data System (ADS)

    Guo, Tingting; Dong, Guobo; Liu, Qirong; Wang, Mengying; Wang, Mei; Gao, Fangyuan; Chen, Qiang; Yan, Hui; Diao, Xungang

    2013-12-01

    ZnO:Al (ZAO) thin films have been deposited on PMMA substrates using facing target sputtering system at room temperature. The dependence of the properties on the oxygen partial pressure and the sputtering pressures was investigated. With increased oxygen partial pressure, the resistivity increases sharply, while the optical band gap and the carrier concentration decrease. The intrinsic band gap of 3.40 eV was obtained according to the Burstein-Moss (BM) widening. The lowest resistivity of 2.4 × 10-3 Ω cm and the figure of merit value of 3.42 × 10-3 Ω-1 were achieved when the oxygen partial pressure and sputtering pressure was 0% and 0.7 Pa, respectively. For ZAO films prepared at various sputtering pressure, carrier concentration changes slightly whereas Hall mobility increases almost linearly with increasing grain size. The carrier transport of the films is mainly limited by grain boundary scattering.

  8. Microstructural, optical, and electrical properties of Ni–Al co-doped ZnO films prepared by DC magnetron sputtering

    SciTech Connect

    Jo, Young Dae; Hui, K.N.; Hui, K.S.; Cho, Y.R.; Kim, Kwang Ho

    2014-03-01

    Graphical abstract: - Highlights: • Ni–Al co-doped ZnO (NiAl:ZnO) composite thin films were deposited by DC magnetron sputtering at room temperature. • All films showed a highly preferential (0 0 2) c-axis orientation. • XPS revealed the presence of metallic Ni, NiO, and Ni{sub 2}O{sub 3} states, and Ni atoms were successfully doped in the NiAl:ZnO films. • NiAl:ZnO (3 wt% Ni) film showed the lowest electrical resistivity of 2.59 × 10{sup −3} Ω cm. • Band gap widening (4.18 eV) was observed in the NiAl:ZnO films with 5 wt% Ni. - Abstract: Ni–Al co-doped ZnO (NiAl:ZnO) films with fixed Al content at 2 wt% and different Ni contents (2.5, 3, and 5 wt%) were deposited by DC magnetron sputtering in an argon atmosphere at room temperature. X-ray diffraction revealed that all films showed a highly preferential (0 0 2) c-axis orientation. XPS revealed the presence of metallic Ni, NiO, and Ni{sub 2}O{sub 3} states, and Ni atoms were successfully doped in NiAl:ZnO films, which did not result in a change in ZnO crystal structure and orientation. The electrical resistivity of NiAl:ZnO film was decreased to 2.59 × 10{sup −3} Ω cm at a Ni doping concentration of 3 wt% compared with undoped Al-doped ZnO film (5.58 × 10{sup −3} Ω cm). The mean optical transmittance in the visible range was greater than 80% for all films. Band gap widening (4.18 eV) was observed in the NiAl:ZnO films with 5 wt% Ni, attributed to the Burstein–Moss shift due to the increase of carrier concentration.

  9. [Effects of Temperature on the Preparation of Al/Zn3N2 Thin Films Using Magnetron Reactive Sputtering].

    PubMed

    Feng, Jun-qin; Chen, Jun-fang

    2015-08-01

    The effects of substrate temperature on the plasma active species were investigated by plasma optical emission spectroscopy. With increasing substrate temperature, the characteristic spectroscopy intensity of the first positive series of N2* (B(3)Πg-->A(3)Σu(+)), the second positive N2* (C(3)Πu-->B(3)Πg), the first negative series N2(+)* (B(2)Σu(+)-->X(2)Σg(+)) and Zn* are increased. Due to the substrate temperature, each ion kinetic energy is increased and the collision ionization intensified in the chamber. That leading to plasma ion density increase. These phenomenons's show that the substrate temperature raises in a certain range was conducive to zinc nitride thin films growth. Zn3N2 thin films were prepared on Al films using ion sources-assisted magnetron sputtering deposition method. The degree of crystalline of the films was examined with X-ray diffraction (XRD). The results show that has a dominant peak located at 34.359° in room temperature, which was corresponding to the (321) plane of cubic anti-bixbyite zinc nitride structure (JCPDS Card No35-0762). When the substrate temperature was 100 °C, in addition to the (321) reflection, more diffraction peaks appeared corresponding to the (222), (400) and (600) planes, which were located at 31.756°, 36.620° and 56.612° respectively. When the substrate temperature was 200 °C, in addition to the (321), (222), (400) and (600) reflection, more new diffraction peaks also appeared corresponding to the (411), (332), (431) and (622) planes, which were located at 39.070, 43.179°, 47.004° and 62.561° respectively. These results show the film crystalline increased gradually with raise the substrate temperature. XP-1 profilometer were used to analyze the thickness of the Zn3N2 films. The Zn3N2 films deposited on Al films in mixture gas plasma had a deposition rate of 2.0, 2.2, and 2.7 nm · min(-1). These results indicate that the deposition rate was gradually enhanced as substrate temperature increased

  10. Comparison of ferromagnetism in n- and p-type magnetic semiconductor thin films of ZnCoO

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Lee, J. C.; Min, J. F.; Su, C. W.

    2011-07-01

    Both n- and p-type diluted magnetic semiconductor ZnCoO are made by magnetron co-sputtering with, respectively, dopants of Al and dual dopants of Al and N. The two sputtering targets are compound ZnCoO with 5% weight of Co and pure metal Al. Sputtering gases for n- and p-type films are pure Ar and N 2, respectively. These films are magnetic at room temperature and possess free electron- and hole-concentration of 5.34×10 20 and 5.27×10 13 cm -3. Only the n-type film exhibits anomalous Hall-effect signals. Magnetic properties of these two types of films are compared and discussed based on measurements of microstructure and magneto-transport properties.

  11. Comparison of phosphorylated TDP-43-positive inclusions in oculomotor neurons in patients with non-ALS and ALS disorders.

    PubMed

    Mizuno, Yuji; Fujita, Yukio; Takatama, Masamitsu; Okamoto, Koichi

    2012-04-15

    TDP-43 has been identified as a major component of the pathological inclusions in most forms of frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). In the present study, paraffin sections of the midbrain in 112 patients with various non-ALS disorders and 27 patients with sporadic ALS were immunostained with antibody against phosphorylated TDP-43 (pTDP-43). pTDP-43-positive inclusions in oculomotor neurons were detected in 18 of 112 patients with non-ALS disorders (16.1%). The appearance of the inclusions showed fine filamentous structures rather than the skein-like inclusions seen in the anterior horn cells of ALS spinal cords. The incidence was increased in the age range of 80-89 years old (10/37 cases; 27.0%), in which 6 of 10 cases demonstrated AD pathology in the temporal lobes. Twenty-seven ALS patients were examined and the findings were compared with those of non-ALS patients. There were 13 cases demonstrating pTDP-43-positive inclusions (48.1%) which showed stronger immunoreactivities in ALS cases. This is the first report demonstrating fine filamentous pTDP-43-positive inclusions in oculomotor neurons in non-ALS disorders. Although the mechanisms underlying pTDP-43 in oculomotor neurons are currently unknown, its detection is of interest, and the expression may occur not only in ALS but also during the aging process. PMID:22257502

  12. Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Naoe, Kazuaki; Nishiki, Masashi; Sato, Keishi

    2014-12-01

    Aerosol deposition method is a technique to form dense films by impacting solid particles on a substrate at room temperature. To clarify the bonding mechanism between AD films and substrates, TEM observation and electron energy-loss spectroscopy (EELS) analysis of the interface between Al2O3 AD films and Cu substrates were conducted. The Al2O3 film was directly adhered to the Cu substrate without any void or crack. The film was composed of randomly oriented α-Al2O3 crystal grains of about 10-20 nm large. At the Al2O3/Cu interface, the lattice fringes of the film were recognized, and no interfacial layer with nanometer-order thickness could be found. EELS spectra near O- K edge obtained at the interface had the pre-peak feature at around 528 eV. According to previously reported experiments and theoretical calculations, this suggests interactions between Cu and O in Al2O3 at the interface. It is inferred that not only the anchoring effect but also the ionic bonding and covalent bonding that originates from the Cu-O interactions contribute to the bonding between Al2O3 AD films and Cu substrates.

