NASA Astrophysics Data System (ADS)
Hey, J. D.
2013-09-01
Since highly excited atoms, which contribute to the radio recombination spectra from Galactic H II regions, possess large polarizabilities, their lifetimes are influenced by ion (proton)-induced dipole collisions. It is shown that, while these ion-radiator collisional processes, if acting alone, would effectively limit the upper principal quantum number attainable for given plasma parameters, their influence is small relative to that of electron impacts within the framework of line broadening theory. The present work suggests that ion-permanent dipole interactions (Hey et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2543) would also be of minor importance in limiting the occupation of highly excited states. On the other hand, the ion-induced dipole collisions are essential for ensuring equipartition of energy between atomic and electron kinetic distributions (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555; 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3517), without which Voigt profile analysis to extract impact broadening widths would not be possible. Electron densities deduced from electron impact broadening of individual lines (Griem 1967 Astrophys. J. 148 547; Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) may be used to check the significance of the constraints arising from the present analysis. The spectra of Bell et al (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 333 377; 2011 Astrophys. Space Sci. 335 451) for Orion A and W51 in the vicinity of 6.0 and 17.6 GHz are examined in this context, and also in terms of a possible role of the background ion microfield in reducing the near-elastic contributions to the electron impact broadening below the predictions of theory (Hey 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065701). These spectra are analysed, subject to the constraint that calculated relative intensities of lines, arising from upper states in collisional-radiative equilibrium, should be consistent with those obtained from Voigt profile analysis. It is shown that the experimental technique yields an excellent temperature diagnostic for the H II regions. On the other hand, strong evidence is not obtained, from those spectra which satisfy the above constraint on intensity, to indicate that the electron impact broadening theory requires substantial correction. The main grounds for attempting a revision of theory to allow for the influence of the ion microfield during the scattering processes on the upper and lower states of each line thus still appear to have a stronger theoretical (Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077) than experimental basis.
Revised and Extended Analysis of the Odd Parity Configurations of Five-Times Ionized Xenon: Xe VI
NASA Astrophysics Data System (ADS)
Churilov, S. S.; Joshi, Y. N.
Xenon spectra were recorded in the 300-1240 Å region on a 3 m and a 10.7 normal incidence spectrograph using a modified triggered spark source. The spectrum of five-times ionized xenon (Xe VI) was investigated. The previous analysis of the 5s25p,5s5p2, 5s25d and 5s26s configurations [V. Kaufman and J. Sugar, J. Opt. soc. Am. B4, 1924 (1987), A. Tauheed et al, J. Phys. B: At. Mol. Opt. Phys. 25, L561 (1992)] was confirmed. Three of the five levels of the 5p3 configurations [A. Tauheed et al. Div. At. Mol. Opt. Phys. (APS) & DAMP(CAP) joint meeting, Toronto, May 1995] and all the 5p3, 5s5p5d and 5s5p6s configurations levels [R. Sarmiento et al., J. Phys. B: At. Mol. Opt. Phys. 32, 2853 (1999)] have been found to be erroneous. 53 new lines have been classified in the Xe VI spectrum. Twenty nine additional levels belonging to the 5p3, 5f, 6p and 5s5p5d odd configurations have been established. Hartree-Fock calculations with relativistic corrections (HFR) and least-square-fitted calculations (LSF) were carried out to interpret the spectrum.
NASA Astrophysics Data System (ADS)
Hey, J. D.
2014-08-01
As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg-Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean-Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon-Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n‧ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound-bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521, Ali-Haïmoud 2013 Phys. Rev. D 87 023526).
NASA Astrophysics Data System (ADS)
Bordenave-Montesquieu, A.; Moretto-Capelle, P.; Bordenave-Montesquieu, D.
2003-02-01
The J. Phys. B publishing team would like to apologize to the authors of the above paper. In this paper, references [42] and [43] were printed incorrectly. The correct references are: [42] Bordenave-Montesquieu A, Gleizes A and Benoit-Cattin P 1982 Phys. Rev. A 25 245-67 [43] Bordenave-Montesquieu A et al 1987 J. Phys. B: At. Mol. Phys. 20 L695-703.
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Middleton, A. G.; Mojarrabi, B.; Teubner, P. J. O.
2000-02-01
Integral cross sections (ICSs) for the excitation of 18 excited electronic states, and four composite excited electronic states, in nitric oxide (NO) have been determined for incident electron energies of 15, 20, 30, 40 and 50 eV. These ICSs were derived by extrapolating the respective measured differential cross sections (M J Brunger et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 783) to 0° and 180° and by performing the appropriate integration. Comparison of the present ICSs with the results of those determined in earlier optical emission measurements, and from theoretical calculations is made. At each incident energy considered, the current ICSs are also summed along with the corresponding elastic and rovibrational excitation ICSs from B Mojarrabi et al (1995 J. Phys. B: At. Mol. Opt. Phys. 28 487) and the ionization cross sections from Rapp and Englander-Golden (1965 J. Chem. Phys. 43 1464), to derive an estimate of the grand total cross sections (GTSs) for e- + NO scattering. The GTSs derived in this manner are compared with the results from independent linear transmission experiments and are found to be entirely consistent with them. The present excited electronic state ICS, and those for elastic and rovibrational excitation from Mojarrabi et al , appear to represent the first set of self-consistent cross sections for electron impact scattering from NO.
NASA Astrophysics Data System (ADS)
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
Building a universal quantum computer is a central goal of emerging quantum technologies, which has the potential to revolutionize science and technology. Unfortunately, this future does not seem to be very close at hand. However, quantum computers built for a special purpose, i.e. quantum simulators , are currently developed in many leading laboratories. Many schemes for quantum simulation have been proposed and realized using, e.g., ultracold atoms in optical lattices, ultracold trapped ions, atoms in arrays of cavities, atoms/ions in arrays of traps, quantum dots, photonic networks, or superconducting circuits. The progress in experimental implementations is more than spectacular. Particularly interesting are those systems that simulate quantum matter evolving in the presence of gauge fields. In the quantum simulation framework, the generated (synthetic) gauge fields may be Abelian, in which case they are the direct analogues of the vector potentials commonly associated with magnetic fields. In condensed matter physics, strong magnetic fields lead to a plethora of fascinating phenomena, among which the most paradigmatic is perhaps the quantum Hall effect. The standard Hall effect consists in the appearance of a transverse current, when a longitudinal voltage difference is applied to a conducting sample. For quasi-two-dimensional semiconductors at low temperatures placed in very strong magnetic fields, the transverse conductivity, the ratio between the transverse current and the applied voltage, exhibits perfect and robust quantization, independent for instance of the material or of its geometry. Such an integer quantum Hall effect, is now understood as a deep consequence of underlying topological order. Although such a system is an insulator in the bulk, it supports topologically robust edge excitations which carry the Hall current. The robustness of these chiral excitations against backscattering explains the universality of the quantum Hall effect. Another interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin-orbit coupling (Rashba and Dresselhaus couplings), familiar from AMO and condensed matter physics. They lead to yet another variety of fascinating phenomena such as the quantum spin Hall effect, three-dimensional topological insulators, topological superconductors and superfluids of various kinds. One also expects here the appearance of excitations in a form of topological edge states that can support robust transport, or entangled Majorana fermions in the case of topological superconductors or superfluids. Again, while many kinds of topological insulators have been realized in condensed matter systems, a controlled way of creating them in AMO systems and studying quantum phase transitions between various kinds of them is obviously very appealing and challenging. The various systems listed so far correspond to static gauge fields, which are externally imposed by the experimentalists. Even more fascinating is the possibility of generating synthetically dynamical gauge fields, i.e. gauge fields that evolve in time according to an interacting gauge theory, e.g., a full lattice gauge theory (LGT). These dynamical gauge fields can also couple to matter fields, allowing the quantum simulation of such complex systems (notoriously hard to simulate using 'traditional' computers), which are particularly relevant for modern high-energy physics. So far, most of the theoretical proposals concern the simulation of Abelian gauge theories, however, several groups have recently proposed extensions to the non-Abelian scenarios. The scope of the present focused issue of Journal of Physics B is to cover all of these developments, with particular emphasis on the non-Abelian gauge fields. The 14 papers in this issue include contributions from the leading theory groups working in this field; we believe that this collection will provide the reference set for quantum simulations of gauge fields. Although the special issue contains exclusively theoretical proposals and studies, it should be stressed that the progress in experimental studies of artificial Abelian and non-Abelian gauge fields in recent years has been simply spectacular. Multiple leading groups are working on this subject and have already obtained a lot of seminal results. The papers in the special issue are ordered according to the date of acceptance. The issue opens with a review article by Zhou et al [1] on unconventional states of bosons with synthetic spin-orbit coupling. Next, the paper by Maldonado-Mundo et al [2] studies ultracold Fermi gases with artificial Rashba spin-orbit coupling in a 2D gas. Anderson and Charles [3], in contrast, discuss a three-dimensional spin-orbit coupling in a trap. Orth et al [4] investigate correlated topological phases and exotic magnetism with ultracold fermions, again in the presence of artificial gauge fields. The paper of Nascimbène [5] does not address the synthetic gauge fields directly, but describes an experimental proposal for realizing one-dimensional topological superfluids with ultracold atomic gases; obviously, this problem is well situated in the general and growing field of topological superfluids, in particular those realized in the presence of non-Abelian gauge fields/spin-orbit coupling. Graß et al [6] consider in their paper fractional quantum Hall states of a Bose gas with spin-orbit coupling induced by a laser. Particular attention is drawn here to the possibility of realizing states with non-Abelian anyonic excitations. Zheng et al [7] study properties of Bose gases with Raman-induced spin-orbit coupling. Kiffner et al [8] in their paper touch on another kind of system, namely ultracold Rydberg atoms. In particular they study the generation of Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms. The behaviour of fermions in synthetic non-Abelian gauge potentials is discussed by Shenoy and Vyasanakere [9]. The paper starts with the study of Rashbon condensates (i.e. Bose condensates in the presence of Rashba coupling) and also introduces novel kinds of exotic Hamiltonians. Goldman et al [10] propose a concrete setup for realizing arbitrary non-Abelian gauge potentials in optical square lattices; they discuss how such synthetic gauge fields can be exploited to generate Chern insulators. Zygelman [11], similarly as Kiffner et al [8], discusses in his paper non-Abelian gauge fields in Rydberg systems. Marchukov et al [12] return to the subject of spin-orbit coupling, and investigate spectral gaps of spin-orbit coupled particles in the realistic situations of deformed traps. The last two papers, in contrast, are devoted to different subjects. Edmonds et al [13] consider a 'dynamical' density-dependent gauge potential, and study the Josephson effect in a Bose-Einstein condensate subject to such a potential. Last, but not least, Mazzucchi et al [14] study the properties of semimetal-superfluid quantum phase transitions in 3D lattices with Dirac points. References [1] Zhou X, Li Y, Cai Z and Wu C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001 [2] Maldonado-Mundo D, Öhberg P and Valiente M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134002 [3] Anderson B M and Clark C W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134003 [4] Orth P P, Cocks D, Rachel S, Buchhold M, Le Hur K and Hofstetter W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134004 [5] Nascimbène S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134005 [6] Graß T, Juliá-Díaz B, Burrello M and Lewenstein M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134006 [7] Zheng W, Yu Z-Q, Cui X and Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007 [8] Kiffner M, Li W and Jaksch D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134008 [9] Shenoy V B and Vyasanakere J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134009 [10] Goldman N, Gerbier F and Lewenstein M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134010 [11] Zygelman B 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134011 [12] Marchukov O V, Volosniev A G, Fedorov D V, Jensen A S and Zinner N T 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134012 [13] Edmonds M J, Valiente M and Öhberg P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134013 [14] Mazzucchi G, Lepori L and Trombettoni A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134014
Effects of polarization direction on laser-assisted free-free scattering
NASA Astrophysics Data System (ADS)
deHarak, B. A.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.; Siavashpouri, Mahsa; Nosarzewski, Benjamin
2016-06-01
This work will detail the effects of laser polarization direction (relative to the momentum transfer direction) on laser-assisted free-free scattering. Such processes play a role in the gas breakdown that occurs in electric discharges as well as providing a method for the laser heating of a plasma (Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201, Mason 1993 Rep. Prog. Phys. 56 1275). Experimental results will be presented for electron-helium scattering in the presence of an Nd:YAG laser field (hν =1.17 eV) where the polarization direction was varied in a plane that is perpendicular to the scattering plane. To date, all of our experimental results are well described by the Kroll-Watson approximation (KWA) (Kroll and Watson 1973 Phys. Rev. A 8 804). The good agreement between our experiments and calculations using the KWA includes the case where the polarization is perpendicular to the momentum transfer direction, for which the KWA predicts vanishing cross section; other workers have found that the KWA tends to be inaccurate for cases where it predicts small cross sections (e.g. Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201). We also present simulations of the effects that multiple scattering might have on experimental measurements. In particular, we examine conditions that are expected to be similar to those of the experiments reported by Wallbank and Holmes (Wallbank and Holmes 1993 Phys. Rev. A 48 R2515).
Electron transport parameters in NF3
NASA Astrophysics Data System (ADS)
Lisovskiy, V.; Yegorenkov, V.; Ogloblina, P.; Booth, J.-P.; Martins, S.; Landry, K.; Douai, D.; Cassagne, V.
2014-03-01
We present electron transport parameters (the first Townsend coefficient, the dissociative attachment coefficient, the fraction of electron energy lost by collisions with NF3 molecules, the average and characteristic electron energy, the electron mobility and the drift velocity) in NF3 gas calculated from published elastic and inelastic electron-NF3 collision cross-sections using the BOLSIG+ code. Calculations were performed for the combined RB (Rescigno 1995 Phys. Rev. E 52 329, Boesten et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5475) momentum-transfer cross-section, as well as for the JB (Joucoski and Bettega 2002 J. Phys. B: At. Mol. Opt. Phys. 35 783) momentum-transfer cross-section. In addition, we have measured the radio frequency (rf) breakdown curves for various inter-electrode gaps and rfs, and from these we have determined the electron drift velocity in NF3 from the location of the turning point in these curves. These drift velocity values are in satisfactory agreement with those calculated by the BOLSIG+ code employing the JB momentum-transfer cross-section.
A study of the turn-up effect in the electron momentum spectroscopy
NASA Astrophysics Data System (ADS)
Dal Cappello, C.; Menas, F.; Houamer, S.; Popov, Yu V.; Roy, A. C.
2015-10-01
Recently, a number of electron momentum spectroscopy measurements for the ionization of atoms and molecules have shown that the triple differential cross section (TDCS) has an unexpected higher intensity in a low momentum regime (Brunger M J, Braidwood S W, Mc Carthy I E and Weigold E 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L597, Hollebone B P, Neville J J, Zheng Y, Brion C E, Wang Y and Davidson E R 1995 Chem. Phys. 196 13, Brion C E, Zheng Y, Rolke J, Neville J J, McCarthy I E and Wang J 1998 J. Phys. B: At. Mol. Opt. Phys. 31 L223, Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201, Deng J K, et al 2001 J. Chem. Phys. 114 882, Ning C G, Ren X G, Deng J K, Su G L, Zhang S F and Li G Q 2006 Phys. Rev. A 73 022704). This surprising result is now called the turn-up effect. Our aim is to investigate such an effect by studying the case of the ionization of atomic hydrogen in an excited state using the 3C model (Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol. Opt. Phys. 22 2265) which is able to describe all the measured results of the single ionization of atomic hydrogen in its ground state for an incident energy beyond 200 eV. A comparison is also made of the findings of the present method with those of the plane wave impulse approximation and distorted wave models.
betaFIT: A computer program to fit pointwise potentials to selected analytic functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Pashov, Asen
2017-01-01
This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.
Fifty years of Jaynes-Cummings physics
NASA Astrophysics Data System (ADS)
Greentree, Andrew D.; Koch, Jens; Larson, Jonas
2013-11-01
This special issue commemorates the 50th anniversary of the seminal paper published by E T Jaynes and F W Cummings [1], the fundamental model which they introduced and now carries their names, and celebrates the remarkable host of exciting research on Jaynes-Cummings physics throughout the last five decades. The Jaynes-Cummings model has been taking the prominent stance as the 'hydrogen atom of quantum optics' [2]. Generally speaking, it provides a fundamental quantum description of the simplest form of coherent radiation-matter interaction. The Jaynes-Cummings model describes the interaction between a single electromagnetic mode confined to a cavity, and a two-level atom. Energy is exchanged between the field and the atom, which leads directly to coherent population oscillations (Rabi oscillations) and superposition states (dressed states). Being exactly solvable, the Jaynes-Cummings model serves as a most useful toy model, and as such it is a textbook example of the physicists' popular strategy of simplifying a complex problem to its most elementary constituents. Thanks to the simplicity of the Jaynes-Cummings model, this caricature of coherent light-matter interactions has never lost its appeal. The Jaynes-Cummings model is essential when discussing experiments in quantum electrodynamics (indeed the experimental motivation of the Jaynes-Cummings model was evident already in the original paper, dealing as it does with the development of the maser), and it has formed the starting point for much fruitful research ranging from ultra-cold atoms to cavity quantum electrodynamics. In fact, Jaynes-Cummings physics is at the very heart of the beautiful experiments by S Haroche and D Wineland, which recently earned them the 2012 Nobel Prize in physics. Indeed, as with most significant models in physics, the model is invoked in settings that go far beyond its initial framework. For example, recent investigations involving multi-level atoms, multiple atoms [3, 4], multiple electromagnetic modes, arrays of coupled cavities [5-7], and optomechanical systems [8] have further enriched the physics of the Jaynes-Cummings model. From the early interests in masers and the consistent quantum description of radiation and atom-photon interaction, the Jaynes-Cummings model has evolved into a cornerstone of quantum state engineering [9]. The authors of this editorial had not been born when Jaynes and Cummings wrote their remarkable paper. It is, therefore, a special honour for us to be able to draw the reader's attention to the accompanying reminiscence contributed by Frederick Cummings where he gives us a glimpse of the early history of the Jaynes-Cummings model from his perspective [11]. By now, the original 1963 paper by Jaynes and Cummings has gathered numerous citations and, at the time of writing, the number of articles involving Jaynes-Cummings physics is approaching 15 000.1 This special issue does not attempt to review this impressive wealth of research. The interested reader, however, is urged to consult the definitive article by Shore and Knight [10] for a comprehensive review of the first 30 years of Jaynes-Cummings physics. The collection of 26 papers presented in this issue, showcases a snapshot of some of the most recent and continuing research devoted to Jaynes-Cummings physics. We begin our special issue with Professor Cumming's recollections [11]. We then have six papers on quantum information aspects of the Jaynes-Cummings model [12-17]. The next topic includes seven papers on the Dicke and generalized Jaynes-Cummings models [18-24], followed by six papers on circuit QED, which is one of the most important experimental frameworks for Jaynes-Cummings systems [25-30]. Finally, we have six papers on the extension to many cavities, the Jaynes-Cummings-Hubbard model [31-36]. The snapshot of research captured in this special issue illustrates the unifying language provided by the Jaynes-Cummings model, tying together research in a number of subfields in physics. Jaynes-Cummings physics started with the diagonalization of a 2 × 2 matrix, as Frederick Cummings points out. There is no doubt that this elegance of simplicity will continue to guide exciting new research in the decades to come. References [1] Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories with application to the beam maser Proc. IEEE 51 89 [2] Shore B W and Knight P L 2004 Physics and Probability: Essays in Honor of Edwin T Jaynes (Cambridge: Cambridge University Press) [3] Tavis M and Cummings F W 1968 Exact solution for an N -molecule-radiation-field Hamiltonian Phys. Rev. 170 379-84 [4] Tavis M and Cummings F W 1969 Approximate solutions for an N -molecule-radiation-field Hamiltonian Phys. Rev. 188 692-5 [5] Hartmann M J, Brandão F G S L and Plenio M B 2006 Strongly interacting polaritons in coupled arrays of cavities Nature Phys. 2 849-55 [6] Greentree A D, Tahan C, Cole J H and Hollenberg L C L 2006 Quantum phase transitions of light Nature Phys. 2 856-61 [7] Angelakis D G, Santos M F and Bose S 2007 Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays Phys. Rev. A 76 031805(R) [8] Schwab K C and Roukes M L 2005 Putting mechanics into quantum mechanics Phys. Today 58 36-42 [9] Blatt R, Milburn G J and Lvovksy A 2013 The 20th anniversary of quantum state engineering J. Phys. B: At. Mol. Opt. Phys. 46 100201 [10] Shore B and Knight P L 1993 The Jaynes-Cummings model J. Mod. Opt. 40 1195-238 [11] Cummings F W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 220202 [12] Arenz C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224001 [13] Quesada N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224002 [14] Everitt M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224003 [15] Kitajima S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224004 [16] Groves E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224005 [17] Bougouffa S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224006 [18] Braak D 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224007 [19] Emary C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224008 [20] Miroshnychenko Y 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224009 [21] Dombi A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224010 [22] Tavis M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224011 [23] Grimsmo A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224012 [24] Stenholm S I 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224013 [25] Kockum A F 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224014 [26] Larson J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224015 [27] Larson J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224016 [28] Agarwal S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224017 [29] Deng W-W 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224018 [30] Leppaekangas J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224019 [31] Schmidt S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224020 [32] Schiro M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224021 [33] Susa C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224022 [34] del Valle E 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224023 [35] Correa B V 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224024 [36] Schetakis N 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224025 1Number estimate based on a Google Scholar search.
Light ion induced L X-ray production cross-sections in Au and Pb
NASA Astrophysics Data System (ADS)
Ouziane, S.; Amokrane, A.; Toumert, I.
2008-04-01
Experimental proton-induced Lα, Lβ, Lγ, Lℓ and Ltot absolute X-ray production cross-sections for Au and Pb in the incident proton energy range between 1 and 2.5 MeV are presented. The experimental results for X-ray production cross-sections are compared to available data given in Sokhi and Crumpton [R.S. Sokhi, D. Crumpton, At. Data Nucl. Data Tables 30 (1984) 49], Jesus et al. [A.P. Jesus, J.S. Lopes, J.P. Ribeiro, J. Phys. B: At. Mol. Phys. 18 (1985) 2456; A.P. Jesus, T.M. Pinheiro, I.A. Nisa, J.P. Ribeiro, J.S. Lopes, Nucl. Instrum. Methods B15 (1986) 95] and Goudarzi et al. [M. Goudarzi, F. Shokouhi, M. Lamehi-Rachti, P.Olialiy, Nucl. Instrum. Methods Phys. Res. B247 (2006) 218]. The given data are also compared with the predictions of ECPSSR model [W. Brandt, G. Lapicki, Phys. Rev. A23 (1981) 1717].
Atomic data from the IRON project. LXVI. Electron impact excitation of Fe18+
NASA Astrophysics Data System (ADS)
Butler, K.; Badnell, N. R.
2008-10-01
Context: Accurate electron collisional data are required for the analysis of the Fe xix astrophysical spectrum, in particular in the sun. Such an analysis can provide information on the physical characteristics of the coronal plasma. Aims: An extensive target is used in an R-matrix scattering calculation to provide the necessary data for Fe18+. The use of the R-matrix method includes the resonance contribution lacking in the distorted wave approach and the large target improves the accuracy of the close-coupling approximation. Methods: The R-Matrix package described by Berrington et al. (1995, Comput. Phys. Commun., 92, 290) as provided by the UK RmaX project has been used to calculate electron collisional data among 342 levels of Fe18+. We have used the intermediate-coupling frame-transformation (ICFT) method (Griffin et al. 1998, J. Phys. B: At. Mol. Opt. Phys., 31, 3713) to transform data obtained in a 166 term LS-coupling calculation. Contributions from the mass and Darwin interactions have also been included in the Hamiltonian. Results: Collision stengths for all transitions between the 342 levels of Fe18+ are presented. They are tabulated over a wide range of electron temperatures of astrophysical interest. The results are compared with the earlier Iron Project work of Butler & Zeippen (2001, A&A, 372, 1083) and also with that of McLaughlin et al. (2001, J. Phys. B: At. Mol. Opt. Phys., 34, 4521) and Landi & Gu (2006, ApJ, 640, 1171). The agreement is reasonable for the low-lying transitions. Larger differences are found for the more highly excited states. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/1369
Spectrum and energy levels of six-times ionized yttrium (Y VII)
NASA Astrophysics Data System (ADS)
Reader, Joseph
2018-03-01
The spectrum of six-times ionized yttrium, Y VII, was photographed with a sliding-spark discharge on 10.7 m normal- and grazing-incidence spectrographs. The region of observation was 157-824 Å. The observations extend the known configurations 4s24p3, 4s4p4, 4p5, 4s24p25s, 4s24p26s to the nearly complete 4s24p24d configuration. Our results for 4s24p24d significantly revise results of Rahimullah et al (1978 Phys. Scr. 18 96); Ateqad et al (1984 J. Phys. B: At. Mol. Phys. 17 4617). A total of 168 lines and 56 energy levels are now known for this ion. The observed configurations were interpreted with Hartree-Fock calculations and least-squares fits of the energy parameters to the observed levels. Transition probabilities for all classified lines were calculated with the fitted parameters.
NASA Astrophysics Data System (ADS)
2003-06-01
In December 2002 we announced some changes to Journal of Physics B: Atomic, Molecular and Optical Physics: an extended scope to highlight the wide range of articles published in the journal and a new definition of Letters to the Editor. As always, comments and suggestions are welcome and should be sent to jphysb@iop.org. Extended scope of J. Phys. B J. Phys. B covers all aspects of atomic, molecular and optical physics. We publish articles on the study of atoms, ions, molecules, condensates or clusters, from their structure and interactions with particles, photons, fields and surfaces to all aspects of spectroscopy. Quantum optics, non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes are also included. With the introduction of the BEC Matters! portal and IOP Select, J. Phys. B, one of the major contributors, offers authors of articles in this research area wider visibility and more flexible publication with the opportunity to display multimedia attachments or web links to key groups and results. The recent papers listed below reflect the wide scope of J. Phys. B: Calculation of cross sections for very low-energy hydrogen-antihydrogen scattering using the Kohn variational method E A G Armour and C W Chamberlain J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 22 (28 November 2002) L489-L494 Imaging the electron transfer reaction of Ne2+ with Ar using position-sensitive coincidence spectroscopy Sarah M Harper, Wan-Ping Hu and Stephen D Price J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 21 (14 November 2002) 4409-4423 Ultraviolet-infrared wavelength scalings for strong field induced L-shell emissions from Kr and Xe clusters Alex B Borisov, Xiangyang Song, Fabrizio Frigeni, Yang Dai, Yevgeniya Koshman, W Andreas Schroeder, Jack Davis, Keith Boyer and Charles K Rhodes J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 21 (14 November 2002) L461-L467 A Bose-Einstein condensate in an optical lattice J Hecker Denschlag, J E Simsarian, H Häffner, C McKenzie, A Browaeys, D Cho, K Helmerson, S L Rolston and W D Phillips J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) 3095-3110 Locality of a class of entangled states I R Senitzky J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) 3029-3039 Solitons and vortices in ultracold fermionic gases Tomasz Karpiuk, Miroslaw Brewczyk and Kazimierz Rzazewski J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 14 (28 July 2002) L315-L321 Stable islands in chaotic atom-optics billiards, caused by curved trajectories M F Andersen, A Kaplan, N Friedman and N Davidson J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 9 (14 May 2002) 2183-2190 Emission probability and photon statistics of a coherently driven mazer Jin Xiong and Zhi-Ming Zhang J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 9 (14 May 2002) 2159-2172 The Li+-H2 system in a rigid-rotor approximation: potential energy surface and transport coefficients I Røeggen, H R Skullerud, T H Løvaas and D K Dysthe J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 7 (14 April 2002) 1707-1725 The stochastic Gross-Pitaevskii equation C W Gardiner, J R Anglin and T I A Fudge J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 6 (28 March 2002) 1555-1582 Oxygen ion impurity in the TEXTOR tokamak boundary plasma observed and analysed by Zeeman spectroscopy J D Hey, C C Chu, S Brezinsek, Ph Mertens and B Unterberg J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 6 (28 March 2002) 1525-1553 Electron-hexafluoropropene (C3F6) scattering at intermediate energies Czeslaw Szmytkowski, Pawel Mozejko and Stanislaw Kwitnewski J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 5 (14 March 2002) 1267-1274 High-resolution investigations of C2 and CN optical emissions in laser-induced plasmas during graphite ablation S Acquaviva and M L De Giorgi J. Phys. B: At. Mol. Opt. Phys. Vol 35, No 4 (28 February 2002) 795-806 New definition of a Letter to the Editor A Letter to the Editor should present new results, likely to stimulate further research and be of interest to the wider atomic, molecular and optical physics community. Above all the results should be sufficiently new and important to merit rapid publication as a Letter, which implies accelerated refereeing procedures. This should be made clear either in the body of the Letter, if appropriate, or with a supporting cover letter from the author on submission to the journal. Letters will have an upper limit of eight journal pages and, as an additional quality check, two referees instead of one will be used to review them. The Board will be asked to make a final publication decision in the event of two conflicting reports. With these measures in place it is hoped that the important new results will receive the exposure they deserve as a Letter. If you have any questions or comments on this or anything relating to J. Phys. B please contact Nicola Gulley, Publisher, J. Phys. B (E-mail: jphysb@iop.org).
NASA Astrophysics Data System (ADS)
Chinoune, M.; Houamer, S.; Dal Cappello, C.; Galstyan, A.
2016-10-01
Recently Isik et al (2016 J. Phys B: At. Mol. Opt. Phys. 49 065203) performed measurements of the triple differential cross sections (TDCSs) of methane by electron impact. Their data clearly show that post-collisional interaction (PCI) effects are present in the angular distributions of ejected electrons. A model describing the ejected electron by a distorted wave and including PCI is applied for the single ionization of atomic targets and for methane. Extensive comparisons between this model and other previous models are made with available experiments.
Accurate thermochemistry and spectroscopy of the oxygen-protonated sulfur dioxide isomers.
Puzzarini, Cristina
2011-12-28
Despite the promising relevance of protonated sulfur dioxide in astrophysical and atmospheric fields, its thermochemical and spectroscopic characterization is very limited. High-level quantum-chemical calculations have shown that the most stable isomer is the cis oxygen-protonated sulfur dioxide, HOSO(+), while the trans form is about 2 kcal mol(-1) less stable; even less stable (by about 42 kcal mol(-1)) is the S-protonated isomer [V. Lattanzi et al., J. Chem. Phys., 2010, 133, 194305]. The enthalpy of formation for the cis- and trans-HOSO(+) is presented, based on the well tested HEAT protocol [A. Tajti et al., J. Chem. Phys., 2004, 121, 11599]. Systematically extrapolated ab initio energies, accounting for electron correlation through coupled cluster theory, including up to single, double, triple and quadruple excitations, have been corrected for core-electron correlation, anharmonic zero-point vibrational energy, diagonal Born-Oppenheimer and scalar relativistic effects. As a byproduct, proton affinity of sulfur dioxide and atomization energies have also been obtained at the same levels of theory. Vibrational and rotational spectroscopic properties have been investigated by means of composite schemes that allow us to account for truncation of basis set as well as core correlation. Where available, for both thermochemistry and spectroscopy, very good agreement with experimental data has been observed.
High harmonic generation in a gas-filled hollow-core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Heckl, O. H.; Baer, C. R. E.; Kränkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Südmeyer, T.; Robinson, J. S.; Tisch, J. W. G.; Couny, F.; Light, P.; Benabid, F.; Keller, U.
2009-10-01
High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).
Some properties of Stark states of hydrogenic atoms and ions
NASA Astrophysics Data System (ADS)
Hey, J. D.
2007-10-01
The motivation for this work is the problem of providing accurate values of the atomic transition matrix elements for the Stark components of Rydberg Rydberg transitions in atomic hydrogen and hydrogenic ions, for use in spectral line broadening calculations applicable to cool, low-density plasmas, such as those found in H II regions. Since conventional methods of calculating these transition matrix elements cannot be used for the high principal quantum numbers now easily attained in radio astronomical spectra, we attempt to show that the recurrence relation (ladder operator) method recently employed by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889 97) and Hey (2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641 64) can be taken over into the parabolic coordinate system used to describe the Stark states of the atomic (ionic) radiators. The present method is therefore suggested as potentially useful for extending the work of Griem (1967 Astrophys. J. 148 547 58, 2005 Astrophys. J. 620 L133 4), Watson (2006), Stambulchik et al (2007 Phys. Rev. E 75 016401(9 pp) on Stark broadening in transitions between states of high principal quantum number, to physical conditions where the binary, impact approximation is no longer strictly applicable to both electron and ion perturbers. Another possible field of application is the study of Stark mixing transitions in 'ultracold' Rydberg atoms perturbed by long-range interactions with slow atoms and ions. Preparatory to the derivation of recurrence relations for states of different principal quantum number, a number of properties and recurrence relations are also found for states of identical principal quantum number, including the analogue in parabolic coordinates to the relations of Pasternack (1937 Proc. Natl Acad. Sci. USA 23 91 4, 250) in spherical polar coordinates.
Cubic ice and large humidity with respect to ice in cold cirrus clouds
NASA Astrophysics Data System (ADS)
Bogdan, A.; Loerting, T.
2009-04-01
Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hcâh. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hcâh--) Ph P*h R 1T-- 1T* (1) from which the importance of Hcâh is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-âh. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hcâh. Unfortunately, the measurement of Hcâh is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hcâh ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in-cloud water supersaturations" in the upper-tropospheric cold cirrus clouds. Using instead the value of Hcâh ? 50 J/mol (Handa et al., 1986; Mayer and Hallbrucker, 1987) the calculation gives that Pc is only ~3% larger than that of Ph. Recently it has been reported that emulsified water droplets freeze to cubic ice when being cooled at a rate of 10 K/min (Murray and Bertram, 2006,). We prepared emulsified droplets using the same emulsification technique and studied them with a differential scanning calorimeter (DSC) between 278 and 180 K using a scanning rate of 10 K/min. During the warming of the samples we observed a very broad, tiny exothermal peak approximately between 230 and 260 K. Kohl et al. (2000) observed exothermal peak at ~230 K during the warming at 30 K/min of several samples of hyperquenched glassy water (HGW) prepared at temperature between 130 and 190 K. They attributed this peak to the cubic-to-hexagonal ice transition and estimated Hcâh to be between ~33 and 75 J/mol. Johari (2005) used the value of Hcâh ? 37 J/mol. Assuming that in our case the broad peak between 230 and 260 K is also due to the cubic-to-hexagonal ice transition we obtained approximately between 10 and 25 J/mol for Hcâh. This low enthalpy of transformation suggests that cubic ice in the atmosphere contains many hexagonal stacking faults. Using these values of Hcâh for cubic ice as produced at atmospheric cooling rates, the above mentioned formula gives that Pc is larger than that of Ph only by ~1%. We, therefore, suggest that the difference in the water vapor pressures between ice Ic and ice Ih is small and does not play a significant role in the elevation of RHi in cold cirrus clouds. Murphy, D. M., and T. Koop (2005), Q. J. R. Meteorol. Soc. 131, 1539-1565. Shilling, J. E. et al. (2006). Geophys. Res. Lett. 33, L17801, doi:1029/2006GL026671. Handa, P. Y., D. D. Klug, and E. Whalley (1986). J. Chem. Phys. 84, 7009-7010. Mayer, E., and A. Hallbrucker (1987), Nature, 325, 601-602. Murray, B. J. and A. K. Bertram (2006), Phys. Chem. Chem. Phys. 8, 186-192. Kohl, I., E. Mayer, and A. Hallbrucker (2000), Phys. Chem. Chem. Phys. 2, 1579-1586. G. P. Johari, (2005), J. Chem. Phys. 122, 194504.
VizieR Online Data Catalog: H3O+ and D3O+ rota
NASA Astrophysics Data System (ADS)
Owens, A.; Yurchenko, S. N.; Polyansky, O. L.; Ovsyannikov, R. I.; Thiel, W.; Spirko, V.
2018-01-01
Given the astronomical relevance of H3O+, and a good set of accurately measured experimental data (Uy, White & Oka 1997JMoSp.183..240U; Araki, Ozeki & Saito 1999, Mol. Phys., 97, 177); Tang & Oka 1999JMoSp.196..120T ; Furuya & Saito 2005A&A...441.1039F; Yu et al. 2009ApJS..180..119Y; Yu & Pearson 2014ApJ...786..133Y), we find it worthwhile to carry out a comprehensive study of hydronium, H316O+ (also referred to as H3O+), and its two symmetric top isotopologues, H318O+ and D316O+. To do this we employ a highly accurate variational approach, which was recently applied to ammonia (Owens et al. 2015MNRAS.450.3191O). Like NH3 (Jansen, Bethlem & Ubachs 2014JChPh.140a0901J; Spirko 2014, J. Phys. Chem. Lett., 5, 919; Owens et al. 2015MNRAS.450.3191O), there is a possibility to find transitions with strongly anomalous sensitivities caused by the Δk=+/-3 interactions (see Papousek et al. 1986JMoSt.141..361P), which have not yet been considered. (11 data files).
Using Nice-Ohvms Lineshapes to Study Relaxation Rates and Transition Dipole Moments
NASA Astrophysics Data System (ADS)
Hodges, James N.; McCall, Benjamin J.
2016-06-01
Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) is a successful technique that we have developed to sensitively, precisely, and accurately record transitions of molecular ions. It has been used exclusively as a method for precise transition frequency measurement via saturation and fitting of the resultant Lamb dips. NICE-OHVMS has been employed to improve the uncertainties on H_3^+, CH_5^+, HeH^+, and OH^+, reducing the transition frequency uncertainties by two orders of magnitude. Because NICE-OHVMS is a saturation technique, this provides a unique opportunity to access information about the ratio of the transition dipole moment to the relaxation rate of the transition. This can be done in two ways, either through comparison of Lamb dip depth to the transition profile or comparison of the absorption intensity and dispersion intensity. Due to the complexity of the modulation scheme, there are many parameters that affect the apparent intensity of the recorded lineshape. A complete understanding of the lineshape is required to make the measurements of interest. Here we present a model that accounts for the heterodyne modulation and velocity modulation, assuming that the fundamental lineshape is represented by a Voigt profile. Fits to data are made and interpreted in order to extract the saturation parameter. K.N. Crabtree et al., Chem. Phys. Lett. 551, 1 (2012). J.N. Hodges et al., J. Chem. Phys. 139, 164201 (2013). A.J. Perry et al., J. Mol. Spectrosc. 317, 71 (2015). A.J. Perry et al., J. Chem. Phys. 141, 101101 (2014). C.R. Marcus et al., Astrophys. J. 817, 138 (2016).
Far-Infrared Spectroscopy of Syn-Vinyl Alcohol
NASA Astrophysics Data System (ADS)
Raston, Paul; Bunn, Hayley
2016-06-01
Vinyl alcohol has been extensively studied in both the microwave and mid-IR spectral regions, where 9 out of 15 vibrational modes have been identified. Here we present the first far-IR spectrum of vinyl alcohol, collected below 700 wn at the Australian Synchrotron. The high resolution (0.001 wn) spectrum reveals the νb{11} and νb{15} fundamentals of syn-vinyl alcohol at 489 wn and 407 wn, in addition to two hot bands of the νb{15} mode at 369 wn and 323 wn. High J transitions in the R-branch of the νb{15} band were found to be perturbed by an a-axis Coriolis interaction with the nearby νb{11} state. The νb{15} torsional mode of syn-vinyl alcohol was fit using a Watson's A-reduced Hamiltonian to yield rotational, centrifugal distortion, and Coriolis coupling parameters. S. Saito, Chem. Phys. Lett. 42, 3 (1976) M. Rodler et al., J. Am. Chem. Soc. 106, 4029 (1948) Y. Koga et al., J. Mol. Spec. 145, 315 (1991) D-L. Joo et al., J. Mol. Spec. 197, 68 (1999)
Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates
2015-06-23
Lukin et al ., Phys. Rev. Lett. 87, 037901 (2001). [2] D. Jaksch et al ., Phys. Rev. Lett. 85, 2208 (2000). [3] L. Isenhower et al ., Phys. Rev. Lett...104, 010503 (2010). [4] T. Wilk et al ., Phys. Rev. Lett. 104, 010502 (2010). [5] I. Mourachko et al ., Phys. Rev. Lett. 80, 253 (1998). [6] W. R...Phys. 12, 103044 (2010). [12] R. M. W. van Bijnen et al ., J. Phys. B 44, 184008 (2011). [13] I. Lesanovsky, Phys. Rev. Lett. 106, 025301 (2011). [14] E
NASA Astrophysics Data System (ADS)
Sakhel, Asaad R.; Sakhel, Roger R.
2018-02-01
We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.
Terahertz Spectroscopy of Deuterated Acetaldehyde: CH_2DCHO
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Coudert, L. H.; Guillemin, J.-C.
2014-06-01
This study follows our recent investigations about deuterated methyl-top species of complex organic molecules: methanol, methyl formate, In particular these works led the first ISM detection of HCOOCH_2D and CH_2DOCH_3. Acetaldehyde is not very abundant in the ISM, but this is a very interesting case from the spectroscopic point of view as it is an intermediate case between methyl formate and methanol. In the normal species of acetaldehyde, the barrier to internal rotation which is close to the value in methyl formate: 373 cm-1. However, the value of the Coriolis coupling constant ρ is 0.33 in acetaldehyde which is a much larger value than in methyl formate, 0.08, meaning that the coupling between the torsion and the overall rotation is more important. The sample was not a commercial one and half of its amount is the normal species which leads to a more difficult line assignment. The spectra were recorded in Lille between 75 and 950 GHz with a solid-state submillimeter-wave spectrometer. The starting point of the analysis was the centimeter-wave measurements carried out for the sym and asym- conformers. A comparison between the approach developed for deuterated methyl formate (HCOOCH_2D), based on the water dimer formalism, and that designed recently for deuterated methanola (CH_2DOH) will be presented. This work is supported by the CNES and the Action sur Projets de l'INSU, PCMI. Coudert, L. H.; et al. J. Chem. Phys., 140, (2014) 64307 Coudert, L. H.; et al. ApJ, 779, (2013) 119 Richard, C.; et al. A&A, 552, (2013) A117 Smirnov, I. A.; et al. J. Mol. Spectrosc., 295 (2014) 44 Ilyushin, V.; et al. J. Mol. Spectrosc., 255 (2009) 32 Turner, P. H.; and Cox, A. P. Chem. Phys. Lett., 42, (1976) 84 Turner, P. H.; Cox, A. P.; and Hardy, J. A. J.C.S. Farady Trans., 2, (1981) 1217
NASA Astrophysics Data System (ADS)
Burnham, Christian J.; Futera, Zdenek; English, Niall J.
2018-03-01
The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.
Experimental and Theoretical Studies of the Pure Rotational Spectra of Lead Halides: PbF and PbCl
NASA Astrophysics Data System (ADS)
Norman, Spencer; Dawes, Richard; Grubbs, G. S., II; Cooke, S. A.; Long, B. E.; Dewberry, Chris
2014-06-01
The pure rotational spectrum of lead monochloride, PbCl, has been measured and analyzed using chirped pulse and cavity Fourier transform microwave (CP-FTMW and FTMW) spectrometers equipped with an ablation source. Refined parameters of an effective Hamiltonian including fine and hyperfine interactions similar to those previously reported by Fink et al. [1] were determined. Dynamically-weighted, explicitly-correlated MRCI-F12 calculations [2] were performed for both PbF and the valence isoelectronic PbCl to predict potential energy curves (PEC). Spin-orbit coupling was included in the calculations, which is known to split the X12Π1/2 and X22Π3/2 components of the ground electronic state by roughly 8280 wn in both lead halide systems. Calculated rotational levels were obtained using the PECs and compared with experiment including previously published results for PbF [3]. References: 1- K. Ziebarth, K. D. Setzer, O. Shestakov,1 and E. H. Fink, J. Mol. Spec. 191, 108 (1998). 2- B. J. Barker et al. J. Chem. Phys. 137, 214313 (2012). 3- R. J. Mawhorter et al. Phys. Rev. A 84, 022508 (2011).
Fitting the High-Resolution Spectroscopic Data for Ncncs
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Winnewisser, Brenda P.; Winnewisser, Manfred; De Lucia, Frank C.; Tokaryk, Dennis; Ross, Stephen Cary; Billinghurst, Brant E.