  13. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    SciTech Connect

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  14. An experimental comparison between a novel and a conventional cooling system for the blown film process

    NASA Astrophysics Data System (ADS)

    Janas, M.; Andretzky, M.; Neubert, B.; Kracht, F.; Wortberg, J.

    2016-03-01

    The blown film extrusion is a significant manufacturing process of plastic films. Compared to other extrusion processes, the productivity is limited by the cooling of the extrudate. A conventional cooling system for the blown film application provides the cooling air tangentially, homogeneous over the whole circumference of the bubble, using a single or dual lip cooling ring. In prior works, major effects could be identified that are responsible for a bad heat transfer. Besides the formation of a boundary sublayer on the film surface due to the fast flowing cooling air, there is the interaction between the cooling jet and the ambient air. In order to intensify the cooling of a tubular film, a new cooling approach was developed, called Multi-Jet. This system guides the air vertically on the film surface, using several slit nozzles over the whole tube formation zone. Hence, the jets penetrate the sublayer. To avoid the interaction with the ambient air, the bubble expansion zone is surrounded by a housing. By means of a numeric investigation, the novel cooling approach and the efficiency of the cooling system could be proved. Thereby, a four times higher local heat transfer coefficient is achieved compared to a conventional cooling device. In this paper, the Multi-Jet cooling system is experimentally tested for several different process conditions. To identify a worth considering cooling configuration of the novel cooling system for the experiment, a simulation tool presets the optimal process parameters. The comparison between the results of the new and a conventional system shows that the novel cooling method is able to gain the same frost line height using a 40% lower cooling air volume flow. Due to the housing of the tube formation zone, a heat recovery can be achieved.

  15. Dynamic force microscopy and x-ray photoemission spectroscopy studies of conducting polymer thin film on nanoscale structured Al surface

    NASA Astrophysics Data System (ADS)

    Kato, Hitoshi; Takemura, Susumu; Ishii, Atsuro; Takarai, Yoshiyuki; Watanabe, Yohei; Sugiyama, Takeharu; Hiramatsu, Tomoyasu; Nanba, Noriyuki; Nishikawa, Osamu; Taniguchi, Masahiro

    2007-09-01

    A nanoscale linked-crater structure was fabricated on an Al surface by chemical and electrochemical combination processes. The surface of an Al plate was treated with Semi Clean and was successively processed in anodization in H IISO 4. Dynamic force microscopy image (DFM) showed that a linked-crater structure was formed on the Al surface. At the next stage, the authors conducted the thin film growth of conducting polymer polythiophene on the Al surface by an electrochemical method. The electrochemical polymerization on the Al surface was performed in acetonitrile containing thiophene monomer and (Et) 4NBF 4 as a supporting electrolyte. After being electrochemically processed, the contour image of each crater was still recognized implying that the polymer nanofilm was grown on the nanoscale structured Al surface. The cross section analysis demonstrated that the nanofilm was grown along the linked-crater structure because the contour of each crater became thick. X-ray photoemission spectroscopy measurement also supported the polymer nanofilm growth because C 1s and S 2p lines were detected. Furthermore, copper phthalocyanine (CuPc) molecules are injected into the polymer nanofilm grown on the nanoscale structured Al surface by diffusing method in order to functionalize the nanoscale hybrid material.

  16. Temperature-dependent growth of LaAlO{sub 3} films on YBa{sub 2}Cu{sub 3}O{sub 7} C-axis films for multilayer structures

    SciTech Connect

    Hawley, M.E.; Houlton, R.J.; Raistrick, I.A.; Garzon, F.H.

    1995-01-01

    Fabrication of ultra smooth films, free of micro-shorts, is essential to the development of High Temperature Superconducting (HTS) thin film devices. One such example is a SNS junction consisting of two HTS layers separated by a uniformly smooth continuous barrier material. Other schemes under consideration require multilayer structures of up to 5 - 7 epitaxially grown layers of complex oxide material. Successful fabrication of such devices necessitates understanding the epitaxial growth of polycrystalline oxide films on polycrystalline film templates. Toward this end we have developed a set of deposition parameters that produce high quality epitaxial insulating layers suitable for HTS device applications. All films in this study were grown by off-axis RF magnetron sputter deposition. LaAlO{sub 3} films were deposited over MgO grown YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) c-axis thin films at temperatures ranging from 200 to 700C and on virgin substrates at 600C. Atomic Force Microscopy, eddy current measurements, and x-ray diffraction techniques were used to monitor the effect of growth conditions on the resulting film crystallinity, nanostructure, and electrical properties. Ex-situ interrupted growth characterization of these materials has yielded new insight into the processes that control the growth mechanism and resulting microstructure. All films were polycrystalline. Below 600C, LaAlO{sub 3} films were not epitaxial while films grown at 650C showed some <200> orientation. The shape of the underlying YBCO film is most clearly evident for the film grown at 400C. Surface roughness depended on the appearance of crystals on the film surface. The superconducting properties of the underlying YBCO film required O{sub 2} annealing prior to deposition of the LaAlO{sub 3} layer.

  17. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  18. c-axis orientation and piezoelectric coefficients of AlN thin films sputter-deposited on titanium bottom electrodes

    NASA Astrophysics Data System (ADS)

    Ababneh, A.; Alsumady, M.; Seidel, H.; Manzaneque, T.; Hernando-García, J.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2012-10-01

    Aluminum nitride (AlN) reactively sputter deposited from an aluminum target is an interesting compound material due to its CMOS compatible fabrication process and its piezoelectric properties. To obtain high piezoelectric coefficients it is a necessary pre-request to synthesize films with c-axis orientation. Besides the influence of sputter conditions on the microstructure of AlN thin films the condition of the substrate surface is another important factor of utmost importance. In this study, the influence of 350 nm thick titanium metallization DC sputter-deposited on SiO2/Si substrates at varying back pressure levels bp,Ti in the range of 2 × 10-3 to 14 × 10-3 mbar on the c-axis orientation and the piezoelectric coefficients of 600 nm thick AlN thin films is investigated. Besides the plasma power for Ti deposition (Pp,Ti = 100 W) the parameters for AlN synthetization are fixed to Pp = 1000 W and bp,AlN = 4 × 10-3 mbar in 100% N2 atmosphere. Basically, the surface roughness of the Ti bottom layer is the dominating factor resulting either in a high degree of c-axis orientation (i.e. at low bp,Ti values) or in an amorphous AlN microstructure (i.e. at high bp,Ti values). Under low pressure conditions, a smooth and dense surface characteristics is achieved due to a higher kinetic energy associated with the adatoms what is especially important at nominally unheated substrate conditions. The piezoelectric coefficient d33 decreases from 2.55 to 1.7 pm -1 when increasing the titanium sputter pressure from 2 × 10-3 to 14 × 10-3 mbar. When decreasing the Ti film thickness to 60 nm and hence, reducing the root mean square roughness by a factor of about 2, the intensity associated with the AlN (0 0 2) peak is increased by a factor of about 1.7 demonstrating the direct impact. Furthermore, the highest values for d33 and d31 (i.e. 3.15 pm V-1 and -1.28 pm V-1) are determined.

  19. Microstructure comparison between KNbO 3 thin films grown by polymeric precursors and PLD methods

    NASA Astrophysics Data System (ADS)

    Weber, I. T.; Rousseau, A.; Guilloux-Viry, M.; Bouquet, V.; Perrin, A.

    2005-11-01

    KNbO 3 (KN) thin films were prepared by both Pulsed Laser Deposition (PLD) and Polymeric Precursor Route (PPR) onto polycrystalline alumina (Al 2O 3) and single-crystalline (100) SrTiO 3 substrates. Structural and microstructural characteristics of the thin films were determined by X-ray diffraction, field emission scanning electronic microscopy and electron channeling patterns in order to establish a correlation between the preparation method and the samples characteristics. It was evidenced that both methods are able to produce well crystallized single phase films presenting an epitaxial growth along 110 direction onto (100) SrTiO 3 substrates. PLD led to a highest crystalline quality ( Δω˜0.25° for PLD and Δω˜1° for PPR), while PPR provides crystallization at lower temperatures, without the appearance of secondary phases. The most remarkable difference between the methods concerns the film morphology (grain size and shape). In fact, deposition by these two routes gives access to various microstructures which open the way to specific study of physical behavior which currently depends on it.

  20. Merits and Demerits of Transparent Conducting Magnetron Sputtered ZnO:Al, ITO and SnO2:F Thin Films for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Das, Rajesh; Das, Himadri Sekhar

    2016-06-01

    Transparent conducting ZnO:Al and indium tin oxide (ITO) thin films were deposited by magnetron sputtering under reactive environment. Both the transparent conducting oxide (TCO) films were exposed intentionally in hydrogen environment at 350 °C calcinations temperature to study the post treated TCO film's opto-electronic, structural as well as surface morphological properties. Electrical resistivity of both ZnO:Al, ITO and SnO2:F films are comparable (order of 10-4 Ω-cm), lowest sheet resistance are 8.5, 3.7 and 4.6 Ω/sq respectively and slightly improved after hydrogen exposure at 350 °C. Optical transmittance and internal texture of hydrogen environment exposed ZnO films remains invariant, but in case of ITO, SnO2:F films optical transmittance deteriorated drastically. Hexagonal wurtzite structure with (002) c-axis orientation is observed for pre- and post-hydrogen exposed ZnO films whereas internal texture as well as crystallographic orientation of ITO and SnO2:F films have significantly changed. Surface grains of ITO films have been significantly enhanced, but no such variations are observed in ZnO surface morphology. ZnO:Al and ITO films show unique plasmonic properties in near infrared transmittance due to free carrier generation in conduction band. Based on surface features/morphology, haze factor and internal texture light scattering mechanism is modeled.

  1. Ga and Al doped zinc oxide thin films for transparent conducting oxide applications: Structure-property correlations

    NASA Astrophysics Data System (ADS)

    Temizer, Namik K.; Nori, Sudhakar; Narayan, Jagdish

    2014-01-01

    We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110 μΩ-cm) values. The films grown in an ambient oxygen partial pressure (PO2) of 5 × 10-2 Torr and at growth temperatures from room temperature to 600 °C show semiconducting behavior, whereas samples grown at a PO2 of 1 × 10-3 Torr show metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The measured optical and transport properties were found to be a strong function of growth conditions implying that the drastic changes are brought about essentially by native point defects. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical, and magnetic properties and such changes in physical properties are controlled predominantly by the defect content.

  2. Effects of oxygen pressure in preparation of insulating Sr 2AlTaO 6 thin films by MOCVD

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshihiro; Nakajima, Yuuichi; Morishita, Tadataka; Tanabe, Keiichi

    2002-10-01

    Approximately 300-nm-thick insulating Sr 2AlTaO 6 (SAT) films were prepared on 10-μm-thick YBa 2Cu 3O 7- δ (YBCO) films by metalorganic chemical vapor deposition (MOCVD) in the range of oxygen partial pressure from 13 Pa (0.1 Torr) to 667 Pa (5 Torr) for total deposition pressure of 13 hPa (10 Torr). Stoichiometric SAT films with good crystallinity and square-like grains originating from the cubic structure of SAT were obtained for all the oxygen partial pressure conditions. However, extraordinary areas were partially observed on the sample prepared in the low oxygen partial pressure below 67 Pa (0.5 Torr), which are supposed to be caused by unstableness of YBCO surface. Under the highest oxygen partial pressure condition of 667 Pa, the lower tetragonal YBCO film exhibited a Tc of 80 K, indicating a possibility of in situ oxygenation during cooling. It was also confirmed that the SAT film fabricated under this condition has good dielectric properties such as the dielectric constant of approximately 24 and the conductance below 10 -8 S.

  3. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  4. Capping layer-tailored interface magnetic anisotropy in ultrathin Co{sub 2}FeAl films

    SciTech Connect

    Belmeguenai, M. Zighem, F.; Chérif, S. M.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2015-01-14

    Co{sub 2}FeAl (CFA) thin films of various thicknesses (2 nm ≤ d ≤ 50 nm) have been grown on (001) MgO single crystal substrates and then capped with Cr, V, and Ta. Their magnetic and structural properties have been studied by x-ray diffraction (XRD), vibrating sample magnetometry, and broadband microstrip ferromagnetic resonance (MS-FMR). The XRD revealed that the films are epitaxial with the cubic [001] CFA axis normal to the substrate plane and that the chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. The deduced lattice parameters showed that the Cr-capped films exhibit a larger tetragonal distortion, as compared with the films capped with V or Ta. The presence of magnetic dead layers has been observed in CFA samples capped with V and Ta but not in the case of the Cr-capped ones. The effective magnetization, deduced from the fit of MS-FMR measurements, increases (decreases) linearly with the CFA inverse thickness (1/d) for the Cr-capped (Ta-capped) films while it is constant for the V-capped ones. This allows quantifying the perpendicular surface anisotropy coefficients of −0.46 erg/cm{sup 2} and 0.74 erg/cm{sup 2} for Cr and Ta-capped films, respectively. Moreover, the fourfold and the uniaxial anisotropy fields, measured in these films, showed different trends with a respect to the CFA inverse thickness. This allows inferring that a non-negligible part of the fourfold magnetocrystalline term is of interfacial origin.

  5. INVESTIGATION OF Ta/Ni-Al INTEGRATED FILM USED AS A DIFFUSION BARRIER LAYER BETWEEN Cu AND Si

    NASA Astrophysics Data System (ADS)

    Yang, Lim; Wang, Shi Jie; Huo, Ji Chuan; Li, Xiao Hong; Guo, Jian Xin; Dai, Xiu Hong; Ma, Lian Xi; Zhang, Xiang Yi; Liu, Bao Ting

    2014-09-01

    Ta (3.3 nm)/Ni-Al (3.3 nm) integrated films deposited on Si substrates by magnetron sputtering, annealed at various temperatures in a ultra-high vacuum, have been studied as diffusion barrier layers between Cu and Si for application in Cu interconnection. The images of transmission electron microscopy (TEM) prove that the cross-sectional interfaces of Cu/Ta/Ni-Al/Si sample annealed at 600°C are clear and sharp. No Cu-silicide peaks can be found from the X-ray diffraction (XRD) patterns of the 850°C annealed sample, but the sheet resistance of the sample increases abruptly. Moreover, large grooves are found from the image of atomic force microscopy (AFM) for the 850°C annealed sample, implying the failure of the diffusion barrier. The integrated Ta/Ni-Al barrier layer retains thermally stable nature up to at least 800°C, indicating that the Ta/Ni-Al integrated film is an excellent diffusion barrier between Cu and Si.