2014-06-01
NCNCS is a quasi-linear molecule that displays plentiful spectroscopic signatures of transition from the asymmetric top to the linear rotor regime. The transition takes place on successive excitation of the ν_7 bending mode at ca 80 cm-1. The unusual spectroscopic manifestations on crossing the barrier to linearity are explained by quantum monodromy and described quantitatively by the generalised semi-rigid bender Hamiltonian. Nevertheless, analysis to experimental accuracy of the extensive mm-wave spectrum of NCNCS recorded with the FASSST technique has only so far been achieved with the use of separate J(J+1) expansions for each (v_7, K_a) transition sequence.^c In addition, several selective perturbations identified between transition sequences in different vibrational levels^c are still unfitted. Presently we seek effective approximations to the vibration-rotation Hamiltonian that would allow combining multiple sequences into a fit, would allow a perturbation analysis, and could use mm-wave data together with high-resolution infrared measurements of NCNCS made at the Canadian Light Source. The understanding of effective fits to low-K_a subsets of rotational transitions in the FASSST spectrum has already allowed confident assignment of the 34S and both 13C isotopic species of NCNCS in natural abundance, as will be described. B.P.Winnewisser, et al., Phys. Rev. Lett. 95 243002 (2005). M.Winnewisser, et al., J. Mol. Struct. 798, 1 (2006). B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. 12, 8158 (2010).
NASA Astrophysics Data System (ADS)
Newman, T. J.; Thompson, A. M.
2012-12-01
The full text of the Preface is given in the PDF file. References [1] Kaur P et al 2012 Phys. Biol. 9 065001 [2] Lobikin M et al 2012 Phys. Biol. 9 065002 [3] Tanner K 2012 Phys. Biol. 9 065003 [4] Liu S V et al 2012 Phys. Biol. 9 065004 [5] Liao D et al 2012 Phys. Biol. 9 065005 [6] Liao D et al 2012 Phys. Biol. 9 065006 [7] Orlando P A et al 2012 Phys. Biol. 9 065007
NASA Astrophysics Data System (ADS)
Hey, J. D.
2015-09-01
On the basis of the original definition and analysis of the vector operator by Pauli (1926 Z. Phys. 36 336-63), and further developments by Flamand (1966 J. Math. Phys. 7 1924-31), and by Becker and Bleuler (1976 Z. Naturforsch. 31a 517-23), we consider the action of the operator on both spherical polar and parabolic basis state wave functions, both with and without direct use of Pauli’s identity (Valent 2003 Am. J. Phys. 71 171-75). Comparison of the results, with the aid of two earlier papers (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641-64, Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077-96), yields a convenient ladder technique in the form of a recurrence relation for calculating the transformation coefficients between the two sets of basis states, without explicit use of generalized hypergeometric functions. This result is therefore very useful for application to Stark effect and impact broadening calculations applied to high-n radio recombination lines from tenuous space plasmas. We also demonstrate the versatility of the Runge-Lenz-Pauli vector operator as a means of obtaining recurrence relations between expectation values of successive powers of quantum mechanical operators, by using it to provide, as an example, a derivation of the Kramers-Pasternack relation. It is suggested that this operator, whose potential use in Stark- and Zeeman-effect calculations for magnetically confined fusion edge plasmas (Rosato, Marandet and Stamm 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105702) and tenuous space plasmas ( H II regions) has not been fully explored and exploited, may yet be found to yield a number of valuable results for applications to plasma diagnostic techniques based upon rate calculations of atomic processes.
NASA Astrophysics Data System (ADS)
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-01
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν =0 →ν ≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H2- in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H2- is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H2- with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
Ben-Asher, Anael; Moiseyev, Nimrod
2017-05-28
The appearance of oscillations in the energy-dependent cross sections of the vibrational excitation ν=0→ν≥3 of the hydrogen molecule in its electronic ground state as predicted by Mündel, Berman, and Domcke [Phys. Rev. A 32, 181 (1985)] was confirmed in the electron scattering experiments by Allan [J. Phys. B: At. Mol. Phys. 18, L451 (1985)]. These unusual structures were obtained in spite of the extremely short lifetime of H 2 - in its ro-vibrational states. Based on the standard (Hermitian) time-independent scattering calculations, Horáček et al. [Phys. Rev. A 73, 022701 (2006)] associated these oscillations with the boomerang effect. Here, we show the boomerang effect as developed in time, based on our time-dependent nuclear wavepacket (WP) calculations. The nuclear WP dynamics of H 2 - is determined using the non-Hermitian quantum mechanics (NH-QM) which enables the use of the Born-Oppenheimer approximation with complex potential energy surfaces. This NH-QM approach, which enables us the association of the nuclear WP dynamics as obtained from the complex potential energy curve of H 2 - with the evolution of cross section in time, can enlighten the dynamics in other scattering experiments.
NASA Astrophysics Data System (ADS)
Nitz, D. E.; Curry, J. J.; Buuck, M.; DeMann, A.; Mitchell, N.; Shull, W.
2018-02-01
We report radiative transition probabilities for 5029 emission lines of neutral cerium within the wavelength range 417-1110 nm. Transition probabilities for only 4% of these lines have been previously measured. These results are obtained from a Boltzmann analysis of two high resolution Fourier transform emission spectra used in previous studies of cerium, obtained from the digital archives of the National Solar Observatory at Kitt Peak. The set of transition probabilities used for the Boltzmann analysis are those published by Lawler et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 085701). Comparisons of branching ratios and transition probabilities for lines common to the two spectra provide important self-consistency checks and test for the presence of self-absorption effects. Estimated 1σ uncertainties for our transition probability results range from 10% to 18%.
Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases
NASA Astrophysics Data System (ADS)
Hall, Joanne L.; Rao, Asha
2010-04-01
Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.
Integral cross sections for electron impact excitation of the 1Σ+u and 1Πu electronic states in CO2
NASA Astrophysics Data System (ADS)
Kawahara, H.; Kato, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.
2008-04-01
We apply the method of Kim (2007 J. Chem. Phys. 126 064305) in order to derive integral cross sections for the 1Σ+u and 1Πu states of CO2, from our corresponding earlier differential cross section measurements (Green et al 2002 J. Phys. B: At. Mol. Opt. Phys. 35 567). The energy range of this work is 20 200 eV. In addition, the BEf-scaling approach is used to calculate integral cross sections for these same states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, over the entire common energy range. Finally, we employ our calculated integral cross sections to determine the electron energy transfer rates for these states, for a thermal electron energy distribution. Such transfer rates are in principle important for understanding the phenomena in atmospheres where CO2 is a dominant constituent, such as on Mars and Venus.
NASA Astrophysics Data System (ADS)
Russ, Maximilian; Burkard, Guido
2017-10-01
The goal of this article is to review the progress of three-electron spin qubits from their inception to the state of the art. We direct the main focus towards the exchange-only qubit (Bacon et al 2000 Phys. Rev. Lett. 85 1758-61, DiVincenzo et al 2000 Nature 408 339) and its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit implementations using three electron spins. For each three-spin qubit we describe the qubit model, the envisioned physical realization, the implementations of single-qubit operations, as well as the read-out and initialization schemes. Two-qubit gates and decoherence properties are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of requirements for quantum computation for a viable candidate qubit implementation. We start by describing the full system of three electrons in a triple quantum dot, then discuss the charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 94 165411). Introducing the various qubit implementations, we begin with the exchange-only qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its modification, the RX qubit, whose single-qubit operations are realized by driving the qubit at its resonant frequency in the microwave range similar to electron spin resonance. Two different types of two-qubit operations are presented for the exchange-only qubits which can be divided into short-ranged and long-ranged interactions. Both of these interaction types are expected to be necessary in a large-scale quantum computer. The short-ranged interactions use the exchange coupling by placing qubits next to each other and applying exchange-pulses (DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting microwave cavity as a mediator in order to couple two qubits over long distances (Russ and Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The nature of the three-electron qubit states each having the same total spin and total spin in z-direction (same Zeeman energy) provides a natural protection against several sources of noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). The price to pay for this advantage is an increase in gate complexity. We also take into account the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the energy levels on each dot due to noisy gate voltages or the environment. Several techniques are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), which are least susceptible to noise, thus providing a longer lifetime of the qubit.
NMR Imaging of Elastomeric Materials
1992-08-31
1991, 10, 59. (Ill Cory, D.G., Miller, J.B., 7Turner, R., Garroway , A.N., Mol. Phys. 1990, 70, 331-7 [121 Jezzard, P., Carpenter, T.A., Hall, L.D.{Polym...SPE Paper 18272, 63rd Annual Technical Conference and Exhibition, Houston, TX, Oct. 2-5, 1988. 9. D.G. Cory, J.B. Miller, R. Turner, and A.N. Garroway ...B.; Turner, R.; Garroway , A. N. Mol. as the cause of the arrowhead artifacts. We thank An- Phys. I", 70, 331. nadell Fowler and John Pearce for
Potential energy surface and quantum dynamics study of rovibrational states for HO(3) (X (2)A'').
Braams, Bastiaan J; Yu, Hua-Gen
2008-06-07
An analytic potential energy surface has been constructed by fitting to about 28 thousand energy points for the electronic ground-state (X (2)A'') of HO(3). The energy points are calculated using a hybrid density functional HCTH and a large basis set aug-cc-pVTZ, i.e., a HCTH/aug-cc-pVTZ density functional theory (DFT) method. The DFT calculations show that the trans-HO(3) isomer is the global minimum with a potential well depth of 9.94 kcal mol(-1) with respect to the OH + O(2) asymptote. The equilibrium geometry of the cis-HO(3) conformer is located 1.08 kcal mol(-1) above that of the trans-HO(3) one with an isomerization barrier of 2.41 kcal mol(-1) from trans- to cis-HO(3). By using this surface, a rigorous quantum dynamics (QD) study has been carried out for computing the rovibrational energy levels of HO(3). The calculated results determine a dissociation energy of 6.15 kcal mol(-1), which is in excellent agreement with the experimental value of Lester et al. [J. Phys. Chem. A, 2007, 111, 4727.].
Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation
NASA Astrophysics Data System (ADS)
Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per
2015-10-01
Traditionally, molecules are theoretically described as near-static structures rotating in space. Vibrational motion causing small structural deformations induces a perturbative treatment of the rotation-vibration interaction, which fails in highly fluxional molecules, where all vibrational motions have amplitudes comparable in size to the linear dimensions of the molecule. An example is protonated methane (CH 5+ ) [P. Kumar and D. Marx, Phys. Chem. Chem. Phys. 8, 573 (2006); Z. Jin et al., J. Phys. Chem. A 110, 1569 (2006); and A. S. Petit et al., J. Phys. Chem. A 118, 7206 (2014)]. For these molecules, customary theory fails to simulate reliably even the low-energy spectrum [T. Oka, Science 347, 1313-1314 (2015) and O. Asvany et al., Science 347, 1346-1349 (2015)]. Within the traditional view of rotation and vibration being near-separable, rotational and vibrational wavefunctions can be symmetry classified separately in the molecular symmetry (MS) group [P. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, NRC Monograph Publishing Program (NRC Research Press, 2006)]. In this article, we discuss a fundamental group theoretical approach to the problem of determining the symmetries of molecular rotation-vibration states. We will show that all MS groups discussed so far are isomorphic to subgroups of the special orthogonal group in three dimensions SO(3). This leads to a group theoretical foundation of the technique of equivalent rotations [H. Longuet-Higgins, Mol. Phys. 6, 445 (1963)]. The group G240 (the MS group of protonated methane) represents, to the best of our knowledge, the first example of a MS group which is not isomorphic to a subgroup of SO(3) (nor of O(3) or of SU(2)). Because of this, a separate symmetry classification of vibrational and rotational wavefunctions becomes impossible in this MS group, consistent with the fact that a decoupling of vibrational and rotational motion is impossible. We discuss here the consequences of this. In conclusion, we show that the prototypical, extremely floppy molecule CH 5+ represents a new class of molecules, where customary group theoretical methods for determining selection rules and spectral assignments fail so that new methods have to be developed.
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Merkt, Frederic
2016-06-01
Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998). P. Jansen, L. Semeria, and F. Merkt, J. Mol. Spectrosc. 322, 9 (2016)
NASA Astrophysics Data System (ADS)
Mai, Tam V.-T.; Duong, Minh v.; Huynh, Lam K.
2018-03-01
This short communication discusses the role of the newly-found lowest-lying structures of the transition states (∼3.0 kcal/mol lower than those previously reported by Ren et al. (2018), together with the inclusion of the hindered internal rotation correction, in obtaining reliable kinetic data for the hydrogen abstraction from sevoflurane by OH radical. With the new structures and the more rigorous kinetic model, the calculated rate constants agree much better with the experimental data than those suggested by Ren and coworkers.
Resolved Sideband Spectroscopy for the Detection of Weak Optical Transitions
2013-08-01
Lett. 81, 317 (1998). [12] T. Baba and I. Waki , “Cooling and Mass-Analysis of Molecules Using Laser-Cooled Atoms,” Jpn. J. Appl. Phys 35, L1134 (1996...fermions,” Phys. Rev. A: At. Mol. Opt. Phys. 65, 043601 (2002). [26] T. Baba and I. Waki , “Spectral shape of in situ mass spectra of sympathetically cooled
A modified potential for HO2 with spectroscopic accuracy
NASA Astrophysics Data System (ADS)
Brandão, João; Rio, Carolina M. A.; Tennyson, Jonathan
2009-04-01
Seven ground state potential energy surfaces for the hydroperoxyl radical are compared. The potentials were determined from either high-quality ab initio calculations, fits to spectroscopic data, or a combination of the two approaches. Vibration-rotation calculations are performed on each potential and the results compared with experiment. None of the available potentials is entirely satisfactory although the best spectroscopic results are obtained using the Morse oscillator rigid bender internal dynamics potential [Bunker et al., J. Mol. Spectrosc. 155, 44 (1992)]. We present modifications of the double many-body expansion IV potential of Pastrana et al. [J. Chem. Phys. 94, 8093 (1990)]. These new potentials reproduce the observed vibrational levels and observed vibrational levels and rotational constants, respectively, while preserving the good global properties of the original potential.
Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.
2011-06-01
Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32
Precision measurements with atom interferometry
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Schlippert, Dennis; Ertmer, Wolfgang; Rasel, Ernst M.
2017-04-01
Interferometry with matter waves enables precise measurements of rotations, accelerations, and differential accelerations [1-5]. This is exploited for determining fundamental constants [2], in fundamental science as e.g. testing the universality of free fall [3], and is applied for gravimetry [4], and gravity gradiometry [2,5]. At the Institut für Quantenoptik in Hannover, different approaches are pursued. A large scale device is designed and currently being set up to investigate the gain in precision for gravimetry, gradiometry, and fundamental tests on large baselines [6]. For field applications, a compact and transportable device is being developed. Its key feature is an atom chip source providing a collimated high flux of atoms which is expected to mitigate systematic uncertainties [7,8]. The atom chip technology and miniaturization benefits from microgravity experiments in the drop tower in Bremen and sounding rocket experiments [8,9] which act as pathfinders for space borne operation [10]. This contribution will report about our recent results. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, and by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] P. Berg et al., Phys. Rev. Lett., 114, 063002, 2015; I. Dutta et al., Phys. Rev. Lett., 116, 183003, 2016. [2] J. B. Fixler et al., Science 315, 74 (2007); G. Rosi et al., Nature 510, 518, 2014. [3] D. Schlippert et al., Phys. Rev. Lett., 112, 203002, 2014. [4] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016. [5] J. M. McGuirk et al., Phys. Rev. A 65, 033608, 2002; P. Asenbaum et al., arXiv:1610.03832. [6] J. Hartwig et al., New J. Phys. 17, 035011, 2015. [7] H. Ahlers et al., Phys. Rev. Lett. 116, 173601, 2016; S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [8] J. Rudolph et al., New J. Phys. 17, 065001, 2015. [9] H. Müntinga et al., Phys. Rev. Lett., 110, 093602, 2013. [10] O. Carraz et al., Microgravity Sci. Technol. 26, 139, 2014; D. Aguilera et al., Class. Quantum Grav. 31, 115010, 2014.
NASA Astrophysics Data System (ADS)
Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina
2016-06-01
Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).
Magnetic and structural X-ray dichroïsms of metallic multilayers
NASA Astrophysics Data System (ADS)
Pizzini, Stefania; Fontaine, A.; Baudelet, F.; Minr, S.; Giorgetti, C.; Dartyge, E.; Bobo, J. F.; Piecuch, M.
1995-05-01
Fe/Cu and Co/Cu multilayers are intensively studied because of their exceptional magnetic properties, i.e., their giant magnetoresistance and the oscillations of the magnetic coupling between magnetic layers as a function of the thickness of the copper spacer [S.S. Parkin et al., Phys. Rev. Lett. 66 (1991) 2152; F. Petroff et al., Phys. Rev. B 44 (1991) 5355]. Spectroscopic approaches to the understanding of the coupling of ferromagnetic layers through a noble metal layer have been recently introduced, in particular spin-resolved photoemission [N.B. Brookes et al., Phys. Rev. Lett. 67 (1991) 354; C. Carbone et al., PRL 71 (1993) 2805] inverse photoemission [J.E. Ortega et al., Phys. Rev. Lett. 69 (1992) 844; Phys. Rev. B 47 (1993) 1540] and magnetic circular dichroism [S. Pizzini et al., MRS Symp. Proc., vol. 313 (1993); M.G. Samant et al. Phys. Rev. Lett. 72 (1994) 2152; S. Pizzini et al., Phys. Rev. Lett. 74 (1995) 1470]. X-ray absorption spectroscopy appears to be effective both for determination of the local structure, specific to the bidimensionality of the system but also for the electron symmetry-dependent evaluation of the spin polarisation of the noble metal as well as the magnetic element.
Generalized elimination of the global translation from explicitly correlated Gaussian functions
NASA Astrophysics Data System (ADS)
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-01
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e- } ion and the H2 = {p+, p+, e-, e-} molecule.
Generalized elimination of the global translation from explicitly correlated Gaussian functions.
Muolo, Andrea; Mátyus, Edit; Reiher, Markus
2018-02-28
This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H 2 + ={p + ,p + ,e - } ion and the H 2 = {p + , p + , e - , e - } molecule.
Shock-wave ion acceleration by an ultra-relativistic short laser pulse
NASA Astrophysics Data System (ADS)
Zhidkov, A.; Batishchev, O.; Uesaka, M.
2002-11-01
Research on ion acceleration by intense short laser pulses grows in the last few years [1-9] because of various applications. However, the study is mainly focused on the forward ion acceleration. We study ion inward acceleration, which in contrast to other mechanisms has density of ions per unit energy not decreased with the laser intensity [8]. Magnetic field generated due to a finite size of laser spot can affect electron distribution. In the present work we study the effect of magnetic field on the shock wave formation and ion acceleration in a solid target via 2D PIC and Vlasov simulation. Though the PIC simulation can provide detailed information, in relativistic plasmas it may not calculate B correctly: (i) too many particles are needed to make B disappeared in thermal plasmas, (ii) local scheme [10] does not satisfy curl(Epl)=0. Therefore, two approaches are used in the present study. [1] S. P. Hatchett et al., Phys. Plas. 7, 2076 (2000); [2] A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000); [3] E.L. Clark et al., Phys. Rev. Lett. 85, 1654 (2000); [4] A. Zhidkov et al., Phys. Rev. E60, 3273 (1999); E61, R2224 (2000); [5] Y. Murakami et al, Phys. Plasmas 8,4138 (2001); [6] T.Zh. Esirkepov et al, JETP Lett. 70, 82 (1999); [7] A. Pukhov, Phys. Rev. Lett. 86, 3562(2001); [8] A.A. Andreev et al., Plasma Phys. Contr. Fusion (2002); [9] O.V. Batishchev et al., Plasma Phys. Rep. 20, 587 (1994); [10] J. Villasenor et al., Comp. Phys. Comm. 69, 306 (1992).
On thermal conductivity of gas mixtures containing hydrogen
NASA Astrophysics Data System (ADS)
Zhukov, Victor P.; Pätz, Markus
2017-06-01
A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \\hbox {H}_2{-}\\hbox {O}_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579,
NASA Astrophysics Data System (ADS)
Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga
2018-06-01
The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.
THz and Ft-Ir Study of 18-O Isotopologues of Sulfur Dioxide: 32S16O18O and 32S18O_2
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Demaison, J.; Perrin, Agnes; Kwabia Tchana, F.; Manceron, Laurent
2016-06-01
Sulfur dioxide is a molecule that have a great interest in different domains: for atmospheric and planetology chemistry, it is also ubiquitous and abundant in interstellar medium. If the 16O species were extensively studied, this is not the case of the 18O isotopologues. The aim of this study is first to complete the rotational spectra of the ground state with these new measurements up to 1.5 THz, previous measurements are up to 1050 GHz for the 32S16O18O species, and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. The FT-IR spectra were recorded on the AILES Beamline at Synchrotron SOLEIL using the Synchrotron light source, coupled to the Bruker IFS125HR Fourier transform spectrometer. The THz spectra were obtained from 150 to 1500 GHz using the Lille's solid state spectrometer. The analysis is in progress, the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged Belov, S. P.; et al., 1998, J. Mol. Spectrosc. 191, 17 Lindermayer, J.; et al., 1985, J. Mol. Spectrosc. 110, 357 Gueye, F.; et al. Mol. Phys. in press Ulenikov, O. N.; et al., 2015, JQSRT 166, 13 Brubach, J.; et al., 2010, AIP Conf. Proc. 1214, 81 Zakharenko, O.; et al., 2015, J. Mol. Spectrosc. 317, 41
Quantum-Critical Dynamics of the Skyrmion Lattice.
NASA Astrophysics Data System (ADS)
Green, Andrew G.
2002-03-01
Slightly away from exact filling of the lowest Landau level, the quantum Hall ferromagnet contains a finite density of magnetic vortices or Skyrmions[1,2]. These Skyrmions are expected to form a square lattice[3], the low energy excitations of which (translation/phonon modes and rotation/breathing modes) lead to dramatically enhanced nuclear relaxation[4,5]. Upon changing the filling fraction, the rotational modes undergo a quantum phase transition where zero-point fluctuations destroy the orientational order of the Skyrmions[4,6]. I will discuss the effect of this quantum critical point upon nuclear spin relaxation[7]. [1]S. L. Sondhi et al., Phys. Rev. B47, 16419 (1993). [2]S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995), A. Schmeller et al., Phys. Rev. Lett. 75, 4290 (1995). [3]L. Brey et al, Phys. Rev. Lett. 75, 2562 (1995). [4]R. Côté et al., Phys. Rev. Lett. 78, 4825 (1997). [5]R. Tycko et al., Science 268, 1460 (1995). [6]Yu V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998). [7]A. G. Green, Phys. Rev. B61, R16 299 (2000).
Reactive Removal of BiF Ground State
1990-09-28
1978). 3. W E. Jones and T D. McLean, J. Mol. Spectrosc. 90, 481 (1981). 4. R. E Heidner, H . Helvajian , J. S. Holloway, and J. B. Koffend, J. Chem...Phys. 84, 2137 (1986). 5. C. R. Jones and H . P. Broida, J. Chem. Phys. 60, 4369 (1974). 6. H . Helvajian , J. S. Holloway, and J. B. Koffend, J. Chem...Phys. Rev. A6, 631 (1972). 27. H . Hotop and W C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1985). 28. J.M. Herbelin, Conf. Proc., Intl. Gonf. on
NASA Astrophysics Data System (ADS)
Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong
2018-02-01
On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less
Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements
NASA Astrophysics Data System (ADS)
Fivet, Vanessa; Quinet, P.; Bautista, M.
2012-05-01
Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Michael L. P.; Arora, Vijay K., E-mail: vijay.arora@wilkes.edu; Department of Electrical Engineering and Physics, Wilkes University, Wilkes-Barre, Pennsylvania 18766
2014-12-21
In a recent article, Serov et al. [J. Appl. Phys. 116, 034507 (2014)] claim: “This study represents the first time that the high-field behavior in graphene on a substrate was investigated taking into account intrinsic graphene properties,” ignoring the most recent anisotropic distribution function [V. K. Arora et al., J. Appl. Phys. 112, 114330 (2012)] also published in J. Appl. Phys., targeting the same experimental data [V. E. Dorgan et al., Appl. Phys. Lett. 97, 082112 (2010)]. The claim of Serov et al. of being first is refuted and many shortcomings of the hydrodynamic model for a highly quantum andmore » degenerate graphene nanolayer are pointed out.« less
Generalized statistical complexity measures: Geometrical and analytical properties
NASA Astrophysics Data System (ADS)
Martin, M. T.; Plastino, A.; Rosso, O. A.
2006-09-01
We discuss bounds on the values adopted by the generalized statistical complexity measures [M.T. Martin et al., Phys. Lett. A 311 (2003) 126; P.W. Lamberti et al., Physica A 334 (2004) 119] introduced by López Ruiz et al. [Phys. Lett. A 209 (1995) 321] and Shiner et al. [Phys. Rev. E 59 (1999) 1459]. Several new theorems are proved and illustrated with reference to the celebrated logistic map.
Fit Point-Wise AB Initio Calculation Potential Energies to a Multi-Dimension Long-Range Model
NASA Astrophysics Data System (ADS)
Zhai, Yu; Li, Hui; Le Roy, Robert J.
2016-06-01
A potential energy surface (PES) is a fundamental tool and source of understanding for theoretical spectroscopy and for dynamical simulations. Making correct assignments for high-resolution rovibrational spectra of floppy polyatomic and van der Waals molecules often relies heavily on predictions generated from a high quality ab initio potential energy surface. Moreover, having an effective analytic model to represent such surfaces can be as important as the ab initio results themselves. For the one-dimensional potentials of diatomic molecules, the most successful such model to date is arguably the ``Morse/Long-Range'' (MLR) function developed by R. J. Le Roy and coworkers. It is very flexible, is everywhere differentiable to all orders. It incorporates correct predicted long-range behaviour, extrapolates sensibly at both large and small distances, and two of its defining parameters are always the physically meaningful well depth {D}_e and equilibrium distance r_e. Extensions of this model, called the Multi-Dimension Morse/Long-Range (MD-MLR) function, linear molecule-linear molecule systems and atom-non-linear molecule system. have been applied successfully to atom-plus-linear molecule, linear molecule-linear molecule and atom-non-linear molecule systems. However, there are several technical challenges faced in modelling the interactions of general molecule-molecule systems, such as the absence of radial minima for some relative alignments, difficulties in fitting short-range potential energies, and challenges in determining relative-orientation dependent long-range coefficients. This talk will illustrate some of these challenges and describe our ongoing work in addressing them. Mol. Phys. 105, 663 (2007); J. Chem. Phys. 131, 204309 (2009); Mol. Phys. 109, 435 (2011). Phys. Chem. Chem. Phys. 10, 4128 (2008); J. Chem. Phys. 130, 144305 (2009) J. Chem. Phys. 132, 214309 (2010) J. Chem. Phys. 140, 214309 (2010)
Fully relativistic B-spline R-matrix calculations for electron collisions with xenon
NASA Astrophysics Data System (ADS)
Bartschat, Klaus; Zatsarinny, Oleg
2009-05-01
We have applied our recently developed fully relativistic Dirac B-spline R-matrix (DBSR) code [1] to calculate electron scattering from xenon atoms. Results from a 31-state close-coupling model for the excitation function of the metastable (5p^5 6s) J=0,2 states show excellent agreement with experiment [2], thereby presenting a significant improvement over the most sophisticated previous Breit-Pauli calculations [3,4]. This allows for a detailed and reliable analysis of the resonance structure. The same model is currently being used to calculate electron-impact excitation from the metastable J=2 state. The results will be compared with recent experimental data [5] and predictions from other theoretical models [6,7]. [1] O. Zatsarinny and K. Bartschat, Phys. Rev. A 77 (2008) 062701. [2] S. J. Buckman et al., J. Phys. B 16 (1983) 4219. [3] A. N. Grum-Grzhimailo and K. Bartschat, J. Phys. B 35 (2002) 3479. [4] M. Allan et al., Phys. Rev. A 74 (2006) 030701(R). [5] R. O. Jung et al., Phys. Rev. A 72 (2005) 022723. [6] R. Srivastava et al., Phys. Rev. A 74 (2006) 012715. [7] J. Jiang et al., J. Phys. B 41 (2008) 245204.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, H., E-mail: h-jafarzadeh56@yahoo.com
2015-04-28
The spontaneously generated coherence (SGC) effects on optical bistability (OB) are investigated in a five-level K-type system. It is found that SGC makes the system phase dependent. Thus, the OB and the absorption behavior of the system can be controlled by the relation phase of applied fields. In addition, the pump field intensity effect on the OB behavior is discussed. The experimental viability of the model in semiconductor quantum well system is also discussed [A. V. Germanenko et al., J. Phys.: Conf. Ser. 376, 012024 (2012); D. S. Chemla et al., IEEE J. Quantum Electron. 20(3), 265 (1984); L. V.more » Butov et al., J. Exp. Theor. Phys. 88(5), 1036 (1999); J. F. Dynes et al., Phys. Rev. Lett. 94, 157403 (2005); S. Schmitt-Rinka et al., Adv. Phys. 38(2), 89 (1989); and H. W. Liu et al., Appl. Phys. Lett. 54, 2082 (1989)].« less
EDITORIAL: Annual prizes for best papers
NASA Astrophysics Data System (ADS)
2006-09-01
2005 Roberts Prize The publishers of Physics in Medicine and Biology (PMB) in association with the Institute of Physics and Engineering in Medicine (IPEM) jointly award an annual prize for an article published in PMB during the previous year. The following 14 articles, listed below in chronological order, were rated the best of 2005 based on the (two or three) referees' assessments: P Kundrát et al 2005 Probabilistic two-stage model of cell inactivation by ionizing particles Phys. Med. Biol. 50 1433-47 D Arora et al 2005 Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation Phys. Med. Biol. 50 1919-35 J S Dysart et al 2005 Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro Phys. Med. Biol. 50 2597-616 M Defrise et al 2005 Fourier rebinning of time-of-flight PET data Phys. Med. Biol. 50 2749-63 Z Su et al 2005 Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions Phys. Med. Biol. 50 2907-28 E Bräuer-Krisch et al 2005 New irradiation geometry for microbeam radiation therapy Phys. Med. Biol. 50 3103-11 H C Pyo et al 2005 Identification of current density distribution in electrically conducting subject with anisotropic conductivity distribution Phys. Med. Biol. 50 3183-96 R P Findlay et al 2005 Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body Phys. Med. Biol. 50 3825-35 G Alexandrakis et al 2005 Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study Phys. Med. Biol. 50 4225-41 J Keshvari et al 2005 Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz Phys. Med. Biol. 50 4355-69 J Laufer et al 2005 In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution Phys. Med. Biol. 50 4409-28 Z Cao et al 2005 Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging---a simulation study Phys. Med. Biol. 50 4609-24 R Dharmakumar et al 2005 A novel microbubble construct for intracardiac or intravascular MR manometry: a theoretical study Phys. Med. Biol. 50 4745-62 R Chopra et al 2005 Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators Phys. Med. Biol. 50 4957-75 The IPEM Publications Committee then assessed and rated these papers in order to choose a winner. We have much pleasure in advising readers that the 2005 Roberts Prize is awarded to: J S Dysart and M S Patterson 2005 Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro Phys. Med. Biol. 50 2597-616 2006 Prize for the Highest Cited Paper The annual prize for the most highly cited paper is awarded by the journal publishers to the article published in PMB that has received the most citations1 in the previous 5 years (in this case for the period 2001 to 2005 inclusive). We have much pleasure in advising readers that the 2006 prize is awarded to: P J Keall, V R Kini, S S Vedam and R Mohan 2001 Motion adaptive x-ray therapy: a feasibility study Phys. Med. Biol. 46 1-10 Simon Harris, Publisher Steve Webb, Editor-in-Chief 1 Figures taken from Thomson/ISI
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface
NASA Astrophysics Data System (ADS)
He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.
2016-12-01
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E
2016-12-07
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Endohedral metallofullerene Sc3NC@C84: a theoretical prediction.
Wang, Dong-Lai; Xu, Hong-Liang; Su, Zhong-Min; Xin, Guang
2012-11-21
Very recently, two novel Sc(3)NC-based cluster fullerenes Sc(3)NC@C(80) (Wang et. al. J. Am. Chem. Soc. 2010, 132, 16362) and Sc(3)NC@C(78) (Wu et. al. J. Phys. Chem. C 2011, 115, 23755) were prepared and characterized, respectively. Inspired by these findings, the possibility of encapsulating Sc(3)NC cluster in the C(84) fullerene is performed using density functional theory (DFT). Firstly, the isolated pentagon rule (IPR) D(2d) (23) C(84) fullerene is employed to encase the Sc(3)NC cluster: four possible endohedral metallofullerene isomers a-d are designed. The large binding energies (ranging from 163.7 to 210.0 kcal mol(-1)) indicate that the planar quinary cluster Sc(3)NC can be stably encapsulated in the C(84) (isomer 23) cage. Further, we consider the incorporation of Sc(3)NC into the non-IPR C(s) (51365) C(84) cage leading to isomer e and show the high stability of isomer e, which has a larger binding energy, larger HOMO-LUMO gap, higher adiabatic (vertical) ionization potential, and lower adiabatic (vertical) electron affinity than the former four Sc(3)NC@C(84) (isomer 23). Significantly, the predicted binding energy (294.2 kcal mol(-1)) of isomer e is even larger than that (289.2 and 277.7 kcal mol(-1), respectively) of the synthesized Sc(3)NC@C(80) and Sc(3)NC@C(78,) suggesting a considerable possibility for experimental realization. The (13)C NMR chemical shifts and Raman spectra of this a new endofullerene have been explored to assist future experimental characterization.
Normal Mode Analysis on the Relaxation of AN Excited Nitromethane Molecule in Argon Bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Wagner, Albert F.
2017-06-01
In our previous work [Rivera-Rivera et al. J. Chem. Phys. 142, 014303 (2015).] classical molecular dynamics simulations followed, in an Ar bath, the relaxation of nitromethane (CH_3NO_2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. The 300 K Ar bath was at pressures of 10 to 400 atm. Both rotational and vibrational energies exhibited multi-exponential decay. This study explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997).], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. Then the saved CH_3NO_2 positions and momenta can be converted into mode-specific energies whose decay over 1000 ps can be monitored. The results identify vibrational and rotational modes that promote/resist energy lost and drive multi-exponential behavior. In addition to mode-specificity, the results show disruption of IVR with increasing pressure.
Special issue: diagnostics of atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide
2013-11-01
In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of, e.g. Werner von Siemens [9], who studied a dielectric barrier discharge (DBD) in the context of ozone generation. DBD discharges often consist of numerous filamentary discharges which are inherently transient in nature and with a characteristic size similar to the dimensions of microplasmas. Several groups are investigating the stabilization of such plasma filaments to perform temporal and spatial resolved diagnostics. To this end and due to the many similar challenges for diagnostics, this type of discharge is also included in this special issue. Research on microplasmas is performed in many groups spread all over the world, and a biannual workshop is devoted to the topic. The 7th edition of this International Workshop on Microplasmas was held in Beijing in May 2013. Large research programs consisting of clusters of research labs such as in Japan, Germany, France and the USA have been producing a wealth of information available in the literature. As the editors of this special issue, we are very pleased to have attracted a collection of excellent papers from leading experts in the field covering most of the current diagnostics performed in microplasmas. As an introduction to the regular special issue papers, a review paper is included [10]. It describes the key characteristics of atmospheric pressure plasmas and microplasmas in particular, and reviews the state of the art in plasma diagnostics. Special attention has been given in this review to highlighting the issues and challenges to probe microplasmas. The regular papers cover a large range of different diagnostics including coherent anti-Stokes Raman scattering (CARS) [11], (two-photon) laser induced fluorescence ((Ta)LIF) [12, 13, 18, 24], absorption spectroscopy [13-18], optical emission spectroscopy [12, 16-21, 24], imaging [22, 23], surface diagnostics [24, 25] and mass spectrometry [26, 27]. Different aspects of microplasmas are broadly investigated from a perspective of diagnostics, modelling and applications. Diagnostics are pivotal to both the development of models and the optimization and exploration of novel applications. Consequently, this special issue is focused on the various aspects and challenges for diagnostics in microplasmas. In addition, previous special issues on the topic of microplasmas have already covered many aspects of source development, applications and modelling [28-31]. The reader who wishes to access additional background information on microplasmas is referred to the following review papers [32-35]. We would like to thank all the contributors and the editorial staff who were of tremendous support in the preparation of this special issue. It is our sincere hope that you enjoy reading this special issue and that it will be a reference and helpful guidance for young researchers embarking in the field of microplasmas. The continued effort to increase our understanding of plasmas by modelling and diagnostics is of key importance for plasma science and the development of novel technologies. References [1] Eden J G, Park S-J, Herring C M and Bulson J M 2011 J. Phys. D: Appl. Phys. 44 224011 [2] Lucas N, Ermel V, Kurrat M and Buttgenbach S 2008 J. Phys. D: Appl. Phys. 41 215202 [3] Karnassios V 2004 Spectrochim. Acta B 59 909-28 [4] Mariotti D and Sankaran RM 2010 J. Phys. D: Appl. Phys. 43 323001 [5] Sakai O and Tachibana K 2012 Plasma Sources Sci. Technol. 21 013001 [6] Starikovskaia S M 2006 Plasma assisted ignition and combustion J. Phys. D.: Appl. Phys. 39 R265-99 [7] Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N and Fridman A 2008 Plasma Process. Polym. 5 503-33 [8] Eden G et al 2013 IEEE Trans. Plasma Sci. 41 661-75 [9] Siemens W 1857 Poggendorffs. Ann. Phys. Chem. 102 66-122 [10] Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001 [11] Montello A et al 2013 J. Phys. D: Appl. Phys. 46 464002 [12] Schröder D et al 2013 J. Phys. D: Appl. Phys. 46 464003 [13] Verreycken T et al 2013 J. Phys. D: Appl. Phys. 46 464004 [14] Sousa J S and Puech V 2013 J. Phys. D: Appl. Phys. 46 464005 [15] Takeda K et al 2013 J. Phys. D: Appl. Phys. 46 464006 [16] Vallade J and Massines F 2013 J. Phys. D: Appl. Phys. 46 464007 [17] Wang C and Wu W 2013 J. Phys. D: Appl. Phys. 46 464008 [18] Schröter S et al 2013 J. Phys. D: Appl. Phys. 46 464009 [19] Rusterholtz D L et al 2013 J. Phys. D: Appl. Phys. 46 464010 [20] Huang B-D et al 2013 J. Phys. D: Appl. Phys. 46 464011 [21] Pothiraja R et al 2013 J. Phys. D: Appl. Phys. 46 464012 [22] Marinov I et al 2013 J. Phys. D: Appl. Phys. 46 464013 [23] Akishev Y et al 2013 J. Phys. D: Appl. Phys. 46 464014 [24] Brandenburg R et al 2013 J. Phys. D: Appl. Phys. 46 464015 [25] Houlahan T J Jret al 2013 J. Phys. D: Appl. Phys. 46 464016 [26] Benedikt J et al 2013 J. Phys. D: Appl. Phys. 46 464017 [27] McKay K et al 2013 J. Phys. D: Appl. Phys. 46 464018 [28] Selected papers from the 2nd International Workshop on Microplasmas 2005 J. Phys. D: Appl. Phys. 38 1633-759 [29] Special issue: 3rd International Workshop on Microplasmas 2007 Control. Plasma Phys. 47 3-128 [30] Cluster issue on Microplasmas: 4th International Workshop on Microplasmas 2008 J. Phys. D: Appl. Phys. 41 1904001 [31] Microplasmas: scientific challenges and technological opportunities 2010 Eur. Phys. J. D 60 437-608 [32] Becker K H, Schoenbach K H and Eden J G 2006 J. Phys. D: Appl. Phys. 39 R55 [33] Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T and Kong M G 2008 Plasma Process. Polym. 5 322-44 [34] Tachibana K 2006 Trans. Electr. Electron. Eng. 1 145-55 [35] Samukawa S et al 2012 J. Phys. D: Appl. Phys. 45 253001
Spin-Torque Diode Effect in Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Suzuki, Yoshishige
2007-03-01
Spin-injection magnetization switching (SIMS) technique [1] made it possible to control magnetization by a direct current. A discovery of spontaneous rf oscillation from CPP-GMR nano-pillars and a real time observation of the switching process have revealed essential amplification function of a precession in the magnetic nano-pillars under a direct current [2]. Beside of those progresses, developments of giant tunneling magneto-resistive (GTMR) effect using an MgO barrier [3] made it possible to utilize a very large resistance change according to the magnetization switching. In this talk, several attempts to utilize interplay between spin-torque and giant-TMR effect will be presented referring to a ``spin-torque diode effect'' [4] and other properties such like rf noise control and possible signal amplification using magnetic tunnel junctions (MTJs). [1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) , L. Berger, Phys. Rev. B 54, 9353 (1996), and E. B. Myers, et al., Science 285, 867 (1999). [2] S. I. Kiselev et al., Nature 425, 380 (2003), I. N. Krivorotov et al., Science, 307, 228 (2005). [3] W. Wulfhekel, et al. Appl. Phys. Lett. 78, 509--511 (2001), M. Bowen, et al. Appl. Phys. Lett. 79, 1655--1657 (2001), J. Faure-Vincent, et al. Appl. Phys. Lett. 82, 4507--4509 (2003), S. Yuasa, et al., Jpn. J. Appl. Phys. Part 2, 43, L588 (2004), S. Yuasa, et al., Nature Mat. 3, 868 (2004), S. S. P. Parkin et al., Nature Mat. 3, 862 (2004), and D. D. Djayaprawira et al., Appl. Phys. Lett. 86, 092502 (2005). [4] A. A. Tulapurkar, et al., Nature, 438, 339 (2005).
A review of astrophysics experiments on intense lasers
NASA Astrophysics Data System (ADS)
Remington, B. A.
1999-11-01
Modern, high power laser facilities open new possibilities for simulating astrophysical systems in the laboratory.(S.J. Rose, Laser & Part. Beams 9, 869 (1991); B.H. Ripin et al., Laser & Part. Beams 8, 183 (1990); B.A. Remington et al., Science 284, 1488 (1999); H. Takabe et al., Plasma Phys. Contr. Fusion 41, A75 (1999); R.P. Drake, J. Geophys. Res. 104, 14505 (1999).) Scaled investigations of the hydrodynamics.(J. Kane et al., Phys. Plasmas 6, 2065 (1999); R.P. Drake et al., Ap. J. 500, L157 (1998); D. Ryutov et al., Ap. J. 518, 821 (1999).) and radiative transfer.(J. Wark et al., Phys. Plasmas 4, 2004 (1997); P.K. Patel et al., JQSRT 58, 835 (1997).) relevant to supernovae, and opacities relevant to stellar interiors.(F.J. Rogers and C.A. Iglesias, Science 263, 50 (1994); H. Merdji et al., JSQRT 58, 783 (1997).) are now possible with laser experiments. Equations of state relevant to the interiors of giant planets and brown dwarfs are also being experimentally accessed.(G.W. Collins et al., Science 281, 1178 (1998); A. Benuzzi et al., Phys. Rev. E 54, 2162 (1996).) With the construction of the NIF laser in the U.S., and the LIL and LMJ lasers in France, controlled investigations of thermonuclear burn physics will become possible in the next decade. And with existing and future ultra-high intensity short pulse lasers, investigations of relativistic astrophysical plasmas are becoming possible.(M.H. Key et al., Phys. Plasmas 5, 1966 (1998); F. Pegoraro et al., Plasma Phys. Contr. Fus. 39, B261 (1997).) A review of laboratory astrophysics experiments using intense lasers will be presented, and the potential for the future will be discussed.
NASA Astrophysics Data System (ADS)
Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel
2015-08-01
The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)
NASA Astrophysics Data System (ADS)
Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.
2000-10-01
The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.
Global Analysis of Broadband Rotation and Vibration-Rotation Spectra of Sulfur Dicyanide
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Winnewissser, Manfred; Winnewisser, Brenda P.; De Lucia, Frank C.; Tokaryk, Dennis W.; Billinghurst, Brant E.