  6. Photoelectron spectroscopy study of AlN films grown on n-type 6H-SiC by MOCVD

    NASA Astrophysics Data System (ADS)

    Liang, F.; Chen, P.; Zhao, D. G.; Jiang, D. S.; Zhao, Z. J.; Liu, Z. S.; Zhu, J. J.; Yang, J.; Liu, W.; He, X. G.; Li, X. J.; Li, X.; Liu, S. T.; Yang, H.; Liu, J. P.; Zhang, L. Q.; Zhang, Y. T.; Du, G. T.

    2016-09-01

    Photoelectron spectroscopy has been employed to analyze the content and chemical states of the elements on the surface of AlN films with different thickness, which are synthesized by metalorganic chemical vapor deposition on the n-type SiC substrates under low pressure. It is found that, besides the carbon and gallium on the AlN surface, the atom percentage of surface oxygen increases from 4.9 to 8.4, and the electron affinity also increases from 0.36 to 0.97 eV, when the thickness of AlN films increase from 50 to 400 nm. Furthermore, accompanying with the high-resolution XPS spectra of the O 1s, it is speculated that surface oxygen may be the major influence on the electron affinity, where the surface oxygen changes the surface chemical states through replacing N to form Al-O bond and Ga-O bond, although there are also a few of Ga and C contaminations in the chemical sate of Ga-O and C-C, respectively.

  7. Physical mechanism of the Schwarzschild effect in film dosimetry—theoretical model and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Djouguela, A.; Kollhoff, R.; Rühmann, A.; Willborn, K. C.; Harder, D.; Poppe, B.

    2006-09-01

    In consideration of the importance of film dosimetry for the dosimetric verification of IMRT treatment plans, the Schwarzschild effect or failure of the reciprocity law, i.e. the reduction of the net optical density under 'protraction' or 'fractionation' conditions at constant dose, has been experimentally studied for Kodak XOMAT-V (Martens et al 2002 Phys. Med. Biol. 47 2221-34) and EDR 2 dosimetry films (Djouguela et al 2005 Phys. Med. Biol. 50 N317-N321). It is known that this effect results from the competition between two solid-state physics reactions involved in the latent-image formation of the AgBr crystals, the aggregation of two Ag atoms freshly formed from Ag+ ions near radiation-induced occupied electron traps and the spontaneous decomposition of the Ag atoms. In this paper, we are developing a mathematical model of this mechanism which shows that the interplay of the mean lifetime τ of the Ag atoms with the time pattern of the irradiation determines the magnitude of the observed effects of the temporal dose distribution on the net optical density. By comparing this theory with our previous protraction experiments and recent fractionation experiments in which the duration of the pause between fractions was varied, a value of the time constant τ of roughly 10 s at room temperature has been determined for EDR 2. The numerical magnitude of the Schwarzschild effect in dosimetry films under the conditions generally met in radiotherapy amounts to only a few per cent of the net optical density (net OD), so that it can frequently be neglected from the viewpoint of clinical applications. But knowledge of the solid-state physical mechanism and a description in terms of a mathematical model involving a typical time constant of about 10 s are now available to estimate the magnitude of the effect should the necessity arise, i.e. in cases of large fluctuations of the temporal pattern of film exposure.

  8. The influence of process parameters and pulse ratio of precursors on the characteristics of La1 - x Al x O3 films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Fei, Chenxi; Liu, Hongxia; Wang, Xing; Fan, Xiaojiao

    2015-04-01

    The influence of processing parameters of aluminum oxide (Al2O3) and lanthanum oxide (La2O3) gate dielectric is investigated. Trimethylaluminum (TMA) and tris(isopropylcyclopentadienyl) lanthanum [La(iPrCp)3] were used as precursors separately, and H2O was used as oxidant. The ultra-thin La1 - x Al x O3 gate dielectric films are deposited on p-type silicon substrates by atom layer deposition (ALD) for different pulse ratios of precursors. Effects of different La/Al precursor pulse ratios on the physical properties and electrical characteristics of La1 - x Al x O3 films are studied. The preliminary testing results indicate that the increase of La precursor pulse can improve the characteristics of film, which has significant effects on the dielectric constant, equivalent oxide thickness (EOT), electrical properties, and stability of film.

  9. The influence of process parameters and pulse ratio of precursors on the characteristics of La1 - x Al x O3 films deposited by atomic layer deposition.

    PubMed

    Fei, Chenxi; Liu, Hongxia; Wang, Xing; Fan, Xiaojiao

    2015-01-01

    The influence of processing parameters of aluminum oxide (Al2O3) and lanthanum oxide (La2O3) gate dielectric is investigated. Trimethylaluminum (TMA) and tris(isopropylcyclopentadienyl) lanthanum [La(iPrCp)3] were used as precursors separately, and H2O was used as oxidant. The ultra-thin La1 - x Al x O3 gate dielectric films are deposited on p-type silicon substrates by atom layer deposition (ALD) for different pulse ratios of precursors. Effects of different La/Al precursor pulse ratios on the physical properties and electrical characteristics of La1 - x Al x O3 films are studied. The preliminary testing results indicate that the increase of La precursor pulse can improve the characteristics of film, which has significant effects on the dielectric constant, equivalent oxide thickness (EOT), electrical properties, and stability of film. PMID:25983672

  10. IBA analysis and corrosion resistance of TiAlPtN/TiAlN/TiAl multilayer films deposited over a CoCrMo using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Canto, C. E.; Andrade, E.; de Lucio, O.; Cruz, J.; Solís, C.; Rocha, M. F.; Alemón, B.; Flores, M.; Huegel, J. C.

    2016-03-01

    The corrosion resistance and the elemental profile of multilayer coatings of TiAlPtN/TiAlN/TiAl synthesized by Physical Vapor Deposition (PVD) reactive magnetron sputtering over a CoCrMo alloy substrate in 10 periods of 30 min each were analyzed and compared to those of the substrate alone and to that of a TiAlPtN single layer coating of the same thickness. The objective of the present work was to create multilayers with different amounts of Pt to enhance the corrosion resistance of a biomedical alloy of CoCrMo. Corrosion tests were performed using Simulated Body Fluid (SBF) using potentiodynamic polarization tests at typical body temperature. The elemental composition and thickness of the coatings were evaluated with the combination of two ion beam analysis (IBA) techniques: a Rutherford Backscattering Spectroscopy (RBS) with alpha beam and a Nuclear Reaction Analysis with a deuteron beam.

  11. Research and analysis on the thin films sputtered by the Ba-Al-S:Eu target fabricated by powder sintering

    NASA Astrophysics Data System (ADS)

    Zhang, Dongpu; Xu, Fang; Yu, Zhinong; Xue, Wei

    2014-11-01

    Europium-doped barium thioaluminate (BaAl2S4:Eu) is currently the most efficient blue phosphor for inorganic thin film electroluminescent (iEL) device. To produce the full-color EL device, several kinds of blue-emitting layer were attempted and tested. As a key point of blue-emitting layer fabrication, single target sputtering deposition is an effective method. In this work, new structural target is introduced and the fabricated process is expatiated. The PL spectra of as fabricated targets show that both of two, 3mol% and 5mol% europium-doped, have blue emitting property. According to the PL spectra excited by 290nm, 300nm and 320nm ultraviolet, emission peaks located in the region near 470nm. So the as-fabricated targets can be used in single target sputtering deposition on thin film of BaAl2S4:Eu. XRD pattern indicates that there are 4 different phases, barium tetraaluminum sulfide (BaAl4S7), barium sulfide (BaS), europium sulfide (EuS) and barium aluminum oxide (BaAl2O4), in target 1. Besides these four compounds, other two phases, aluminum sulfide (Al2S3) and barium thioaluminate (BaAl2S4), are detected in target 2. Considering the analysis results, especially the hydrolyzation of Al2S3, target 1 is more suitable for sputtering deposition of BaAl2S4:Eu thin film. XPS and X-ray Fluorescence patterns describe the precise molar ratio of each element. In target 1 the relative atom concentration of barium, aluminum, sulfur and oxygen can be calculated from the pattern and molar ratio is about 9:33:41:17. Molar ratio of barium and europium is about 1:0.03. In short, the barium thioaluminate doped by europium sputtering target 1 is better to be applied in the fabrication of blue-emitting layer in inorganic electro-luminescent devices.