2013-06-01
The successful analysis of the quantum monodromy induced features in the rotational spectrum of the NCNCS molecule prompted a quest for similar behaviour in its vibration-rotation spectrum and several high-resolution FT-IR spectra were recorded on the IFS125HR interferometer at the Canadian Light Source. The sulfur dicyanide, S(CN)_2, molecule is a precursor to NCNCS and the analysis of its spectrum proved to be a prerequisite to a search for the elusive NCNCS transitions. The CLS spectra provided the opportunity to augment the previous extensive analysis of the FASSST rotational spectrum of S(CN)_2 with vibration-rotation data, in particular from the ν_4 fundamental at 121 cm^{-1} and its related hot-band series. A global fit of the two data sets allowed retaining the detailed analysis of the previously reported perturbations in the 3ν_4 triad and 4ν_4 tetrad of states, while allowing for determination of precise energies of all low-lying vibrational states of S(CN)_2. In this way we have determined wavenumbers for five lowest fundamentals of this experimentally difficult molecule and obtained an extensive set of benchmark data for calibration of anharmonic force field calculations of such quantities as the vibration-rotation changes in rotational constants, and anharmonicity coefficients. Comparisons with results of several such calculations are presented. B.P.Winnewisser, et al., Phys. Chem. Chem. Phys. {12}, 8158 (2010). M.Winnewisser et al., 67^th OSU Symposium on Molecular Spectroscopy, The Ohio State University, Ohio 2012, TF-01. Z.Kisiel et al., J. Mol. Spectrosc. {246}, 39 (2007).
Density profile and breathing mode of strongly correlated spherical Yukawa plasmas
NASA Astrophysics Data System (ADS)
Henning, Christian; Fujioka, Kenji; Ludwig, Patrick; Bonitz, Michael
2007-11-01
The structure of ``Yukawa balls,'' i.e. spherical 3D dust crystals, which recently have been produced [1], is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Dynamical properties (e.g. breathing mode) of these systems were investigated by experiment, simulations as well as theoretically by using the ansatz of a uniform ground state density [3]. Here we show analytically that screening has a dramatic effect on the density profile which decreases away from the center [4,5] and which is in excellent agreement with MD simulations of Yukawa balls. This result is used to improve former calculations of the breathing mode [6].References[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] T. E. Sheridan, Phys. Plasmas 13, 022106 (2006)[4] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[5] C. Henning at al., Phys. Rev. E (2007)[6] C. Henning at al., submitted for publication
Optical second harmonic spectroscopy of silicon-adsorbate surfaces and silicon nanocrystals
NASA Astrophysics Data System (ADS)
Downer, Michael
2002-03-01
Second harmonic generation (SHG) provides a surface-specific, noninvasive probe of adsorbates. However, microscopic first-principles theory of adsorbate-specific spectroscopic SHG responses has proven elusive. Here we present experimental SHG spectra for six well-characterized, technologically important Si(001) surfaces in ultrahigh vacuum (UHV): clean Si(001)-2x1 and Si(001) terminated with hydrogen (H), [1] germanium (Ge), Ge and H, [2] boron (B) and B and H. [3] Each adsorbate (combination) alters SHG uniquely. Our microscopic theories based on ab initio pseudopotential or semi-empirical tight-binding (SETB) methods then explain observed trends, and predict new features in unexplored spectral regions. [3,4] Charge transfer among surface bonds is found to govern SHG spectroscopy of surface-adsorbate systems strongly. New results on SHG from Si nanocrystals embedded in SiO2 will also be presented. [5] SHG is sensitive to Si/SiO2 interface states, electrostatic charge on the nanocrystals, and macroscopic particle density gradients. Finally, a new frequency-domain interferometric second-harmonic (FDISH) spectroscopic technique to measure simultaneously the intensity and phase of SH radiation over a broad spectral range without laser tuning will be described. [6] 1. J. Dadap et al., Phys. Rev. B 56, 13367 (1997). 2. P. Parkinson et al., Appl. Phys. B 68, 641 (1999). 3. D. Lim et al., Phys. Rev. Lett. 84, 3406 (2000); Appl. Phys. Lett. 77, 181 (2000). 4. V. Gavrilenko et al., Phys. Rev. B 63, 1653 (2001); M. C. Downer et al., Surf. Interface Anal. 31, 966 (2001); M. C. Downer et al., phys. stat. sol. (a), in press (2001). 5. Y. Jiang et al., Appl. Phys. Lett. 78, 766 (2001). 6. P. T. Wilson et al., Opt. Lett. 24, 496 (1999).
Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry
NASA Astrophysics Data System (ADS)
Guzmán Calcina, Carmen S.; de Almeida, Adelaide; Oliveira Rocha, José R.; Abrego, Felipe Chen; Baffa, Oswaldo
2005-03-01
Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181 8, Nath et al 1995 Med. Phys. 22 209 34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695 702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434 48, Ballester et al 1997 Med. Phys. 24 1221 8, Ballester et al 2001 Phys. Med. Biol. 46 N79 90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032 40).
Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.
Calcina, Carmen S Guzmán; de Almeida, Adelaide; Rocha, José R Oliveira; Abrego, Felipe Chen; Baffa, Oswaldo
2005-03-21
Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, C. L.; Parker, J. B.; Raitses, Y.
The oscillation behavior described by Tang et al.[Phys. Plasmas 19, 073519 (2012)] differs too greatly from previous experimental and numerical studies to claim observation of the same phenomenon. Most significantly, the rotation velocity by Tang et al.[Phys. Plasmas 19, 073519 (2012)] is three orders of magnitude larger than that of typical 'rotating spoke' phenomena. Several physical and numerical considerations are presented to more accurately understand the numerical results of Tang et al.[Phys. Plasmas 19, 073519 (2012)] in light of previous studies.
Nonlinear Analysis of Experimental Measurements 7.6. Theoretical Chemistry
2015-01-26
Jianshu Cao, Robert J. Silbey, Jaeyoung Sung. Quantitative Interpretation of the Randomness in Single Enzyme Turnover Times, Biophysical Journal...Universality of Poisson Indicator and Fano Factor of Transport Event Statistics in Ion Channels and Enzyme Kinetics., J. Phys. B: At. Mol. Opt. Phys...TOTAL: 4 01/26/2015 Received Book 4.00 Jianshu Cao, Jianlan Wu. GENERALIZED MICHAELIS–MENTENEQUATION FOR CONFORMATION- MODULATEDMONOMERIC ENZYMES , New
Determination of goslarite-bianchite equilibria by the humidity-buffer technique at 0.1 MPa
Chou, I.-Ming; Seal, R.R.
2005-01-01
Goslarite-bianchite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 27 and 36 ??C. Results, based on tight reversals along each humidity buffer, can be represented by ln K (??0.005)=19.643-7015.38/T, where K is the equilibrium constant and T is temperature in K. Our data are in excellent agreement with several previous vapor-pressure measurements and are consistent with the solubility data reported in the literature. Thermodynamic analysis of these data yields 9.634 (??0.056) kJ mol-1 for the standard Gibbs free energy of reaction, which is in good agreement with the value of 9.658 kJ mol-1 calculated from the thermodynamic data compiled and evaluated by Wagman et al. [Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow. I., Bailey, S.M., Churney, K.L., Nuttal, R.L., 1982. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Suppl. 2].
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
NASA Astrophysics Data System (ADS)
Bartschat, Klaus; Zatsarinny, Oleg
2009-10-01
We have applied our recently developed fully relativistic Dirac B-spline R-matrix (DBSR) code [1] to calculate the atomic structure (energy levels and oscillator strengths) as well as electron scattering from xenon atoms. Results from a 31-state close-coupling model for the excitation function of the metastable (5p^5 6s) J=0,2 states show excellent agreement with experiment [2], thereby presenting a significant improvement over the most sophisticated previous Breit-Pauli calculations [3,4]. The same model is currently being used to calculate electron-impact excitation from the metastable J=2 state. The results will be compared with recent experimental data [5] and predictions from other theoretical models [6,7]. Our dataset is an excellent basis for modeling plasma discharges containing xenon.[0pt] [1] O. Zatsarinny and K. Bartschat, Phys. Rev. A 77 (2008) 062701.[0pt] [2] S. J. Buckman et al., J. Phys. B 16 (1983) 4219.[0pt] [3] A. N. Grum-Grzhimailo and K. Bartschat, J. Phys. B 35 (2002) 3479.[0pt] [4] M. Allan et al., Phys. Rev. A 74 (2006) 030701(R).[0pt] [5] R. O. Jung et al., Phys. Rev. A 72 (2005) 022723.[0pt] [6] R. Srivastava et al., Phys. Rev. A 74 (2006) 012715.[0pt] [7] J. Jiang et al., J. Phys. B 41 (2008) 245204.
High Tc: The Discovery of RBCO
NASA Astrophysics Data System (ADS)
Chu, C. W.
2007-03-01
It was said by Emerson that ``there is no history; there is only biography.'' This is especially true when the events are recounted by a person who, himself, has been heavily involved and the line between history and autobiography can become blurred. However, it is reasonable to say that discovery itself is not a series of accidents but an inevitable product of each development stage of scientific knowledge as was also pointed out by Holden et al. (1) The discovery of RBCO (2,3) with R = Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu is no exception. In this presentation, I will briefly recount several events that were crucial to the discovery of RBCO: those before 1986 (4) that sowed the seeds in our group important to our later high temperature superconductivity effort; those in 1986 (5) that were critical to our discovery of the 93 K RBCO soon after the discovery of the 35 K high temperature superconductor by M"uller and Bednorz (6); and those in 1987 when the barrier of the liquid nitrogen boiling temperature of 77 K was finally conquered. 1. G. J. Holton et al., American Scientist 84, 364 (1996). 2. M. K. Wu et al., Phys. Rev. Lett. 58, 908 (1987). 3. P. H. Hor et al., Phys. Rev. Lett. 58, 1891 (1987). 4. C. W. Chu et al., S. S. Comm. 18, 977 (1976); C. W. Chu and V. Diatchenko, Phys. Rev. Lett. 41, 572 (1978); T. H. Lin et al., Phys. Rev. B(RC) 29, 1493 (1984); J. H. Lin et al., J. Low Temp. Phys. 58, 363 (1985). 5. C. W. Chu et al., Phys. Rev. Lett. 58, 405 (1987); C. W. Chu et al., Science 235, 567 (1987). 6. J. G. Bednorz and K. A. M"uller, Z. Phys. B64, 189 (1986).
Silicon self-diffusion in single-crystal natural quartz and feldspar
NASA Astrophysics Data System (ADS)
Cherniak, D. J.
2003-09-01
Silicon diffusion was measured in natural quartz and anorthitic feldspar under dry, low-pressure (0.1 MPa) conditions using a 30Si tracer. Sources of diffusant consisted of 30Si-enriched silica powder for experiments on quartz and microcrystalline 30Si-doped synthetic feldspar of composition comparable to the feldspar specimens. Distributions of 30Si were measured with Rutherford backscattering spectrometry and nuclear reaction analysis, using the reaction 30Si (p,γ) 31P. The following Arrhenius relations were obtained for anneals at 1 atm in air. For quartz: transport normal to c: Dqtz,⊥c=7.97×10 -6 exp (-447±31 kJ mol -1/ RT) m 2 s -1; transport parallel to c: Dqtz,∥c=6.40×10 -6 exp (-443±22 kJ mol -1/ RT) m 2 s -1. For anorthitic feldspar (An 93): DAn=3.79×10 -7 exp (-465±50 kJ mol -1/ RT) m 2 s -1. The few successful experiments on diffusion in plagioclase of more albitic compositions (An 67 and An 23) reveal Si diffusivities a few orders of magnitude faster than that in the anorthite. The results for these feldspars bracket the determination of CaAl-NaSi interdiffusion under dry conditions by Grove et al. [Geochim. Cosmochim. Acta 48 (1984) 2113-2121], suggesting that the rate-limiting process is indeed Si diffusion. Si diffusion in quartz under more reducing conditions (NNO) is slightly slower (by about half an order of magnitude) than diffusion in samples annealed in air. This is consistent with observations made in studies of synthetic quartz [Béjina and Jaoul, Phys. Earth Planet. Inter. 50 (1988) 240-250].
Chirped Pulse Rotational Spectroscopy of a Single THUJONE+WATER Sample
NASA Astrophysics Data System (ADS)
Kisiel, Zbigniew; Perez, Cristobal; Schnell, Melanie
2016-06-01
Rotational spectroscopy of natural products dates over 35 years when six different species including thujone were investigated. Nevertheless, the technique of low-resolution microwave spectroscopy employed therein allowed determination of only a single conformational parameter. Advances in sensitivity and resolution possible with supersonic expansion techniques of rotational spectroscopy made possible much more detailed studies such that, for example, the structures of first camphor, and then of multiple clusters of camphor with water were determined. We revisited the rotational spectrum of the well known thujone molecule by using the chirped pulse spectrometer in Hamburg. The spectrum of a single thujone sample was recorded with an admixture of 18O enriched water and was successively analysed using an array of techniques, including the AUTOFIT program, the AABS package and the STRFIT program. We have, so far, been able to assign rotational transitions of α-thujone, β-thujone, another thujone isomer, fenchone, and several thujone-water clusters in the spectrum of this single sample. Natural abundance molecular populations were sufficient to determine precise heavy atom backbones of thujone and fenchone, and H_218O enrichment delivered water molecule orientations in the hydrated clusters. An overview of these results will be presented. Z.Kisiel, A.C.Legon, JACS 100, 8166 (1978) Z.Kisiel, O.Desyatnyk, E.Białkowska-Jaworska, L.Pszczółkowski, PCCP 5 820 (2003) C.Pérez, A.Krin, A.L.Steber, J.C.López, Z.Kisiel, M.Schnell, J.Phys.Chem.Lett. 7 154 (2016) N.A.Seifert, I.A.Finneran, C.Perez, et al. J.Mol.Spectrosc. 312, 12 (2015) Z.Kisiel, L.Pszczółkowski, B.J.Drouin, et al. J.Mol.Spectrosc. 280, 134 (2012). Z.Kisiel, J.Mol.Spectrosc. 218, 58 (2003)
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2004-09-01
In our method of maps [Punjabi et al., Phy. Rev. Lett. 69, 3322 (1992), and Punjabi et al., J. Plasma Phys. 52, 91 (1994)], symplectic maps are used to calculate the trajectories of magnetic field lines in divertor tokamaks. Effects of the magnetic perturbations are calculated using the low MN map [Ali et al., Phys. Plasmas 11, 1908 (2004)] and the dipole map [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. The dipole map is used to calculate the effects of externally located current carrying coils on the trajectories of the field lines, the stochastic layer, the magnetic footprint, and the heat load distribution on the collector plates in divertor tokamaks [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. Symplectic maps are general, efficient, and preserve and respect the Hamiltonian nature of the dynamics. In this brief communication, a rigorous mathematical derivation of the dipole map is given.
NASA Astrophysics Data System (ADS)
Rothschild, Walter G.; Perrot, Michel
1988-11-01
In this paper we further explore the applicability of a vibrational T2 process based on the extended-exponential modulation model [Rothschild, Perrot, and Guillaume, J. Chem. Phys. 87, 7293 (1987)] to Raman correlation data of concentrated aqueous solutions of LiSCN and KSCN [Katō, Mol. Phys. 48, 1119 (1983); Katō and Takenaka, Mol. Phys. 46, 257 (1982)]. In general, the values of dispersion parameter α in the modulation function exp[-(t/τ)α], obtained from the fit of the theory to the isotropic correlation data of the CN oscillator, predict the prevalence of interrelated, collective dynamic processes in the medium that are the cause of the instantaneous oscillator transition frequency shifts (motional narrowing). In particular we predict, from the observed concentration dependence of α, strong short-time (fraction to several ps) cation-water-anion interactions that, in the more concentrated LiSCN-H2O systems at 303 K, are above a site percolation threshold with a value of α˜0.3 (close to that found in glasses). The expectation value of t,
NASA Astrophysics Data System (ADS)
Hey, J. D.
2012-03-01
Published arguments, which assign an important role to atomic metastability in the production of ‘narrow’ Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron collisions, and mixing of unperturbed atomic states by the ion microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from ‘metastable’ states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of collision-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z ions owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of atomic line strengths, and hence collision strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, ‘allowed’ transitions diminish in strength, while ‘forbidden’ transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of collision strength available to transitions, resulting from the appearance of significant ‘self-strength’ contributions, in accord with the sum rules for the line strengths, which remain valid over the range of fields considered. Thus, the relative effectiveness per perturber of both electron and ion collisions, for inducing population transfer between fine-structure sublevels, diminishes as the sublevels evolve from a fine-structure dominated to a Stark-effect-dominated regime. In the concluding discussion, we mention that this finding may have a bearing on discrepancies claimed between Stark broadening theory developed by Griem (1967 Astrophys. J. 148 547) and by Watson (2006 J. Phys.B: At. Mol. Opt. Phys. 39 1889), and the measurements of Bell and co-workers (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 335 451) for high-n radio recombination lines from galactic H II regions. In the absence of detailed modelling to test this suggestion, however, it would be premature to attempt to draw any firm conclusions along these lines. This manuscript is dedicated to the memory of my esteemed colleague Dr. rer. nat. Manfred Korten (1940-2010).
Comment on ``Nonlinear gyrokinetic theory with polarization drift'' [Phys. Plasmas 17, 082304 (2010)
NASA Astrophysics Data System (ADS)
Leerink, S.; Parra, F. I.; Heikkinen, J. A.
2010-12-01
In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating E ×B velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].
Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo
2006-11-07
In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.
NASA Astrophysics Data System (ADS)
Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo
2006-11-01
In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.
Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.
Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert
2013-08-13
The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.
Parameterization of fission barrier heights of medium, heavy and super heavy nuclei
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-12-01
A new semi empirical formula is proposed for fission barrier heights of medium, heavy and super heavy nuclei in the atomic number region 50 ≤ Z ≤ 130. The fitting parameters for the proposed formula are obtained by making a polynomial fit to the available theoretical and experimental data. The calculated fission barrier heights are compared with that of experiments and other theoretical models such as SHF(SLy6) (Burvenich et al. in Phys Rev C 69:014307, 2004), SHFB(SkM) (Baran et al. in Nucl Phys A 944:442, 2015), FRLDM (Möller et al. in Phys Rev C 79:064304, 2009), ETFSI (SkSC4) with Skyrme SkSC4 force (Mamdouh et al. in Nucl Phys A 679:337, 2001), WS (Kowal et al. in Phys Rev C 82:014303, 2010) and CDFT(DD-ME2) (Abusara et al. in Phys Rev C 85:024314, 2012). The standard deviation for fission barrier heights produced by present formula is evaluated. The good agreement of present formula with the experiments and other models suggests that the present formula could be used to evaluate the fission barrier heights of medium, heavy and super heavy nuclei in the region 50 ≤ Z ≤ 130. This formula is a first of its kind that produces fission barrier heights of 2858 nuclei with the only simple inputs of only neutron number (N), proton number (Z) and mass number (A).
NASA Astrophysics Data System (ADS)
Cohen, B. I.
2005-10-01
Two-dimensional simulations of stimulated Brillouin backscattering (SBBS) with the BZOHAR^1 code have been extended to include ion-ion collisions and spatial nonuniformity in the mean ion flow. BZOHAR hybrid simulations (particle-in-cell kinetic ions and Boltzmann fluid electrons) have shown^2 that SBBS saturation is dominated by ion trapping effects and secondary instability of the primary ion wave (decay into subharmonic ion waves and ion quasi-modes). Here we address the effects of ion collisions^3 on SBBS saturation and employ the efficient Langevin ion collision algorithm of Ref. 4 and the Fokker-Planck collision operator of Ref. 5. We also report simulations of SBBS with a linear gradient in the mean ion drift, which in conjunction with the nonlinear frequency shift due to ion trapping can introduce auto-resonance effects that may enhance reflectivities.^6 For SBBS in a high-gain limit with ion collisions or inhomogeneity, we find that ion trapping and secondary ion wave instabilities are robust saturation mechanisms. *Work performed for US DOE by UC LLNL under Contr. W-7405-ENG-48. ^1B.I. Cohen, et al., Phys. Plasmas 4, 956 (1997). ^2B.I. Cohen, et al., Phys. Plasmas, 12, 052703 (2005),. ^ 3P.W. Rambo, et al., Phys. Rev. Lett. 79, 83 (1997). ^ 4M.E. Jones, et al., J. Comp. Phys. 123, 169, (1996). ^ 5W. M. Manheimer, et al., J. Comp. Phys. 138, 563 (1997). ^ 6E.A. Williams, et al., Phys. Plasmas 11, 231 (2004).
Parameterization of fission barrier heights of medium, heavy and super heavy nuclei
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2018-04-01
A new semi empirical formula is proposed for fission barrier heights of medium, heavy and super heavy nuclei in the atomic number region 50 ≤ Z ≤ 130. The fitting parameters for the proposed formula are obtained by making a polynomial fit to the available theoretical and experimental data. The calculated fission barrier heights are compared with that of experiments and other theoretical models such as SHF(SLy6) (Burvenich et al. in Phys Rev C 69:014307, 2004), SHFB(SkM) (Baran et al. in Nucl Phys A 944:442, 2015), FRLDM (Möller et al. in Phys Rev C 79:064304, 2009), ETFSI (SkSC4) with Skyrme SkSC4 force (Mamdouh et al. in Nucl Phys A 679:337, 2001), WS (Kowal et al. in Phys Rev C 82:014303, 2010) and CDFT(DD-ME2) (Abusara et al. in Phys Rev C 85:024314, 2012). The standard deviation for fission barrier heights produced by present formula is evaluated. The good agreement of present formula with the experiments and other models suggests that the present formula could be used to evaluate the fission barrier heights of medium, heavy and super heavy nuclei in the region 50 ≤ Z ≤ 130. This formula is a first of its kind that produces fission barrier heights of 2858 nuclei with the only simple inputs of only neutron number (N), proton number (Z) and mass number (A).
Surface phonons in the topological insulators Bi2Se3 and Bi2Te3
NASA Astrophysics Data System (ADS)
Boulares, Ibrahim; Shi, Guangsha; Kioupakis, Emmanouil; Lošťák, Petr; Uher, Ctirad; Merlin, Roberto
2018-03-01
Raman scattering [K. M. F. Shahil et al., Appl. Phys. Lett. 96, 153103 (2010), V. Gnezdilov et al., Phys. Rev. B 84, 195118 (2011) and H. -H. Kung et al., Phys. Rev. B 95, 245406 (2017)], inelastic helium scattering [X. Zhu et al., Phys. Rev. Lett. 107, 186102 (2011)] and photoemission experiments [J. A. Sobota et al., Phys. Rev. Lett. 113, 157401 (2014)] on the topological insulators Bi2Se3 and Bi2Te3 show features in the range ∼ 50-160 cm-1, which have been assigned alternatively to Raman-forbidden, bulk infrared modes arising from symmetry breaking at the surface or to surface phonons, which couple to the topologically protected electronic states. Here, we present temperature- and wavelength- dependent Raman studies showing additional modes we ascribe to surface phonons in both Bi2Se3 and Bi2Te3. Our assignment is supported by density functional theory calculations revealing surface phonons at frequencies close to those of the extra peaks in the Raman data. The theoretical results also indicate that these modes are not a consequence of spin-orbit coupling and, thus, that their occurrence is unrelated to the topological properties of these materials.
The Cl + O3 reaction: a detailed QCT simulation of molecular beam experiments.
Menéndez, M; Castillo, J F; Martínez-Haya, B; Aoiz, F J
2015-10-14
We have studied in detail the dynamics of the Cl + O3 reaction in the 1-56 kcal mol(-1) collision energy range using quasi-classical trajectory (QCT) calculations on a recent potential energy surface (PES) [J. F. Castillo et al., Phys. Chem. Chem. Phys., 2011, 13, 8537]. The main goal of this work has been to assess the accuracy of the PES and the reliability of the QCT method by comparison with the existing crossed molecular beam results [J. Zhang and Y. T. Lee J. Phys. Chem. A, 1997, 101, 6485]. For this purpose, we have developed a methodology that allows us to determine the experimental observables in crossed molecular beam experiments (integral and differential cross sections, recoil velocity distributions, scattering angle-recoil velocity polar maps, etc.) as continuous functions of the collision energy. Using these distributions, raw experimental data in the laboratory frame (angular distributions and time-of-flight spectra) have been simulated from first principles with the sole information on the instrumental parameters and taking into account the energy spread. A general good agreement with the experimental data has been found, thereby demonstrating the adequacy of the QCT method and the quality of the PES to describe the dynamics of this reaction at the level of resolution of the existing crossed beam experiments. Some features which are apparent in the differential cross sections have also been analysed in terms of the dynamics of the reaction and its evolution with the collision energy.
Pion distribution amplitude from Euclidean correlation functions
NASA Astrophysics Data System (ADS)
Bali, Gunnar S.; Braun, Vladimir M.; Gläßle, Benjamin; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Korcyl, Piotr; Lang, Bernhard; Schäfer, Andreas; Wein, Philipp; Zhang, Jian-Hui
2018-03-01
Following the proposal in (Braun and Müller. Eur Phys J C55:349, 2008), we study the feasibility to calculate the pion distribution amplitude (DA) from suitably chosen Euclidean correlation functions at large momentum. In our lattice study we employ the novel momentum smearing technique (Bali et al. Phys Rev D93:094515, 2016; Bali et al. Phys Lett B774:91, 2017). This approach is complementary to the calculations of the lowest moments of the DA using the Wilson operator product expansion and avoids mixing with lower dimensional local operators on the lattice. The theoretical status of this method is similar to that of quasi-distributions (Ji. Phys Rev Lett 110:262002, 2013) that have recently been used in (Zhang et al. Phys Rev D95:094514, 2017) to estimate the twist two pion DA. The similarities and differences between these two techniques are highlighted.
Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr
NASA Astrophysics Data System (ADS)
Feng, Rulin; Peterson, Kirk A.
2017-08-01
New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP0 for PuO2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO2 is predicted to be the 0 g +5Σ state.
Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr.
Feng, Rulin; Peterson, Kirk A
2017-08-28
New correlation consistent basis sets optimized using the all-electron third-order Douglas-Kroll-Hess (DKH3) scalar relativistic Hamiltonian are reported for the actinide elements Ac and Np through Lr. These complete the series of sets reported previously for Th-U [K. A. Peterson, J. Chem. Phys. 142, 074105 (2015); M. Vasiliu et al., J. Phys. Chem. A 119, 11422 (2015)]. The new sets range in size from double- to quadruple-zeta and encompass both those optimized for valence (6s6p5f7s6d) and outer-core electron correlations (valence + 5s5p5d). The final sets have been contracted for both the DKH3 and eXact 2-component (X2C) Hamiltonians, yielding cc-pVnZ-DK3/cc-pVnZ-X2C sets for valence correlation and cc-pwCVnZ-DK3/cc-pwCVnZ-X2C sets for outer-core correlation (n = D, T, Q in each case). In order to test the effectiveness of the new basis sets, both atomic and molecular benchmark calculations have been carried out. In the first case, the first three atomic ionization potentials (IPs) of all the actinide elements Ac-Lr have been calculated using the Feller-Peterson-Dixon (FPD) composite approach, primarily with the multireference configuration interaction (MRCI) method. Excellent convergence towards the respective complete basis set (CBS) limits is achieved with the new sets, leading to good agreement with experiment, where these exist, after accurately accounting for spin-orbit effects using the 4-component Dirac-Hartree-Fock method. For a molecular test, the IP and atomization energy (AE) of PuO 2 have been calculated also using the FPD method but using a coupled cluster approach with spin-orbit coupling accounted for using the 4-component MRCI. The present calculations yield an IP 0 for PuO 2 of 159.8 kcal/mol, which is in excellent agreement with the experimental electron transfer bracketing value of 162 ± 3 kcal/mol. Likewise, the calculated 0 K AE of 305.6 kcal/mol is in very good agreement with the currently accepted experimental value of 303.1 ± 5 kcal/mol. The ground state of PuO 2 is predicted to be the Σ0g+5 state.
Annual Gaseous Electronics Conference (44TH) Held in Albuquerque, New Mexico on 22-25 October 1991
1992-05-01
Phys. Rev. A 38, 2471 (1988); J. E. Lawler et al., Phys. Rev. A 43, 4427 1991). T. J. Sommerer et al., Phys. Rev. A39, 6356 (1989). EA-2 Diagnostics and...Charged Ions with a Metal Surface.* F.W. MEYER, S.H. OVERBURY, CC. HAVENER, PA. ZEULMANS VAN EMMICHOVEN, and D.M. ZEHNER, ORNL -- Projectile K-Auger
Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations
NASA Astrophysics Data System (ADS)
Cooperman, Joshua H.
2018-05-01
The spectral dimension measures the dimensionality of a space as witnessed by a diffusing random walker. Within the causal dynamical triangulations approach to the quantization of gravity (Ambjørn et al 2000 Phys. Rev. Lett. 85 347, 2001 Nucl. Phys. B 610 347, 1998 Nucl. Phys. B 536 407), the spectral dimension exhibits novel scale-dependent dynamics: reducing towards a value near 2 on sufficiently small scales, matching closely the topological dimension on intermediate scales, and decaying in the presence of positive curvature on sufficiently large scales (Ambjørn et al 2005 Phys. Rev. Lett. 95 171301, Ambjørn et al 2005 Phys. Rev. D 72 064014, Benedetti and Henson 2009 Phys. Rev. D 80 124036, Cooperman 2014 Phys. Rev. D 90 124053, Cooperman et al 2017 Class. Quantum Grav. 34 115008, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151, Kommu 2012 Class. Quantum Grav. 29 105003). I report the first comprehensive scaling analysis of the small-to-intermediate scale spectral dimension for the test case of the causal dynamical triangulations of 3-dimensional Einstein gravity. I find that the spectral dimension scales trivially with the diffusion constant. I find that the spectral dimension is completely finite in the infinite volume limit, and I argue that its maximal value is exactly consistent with the topological dimension of 3 in this limit. I find that the spectral dimension reduces further towards a value near 2 as this case’s bare coupling approaches its phase transition, and I present evidence against the conjecture that the bare coupling simply sets the overall scale of the quantum geometry (Ambjørn et al 2001 Phys. Rev. D 64 044011). On the basis of these findings, I advance a tentative physical explanation for the dynamical reduction of the spectral dimension observed within causal dynamical triangulations: branched polymeric quantum geometry on sufficiently small scales. My analyses should facilitate attempts to employ the spectral dimension as a physical observable with which to delineate renormalization group trajectories in the hope of taking a continuum limit of causal dynamical triangulations at a nontrivial ultraviolet fixed point (Ambjørn et al 2016 Phys. Rev. D 93 104032, 2014 Class. Quantum Grav. 31 165003, Cooperman 2016 Gen. Relativ. Gravit. 48 1, Cooperman 2016 arXiv:1604.01798, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151).
Role of hydrophobic interactions in the self-assembly of alternating copolymers
NASA Astrophysics Data System (ADS)
Malardier-Jugroot, Cecile; Chan, Anita S. W.; Groves, Michael N.
2010-03-01
New nanomaterials already play a key role in several emerging technologies. Among the methods used to fabricate new nanomaterials, the most successful in producing precise structure is the bottom-up method. The materials obtained by self-assembly are ordered on different scales and respond and adapt to the presence of other molecules in their environment [1] and can therefore be used as probes, sensors or switches [2]. In this paper, we will describes the self-assembly of amphiphilic alternating copolymers into nanoarchitectures in aqueous solution. To investigate the role of the nature of the hydrophobic groups on the association, the self-assembly of two polymers are compared: poly(isobutylene-alt-maleic anhydride) (IMA) and poly(styrene-alt-maleic anhydride) (SMA) [3, 4]. The theoretical prediction is also compared to experiment and the characterization using Small Angle Neutron Scattering, Dynamic Light Scattering and High Resolution Transmission Electron Microscopy will be presented in detail. [1] S. Zhang, Nature Biotechnology, 21, 10, 1171, 2003. [2] F. Patolsky, et al., Nanomedicine, 1, 51-65, 2006 [3] C. Malardier-Jugroot, et al., J. of Phys. Chem. B, 109(15), 7022-7032, 2005 [4] A.S.W. Chan, et al., Mol. Sim., accepted for publication, 2009.
EDITORIAL: Annual prizes for best papers
NASA Astrophysics Data System (ADS)
2007-07-01
2006 Roberts Prize The publishers of Physics in Medicine and Biology (PMB) in association with the Institute of Physics and Engineering in Medicine (IPEM) jointly award an annual prize for an article published in PMB during the previous year. The following ten articles, listed below in chronological order, were rated the best of 2006 based on the (two or three) referees' assessments: D W Mundy et al 2006 Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions Phys. Med. Biol. 51 1377-91 Y Yang et al 2006 Investigation of optical coherence tomography as an imaging modality in tissue engineering Phys. Med. Biol. 51 1649-59 M Krämer and M Scholz 2006 Rapid calculation of biological effects in ion radiotherapy Phys. Med. Biol. 51 1959-70 P Crespo et al 2006 On the detector arrangement for in-beam PET for hadron therapy monitoring Phys. Med. Biol. 51 2143-63 R J Senden et al 2006 Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose-response using different monomers Phys. Med. Biol. 51 3301-14 J Wang et al 2006 FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz Phys. Med. Biol. 51 4119-27 C A T Van den Berg et al 2006 The use of MR B+1 imaging for validation of FDTD electromagnetic simulations of human anatomies Phys. Med. Biol. 51 4735-46 S Qin and K W Ferrara 2006 Acoustic response of compliable microvessels containing ultrasound contrast agents Phys. Med. Biol. 51 5065-88 R Kramer et al 2006 Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images Phys. Med. Biol. 51 6265-89 R Leiderman et al 2006 Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging Phys. Med. Biol. 51 6291-313 An IPEM college of jurors then assessed and rated these papers in order to choose a winner. We have much pleasure in advising readers that the 2006 Roberts Prize is awarded to: M Krämer and M Scholz 2006 Rapid calculation of biological effects in ion radiotherapy Phys. Med. Biol. 51 1959-70 2007 Prize for the Highest Cited Paper The annual prize for the most highly cited paper is awarded by the journal publishers (IOP Publishing) to the article published in PMB that has received the most citations1 in the previous 5 years (in this case for the period 2002 to 2006 inclusive). We have much pleasure in advising readers that the 2007 prize is awarded to: S S Vedam, P J Keall, V R Kini, H Mostafavi, H P Shukla and R Mohan 2003 Acquiring a four-dimensional computed tomography dataset using an external respiratory signal Phys. Med. Biol. 48 45-62 Simon Harris, Publisher Steve Webb, Editor-in-Chief 1 Figures taken from Thomson/ISI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellison, C. Leland; Matyash, K.; Parker, J. B.
The oscillation behavior described in [Tang et. al, Phys. Plasmas 19, 073519 (2012)] di ers too greatly from previous experimental and numerical studies to claim observation of the same phenomenon. Most signi cantly, the rotation velocity in [Tang et. al, Phys. Plasmas 19, 073519 (2012)] is three orders of magnitude larger than that of typical \\rotating spoke" phenomena. Several physical and numerical considerations are presented to more accurately understand the numerical results of [Tang et. al, Phys. Plasmas 19, 073519 (2012)] in light of previous studies.
Alecu, I M; Marshall, Paul
2014-12-04
The multistructural method for torsional anharmonicity (MS-T) is employed to compute anharmonic conformationally averaged partition functions which then serve as the basis for the calculation of thermochemical parameters for N2O5 over the temperature range 0-3000 K, and thermal rate constants for the hydrolysis reaction N2O5 + H2O → 2 HNO3 over the temperature range 180-1800 K. The M06-2X hybrid meta-GGA density functional paired with the MG3S basis set is used to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along the reaction path, with further energy refinement at stationary points obtained via single-point CCSD(T)-F12a/cc-pVTZ-F12 calculations including corrections for core-valence and scalar relativistic effects. The internal rotations in dinitrogen pentoxide are found to generate three structures (conformations) whose contributions are included in the partition function via the MS-T formalism, leading to a computed value for S°(298.15)(N2O5) of 353.45 J mol(-1) K(-1).This new estimate for S°(298.15)(N2O5) is used to reanalyze the equilibrium constants for the reaction NO3 + NO2 = N2O5 measured by Osthoff et al. [Phys. Chem. Chem. Phys. 2007, 9, 5785-5793] to arrive at ΔfH °(298.15) (N2O5) = 14.31 ± 0.53 kJ mol(-1)via the third law method, which compares well with our computed ab initio value of 13.53 ± 0.56 kJ mol(-1). Finally, multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is used to study the kinetics for hydrolysis of N2O5 by a single water molecule, whose rate constant can be summarized by the Arrhenius expression 9.51 × 10(-17) (T/298 K)(3.354) e(-7900K/T) cm3 molecule(-1) s(-1) over the temperature range 180-1800 K.
Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C
2013-10-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); Silva et al., Phys. Rev. Lett. 92, 015002 (2004); Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012)].
Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model
NASA Astrophysics Data System (ADS)
Littin, Jorge; Picco, Pierre
2017-07-01
In this work, we study the problem of getting quasi-additive bounds for the Hamiltonian of the long range Ising model, when the two-body interaction term decays proportionally to 1/d2 -α , α ∈(0,1 ) . We revisit the paper by Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] where they extend to the case α ∈[0 ,ln3/ln2 -1 ) the result of the existence of a phase transition by using a Peierls argument given by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)] for α =0 . The main arguments of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] are based in a quasi-additive decomposition of the Hamiltonian in terms of hierarchical structures called triangles and contours, which are related to the original definition of contours introduced by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)]. In this work, we study the existence of a quasi-additive decomposition of the Hamiltonian in terms of the contours defined in the work of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)]. The most relevant result obtained is Theorem 4.3 where we show that there is a quasi-additive decomposition for the Hamiltonian in terms of contours when α ∈[0,1 ) but not in terms of triangles. The fact that it cannot be a quasi-additive bound in terms of triangles lead to a very interesting maximization problem whose maximizer is related to a discrete Cantor set. As a consequence of the quasi-additive bounds, we prove that we can generalise the [Cassandro et al., J. Math. Phys. 46, 053305 (2005)] result, that is, a Peierls argument, to the whole interval α ∈[0,1 ) . We also state here the result of Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] about cluster expansions which implies that Theorem 2.4 that concerns interfaces and Theorem 2.5 that concerns n point truncated correlation functions in Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] are valid for all α ∈[0,1 ) instead of only α ∈[0 ,ln3/ln2 -1 ) .
Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms
NASA Astrophysics Data System (ADS)
Purohit, G.; Singh, Prithvi; Patidar, Vinod
We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.
2007-10-03
system lies in the contact resistance which would be discussed later. Figure 49. The surface resistivity of...Shouping Li et al. [62] ZhiMin Dang et al., Appl. Phys. Lett. 2004, 85, 1. [63] B.K. Zhu et al. Composites Science and Technology 2006, 66, 548. [64...Hiroki Ago et al., Phys. Rev. B 2000, 61, 3. [65] Yonglai Yang et al. Nanotechnology 2004, 15, 1545. [66] Xiaofeng Lu, Jiani Zheng, Danming Chao
Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes
NASA Astrophysics Data System (ADS)
Lourenço-Martins, Hugo; Kociak, Mathieu
2017-10-01
Recently, two reports [Krivanek et al. Nature (London) 514, 209 (2014), 10.1038/nature13870, Lagos et al. Nature (London) 543, 529 (2017), 10.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS). While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014), 10.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989), 10.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997), 10.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008), 10.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012), 10.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015), 10.1021/acsphotonics.5b00421].
Theoretical approach to the ground state of spherically confined Yukawa plasmas
NASA Astrophysics Data System (ADS)
Henning, Christian; Bonitz, Michael; Piel, Alexander; Ludwig, Patrick; Baumgartner, Henning
2007-11-01
Recently spherical 3D dust crystals (aka Yukawa balls) were discovered [1], which allow direct observation of strong correlation phenomena and the structure of which is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Here we present an analytical approach to the ground state of these systems using the minimization of the system's energy. Applying the non-local mean-field approximation we show that screening has a dramatic effect on the density profile, which can be derived explicitly [3]. In addition the local density approximation allows for the inclusion of correlations, which further improves the results in the regime of large screening [4]. Comparisons with MD simulations of Yukawa balls show excellent agreement.[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[4] C. Henning at al., Phys. Rev. E (2007)
Molecular dynamics based enhanced sampling of collective variables with very large time steps.
Chen, Pei-Yang; Tuckerman, Mark E
2018-01-14
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
Molecular dynamics based enhanced sampling of collective variables with very large time steps
NASA Astrophysics Data System (ADS)
Chen, Pei-Yang; Tuckerman, Mark E.
2018-01-01
Enhanced sampling techniques that target a set of collective variables and that use molecular dynamics as the driving engine have seen widespread application in the computational molecular sciences as a means to explore the free-energy landscapes of complex systems. The use of molecular dynamics as the fundamental driver of the sampling requires the introduction of a time step whose magnitude is limited by the fastest motions in a system. While standard multiple time-stepping methods allow larger time steps to be employed for the slower and computationally more expensive forces, the maximum achievable increase in time step is limited by resonance phenomena, which inextricably couple fast and slow motions. Recently, we introduced deterministic and stochastic resonance-free multiple time step algorithms for molecular dynamics that solve this resonance problem and allow ten- to twenty-fold gains in the large time step compared to standard multiple time step algorithms [P. Minary et al., Phys. Rev. Lett. 93, 150201 (2004); B. Leimkuhler et al., Mol. Phys. 111, 3579-3594 (2013)]. These methods are based on the imposition of isokinetic constraints that couple the physical system to Nosé-Hoover chains or Nosé-Hoover Langevin schemes. In this paper, we show how to adapt these methods for collective variable-based enhanced sampling techniques, specifically adiabatic free-energy dynamics/temperature-accelerated molecular dynamics, unified free-energy dynamics, and by extension, metadynamics, thus allowing simulations employing these methods to employ similarly very large time steps. The combination of resonance-free multiple time step integrators with free-energy-based enhanced sampling significantly improves the efficiency of conformational exploration.
ep→epπ0 reaction studied in the Δ(1232) mass region using polarization asymmetries
NASA Astrophysics Data System (ADS)
Biselli, A.; Adams, G. S.; Amaryan, M. J.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Auger, T.; Avakian, H.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bertozzi, W.; Bianchi, N.; Boiarinov, S.; Bonner, B. E.; Bosted, P.; Bouchigny, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bueltmann, S.; Burkert, V. D.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J.; de Sanctis, E.; de Vita, R.; Degtyarenko, P. V.; Demirchyan, R. A.; Denizli, H.; Dennis, L. C.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Domingo, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Efremenko, Y. V.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Fissum, K.; Forest, T. A.; Freyberger, A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gai, M.; Gavalian, G.; Gavrilov, V. B.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Golovatch, E.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hanock, D.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Leksin, G. A.; Longhi, A.; Loukachine, K.; Major, R. W.; Manak, J. J.; Marchand, C.; Matthews, S. K.; McAleer, S.; McNabb, J. W.; McCarthy, J.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nelson, S. O.; Niculescu, G.; Niczyporuk, B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Ohandjanyan, M. S.; Osipenko, M.; Park, K.; Patois, Y.; Peterson, G. A.; Philips, S.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Preedom, B. M.; Price, J. W.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rock, S.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabourov, K.; Salgado, C. W.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shuvalov, S. M.; Simionatto, S.; Skabelin, A.; Smith, E. S.; Smith, L. C.; Smith, T.; Sober, D. I.; Sorrell, L.; Spraker, M.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Taiuti, M.; Taylor, S.; Tedeschi, D.; Thoma, U.; Thompson, R.; Todor, L.; Tung, T. Y.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A.; Wang, K.; Weinstein, L. B.; Weller, H.; Welsh, R.; Weygand, D. P.; Whisnant, S.; Witkowski, M.; Wolin, E.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.
2003-09-01
Measurements of the angular distributions of target and double-spin asymmetries for the Δ+(1232) in the exclusive channel p→(e→,e'p)π0 obtained at the Jefferson Lab in the Q2 range from 0.5 to 1.5 GeV2/c2 are presented. Results of the asymmetries are compared with the unitary isobar model [D. Drechsel et al., Nucl. Phys. A645, 145 (1999)], dynamical models [T. Sato and T. S. Lee, Phys. Rev. C 54, 2660 (1996); S. S. Kamalov et al., Phys. Lett. B 27, 522 (2001)], and the effective Lagrangian theory [R. M. Davidson et al., Phys. Rev. D 43, 71 (1991)]. Sensitivity to the different models was observed, particularly in relation to the description of background terms on which the target asymmetry depends significantly.
Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhang, Shibin; Chang, Yan
2017-08-01
Recently, Xie et al. Int. J. Theor. Phys. 54, 3819-3824, (2015) proposed a Semi-quantum secret sharing protocol (SQSS). Yin et al. Int. J. Theor. Phys. 55: 4027-4035, (2016) pointed out that this protocol suffers from the intercept-resend attack. Yin et al. also proposed an improved protocol. However, we find out that Yin et al.'s paper has some problems, we analyze Yin et al.'s paper, then proposed the improved semi-quantum secret sharing protocol. Our protocol is more secure and efficient, most importantly, our protocol satisfies the condition of semi-quantum.
Induced magnetic structure in exchange-coupled ferro-/antiferromagnet thin films
NASA Astrophysics Data System (ADS)
Morales, Rafael
2007-03-01
The most prominent feature observed in exchange-coupled ferromagnetic/ antiferromagnetic (FM/AF) bilayers is the so-called exchange bias field (HEB), i.e. the shift of the hysteresis loop along the magnetic field axis. However the exchange bias phenomenon can induce other interesting effects on the FM. In this talk we show two methods to establish a bi-domain state in the FM, due to the coexistence of domains with opposite sign of HEB [1-3]. Magneto-optical, polarized neutron and soft X-ray measurements show that this lateral structure becomes more complex for low magnetocrystalline anisotropy materials where a spin depth profile is created in the FM due to the exchange coupling with the AF [4-6]. The internal magnetic structure in the AF and its role on exchange bias has also been investigated using FM/AF/FM trilayers. These studies demonstrate that the bulk spin configuration in the AF plays a crucial role in the pinning of uncompensated spins at the interface thus determining the HEB . Supported by the US-DOE, European Marie-Curie-OIF and the Alfred P. Sloan Foundation. [1] O. Petracic et al. Appl. Phys. Lett. 87, 222509 (2005) [2] I. V. Roshchin et al. Europhys. Lett. 71, 297 (2005) [3] J. Olamit et al. Phys. Rev. B 72, 012408 (2005) [4] R. Morales et al. Appl. Phys. Lett. 89, 072504 (2006) [5] S. Roy et al. Phys. Rev. Lett. 95, 047201 (2005) [6] Z-P. Li et al. Phys. Rev. Lett. 96, 217205 (2006)
An exploration of advanced X-divertor scenarios on ITER
NASA Astrophysics Data System (ADS)
Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.
2014-07-01
It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created XD configurations reproduces what was presented in the earlier XD papers (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA) CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502). Consequently, the same advantages accrue, but no close-in PF coils are employed.
NASA Astrophysics Data System (ADS)
Olsson, Martin A.; García-Sosa, Alfonso T.; Ryde, Ulf
2018-01-01
We have studied the binding of 102 ligands to the farnesoid X receptor within the D3R Grand Challenge 2016 blind-prediction competition. First, we employed docking with five different docking software and scoring functions. The selected docked poses gave an average root-mean-squared deviation of 4.2 Å. Consensus scoring gave decent results with a Kendall's τ of 0.26 ± 0.06 and a Spearman's ρ of 0.41 ± 0.08. For a subset of 33 ligands, we calculated relative binding free energies with free-energy perturbation. Five transformations between the ligands involved a change of the net charge and we implemented and benchmarked a semi-analytic correction (Rocklin et al., J Chem Phys 139:184103, 2013) for artifacts caused by the periodic boundary conditions and Ewald summation. The results gave a mean absolute deviation of 7.5 kJ/mol compared to the experimental estimates and a correlation coefficient of R 2 = 0.1. These results were among the four best in this competition out of 22 submissions. The charge corrections were significant (7-8 kJ/mol) and always improved the results. By employing 23 intermediate states in the free-energy perturbation, there was a proper overlap between all states and the precision was 0.1-0.7 kJ/mol. However, thermodynamic cycles indicate that the sampling was insufficient in some of the perturbations.
NASA Astrophysics Data System (ADS)
Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.
2009-07-01
In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.
Virtual Compton Scattering and the Generalized Polarizabilities of the Proton
NASA Astrophysics Data System (ADS)
Hyde-Wright, Charles E.
2002-10-01
The Virtual Compton Scattering (VCS) process: e p arrow e p γ is sensitive to the Electromagnetic Polarizabilities of the proton. As a function of the wavelength of the virtual photon, it is possible to map out the spatial variation of the polarization response. The Low Energy Theorem (P. Guichon et al.,Nucl.Phys.A591:606-638,1995) and the Dispersion Relation formalism (B. Pasquini et al., Eur.Phys.J.A11:185-208,2001), permit the extraction of the electric and magnetic polarizabilities from VCS data up to the two pion production threshold. At Jefferson Lab, we have measured the electric and magnetic polarization response at Q^2 = 1 and 1.7 GeV^2. These complement earlier measurements at Q^2 = 0.33 (J. Roche, et al., Phys.Rev.Lett.85:708,2000) and 0.0 GeV^2 (V. Olmos de Leon, et al., Eur.Phys.J.A10:207-215,2001, B.E. MacGibbon, et al., Phys.Rev.C52:2097-2109,1995). The electric polarization and magnetic responses are very different as a function of distance scale. The electric polarizability falls with Q^2 in accord with the electric form factor of the proton: G_E(Q^2). However, for the magnetic polarizability the data illustrate the strong cancellation of para- and dia-magnetism at all distance scales within the proton.
Toroidal Alfven Waves in Advanced Tokamaks
NASA Astrophysics Data System (ADS)
Berk, Herbert L.
2003-10-01
In burning plasma experiments, alpha particles have speeds that readily resonate with shear Alfven waves. It is essential to understand this Alfven wave spectrum for toroidal plasma confinement. Most interest has focused on the Toroidal Alfven Eigenmode (TAE), and a method of analysis has been developed to understand the structure of this mode at a flux surface with a given magnetic shear. However, this model fails when the shear is too low or reversed. In this case a new method of analysis is required, which must incorporate novel fluid-like effects from the energetic particles [1] and also include effects that are second order in the inverse toroidal aspect ratio. With this new method [2] we can obtain spectral features that agree with experimental results. In particular, this theory gives an explanation for the so-called Cascade modes that have been observed in JT-60 [3], JET [4], and TFTR [5]. For these Cascade modes, slow upward frequency sweeping is observed, beginning from frequencies below the TAE range but then often blending into the TAE range of frequencies. The theoretical understanding of the Cascades modes has evolved to the point where these modes can be used as a diagnostic "signature" [6] to experimentally optimize the formation of thermal barriers in reversed-shear operation when the minimum q value is an integer. [1] H. L. Berk et al., Phys. Rev. Lett. 87, 185 (2002). [2] B. N. Breizman et al., submitted to Phys. Plasmas (2003). [3] H. Kimura et al., Nucl. Fusion 38, 1303 (1998). [4] S. Sharapov et al., Phys. Lett. A 289, 127 (2001); S. Sharapov, Phys. Plasmas 9, 2027 (2002). [5] R. Nazikian, H. L. Berk, et al., Bull. Am. Phys. Soc. 47, 327 (2002). [6] E. Joffrin et al., Plasma Phys. Contr. Fusion 44, 1739 (2002); E. Joffrin et al., in Proc. 2002 IAEA Fusion Energy Conference, submitted to Nucl. Fusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
NASA Astrophysics Data System (ADS)
Csanak, G.; Fontes, C. J.; Kilcrease, D. P.; Hakel, P.; Inal, M. K.
2017-05-01
The rate equations used to model plasma kinetics and spectroscopy are typically obtained from intuitive considerations. A few years ago, the authors (Csanak et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 215701) have shown that the population-alignment collisional-radiative (CR) model and the magnetic sublevel to magnetic sublevel rate-equation scheme can be obtained from the Fano-Ben-Reuven quantum impact approximation (QIA). Here we provide a formal derivation of the rate-equation schemes for modeling hydrogenic plasmas and highly charged ionic plasmas with cylindrical symmetry using the QIA under certain approximations. In the case of hydrogenic plasmas the ‘accidental degeneracy’ (if present) leads to some coherences among the excited states of the atom (or ion) that have to be taken into account when constructing the rate equations. In the case of highly charged plasmas the Coulomb potential can be taken into account (as suggested originally by Baranger) in defining the ‘bath particles’, which leads to a derivation of the kinetic equations where no singularity occurs. For the case of spherically symmetric plasmas, this method also provides a derivation of the standard CR equations that have been implemented in many codes to successfully model the kinetics and spectra of highly charged ions.
Comment on "Many-body localization in Ising models with random long-range interactions"
NASA Astrophysics Data System (ADS)
Maksymov, Andrii O.; Rahman, Noah; Kapit, Eliot; Burin, Alexander L.
2017-11-01
This Comment is dedicated to the investigation of many-body localization in a quantum Ising model with long-range power-law interactions r-α, relevant for a variety of systems ranging from electrons in Anderson insulators to spin excitations in chains of cold atoms. It has earlier been argued [arXiv:cond-mat/0611387 (2005); Phys. Rev. B 91, 094202 (2015), 10.1103/PhysRevB.91.094202] that this model obeys the dimensional constraint suggesting the delocalization of all finite-temperature states in the thermodynamic limit for α ≤2 d in a d -dimensional system. This expectation conflicts with the recent numerical studies of the specific interacting spin model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625]. To resolve this controversy we reexamine the model of Li et al. [Phys. Rev. A 94, 063625 (2016), 10.1103/PhysRevA.94.063625] and demonstrate that the infinite-temperature states there obey the dimensional constraint. The earlier developed scaling theory for the critical system size required for delocalization is extended to small exponents 0 ≤α ≤d . The disagreements between the two works are explained by the nonstandard selection of investigated states in the ordered phase in the work of Li et al. [Phys. Rev. A 94, 063625 (2016)
NASA Astrophysics Data System (ADS)
Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin
2016-03-01
Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, M.; Schumaker, W.; He, Z.-H.
2014-04-28
High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on themore » HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.« less
Non-unique monopole oscillations of harmonically confined Yukawa systems
NASA Astrophysics Data System (ADS)
Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael
2008-11-01
Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)
Recovering information of tunneling spectrum from weakly isolated horizon
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-02-01
In this paper we investigate the properties of tunneling spectrum from weakly isolated horizon (WIH)—a locally defined black hole. We find that there exist correlations among Hawking radiations from a WIH, information can be carried out by such correlations, and the radiation is an entropy conservation process. Through revisiting the calculation of the tunneling spectrum from a WIH, we find that Zhang et al.'s (Ann Phys 326:350, 2011) requirement that radiated particles have the same angular momenta of a unit mass as that of the black hole is unnecessary, and the energy and angular momenta of the emitted particles are very arbitrary, restricted only by keeping the cosmic censorship hypothesis of black holes. So we resolve the information loss paradox based on the method of Zhang et al. (Phys Lett B 675:98, 2009; Ann Phys 326:350, 2011; Int J Mod Phys D 22:1341014, 2013) in a general case.
NASA Astrophysics Data System (ADS)
Wang, L. M.; Yan, Z.-C.
2018-06-01
The Schrödinger equation for the ground state of the hydrogen molecule H2 is solved by applying the Rayleigh-Ritz variational method in Hylleraas coordinates without using the Born-Oppenheimer approximation. The nonrelativistic energy eigenvalue is converged to -1.164 025 030 880 (7 ) atomic units. The leading-order relativistic corrections, including the mass-velocity, Darwin, orbit-orbit, spin-spin, and relativistic recoil terms, are evaluated perturbatively. Together with the higher-order relativistic and quantum electrodynamic corrections obtained by Puchalski et al. [Phys. Rev. Lett. 117, 263002 (2016), 10.1103/PhysRevLett.117.263002], we determine the dissociation energy of the hydrogen molecule, D0=36 118.069 71 (33 ) cm-1 , which agrees with the two recent experimental results of Liu et al. [J. Chem. Phys. 130, 174306 (2009), 10.1063/1.3120443], 36 118.069 62 (37 ) cm-1 , and Altmann et al. [Phys. Rev. Lett. 120, 043204 (2018), 10.1103/PhysRevLett.120.043204], 36 118.069 45 (31 ) cm-1 .
2003-08-15
Their analyses confirmed Swanson’s results, and showed that FISH OIL and EICOSAPENTAENOIC ACID (one of fish oil’s main chemical constituents) offered...therefore true candidates for discovery. They finally arrive at FISH OIL, and EICOSAPENTAENOIC ACID (one of fish oil’s main chemical constituents...CHEM 250 ; BIOPOLYMERS 242 ; LANGMUIR 239 ; MOL-PHYS 233 ; 24 PHYS-REV-B 232 ; ANAL-CHEM 225 ; INT-J-MASS-SPECTROM 222 ; NUCLEIC- ACIDS -RES 222 ; J
0.27 GW Soft X-Ray Pulse Using a Plasma-Based Amplification Chain
NASA Astrophysics Data System (ADS)
Oliva, E.; Fajardo, M.; Velarde, P.; Ros, D.; Sebban, S.; Zeitoun, P.
Seeding plasma-based soft-x-ray lasers (PBSXRL) with high order harmonics (HOH) has been demonstrated in plasmas created from gas targets (Zeitoun et al. in Nature 431:426, 2004 and solid targets (Wang et al. in Nat. Photonics 2:94, 2008), obtaining 1 μJ, 1 ps pulses. Reaching multi-microJoule, hundreds of fs regime is the ultimate goal. Recent papers (Oliva et al. in Opt. Lett. 34(17):2640-2642, 2009; Phys. Rev. E 82(5):056408, 2010) showed that increasing the width (up to 1 mm) of the plasma increases the amplification surface and improves the gain zone properties. Up to 20 μJ could be extracted when seeding but the temporal duration and profile was not studied. Simulations show that the HOH is weakly amplified whereas most of the energy is within a long (several picoseconds) wake induced by the HOH (Al'miev et al. in Phys. Rev. Lett. 99(12):123902, 2007; Kim et al. in Phys. Rev. Lett. 104:053901, 2010). Amplified Spontaneous Emission (ASE) is also present in the output beam. Using the 1D Maxwell-Bloch code DeepOne (Oliva et al. in Phys. Rev. A 84(1):013811, 2011) we will show that fully coherent, wake and ASE-suppressed, 21.6 μJ, 80 fs pulse can be obtained when optimizing at the same time both the seed and the plasma conditions.
Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.
2014-01-01
We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2 → H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2 → H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546, 2006). PMID:19810757
NASA Astrophysics Data System (ADS)
Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.
2015-06-01
Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.
The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis
NASA Astrophysics Data System (ADS)
Martinez-Garcia, Julio Cesar; Martinez-Garcia, Jorge; Rzoska, Sylwester J.; Hulliger, Jürg
2012-08-01
One of the most intriguing phenomena in glass forming systems is the dynamic crossover (TB), occurring well above the glass temperature (Tg). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys. 104, 2043 (1996), 10.1063/1.470961; Stickel et al. J. Chem. Phys. 107, 1086 (1997)], 10.1063/1.474456. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al. Nature Phys. 4, 737 (2008), 10.1038/nphys1033; P. Lunkenheimer et al. Phys. Rev. E 81, 051504 (2010), 10.1103/PhysRevE.81.051504; J. C. Martinez-Garcia et al. J. Chem. Phys. 134, 024512 (2011)], 10.1063/1.3514589. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space (H_a^' = {{dln τ }/{d({1/T})}}) analysis via a new plot ln H_a^' vs. 1/T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the "virtual" fragility in the high temperature dynamic domain (mhigh) and the "real" fragility at Tg (the low temperature dynamic domain, m = mlow) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = mhigh/mlow). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.
NASA Astrophysics Data System (ADS)
Felser, Claudia; Hillebrands, Burkard
2009-04-01
This is the third cluster issue of Journal Physics D: Applied Physics devoted to half-metallic Heusler compounds and devices utilizing this class of materials. Heusler compounds are named after Fritz Heusler, the owner of a German copper mine, the Isabellenhütte, who discovered this class of materials in 1903 [1]. He synthesized mixtures of Cu2Mn alloys with various main group metals Z = Al, Si, Sn, Sb, which became ferromagnetic despite all constituents being non-magnetic. The recent success story of Heusler compounds began in 1983 with the discovery of the half-metallic electronic structure in NiMnSb [2] and Co2MnZ [3], making these and similar materials, in particular PtMnSb, also useful for magneto-optical data storage media applications due to their high Kerr rotation. The real breakthrough, however, came in 2000 with the observation of a large magnetoresistance effect in Co2Cr0.6Fe0.4Al [4]. The Co2YZ (Y = Ti, Cr, Mn, Fe) compounds are a special class of materials, which follow the Slater-Pauling rule [5], and most of them are half-metallic bulk materials. The electronic structure of Heusler compounds is well understood [6] and Curie temperatures up to 1100 K have been observed [7]. In their contribution to this cluster issue, Thoene et al predict that still higher Curie temperatures can be achieved. A breakthrough from the viewpoint of materials design is the synthesis of nanoparticles of Heusler compounds as reported in the contribution by Basit et al. Nano-sized half- metallic ferromagnets will open new directions for spintronic applications. The challenge, however, is still to produce spintronic devices with well defined interfaces to take advantage of the half-metallicity of the electrodes. Several groups have succeeded in producing excellent tunnel junctions with high magnetoresistance effects at low temperatures and decent values at room temperature [8-11]. Spin-dependent tunnelling characteristics of fully epitaxial magnetic tunnel junctions with a Heusler alloy can be used to obtain information about the half-metallicity and the magnons as reported by Taira et al in this issue. An improvement of the tunnel magnetoresistance effect (TMR) at room temperature could be achieved by shifting the Fermi energy from the edges of the valence or the conduction band into the middle of the gap [12]. In the case of Co2FeSi0.5Al0.5 (CFAS), TMR values higher than 200% can be achieved [13]. The improvement of the interface seems to be important as has been shown by XMCD (x-ray magnetic circular dichroism) [14] and photoemission spectroscopy [15]. The interface magnetization is very often reduced [14]; however, the interface and the surface electron spin polarization can be improved by post annealing as reported by Wüstenberg et al in this issue. High energy photoemission spectroscopy is a new tool for investigating bulk properties of Heusler compounds [16]. In this issue we report on the investigation of a whole device structure by this technique due to the high escape depth inherent to this method in the contribution of Herbort et al. Dynamic correlations might be a reason for the formation of non-quasi-particles such as magnons in the gap [17], which destroy the half-metallicity and thus can be considered as another cause for the reduced TMR at room temperature. Thus correlations have to be taken into account. This is demonstrated for the Heusler compound Co2Mn1 - xFexSi as reported by Chadov et al in this issue. Magneto-optic methods are powerful instruments for investigating magnetic properties of Heusler compounds. The determination of the huge quadratic Kerr effect in the Co2FeSi Heusler compound is a good example [18]. In this issue Hamrle et al and Gaier et al report on the determination of the exchange constant by measuring the magnon dispersion properties using Brillouin light scattering spectroscopy. The magnon dispersion was calculated by Thoene et al. New developments in the field of spintronics go into the direction of the spin-Hall effect, spin-torque investigations and CPP GMR (current perpendicular plane giant magnetoresistance). Schneider et al have studied the Hall effect of laser ablated Co2(MnFe)Si thin films. Recently Inomata's group has reported on a high CPP GMR effect based on CFSA [19]. In this issue a theoretical study by Dai et al reports on the interfaces between CCFA and very thin chromium layers. Here the interface stays half-metallic which is a promising result regarding the realization of potential GMR devices. For spin-torque applications special requirements concerning the materials are necessary. Low damping constants, low magnetic moments and a perpendicular anisotropy are favourable properties. Ferrimagnetic Heusler compounds are candidates for low magnetic moments despite a high spin polarization and a high Curie temperature [20, 21]. Mn3Ga shows additionally a tetragonal distortion, which is favourable for perpendicular anisotropy [21]. The stability of Heusler compounds versus structural distortion is a well known phenomenon in shape memory alloys [22]. We hope this cluster of papers will inspire many researchers in the field of spintronics and motivate some of them to use these advanced materials for new devices. References [1] Heusler F 1903 Verh. Dtsch. Phys. Ges. 12 219 [2] de Groot R A, Müller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 [3] Kübler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745 [4] Block T, Felser C and Jakob G 2003 J. Solid State Chem. 176 646 [5] Galanakis I, Mavropoulos Ph and Dederichs P H 2006 J. Phys. D: Appl. Phys. 39 765 [6] Kandpal H C, Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1507 [7] Wurmehl S, Fecher G H, Kandpal H C, Ksenofontov V, Felser C and Lin H J 2006 Appl. Phys. Lett. 86 032503 [8] Kämmerer S, Thomas A, Hütten A and Reiss G 2004 Appl. Phys. Lett. 85 79 [9] Yamato M, Marukame T, Ishikawa T, Matsuda K, Uemura T and Arita M 2006 J. Phys. D: Appl. Phys. 39 824 [10] Sakuraba Y, Hattori M, Oogane M, Ando Y, Kato H, Sakuma A, Miyazaki T and Kubota H 2006 Appl. Phys. Lett. 88 192508 [11] Inomata K, Okamura S, Miyazaki A, Kikuchi M, Tezuka N, Wojcik M and Jedryka E 2006 J. Phys. D: Appl. Phys. 39 816 [12] Fecher G H and Felser C 2007 J. Phys. D: Appl. Phys. 40 1582 [13] Tezuka N, Ikeda N, Miyazaki A, Sugimoto S, Kikuchi M and Inomata K 2006 Appl. Phys. Lett. 89 112514 [14] Kallmayer M, Schneider H, Jakob G, Elmers H J, Balke B and Cramm S 2007 J. Phys. D: Appl. Phys. 40 1552 [15] Cinchetti M, Wüstenberg J P, Sánchez Albaneda M, Steeb F, Conca A, Jourdan M and Aeschlimann M 2007 J. Phys. D: Appl. Phys. 40 1544 [16] Fecher G H, Balke B, Ouardi S, Felser C, Schonhense G, Ikenaga E, Kim J J, Ueda S and Kobayashi K 2007 J. Phys. D: Appl. Phys. 40 1576 [17] Chioncel L, Sakuraba Y, Arrigoni E, Katsnelson M I, Oogane M, Ando Y, Miyazaki T, Burzo E and Lichtenstein A I 2008 Phys. Rev. Lett. 100 086402 [18] Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schneider H, Jakob G, Postava K and Felser C 2007 J. Phys. D: Appl. Phys. 40 1563 [19] Furubayashi T, Kodama K, Sukegawa H, Takahashi Y K, Inomata K and Hono K 2008 Appl. Phys. Lett. 93 122507 [20] Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504 [21] Wurmehl S, Kandpal H C, Fecher G H and Felser C 2006 J. Phys.: Cond. Mat. 18 6171 [22] Entel P, Bucheinikov V D, Khovailo V V, Zayak A T, Adeagbo W A, Gruner M E, Herper H C and Wassermann E F 2006 J. Phys. D: Appl. Phys. 39 865
Compact Magnetic Antennas for Directional Excitation of Surface Plasmons
2012-07-01
Steininger, G.; Koch, M.; von Plessen, G.; Feldmann, J. Launching surface plasmons into nanoholes in metal films. Appl. Phys. Lett. 2000, 76, 140−142...plasmons at single nanoholes in Au films. Appl. Phys. Lett. 2004, 85, 467−469. (14) Baudrion, A.-L.; et al. Coupling efficiency of light to surface
Sensitivity of Double-Shell Ignition Capsules to Asymmetric Drive
NASA Astrophysics Data System (ADS)
Tregillis, I. L.; Magelssen, G. R.; Delamater, N. D.; Gunderson, M. A.; Hoffman, N. M.
2007-11-01
Double-shell (DS) targets [1] present an alternative approach to ignition via the cryogenic single-shell point design [2]. Although these targets present unique fabrication challenges, they embody many attractive features, including non-cryogenic fielding and low threshold temperatures (˜4 keV) for volume ignition [3-4]. We have used 2D radiation-hydrodynamic modeling to survey the behavior of DS targets under asymmetric temperature drive in rugby vacuum hohlraums. The yield is robust against deviations from symmetric illumination, varying smoothly as a function of the imposed P2 and P4 amplitudes. Ignition occurs even when 10% or more of the drive is contained in Legendre P2 or P4 components, with yield reductions on the order of 50% for the most extreme cases investigated here. [1] P. Amendt et al., Phys. of Plasmas 9, 2221 (2002) [2] D. A. Callahan et al., Phys. of Plasmas 13, 56307 (2005) [3] P. Amendt et al., Phys. Rev. Lett. 94, 65004 (2005) [4] W. S. Varnum et al., Phys. Rev. Lett. 84, 5153 (2000)
An Ensemble of Atomic Fountains
2012-05-01
1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 ph as e (n s) 56000559005580055700 MJD 8 10-16 2 4 6 8 10-15 2 4 ov er la pp in g Al la n de vi at io n 104... Metrologia 49, 49-56 (2012). [3] N. Ashby et al., Phys. Rev. Lett. 98, 070802 (2007). [4] S. J. Ferrell, et al., Phys. Rev. A 76, 062104 (2007). [5] T. M
Families of quantum fingerprinting protocols
NASA Astrophysics Data System (ADS)
Lovitz, Benjamin; Lütkenhaus, Norbert
2018-03-01
We introduce several families of quantum fingerprinting protocols to evaluate the equality function on two n -bit strings in the simultaneous message passing model. The original quantum fingerprinting protocol uses a tensor product of a small number of O (logn ) -qubit high-dimensional signals [H. Buhrman et al., Phys. Rev. Lett. 87, 167902 (2001), 10.1103/PhysRevLett.87.167902], whereas a recently proposed optical protocol uses a tensor product of O (n ) single-qubit signals, while maintaining the O (logn ) information leakage of the original protocol [J. M. Arazola and N. Lütkenhaus, Phys. Rev. A 89, 062305 (2014), 10.1103/PhysRevA.89.062305]. We find a family of protocols which interpolate between the original and optical protocols while maintaining the O (logn ) information leakage, thus demonstrating a tradeoff between the number of signals sent and the dimension of each signal. There has been interest in experimental realization of the recently proposed optical protocol using coherent states [F. Xu et al., Nat. Commun. 6, 8735 (2015), 10.1038/ncomms9735; J.-Y. Guan et al., Phys. Rev. Lett. 116, 240502 (2016), 10.1103/PhysRevLett.116.240502], but as the required number of laser pulses grows linearly with the input size n , eventual challenges for the long-time stability of experimental setups arise. We find a coherent state protocol which reduces the number of signals by a factor 1/2 while also reducing the information leakage. Our reduction makes use of a simple modulation scheme in optical phase space, and we find that more complex modulation schemes are not advantageous. Using a similar technique, we improve a recently proposed coherent state protocol for evaluating the Euclidean distance between two real unit vectors [N. Kumar et al., Phys. Rev. A 95, 032337 (2017), 10.1103/PhysRevA.95.032337] by reducing the number of signals by a factor 1/2 and also reducing the information leakage.
Laser Spectroscopic Study of CaH in the B^2σ^+ and D^2σ^+ States
NASA Astrophysics Data System (ADS)
Watanabe, Kyohei; Uchida, Kanako; Kobayashi, Kaori; Matsushima, Fusakazu; Moriwaki, Yoshiki
2015-06-01
Calcium hydride is one of the abundant molecules in the stellar environment, and is considered as a probe of stellar analysis. Ab initio calculations have shown that the electronic excited states of CaH have complex potential curves. It is suggested that the B^2σ^+ state has an interesting double minimum potential due to the avoided crossing. Such a potential leads to drastic change of the rotational constants when the vibrational energy level goes across the potential barrier. Spectroscopic studies on CaH began in the 1920's, and many studies have been carried out since then. Bell et al. extensively assigned the D^2σ^+-X^2σ^+ bands in the UV region. Bernath's group has observed transitions in the IR and visible regions and identified their upper states as the A^2σ^+, B^2σ^+ and E^2σ^+ states. We have carried out a laser induced fluorescence (LIF) study in the UV region between 360 and 430 nm. We have produced CaH by using laser ablation of a calcium target in a hydrogen gas environment, then molecules have been excited by a second harmonic pulse of dye laser and the fluorescence from molecules have been detected through a monochromator. Detection of the D^2σ^+-X^2σ^+ bands already identified by Bell et al. indicates the production of CaH. In addition, many other bands have been also found and a few bands have been assigned by using the combination differences, the lower state of these bands have been confirmed to the vibrational ground state of X^2σ^+ state. We have tentatively assigned these bands as the B^2σ^+ -X^2σ^+ transition. We will discuss the assignment of these bands, together with the rotational constants comparing with those calculated from the ab initio potential. B. Barbuy, R. P. Schiavon, J. Gregorio-Hetem, P. D. Singh C. Batalha , Astron. Astrophys. Sippl. Ser. 101, 409 (1993). P. F. Weck and P. C .Stabcil, J. Chem. Phys. {118}, 9997 (2003). R. S. Mulliken, Phys. Rev. {25}, 509 (1925). G. D. Bell, M, Herman, J. W. C. Johns, and E. R. Peck, Physica Scripta {20}, 609 (1979). A. Shayesteh, K. A. Walker, I. Gordon, D. R. T. Appadoo, and P. F. Bernath, J. Mol. Struct. {695-696}, 23 (2004). R. S. Ram, K. Tereszchuk, I. E. Gordon, K. A. Walker, and P. F. Bernath, J. Mol. Spec. {266}, 86 (2011). G. Li, J. J. Harrison, R. S. Ram, C. M. Western, and P. F. Bernath Quant. Spectrosc. Rad. Transfer. {113}, 67 (2012). A. Shayesteh, R. S. Ram, and P. F. Bernath, J. Mol. Spec. {288}, 46 (2013).
NASA Astrophysics Data System (ADS)
Domenech, Jose Luis; Cueto, Maite; Herrero, Victor Jose; Tanarro, Isabel; Cernicharo, Jose; Drouin, Brian
2015-06-01
HCl^+ is a key intermediate in the interstellar chemistry of chlorine. It has been recently identified in space from Herschel's spectra and it has also been detected in the laboratory through its optical emission, infrared and mm-wave spectra. Now that Hershchel is decomissioned, further astrophysical studies on this radical ion will likely rely on ground-based observations in the mid-infrared. We have used a difference frequency laser spectrometer coupled to a hollow cathode discharge to measure the absorption spectrum of H35Cl^+ and H37Cl^+ in the v=0-1 band of the ^2Π state with Dopppler limited resolution. The accuracy of the individual measurements (˜ 10 MHz (3σ)) relies on a solid state wavemeter referenced to an iodine-stabilized Ar^+ laser. The new data are being fit using the CALPGM software from JPL, and the current status will be presented. M. De Luca et al., Astrophys. J. Lett. 751, L37 (2012) W. D. Sheasley and C. W. Mathews, J. Mol. Spectrosc. 47, 420 (1973) P. B. Davies, P. A. Hamilton, B. A. Johnson, Mol. Phys. 57, 217 (1986) H. Gupta, B. J. Drouin, and J. C. Pearson, Astrophys. J. Lett. 751, L37 (2012)
NASA Astrophysics Data System (ADS)
Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.
2015-06-01
In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347
2017-06-15
the GaSb valance band edge, in agreement with values deduced recently from lifetime measurements and analysis [Aytac et al . Phys. Rev. Appl., 5...meV below the GaSb valance band edge, in agreement with values deduced recently from lifetime mea- surements and analysis [Aytac et al . Phys. Rev
NASA Astrophysics Data System (ADS)
Gravier, E.; Plaut, E.
2013-04-01
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition between collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Jeffrey H.; Akin, Minta C.; Chau, Ricky
2015-07-01
Here, we respond to the Comment by Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] on their reinterpretation of our published data [Nguyen et al., Phys. Rev. B 89, 174109 (2014)]. In the original paper, we argued that there is no solid-solid phase transition along the Hugoniot at 2.1 Mbars. There is, however, a softening of the shear modulus starting at 2.6 Mbars. Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] reinterpreted our data and concluded that there is a structural change near 2.3 Mbars on the Hugoniot. Finally, we will explore the differences and agreements in themore » two interpretations of our data.« less
Series of (2+1)-dimensional stable self-dual interacting conformal field theories
NASA Astrophysics Data System (ADS)
Cheng, Meng; Xu, Cenke
2016-12-01
Using the duality between seemingly different (2+1)-dimensional [(2 +1 )d ] conformal field theories (CFT) proposed recently [D. T. Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027; M. A. Metlitski and A. Vishwanath, Phys. Rev. B 93, 245151 (2016), 10.1103/PhysRevB.93.245151; C. Wang and T. Senthil, Phys. Rev. X 6, 011034 (2015), 10.1103/PhysRevX.6.011034; C. Wang and T. Senthil, Phys. Rev. X 5, 041031 (2015), 10.1103/PhysRevX.5.041031; C. Wang and T. Senthil, Phys. Rev. B 93, 085110 (2016), 10.1103/PhysRevB.93.085110; C. Xu and Y.-Z. You, Phys. Rev. B 92, 220416 (2015), 10.1103/PhysRevB.92.220416; D. F. Mross et al., Phys. Rev. Lett. 117, 016802 (2016), 10.1103/PhysRevLett.117.016802; A. Karch and D. Tong, arXiv:1606.01893; N. Seiberg et al., arXiv:1606.01989; P.-S. Hsin and N. Seiberg, arXiv:1607.07457], we study a series of (2 +1 )d stable self-dual interacting CFTs. These CFTs can be realized (for instance) on the boundary of the 3 d bosonic topological insulator protected by U(1) and time-reversal symmetry (T ), and they remain stable as long as these symmetries are preserved. When realized as a boundary system, these CFTs can be driven into anomalous fractional quantum Hall states once T is broken. We demonstrate that the newly proposed dualities allow us to study these CFTs quantitatively through a controlled calculation, without relying on a large flavor number of matter fields. We also propose a numerical test for our results, which would provide strong evidence for the originally proposed duality between Dirac fermion and QED.
Comment on "Critical wind speed at which trees break"
NASA Astrophysics Data System (ADS)
Albrecht, Axel; Badel, Eric; Bonnesoeur, Vivien; Brunet, Yves; Constant, Thiéry; Défossez, Pauline; de Langre, Emmanuel; Dupont, Sylvain; Fournier, Meriem; Gardiner, Barry; Mitchell, Stephen J.; Moore, John R.; Moulia, Bruno; Nicoll, Bruce C.; Niklas, Karl J.; Schelhaas, Mart-Jan; Spatz, Hans-Christof; Telewski, Frank W.
2016-12-01
Virot et al. [E. Virot et al., Phys. Rev. E 93, 023001 (2016), 10.1103/PhysRevE.93.023001] assert that the critical wind speed at which ⩾50% of all trees in a population break is ≈42 m/s, regardless of tree characteristics. We show that empirical data do not support this assertion, and that the assumptions underlying the theory used by Virot et al. are inconsistent with the biomechanics of trees.
Abou-Elezz Fouad Mohammed, Khaled; Sarmiento-Franco, Luis; Santos-Ricalde, Ronald; Solorio-Sanchez, Javier Francisco
2012-06-01
This study aimed to evaluate the potential of Moringa oleifera fresh leaves (MOL) as feed supplement on the performance and egg quality of Rhode Island Red (RIR) hens under the tropical conditions of Yucatan, Mexico. Forty-eight RIR hens were allocated in 12 floor pen replicates each with four birds. Thereafter, the replicates were divided into three groups which were corresponded to ad libitum feed (control), ad libitum feed supplemented with MOL T1 (AL + MOL) and restricted feed amount (20% lower than control) with MOL T2 (RCD + MOL), respectively. T1 (AL + MOL) had higher egg laying rate (71.4% versus 66.6%), higher daily egg mass production (45.4 versus 41.9 g/day), lower feed intake (121.3 versus 127.5 g/day) and better feed conversion ratio (2.8 versus 3.2 g feed:g egg) versus control. T2 / (RCD + MOL) had lower values of body weight, egg laying rate, egg weight and egg mass, and recorded better feed conversion ratio than the control group. The control group recorded a higher percentage of pecked eggs versus T1 and T2 (6.5% versus 1.2% and 2.0 %). Similar intake of MOL (3.1 and 3.4 g DM/day) was recorded in T1 (AL + MOL) and T2 (RCD + MOL). Yolk color was improved significantly in T1 (AL + MOL) than both control and T2 (RCD + MOL), while T2 (RCD + MOL) had eggs with lower yolk and higher albumen percentages than the other two ad libitum groups. The results suggest that MOL could be used successfully as sustainable tropical feed resource for RIR hens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Bazilevskaya; D Archibald; M Aryanpour
2011-12-31
Iron (hydr)oxides are common in natural environments and typically contain large amounts of impurities, presumably the result of coprecipitation processes. Coprecipitation of Al with Fe (hydr)oxides occurs, for example, during alternating reduction-oxidation cycles that promote dissolution of Fe from Fe-containing phases and its re-precipitation as Fe-Al (hydr)oxides. We used chemical and spectroscopic analyses to study the formation and transformation of Al coprecipitates with Fe (hydr)oxides. In addition, periodic density functional theory (DFT) computations were performed to assess the structural and energetic effects of isolated or clustered Al atoms at 8 and 25 mol% Al substitution in the goethite structure. Coprecipitatesmore » were synthesized by raising the pH of dilute homogeneous solutions containing a range of Fe and Al concentrations (100% Fe to 100% Al) to 5. The formation of ferrihydrite in initial suspensions with {<=}20 mol% Al, and of ferrihydrite and gibbsite in initial suspensions with {>=}25 mol% Al was confirmed by infrared spectroscopic and synchrotron-based X-ray diffraction analyses. While base titrations showed a buffer region that corresponded to the hydrolysis of Fe in initial solutions with {<=}25 mol% Al, all of the Al present in these solutions was retained by the solid phases at pH 5, thus indicating Al coprecipitation with the primary Fe hydroxide precipitate. In contrast, two buffer regions were observed in solutions with 30 mol% Al (at pH {approx}2.25 for Fe{sup 3+} and at pH {approx}4 for Al{sup 3+}), suggesting the formation of Fe and Al (hydr)oxides as two separate phases. The Al content of initial coprecipitates influenced the extent of ferrihydrite transformation and of its transformation products as indicated by the presence of goethite, hematite and/or ferrihydrite in aged suspensions. DFT experiments showed that: (i) optimized unit cell parameters for Al-substituted goethites (8 and 25 Mol% Al) in clustered arrangement (i.e., the formation of diaspore-like clusters) were in good agreement with available experimental data whereas optimized unit cell parameters for isolated Al atoms were not, and (ii) Al-substituted goethites with Al in diaspore-like clusters resulted in more energetically favored structures. Combined experimental and DFT results are consistent with the coprecipitation of Al with Fe (hydr)oxides and with the formation of diaspore-like clusters, whereas DFT results suggest isomorphous Al for Fe substitution within goethite is unlike at 8 mol% Al substitution.« less
NASA Astrophysics Data System (ADS)
Harting, D. M.; Liang, Y.; Jachmich, S.; Koslowski, R.; Arnoux, G.; Devaux, S.; Eich, T.; Nardon, E.; Reiter, D.; Thomsen, H.; EFDA contributors, JET
2012-05-01
At JET the error field correction coils can be used to generate an n = 1 or n = 2 magnetic perturbation field (Liang et al 2007 Plasma Phys. Control. Fusion 49 B581). Various experiments at JET have already been carried out to investigate the mitigation of ELMs by resonant magnetic perturbations (RMPs) (Liang et al 2010 Nucl. Fusion 50 025013, Liang et al 2011 Nucl. Fusion 51 073001). However, the typical formation of a secondary strike point (strike point splitting) by RMPs observed in other machines (Jakubowski et al 2010 Contrib. Plasma Phys. 50 701-7, Jakubowski et al 2004 Nucl. Fusion 44 S1-11, Nardon et al 2011 J. Nucl. Mater. 415 S914-7, Eich et al 2003 Phys. Rev. Lett. 91 195003, Evans et al 2007 J. Nucl. Mater. 363-365 570-4, Evans et al 2005 J. Phys.: Conf. Ser. 7 174-90, Watkins et al 2009 J. Nucl. Mater. 390-391 839-42) has never been observed at JET before. In this work we will present discharges where for the first time a strike point splitting by RMPs at JET has been observed. We will show that in these particular cases the strike point splitting matches the vacuum edge magnetic field topology. This is done by comparing heat and particle flux profiles on the outer divertor plate with the magnetic footprint pattern obtained by field line tracing. Further the evolution of the strike point splitting during the ramp up phase of the perturbation field and during a q95-scan is investigated, and it will be shown that the spontaneous appearance of the strike point splitting is only related to some geometrical effects of the toroidal asymmetric magnetic topology.
NASA Astrophysics Data System (ADS)
Bergman, R.; Jansson, H.; Swenson, J.
2011-01-01
In our recent article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)] we investigated some polyalcohols, i.e., glycerol, xylitol, and sorbitol by dielectric spectroscopy. In the study, a low-frequency peak of Debye character that normally is hidden by the large low-frequency dispersion due to conductivity was revealed by analyzing the real part of the permittivity and by using a thin Teflon film to suppress the low-frequency dispersion. We agree with the comment by Paluch et al. [J. Chem. Phys. 134, 037101 (2011)] that the Teflon film setup will indeed create a peak due to the dc conductivity. However, due to the fact that the location of the peak was almost identical in measurement with and without Teflon, we unfortunately mainly showed the data measured with Teflon, despite that it could also be observed in the real part of the permittivity without using the Teflon setup, as shown in our original article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)]. Here, we show that the low-frequency peak of Debye character can also be observed by subtracting the dc conductivity. Furthermore, we show that the modulus representation used in Paluch et al. [J. Chem. Phys. 134, 037101 (2011).] is also not suitable for detecting processes hidden by the conductivity.
Controlling Self-Assembly in Al(110) Homoepitaxy
NASA Astrophysics Data System (ADS)
Tiwary, Yogesh; Fichthorn, Kristen
2010-03-01
Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).
Low-energy positron scattering by pyrimidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F., E-mail: bettega@fisica.ufpr.br
2015-12-28
This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We alsomore » compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.« less
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike; Valanju, Prashant; Covele, Brent; Mahajan, Swadesh
2014-05-01
Relying on coil positions relative to the plasma, the "Comment on `Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake' " [Phys. Plasmas 21, 054701 (2014)], emphasizes a criterion for divertor characterization that was critiqued to be ill posed [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)]. We find that no substantive physical differences flow from this criteria. However, using these criteria, the successful NSTX experiment by Ryutov et al. [Phys. Plasmas 21, 054701 (2014)] has the coil configuration of an X-divertor (XD), rather than a snowflake (SF). On completing the divertor index (DI) versus distance graph for this NSTX shot (which had an inexplicably missing region), we find that the DI is like an XD for most of the outboard wetted divertor plate. Further, the "proximity condition," used to define an SF [M. Kotschenreuther et al., Phys. Plasmas 20, 102507 (2013)], does not have a substantive physics basis to override metrics based on flux expansion and line length. Finally, if the criteria of the comment are important, then the results of NSTX-like experiments could have questionable applicability to reactors.
NASA Astrophysics Data System (ADS)
Goldfeld, Dahlia A.; Bochevarov, Arteum D.; Friesner, Richard A.
2008-12-01
This paper is a logical continuation of the 22 parameter, localized orbital correction (LOC) methodology that we developed in previous papers [R. A. Friesner et al., J. Chem. Phys. 125, 124107 (2006); E. H. Knoll and R. A. Friesner, J. Phys. Chem. B 110, 18787 (2006).] This methodology allows one to redress systematic density functional theory (DFT) errors, rooted in DFT's inherent inability to accurately describe nondynamical correlation. Variants of the LOC scheme, in conjunction with B3LYP (denoted as B3LYP-LOC), were previously applied to enthalpies of formation, ionization potentials, and electron affinities and showed impressive reduction in the errors. In this paper, we demonstrate for the first time that the B3LYP-LOC scheme is robust across different basis sets [6-31G∗, 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ] and reaction types (atomization reactions and molecular reactions). For example, for a test set of 70 molecular reactions, the LOC scheme reduces their mean unsigned error from 4.7 kcal/mol [obtained with B3LYP/6-311++G(3df,3pd)] to 0.8 kcal/mol. We also verified whether the LOC methodology would be equally successful if applied to the promising M05-2X functional. We conclude that although M05-2X produces better reaction enthalpies than B3LYP, the LOC scheme does not combine nearly as successfully with M05-2X than with B3LYP. A brief analysis of another functional, M06-2X, reveals that it is more accurate than M05-2X but its combination with LOC still cannot compete in accuracy with B3LYP-LOC. Indeed, B3LYP-LOC remains the best method of computing reaction enthalpies.