  12. Effect of sputtering pressure on crystalline quality and residual stress of AlN films deposited at 823 K on nitrided sapphire substrates by pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Makoto; Takeuchi, Hiroto; Fukuyama, Hiroyuki

    2016-05-01

    Aluminum nitride (AlN) is a promising material for use in applications such as deep-ultraviolet light-emitting diodes (UV-LEDs) and surface acoustic wave (SAW) devices. In the present study, the effect of sputtering pressure on the surface morphology, crystalline quality, and residual stress of AlN films deposited at 823 K on nitrided a-plane sapphire substrates, which have high-crystalline-quality c-plane AlN thin layers, by pulsed DC reactive sputtering was investigated. The c-axis-oriented AlN films were homoepitaxially grown on nitrided sapphire substrates at sputtering pressures of 0.4–1.5 Pa. Surface damage of the AlN sputtered films increased with increasing sputtering pressure because of arcing (abnormal electrical discharge) during sputtering. The sputtering pressure affected the crystalline quality and residual stress of AlN sputtered films because of a change in the number and energy of Ar+ ions and Al sputtered atoms. The crystalline quality of AlN films was improved by deposition with lower sputtering pressure.

  13. Surface Morphology and Optical Reflection of Thermally Evaporated Thin Film Al-Doped Silicon on Plastic Substrates for Solar Cells Applications

    NASA Astrophysics Data System (ADS)

    Pakhuruddin, Mohd Zamir; Ibrahim, Kamarulazizi; Mohammed Ali, Mohammed Khaleel; Aziz, Azlan Abdul

    2011-05-01

    In this paper, authors have investigated the surface morphology and optical reflection of thermally evaporated thin film silicon (Si) on plastic substrates (polyethylene terephthalate, PET) at different aluminium (Al) composition (denoted by Al/Si ratio) for applications in solar cells. Results show that the thermally evaporated p-type Si possesses fairly smooth surfaces as characterised by atomic force microscopy (AFM) images. The films exhibit low surface roughness root mean square (RMS) of 9-12 nm as Al/Si ratio increases from 0.08 to 0.4. Intrinsic Si thin film shows roughness RMS of 9.2 nm, indicates that surface roughness is independent of Al composition within the thin film. Al/Si 0.08 gives the lowest reflectivity of around 10% (averaged in the visible region). Increase in the surface reflectivity is evident as the Al/Si ratio increases due to an increase in the number of Al crystallites distributed within the film. Overall, this experiment reveals the natural morphology of low roughness RMS (hence poor light-trapping) from thermal evaporation method due to its directional deposition nature. An extra step of surface texturing would be needed to enhance the light trapping properties of the absorber layer (p-type Si). Optimization of the Al doping level is vital in order to maintain minimum reflection losses in the device.

  14. The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films

    SciTech Connect

    Chun, B. S.; Choi, Daniel S.; Wu, H. C.; Shvets, I. V.; Abid, M.; Chu, I. C.; Serrano-Guisan, S.

    2010-08-23

    We investigated the effect on the electronic properties of aluminum (Al)-zinc oxide (ZnO) films by modulating the radio frequency sputtering power. Our experimental results show that increasing the sputtering power increases the Al doping concentration, decreases the resistivity, and also shifts the Zn 2p and O 1s to higher binding energy states. Our local-density approximation (LDA) and LDA+U calculations show that the shift in higher binding energy and resistivity decrease are due to an enhancement of the O 2p-Zn 3d coupling and the modification of the Zn 4s-O 2p interaction in ZnO induced by Al doping.

  15. Effect of pre-deposition RF plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films.

    PubMed

    Felmetsger, V; Mikhov, M; Laptev, P

    2015-02-01

    In this work, we describe the design and operation of a planarized capacitively coupled RF plasma module and investigate the effects of non-reactive RF plasma etching on Si (100) wafer surface morphology and crystal orientation of Al bottom electrodes and subsequently deposited AlN films. To ensure formation of highly (111) textured Al electrode, a thin 25-nm AlN seed layer was grown before the Al deposition. The seed layer's orientation efficiency improved with increasing the RF power from 70 to 300 W and resulted in narrowing the Al (111) rocking curves. AFM and XRD data have shown that crystal orientations of both the electrode and reactively sputtered AlN film are considerably improved when the substrate micro roughness is reduced from an ordinary level of a few nanometers to atomic level corresponding to root mean square roughness as low as about 0.2 to 0.3 nm. The most perfectly crystallized film stacks of 100-nm Al and 500-nm AlN were obtained in this work using etching in Ar plasma optimized to create an atomically smooth, epi-ready Si surface morphology that enables superior AlN seed layer nucleation conditions. X-ray rocking curves around the Al (111) and AlN (0002) diffraction peaks exhibited extremely low FWHM values of 0.68° and 1.05°, respectively. PMID:25643087

  16. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics.

    PubMed

    Zhang, Cheng; Zhao, Dewei; Gu, Deen; Kim, Hyunsoo; Ling, Tao; Wu, Yi-Kuei Ryan; Guo, L Jay

    2014-08-27

    An ultrathin, smooth, and low-loss Ag film without a wetting layer is achieved by co-depositing a small amount of Al into Ag. The film can be as thin as 6 nm, with a roughness below 1 nm and excellent mechanical flexibility. Organic photovoltaics that use these thin films as transparent electrode show superior efficiency to their indium tin oxide (ITO) counterparts because of improved photon management. PMID:24943876

  17. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  18. Excitation energy migration in uniaxially oriented polymer films: A comparison between strongly and weakly organized systems

    NASA Astrophysics Data System (ADS)

    Bojarski, P.; Synak, A.; Kułak, L.; Baszanowska, E.; Kubicki, A.; Grajek, H.; Szabelski, M.

    2006-04-01

    The mechanism of multistep excitation energy migration in uniaxially oriented polymer films is discussed for strongly and weakly orientating dyes in poly(vinyl alcohol) matrix. The comparison between both types of systems is based on concentration depolarization of fluorescence, Monte-Carlo simulations and linear dichroism data. It is found that the alignment of transition dipole moments of fluorophores in the ordered matrix relative to the direction of polymer stretching exhibits strong effect on the concentration depolarization of fluorescence. In ordered matrices of flavomononucleotide and rhodamine 6G concentration depolarization of fluorescence remains quite strong, whereas for linear carbocyanines it is very weak despite effective energy migration.

  19. Structural and morphology analysis of annealed Y3(Al,Ga)5O12:Tb thin films synthesized by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Yousif, A.; Swart, H. C.; Terblans, J. J.; Jafer, R. M.; Kumar, Vinod; Kroon, R. E.; Ntwaeaborwa, O. M.; Duvenhage, M. M.

    2014-06-01

    Y3(Al,Ga)5O12:Tb thin films were grown in an O2 working atmosphere on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. Micrometer and sub-micrometer sized particulates were present on the surface and inside the Y3(Al,Ga)5O12:Tb thin films. Secondary electron micrographs showed that particulates were present on the surface and X-ray spectrometry mapping showed that the particulates consist of different concentrations of Y, Tb, Ga and Al. Time of flight secondary ion mass spectroscopy results revealed that the as-deposited film was filled with agglomerated particles of Ga and Al of different sizes. The agglomerated Ga particles seemed to be evenly distributed after annealing at 800 °C and the film surface and interface were enriched with Ga after annealing. Atomic force microscopy confirmed the distribution of the agglomerated Ga particles. The region with the evenly distributed Ga showed a surface with a smooth morphology. Shifts in the peak position to lower diffraction angles were observed in the XRD patterns of the annealed film compared to the pattern of the Y3(Al,Ga)5O12:Tb powder. The optical measurements of the Ga enriched film indicated that a new excitation band different from the original Y3(Al,Ga)5O12:Tb powder was obtained.