Molecular based equation of state for shocked liquid nitromethane.
Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard; Soulard, Laurent
2009-07-30
An approach is proposed to obtain the equation of state of unreactive shocked liquid nitromethane. Unlike previous major works, this equation of state is not based on extended integration schemes [P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar, J. Chem. Phys. 59 (1973) 6512]. It does not follow the way proposed by Winey et al. [J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane, J. Chem. Phys. 113 (2000) 7492] where the specific heat C(v), the isothermal bulk modulus B(T) and the coefficient of thermal pressure (deltaP/deltaT)(v) are modeled as functions of temperature and volume using experimental data. In this work, we compute the complete equation of state by microscopic calculations. Indeed, by means of Monte Carlo molecular simulations, we have proposed a new force field for nitromethane that lead to a good description of shock properties [N. Desbiens, E. Bourasseau, J.-B. Maillet, Potential optimization for the calculation of shocked liquid nitromethane properties, Mol. Sim. 33 (2007) 1061; A. Hervouët, N. Desbiens, E. Bourasseau, J.-B. Maillet, Microscopic approaches to liquid nitromethane detonation properties, J. Phys. Chem. B 112 (2008) 5070]. Particularly, it has been shown that shock temperatures and second shock temperatures are accurately reproduced which is significative of the quality of the potential. Here, thermodynamic derivative properties are computed: specific heats, Grüneisen parameter, sound velocity among others, along the Hugoniot curve. This work constitutes to our knowledge the first determination of the equation of state of an unreactive shocked explosive by molecular simulations.
NASA Astrophysics Data System (ADS)
McConville, S. L.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Koepke, M. E.; Whyte, C. G.; Matheson, K.; Robertson, C. W.; Cairns, R. A.; Vorgul, I.; Bingham, R.; Kellett, B. J.; Ronald, K.
2012-04-01
Scaled laboratory experiments have been conducted at Strathclyde University [1,2] to further the understanding of the naturally occurring generation of Auroral Kilometric Radiation (AKR) in the Earth's polar magnetosphere. At an altitude of around 3200km there exists a region of partial plasma depletion (the auroral density cavity), through which electrons descend towards the Earth's atmosphere and are subject to magnetic compression. Due to conservation of the magnetic moment these electrons sacrifice parallel velocity for perpendicular velocity resulting in a horseshoe shaped distribution in velocity space which is unstable to the cyclotron maser instability [3,4]. The radiation is emitted at frequencies extending down to the local electron cyclotron frequency with a peak in emission at ~300kHz. The wave propagation is in the X-mode with powers ~109W corresponding to radiation efficiencies of 1% of the precipitated electron kinetic energy [5]. The background plasma frequency within the auroral density cavity is approximately 9kHz corresponding to an electron plasma density ~106m-3. Previous laboratory experiments at Strathclyde have studied cyclotron radiation emission from electron beams which have horseshoe shaped velocity distributions. Radiation measurements showed emissions in X-like modes with powers ~20kW and efficiencies ~1-2%, coinciding with both theoretical and numerical predictions [6-9] and magnetospheric studies. To enhance the experimental reproduction of the magnetospheric environment a Penning trap was designed and incorporated into the existing apparatus [10]. The trap was placed in the wave generation region where the magnetic field would be maintained at ~0.21T. The trap allowed a background plasma to be generated and its characteristics were studied using a plasma probe. The plasma had a significant impact on the radiation generated, introducing increasingly sporadic behaviour with increasing density. The power and efficiency of the radiation generated was lower than with no plasma present. Plasma diagnostics established the plasma frequency on the order of 150-300MHz and electron density ranging from ~1014-1015m-3, whilst the cyclotron frequency of the electrons within the Penning trap was 5.87GHz giving fce/fpe ~19-40, comparable to the auroral density cavity. Numerical simulations coinciding with this part of the experimental research program are currently being carried out using the VORPAL code. Details of these simulations will be presented in a separate paper [Speirs et al] at this meeting. McConville SL et al 2008, Plasma Phys. Control. Fusion, 50, 074010 Ronald et al 2011, Plasma Phys. Control. Fusion, 53, 074015 Bingham R and Cairns RA, 2002, Phys. Scr., T98, 160-162 Ergun RE et al, 1998, Geophys. Res. Lett., 25, 2061 Gurnett DA et al, 1974, J. Geophys. Res., 79, 4227-4238 Cairns RA et al, 2011, Phys. Plasmas, 18, 022902 Gillespie KM et al, 2008, Plasma Phys. Control. Fusion, 50, 124038 Speirs et al 2010, Phys. Plasmas, 17, 056501 Vorgul et al 2011, Phys. Plasmas, 18, 056501 McConville SL et al 2011, Plasma Phys. Control. Fusion, 53, 124020
NASA Astrophysics Data System (ADS)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.
2018-07-01
In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.
Travelling-wave amplitudes as solutions of the phase-field crystal equation
NASA Astrophysics Data System (ADS)
Nizovtseva, I. G.; Galenko, P. K.
2018-01-01
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the
NASA Astrophysics Data System (ADS)
Dudarev, S. L.; Ma, Pui-Wai
2018-03-01
Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the <111 > direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of <111 > defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a <111 > orientation of the defect.
Studies of giant magnetoresistance and interfacial structure in Cu/Co and Co/Re multilayers
NASA Astrophysics Data System (ADS)
Setty, Arun; Fernando, G.; Cooper, B. R.
2003-03-01
A study of giant magnetoresistance (GMR) in the Cu/Co [1]and Co/Re multilayer [2,3] systems is presented. The role of interface structure in such systems is significant, and is being investigated using an ab-initio based approach [4]. The role of intermixing [5], impurities and growth textures have been considered. Structural relaxation is taken into account using Hellman-Feynman and symmetry-based approaches. We find lattice spacings in agreement with experiment, energetically establish the favored growth textures and find results motivating the existence of the observed wavy interface in the Cu/Co system [6]. The transport properties of these multilayer systems will be studied using a theoretical model [7] incorporating material parameters obtained from the multiscale modeling approach we envisage. [1] S.S.P. Parkin, Z.G. Li, and D. J. Smith, Appl. Phys. Lett., 58, 2710-2712 (1991). [2] T. Charlton et al, Phys. Rev. B 63, 094404 (2001) [3] T. Charlton et al, Phys. Rev. B 59, 11897-11908 (1999) [4] C. Villagonzalo, A.K. Setty and B.R. Cooper, submitted to Phys. Rev. [5] J. Fassbender, R. Allenspach, and U. Durig. Surf. Sci., 383, L742-L748, (1997). [6] D.J. Larson et al, Appl. Phys. Lett., 73:1125-1127, (1998). [7] J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
Sensitivity Studies in Gyro-fluid Simulation
NASA Astrophysics Data System (ADS)
Ross, D. W.; Dorland, W.; Beer, M. A.; Hammett, G. W.
1998-11-01
Transport models [1] derived from gyrofluid simulation [2] have been successful in predicting general confinement scalings. Specific fluxes and turbulent spectra, however, can depend sensitively on the plasma configuration and profiles, particularly in experiments with transients. Here, we step back from initial studies on Alcator C-Mod [3] and DIII-D [4] to investigate the sensitivity of simulations to variations in density, temperature (and their gradients) of each plasma species. We discuss the role of electric field shear, and the construction of local transport models for experimental comparison. In accompanying papers [5] we investigate comparisons with the experiments. *Supported by USDOE Grants DE-FG03-95ER54296, and DE-AC02-76CHO3073. [1] M. Kotschenreuther et al., Phys. Plasmas 2, 2381 (1995). [2] M. A. Beer et al, Phys. Plasmas 2, 2687 (1995). [3] D. W. Ross et al., Transport Task Force, Atlanta, 1998. [4] R. V. Bravenec et al., in Proc. 25th EPS Conf. on Contr. Fusion and Plasma Phys., Prague (1998). [5] R. V. Bravenec et al. and W. L. Rowan et al., these proceedings.
NASA Astrophysics Data System (ADS)
Baltz, Anthony J.
2002-10-01
Theoretical predictions for a number of electromagnetically induced reactions have been compared with available ultrarelativistic heavy ion data. Calculations for three atomic process have been confronted with CERN SPS data. Theoretically predicted rates are in good agreement with data[1] for bound-electron positron pairs and ionization of single electron heavy ions. Furthermore, the exact solution of the semi-classical Dirac equation in the ultrarelativistic limit reproduces the perturbative scaling result seen in data[2] for continuum pairs (i.e. cross sections go as Z_1^2 Z_2^2). In the area of electromagnetically induced nuclear and hadronic physics, mutual Coulomb dissociation predictions are in good agreement with RHIC Zero Degree Calorimeter measurements[3], and calculations of coherent vector meson production accompanied by mutual Coulomb dissociation[4] are in good agreement with RHIC STAR data[5]. [1] H. F. Krause et al., Phys. Rev. Lett., 80, 1190 (1998). [2] C. R. Vane et al., Phys. Rev. A 56, 3682 (1997). [3] Mickey Chiu et al., Phys. Rev. Lett. 89, 012302 (2002). [4] Anthony J. Baltz, Spencer R. Klein, and Joakim Nystrand, Phys. Rev. Lett. 89, 012301 (2002). [5] C. Adler et al., STAR Collaboration, arXiv:nucl-ex/206004.
Absolute Charge Exchange Cross Sections for ^3He^2+ Collisions with ^4He and H_2
NASA Astrophysics Data System (ADS)
Mawhorter, R. J.; Greenwood, J.; Smith, S. J.; Chutjian, A.
2002-05-01
The JPL charge exchange beam-line(J.B. Greenwood, et al., Phys. Rev A 63), 062707 (2001) was modified to increase the forward acceptance angle and enable the measurement of total charge-exchange cross sections for slow, light, highly-charged ion collisions with neutral targets(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982). Data are presented for single charge exchange cross sections for ^3He^2+ nuclei scattered by ^4He and H2 in the energy range 0.33-4.67 keV/amu. For both targets there is good agreement with Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990). Angular collection is studied by a comparison with differential measurements(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 (1994), as well as with earlier JPL results(J.B. Greenwood, et al., Ap. J. 533), L175 (2000), ibid. 529, 605 (2000) using heavier projectiles and targets. This work was carried out at JPL/Caltech, and was supported through contract with NASA. RJM thanks the NRC for a Senior Associateship at JPL.
Borowka, S; Hahn, T; Heinemeyer, S; Heinrich, G; Hollik, W
Reaching a theoretical accuracy in the prediction of the lightest MSSM Higgs-boson mass, [Formula: see text], at the level of the current experimental precision requires the inclusion of momentum-dependent contributions at the two-loop level. Recently two groups presented the two-loop QCD momentum-dependent corrections to [Formula: see text] (Borowka et al., Eur Phys J C 74(8):2994, 2014; Degrassi et al., Eur Phys J C 75(2):61, 2015), using a hybrid on-shell-[Formula: see text] scheme, with apparently different results. We show that the differences can be traced back to a different renormalization of the top-quark mass, and that the claim in Ref. Degrassi et al. (Eur Phys J C 75(2):61, 2015) of an inconsistency in Ref. Borowka et al. (Eur Phys J C 74(8):2994, 2014) is incorrect. We furthermore compare consistently the results for [Formula: see text] obtained with the top-quark mass renormalized on-shell and [Formula: see text]. The latter calculation has been added to the FeynHiggs package and can be used to estimate missing higher-order corrections beyond the two-loop level.
A comparison of three radiation models for the calculation of nozzle arcs
NASA Astrophysics Data System (ADS)
Dixon, C. M.; Yan, J. D.; Fang, M. T. C.
2004-12-01
Three radiation models, the semi-empirical model based on net emission coefficients (Zhang et al 1987 J. Phys. D: Appl. Phys. 20 386-79), the five-band P1 model (Eby et al 1998 J. Phys. D: Appl. Phys. 31 1578-88), and the method of partial characteristics (Aubrecht and Lowke 1994 J. Phys. D: Appl.Phys. 27 2066-73, Sevast'yanenko 1979 J. Eng. Phys. 36 138-48), are used to calculate the radiation transfer in an SF6 nozzle arc. The temperature distributions computed by the three models are compared with the measurements of Leseberg and Pietsch (1981 Proc. 4th Int. Symp. on Switching Arc Phenomena (Lodz, Poland) pp 236-40) and Leseberg (1982 PhD Thesis RWTH Aachen, Germany). It has been found that all three models give similar distributions of radiation loss per unit time and volume. For arcs burning in axially dominated flow, such as arcs in nozzle flow, the semi-empirical model and the P1 model give accurate predictions when compared with experimental results. The prediction by the method of partial characteristics is poorest. The computational cost is the lowest for the semi-empirical model.
EDITORIAL: Special section on signal transduction Special section on signal transduction
NASA Astrophysics Data System (ADS)
Shvartsman, Stanislav
2012-08-01
This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks, where a single molecule can participate in multiple types of interactions. Mathematical analysis of these models is discussed in the papers by Del Vecchio [8], Seaton and Krishnan [9], and Hatzimanikatis and colleagues [10]. Finally, all signaling systems are information processing devices. While this point is broadly accepted, there have been only a few attempts to apply information theory to experimental signaling systems. A review by Andre Levchenko and colleagues [11] provides a very clear introduction to information theory and its potential applications to signal transduction in cellular systems. References [1] Félix M-A 2012 Phys. Biol. 9 045001 [2] Oron E and Ivanova N 2012 Phys. Biol. 9 045002 [3] MacNamara A et al 2012 Phys. Biol. 9 045003 [4] Jensen K J and Janes K A 2012 Phys. Biol. 9 045004 [5] Zarnitsyna V and Zhu C 2012 Phys. Biol. 9 045005 [6] Rubinstein B et al 2012 Phys. Biol. 9 045006 [7] Frank T D et al 2012 Phys. Biol. 9 045007 [8] Del Vecchio D et al 2012 Phys. Biol. 9 045008 [9] Seaton D D and Krishnan J 2012 Phys. Biol. 9 045009 [10] Radivojevic A et al 2012 Phys. Biol. 9 045010 [11] Rhee A et al 2012 Phys. Biol. 9 045011
Direct longitudinal laser acceleration of electrons in free space
NASA Astrophysics Data System (ADS)
Carbajo, Sergio; Nanni, Emilio A.; Wong, Liang Jie; Moriena, Gustavo; Keathley, Phillip D.; Laurent, Guillaume; Miller, R. J. Dwayne; Kärtner, Franz X.
2016-02-01
Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008)]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London) 431, 535 (2004); T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006); S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009)] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: "Making the molecular movie,", Phil. Trans. R. Soc. A 364, 741 (2006)]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014)] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010); F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010); Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006); C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006); A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)] avoiding the need of a medium or guiding structure entirely to achieve strong longitudinal energy transfer. Here we present the first observation of direct longitudinal laser acceleration of nonrelativistic electrons that undergo highly directional multi-GeV /m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle acceleration capable of creating well collimated and relativistic attosecond electron bunches [C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006)] and x-ray pulses [A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, J. Phys. B 47, 015601 (2014)].
Timm, Matthew J; Matta, Chérif F
2014-12-01
Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reif, Maria M.; Hünenberger, Philippe H.
2011-04-01
The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated Δ G_hyd^{ominus }[H+] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of Δ G_hyd^{ominus }[H+] close to -1100 kJ.mol-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravier, E.; Plaut, E.
2013-04-15
Collisional drift waves and ion temperature gradient (ITG) instabilities are studied using a linear water-bag kinetic model [P. Morel et al., Phys. Plasmas 14, 112109 (2007)]. An efficient spectral method, already validated in the case of drift waves instabilities [E. Gravier et al., Eur. Phys. J. D 67, 7 (2013)], allows a fast solving of the global linear problem in cylindrical geometry. The comparison between the linear ITG instability properties thus computed and the ones given by the COLUMBIA experiment [R. G. Greaves et al., Plasma Phys. Controlled Fusion 34, 1253 (1992)] shows a qualitative agreement. Moreover, the transition betweenmore » collisional drift waves and ITG instabilities is studied theoretically as a function of the ion temperature profile.« less
Antihydrogen Trapped in the ALPHA Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowe, Paul David
2011-02-25
In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise themore » perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)« less
Antihydrogen Trapped in the ALPHA Experiment
Bowe, Paul David
2017-12-18
In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i] Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome. The unique design features of the ALPHA apparatus will be explained. These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv]. The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried. The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures', G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii] 'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011)
Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging
2014-08-06
Libby, S. B.; et al. Observation and Control of Shock Waves in Indivi- dual Nanoplasmas . Phys. Rev. Lett. 2014, 112, 115004. 17. Zhang, X.; Smith, K. a...Laser Light. Phys. Plasmas 2005, 12, 056703. 24. Lezius, M.; Dobosz, S. Hot Nanoplasmas from Intense Laser Irradiation of Argon Clusters. J. Phys. B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski,more » Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.« less
Reply to "Comment on `Particle path through a nested Mach-Zehnder interferometer' "
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2018-02-01
While much of the technical analysis in the preceding Comment is correct, in the end it confirms the conclusion reached in my previous work [Phys. Rev. A 94, 032115 (2016), 10.1103/PhysRevA.94.032115]: A consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward by Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502].
NASA Astrophysics Data System (ADS)
Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai
2018-02-01
Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.
NASA Astrophysics Data System (ADS)
Matzkin, A.; Jungen, Ch.; Ross, S. C.
2000-12-01
Multichannel quantum defect theory (MQDT) is used to calculate highly excited predissociated and preionized triplet gerade states of H2. The treatment is ab initio and is based on the clamped-nuclei quantum-defect matrices and dipole transition moments derived from quantum-chemical potential energy curves by Ross et al. [Can. J. Phys. (to be published)]. Level positions, predissociation or preionization widths and relative intensities are found to be in good agreement with those observed by Lembo et al. [Phys. Rev. A 38, 3447 (1988); J. Chem. Phys. 92, 2219 (1990)] by an optical-optical double resonance photoionization or depletion technique.
NASA Astrophysics Data System (ADS)
Peeters, A. G.; Angioni, C.; Strintzi, D.
2009-03-01
The comment addresses questions raised on the derivation of the momentum pinch velocity due to the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. These concern the definition of the gradient, and the scaling with the density gradient length. It will be shown that the turbulent equipartition mechanism is included within the derivation using the Coriolis drift, with the density gradient scaling being the consequence of drift terms not considered in [T. S. Hahm et al., Phys. Plasmas 15, 055902 (2008)]. Finally the accuracy of the analytic models is assessed through a comparison with the full gyrokinetic solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakhin, V. P.; Ilgisonis, V. I.; Peoples' Friendship University, 3 Ordzhonikidze St., Moscow 117198
2012-06-15
The equations for the continuous spectra derived in our paper [V. P. Lakhin and V. I. Ilgisonis, Phys. Plasmas 18, 092103 (2011)] can be reduced to the matrix form used by Goedbloed et al.[Phys. Plasmas 11, 28 (2004)]. It is shown that the assumptions made in our paper provide the elliptic flow regime and guarantee the existence of plasma equilibrium with nested magnetic surfaces of circular cross-section. The new results on magnetohydrodynamic instabilities of such tokamak equilibria obtained in our paper but absent in the paper by Goedbloed et al. are emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raitses, Y.; Smirnov, A.; Fisch, N. J.
It is argued that the key difference in the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al., J. Appl. Phys. 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of [Tang et al., J. Appl. Phys. 102, 123305 (2007)].
NASA Astrophysics Data System (ADS)
Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.
2018-04-01
We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.
Thermal solitons as revealed by the static structure factor
NASA Astrophysics Data System (ADS)
Gawryluk, Krzysztof; Brewczyk, Mirosław; Rzążewski, Kazimierz
2017-04-01
We study, within a framework of the classical fields approximation, the static structure factor of a weakly interacting Bose gas at thermal equilibrium. As in a recent experiment [R. Schley et al., Phys. Rev. Lett. 111, 055301 (2013), 10.1103/PhysRevLett.111.055301], we find that the thermal distribution of phonons in a three-dimensional Bose gas follows the Planck distribution. On the other hand we find a disagreement between the Planck and phonon (calculated just as for the bulk gas) distributions in the case of elongated quasi-one-dimensional systems. We attribute this discrepancy to the existence of spontaneous dark solitons [i.e., thermal solitons as reported in T. Karpiuk et al., Phys. Rev. Lett. 109, 205302 (2012), 10.1103/PhysRevLett.109.205302] in an elongated Bose gas at thermal equilibrium.
Reply to "Comment on `Acoustical observation of bubble oscillations induced by bubble popping' "
NASA Astrophysics Data System (ADS)
Ding, Junqi
2015-03-01
We reported on the sound pressure generated by aqueous foam bursts in our paper [Ding et al., Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. Blanc et al., [Phys. Rev. E 91, 036401 (2015), 10.1103/PhysRevE.91.036401] found that sound from one of three mechanisms of bubble burst (the prepopping) actually results from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. We examined the same hardware used in our paper and found that the frequency range is not the cause of the artifact. The prepopping sound was a result from a built-in finite impulse response filter of analog-to-digital converters in the Brüel & Kjær data acquisition system.
Giant Dipole Resonance in light and heavy nuclei beyond selfconsistent mean field theory
NASA Astrophysics Data System (ADS)
Krewald, Siegfried; Lyutorovich, Nikolay; Tselyaev, Victor; Speth, Josef; Gruemmer, Frank; Reinhard, Paul-Gerhard
2012-10-01
While bulk properties of stable nuclei are successfully reproduced by mean-field theories employing effective interactions, the dependence of the centroid energy of the electric giant dipole resonance on the nucleon number A is not. This problem is cured by considering many-particle correlations beyond mean-field theory, which we do within a selfconsistent generalization of the Quasiparticle Time Blocking Approximation [1,2]. The electric giant dipole resonances in ^16O, ^40Ca, and ^208Pb are calculated using two new Skyrme interactions. Perspectives for an extension to effective field theories[3] are discussed.[4pt] [1] V. Tselyaev et al., Phys.Rev.C75, 014315(2007).[0pt] [2] N. Lyutorovich et al., submitted to Phys.Rev.Lett.[0pt] [3] S. Krewald et al., Prog.Part.Nucl.Phys.67, 322(2012).
Communication: The absolute shielding scales of oxygen and sulfur revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena
2015-03-07
We present an updated semi-experimental absolute shielding scale for the {sup 17}O and {sup 33}S nuclei. These new shielding scales are based on accurate rotational microwave data for the spin–rotation constants of H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)], C{sup 17}O [Cazzoli et al., Phys. Chem. Chem. Phys. 4, 3575 (2002)], and H{sub 2}{sup 33}S [Helgaker et al., J. Chem. Phys. 139, 244308 (2013)] corrected both for vibrational and temperature effects estimated at the CCSD(T) level of theory as well as for the relativistic corrections to the relation between the spin–rotation constant and the absolutemore » shielding constant. Our best estimate for the oxygen shielding constants of H{sub 2}{sup 17}O is 328.4(3) ppm and for C{sup 17}O −59.05(59) ppm. The relativistic correction for the sulfur shielding of H{sub 2}{sup 33}S amounts to 3.3%, and the new sulfur shielding constant for this molecule is 742.9(4.6) ppm.« less
JPRS Report, Science & Technology, Japan, Powder Metallurgy Technology
1988-12-13
100 mO« 132 Hz i i i i -K H JL x’ c-p’an« (film) ! f • j 0 60 70 M TOO 90 1C Figure 3. Real and...necessary to develop a new manufacturing process focusing on the control of grain orientation. References 1. M . Okada, et al., Jpn. J. Appl. Phys. 27...Tc drops as the amount of Sr added is increased. References 1. M . Oda, et al., Jpn. J. Phys., 26, L804, 1987. 2. Z. Qi-rui, et al., Solid State
Study of Spin Splitting in GaN/AlGaN Quantum Wells
2009-05-11
plasma-assisted molecular - beam epitaxy ”, Jap. J. Appl. Phys. 47, 891 (2008), we have grown M-plane GaN films with self-assembled C-plane GaN nanopillars...on a γ-LiAlO2 substrate by plasma-assisted molecular - beam epitaxy . The diameters of the basal plane of the nanopillars are about 200 to 900 nm and...Line defects of M-plane GaN grown on γ-LiAlO2 by plasma-assisted molecular beam epitaxy ”, Appl. Phys. Lett. 92 pp.202106 (2008), we studied the
Adaptive clustering procedure for continuous gravitational wave searches
NASA Astrophysics Data System (ADS)
Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad
2017-10-01
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)
Study of Various Types of Resonances within the Phonon Damping Model
NASA Astrophysics Data System (ADS)
Dang, Nguyen Dinh
2001-10-01
The main successes of the Phonon Damping Model (PDM)(N. Dinh Dang and A. Arima, Phys. Rev. Lett. 80), 4145 (1998); Nucl. Phys. A 636, 427 (1998); N. Dinh Dang, K. Tanabe, and A. Arima, Phys. Rev. C 58, 3374 (1998). are presented in the description of: 1) the giant dipole resonance (GDR) in highly excited nuclei, 2) the double giant dipole resonance (DGDR) and multiple phonon resonances, 3) the Gamow-Teller resonance (GTR), and 4) the damping of pygmy dipole resonance (PDR) in neutron-rich nuclei. The analyses of results of numerical calculations are discussed in comparison with the experimental systematics on i) the width and the shape of the GDR at finite temperature ^1,(N. Dinh Dang et al., Phys. Rev. C 61), 027302 (2000). and angular momentum(N. Dinh Dang, Nucl. Phys. A 687), 261c (2001). for tin isotopes , ii) the electromagnetic cross sections of DGDR for ^136Xe and ^208Pb on a lead target at relativistic energies(N. Dinh Dang, V. Kim Au, and A. Arima, Phys. Rev. Lett. 85), 1827 (2000)., iii) the strength function of GTR(N. Dinh Dang, T. Suzuki, and A. Arima, Preprint RIKEN-AF-NF 377 (2000), submitted.), and iv) the PDR in oxygen and calcium isotopes(N. Dinh Dang et al., Phys. Rev. C 63), 044302 (2001)..
Study of methods to increase cluster/dislocation loop densities in electrodes
NASA Astrophysics Data System (ADS)
Yang, Xiaoling; Miley, George H.
2009-03-01
Recent research has developed a technique for imbedding ultra-high density deuterium ``clusters'' (50 to 100 atoms per cluster) in various metals such as Palladium (Pd), Beryllium (Be) and Lithium (Li). It was found the thermally dehydrogenated PdHx retained the clusters and exhibited up to 12 percent lower resistance compared to the virginal Pd samplesootnotetextA. G. Lipson, et al. Phys. Solid State. 39 (1997) 1891. SQUID measurements showed that in Pd these condensed matter clusters approach metallic conditions, exhibiting superconducting propertiesootnotetextA. Lipson, et al. Phys. Rev. B 72, 212507 (2005ootnotetextA. G. Lipson, et al. Phys. Lett. A 339, (2005) 414-423. If the fabrication methods under study are successful, a large packing fraction of nuclear reactive clusters can be developed in the electrodes by electrolyte or high pressure gas loading. This will provide a much higher low-energy-nuclear- reaction (LENR) rate than achieved with earlier electrodeootnotetextCastano, C.H., et al. Proc. ICCF-9, Beijing, China 19-24 May, 2002..
Transforming Research and Clinical Knowledge in Traumatic Brain Injury
2016-12-01
Szuflita, N., Orman, J., and Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: common data ele- ments...Szuflita N, Orman J, et al. Advancing Integrated Research in Psychological Health and Traumatic Brain Injury: Common Data Elements. Arch Phys Med Rehabil...R, Gleason T, et al. Advancing integrated research in psychological health and traumatic brain injury: common data elements. Arch Phys Med Rehabil
Atom-chip-based quantum gravimetry for the precise determination of absolute gravity
NASA Astrophysics Data System (ADS)
Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst
2017-04-01
We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; V. Schkolnik et al., Appl. Phys. B 120, 311-316 (2015). [2] K. B. Davis et al., Phys. Rev. Lett. 74, 5202, 1995; M. H. Anderson et al., Science 269, 198, 1995; C. C. Bradley et al., Phys. Rev. Lett. 75, 1687, 1995. [3] S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [4] J. Rudolph et al., New J. Phys. 17, 065001, 2015.
Helical flow in RFX-mod tokamak plasmas
NASA Astrophysics Data System (ADS)
Piron, L.; Zaniol, B.; Bonfiglio, D.; Carraro, L.; Kirk, A.; Marrelli, L.; Martin, R.; Piron, C.; Piovesan, P.; Zuin, M.
2017-05-01
This work presents the first evidence of helical flow in RFX-mod q(a) < 2 tokamak plasmas. The flow pattern is characterized by the presence of convective cells with m = 1 and n = 1 periodicity in the poloidal and toroidal directions, respectively. A similar helical flow deformation has been observed in the same device when operated as a reversed field pinch (RFP). In RFP plasmas, the flow dynamic is tailored by the innermost resonant m = 1, n = 7 tearing mode, which sustains the magnetic field configuration through the dynamo mechanism (Bonomo et al 2011 Nucl. Fusion 51 123007). By contrast, in the tokamak experiments presented here, it is strongly correlated with the m = 1, n = 1 MHD activity. A helical deformation of the flow pattern, associated with the deformation of the magnetic flux surfaces, is predicted by several codes, such as Specyl (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001), PIXIE3D (Chacón et al 2008 Phys. Plasmas 15 056103), NIMROD (King et al 2012 Phys. Plasmas 19 055905) and M3D-C1 (Jardin et al 2015 Phys. Rev. Lett. 115 215001). Among them, the 3D fully non-linear PIXIE3D has been used to calculate synthetic flow measurements, using a 2D flow modelling code. Inputs to the code are the PIXIE3D flow maps, the ion emission profiles as calculated by a 1D collisional radiative impurity transport code (Carraro et al 2000 Plasma Phys. Control. Fusion 42 731) and a synthetic diagnostic with the same geometry installed in RFX-mod. Good agreement between the synthetic and the experimental flow behaviour has been obtained, confirming that the flow oscillations observed with the associated convective cells are a signature of helical flow.
The Rotation-Torsion Spectrum of CH_2DOH
NASA Astrophysics Data System (ADS)
Hilali, A. El; Coudert, L. H.; Margulès, L.; Motiyenko, R.; Klee, S.
2010-06-01
Due to the asymmetry of the CH_2D group, the internal rotation problem in the partially deuterated species of methanol CH_2DOH is a complicated one as, unlike in the normal species CH_3OH, the inertia tensor depends on the angle of internal rotation. The CH_2DOH species also displays a dense far infrared torsional spectrum difficult to assign. Recently 38 torsional subbands of CH_2DOH have been identified, but for most of them there is neither an assignment nor an analysis of their rotational structure. In this paper an analysis of the rotation-torsion spectrum of CH_2DOH will be presented. The rotational structure of 23 torsional subbands have been assigned. These subbands are Δ v_t &ge 1 perpendicular subbands with a value of v'_t up to 10b and values of K' and K'' ranging from 0 to 9. For all subbands, the Q-branch was assigned, for 3 subbands, the R- and P-branches could also be found. The results of the rotational analysis with an expansion in J(J+1) of the new subbands and of already observed ones will be presented. When available, microwave lines within the lower torsional level, recorded in this work or already measured, were added to the data set. A theoretical approach aimed at calculating the rotation-torsion energy levels has also been developed. It is based on an expansion in terms of rotation-torsion operators with C_s symmetry and accounts for the dependence of the inertia tensor on the angle of internal rotation. This approach will be used to carry out a preliminary global analyses of the wavenumbers and of the frequencies. Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009) 204. Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spec. 192 (1998) 378; Mukhopadhyay, J. Mol. Struct. 695-696 (2004) 357. Liu and Quade, J. Mol. Spec. 146 (1991) 252 Mukhopadhyay et al., J. Chem. Phys. 116 (2002) 3710.
Reply to "Comment on `Troublesome aspects of the Renyi-MaxEnt treatment' "
NASA Astrophysics Data System (ADS)
Plastino, A.; Rocca, M. C.; Pennini, F.
2017-11-01
This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017), 10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016)., 10.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.
Reply to "Comment on 'Troublesome aspects of the Renyi-MaxEnt treatment' ".
Plastino, A; Rocca, M C; Pennini, F
2017-11-01
This Reply is intended as a refutation of the preceding Comment [Oikonomou and Bagci, Phys. Rev. E 96, 056101 (2017)10.1103/PhysRevE.96.056101] on our paper [Plastino et al., Phys. Rev. E 94, 012145 (2016).1539-375510.1103/PhysRevE.94.012145]. We show that the Tsallis probability distribution of our paper does not coincide with the Tsallis distribution studied by Oikonomou and Bagci. Consequently, their findings do not apply to our paper.
NASA Astrophysics Data System (ADS)
Jiang, Yewei; Luo, Jie; Wu, Yongquan
2017-06-01
Empirical potential is vital to the classic atomic simulation, especially for the study of phase transitions, as well as the solid-interface. In this paper, we attempt to set up a uniform procedure for the validation among different potentials before the formal simulation study of phase transitions of metals. Two main steps are involved: (1) the prediction of the structures of both solid and liquid phases and their mutual transitions, i.e. melting and crystallization; (2) the prediction of vital thermodynamic (the equilibrium melting point at ambient pressure) and dynamic properties (the degrees of superheating and undercooling). We applied this procedure to the testing of seven published embedded-atom potentials (MKBA (Mendelev et al 2008 Philos. Mag. 88 1723), MFMP (Mishin et al 1999 Phys. Rev. B 59 3393), MDSL (Sturgeon and Laird 2000 Phys. Rev. B 62 14720), ZM (Zope and Mishin 2003 Phys. Rev. B 68 024102), LEA (Liu et al 2004 Model. Simul. Mater. Sci. Eng. 12 665), WKG (Winey et al 2009 Model. Simul. Mater. Sci. Eng. 17 055004) and ZJW (Zhou et al 2004 Phys. Rev. B 69 144113)) for the description of the solid-liquid transition of Al. All the predictions of structure, melting point and superheating/undercooling degrees were compared with the experiments or theoretical calculations. Then, two of them, MKBA and MDSL, were proven suitable for the study of the solid-liquid transition of Al while the residuals were unqualified. However, potential MKBA is more accurate to predict the structures of solid and liquid, while MDSL works a little better in the thermodynamic and dynamic predictions of solid-liquid transitions.
A plasma amplifier to combine multiple beams at NIF
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.
2018-05-01
Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].
Dirac Magnons in Honeycomb Ferromagnets
NASA Astrophysics Data System (ADS)
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.
Analysis of the Rotation-Torsion Spectrum of CH_2DOH Within the e_0, e_1, and o_1 Torsional Levels
NASA Astrophysics Data System (ADS)
Coudert, L. H.; Pearson, John C.; Yu, Shanshan; Margules, L.; Motiyenko, R. A.; Klee, S.
2013-06-01
Since the first assignments of Quade and coworkers, a more satisfactory understanding of the spectrum of CH_2DOH has now been achieved. Thanks to a multidimensional potential energy surface and to a new theoretical approach accounting for the internal rotation of a partially deuterated methyl group, 76 torsional subbands could be identified in the microwave and FIR domains. 8356 rotation and rotation-torsion transitions were also assigned for the three lowest lying torsional levels, e_0, e_1, and o_1, in the microwave and terahertz domains and were analyzed with empirical models. In this paper, a new approach aimed at accounting for the rotation-torsion energy levels of CH_2DOH will be presented. It is based on the exact expression of the generalized 4× 4 inertia tensor of the molecule and accounts for the C_s symmetry of the partially deuterated methyl group, for the dependence of the rotational constants on the angle of internal rotation, and for the rotation-torsion Coriolis coupling. This approach will be used to analyze high-resolution data involving the three lowest lying torsional levels, up to k=11. In addition to the microwave data reported recently,^d new transitions recorded in the terahertz domain at JPL will be analyzed. The results of the analysis will be presented in the paper and the parameters determined in the analysis will be discussed. Quade and Suenram, J. Chem. Phys. {73} (1980) 1127; and Su and Quade, J. Mol. Spec. {134} (1989) 290. Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. {256} (2009) 204. El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. {135} (2011) 194309. Pearson, Yu, and Drouin, J. Mol. Spec. {280} (2012) 119. Quade and Lin, J. Chem. Phys. {38} (1963) 540.
Rothschild, Bruce M
2018-03-01
Surface defects have a central position in diagnosis of articular pathology. Recognizing the limitations of standard radiologic techniques and those imposed by positioning and averaging artifacts on CT evaluation, direct visualization of surface defects was pursued to identify disease characteristics that would facilitate interpretation of radiologic findings. Epi-illumination surface microscopy was utilized to examine macroscopically recognized articular surface defects in individuals in the Hamann-Todd, Terry, and Huntington human skeletal collections with previously verified diagnoses of rheumatoid arthritis, spondyloarthropathy, juvenile inflammatory arthritis (JIA), calcium pyrophosphate deposition disease (CPPD), gout, metastatic cancer, multiple myeloma, septic arthritis, tuberculosis, fungal arthritis, histiocytosis and sickle cell anemia (Rothschild and Rothschild Clin Infect Dis 20(5):1402-1408, 1995; Rothschild et al. Amer J Phys Anthropol 82(4):441-449, 1990; Rothschild and Rothschild Amer J Phys Anthropol 96(4):357-563, 1995; Rothschild and Woods Clin Exp Rheumatol 10(2):117-122, 1992; Barrett and Keat Radiographics 24(6):1679-1691, 2004; Rothschild and Heathcote Amer J Phys Anthropol 98(4):519-525, 1995; Rothschild and Woods Am J Phys Anthropol 85:25-34, 1991; Hershkovitz et al. Amer J Phys Anthropol 106(1):47-60, 1998; Winland et al. Amer J Phys Anthropol 24:S243, 1997; Rothschild et al. Clin Exp Rheumatol 10(6):557-564, 1992; Rothschild and Martin , 2006; Rothschild et al. Amer J Phys Anthropol 102(2):249-264, 1997). Observed alterations were compared with standard radiographs. Fronts of resorption distinguished inflammatory arthritis from those caused by the other disorders studied. Multiple myeloma, fungal disease, and gout are expansile character; the latter accompanied by reactive new bone formation more prominent than that noted with spondyloarthropathy and JIA. Those were clearly distinguished from the crumbling alterations found with CPPD. Histiocytosis had a unique crenulated appearance, while nodules were prominent with syphilis. Defects in sickle cell anemia had ivory fragments at their base. These findings provided explanation for radiologic observations. Direct surface microscopy revealed characteristics apparently pathognomonic for specific disorders and facilitated distinguishing among them. The technique provides visualization an order of magnitude greater than that available with clinical radiologic techniques and identifies new characteristics which should facilitate clinical diagnoses. This demonstrates that there would be value to the development of higher resolution, clinically applicable imaging techniques.
Nonlocality distillation and postquantum theories with trivial communication complexity.
Brunner, Nicolas; Skrzypczyk, Paul
2009-04-24
We first present a protocol for deterministically distilling nonlocality, building upon a recent result of Forster et al. [Phys. Rev. Lett. 102, 120401 (2009)10.1103/PhysRevLett.102.120401]. Our protocol, which is optimal for two-copy distillation, works efficiently for a specific class of postquantum nonlocal boxes, which we term correlated nonlocal boxes. In the asymptotic limit, all correlated nonlocal boxes are distilled to the maximally nonlocal box of Popescu and Rohrlich. Then, taking advantage of a result of Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006)10.1103/PhysRevLett.96.250401] we show that all correlated nonlocal boxes make communication complexity trivial, and therefore appear very unlikely to exist in nature. Astonishingly, some of these nonlocal boxes are arbitrarily close to the set of classical correlations. This result therefore gives new insight to the problem of why quantum nonlocality is limited.
Precision theoretical analysis of neutron radiative beta decay to order O (α2/π2)
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.
2017-06-01
In the Standard Model (SM) we calculate the decay rate of the neutron radiative β- decay to order O (α2/π2˜10-5), where α is the fine-structure constant, and radiative corrections to order O (α /π ˜10-3). The obtained results together with the recent analysis of the neutron radiative β- decay to next-to-leading order in the large proton-mass expansion, performed by Ivanov et al. [Phys. Rev. D 95, 033007 (2017), 10.1103/PhysRevD.95.033007], describe recent experimental data by the RDK II Collaboration [Bales et al., Phys. Rev. Lett. 116, 242501 (2016), 10.1103/PhysRevLett.116.242501] within 1.5 standard deviations. We argue a substantial influence of strong low-energy interactions of hadrons coupled to photons on the properties of the amplitude of the neutron radiative β- decay under gauge transformations of real and virtual photons.
Estimation of shear viscosity based on transverse momentum correlations
NASA Astrophysics Data System (ADS)
STAR Collaboration; Sharma, Monika; STAR Collaboration
2009-11-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
Brownian motion and entropic torque driven motion of domain walls in antiferromagnets
NASA Astrophysics Data System (ADS)
Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming
2018-02-01
We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.
NASA Astrophysics Data System (ADS)
Omiste, Juan J.; González-Férez, Rosario
2016-12-01
We present a theoretical study of the mixed-field-orientation of asymmetric-top molecules in tilted static electric field and nonresonant linearly polarized laser pulse by solving the time-dependent Schrödinger equation. Within this framework, we compute the mixed-field orientation of a state-selected molecular beam of benzonitrile (C7H5N ) and compare with the experimental observations [J. L. Hansen et al., Phys. Rev. A 83, 023406 (2011), 10.1103/PhysRevA.83.023406] and with our previous time-independent descriptions [J. J. Omiste et al., Phys. Chem. Chem. Phys. 13, 18815 (2011), 10.1039/c1cp21195a]. For an excited rotational state, we investigate the field-dressed dynamics for several field configurations as those used in the mixed-field experiments. The nonadiabatic phenomena and their consequences on the rotational dynamics are analyzed in detail.
Teleportation of a two-mode entangled coherent state encoded with two-qubit information
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Prakash, Hari
2010-09-01
We propose a scheme to teleport a two-mode entangled coherent state encoded with two-qubit information, which is better than the two schemes recently proposed by Liao and Kuang (2007 J. Phys. B: At. Mol. Opt. Phys. 40 1183) and by Phien and Nguyen (2008 Phys. Lett. A 372 2825) in that our scheme gives higher value of minimum assured fidelity and minimum average fidelity without using any nonlinear interactions. For involved coherent states | ± αrang, minimum average fidelity in our case is >=0.99 for |α| >= 1.6 (i.e. |α|2 >= 2.6), while previously proposed schemes referred above report the same for |α| >= 5 (i.e. |α|2 >= 25). Since it is very challenging to produce superposed coherent states of high coherent amplitude (|α|), our teleportation scheme is at the reach of modern technology.
A DAFT DL_POLY distributed memory adaptation of the Smoothed Particle Mesh Ewald method
NASA Astrophysics Data System (ADS)
Bush, I. J.; Todorov, I. T.; Smith, W.
2006-09-01
The Smoothed Particle Mesh Ewald method [U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103 (1995) 8577] for calculating long ranged forces in molecular simulation has been adapted for the parallel molecular dynamics code DL_POLY_3 [I.T. Todorov, W. Smith, Philos. Trans. Roy. Soc. London 362 (2004) 1835], making use of a novel 3D Fast Fourier Transform (DAFT) [I.J. Bush, The Daresbury Advanced Fourier transform, Daresbury Laboratory, 1999] that perfectly matches the Domain Decomposition (DD) parallelisation strategy [W. Smith, Comput. Phys. Comm. 62 (1991) 229; M.R.S. Pinches, D. Tildesley, W. Smith, Mol. Sim. 6 (1991) 51; D. Rapaport, Comput. Phys. Comm. 62 (1991) 217] of the DL_POLY_3 code. In this article we describe software adaptations undertaken to import this functionality and provide a review of its performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedermann, C.; Radtke, R.
2007-06-15
We have found that xenon in different charge states, namely, Xe{sup 9+} and Xe{sup 31+}, can contribute to the radiation in the 598 nm spectral range. Our observation resolves the discrepancy of line identification given by Takacs et al. [Phys. Rev. A 73, 052505 (2006)] and Crespo et al. [Can. J. Phys. 80, 1687 (2002)].
Isolation of Coherent Synchrotron Emission During Relativistic Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Dromey, B.; Rykovanov, S. G.; Lewis, C. L. S.; Zepf, M.