  20. Interfacial coherency stress distribution in TiN/AlN bilayer and multilayer films studied by FEM analysis

    PubMed Central

    Chawla, Vipin; Holec, David; Mayrhofer, Paul H.

    2012-01-01

    The development of interfacial coherency stresses in TiN/AlN bilayer and multilayer films was investigated by finite element method (ABAQUS) using the four-node bilinear quadrilateral axisymmetric element CAX4R. The TiN and AlN layers are always in compression and tension at the interface, respectively, as may be expected from the fact TiN has larger lattice parameter than AlN. Both, the bi-layer and the multilayer stacks bend due to the coherency stresses. For the TiN/AlN bilayer system, the curvature of the bending is largest for the TiN/AlN thickness ratios ∼0.5 and ∼2 (at which one of the two layers is fully in compression or tension), while it is smaller for the layers with the same thickness (at which both layers posses regions with compressive as well as tensile stresses). This stress distribution over the bi-layer thickness is shown to be strongly influenced by the presence and the properties of a substrate. Furthermore, the coherency stress profile and specimen curvature of a TiN/AlN multilayer system was studied as a function of the top-most layer thickness. The curvature is maximum for equal number of TiN and AlN layers, and decreases with increasing the number of TiN/AlN periods. Within the growth of an additional TiN/AlN bilayer, the curvature first decreases to zero for a vertically symmetrical geometry over the layers when the TiN layer growth is finished (e.g. for (n + 1) layers of TiN and n layers of AlN). At this stage, the coherency stresses in TiN and AlN are same in each layer type (independent on the layer position). The growth of the second half of the TiN/AlN bi-layer (i.e. the AlN) to finish the period, again bends the specimen, and generates a non-uniform stress distribution. This suggests that the top layer as well as the overall specimen geometry plays a critical role on the actual coherency stress profile.

  1. The Preparation and Properties of Al-Doped ZnO Thin Films as Transparent Electrodes for Solar Cell

    NASA Astrophysics Data System (ADS)

    Ding, J. N.; Tan, C. B.; Yuan, N. Y.; Feng, X. W.; Chang, X. Y.; Ye, F.

    Transparent conductive oxides based on ZnO are promising materials for application in thin-film solar photovoltaic cells. Al-doped ZnO thin films with a large area of 1 m × 1.5 m were prepared by magnetic sputtering on glass substrate using a ceramic target (98 wt. % ZnO, 2 wt. % Al2O3) in different Ar+H2 ambient at different substrate temperature. SiO2 layer with a thickness of 20 nm was deposited as a resistant layer. To investigate the influence of H2-flow on the properties of AZO films, H2-flow rate was changed during the growth process with a fixed Ar-flow rate. The effect of the substrate temperature and the H2-flow rate on the structure, electrical and optical properties was studied. In order to enhance light scattering and absorption inside the cell, suitable surface texture is needed. The influence of wet chemical etching on surface roughness and haze of AZO were also investigated.

  2. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  3. Round robin comparison of tensile results on GlidCop Al25

    SciTech Connect

    Edwards, D.J.; Zinkle, S.J.; Fabritsiev, S.A.; Pokrovsky, A.S.

    1998-09-01

    A round robin comparison of the tensile properties of GlidCop{trademark} Al25 oxide dispersion strengthened copper was initiated between collaborating laboratories to evaluate the test and analysis procedures used in the irradiation experiments in SRIAR in Dimitrovgrad. The tests were conducted using the same tensile specimen geometry as used in previous irradiation experiments, with tests at each laboratory being conducted in air or vacuum at 25, 150, and 300 C at a strain rate of 3 {times} 10{sup {minus}4} s{sup {minus}1}. The strength of the GlidCop Al25 decreased as the test temperature increased, with no observable effect of testing in air versus vacuum on the yield and ultimate strengths. The uniform elongation decreased by almost a factor of 3 when the test temperature was raised from room temperature to 300 C, but the total elongation remained roughly constant over the range of test temperatures. Any effect of testing in air on the ductility may have been masked by the scatter introduced into the results because each laboratory tested the specimens in a different grip setup. In light of this, the results of the round robin tests demonstrated that the test and analysis procedures produced essentially the same values for tensile yield and ultimate, but significant variability was present in both the uniform and total elongation measurements due to the gripping technique.

  4. Comparisons of Accurate Electronic, Transport, and Bulk Properties of XP (X = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Malozovsky, Yuriy; Ejembi, John; Saliev, Azizjon; Franklin, Lashounda; Bagayoko, Diola

    We present comparisons of results from ab-initio,self-consistent local density approximation (LDA) calculations of accurate, electronic and related properties of zinc blende XP (X =B, Al, Ga, In) phosphides. We implemented the linear combination of atomic orbitals following the Bagayoko, Zhao, and Williams (BZW) method as enhanced by Ekuma and Franklin (BZW-EF). Consequently, our results have the full physical content of DFT and agree very well with corresponding experimental ones [AIP Advances, 4, 127104 (2014)]. Our calculated, indirect band gap of 2.02 eV for BP, 2.56 eV for AlP, and of 2.29 eV for GaP, from Γ to X-point, are in excellent agreement with experimental values. Our calculated direct band gap of 1.43 eV, at Γ, for InP is also in an excellent agreement with experimental value. We discuss calculated electron and hole effective masses, total (DOS) and partial (pDOS) densities of states, and the bulk modulus of these phosphides. Acknowledgments: NSF and the Louisiana Board of Regents, LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, DOE - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  5. The mechanism of electromigration failure of narrow Al-2Cu-1Si thin-film interconnects

    NASA Astrophysics Data System (ADS)

    Kim, Choongun; Morris, J. W., Jr.

    1993-05-01

    This work is principally concerned with the microstructure of electromigration failure in narrow Al-2Cu-1Si conducting lines on Si. Samples were patterned from 0.5-μm-thick vapor-deposited films with mean grain size of 2.4 μm, and had linewidths of 1.3 μm (W/G≊0.5), 2 μm (W/G≊0.8), and 6 μm (W/G≊2.5). The lines were tested to failure at T=226 °C and j=2.5×106 A/cm2. Other samples were tested over a range of substrate temperatures and current densities to test the effect of these variables, and 1.3 μm lines were tested after preaging at 226 °C for various times to change the Cu-precipitate distribution prior to testing. Three failure modes were observed: The 6 μm specimens failed by separation along grain boundaries with an apparent activation energy of 0.65 eV; the 1.3 μm specimens that were preaged for 24 h failed after very long times by gradual thinning to rupture; all other narrow lines failed by the transgranular-slit mechanism with an activation energy near 0.93 eV. Microstructural studies suggest that the transgranular-slit failure mechanism is due to the accumulation of a supersaturation of vacancies in the bamboo grains that terminate polygranular segments in the line. Failure occurs after Cu has been swept from the grain that fails. Failure happens first at the end of the longest polygranular segment of the line, at a time that decreases exponentially with the polygranular segment length. Preaging the line to create a more stable distribution of Cu lengthens the time required to sweep Cu from the longest polygranular segment, and significantly increases the time to failure. In the optimal case the transgranular-slit failure mechanism is suppressed, and the bamboo grain fails by diffuse thinning to rupture. Preaging is particularly effective in increasing the lifetimes of lines that contain very long polygranular segments, and has the consequence that the time to first failure in an array of lines is much longer than predicted by a log

  6. Site location of Al-dopant in ZnO lattice by exploiting the structural and optical characterisation of ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Nakrela, A.; Benramdane, N.; Bouzidi, A.; Kebbab, Z.; Medles, M.; Mathieu, C.

    The zinc oxide thin films, highly transparent, doped aluminium were prepared on glass substrates by the reactive chemical spray method. The incorporation nature of Al atoms in the ZnO lattice was determined by X-ray diffraction and optical analyses. Indeed, for low doping ⩽2%, the results of X-ray spectra analysis show a simultaneous reduction of lattice parameters (a and c), this variation, which follows VEGARD's law, tends to indicate a substitution of Zn by Al. By against for doping >2% the increase in the lattice parameters thus the grain sizes, in accordance with the VEGARD's law can be explained by occupation of the interstitial sites by Al atoms. Beyond 4%, the material tends to get disorderly and the crystallites orientation is random. The studied optical properties show that the variation of the optical gap follows a law of the x3/2 form for x < 3% (x is the aluminium atom fraction incorporated in the ZnO lattice). The granular structure is fairly visible and some local growths are disrupted. The crystallite size at low enlargement is coherent with the XRD results.

  7. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Liu, Zuolian; Wang, Haiyan; Wen, Lei; Li, Guoqiang

    2015-01-01

    High-quality AlN epitaxial films have been grown on Si substrates by pulsed laser deposition (PLD) by effective control of the interfacial reactions between AlN films and Si substrates. The surface morphology, crystalline quality and interfacial property of as-grown AlN/Si hetero-interfaces obtained by PLD have been systemically studied. It is found that the amorphous SiAlN interfacial layer is formed during high temperature growth, which is ascribed to the serious interfacial reactions between Si atoms diffused from the substrates and the AlN plasmas produced by the pulsed laser when ablating the AlN target during the high temperature growth. On the contrary, abrupt and sharp AlN/Si hetero-interfaces can be achieved by effectively controlling the interfacial reactions at suitable growth temperature. The mechanisms for the evolution of interfacial layer from the amorphous SiAlN layer to the abrupt and sharp AlN/Si hetero-interfaces by PLD are hence proposed. This work of obtaining the abrupt interfaces and the flat surfaces for AlN films grown by PLD is of paramount importance for the application of high-quality AlN-based devices on Si substrates. PMID:26089026

  8. Thin Film XRF measurements (Wet and dry) of Black Sea Sediment Samples And Their Elemental Comparisons With Same Core U Channel Sample.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Eris, Kadir; Sarı, Erol; Genc, S. Can

    2015-04-01

    This paper presents the XRF data from about 0.3mm thin film sediment core. We prepared 3 different model from same sediment core. The main aim is the finding for elemental changing of spectra variety and their comparison with physical changes of samples about mass and water content. Our XRF measurements were carried out by ITRAX (Cox System), and we have documented the some useful and more precision tricks; a) the first point is that the wet or dry nature of the core, b) the second is the use of U channel sample or thin film sample. For base referencing for the selected elements, we prepared normal wet U channel sample with the thickness of 1.5 cm. We used thin material (film) for keeping the humidty of every core sample's surface. Because humidity loss very high on thin film core sample and very effective to get bad results related to changing of topography and beam emission related to loss of pore water. Our XRF measurements have revealed that the Zn, Ti, Si, V,S, Cr, Mn, Ba, K and Ca elements were measured more precisely and accurate using by the dry thin film sample than those of wet U channel and wet thin sediment sample experiments. Beside this, Y, Zr, Nb, Rb, Sr, Ir, Fe,Co, Ni and Al elements were measured from the wet U channeled core more reliable with respect to the former. Lead (Pb) and Cd elements have behaved constantly during the three types of measurements. Keywords: Thin film XRF, U channel, Elements, Sediment, Measurement

  9. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2016-01-14

    Electronic recombination loss is an important issue for photovoltaic (PV) devices. While it can be reduced by using a passivating layer, most of the techniques used to prepare passivating layers are either not cost effective or not applicable for device applications. Previously, it was reported that a low cost sol-gel derived Al-rich zinc oxide (ZnO:Al) film serves as an effective passivating layer for p-type silicon but is not effective for n-type silicon. Herein, we studied the elemental composition of the film and the interfacial structure of ZnO:Al:Ag/n-Si using TEM, XPS, FTIR, and SIMS analyses. The XPS analysis revealed that Ag-rich zones randomly formed in the film near the ZnO:Al:Ag//n-Si interface, which induced a positive charge at the interface. The maximal value of the effective minority carrier lifetime (τeff ≈ 1581 μs) is obtained for a wafer using the ZnO:Al:Ag passivating layer with RAg/Zn = 2%. The corresponding limiting surface recombination velocity is ∼16 cm s(-1). The FTIR absorption area of Si-H bonds is used to calculate the hydrogen content in the film. The hydrogen content is increased with increasing Ag content up to RAg/Zn = 2% to a maximal value of 3.89 × 10(22) atoms per cm(3) from 3.03 × 10(22) atoms per cm(3) for RAg/Zn = 0%. The positive charge induced at the interface may cause band bending, which would produce an electric field that repels the minority charge carriers from the interface to the bulk of n-Si. Two basic phenomena, chemical passivation due to Si-H bonding and field effect passivation due to the charge induced at the interface, have been observed for effective passivation of the n-Si surface. An implied Voc of 688.1 mV is obtained at an illumination intensity of 1 sun. PMID:26661502

  10. Probing on growth and characterizations of SnFe2O4 epitaxial thin films on MgAl2O4 substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Ram; Candler, J.; Kumar, D.; Gupta, Bipin; Kahol, Pawan

    2014-08-01

    Epitaxial tin ferrite (SnFe2O4) thin films were grown using KrF excimer (248 nm) pulsed laser deposition technique under different growth conditions. Highly epitaxial thin films were obtained at growth temperature of 650 ˚C. The quality and epitaxial nature of the films were examined by X-ray diffraction technique. Furthermore, the phi scans of the film and substrate exhibit four folds symmetry which indicates a cube-on-cube epitaxial growth of the film on MgAl2O4 substrate. Moreover, the magnetic force microscopy measurement shows domains with cluster-like structure which is associated with ferromagnetic phase at room temperature. The coercive field and remnant magnetization of the films decrease with increase in temperature. These high quality ingenious magnetic films could be potentially used in data storage devices.

  11. Growth and patterning of laser ablated superconducting YBa2Cu3O7 films on LaAlO3 substrates

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Bhasin, K. B.; Varaljay, N. C.; Bohman, D. Y.; Chorey, C. M.

    1989-01-01

    A high quality superconducting film on a substrate with a low dielectric constant is desired for passive microwave circuit applications. In addition, it is essential that the patterning process does not effect the superconducting properties of the thin films to achieve the highest circuit operating temperatures. YBa2Cu3O7 superconducting films were grown on lanthanum aluminate substrates using laser ablation with resulting maximum transition temperature (T sub c) of 90 K. The films were grown on a LaAlO3 which was at 775 C and in 170 mtorr of oxygen and slowly cooled to room temperature in 1 atm of oxygen. These films were then processed using photolithography and a negative photoresist with an etch solution of bromine and ethanol. Results are presented on the effect of the processing on T(sub c) of the film and the microwave properties of the patterned films.

  12. Modification of dislocation behavior in GaN overgrown on engineered AlN film-on-bulk Si substrate

    NASA Astrophysics Data System (ADS)

    Tungare, Mihir; Weng, Xiaojun; Leathersich, Jeffrey M.; Suvarna, Puneet; Redwing, Joan M.; (Shadi) Shahedipour-Sandvik, F.