Coherent Synchrotron Emission (CSE) from relativistic laser plasmas (Pukhov et al., Plas Phys Control Fusion 52:124039, 2010; Dromey et al., Nat Phys 8:804-808, 2012; Dromey et al., New J Phys 15:015025, 2013) has recently been identified as a unique platform for the generation of coherent extreme ultraviolet (XUV) and X-Ray radiation with clear potential for bright attosecond pulse production. Exploiting this potential requires careful selection of interaction geometry, spectral wavelength range and target characteristics to allow the generation of high fidelity single attosecond pulses. In the laboratory the first step on this road is to study the individual mechanisms driving the emission of coherent extreme ultraviolet and X-Ray radiation during laser solid interactions in isolation. Here we show how interactions can be tailored to permit the unambiguous observation of coherent synchrotron emission (CSE) and the implications of this geometry for the resulting harmonic spectrum over the duration of the interaction.
Nanobridge SQUIDs as calorimetric inductive particle detectors
NASA Astrophysics Data System (ADS)
Gallop, John; Cox, David; Hao, Ling
2015-08-01
Superconducting transition edge sensors (TESs) have made dramatic progress since their invention some 65 years ago (Andrews et al 1949 Phys. Rev. 76 154-155 Irwin and Hilton 2005 Topics Appl. Phys. 99 63-149) until now there are major imaging arrays of TESs with as many as 7588 separate sensors. These are extensively used by astronomers for some ground-breaking observations (Hattori et al 2013 Nucl. Instrum. Methods Phys. Res. A 732 299-302). The great success of TES systems has tended to overshadow other superconducting sensor developments. However there are other types (Sobolewski et al 2003 IEEE Trans. Appl. Supercond. 13 1151-7 Hadfield 2009 Nat. Photonics 3 696-705) which are discussed in papers within this special edition of the journal. Here we describe a quite different type of detector, also applicable to single photon detection but possessing possible advantages (higher sensitivity, higher operating temperature) over the conventional TES, at least for single detectors.
High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum
NASA Astrophysics Data System (ADS)
Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.
2015-04-01
A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.
NASA Astrophysics Data System (ADS)
Stechmann, Guillaume; Zaefferer, Stefan; Raabe, Dierk
2018-06-01
The structure and energetics of coincidence site lattice grain boundaries (GB) in CdTe are investigated by mean of molecular statics simulations, using the Cd–Zn–Te bond-order potential (second iteration) developed by Ward et al (2012 Phys. Rev. B 86 245203; 2013 J. Mol. Modelling 19 5469–77). The effects of misorientation (Σ value) and interface plane are treated separately, complying with the critical need for full five-parameter characterization of GB. In addition, stoichiometric shifts, occurring between the inner interfaces and their adjacent atomic layers, are also predicted, revealing the energetic preference of Te-rich boundaries, opening opportunities for crystallography-based intrinsic interface doping. Our results also suggest that the intuitive assumption that Σ3 boundaries with low-indexed planes are more energetically favorable is often unfounded, except for coherent twins developing on {111} boundary planes. Therefore, Σ5, 7 or 9 boundaries, with lower interface energy than that of twin boundaries lying on different facets, are frequently encountered.
Spectroscopic study of the benchmark Mn+-H2 complex.
Dryza, Viktoras; Poad, Berwyck L J; Bieske, Evan J
2009-05-28
We have recorded the rotationally resolved infrared spectrum of the weakly bound Mn+-H2 complex in the H-H stretch region (4022-4078 cm(-1)) by monitoring Mn+ photodissociation products. The band center of Mn+-H2, the H-H stretch transition, is shifted by -111.8 cm(-1) from the transition of the free H2 molecule. The spectroscopic data suggest that the Mn+-H2 complex consists of a slightly perturbed H2 molecule attached to the Mn+ ion in a T-shaped configuration with a vibrationally averaged intermolecular separation of 2.73 A. Together with the measured Mn+...H2 binding energy of 7.9 kJ/mol (Weis, P.; et al. J. Phys. Chem. A 1997, 101, 2809.), the spectroscopic parameters establish Mn+-H2 as the most thoroughly characterized transition-metal cation-dihydrogen complex and a benchmark for calibrating quantum chemical calculations on noncovalent systems involving open d-shell configurations. Such systems are of possible importance for hydrogen storage applications.
Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil
NASA Astrophysics Data System (ADS)
Georges, Robert
2015-06-01
The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M. Vervloet, Phys. Chem. Chem. Phys. 15, 10141-10150 (2013) The cyclic ground state structure of the HF trimer revealed by far-infrared jet-cooled Fourier transform spectroscopy. P. Asselin, P. Soulard, B. Madebène, M. Goubet, T. R. Huet, R. Georges, O. Pirali and P. Roy, Phys. Chem. Chem. Phys. 16(10), 4797-806 (2014) Standard free energy of the equilibrium between the trans-monomer and the cyclic-dimer of acetic acid in the gas phase from infrared spectroscopy. M. Goubet, P. Soulard, O. Pirali, P. Asselin, F. Réal, S. Gruet, T. R. Huet, P. Roy and R. Georges, Phys. Chem. Chem. Phys. DOI: 10.1039/c4cp05684a
On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2
Robie, R.A.; Hemingway, B.S.; Gillet, P.; Reynard, B.
1991-01-01
The heat capacity of glaucophane from the Sesia-Lanza region of Italy having the approximate composition (Na1.93Ca0.05Fe0.02) (Mg2.60Fe0.41) (Al1.83Fe0.15Cr0.01) (Si7.92Al0.08)O22(OH)2 was measured by adiabatic calorimetry between 4.6 and 359.4 K. After correcting the Cp0data to values for ideal glaucophane, Na2Mg3Al2Si8O22(OH)2 the third-law entropy S2980-S00was calculated to be 541.2??3.0 J??mol-1??K-1. Our value for S2980-S00is 12.0 J??mol-1??K-1 (2.2%) smaller than the value of Likhoydov et al. (1982), 553.2??3.0, is within 6.2 J??mol-1??K-1 of the value estimated by Holland (1988), and agrees remarkably well with the value calculated by Gillet et al. (1989) from spectroscopic data, 539 J??mol-1??K-1. ?? 1991 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Richardson, J. B.; Derry, L. A.
2016-12-01
Aluminum is a major component of primary and secondary aluminosilicate minerals, stabilizes of soil organic matter, and causes toxicity in plants and organisms. However, tracking the pathways and rates of Al cycling has been limited due to the lack of a suitable tracer because it is monoisotopic. Gallium (Ga) holds promise as an effective pseudo-isotope, geochemical tracer of Al (Shiller and Frilot, 1996, GCA). Gallium shares many physicochemical properties with Al. Both are Group 3A elements, with similar atomic radii, oxidation states, and charge densities. To determine fluxes of Al using the Ga/Al ratio, it is important to identify fractionation during weathering, secondary mineral precipitation, organic matter complexation, and vegetation cycling. To determine the extent of Ga/Al fractionation by vegetation, we measured Ga and Al in plant tissues and soils from three sites in the White Mountains of New Hampshire. Total Ga and Al were measured in late-season leaves and bolewood from Acer saccharum, Fagus grandifolia, and Picea rubens. In addition, we measured strong acid (16 M HNO3 + 12 M HCl) extractable Ga and Al throughout three Spodosol profiles. Gallium ranged between 0.10 - 0.17 nmol g-1 in plant tissues while soils ranged between 1.20 - 45.10 nmol g-1. Aluminum varied between 0.54 - 2.66 μmol g -1 in plant tissues and 7.70 - 263.60 μmol g -1 in their soils. The Ga/Al ratio varied significantly throughout the Critical Zone: late-season leaves (10 ± 1 nmol/ μmol) and bolewood (12 ± 1 nmol/ μmol), and organic horizons (6 ± 1 nmol/ μmol). Typical Ga/Al ratio in igneous and metamorphosed rocks is 0.10 ± 0.02 nmol/ μmol (Shiller and Frilot, 1996, GCA). Our results suggest that vegetation strongly accumulate Ga over Al during biological uplift. This study is one of the first to assess Ga biogeochemistry in the Critical Zone and more are needed, particularly for abiotic processes.
RETRACTED ARTICLE: Microstructure of carbide precipitates in L12-Ni3Al and L10-TiAl
NASA Astrophysics Data System (ADS)
Han, Chang Suk
2008-04-01
The crystallographic structures of carbide formed in Ni3Al- and TiAl-based intermetallics containing carbon are investigated in this study using transmission electron microscopy. In an L12-ordered Ni3Al alloy with 4 mol.% of chromium and 0.2 mol.% to 3.0 mol.% of carbon, fine octahedral precipitates of M23C6 type carbide were formed in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the M23C6 phase and the matrix lattices have a cube-cube orientation relationship and maintain partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the M23C6 precipitates adopt a rod-like morphology elongated parallel to the <100> directions. In L10-ordered TiAl containing from 0.1 mol.% to 2.0 mol.% carbon, TEM observations reveal that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the L10 matrix appear in the matrix mainly at dislocations. Selected-area electron diffraction (SAED) patterns analyses showed that the needle-shaped precipitate is perovskite-type Ti3AlC. The orientation relationship between the Ti3AlC and the L10 matrix was found to be (001)Ti3AlC//(001)L10 matrix and [010]Ti3AlC//[010]L10 matrix. By aging at higher temperatures or for a longer period at 1073 K, plate-like precipitates of Ti2AlC with a hexagonal structure form on the {111} planes of the L10 matrix. The orientation relationship between the Ti2AlC and the L10 matrix is (0001)Ti2AlC//(111)L10 matrix and Ti2AlC//L10 matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-07-15
In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.
NASA Astrophysics Data System (ADS)
Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst
2016-04-01
Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM1552-1557 (QUANTUS-IV-Fallturm) and by the Deutsche Forschungsgemeinschaft in the framework of the SFB 1128 geo-Q. [1] P. Berg et al., Composite-Light-Pulse Technique for High-Precision Atom Interferometry, Phys. Rev. Lett., 114, 063002, 2015. [2] A. Peters et al., Measurement of gravitational acceleration by dropping atoms, Nature 400, 849, 1999. [3] D. Schlippert et al., Quantum Test of the Universality of Free Fall, Phys. Rev. Lett., 112, 203002, 2014. [4] A. Louchet-Chauvet et al., The influence of transverse motion within an atomic gravimeter, New J. Phys. 13, 065026, 2011. [5] Q. Bodart et al., A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett. 96, 134101, 2010. [6] H. Müntinga et al., Interferometry with Bose-Einstein Condensates in Microgravity, Phys. Rev. Lett., 110, 093602, 2013. [7] T. Kovachy et al., Matter Wave Lensing to Picokelvin Temperatures, Phys. Rev. Lett. 114, 143004, 2015. [8] J. Rudolph et al., A high-flux BEC source for mobile atom interferometers, New J. Phys. 17, 065001, 2015.
NASA Astrophysics Data System (ADS)
Paziresh, M.; Kingston, A. M.; Latham, S. J.; Fullagar, W. K.; Myers, G. M.
2016-06-01
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073-2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127-135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260-1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and atomic number (Z) reconstructions to a significant extent.
Wei, Feng; Xiong, Wei; Li, Wenhui; Lu, Wangting; Allen, Heather C; Zheng, Wanquan
2016-06-14
Correction for 'Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS' by Feng Wei et al., Phys. Chem. Chem. Phys., 2015, 17, 25114-25122.
The influence of Na + and Ca 2+ ions on the SiO 2-AlPO 4 materials structure — IR and Raman studies
NASA Astrophysics Data System (ADS)
Rokita, M.; Mozgawa, W.; Handke, M.
2001-09-01
The series of samples containing 0-20 mol% of NaCaPO4 and 20-0 mol% of AlPO4, respectively, with the constant amount of SiO2 (80 mol%) have been selected. The materials were prepared using both sol-gel as well as aerosil pseudo-aqua solution method. The AlPO4·SiO2 and NaCaPO4·SiO2 (80 mol% of SiO2) samples have been prepared. IR and Raman spectra of these samples are presented. The spectra of materials from NaCaPO4-AlPO4-SiO2 system are compared to those of NaCaPO4·SiO2 and AlPO4·SiO2 sample (samples without Al3+ or Na+ and Ca2+ cations, respectively). The studies have enabled us to identify the bands arising from the internal and lattice vibrations. The slight differences between the spectra of sol-gel and aerosil pseudo-aqua solution materials are pointed out and discussed. The influence of Na+ and Ca2+ ions on the AlPO4-SiO2 materials structure is analysed.
Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, J.; DePaoli, D. W.; Mattus, C. H.
Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less
Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution
McFarlane, J.; DePaoli, D. W.; Mattus, C. H.
2017-11-10
Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less
NASA Astrophysics Data System (ADS)
Kulić, M. L.; Dolgov, O. V.
2017-01-01
The theory of the electron-phonon interaction (EPI) with strong forward scattering peak (FSP) in an extreme delta-peak limit (Kulić and Zeyher 1994 Phys. Rev. B 49 4395; Kulić 2000 Phys. Rep. 38 1-264 Kulić and Dolgov 2005 Phys. Status Solidi b 242 151; Danylenko et al 1999 Eur. Phys. J. B 9 201) is recently applied in (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009) for the explanation of high {T}{{c}}(˜ 100 {{K}}) in a monolayer FeSe grown on {{{SrTiO}}}3 (Lee et al 2014 Nature 515 245) and TiO2 (Rebec et al 2016 arXiv:1606.09358v1) substrates. The EPI is due to a long-range dipolar electric field created by high-energy oxygen vibrations ({{Ω }}˜ 90 meV) at the interface (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). In leading order (with respect to {T}{{c}0}/{{Ω }}) the mean-field critical temperature {T}{{c}0}={< {V}{{epi}}(q)> }q/4) ˜ {({{aq}}{{c}})}2{V}{{epi}}(0) and the gap {{{Δ }}}0=2{T}{{c}0\\text{}} are due to an interplay between the maximal EPI pairing potential {V}{{epi}}(0) and the FSP-width q c. For {T}{{c}0}˜ 100 K one has {{{Δ }}}0˜ 16 meV in a satisfactory agreement with ARPES experiments. In leading order T c0 is mass-independent and a very small oxygen isotope effect is expected in next to leading order. In clean systems T c0 for s-wave and d-wave pairing is degenerate but both are affected by non-magnetic impurities, which are pair-weakening in the s-channel and pair-breaking in the d-channel. The self-energy and replica bands at T = 0 and at the Fermi surface are calculated and compared with experimental results at T> 0 ( Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). The EPI coupling constant {λ }{{m}}={< {V}{{epi}}(q)> }q/2{{Ω }} is mass-dependent ({M}1/2) and at ω (\\ll {{Ω }}) makes the slope of the self-energy {{Σ }}(k,ω )(≈ -{λ }{{m}}ω ) and the replica intensities {A}i(˜ {λ }{{m}}) mass-dependent. This result, overlooked in the literature, is contrary to the prediction of the standard Migdal-Eliashberg theory for EPI. The small oxygen isotope effect in {T}{{c}0} and pronounced isotope effect in {{Σ }}(k,ω ) and ARPES spectra A i of the replica bands in FeSe films on SrTiO3 and TiO2 is a smoking-gun experiment for validity of the EPI-FSP theory to these systems. The EPI-FSP theory predicts a large number of low-laying pairing states, thus causing internal pair fluctuations. The latter reduce T c0 additionally, by creating a pseudogap state for {T}{{c}}< T< {T}{{c}0}. Possibilities to increase T c0, by designing novel structures are discussed in the framework of the EPI-FSP theory.
Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.
Lemke, Kono H
2017-06-21
This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.
Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit
NASA Astrophysics Data System (ADS)
Lemke, Kono H.
2017-06-01
This study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.
Do cosmological data rule out f (R ) with w ≠-1 ?
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Bolliet, Boris; Pace, Francesco
2018-05-01
We review the equation of state (EoS) approach to dark sector perturbations and apply it to f (R ) gravity models of dark energy. We show that the EoS approach is numerically stable and use it to set observational constraints on designer models. Within the EoS approach we build an analytical understanding of the dynamics of cosmological perturbations for the designer class of f (R ) gravity models, characterized by the parameter B0 and the background equation of state of dark energy w . When we use the Planck cosmic microwave background temperature anisotropy, polarization, and lensing data as well as the baryonic acoustic oscillation data from SDSS and WiggleZ, we find B0<0.006 (95% C.L.) for the designer models with w =-1 . Furthermore, we find B0<0.0045 and |w +1 |<0.002 (95% C.L.) for the designer models with w ≠-1 . Previous analyses found similar results for designer and Hu-Sawicki f (R ) gravity models using the effective field theory approach [Raveri et al., Phys. Rev. D 90, 043513 (2014), 10.1103/PhysRevD.90.043513; Hu et al., Mon. Not. R. Astron. Soc. 459, 3880 (2016), 10.1093/mnras/stw775]; therefore this hints for the fact that generic f (R ) models with w ≠-1 can be tightly constrained by current cosmological data, complementary to solar system tests [Brax et al., Phys. Rev. D 78, 104021 (2008), 10.1103/PhysRevD.78.104021; Faulkner et al., Phys. Rev. D 76, 063505 (2007), 10.1103/PhysRevD.76.063505]. When compared to a w CDM fluid with the same sound speed, we find that the equation of state for f (R ) models is better constrained to be close to -1 by about an order of magnitude, due to the strong dependence of the perturbations on w .
Progress towards a loophole-free test of nonlocality
NASA Astrophysics Data System (ADS)
McCusker, Kevin; Christensen, Bradley; Kwiat, Paul; Altepeter, Joseph
2012-02-01
We report on our progress towards a loophole-free test of nonlocality using spontaneous parametric down-conversion (SPDC). While the timing loophole can be easily closed in such a system by moving the detectors far apart [1], closing the detector loophole is significantly more difficult. In the standard Bell entangled states with the maximal violation of the CHSH inequality [2], an overall efficiency of 83% is required. This limit can be lowered to 67% by using non-maximally entangled states (although sensitivity to noise is greatly increased) [3]. We are carefully engineering our source to achieve maximal heralding efficiency, by optimizing both the spatial and spectral filtering, while keeping noise low using high-extinction-ratio polarizing beamsplitters. Combined with high-efficiency detectors, either optimized visible-light photon counters [4] or transition-edge sensors [5], closure of the detection loophole is within reach. [4pt] [1] G. Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).[2] J. F. Clauser et al., Phys. Rev. Lett. 23, 880 (1969).[3] P.H. Eberhard, Phys. Rev. A 47, R747 (1993).[4] S. Takeuchi et al., Appl. Phys. Lett. 74, 1063 (1999).[5] A. E. Lita, A. J. Miller, and S. Nam, Opt. Exp. 16, 3032 (2008).
Finite Forward Acceptance Angles for Single Electron Capture by ^3He^2+ Ions in He and H_2
NASA Astrophysics Data System (ADS)
Mawhorter, Rj; Greenwood, J.; Smith; Chutjian, A.
2004-05-01
Perhaps surprisingly, electron capture scattering angles of a few degrees or more are observed for slow ions impacting light targets. Gas cells must be designed with this in mind. Indeed the difference between small acceptance angle results(W.L. Nutt, et al., J. Phys. B 8), 1457 (1978) and the larger acceptance-angle studies of both Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990) and our group at JPL (presented here; energy range 0.33-4.67 keV/amu) for ^3He^2+ in H2 can be ascribed to this effect. Olson and Kimura(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982) have modeled the problem theoretically. We use existing differential cross section data(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 1994) for both H_2/ D2 and ^4He targets to calculate realistic acceptance angles. The resulting small total cross section corrections provide reliable absolute results for these benchmark systems. This work was carried out at JPL/Caltech, and was supported through agreement with NASA.
Surface Layering Near Room Temperature in a Nonmetallic Liquid
NASA Astrophysics Data System (ADS)
Chattopadhyay, Sudeshna; Stripe, Benjamin; Shively, Patrick; Evmenenko, Geunnadi; Dutta, Pulak; Ehrlich, Steven; Mo, Haiding
2009-03-01
Oscillatory density profiles (layers) have been observed at the free surfaces of many liquid metals at and above room temperature [1]. A surface-layered state has been previously reported only in one dielectric liquid, tetrakis(2-ethylhexoxy)silane (TEHOS), and only at lower temperatures [2]. We have used x-ray reflectivity to study a molecular liquid, pentaphenyl trimethyl trisiloxane. Below T˜ 267K (well above the freezing point for this liquid), density oscillations appear at the surface. This liquid has a higher Tc (˜1200K) than TEHOS (˜950K), so that layers appear at T/Tc 0.2 in both cases. Our results indicate that surface order is a universal phenomenon in both metallic and dielectric liquids, and that the underlying physics is likely to be the same since layers always appear at T<˜0.2Tc as theoretically predicted [3] [3pt] REFERENCES: [0pt] [1]. e.g. O. M. Magnussen et al., Phys. Rev. Lett. 74, 4444 (1995) [0pt] [2]. H. Mo et al. Phys. Rev. Lett. 96, 096107 (2006); Phys. Rev. B 76, 024206 (2007) [0pt] [3]. e.g. E. Chac'on et al., Phys. Rev. Lett. 87, 166101 (2001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hora, H.; Korn, G.; Eliezer, S.
Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabovemore » $$10^{20}~\\text{cm}~\\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).« less
Segmental front line dynamics of randomly pinned ferroelastic domain walls
NASA Astrophysics Data System (ADS)
Puchberger, S.; Soprunyuk, V.; Schranz, W.; Carpenter, M. A.
2018-01-01
Dynamic mechanical analysis (DMA) measurements as a function of temperature, frequency, and dynamic force amplitude are used to perform a detailed study of the domain wall motion in LaAlO3. In previous DMA measurements Harrison et al. [Phys. Rev. B 69, 144101 (2004), 10.1103/PhysRevB.69.144101] found evidence for dynamic phase transitions of ferroelastic domain walls in LaAlO3. In the present work we focus on the creep-to-relaxation region of domain wall motion using two complementary methods. We determine, in addition to dynamic susceptibility data, waiting time distributions of strain jerks during slowly increasing stress. These strain jerks, which result from self-similar avalanches close to the depinning threshold, follow a power-law behavior with an energy exponent ɛ =1.7 ±0.1 . Also, the distribution of waiting times between events follows a power law N (tw) ∝tw-(n +1 ) with an exponent n =0.9 , which transforms to a power law of susceptibility S (ω ) ∝ω-n . The present dynamic susceptibility data can be well fitted with a power law, with the same exponent (n =0.9 ) up to a characteristic frequency ω ≈ω* , where a crossover from stochastic DW motion to the pinned regime is well described using the scaling function of Fedorenko et al. [Phys. Rev. B 70, 224104 (2004), 10.1103/PhysRevB.70.224104].
Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment
NASA Astrophysics Data System (ADS)
Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel
2012-10-01
A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
A review of laser-plasma interaction physics of indirect-drive fusion
NASA Astrophysics Data System (ADS)
Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.
2013-10-01
The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.
Upper bound on three-tangles of reduced states of four-qubit pure states
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2017-06-01
Closed formulas for upper bounds on three-tangles of three-qubit reduced states in terms of three-qubit-invariant polynomials of pure four-qubit states are obtained. Our results offer tighter constraints on total three-way entanglement of a given qubit with the rest of the system than those used by Regula et al. [Phys. Rev. Lett. 113, 110501 (2014), 10.1103/PhysRevLett.113.110501 and Phys. Rev. Lett. 116, 049902(E) (2016)], 10.1103/PhysRevLett.116.049902 to verify monogamy of four-qubit quantum entanglement.
A look at the effect of sequence complexity on pressure destabilisation of DNA polymers.
Rayan, Gamal; Macgregor, Robert B
2015-04-01
Our previous studies on the helix-coil transition of double-stranded DNA polymers have demonstrated that molar volume change (ΔV) accompanying the thermally-induced transition can be positive or negative depending on the experimental conditions, that the pressure-induced transition is more cooperative than the heat-induced transition [Rayan and Macgregor, J Phys Chem B2005, 109, 15558-15565], and that the pressure-induced transition does not occur in the absence of water [Rayan and Macgregor, Biophys Chem, 2009, 144, 62-66]. Additionally, we have shown that ΔV values obtained by pressure-dependent techniques differ from those obtained by ambient pressure techniques such as PPC [Rayan et al. J Phys Chem B2009, 113, 1738-1742] thus shedding light on the effects of pressure on DNA polymers. Herein, we examine the effect of sequence complexity, and hence cooperativity on pressure destabilisation of DNA polymers. Working with Clostridium perfringes DNA under conditions such that the estimated ΔV of the helix-coil transition corresponds to -1.78 mL/mol (base pair) at atmospheric pressure, we do not observe the pressure-induced helix-coil transition of this DNA polymer, whereas synthetic copolymers poly[d(A-T)] and poly[d(I-C)] undergo cooperative pressure-induced transitions at similar ΔV values. We hypothesise that the reason for the lack of pressure-induced helix-coil transition of C. perfringens DNA under these experimental conditions lies in its sequence complexity. Copyright © 2015 Elsevier B.V. All rights reserved.
Demonstration of Flying Mirror with Improved Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji
2009-07-25
A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less
Self-excitation of single nanomechanical pillars
NASA Astrophysics Data System (ADS)
Kim, Hyun S.; Qin, Hua; Blick, Robert H.
2010-03-01
Self-excitation is a mechanism that is ubiquitous for electromechanical power devices such as electrical generators. This is conventionally achieved by making use of the magnetic field component in electrical generators (Nedic and Lipo 2000 IEEE/IAS Conf. Records (Rome, Italy) vol 1 pp 51-6), a good and widely visible example of which is the wind turbine farm (Muljadi et al 2005 J. Sol. Energy Eng. 127 581-7). In other words, a static force, such as the wind acting on rotor blades, can generate a resonant excitation at a certain mechanical frequency. For nanomechanical systems (Craighead 2000 Science 290 1532-5 Roukes 2001 Phys. World 14 25-31 Cleland 2003 Foundations of Nanomechanics (Berlin: Springer); Ayari et al 2007 Nano Lett. 7 2252-7 Koenig et al 2008 Nat. Nanotechnol. 3 482-4) such a self-excitation (SE) mechanism is also highly desirable, because it can generate mechanical oscillations at radio frequencies by simply applying a dc bias voltage. This is of great importance for low-power signal communication devices and detectors, as well as for mechanical computing elements. For a particular nanomechanical system—the single electron shuttle—this effect was predicted some time ago by Gorelik et al (Phys. Rev. Lett. 80 4526-9). Here, we use a nanoelectromechanical single electron transistor (NEMSET) to demonstrate self-excitation for both the soft and hard regimes, respectively. The ability to use self-excitation in nanomechanical systems may enable the detection of quantum mechanical backaction effects (Naik et al 2006 Nature 443 193-6) in direct tunneling, macroscopic quantum tunneling (Savelev et al 2006 New J. Phys. 8 105-15) and rectification (Pistolesi and Fazio 2005 Phys. Rev. Lett. 94 036806-4). All these effects have so far been overshadowed by the large driving voltages that had to be applied.
Influence of the Renner-Teller Coupling in CO+H Collision Dynamics
NASA Astrophysics Data System (ADS)
Ndengue, Steve Alexandre; Dawes, Richard
2017-06-01
Carbon monoxide is after molecular hydrogen the second most abundant molecule in the universe and an important molecule for processes occurring in the atmosphere, hydrocarbon combustion and the interstellar medium. The rate coefficients of CO in collision with dominant species like H, H_2, He, etc are necessary to understand the CO emission spectrum or to model combustion chemistry processes. The inelastic scattering of CO with H has been intensively studied theoretically in the past decades,^1 mostly using the so-called WKS PES^6 developed by Werner et al. or recently a modified version by Song et al.^2 Though the spectroscopic agreement of the WKS surface with experiment is quite good, so far the studies of scattering dynamics have neglected coupling to an electronic excited state. We present new results on a set of HCO surfaces of the ground and the excited Renner-Teller coupled electronic states^3 with the principal objective of studying the influence of the Renner-Teller coupling on the inelastic scattering of CO+H. Our calculations done using the MCTDH^4 algorithm in the 0-2 eV energy range allow evaluation of the contribution of the Renner-Teller coupling on the rovibrationally inelastic scattering and discuss the relevance and reliability of the calculations. References:} 1. N. Balakrishnan, M. Yan and A. Dalgarno, Astrophys. J. 568, 443 (2002); B.C. Shepler et al, Astron. & Astroph. 475, L15 (2007); L. Song et al, J. Chem. Phys. 142, 204303 (2015); K.M. Walker et al, Astroph. J. 811, 27 (2015). 2. L. Song et al, Astrophys. J. 813, 96 (2015). 3. H.-M. Keller et al, J. Chem. Phys. 105, 4983 (1996). 4. S. Ndengue, R. Dawes and H. Guo, J. Chem. Phys. 144, 244301 (2016). 5. M.H. Beck et al., Phys. Rep. 324, 1 (2000).
NASA Astrophysics Data System (ADS)
Singleton, John; Ferry, David K.
2009-08-01
As is now well known, graphene was made in 2004 by the 'simple' expedient of cleaving a single atomic layer from a sample of graphite using a piece of sticky tape [1, 2]. This discovery stimulated a whirlwind of activity; at last, predictions about the unique behaviour of band electrons in a two-dimensional honeycomb lattice made as early as the 1940s could be verified experimentally [1, 2]. Perhaps the most influential result has been the confirmation that the charge carriers in graphene behave in many ways as 'Dirac fermions', mimicing the dynamics of hyper-relativistic electrons, but with 1/300th of the velocity. Another important pairing of prediction and result has been the observation of carrier mobilities that have an unusual (in)dependence on impurity concentration, suggesting applications in high-speed ballistic transistors and even the eventual part replacement of silicon by graphene as the devices on chips become ever smaller [1, 2]. As a result of the considerable and rapid activity in this field, reviews of the properties of graphene have appeared; a good introduction to the early work at a level appropriate to students is given in [1], whilst [2] covers more recent progress at a more advanced level. However, the field is progressing so rapidly that even good reviews become dated by the time they appear in print, and new work and studies are appearing daily. In this issue, we have tried to pull together a group of papers which examine some of these new areas of work in graphene; these range from low-temperature physics to high electric field transport at room temperature [3]. Given the postulated future use of graphene in ultra-small devices, it is no surprise that quantum dots and wires feature heavily in the articles by Peres et al [4], Huang et al [5] and Sun and Xie [6]. Moreover, applications will inevitably involve graphene in contact with other materials and chemical systems, resulting in modifications to its electronic properties. For example, recent studies have shown that a high K dielectric solvent screens the impurities for room temperature transport in graphene, giving what is probably the intrinsic, phonon limited mobility at room temperature; this discovery and an analysis of the data form part of the article by Shishir and Ferry [7]. Continuing in the same vein, elsewhere Boukhvalov and Katsnelson [8] discuss chemical functionalization of graphene and Mucha-Kruczyński et al [9] covers the influence of the substrate. Finally, graphene has been referred to (somewhat optimistically!) as the 'mother of all carbon-based systems' [1]; graphite is a stack of graphene layers, whilst buckyballs and carbon nanotubes are wrapped-up and rolled-up graphene, respectively. Consequently, and following the discovery of graphene, there has been something of an experimental push to show that related physics may occur in graphite [10] and in organic conductors and other materials where the layers are very weakly coupled [11]; such phenomena had been expected by theoreticians for some years [11]. With this in mind, the article by Yaguchi and Singleton [12] reviews some of the field-induced states in graphite, in the hope that further cross-fertilization between graphene and its bulk relatives [10, 11] can occur. We hope that readers will enjoy these additions to the body of work that represents our understanding of graphene. References [1] Castro Neto A H et al 2006 Phys. World (November) p33 [2] Castro Neto A H et al 2009 Rev. Mod. Phys. 81 109 [3] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 344201 [4] Peres N M R et al 2009 J. Phys.: Condens. Matter 21 344202 [5] Huang L et al 2009 J. Phys.: Condens. Matter 21 344203 [6] Sun Q-f and Xie X C 2009 J. Phys.: Condens. Matter 21 344204 [7] Shishir R S and Ferry D K 2009 J. Phys.: Condens. Matter 21 232204 [8] Boukhvalov D W and Katsnelson M I 2009 J. Phys.: Condens. Matter 21 344205 [9] Mucha-Kruczyński M et al 2009 J. Phys.: Condens. Matter 21 344206 [10] Luk'yanchuk I 2009 Physica B 404 404 Kopelevich Y et al 2009 arXiv:0903.2369 [11] Tajima N et al 2009 Phys. Rev. Lett. 102 176403 [12] Yaguchi H and Singleton J 2009 J. Phys.: Condens. Matter 21 344207
Building Cultural Capability for Full-Spectrum Operations
2008-01-01
Mol, Born, Willemsen, & Van der Molen , 2005; Caligiuri & Day, 2000). In addition to these broad traits, antecedents to cross-cultural competence...510-517. 18 Mol, S. T., Born, M. P., Willemsen, M. E., & Van Der Molen , H. T. (2005). Predicting expatriate job performance for selection purposes: A...et al., 2003). In addition, self-regulation has been shown to be critical for adjustment (Matsumoto et al., 2003; van Oudenhoven, Mol, & Van der Zee
New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
2015-01-01
The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance. PMID:25620846
New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.
Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu
2014-12-10
The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. ( J. Chem. Phys. 2006 , 124 , 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys. 2004 , 121 , 10356; Chatterjee et al. J. Chem. Phys. 2005 , 122 , 024112; Peng et al. J. Chem. Phys. 2007 , 126 , 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001 , 115 , 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.
Totally Asymmetric Limit for Models of Heat Conduction
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-08-01
We consider one dimensional weakly asymmetric boundary driven models of heat conduction. In the cases of a constant diffusion coefficient and of a quadratic mobility we compute the quasi-potential that is a non local functional obtained by the solution of a variational problem. This is done using the dynamic variational approach of the macroscopic fluctuation theory (Bertini et al. in Rev Mod Phys 87:593, 2015). The case of a concave mobility corresponds essentially to the exclusion model that has been discussed in Bertini et al. (J Stat Mech L11001, 2010; Pure Appl Math 64(5):649-696, 2011; Commun Math Phys 289(1):311-334, 2009) and Enaud and Derrida (J Stat Phys 114:537-562, 2004). We consider here the convex case that includes for example the Kipnis-Marchioro-Presutti (KMP) model and its dual (KMPd) (Kipnis et al. in J Stat Phys 27:6574, 1982). This extends to the weakly asymmetric regime the computations in Bertini et al. (J Stat Phys 121(5/6):843-885, 2005). We consider then, both microscopically and macroscopically, the limit of large externalfields. Microscopically we discuss some possible totally asymmetric limits of the KMP model. In one case the totally asymmetric dynamics has a product invariant measure. Another possible limit dynamics has instead a non trivial invariant measure for which we give a duality representation. Macroscopically we show that the quasi-potentials of KMP and KMPd, which are non local for any value of the external field, become local in the limit. Moreover the dependence on one of the external reservoirs disappears. For models having strictly positive quadratic mobilities we obtain instead in the limit a non local functional having a structure similar to the one of the boundary driven asymmetric exclusion process.
NASA Astrophysics Data System (ADS)
Kobayashi, Kaori; Maki, Hiroki; Yamamoto, Takuya; Hara, Masanori; Hatano, Yuji; Ozeki, Hiroyuki
2014-06-01
Tritium is a radioactive isotope of hydrogen. Tritium released into natural enviroment is said to be converted into mostly HTO. The detection of HTO is important from the viewpoint of basic science as well as its radioactivity. Spectroscopy is a good tool for detection, however, high-resolution spectroscopy studies are still limited. The microwave study were carried out and the molecular constants of the ground state were determined. All fundamental ν_1, ν_2 and the ν_3 bands of HTO were reported. At 1.38 micron region, overtone and combination bands are expected. In this study, we prepared a new double wall cell for safe handling of highly concentrated tritiated water and carried out the near-infrared measurement. More than 100 transitions were observed and most of them were assigned to belong to the 2ν_3 band based on the previous quantum chemical calculations. We will report the current status of the analysis. P. Helminger, F. C. De Lucia, W. Gordy, P. A. Staats and H. W. Morgan, Phys. Rev. A, 10, 1072 (1974). S. D. Cope, D. K. Russell, H. A. Fry, L. H. Jones, and J. E. Barefield, J. Mol. Spectrosc., 127, 464 (1988). P. P. Cherrier, P. H. Beckwith, and J. Reid, J. Mol. Spectrosc., 121, 69 (1987). M. Tine, D. Kobor, I. Sakho, and L. H. Coudert, J. Mod. Phys., 3, 1945 (2012). M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, J. Mol. Spectrosc., 289, 35 (2013).
GERDA: Results and perspectives
NASA Astrophysics Data System (ADS)
Cattadori, Carla Maria; GERDA Collaboration
2015-08-01
From November 2011 to May 2013, GERDA searched for 0 νββ and 2 νββ of 76Ge, operating bare in a liquid argon bath Ge detectors enriched up to ˜ 87% in 76Ge (enrGe), for a total mass of ˜ 18 kg of enrGe. A total exposure of 21.6 kgṡy, of enrGe was collected, and the existing claim [H. V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198] of 0 νββ evidence was scrutinized. GERDA didn't observe any peak at Qββ or in its immediate surroundings; the limit of T1/20ν > 2.1 ṡ1025 yr (90 % C.L.) is derived [GERDA collaboration: M. Agostini et al., Phys. Rev. Lett. 111, (2013) 122503]. When combining the GERDA limit with those of past HdM [HdM collaboration: H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147] and Igex [Igex Collaboration: C. E. Aalseth et al., Phys. Rev. D 65 (2002) 092007] experiments, the lower limit of 3.0 ṡ1025 yr (90 % C.L.) on T1/20ν is achieved. The background index (BI) at Qββ (˜ 2039 keV) is ˜ 2.0 ṡ10-2 cts / (keV ṡkg ṡyr) and ˜ 1.0 ṡ10-2 cts / (keV ṡkg ṡyr), prior and after the pulse shape cuts respectively. Thanks to the low background the 2 νββ dominates the energy spectrum below 1800 keV: the Tν1/2 2 = (1.84-0.10+0.14) ṡ1021y was derived on a first data set corresponding to 5.1 kgṡyr exposure [GERDA collaboration: M. Agostini et al., J. Phys. G 40 (2013), 035110]. The ongoing experimental program, to double the exposed mass by adding new enrGe detectors with improved pulse shape discrimination features, and to implement the liquid argon scintillation light readout is outlined.
Improved Analytical Potentials for the a ^3Σu+ and X ^1Σg+ States of {Cs_2}
NASA Astrophysics Data System (ADS)
Baldwin, Jesse; Le Roy, Robert J.
2012-06-01
Recent studies of the collisional properties of ultracold Cs atoms have led to a renewed interest in the singlet and triplet ground-state potential energy functions of Cs_2. Coxon and Hajigeorgiou recently determined an analytic potential function for the X ^1Σ_g^+ state that accurately reproduces a large body of spectroscopic data that spanned 99.45% of the potential well. However, their potential explicitly incorporates only the three leading inverse-power terms in the long-range potential, and does not distinguish between the three asymptotes associated with the different Cs atom spin states. Similarly, Xie et al. have reported two versions of an analytic potential energy function for the a ^3Σ_u^+ state that they determined from direct potential fits to emission data that spanned 93 % of its potential energy well. However, the tail of their potential function model was not constrained to have the inverse-power-sum form required by theory. Moreover, a physically correct description of cold atom collision phenomena requires the long-range inverse-power tails of these two potentials to be identical, and they are not. Thus, these functions cannot be expected to describe cold atom collision properties correctly. The present paper describes our efforts to determine improved analytic potential energy functions for these states that have identical long-range tails, and fully represent all of the spectroscopic data used in the earlier worka,b,c as well as photoassociation data that was not considered there and experimental values of the collisional scattering lengths for the two states. J. A. Coxon and P. Hajigeorgiou, J. Chem. Phys. 132, 09105 (2010). F. Xie et al. J. Chem. Phys. 130 051102 (2009). F. Xie et al. J. Chem. Phys. 135, 024303 (2011) J. G. Danzl et al., Science, 321, 1062 (2008). C. Chin, et al., Phys. Rev. Lett. 85, 2717 (2000) P. J. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev. Lett. 85, 2721 (2000)
A quasi-classical study of energy transfer in collisions of hyperthermal H atoms with SO2 molecules.
da Silva, Ramon S; Garrido, Juan D; Ballester, Maikel Y
2017-08-28
A deep understanding of energy transfer processes in molecular collisions is at central attention in physical chemistry. Particularly vibrational excitation of small molecules colliding with hot light atoms, via a metastable complex formation, has shown to be an efficient manner of enhancing reactivity. A quasi-classical trajectory study of translation-to-vibration energy transfer (T-V ET) in collisions of hyperthermal H( 2 S) atoms with SO 2 (X̃ 1 A ' ) molecules is presented here. For such a study, a double many-body expansion potential energy surface previously reported for HSO 2 ( 2 A) is used. This work was motivated by recent experiments by Ma et al. studying collisions of H + SO 2 at the translational energy of 59 kcal/mol [J. Ma et al., Phys. Rev. A 93, 040702 (2016)]. Calculations reproduce the experimental evidence that during majority of inelastic non-reactive collision processes, there is a metastable intermediate formation (HOSO or HSO 2 ). Nevertheless, the analysis of the trajectories shows that there are two distinct mechanisms in the T-V ET process: direct and indirect. Direct T-V processes are responsible for the high population of SO 2 with relatively low vibrational excitation energy, while indirect ones dominate the conversion from translational energy to high values of the vibrational counterpart.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion
NASA Astrophysics Data System (ADS)
Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.
2015-06-01
The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.
Sharma, Vikash; Chotia, Chanderbhan; Tarachand; Ganesan, Vedachalaiyer; Okram, Gunadhor S
2017-07-21
Correction for 'Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles' by Vikash Sharma et al., Phys. Chem. Chem. Phys., 2017, 19, 14096-14106.
Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H
2016-03-21
Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.
Reactive Transport of the Uranyl Ion in Soils, Sediments, and Groundwater Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Ilton, Eugene S.; Liu, Chongxuan
2013-05-16
Uranium is a ubiquitous trace component in rocks ranging from 1.2 to 1.3 µg g-1 in sedimentary rocks, 2.2 to 15 µg g-1 in granites, and 20 to 120 µg g-1 in phosphates (Langmuir, 1997; Plant et al., 1999). Uranium (U) is released to natural waters in dilute concentrations (generally < 10-7 mole L-1) from the weathering of these sources, with water concentrations in uraniferous geologic terrains, such as the southwestern U.S. (USGS, 2011), being higher (~ 10-6.5 mol L-1). Elevated water-borne concentrations are associated with the weathering of natural ore bodies [~10-6 mol L-1; e.g, (Payne and Airey, 2006)],more » the extraction and mining of U for armaments (Jiang and Aschner, 2009; WHO, 2001) and nuclear fuels [10-6 to 10-3 mol L-1; (Abdelouas et al., 1999)], and the disposal of waste solids and liquids from nuclear fuels reprocessing and arms production [~ 10-6 to 10-2 mol L-1; e.g., (Wan et al., 2009; Zachara et al., 2007)]. The form of U present in natural waters at high concentration is generally the uranyl ion [e.g., UO22+] which is quite soluble. Groundwater in many parts of the world contains dissolved U originating from natural and anthropogenic sources (ATSDR, 2011; EFSA, 2009). Low levels of dissolved U in drinking water are considered a health concern, causing renal and other effects (Kurttio et al., 2002; Kurttio et al., 2005; Limson Zamora et al., 1998; Nriagu et al., 2012; Raymond-Whish et al., 2007; Selden et al., 2009). The U.S. Environmental Protection Agency has established a regulatory drinking water standard of 30 µg L-1 (1.26 x 10-7 mol L-1) or 30 pCi L-1, whichever is exceeded first. The World Health Organization has recommended an even lower drinking water standard of 15 µg L-1 [6.3 x 10-8 mol L-1; (WHO, 2005)]. Human exposure to U through drinking water is expected to rise as world-wide reliance on groundwater sources increase (ESS, 2010).« less
NASA Astrophysics Data System (ADS)
Ghiorso, M. S.; Cutler, I.; Nevins, D.; Spera, F. J.
2009-12-01
Equilibrium Molecular Dynamics (MD) simulations are applied to molten CaAl2Si2O8 using a Coulomb-Born-Mayer-van der Waals pair potential form and parameters from Matsui (1996, GRL 23:395). Experiments were performed in the microcanonical ensemble (NEV) using 8000 atoms, a 1 fs time step, and simulation durations of 50 ps. Computations were carried out every 500 K over a temperature range of 2500 - 5000 K along 21 isochores to yield a grid of 141 state points spanning the pressure range 0-800 GPa. Atomic coordination statistics are determined by counting nearest neighbor configurations up to a cutoff distance defined by the first minima of the pair correlation function. A thermodynamic model (and EOS) for this liquid is developed from the MD simulation results by combining the Rosenfeld-Tarazona (1998, Mol Phys 95:141) potential energy-temperature scaling law with the Universal EOS (1986, J Phys C, 19:L467). The resulting model is used to estimate thermodynamic properties and the sound speed of the liquid near zero pressure and these compare favorably to physical experiments. By contrast to our previous work (DOI: 10.1016/j.gca.2009.08.012), which utilized an alternate pair potential, no structural phase transition is required to thermodynamically model these results — a single parameterization describes the properties of the system over the entire range of ~4-fold compression. Our analysis indicates the existence of polyamorphism with a critical point at ~0.6 GPa and ~3000 K. A modeled Hugoniot is consistent with the low-pressure shock experiments of Rigden et al. (JGR 94:9508) but inconsistent with the more recent measurements of Asimow and Ahrens (EOS 89,MR32B-04). The latter experiments are matched with a model isentrope emanating from just above the zero pressure melting point of anorthite, which also coincides with the initial conditions of the shock. The MD simulations reveal that near zero-pressure, CaAl2Si2O8 liquid is dominated by Si in tetrahedral coordination with oxygen. Pentahedral coordinated Si attains a maximum at ~25 GPa, and at higher pressures octahedral and higher-order O-Si structures dominate.
Relativistic quantum private database queries
NASA Astrophysics Data System (ADS)
Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou
2015-04-01
Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.
Experimental noise-resistant Bell-inequality violations for polarization-entangled photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan
2006-06-15
We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].
Superconducting Resonators with Parasitic Electromagnetic Environments
NASA Astrophysics Data System (ADS)
Hornibrook, John; Mitchell, Emma; Reilly, David
2012-02-01
Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).
1 D analysis of Radiative Shock damping by lateral radiative losses
NASA Astrophysics Data System (ADS)
Busquet, Michel; Audit, Edouard
2008-11-01
We have demonstrated the effect of the lateral radiative losses in radiative shocks propagative in layered quasi-planar atmospheres.[1,2] The damping of the precursor is sensitive to the fraction of self-emitted radiation reflected by the walls (called albedo) We have given recently an experimental determination of the wall albedo.[2] For parametric analysis of this effect, we implement lateral losses in the 1D hydro-rad code MULTI [3] and compared results with 2D simulations. [1] S.Leygnac, et al., Phys. Plasmas 13, 113301 (2006) [2] M.Busquet, et al, High Energy Density Plasmas 3, 8-11 (2007); M.Gonzalez, et al, Laser Part. Beams 24, 1-6 (2006) [3] Ramis et al, Comp. Phys. Comm., 49, 475 (1988)
Kinetic theory of turbulence for parallel propagation revisited: Formal results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H., E-mail: yoonp@umd.edu
2015-08-15
In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis bymore » considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.« less
Highly Regioregular Polythiophenes for Magneto-Optical Applications
2010-07-01
Macromolecules, 2007, 40, 8142-8150 Lieven De Cremer et.al., Macromolecules, 2008, 41, 568-578 Lieven De Cremer et.al., Macromolecules, 2008, 41, 591-598 Marnix...Vangheluwe et.al., Macromolecules, 2008, 41, 1041-1044 David Cornelis et.al., Chem. Mater. 2008, 20, 2133-2143 Palash Gangopadhyay et.al., J. Phys
Pseudogap in normal underdoped phase of Bi2212: LDA + DMFT + ãk
NASA Astrophysics Data System (ADS)
Nekrasov, I. A.; Kuchinskii, E. Z.; Pchelkina, Z. V.; Sadovskii, M. V.
2007-09-01
Pseudogap phenomena are observed for normal underdoped phase of different high- Tc cuprates. Among others Bi 2Sr 2CaCu 2O 8- δ (Bi2212) compound is one of the most studied experimentally [A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75 (2003) 473; J.C. Campuzano, M.R. Norman, M. Randeria, in: K.H. Bennemann, J.B. Ketterson (Eds.), Physics of Superconductors, vol. 2, Springer, Berlin, 2004, p. 167; J. Fink et al., cond-mat/0512307; X.J. Zhou et al., cond-mat/0604284]. To describe pseudogap regime in Bi2212, we employ novel generalized DMFT + Σk approach [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, doi:10.1016/j.physc.2007.03.367]. This approach gives possibility to preserve conventional dynamical mean-field theory (DMFT) equations [A. Georges et al., Rev. Mod. Phys. 68 (1996) 13] and include an additional (momentum dependent) self-energy Σk. In the present case, Σk describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations [M.V. Sadovskii, Physics-Uspekhi 44 (2001) 515, cond-mat/0408489]. The effective single impurity problem in the DMFT + Σk is solved by numerical renormalization group (NRG) [R. Bulla, A.C. Hewson, Th. Pruschke, J. Phys. Cond. Mat. 10 (1998) 8365; R. Bulla, Phys. Rev. Lett. 83 (1999) 136]. To take into account material specific properties of two neighboring CuO 2 layers of Bi2212 we employ local density approximation (LDA) to calculate necessary model parameters, e.g. the values of intra- and interlayer hopping integrals between Cu-sites. Onsite Coulomb interaction U for x2- y2 orbital was calculated in constrained LDA method [O. Gunnarsson et al., Phys. Rev. B 39 (1989) 1708]. The value of pseudogap potential Δ was obtained within DMFT(NRG) [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, doi:10.1016/j.physc.2007.03.367]. Here, we report theoretical LDA + DMFT + Σk quasiparticle bands dispersion, Fermi surface (FS) and angular resolved photoemission (ARPES) spectra accounting for pseudogap and bilayer splitting effects for normal underdoped Bi2212 ( δ = 0.15). We show that LDA-calculated value of bilayer splitting (BS) is too small to describe experimentally observed peak-dip-hump structure. Fermi surface in presence of the pseudogap fluctuations is almost insensitive to the BS value. Results obtained are in good agreement with recent ARPES experiments.
Evidence for negative thermal expansion in the superconducting precursor phase SmFeAsO
NASA Astrophysics Data System (ADS)
Zhou, H. D.; Sarte, P. M.; Conner, B. S.; Balicas, L.; Wiebe, C. R.; Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F.
2018-03-01
The fluorine-doped rare-earth iron oxypnictide series SmFeAsO1-x F x (0 ≤slant x ≤slant 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies (Margadonna et al 2009 Phys. Rev. B. 79 014503), the parent compound SmFeAsO exhibits a tetragonal-to-orthorhombic structural distortion at T{S} = 130 K which is rapidly suppressed by x ≃ 0.10 deep within the superconducting dome. The change in unit cell symmetry is followed by a previously unreported magnetoelastic distortion at 120 K. The temperature dependence of the thermal expansion coefficient αV reveals a rich phase diagram for SmFeAsO: (i) a global minimum at 125 K corresponds to the opening of a spin-density wave instability as measured by pump-probe femtosecond spectroscopy (Mertelj et al 2010 Phys. Rev. B 81 224504) whilst (ii) a global maximum at 110 K corresponds to magnetic ordering of the Sm and Fe sublattices as measured by magnetic x-ray scattering (Nandi et al 2011 Phys. Rev. B 84 055419). At much lower temperatures than T{N} , SmFeAsO exhibits a significant negative thermal expansion on the order of -40 ppm · K-1 in contrast to the behaviour of other rare-earth oxypnictides such as PrFeAsO (Kimber et al 2008 Phys. Rev. B 78 140503) and the actinide oxypnictide NpFeAsO (Klimczuk et al 2012 Phys. Rev. B 85 174506) where the onset of αV < 0 only appears in the vicinity of magnetic ordering. Correlating this feature with the temperature and doping dependence of the resistivity and the unit cell parameters, we interpret the negative thermal expansion as being indicative of the possible condensation of itinerant electrons accompanying the opening of a SDW gap, consistent with transport measurements (Tropeano et al 2009 Supercond. Sci. Technol. 22 034004).
Isotonic similarities in isotope shifts from Hg to Ra.
NASA Astrophysics Data System (ADS)
Stroke, H. H.
2003-04-01
Isotope shifts (IS) in atomic spectra of heavy elements reflect largely the variation in
Villanueva-Cab, J; Anta, J A; Oskam, G
2016-05-28
Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.
Theory of the inverse spin galvanic effect in quantum wells
NASA Astrophysics Data System (ADS)
Maleki Sheikhabadi, Amin; Miatka, Iryna; Sherman, E. Ya.; Raimondi, Roberto
2018-06-01
The understanding of the fundamentals of spin and charge densities and currents interconversion by spin-orbit coupling can enable efficient applications beyond the possibilities offered by conventional electronics. For this purpose we consider various forms of the frequency-dependent inverse spin galvanic effect in semiconductor quantum wells and epilayers taking into account the cubic in the electron momentum spin-orbit coupling in the Rashba and Dresselhaus forms, concentrating on the current-induced spin polarization (CISP). We find that including the cubic terms qualitatively explains recent findings of the CISP in InGaAs epilayers being the strongest if the internal spin-orbit coupling field is the smallest and vice versa [Norman et al., Phys. Rev. Lett. 112, 056601 (2014), 10.1103/PhysRevLett.112.056601; Luengo-Kovac et al., Phys. Rev. B 96, 195206 (2017), 10.1103/PhysRevB.96.195206], in contrast to the common understanding. Our results provide a promising framework for the control of spin transport in future spintronics devices.
Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Flint, Christopher; Vahala, George
2018-01-01
The entropic lattice Boltzmann algorithm of Karlin et al. [Phys. Rev. E 90, 031302 (2014), 10.1103/PhysRevE.90.031302] is partially extended to magnetohydrodynamics, based on the Dellar model of introducing a vector distribution for the magnetic field. This entropic ansatz is now applied only to the scalar particle distribution function so as to permit the many problems entailing magnetic field reversal. A 9-bit lattice is employed for both particle and magnetic distributions for our two-dimensional simulations. The entropic ansatz is benchmarked against our earlier multiple relaxation lattice-Boltzmann model for the Kelvin-Helmholtz instability in a magnetized jet. Other two-dimensional simulations are performed and compared to results determined by more standard direct algorithms: in particular the switch over between the Kelvin-Helmholtz or tearing mode instability of Chen et al. [J. Geophys. Res.: Space Phys. 102, 151 (1997), 10.1029/96JA03144], and the generalized Orszag-Tang vortex model of Biskamp-Welter [Phys. Fluids B 1, 1964 (1989), 10.1063/1.859060]. Very good results are achieved.
Scanning Gate Microscopy on a Quantum Hall Interferometer
NASA Astrophysics Data System (ADS)
Martins, Frederico; Hackens, Benoit; Dutu, Augustin; Bayot, Vincent; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier; Pala, Marco
2010-03-01
We perform scanning gate microscopy (SGM) experiments [1] at very low temperature (down to 100 mK) in the Quantum Hall regime on a mesoscopic quantum ring (QR) patterned in an InGaAs/InAlAs heterostructure. Close to integer filling factors ν=6, 8 and 10,the magnetoresistance of the QR is decorated with fast periodic oscillations, with a magnetic field period close to AB/ν, where AB is the Aharonov-Bohm period. We analyze the data in terms of electron tunneling between edge states trapped inside the QR and those transmitted through the QR openings [2]. SGM images reveal that the tip-induced perturbation of the electron confining potential gives rise to a rich pattern of narrow and wide concentric conductance fringes in the vicinity of the QR. [1] F. Martins et al. Phys. Rev. Lett. 99 136807 (2007); B. Hackens et al. Nat. Phys. 2 826 (2006). [2] B. Rosenow and B. I. Halperin, Phys. Rev. Lett. 98, 106801 (2007).
NASA Astrophysics Data System (ADS)
Rosenberg, Z.; Brar, N. S.
1995-11-01
A recent article by Dandekar, Abbate, and Frankel [J. Appl. Phys. 76, 4077 (1994)] reviews existing data on high-pressure properties of aluminum nitride (AlN) in an effort to build an equation of state for this material. A rather large portion of that article is devoted to the shear strength of AlN and, in particular, to our data of 1991 with longitudinal and lateral stress gauges [Z. Rosenberg, N. S. Brar, and S. J. Bless, J. Appl. Phys. 70, 167 (1991)]. Since our highest data point has an error of 1 GPa, much of the discussion and conclusions of Dandekar and co-workers are not relevant once this error in data reduction is corrected. We also discuss the relevance of our shear strength data for various issues, such as the phase transformation of AlN at 20 GPa and the general shape of Hugoniot curves for brittle solids.
Breathing Mode in Complex Plasmas
NASA Astrophysics Data System (ADS)
Fujioka, K.; Henning, C.; Ludwig, P.; Bonitz, M.; Melzer, A.; Vitkalov, S.
2007-11-01
The breathing mode is a fundamental normal mode present in Coulomb systems, and may have utility in identifying particle charge and the Debye length of certain systems. The question remains whether this mode can be extended to strongly coupled Yukawa balls [1]. These systems are characterized by particles confined within a parabolic potential well and interacting through a shielded Coulomb potential [2,3]. The breathing modes for a variety of systems in 1, 2, and 3 dimensions are computed by solving the eigenvalue problem given by the dynamical (Hesse) matrix. These results are compared to theoretical investigations that assume a strict definition for a breathing mode within the system, and an analysis is made of the most fitting model to utilize in the study of particular systems of complex plasmas [1,4]. References [1] T.E. Sheridan, Phys. of Plasmas. 13, 022106 (2006)[2] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[3] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[4] C. Henning et al., submitted for publication
Scaling of Guide-Field Magnetic Reconnection using Anisotropic Fluid Closure
NASA Astrophysics Data System (ADS)
Ohia, O.; Egedal, J.; Lukin, V. S.; Daughton, W.; Le, A.
2012-10-01
Collisionless magnetic reconnection, a process linked to solar flares, coronal mass ejections, and magnetic substorms, has been widely studied through fluid models and fully kinetic simulations. While fluid models often reproduce the fast reconnection rate of fully kinetic simulations, significant differences are observed in the structure of the reconnection regions [1]. However, guide-field fluid simulations implementing new equations of state that accurately account for the anisotropic electron pressure [2] reproduce the detailed reconnection region observed in kinetic simulations [3]. Implementing this two-fluid simulation using the HiFi framework [4], we study the force balance of the electron layers in guide-field reconnection and derive scaling laws for their characteristics.[1ex] [1] Daughton W et al., Phys. Plasmas 13, 072101 (2006).[0ex] [2] Le A et al., Phys. Rev. Lett. 102, 085001 (2009). [0ex] [3] Ohia O, et al., Phys. Rev. Lett. In Press (2012).[0ex] [4] Lukin VS, Linton MG, Nonlinear Proc. Geoph. 18, 871 (2011)
Reliability of III-V electronic devices -- the defects that cause the trouble
NASA Astrophysics Data System (ADS)
Pantelides, Sokrates T.
2012-02-01
Degradation of electronic devices by hot electrons is universally attributed to the generation of defects, but the mechanisms for defect generation and the specific nature of the pertinent defects are not known for most systems. Here we describe three recent case studies [1] in III-V high-electron-mobility transistors that illustrate the power of combining density functional calculations and experimental data to identify the pertinent defects and associated degradation mechanisms. In all cases, benign pre-existing defects are either depassivated (irreversible degradation) or transformed to a metastable state (reversible degradation). This work was done in collaboration with R.D. Schrimpf, D.M. Fleetwood, Y. Puzyrev, X. Shen, T. Roy, S. DasGupta, and B.R. Tuttle. Devices were provided by D.F. Brown, J. Speck and U. Mishra, and by J. Bergman and B. Brar. [4pt] [1] Y. S. Puzyrev et al., Appl. Phys. Lett. 96, 053505 (2010); T. Roy et al., Appl. Phys. Lett. 96, 133503 (2010); X. Shen et al., J. Appl. Phys. 108, 114505 (2010).
Cascade Model of Ionization Multiplication of Electrons in Glow Discharge Plasma
NASA Astrophysics Data System (ADS)
Romanenko, V. A.; Solodky, S. A.; Kudryavtsev, A. A.; Suleymanov, I. A.
1996-10-01
For determination of EDF in non-uniform fields a Monte-Carlo simulation(Tran Ngoc An et al., J.Phys.D: Appl. Phys. 10, 2317 (1977))^,(J.P. Boeuf et al., Phys.D: Appl.Phys. 15, 2169 (1982)) is applied. As alternative multi-beam cascade model(H.B. Valentini, Contrib.Plasma Phys. 27, 331 (1987)) is offered. Our model eliminates defects of that model and enables to determine EDF of low pressure plasma in non-uniform fields. A cascade model (with EDF dividing in monoenergetic electron groups) for arbitrary electric potential profile was used. Modeling was carried out for electron forward scattering only, constant electron mean free path; ionization was considered only. The equation system was solved for the region with kinetic energies more than ionization energy. The boundary conditions (on ionization energy curve) take into account electron transitions from higher-lying level in the less than ionization energy region and secondary electron production. The problem solution in analytical functions was obtained. The insertion of additional processes does not make significant difficulties. EDF and electrokinetical parameters in helium from numerical calculations are well agreed with above-mentioned authors. Work was carried out under RFFI (project N 96-02-18417) support.
NASA Astrophysics Data System (ADS)
Jansen, Paul; Semeria, Luca; Scheidegger, Simon; Merkt, Frederic
2015-06-01
Having only three electrons, He_2^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculation of rovibrational energies in He_2^+ do not include relativistic or QED corrections but claim an accuracy of about 120 MHz The available experimental data on He_2^+, though accurate to 300 MHz, are not precise enough to rigorously test these calculations or reveal the magnitude of the relativistic and QED corrections. We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He_2^+ ion. To this end we have produced samples of helium molecules in the a ^3σ_u^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser systems is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2^+ with unprecedented accuracy, to determine the size of the relativistic and QED corrections by comparison with the results of Ref.~a and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa~et al. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).
Universal formulation of excitonic linear absorption spectra in all semiconductor microstructures
NASA Astrophysics Data System (ADS)
Lefebvre, Pierre; Christol, Philippe; Mathieu, Henry
1995-01-01
We present a generalization of the well-known exciton absorption calculations of Elliott [Phys. Rev. 108, 1384 (1957)], in the 3-dimensional case, and of Shinada and Sugano [J. Phys. Soc. Japan 21, 1936 (1966)], for 2-dimensional media: We calculate the optical absorption spectra of bound and unbound exciton states, by using a metric space with a noninteger dimension α (1 < α), obtaining almost exactly the same theoretical lineshapes as those resulting from accurate but costly numerical approaches [Chuang et al. Phys. Rev. B, 43, 1500 (1991); Benner and Haug, Phys. Rev. B 47, 15750 (1993)].
TW-class hollow-fiber compressor with tunable pulse duration (Conference Presentation)
NASA Astrophysics Data System (ADS)
Boehle, Frederik; Vernier, Aline; Kretschmar, Martin; Jullien, Aurélie; Kovacs, Mate; Romero, Rosa M.; Crespo, Helder M.; Simon, Peter; Nagy, Tamas; Lopez-Martens, Rodrigo
2017-05-01
CEP-stable few-cycle light pulses find numerous applications in attosecond science, most notably the production of isolated attosecond pulses for studying ultrafast electronic processes in matter [1]. Scaling up the pulse energy of few-cycle pulses could extend the scope of applications to even higher intensity processes, such as attosecond dynamics of relativistic plasma mirrors [2]. Hollow fiber compressors are widely used to produce few-cycle pulses with excellent spatiotemporal quality [3], where octave-spanning broadened spectra can be temporally compressed to sub-2-cycle duration [4,5]. Several tricks help increase the output energy: using circularly polarized light [6], applying a pressure gradient along the fiber [7] or even temporal multiplexing [8]. The highest pulse energy of 5 mJ at 5 fs pulse duration was achieved by using a hollow fiber in pressure gradient mode [9] but in this case no CEP stabilization was achieved, which is crucial for most applications of few-cycle pulses. Nevertheless, it did show that in order to scale up the peak power, the effective length and area mode of the fiber had to be increased proportionally, thereby requiring the use of longer waveguides with larger apertures. Thanks to an innovative design utilizing stretched flexible capillaries [10], we recently demonstrated the generation CEP-stable sub-4fs pulses with 3mJ energy using a 2m length 450mm bore hollow fiber in pressure gradient mode [11]. Here, we show that a stretched hollow-fiber compressor operated in pressure gradient mode can generate relativistic intensity pulses with continuously tunable waveform down to almost a single cycle (3.5fs at 750nm central wavelength). The pulses are characterized online using an integrated d-scan device directly under vacuum [12]. While the pulse shape is tuned, all other pulse characteristics, such as energy, pointing stability and focal distribution remain the same on target, making it possible to explore the dynamics of plasma mirrors using controllable relativistic-intensity light waveforms at 1kHz. [1] Krausz and Ivanov, Rev. Mod. Phys. 81, 163 (2009). [2] Borot et al., Nature Phys. 8, 417-421 (2012). [3] Nisoli et al., Appl. Phys. Lett. 68, 2793-2795 (1996). [4] Park et al., Opt. Lett. 34, 2342-2344 (2009). [5] Schweinberger et al., Opt. Lett. 37, 3573-5 (2012). [6] Chen et al., Opt. Lett. 34, 1588-1590 (2009). [7] Suda et al., Appl. Phys. Lett. 86, 111116 (2005). [8] Jacqmin et al., Opt. Lett. 40, 709-712 (2015) [9] Bohman et al., Opt. Lett. 35, 1887-9 (2010). [10] Nagy et al., Appl. Opt. 47, 3264-3268 (2008). [11] Boehle et al., Las. Phys. Lett. 11, 095401 (2014). [12] Miranda et al., Opt. Express 20, 18732-43 (2012)
Designing symmetric polar direct drive implosions on the Omega laser facility
NASA Astrophysics Data System (ADS)
Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H.
2014-04-01
Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153-157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P2) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P2 around bang time and 33% more yield.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.;
2016-01-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(+5)(-3) solar M; and 30(+3)(-4) solar M; (where errors correspond to 90 symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate is less than 0.65 and a secondary spin estimate is less than 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
NASA Astrophysics Data System (ADS)
Hodges, James N.; Siller, Brian; McCall, Benjamin J.
2015-06-01
The technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS, has been used to great effect to precisely and accurately measure a variety of molecular ion transitions from species such as H_3^+, CH_5^+, HeH^+, and HCO^+, achieving MHz or in some cases sub-MHz uncertainty. It is a powerful technique, but a complete theoretical understanding of the complex NICE-OHVMS lineshape is needed to fully unlock its potential. NICE-OHVMS is the direct result of the combination of the highly sensitive spectroscopic technique Noise Immune Cavity Enhanced Optical Heterodyne Molecular Spectroscopy(NICE-OHMS) with Velocity Modulation Spectroscopy(VMS), applying the most sensitive optical detection method with ion species selectivity. The theoretical underpinnings of NICE-OHMS lineshapes are well established, as are those of VMS. This presentation is the logical extension of those two preceding bodies of work. Simulations of NICE-OHVMS lineshapes under a variety of conditions and fits of experimental data to the model are presented. The significance and accuracy of the various inferred parameters, along with the prospect of using them to extract additional information from observed transitions, are discussed. J.~N. Hodges, et al. J. Chem. Phys. (2013), 139, 164201. A.~J. Perry, et al. J. Chem. Phys. (2014), 141, 101101. K.~N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1-6. F.~M. Schmidt, et al. J. Opt. Soc. Amer. A (2008), 24, 1392--1405. J.~W. Farley, J. Chem. Phys. (1991), 95, 5590--5602.
Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D. A.; Finn, J. M.
2002-11-01
The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.
Low-energy effective Hamiltonians for correlated electron systems beyond density functional theory
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Miyake, Takashi; Imada, Masatoshi; Biermann, Silke
2017-08-01
We propose a refined scheme of deriving an effective low-energy Hamiltonian for materials with strong electronic Coulomb correlations beyond density functional theory (DFT). By tracing out the electronic states away from the target degrees of freedom in a controlled way by a perturbative scheme, we construct an effective Hamiltonian for a restricted low-energy target space incorporating the effects of high-energy degrees of freedom in an effective manner. The resulting effective Hamiltonian can afterwards be solved by accurate many-body solvers. We improve this "multiscale ab initio scheme for correlated electrons" (MACE) primarily in two directions by elaborating and combining two frameworks developed by Hirayama et al. [M. Hirayama, T. Miyake, and M. Imada, Phys. Rev. B 87, 195144 (2013), 10.1103/PhysRevB.87.195144] and Casula et al. [M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T. Miyake, A. J. Millis, and S. Biermann, Phys. Rev. Lett. 109, 126408 (2012), 10.1103/PhysRevLett.109.126408]: (1) Double counting of electronic correlations between the DFT and the low-energy solver is avoided by using the constrained G W scheme; and (2) the frequency dependent interactions emerging from the partial trace summation are successfully separated into a nonlocal part that is treated following ideas by Hirayama et al. and a local part treated nonperturbatively in the spirit of Casula et al. and are incorporated into the renormalization of the low-energy dispersion. The scheme is favorably tested on the example of SrVO3.
Review of high pressure phases of calcium by first-principles calculations
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Nagara, H.; Suzuki, N.; Tsuchiya, J.; Tsuchiya, T.
2010-03-01
We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P43212 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm(00) [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P43212 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4/mcm(00) (134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm(00) above 495 GPa.
NASA Astrophysics Data System (ADS)
Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.
2013-12-01
A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et al. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12199. Nguyen et al. Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Phys. Chem. Chem. Phys. 2012, 14, 9702. Walser et al. Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. J. Phys. Chem. A 2007, 111, 1907.
Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies
NASA Astrophysics Data System (ADS)
Mendaza, Teresa; Martin-Torres, Javier
2016-04-01
We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of first-order line mixing coefficients for CO2-Q branches, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 52, pp. 281-294, 1994. [5] Niro, Boulet and Hartmann, Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm, J. Quant. Spectr. Rad. Transf., 88 (4) : 483-498, 2004. [6] H. Tran, P.M. Flaud, T. Fouchet, T. Gabard and J.M. Hartmann (2006); Model, software and database for line-mixing effects in the ν3 and ν4 bands of CH4 and tests using laboratory and planetary measurements - II: H2 Bibliography 181(and He) broadening and the atmospheres of Jupiter and Saturn. J. Quant. Spectr. Rad. Transf., 101 (2), 306 - 324, doi:10.1016/j.jqsrt.2005.11.033. [7] Rothman et al., The HITRAN2012 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 130, 2013. [8] J. Tennyson, S. N. Yurchenko, "ExoMol: molecular line lists for exoplanet and other atmospheres", Monthly Notices of the Royal Astronomical Society 425, 21-33 (2012). [9] H. Tran et al., The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67μm, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no 10, 2010.
Impact of Duality Violations on Spectral Sum Rule analyses
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-02-01
Recent sum rule analyses on the
Bulk modulus of two-dimensional liquid dusty plasmas and its application
NASA Astrophysics Data System (ADS)
Li, Wei; Lin, Wei; Feng, Yan
2017-04-01
From the recently obtained equation of state [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016) and Feng et al., Phys. Plasmas 23, 093705 (2016); Erratum 23, 119904 (2016)], the bulk modulus of elasticity K of 2D liquid dusty plasmas is analytically derived as the expression of the temperature and the screening parameter. Exact values of the obtained bulk modulus of elasticity K are reported and also plotted in the 2D plane of the temperature and the screening parameter. As the temperature and the screening parameter change, the variation trend of K is reported and the corresponding interpretation is suggested. It has been demonstrated that the obtained bulk modulus of elasticity K can be used to predict the longitudinal sound speed, which agrees well with previous studies.
On fast reconnection in pair plasmas
NASA Astrophysics Data System (ADS)
Zocco, A.; Chacon, L.; Simakov, A.; Lukin, V.
2008-11-01
The relevance of two-fluid effects to fast magnetic reconnection in standard electron-proton plasmas is well-known. The currently accepted view is that such fast reconnection is enabled by fast dispersive waves, which originate in the ion-electron mass difference. However, electron-positron (pair) plasmas do not feature such mass difference, and thus do not support fast dispersive waves. Nevertheless, recent kinetic and fluid pair-plasmas simulations have demonstrated that fast magnetic reconnection is indeed possible, thus casting doubt on the accepted view. In this study, we develop an analytical fluid model for 2D reconnection in non-relativistic, large-guide-field, low-β pair plasmas, including inertia, resistivity, and parallel viscosity.^4 We conclude that fast reconnection is possible in the collisionless (viscosity-dominated) regime, but not in the collisional (resistivity-dominated) one. J. Birn et al., J. Geophys. Res. 106 (A3), pp. 3715--3719 (2001) M. A. Shay et al., Geophys. Res. Lett. 26, 2163 (1999); B. N. Rogers et al., Phys. Rev. Lett. 87, 195004 (2001) See e.g. S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001); N. Bessho and A. Bhattacharjee, Phys. Rev. Lett. 95, 245001 (2005); W. Daughton and H. Karimabadi, Phys. Plasmas 14, 72303 (2007). L. Chac'on, A. N. Simakov, V. S. Lukin, A. Zocco, Phys. Rev. Lett., 025003 (2008)
Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N
2017-08-02
Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.
NASA Astrophysics Data System (ADS)
Zonca, Fulvio; Chen, Liu
2007-11-01
We adopt the 4-wave modulation interaction model, introduced by Chen et al [1] for analyzing modulational instabilities of the radial envelope of Ion Temperature Gradient driven modes in toroidal geometry, extending it to the modulations on the fast particle distribution function due to nonlinear Alfv'enic mode dynamics, as proposed in Ref. [2]. In the case where the wave-particle interactions are non-perturbative and strongly influence the mode evolution, as in the case of Energetic Particle Modes (EPM) [3], radial distortions (redistributions) of the fast ion source dominate the mode nonlinear dynamics. In this work, we show that the resonant particle motion is secular with a time-scale inversely proportional to the mode amplitude [4] and that the time evolution of the EPM radial envelope can be cast into the form of a nonlinear Schr"odinger equation a la Ginzburg-Landau [5]. [1] L. Chen et al, Phys. Plasmas 7 3129 (2000) [2] F. Zonca et al, Theory of Fusion Plasmas (Bologna: SIF) 17 (2000) [3] L. Chen, Phys. Plasmas 1, 1519 (1994).[4] F. Zonca et al, Nucl. Fusion 45 477 (2005) [5] F. Zonca et al, Plasma Phys. Contr. Fusion 48 B15 (2006)
Hora, H.; Korn, G.; Eliezer, S.; ...
2016-10-11
Measured highly elevated gains of proton–boron (HB11) fusion (Picciottoet al., Phys. Rev. X4, 031030 (2014)) confirmed the exceptional avalanche reaction process (Lalousiset al., Laser Part. Beams 32, 409 (2014); Horaet al., Laser Part. Beams33, 607 (2015)) for the combination of the non-thermal block ignition using ultrahigh intensity laser pulses of picoseconds duration. The ultrahigh accelerationabovemore » $$10^{20}~\\text{cm}~\\text{s}^{-2}$$ for plasma blocks was theoretically and numerically predicted since 1978 (Hora,Physics of Laser Driven Plasmas(Wiley, 1981), pp. 178 and 179) and measured (Sauerbrey, Phys. Plasmas3, 4712 (1996)) in exact agreement (Horaet al., Phys. Plasmas14, 072701 (2007)) when the dominating force was overcoming thermal processes. This is based on Maxwell’s stress tensor by the dielectric properties of plasma leading to the nonlinear (ponderomotive) force $$f_{\\text{NL}}$$ resulting in ultra-fast expanding plasma blocks by a dielectric explosion. Combining this with measured ultrahigh magnetic fields and the avalanche process opens an option for an environmentally absolute clean and economic boron fusion power reactor. Finally, this is supported also by other experiments with very high HB11 reactions under different conditions (Labauneet al., Nature Commun.4, 2506 (2013)).« less
Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?
2011-01-01
Background Aluminium (Al) toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps) whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water. Methods HD patients only treated with Reverse Osmosis(RO) treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies. Results 39 patients (34 anuric) were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration) and the total amount of Al ingested. No patients had unexplained EPO resistance or biochemical evidence of adynamic bone. Conclusions Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R2 = 0.07) and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric. PMID:21992770
NASA Astrophysics Data System (ADS)
Perrin, Agnes; Kwabia Tchana, F.; Flaud, Jean-Marie; Manceron, Laurent; Demaison, Jean; Vogt, Natalja; Groner, Peter; Lafferty, Walter
2015-06-01
A high resolution (0.0015 wn) IR spectrum of propane, C_3H_8, has been recorded with synchrotron radiation at the French light source facility at SOLEIL coupled to a Bruker IFS-125 Fourier transform spectrometer. A preliminary analysis of the ν21 fundamental band (B1, CH3 rock) near 921.4 wn reveals that the rotational energy levels of 211 are split by interactions with the internal rotations of the methyl groups. Conventional analysis of this A-type band yielded band centers at 921.3724(38), 921.3821(33) and 921.3913(44) wn for the AA, EE and AE+EA tunneling splitting components, respectively. These torsional splittings most probably are due to anharmonic and/or Coriolis resonance coupling with nearby highly excited states of both internal rotations of the methyl groups. In addition, several vibrational-rotational resonances were observed that affect the torsional components in different ways. The analysis of the B-type band near 870 wn (ν8, sym. C-C stretch) which also contains split rovibrational transitions due to internal rotation is in progress. It is performed by using the effective rotational Hamiltonian method ERHAM with a code that allows prediction and least-squares fitting of such vibration-rotation spectra. A. Perrin et al., submitted to J. Mol. Spectrosc. P. Groner, J. Chem. Phys. 107 (1997) 4483; J. Mol. Spectrosc. 278 (2012) 52.
Electronic Structure in Thin Film Organic Semiconductors
2009-06-27
Peltekis, C. McGuinness, and A. Matsuura, J. Chem. Phys. 129, 224705, (2008) c) "The Local Electronic Structure of Tin Phthalocyanine studied by...interfaces in a Cu(100)-benzenethiolate- pentacene heterostructure", Phys. Rev. Lett. 100, 027601 (2008). 21. O.V. Molodtsova, M. Grobosch, M. Knupfer...1999). 37. N.J. Watkins, S. Zorba, and Y. Gao, "Interface formation of pentacene on Al2O3", J. Appl. Phys. 96, 425 (2004). 38. K.V. Chauhan, I
Non-Abelian fermionization and fractional quantum Hall transitions
NASA Astrophysics Data System (ADS)
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
2018-02-01
There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].
Comment on "Troublesome aspects of the Renyi-MaxEnt treatment"
NASA Astrophysics Data System (ADS)
Oikonomou, Thomas; Bagci, G. Baris
2017-11-01
Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016), 10.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.
Applications and Implications of Fractional Dynamics for Dielectric Relaxation
NASA Astrophysics Data System (ADS)
Hilfer, R.
This article summarizes briefly the presentation given by the author at the NATO Advanced Research Workshop on "Broadband Dielectric Spectroscopy and its Advanced Technological Applications", held in Perpignan, France, in September 2011. The purpose of the invited presentation at the workshop was to review and summarize the basic theory of fractional dynamics (Hilfer, Phys Rev E 48:2466, 1993; Hilfer and Anton, Phys Rev E Rapid Commun 51:R848, 1995; Hilfer, Fractals 3(1):211, 1995; Hilfer, Chaos Solitons Fractals 5:1475, 1995; Hilfer, Fractals 3:549, 1995; Hilfer, Physica A 221:89, 1995; Hilfer, On fractional diffusion and its relation with continuous time random walks. In: Pekalski et al. (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77, 1999; Hilfer, Fractional evolution equations and irreversibility. In: Helbing et al. (eds) Traffic and granular flow'99. Springer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003; Hilfer, Physica A 329:35, 2003; Hilfer, Threefold introduction to fractional derivatives. In: Klages et al. (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17-74, 2008; Hilfer, Foundations of fractional dynamics: a short account. In: Klafter et al. (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207, 2011) and demonstrate its relevance and application to broadband dielectric spectroscopy (Hilfer, J Phys Condens Matter 14:2297, 2002; Hilfer, Chem Phys 284:399, 2002; Hilfer, Fractals 11:251, 2003; Hilfer et al., Fractional Calc Appl Anal 12:299, 2009). It was argued, that broadband dielectric spectroscopy might be useful to test effective field theories based on fractional dynamics.
Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis
NASA Astrophysics Data System (ADS)
Amendt, Peter; Shestakov, A. I.; Landen, O. L.; Bradley, D. K.; Pollaine, S. M.; Suter, L. J.; Turner, R. E.
2001-06-01
Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule.
Effect of anomalous transport on kinetic simulations of the H-mode pedestal
NASA Astrophysics Data System (ADS)
Bateman, G.; Pankin, A. Y.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.
2009-11-01
The MMM08 and MMM95 Multi-Mode transport models [1,2], are used to investigate the effect of anomalous transport in XGC0 gyrokinetic simulations [3] of tokamak H-mode pedestal growth. Transport models are implemented in XGC0 using the Framework for Modernization and Componentization of Fusion Modules (FMCFM). Anomalous transport is driven by steep temperature and density gradients and is suppressed by high values of flow shear in the pedestal. The radial electric field, used to calculate the flow shear rate, is computed self-consistently in the XGC0 code with the anomalous transport, Lagrangian charged particle dynamics and neutral particle effects. XGC0 simulations are used to provide insight into how thermal and particle transport, together with the sources of heat and charged particles, determine the shape and growth rate of the temperature and density profiles. [1] F.D. Halpern et al., Phys. Plasmas 15 (2008) 065033; J.Weiland et al., Nucl. Fusion 49 (2009) 965933; A.Kritz et al., EPS (2009) [2] G. Bateman, et al, Phys. Plasmas 5 (1998) 1793 [3] C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas 11 (2004) 2649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 × 10{sup 15} neutrons, the total yield ∼ v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (∼v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.« less
First-forbidden β decay of ^17N and ^17Ne.
NASA Astrophysics Data System (ADS)
Millener, D. J.
1997-04-01
By measuring positrons in coincidence with 495-keV γ rays de-exciting the 1/2^+ first-excited state of ^17F, Borge et al.(M. J. B. Borge et al.), Phys. Lett. B 317, 25 (1993). have obtained a branch of 1.65(16)% for the first-forbidden β^+ decay of ^17Ne to the 1/2^+ state. This is a very interesting result because the measured branch is roughly a factor of two larger than expected on the basis of nuclear matrix elements which reproduce the corresponding β^- branch of 3.0%(A. R. Poletti and J. G. Pronko, Phys. Rev. C 8), 1285 (1973);D. E. Alburger and D. H. Wilkinson, Phys. Rev. C 13, 835 (1976). in the decay of ^17N. Recently, Ozawa et al.(A. Ozawa et al.), preprint RIKEN-AF-NP-238. have confirmed the magnitude of the β branch in ^17Ne decay, obtaining a value of 1.44(16)% by a method which utilizes a 32 MeV/A radioactive beam of ^17Ne. It is shown that differences, due to charge-dependent effects, in the ^17N and ^17Ne ground-state wave functions account for both β-decay branches.
Higher velocity, high-foot implosions on the National Ignition Facility laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less
Higher velocity, high-foot implosions on the National Ignition Facility laser
Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; ...
2015-05-15
By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less
Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.
Zahariev, Federico; Levy, Mel
2017-01-12
A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.
Low-Energy Mutual Neutralization Studies for Early Universe Hydrogen Chemistry
NASA Astrophysics Data System (ADS)
Urbain, Xavier
2010-03-01
Low-energy interactions between light ions, as they occur in low density plasmas, are ideally studied under merged-beam conditions. This was the motivation for building the dual-source setup in operation at UCL, Louvain-la-Neuve, since the early eighties. Although initially developed for the study of charge exchange [1], mutual neutralization and transfer ionization, this machine has produced a host of total cross section measurements for a wide variety of associative ionization and other reactive processes involving charged reactants, from H^+ to CO^+, in collision with H^-, D^-, C^- and O^- [2]. A recent paper by Glover et al. [3] has revived the interest for mutual neutralization studies, by stressing the need of the astrophysical community for a precise determination of the low-energy cross section of the H^+/H^- reaction. The mutual neutralization acts as a sink for negative ions which otherwise dominate the primordial formation of H2 by associative detachment with ground state H. Absolute measurements in the range 5 meV to 5 eV are needed to rule out earlier experimental work [4] contradicting the most recent theoretical predictions [5]. Our setup is currently modified to incorporate coincident imaging techniques, giving access to differential cross sections besides the branching among accessible neutral channels. Mutual neutralization reactions of H^- with H2^+ and H3^+ will also be investigated, for the role they play in laboratory plasmas [6].[4pt] [1] S. Sz"ucs, M. Karemera, M. Terao, and F. Brouillard, J. Phys. B 17, 1613 (1983).[0pt] [2] E. A. Naji et al., J. Phys. B 31, 4887 (1998), A. Le Padellec et al., J. Chem. Phys., 124, 154304 (2006) and references therein.[0pt] [3] S. C. Glover, D. W. Savin, and A.-K. Jappsen , Astrophys. J. 640, 553 (2006). [0pt] [4] J. Moseley, W. Aberth, and J. R. Peterson, Phys. Rev. Lett. 24, 435 (1970).[0pt] [5] M. Stenrup, å. Larson, and N. Elander, Phys. Rev. A 79, 012713 (2009).[0pt] [6] M. J. J. Eerden et al., Phys. Rev. A 51, 3362 (1995).
Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs
Richet, P.; Robie, R.A.; Rogez, J.; Hemingway, B.S.; Courtial, P.; Tequi, C.
1990-01-01
The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through Cp determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1??0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7??3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7??2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties ?? 1990 Springer-Verlag.
Low Work Function Csl Coatings for Enhanced Field Emission Properties
2011-04-01
CsI is an insulator band gap=6.2 eV Ref. 6 that would be expected to impede, rather than to enhance, electron tunneling. Vlahos et al.7...minimal WF. Vlahos et al.10 later carried out ex situ experimental char- acterization of the surfaces of CsI-coated cathodes after use in a FE device...Jenkin, J. Liesegang, and R. C. G. Leckey, Phys. Rev. B 11, 5179 1975. 7V. Vlahos , J. H. Booske, and D. Morgan, Appl. Phys. Lett. 91, 144102 2007. 8A
Compilation of NRL Publications on High Temperature Superconductivity.
1987-01-01
Fig. 2. The upper critical field as a function of .R. Beasley: Phys. Rev 11(1979) 4545. temperature for Ial.8Sro.2Cu04 (left) and 10) A. Junod , A...commuication 10) T.P. Orlando. E.J. McNiff. Jr.. S. Foner. and M.R. Beasley: Fhys. Rev 9(1979) 4545.-,, 11) A. Junod . A. Bezinge. T. Graf. J.L. Jorda. J...of MRS meeting (Anaheim, i Uchida et al. Jpn. J. of Apph Phys. 26, L443 (1987). -s 1987; in press). 12. H. Junod et al. (preprint
The Production and Study of Cold Antiprotons and Antihydrogen
2015-08-03
Grafström, R. Hagel- berg, G. Kessler, and et al ., Phys. Lett. B 237, 303 (1990). [8] C. Zimmermann and T. Hänsch, Hyperfine Interact. 76, 47 (1993). [9...C. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Pre- dehl, T. Udem, T. Wilken, N. Kolachevsky, et al ...D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould , and H. J. Metcalf, Phys. Rev. Lett. 61, 169 ( 1988 ). [15] J. Walz and T. Hänsch
Inverse modelling of radionuclide release rates using gamma dose rate observations
NASA Astrophysics Data System (ADS)
Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian
2015-04-01
Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008, Stohl et al., 2012). The a priori information on the source term is a first guess. The gamma dose rate observations are used to improve the first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.
NASA Astrophysics Data System (ADS)
Oswald, Soenke; Suhm, Martin A.