    2013-04-01

    The changes that the AlN buffer and Si substrate undergo at each stage of our substrate engineering process, previously shown to lead to a simultaneous and substantial reduction in film crack density and dislocation density in overgrown GaN, are presented. Evidence of ion-implantation assisted grain reorientation for AlN islands coupled with physical isolation from the bulk Si substrate prove to be the dominating driving forces. This is further emphasized with x-ray diffraction analysis that demonstrates a reduction in the in-plane lattice constant of AlN from 3.148 Å to 3.113 Å and a relative change in rotation of AlN islands by 0.135° with regard to the Si substrate after substrate engineering. Misfit dislocations at the AlN-Si interface and disorder that is normally associated with formation of amorphous SiNx at this interface are considered to be two of the major contributors to dislocation nucleation within overgrown GaN. Following our technique, the disappearance of disorder at the AlN-Si interface is observed. Extensive ellipsometry and transmission electron microscopy suggests that larger AlN islands with a smoother surface morphology could further reduce the dislocation density below that previously reported. A 1.2 μm GaN layer deposited on an AlN buffer with larger islands and smoother morphology exhibits a 14× reduction in surface pit density after undergoing the ion-implantation assisted substrate modification technique.

  13. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    PubMed Central

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells. PMID:23566567

  14. Co2FeAl thin films grown on MgO substrates: Correlation between static, dynamic, and structural properties

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Tuzcuoglu, H.; Gabor, M. S.; Petrisor, T., Jr.; Tiusan, C.; Berling, D.; Zighem, F.; Chauveau, T.; Chérif, S. M.; Moch, P.

    2013-05-01

    Co2FeAl (CFA) thin films with thickness varying from 10 to 115 nm have been deposited on MgO(001) substrates by magnetron sputtering and then capped by a Ta or Cr layer. X-ray diffraction (XRD) revealed that the cubic [001] CFA axis is normal to the substrate and that all the CFA films exhibit full epitaxial growth. The chemical order varies from the B2 phase to the A2 phase when decreasing the thickness. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometer (VSM) measurements show that, depending on the field orientation, one- or two-step switchings occur. Moreover, the films present a quadratic MOKE signal increasing with the CFA thickness, due to the increasing chemical order. Ferromagnetic resonance (FMR), MOKE transverse bias initial inverse susceptibility and torque (TBIIST) measurements reveal that the in-plane anisotropy results from the superposition of a uniaxial and of a fourfold symmetry term. The fourfold anisotropy is in accord with the crystal structure of the samples and is correlated to the biaxial strain and to the chemical order present in the films. In addition, a large negative perpendicular uniaxial anisotropy is observed. Frequency and angular dependencies of the ferromagnetic resonance linewidth show two magnon scattering and mosaicity contributions, which depend on the CFA thickness. A Gilbert damping coefficient as low as 0.0011 is found.

  15. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing. PMID:25321779

  16. Crystal Structure and Optical Properties of Al-Doped ZnO Large-Area Thin Films Using 1500 mm Dual Cylindrical Cathodes.

    PubMed

    Lee, JinJu; Ha, Jong-Yoon; Yim, Haena; Choi, Won-Kook; Choi, Ji-Won

    2015-11-01

    The large-area Al-doped ZnO thin films are successfully deposited at room temperature on polycarbonate substrate using a 1500 mm dual cylindrical cathodes sputtering system. Those thin films have smooth surfaces (RMS: 9.6 nm) and lower thicknesses deviation (Uniformity: 98.6%) despite of high RF power. The optical transmittance properties of 3.13 wt% Al doped ZnO thin films have above 85% in visible region. A dual cylindrical cathodes sputtering system can fabricate transparent electrode on flexible electronic devices at room temperature for mass production of 6th generation solar cell and display industry. PMID:26726519

  17. Gamma Radiation Monitoring Through Thin Film of ClAlPc Doped With TiO2

    NASA Astrophysics Data System (ADS)

    Roy, M. S.; Gautam, A. K.; Kumar, M.; Prasad, N.; Janu, Y.; Deol, Y. S.; Mishra, R. K.; Choudhary, G. R.; Sadh, A. K.

    2008-04-01

    Chloroaluminum phthalocyanine (ClAlPc) synthesized by adopting focused microwave synthesis approach was doped with nanocrystalline TiO2 (5% by weight) and developed into the thin film sandwiched device having ITO/ClAlPc:TiO2/Ag Schottky configuration by spin coating technique covering 1 cm2 as an active area. The so fabricated device having initial dark current of the order of 0.2 5 m A was exposed to variable dose of gamma radiation ranging from lcGy to 10 Gy at a dose rate of 1 Gy/hour. The experimental observation reveals the generation of localized traps leading to structural disorder within the solid material. Doping with TiO2 enhances the surface area of the film which in tern improves sensitivity of device to wider dose rage. Exposure of the device to variable dose of gamma radiation imparts decrease in forward bias current and capacitance characteristics with increase in radiation dose. Also, absorbance characteristics of the Al Pc: TiO2 was analyzed before & after exposure to radiation which reveals that absorbance decreases with radiation dose leading to decrease in optical band gap.

  18. Synthesis of nanostructured palladium films on porous {alpha}-Al{sub 2}O{sub 3} substrates

    SciTech Connect

    Guo Ruijie; Zhang Baoquan Liu Xiufeng

    2008-01-08

    The lamellar lyotropic liquid crystalline phases of Brij56 nonionic surfactants were used to template the deposition of nanostructured palladium films on {alpha}-Al{sub 2}O{sub 3} substrates. The reaction between hydrazine hydrate and Pd{sup 2+} dissolved within the aqueous domains of the liquid crystalline phase generated the nanostructured palladium. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission election microscopy (TEM) studies indicated that the resulting films possessed regular arrays of channels with periodicity of 1 nm, which was obviously smaller than that of the templates. The size mismatch might arise from the discharge of nitrogen during the reaction and the relatively low Pd{sup 2+} concentrations.

  19. Andreev spectroscopy of CrO2 thin films on TiO2 and Al2O3

    NASA Astrophysics Data System (ADS)

    Yates, K. A.; Anwar, M. S.; Aarts, J.; Conde, O.; Eschrig, M.; Löfwander, T.; Cohen, L. F.

    2013-09-01

    Here we analyse the spectroscopic information gathered at a number of single CrO2/Pb interfaces. We examine thin films requiring additional interfacial layers to generate long-range spin triplet proximity effect superconductivity (CrO2/TiO2) or not (CrO2/Al2O3). We analyse the data using two theoretical models and explore the use of a parameter-free method to determine the agreement between the models and experimental observations, showing the necessary temperature range that would be required to make a definitive statement. The use of the excess current as a further tool to distinguish between models is also examined. The analysis of the spectra demonstrates that the temperature dependence of the normalised zero-bias conductance is independent of the substrate onto which the films are grown. This result has important implications for the engineering of interfaces required for the long-range spin triplet proximity effect.

  20. Effect of microstructure on the nanomechanical properties of TiVCrZrAl nitride films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chang, Zue-Chin; Liang, Shih-Chang; Han, Sheng

    2011-09-01

    This paper describes the nanoindentation behavior of TiVCrZrAl nitride films grown on Si substrates by means of reactive radio-frequency magnetron sputtering at growth temperatures from 150 to 300 °C. We used cross-sectional transmission electron microscopy and X-ray diffraction to analyze the microstructure and crystallinity and nanoindentation techniques to study the hardness and elastic modulus. We found that a face-centered-cubic solid-solution structure with strong (2 0 0), (1 1 1), (2 2 0), and (3 1 1) orientations were revealed by X-ray diffraction. Upon increasing the growth temperature of the films, the hardness and elastic modulus increased to maximum values of 15.2 and 203.5 GPa, respectively.