2017-06-01
Complexes of organic molecules with the main component of earth's atmosphere are of interest, also for a stepwise understanding of the phenomenon of matrix isolation. Via its large quadrupole moment, nitrogen binds strongly to polarized OH groups in hydrogen-bonded dimers. Further complexation leads to a smooth spectral transition from free to embedded molecules which we probe in supersonic jets. Results for 1,1,1,3,3,3-hexafluoro-2-propanol, methanol, t-butyl alcohol, and the conformationally more complex ethanol are presented and assigned with the help of quantum chemical calculations. Kuma, S., Slipchenko, M. N., Kuyanov, K. E., Momose, T., Vilesov, A. F., Infrared Spectra and Intensities of the H_2O and N_2 Complexes in the Range of the ν_1- and ν_3-Bands of Water, J. Phys. Chem. A, 2006, 110, 10046-10052. Coussan, S., Bouteiller, Y., Perchard, J. P., Zheng, W. Q., Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 1998, 102, 5789-5793. Suhm, M. A., Kollipost, F., Femtisecond single-mole infrared spectroscopy of molecular clusters, Phys. Chem. Chem. Phys., 2013, 15, 10702-10721. Larsen, R. W., Zielke, P., Suhm, M. A., Hydrogen bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study, J. Chem. Phys., 2007, 126, 194307. Zimmermann, D., Häber, T., Schaal, H., Suhm, M. A., Hydrogen bonded rings, chains and lassos: The case of t-butyl alcohol clusters, Mol. Phys., 2001, 99, 413-425. Wassermann, T. N., Suhm, M. A., Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects, J. Phys. Chem. A, 2010, 114, 8223-8233.
Ionospheric Storm Effects at Subauroral Latitudes: A Case Study
1991-02-01
Island: Z70 m/s) are consistent with corresponding model predictions [e.g., Testud et al., 1975: Richmond and Marsushitl, 1975]. Note that while...Atmos. Terr. Phys., 44. 161-171. 1982. in the morning sector. There it is marked by an anomalously Alcayde. D.. J. Testud . G. Vasseur. and P. Wadteufel...34-pile up" F-region trough. J. Atmos. Terr. Phys.. 33. 647-656. 1973. in the F-region. J. Atmos. Terr. Phys., 36, 70 -706. 1974. Testud . J.. P. Amayenc
Postperovskite phase equilibria in the MgSiO3-Al2O3 system.
Tsuchiya, Jun; Tsuchiya, Taku
2008-12-09
We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.
Postperovskite phase equilibria in the MgSiO3–Al2O3 system
Tsuchiya, Jun; Tsuchiya, Taku
2008-01-01
We investigate high-P,T phase equilibria of the MgSiO3–Al2O3 system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh2O3(II) phase, present calculations demonstrate that (i) dissolving Al2O3 tends to decrease the postperovskite transition pressure of MgSiO3 but the effect is not significant (≈-0.2 GPa/mol% Al2O3); (ii) Al2O3 produces the narrow perovskite+postperovskite coexisting P,T area (≈1 GPa) for the pyrolitic concentration (xAl2O3 ≈6 mol%), which is sufficiently responsible to the deep-mantle D″ seismic discontinuity; (iii) the transition would be smeared (≈4 GPa) for the basaltic Al-rich composition (xAl2O3 ≈20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh2O3(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928
NASA Astrophysics Data System (ADS)
Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.
2017-03-01
Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, R.L.; Lefebvre, E.; Langdon, A.B.
1999-04-01
Control of filamentation and stimulated Raman and Brillouin scattering is shown to be possible by use of both spatial and temporal smoothing schemes. The spatial smoothing is accomplished by the use of phase plates [Y. Kato and K. Mima, Appl. Phys. {bold 329}, 186 (1982)] and polarization smoothing [Lefebvre {ital et al.}, Phys. Plasmas {bold 5}, 2701 (1998)] in which the plasma is irradiated with two orthogonally polarized, uncorrelated speckle patterns. The temporal smoothing considered here is smoothing by spectral dispersion [Skupsky {ital et al.}, J. Appl. Phys. {bold 66}, 3456 (1989)] in which the speckle pattern changes on themore » laser coherence time scale. At the high instability gains relevant to laser fusion experiments, the effect of smoothing must include the competition among all three instabilities. {copyright} {ital 1999 American Institute of Physics.}« less
T-Duality in an H-Flux: Exchange of Momentum and Winding
NASA Astrophysics Data System (ADS)
Han, Fei; Mathai, Varghese
2018-02-01
Using our earlier proposal for Ramond-Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127-150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383-415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341-365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.
Collisionless damping of flows in the TJ-II stellarator
NASA Astrophysics Data System (ADS)
Sánchez, E.; Kleiber, R.; Hatzky, R.; Borchardt, M.; Monreal, P.; Castejón, F.; López-Fraguas, A.; Sáez, X.; Velasco, J. L.; Calvo, I.; Alonso, A.; López-Bruna, D.
2013-01-01
The results of global linear gyrokinetic simulations of residual flows carried out with the code EUTERPE in the TJ-II three-dimensional geometry are reported. The linear response of the plasma to potential perturbations homogeneous in a magnetic surface shows several oscillation frequencies: a Geodesic-acoustic-mode-like frequency, in qualitative agreement with the formula given by Sugama and Watanabe (2006 Plasma Phys. 72 825), and a much lower frequency oscillation in agreement with the predictions of Mishchenko et al (2008 Phys. Plasmas 15 072309) and Helander et al (2011 Plasma Phys. Control. Fusion 53 054006) for stellarators. The dependence of both oscillations on ion and electron temperatures and the magnetic configuration is studied. The low-frequency oscillations are in the frequency range supporting the long-range correlations between potential signals experimentally observed in TJ-II.
High-pressure phase transitions of strontianite
NASA Astrophysics Data System (ADS)
Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.
2015-12-01
Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.
Polarization of resonantly excited X-ray lines
NASA Astrophysics Data System (ADS)
Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav
2017-08-01
For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015)[3] S. Weber et al., Rev. Sci. Instr. 86, 093110 (2015)[4] P. Amaro et al., Phys. Rev. A 95, 022712 (2017)[5] M. F. Gu, Can. Phys. J 86, 675 (2008)[6] S. Fritzsche, Comput. Phys. Commu. 183, 1525-1559 (2012)[7] C. Shah et al., submitted (2017)
How accurate are the parametrized correlation energies of the uniform electron gas?
NASA Astrophysics Data System (ADS)
Bhattarai, Puskar; Patra, Abhirup; Shahi, Chandra; Perdew, John P.
2018-05-01
Density functional approximations to the exchange-correlation energy are designed to be exact for an electron gas of uniform density parameter rs and relative spin polarization ζ , requiring a parametrization of the correlation energy per electron ɛc(rs,ζ ) . We consider three widely used parametrizations [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981), 10.1103/PhysRevB.23.5048 or PZ81, S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980), 10.1139/p80-159 or VWN80, and J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992), 10.1103/PhysRevB.45.13244 or PW92] that interpolate the quantum Monte Carlo (QMC) correlation energies of Ceperley-Alder [Phys. Rev. Lett. 45, 566 (1980), 10.1103/PhysRevLett.45.566], while extrapolating them to known high-(rs→0 ) and low- (rs→∞ ) density limits. For the physically important range 0.5 ≤rs≤20 , they agree closely with one another, with differences of 0.01 eV (0.5%) or less between the latter two. The density parameter interpolation (DPI), designed to predict these energies by interpolation between the known high- and low-density limits, with almost no other input (and none for ζ =0 ), is also reasonably close, both in its original version and with corrections for ζ ≠0 . Moreover, the DPI and PW92 at rs=0.5 are very close to the high-density expansion. The larger discrepancies with the QMC of Spink et al. [Phys. Rev. B 88, 085121 (2013), 10.1103/PhysRevB.88.085121], of order 0.1 eV (5%) at rs=0.5 , are thus surprising, suggesting that the constraint-based PW92 and VWN80 parametrizations are more accurate than the QMC for rs<2 . For rs>2 , however, the QMC of Spink et al. confirms the dependence upon relative spin polarization predicted by the parametrizations.
Designing symmetric polar direct drive implosions on the Omega laser facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.
2014-04-15
Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emissionmore » images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.« less
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
Macroscopic character of composite high-temperature superconducting wires
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Spivak, B.
2015-11-01
The "d -wave" symmetry of the superconducting order in the cuprate high temperature superconductors is a well established fact [J. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000), 10.1103/RevModPhys.72.969 and D. J. Vanharlingen, Rev. Mod. Phys. 67, 515 (1995), 10.1103/RevModPhys.67.515], and one which identifies them as "unconventional." However, in macroscopic contexts—including many potential applications (i.e., superconducting "wires")—the material is a composite of randomly oriented superconducting grains in a metallic matrix, in which Josephson coupling between grains mediates the onset of long-range phase coherence. [See, e.g., D. C. Larbalestier et al., Nat. Mater. 13, 375 (2014), 10.1038/nmat3887, A. P. Malozemoff, MRS Bull. 36, 601 (2011), 10.1557/mrs.2011.160, and K. Heine et al., Appl. Phys. Lett. 55, 2441 (1989), 10.1063/1.102295] Here we analyze the physics at length scales that are large compared to the size of such grains, and in particular the macroscopic character of the long-range order that emerges. While X Y -superconducting glass order and macroscopic d -wave superconductivity may be possible, we show that under many circumstances—especially when the d -wave superconducting grains are embedded in a metallic matrix—the most likely order has global s -wave symmetry.
Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule
2008-12-02
in fre- quency domain [7], and coherent spin rotations in time domain [8,9]). We thank M. F. Doty and V. L. Korenev for illuminating discussions...035409 (2007). [29] V. L. Korenev , Phys. Rev. Lett. 99, 256405 (2007). [30] A. I. Tartakovskii et al., Phys. Rev. Lett. 98, 026806 (2007). [31] A
Device-independent secret-key-rate analysis for quantum repeaters
NASA Astrophysics Data System (ADS)
Holz, Timo; Kampermann, Hermann; Bruß, Dagmar
2018-01-01
The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998), 10.1103/PhysRevLett.81.5932] and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006), 10.1103/PhysRevLett.96.240501]. For a given repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest optimized strategies.
A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bravenec, R. V.; Chen, Y.; Wan, W.
2013-10-15
A previous publication [R. V. Bravenec et al., Phys. Plasmas 18, 122505 (2011)] presented favorable comparisons of linear frequencies and nonlinear fluxes from the Eulerian gyrokinetic codes gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and gs2[W. Dorland et al., Phys. Rev. Lett. 85, 5579 (2000)]. The motivation was to verify the codes, i.e., demonstrate that they correctly solve the gyrokinetic-Maxwell equations. The premise was that it is highly unlikely for both codes to yield the same incorrect results. In this work, we add the Lagrangian particle-in-cell code gem[Y. Chen and S. Parker, J. Comput. Phys.more » 220, 839 (2007)] to the comparisons, not simply to add another code, but also to demonstrate that the codes' algorithms do not matter. We find good agreement of gem with gyro and gs2 for the plasma conditions considered earlier, thus establishing confidence that the codes are verified and that ongoing validation efforts for these plasma parameters are warranted.« less
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
Kβ/ Kα intensity ratios for X-ray production in 3d metals by gamma-rays and protons
NASA Astrophysics Data System (ADS)
Bhuinya, C. R.; Padhi, H. C.
1994-04-01
Systematic measurements of Kβ/ Kα intensity ratios for X-ray production in 3d metals have been carried out using γ-ray and fast proton ionization methods. The measured ratios from proton ionization experiments indicate production of multivacancies in the L shell giving rise to higher Kβ/ Kα ratios compared to the present γRF results and 2 MeV proton ionization results of Perujo et al. [Perujo A., Maxwell J. A., Teesdale W. J. and Cambell J. L. (1987) J. Phys. B: Atom. Molec. Phys.20, 4973]. This is consistent with the SCA model calculation which gives increased simultaneous K- and L-shell ionization at 4 MeV. The present results from γRF experiments are in close agreement with the 2 MeV proton ionization results of Perujo et al. (1987) and also with the theoretical calculation of jankowski and Polasik [Jankowski K. and Polasik M. (1989) J. Phys. B: Atom. Molec. Optic. Phys. 22, 2369] but the theoretical results of Scofield [Scofield J. H. (1974a) Atom. Data Nucl. Data Tables14, 12] are somewhat higher.
Microhydration of cytosine and its radical anion: cytosine.(H2O)n (n=1-5).
Kim, Sunghwan; Schaefer, Henry F
2007-02-14
Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n=5) is bound by 7-10 kcal mol(-1) to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48 eV, it is predicted to increase to 1.27 eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03 to 0.61 eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].
Ir Spectroscopic Studies on Microsolvation of HCl by Water
NASA Astrophysics Data System (ADS)
Mani, Devendra; Schwan, Raffael; Fischer, Theo; Dey, Arghya; Kaufmann, Matin; Redlich, Britta; van der Meer, Lex; Schwaab, Gerhard; Havenith, Martina
2016-06-01
Acid dissociation reactions are at the heart of chemistry. These reactions are well understood at the macroscopic level. However, a microscopic level understanding is still in the early stages of development. Questions such as 'how many H_2O molecules are needed to dissociate one HCl molecule?' have been posed and explored both theoretically and experimentally.1-5 Most of the theoretical calculations predict that four H_2O molecules are sufficient to dissociate one HCl molecule, resulting in the formation of a solvent separated H_3O+(H_2O)3Cl- cluster.1-3 IR spectroscopy in helium nanodroplets has earlier been used to study this dissociation process.3-5 However, these studies were carried out in the region of O-H and H-Cl stretch, which is dominated by the spectral features of undissociated (HCl)m-(H_2O)n clusters. This contributed to the ambiguity in assigning the spectral features arising from the dissociated cluster.4,5 Recent predictions from Bowman's group, suggest the presence of a broad spectral feature (1300-1360 wn) for the H_3O+(H_2O)3Cl- cluster, corresponding to the umbrella motion of H_3O+ moiety.6 This region is expected to be free from the spectral features due to the undissociated clusters. In conjunction with the FELIX laboratory, we have performed experiments on the (HCl)m(H_2O)n (m=1-2, n≥4) clusters, aggregated in helium nanodroplets, in the 900-1700 wn region. Mass selective measurements on these clusters revealed the presence of a weak-broad feature which spans between 1000-1450 wn and depends on both HCl as well as H_2O concentration. Measurements are in progress for the different deuterated species. The details will be presented in the talk. References: 1) C.T. Lee et al., J. Chem. Phys., 104, 7081 (1996). 2) H. Forbert et al., J. Am. Chem. Soc., 133, 4062 (2011). 3) A. Gutberlet et al., Science, 324, 1545 (2009). 4) S. D. Flynn et al., J. Phys. Chem. Lett., 1, 2233 (2010). 5) M. Letzner et al., J. Chem. Phys., 139, 154304 (2013). 6) J. M. Bowman et al., Phys. Chem. Chem. Phys., 17, 6222 (2015).
NASA Astrophysics Data System (ADS)
Sobolev, N. V.; Palyanov, Y. N.; Shatsky, V. S.; Sokol, A. G.; Tomilenko, A. A.
2003-12-01
Garnet is a key mineral coexisting with diamond both in kimberlite (as xenocrysts, in diamondiferous garnet peridotites and eclogites, as inclusions in diamond) and in UHP metamorphic rocks of Kokchetav massif (diamondiferous gneisses, garnet-pyroxene rocks, dolomitic marbles and diamond facies eclogites). In UHPM rocks garnets are of particular importance as inclusions in zircons protected from retrograde metamorphism. Diamond formation conditions in eclogitic (E-type) upper mantle environment are estimated based upon Grt-Cpx thermometry and coesite barometry (e.g. Sobolev et al., PNAS, 2000, 97:11875) at P=5.5-6.0 GPa and T=1000-1300° C. These data are supported by diamond synthesis in carbonate-silicate fluid (e.g. Palyanov et al., Nature, 1999, 400: 417). E-type garnet may dissolve up to 0.3 wt.% Na2O (Sobolev, Lavrentyev, Contr. Min. Petr., 1971, 31:1) depending on pressure and Na2O contents in coexisting pyroxene and melts (fluids). Majorite component (pyroxene solid solution) was reported in rare garnets from diamonds (e.g. Moore, Gurney, Nature, 1985, 318:553) and UHP conditions were experimentally confirmed for such garnets (Irifune, Phys. Eart. Pl. Int., 1987, 45:324; Gasparik, Phys. Chem. Min., 2002, 29:170; Luth, Am. Miner., 1997, 82:1198). Garnets from Kokchetav diamondiferous metamorphic rocks demonstrate considerably lower Na2O solubility (up to 0.2 wt.% in rare samples) and absence of majorite component. However, coexisting pyroxenes may contain up to 50 mol.% jadeite. Several UHP experiments performed with Kokchetav eclogites and dolomitic marbles using a split-sphere apparatus resulted in detection of up to 0.3-0.4 wt.% Na2O in newly formed eclogitic garnets at P=5.7 and 7.0 GPa, T=1400 and 1700° C respectively. Majorite component was also determined in newly formed garnets reaching about 5% with Si (pfu)=3.05-3.06. Similar garnets without Na2O were also obtained in UHP experiments with diamondiferous dolomitic marbles (e.g. Palyanov et al., Dokl. Earth. Sci., 2001, 380:671). Based on the difference in Na2O and majorite contents in natural Kokchetav garnets, and those coexisting with diamonds in kimberlite and obtained in UHP experiments, we conclude that the peak of metamorphism at Kokchetav massif occurred at P about 4.5-5.0 GPa and T=900-1000° C (Sobolev, Shatsky, Nature, 1990, 343:742; Shatsky et al., Contr. Min. Petr., 1999, 137:185; Sobolev et al., Dokl. Earth. Sci., 2001, 380:237) but not exceeding 6.0 GPa (e.g. Ogasawara et al., Island Arc, 2000, 9:400).
Comment on "Troublesome aspects of the Renyi-MaxEnt treatment".
Oikonomou, Thomas; Bagci, G Baris
2017-11-01
Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016)1539-375510.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.
Synthesis and Characterization of Gd and Nd Nanoparticles
NASA Astrophysics Data System (ADS)
Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed
2009-03-01
Due to the reduced dimensionality, nano-sized materials have physical properties significantly different from the bulk material, such as, superparamagnetic behavior, enhanced magnetization, and self-organization [1-3]. Nano-sized materials have great potential for technical applications, for example, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the growth and filtration of rare-earth Gd and Nd nanoparticles by the inverse micelle technique [4]. The results of the characterization of these clusters by X- ray diffraction, scanning electron microscope, and energy-dispersive x-ray spectroscopy will be presented. [1] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [2] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] X.M. Lin, et al. Langmuir. 14, 7140 (1998).
NASA Astrophysics Data System (ADS)
Åkermark, Torbjörn
2005-06-01
The introduction of AlO as the diffusing species can be seen as an attempt to bridge the gap between the two scientific communities: those working on the oxidation of metals and those working on the oxidation of silicon. The attempt is, however, not successful and would have been more successful if the Wagner theory [O. Wagner, Z. Phys. Chem. Abt. B 21, 25 (1993)] would have been used to evaluate the mechanisms. There is also a lack of agreement with the two-stage oxidation experiment, oxidation first in O16 and then in O18. The experimental O18 profile in the oxides formed cannot be explained by the diffusion of AlO, so it is unlikely that AlO is the diffusing species during oxidation.
Turbulent equipartition pinch of toroidal momentum in spherical torus
NASA Astrophysics Data System (ADS)
Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.
2014-12-01
We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.
Prediction of Nuclear Masses as a function of P and F-spin
NASA Astrophysics Data System (ADS)
Teymurazyan, Artur; Aprahamian, Ani; Georgieva, Ana
2001-10-01
Nuclear masses are one of the most important components in nucleosynthesis calculations of elemental abundances for specific stellar scenarios. Proton rich nuclei in the A=80 region are thought to be produced in the rp-process (rapid p and α-capture)involving a large number of unknown nuclei. Schatz et al.(H. Schatz et al., Phys. Rep. 294,167 (1998)) have carried out an extensive comparison of the effects on abundances that result from the use of different mass models. One of these models was a semi-empirical mass model(A. Aprahamian et al., Rev. Mex. Fis. 42, 1 (1996)) based on the relationship of the nuclear structure component of the nuclear mass on the parameter P=N_pN_n/(N_p+N_n) where N-p and Nn are the number of valence protons and neutrons. Davis et al.(E.D. Davis et al., Phys. Rev. C 44, 1655 (1991)) had used another approach involving F-spin (an approximate symmetry under particle-hole Conjugation) to predict binding energies for r-process nuclei in the Z=50-82 and N=82-126 region. In this paper, we combine structure systematics using F-spin(A. Georgieva et al., Int. J. Theor. Phys. 28, 769 (1989)) to show a simple relationship between P and F-spin for this very interesting region and to apply it to the prediction of nuclear masses in the A=80 region of nuclei.
Kinetic studies of divertor heat fluxes in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Chang, C. S.; Brunner, D.; Hughes, J. W.; Labombard, B.; Terry, J.
2010-11-01
The kinetic XGC0 code [C.S. Chang et al, Phys. Plasmas 11 (2004) 2649] is used to model the H- mode pedestal and SOL regions in Alcator C-Mod discharges. The self-consistent simulations in this study include kinetic neoclassical physics and anomalous transport models along with the ExB flow shear effects. The heat fluxes on the divertor plates are computed and the fluxes to the outer plate are compared with experimental observations. The dynamics of the radial electric field near the separatrix and in the SOL region are computed with the XGC0 code, and the effect of the anomalous transport on the heat fluxes in the SOL region is investigated. In particular, the particle and thermal diffusivities obtained in the analysis mode are compared with predictions from the theory-based anomalous transport models such as MMM95 [G. Bateman et al, Phys. Plasmas 5 (1998) 1793] and DRIBM [T. Rafiq et al, to appear in Phys. Plasmas (2010)]. It is found that there is a notable pinch effect in the inner separatrix region. Possible physical mechanisms for the particle and thermal pinches are discussed.
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Esarey, E.; Leemans, W.
2003-10-01
Recent particle-in-cell simulations have shown [1] that the self-fields of an electron beam driver in a plasma wakefield accelerator can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly [2] from that of an electron driver. We will present particle- in-cell simulations, using the OOPIC [3] code, showing the effects of tunneling ionization on the plasma wake generated by high-density electron and positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the E-164 and E-164x experiments at SLAC will be considered. [1] D.L. Bruhwiler et al., Phys. Plasmas 10 (2003), p. 2022. [2] S. Lee et al., Phys. Rev. E 64, 045501(R) (2001). [3] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001).
Influence of nuclear basic data on the calculation of production cross sections of superheavy nuclei
NASA Astrophysics Data System (ADS)
Bao, X. J.; Gao, Y.; Li, J. Q.; Zhang, H. F.
2015-07-01
The center of the predicted island of stability of superheavy nuclei (SHN) has not yet been observed experimentally. Many theories are being developed to understand the synthesizing mechanism of superheavy nuclei. However, all of them have to use some basic nuclear data. Three data tables, FRDM1995 [P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995), 10.1006/adnd.1995.1002], KTUY2005 [H. Koura et al., Prog. Theor. Phys. 113, 305 (2005), 10.1143/PTP.113.305], and WS2010 [Ning Wang et al., Phys. Rev. C 82, 044304 (2010), 10.1103/PhysRevC.82.044304], are used to investigate the SHN production. Based on the dinuclear system concept, the evaporation residue cross sections of SHN for Z =112-118 are calculated for the 48Ca -induced hot fusion reactions. It turns out that unlike the predictions made with the KTUY2005 and WS2010 data, the magic numbers Z =114 and N =184 predicted with the FRDM1995 data do not contradict the experimental data obtained so far.
Direct observation of bulk Fermi surface at higher Brillouin zones in a heavily hole-doped cuprate
NASA Astrophysics Data System (ADS)
Al-Sawai, W.; Sakurai, Y.; Itou, M.; Barbiellini, B.; Mijnarends, P. E.; Markiewicz, R. S.; Kaprzyk, S.; Gillet, J.-M.; Wakimoto, S.; Fujita, M.; Basak, S.; Lin, H.; Bansil, A.; Yamada, K.
2010-03-01
We have observed the bulk Fermi surface (FS) in an overdoped (x=0.3) single crystal of La2-xSrxCuO4 by using Compton scattering. A 2-D momentum density reconstruction [1] from measured Compton profiles, yields a clear FS signature in a higher Brillouin zone centered at p=(1.5,1.5) a.u. The quantitative agreement with density functional theory (DFT) calculations [2] and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. We have also measured the 2-D angular correlation of positron annihilation radiation (2D-ACAR) [3] and noticed a similar quantitative agreement with the DFT simulations. However, 2D-ACAR does not give a clear signature of the FS in the extended momentum space in both theory and experiment. Work supported in part by the US DOE.[1] Y. Tanaka et al., Phys. Rev. B 63, 045120 (2001).[2] S. Sahrakorpi et al., Phys. Rev. Lett. 95, 157601 (2005).[3] L. C. Smedskjaer et al., J. Phys. Chem. Solids 52, 1541 (1991).
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-04-01
A systematic study of heavy residues formed in peripheral collisions below the Fermi energy has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight on the dynamics and the nuclear equation of state by comparing our heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. We are performing calculations using two codes: the CoMD code of M. Papa, A. Bonasera [3] and the CHIMERA-QMD code of J. Lukasik [4]. Both codes implement an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon restoring the Pauli principle at each time step of the collision. CHIMERA-QMD uses a Pauli potential term to mimic the Pauli principle. Results of the calculations and comparisons with our residue data will be presented. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001). [4] J. Lukasik, Z. Majka, Acta Phys. Pol. B 24, 1959 (1993).
Linear lateral vibration of axisymmetric liquid briges
NASA Astrophysics Data System (ADS)
Ferrera, C.; Montanero, J. M.; Cabezas, M. G.
A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid
Statistical microeconomics and commodity prices: theory and empirical results.
Baaquie, Belal E
2016-01-13
A review is made of the statistical generalization of microeconomics by Baaquie (Baaquie 2013 Phys. A 392, 4400-4416. (doi:10.1016/j.physa.2013.05.008)), where the market price of every traded commodity, at each instant of time, is considered to be an independent random variable. The dynamics of commodity market prices is given by the unequal time correlation function and is modelled by the Feynman path integral based on an action functional. The correlation functions of the model are defined using the path integral. The existence of the action functional for commodity prices that was postulated to exist in Baaquie (Baaquie 2013 Phys. A 392, 4400-4416. (doi:10.1016/j.physa.2013.05.008)) has been empirically ascertained in Baaquie et al. (Baaquie et al. 2015 Phys. A 428, 19-37. (doi:10.1016/j.physa.2015.02.030)). The model's action functionals for different commodities has been empirically determined and calibrated using the unequal time correlation functions of the market commodity prices using a perturbation expansion (Baaquie et al. 2015 Phys. A 428, 19-37. (doi:10.1016/j.physa.2015.02.030)). Nine commodities drawn from the energy, metal and grain sectors are empirically studied and their auto-correlation for up to 300 days is described by the model to an accuracy of R(2)>0.90-using only six parameters. © 2015 The Author(s).
Particle trapping and beam transport issues in laser driven accelerators
NASA Astrophysics Data System (ADS)
Gwenael, Fubiani; Wim, Leemans; Eric, Esarey
2000-10-01
The LWFA and colliding pulses [1][2] sheme are capable of producing very compact electron bunches where the longitudinal size is much smaller than the transverse size. In this case, even if the electrons are relativistic, space charge force can affect the longitudinal and transverse bunch properties [3][4]. In the Self-modulated regime and the colliding pulse sheme, electrons are trapped from the background plasma and rapidly accelerated. We present theoretical studies of the generation and transport of electron bunches in LWFAs. The space charge effect induced in the bunch is modelled assuming the bunch is ellipsoid like. Beam transport in vacuum, comparison between gaussian and waterbag distribution, comparison between envelope model and PIC simulation will be discussed. This work is supported by the Director, Office of Science, Office of High Energy & Nuclear Physics, High Energy Physics Division, of the U.S Department of Energy, under Contract No. DE-AC03-76SF00098 [1]E.Esarey et al.,IEEE Trans. Plasma Sci. PS-24,252 (1996); W.P. Leemans et al, ibidem, 331. [2]D. Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); E.Esarey et al., Phys. Rev. Lett. 79, 2682 (1997); C.B Schroeder et al., Phys. Rev. E59, 6037 (1999) [3]DESY M87-161 (1987); DESY M88-013 (1988) [4] R.W. Garnett and T.P Wangler, IEEE Part. Acce. Conf. (1991)
Torsion Bounds from CP Violation α2-DYNAMO in Axion-Photon Cosmic Plasma
NASA Astrophysics Data System (ADS)
Garcia de Andrade, L. C.
Years ago Mohanty and Sarkar [Phys. Lett. B 433, 424 (1998)] have placed bounds on torsion mass from K meson physics. In this paper, associating torsion to axions a la Campanelli et al. [Phys. Rev. D 72, 123001 (2005)], it is shown that it is possible to place limits on spacetime torsion by considering an efficient α2-dynamo CP violation term. Therefore instead of Kostelecky et al. [Phys. Rev. Lett. 100, 111102 (2008)] torsion bounds from Lorentz violation, here torsion bounds are obtained from CP violation through dynamo magnetic field amplification. It is also shown that oscillating photon-axion frequency peak is reduced to 10-7 Hz due to torsion mass (or Planck mass when torsion does not propagate) contribution to the photon-axion-torsion action. Though torsion does not couple to electromagnetic fields at classical level, it does at the quantum level. Recently, Garcia de Andrade [Phys. Lett. B 468, 28 (2011)] has shown that the photon sector of Lorentz violation (LV) Lagrangian leads to linear nonstandard Maxwell equations where the magnetic field decays slower giving rise to a seed for galactic dynamos. Torsion constraints of the order of K0≈10-42 GeV can be obtained which are more stringent than the value obtained by Kostelecky et al. A lower bound for the existence of galactic dynamos is obtained for torsion as K0≈10-37 GeV.
Hager, Robert; Chang, C. S.
2016-04-08
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert; Chang, C. S.
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov
As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less
Stripe-teeth metamaterial Al- and Nb-based rectennas (Presentation Recording)
NASA Astrophysics Data System (ADS)
Osgood, Richard M.; Giardini, Stephen A.; Carlson, Joel B.; Joghee, Prabhuram; O'Hayre, Ryan P.; Diest, Kenneth; Rothschild, Mordechai
2015-09-01
Unlike a semiconductor, where the absorption is limited by the band gap, a "microrectenna array" could theoretically very efficiently rectify any desired portion of the infrared frequency spectrum (25 - 400 THz). We investigated vertical metal-insulator-metal (MIM) diodes that rectify vertical high-frequency fields produced by a metamaterial planar stripe-teeth Al or Au array (above the diodes), similar to stripe arrays that have demonstrated near-perfect absorption in the infrared due to critical coupling [1]. Using our design rules that maximize asymmetry (and therefore the component of the electric field pointed into the substrate, analogous to Second Harmonic Generation), we designed, fabricated, and analyzed these metamaterial-based microrectenna arrays. NbOx and Al2O3 were produced by anodization and ALD, respectively. Smaller visible-light Pt-NbOx-Nb rectennas have produced output power when illuminated by visible (514 nm) light [2]. The resonances of these new Au/NbOx/Nb and Al/Al2O3/Al microrectenna arrays, with larger dimensions and more complex nanostructures than in Ref. 1, were characterized by microscopic FTIR microscopy and agreed well with FDTD models, once the experimental refractive index values were entered into the model. Current-voltage measurements were carried out, showed that the Al/Al2O3/Al diodes have very large barrier heights and breakdown voltages, and were compared to our model of the MIM diode. We calculate expected THz-rectification using classical [3] and quantum [4] rectification models, and compare to measurements of direct current output, under infrared illumination. [1] C. Wu, et. al., Phys. Rev. B 84 (2011) 075102. [2] R. M. Osgood III, et. al., Proc. SPIE 8096, 809610 (2011). [3] A. Sanchez, et. al., J. Appl. Phys. 49 (1978) 5270. [4] J. R. Tucker and M. J. Feldman, Rev. of Mod. Phys. 57, (1985)1055.
No rescue for the no boundary proposal: Pointers to the future of quantum cosmology
NASA Astrophysics Data System (ADS)
Feldbrugge, Job; Lehners, Jean-Luc; Turok, Neil
2018-01-01
In recent work [J. Feldbrugge et al. Phys. Rev. D 95, 103508 (2017)., 10.1103/PhysRevD.95.103508 and J. Feldbrugge et al. Phys. Rev. Lett. 119, 171301 (2017)., 10.1103/PhysRevLett.119.171301], we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our method provides, in particular, a more precise formulation of the Hartle-Hawking no boundary proposal, as a sum over real Lorentzian four-geometries interpolating between an initial three-geometry of zero size, i.e., a point, and a final three-geometry. With this definition, we calculated the no boundary amplitude for a closed universe with a cosmological constant, assuming cosmological symmetry for the background and including linear perturbations. We found the opposite semiclassical exponent to that obtained by Hartle and Hawking for the creation of a de Sitter spacetime "from nothing." Furthermore, we found the linearized perturbations to be governed by an inverse Gaussian distribution, meaning they are unsuppressed and out of control. Recently, Diaz Dorronsoro et al. [Phys. Rev. D 96, 043505 (2017), 10.1103/PhysRevD.96.043505] followed our methods but attempted to rescue the no boundary proposal by integrating the lapse over a different, intrinsically complex contour. Here, we show that, in addition to the desired Hartle-Hawking saddle point contribution, their contour yields extra, nonperturbative corrections which again render the perturbations unsuppressed. We prove there is no choice of complex contour for the lapse which avoids this problem. We extend our discussion to include backreaction in the leading semiclassical approximation, fully nonlinearly for the lowest tensor harmonic and to second order for all higher modes. Implications for quantum de Sitter spacetime and for cosmic inflation are briefly discussed.
High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase
NASA Astrophysics Data System (ADS)
Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.
2009-03-01
Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of transition zone and top of the lower mantle, when sediments are subducted into the deep mantle. It is also suggested that CAS phase may be stable at the depth of the upper part of the lower mantle, when partial melting of basalt occurs at the depth.
Positron scattering from carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zecca, Antonio; Perazzolli, Chiara; Moser, Norberto
2006-07-15
We report total cross section measurements for positron scattering from carbon dioxide (CO{sub 2}). The energy range of the present measurements is 0.1-20.0 eV. The present study is undertaken to both try and resolve a discrepancy in the literature between the earlier low-energy works of Hoffman et al. [Phys. Rev. A 25, 1393 (1982)] and Kimura et al. [J. Chem. Phys. 107, 6616 (1997)], and to extend the available data to lower energies. We find generally good agreement with the data of Hoffman et al. over the common experimental energy range. A comparison of the present data with available calculationsmore » is also made, as is a comparison with corresponding electron total cross section data.« less
Radio-Frequency Emissions from Streamer Collisions: Implications for High-Energy Processes.
NASA Astrophysics Data System (ADS)
Luque, A.
2017-12-01
The production of energetic particles in a discharge corona is possibly linked to the collision of streamers of opposite polarities [Cooray et al. (2009), Kochkin et al. (2012), Østgaard et al. (2016)]. There is also experimental evidence linking it to radio-frequency emissions in the UHF frequency range (300 MHz-3 GHz) [Montanyà et al. (2015), Petersen and Beasley (2014)]. Here we investigate these two links by modeling the radio-frequency emissions emanating from an encounter between two counter-propagating streamers. Our numerical model combines self-consistently a conservative, high-order Finite-Volume scheme for electron transport with a Finite-Difference Time-Domain (FDTD) method for electromagnetic propagation. We also include the most relevant reactions for streamer propagation: impact ionization, dissociative attachment and photo-ionization. Our implementation benefits from massive parallelization by running on a General-Purpose Graphical Processing Unit (GPGPU). With this code we found that streamer encounters emit electromagnetic waves predominantly in the UHF range, supporting the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges. References Cooray, V., et al., J. Atm. Sol.-Terr. Phys., 71, 1890, doi:10.1016/j.jastp.2009.07.010 (2009). Kochkin, P. O., et al., J. Phys. D, 45, 425202, doi: 10.1088/0022-3727/45/42/425202 (2012). Montanyà, J., et al., J. Atm. Sol.-Terr. Phys., 136, 94, doi:10.1016/j.jastp.2015.06.009, (2015). Østgaard, N., et al., J. Geophys. Res. (Atmos.), 121, 2939, doi:10.1002/2015JD024394 (2016). Petersen, D., and W. Beasley, Atmospheric Research, 135, 314, doi:10.1016/j.atmosres.2013.02.006 (2014).
DFT study of gases adsorption on sharp tip nano-catalysts surface for green fertilizer synthesis
NASA Astrophysics Data System (ADS)
Yahya, Noorhana; Irfan, Muhammad; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima
2016-11-01
The energy minimization and spin modifications of sorbates with sorbents in magnetic induction method (MIM) play a vital role in yield of fertilizer. Hence, in this article the focus of study is the interaction of sorbates/reactants (H2, N2 and CO2) in term of average total adsorption energies, average isosteric heats of adsorption energies, magnetic moments, band gaps energies and spin modifications over identical cone tips nanocatalyst (sorbents) of Fe2O3, Fe3O4 (magnetic), CuO and Al2O3 (non-magnetic) for green nano-fertilizer synthesis. Study of adsorption energy, band structures and density of states of reactants with sorbents are purely classical and quantum mechanical based concepts that are vividly illustrated and supported by ADSORPTION LOCATOR and Cambridge Seriel Total Energy Package (CASTEP) modules following classical and first principle DFT simulation study respectively. Maximum values of total average energies, total average adsorption energies and average adsorption energies of H2, N2 and CO2 molecules are reported as -14.688 kcal/mol, -13.444 kcal/mol, -3.130 kcal/mol, - kcal/mol and -6.348 kcal/mol over Al2O3 cone tips respectively and minimum over magnetic cone tips. Whereas, the maximum and average minimum values of average isosteric heats of adsorption energies of H2, N2 and CO2 molecules are figured out to be 3.081 kcal/mol, 4.842 kcal/mol and 6.848 kcal/mol, 0.988 kcal/mol, 1.554 kcal/mol and 2.236 kcal/mol over aluminum oxide and Fe3O4 cone tips respectively. In addition to the adsorption of reactants over identical cone sorbents the maximum and minimum values of net spin, electrons and number of bands for magnetite and aluminum oxide cone structures are attributed to 82 and zero, 260 and 196, 206 and 118 for Fe3O4 and Al2O3 cones respectively. Maximum and least observed values of band gap energies are figured out to be 0.188 eV and 0.018 eV with Al2O3 and Fe3O4 cone structures respectively. Ultimately, with the adsorption of reactants an identical increment of 14 electrons each in up and down spins is resulted.
Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.
2008-02-15
In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.
An integrable semi-discrete Degasperis-Procesi equation
NASA Astrophysics Data System (ADS)
Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro
2017-06-01
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota’s bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galperin, Michael; Ratner, Mark A.; Nitzan, Abraham
2015-04-07
We discuss the derivation of the optical response in molecular junctions presented by U. Harbola et al. [J. Chem. Phys. 141, 074107 (2014)], which questions some terms in the theory of Raman scattering in molecular junctions developed in our earlier publications. We show that the terms considered in our theory represent the correct contribution to calculated Raman scattering and are in fact identical to those considered by Harbola et al. We also indicate drawbacks of the presented approach in treating the quantum transport part of the problem.
Work cost of thermal operations in quantum thermodynamics
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2014-07-01
Adopting a resource theory framework of thermodynamics for quantum and nano systems pioneered by Janzing et al. (Int. J. Th. Phys. 39, 2717 (2000)), we formulate the cost in the useful work of transforming one resource state into another as a linear program of convex optimization. This approach is based on the characterization of thermal quasiorder given by Janzing et al. and later by Horodecki and Oppenheim (Nat. Comm. 4, 2059 (2013)). Both characterizations are related to an extended version of majorization studied by Ruch, Schranner and Seligman under the name mixing distance (J. Chem. Phys. 69, 386 (1978)).
Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Brunner; E. Valeo
2001-11-08
Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability.
Identifying Broadband Rotational Spectra with Neural Networks
NASA Astrophysics Data System (ADS)
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Miguel; Weder, Ricardo
The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonovmore » and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.« less
NASA Astrophysics Data System (ADS)
Salehi-Fashami, M.; Al-Rashid, M.; Sun, Wei-Yang; Nordeen, P.; Bandyopadhyay, S.; Chavez, A. C.; Carman, G. P.; Atulasimha, J.
2016-10-01
Nanomagnetic logic has emerged as a potential replacement for traditional Complementary Metal Oxide Semiconductor (CMOS) based logic because of superior energy-efficiency (Salahuddin and Datta 2007 Appl. Phys. Lett. 90 093503, Cowburn and Welland 2000 Science 287 1466-68). One implementation of nanomagnetic logic employs shape-anisotropic (e.g. elliptical) ferromagnets (with two stable magnetization orientations) as binary switches that rely on dipole-dipole interaction to communicate binary information (Cowburn and Welland 2000 Science 287 1466-8, Csaba et al 2002 IEEE Trans. Nanotechnol. 1 209-13, Carlton et al 2008 Nano Lett. 8 4173-8, Atulasimha and Bandyopadhyay 2010 Appl. Phys. Lett. 97 173105, Roy et al 2011 Appl. Phys. Lett. 99 063108, Fashami et al 2011 Nanotechnology 22 155201, Tiercelin et al 2011 Appl. Phys. Lett. 99 , Alam et al 2010 IEEE Trans. Nanotechnol. 9 348-51 and Bhowmik et al 2013 Nat. Nanotechnol. 9 59-63). Normally, circular nanomagnets are incompatible with this approach since they lack distinct stable in-plane magnetization orientations to encode bits. However, circular magnetoelastic nanomagnets can be made bi-stable with a voltage induced anisotropic strain, which provides two significant advantages for nanomagnetic logic applications. First, the shape-anisotropy energy barrier is eliminated which reduces the amount of energy required to reorient the magnetization. Second, the in-plane size can be reduced (˜20 nm) which was previously not possible due to thermal stability issues. In circular magnetoelastic nanomagnets, a voltage induced strain stabilizes the magnetization even at this size overcoming the thermal stability issue. In this paper, we analytically demonstrate the feasibility of a binary ‘logic wire’ implemented with an array of circular nanomagnets that are clocked with voltage-induced strain applied by an underlying piezoelectric substrate. This leads to an energy-efficient logic paradigm orders of magnitude superior to existing CMOS-based logic that is scalable to dimensions substantially smaller than those for existing nanomagnetic logic approaches. The analytical approach is validated with experimental measurements conducted on dipole coupled Nickel (Ni) nanodots fabricated on a PMN-PT (Lead Magnesium Niobate-Lead Titanate) sample.
Intrinsic Charge Transport in Organic Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Podzorov, Vitaly
2005-03-01
Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).
NASA Astrophysics Data System (ADS)
Gans, B.; Peng, Z.; Carrasco, N.; Gauyacq, D.; Lebonnois, S.; Pernot, P.
2013-03-01
A new wavelength-dependent model for CH4 photolysis branching ratios is proposed, based on the values measured recently by Gans et al. (Gans, B. et al. [2011]. Phys. Chem. Chem. Phys. 13, 8140-8152). We quantify the impact of this representation on the predictions of a photochemical model of Titan’s atmosphere, on their precision, and compare to earlier representations. Although the observed effects on the mole fraction of the species are small (never larger than 50%), it is possible to draw some recommendations for further studies: (i) the Ly-α branching ratios of Wang et al. (Wang, J.H. et al. [2000]. J. Chem. Phys. 113, 4146-4152) used in recent models overestimate the CH2:CH3 ratio, a factor to which a lot of species are sensitive; (ii) the description of out-of-Ly-α branching ratios by the “100% CH3” scenario has to be avoided, as it can bias significantly the mole fractions of some important species (C3H8); and (iii) complementary experimental data in the 130-140 nm range would be useful to constrain the models in the Ly-α deprived 500-700 km altitude range.
NASA Astrophysics Data System (ADS)
Gong, Maomao; Li, Xingyu; Zhang, Song Bin; Chen, Xiangjun
2018-05-01
A coplanar asymmetric (e, 2e) measurement on N2O has been reported in 1999 by Cavanagh and Lohmann (1999 J. Phys. B: At. Mol. Opt. Phys. 32 L261), however, the relevant ab initio theoretical study is not available even up to now. In this work, we report theoretical studies of (e, 2e) triple differential cross sections of N2O at the same kinematics using a multicenter distorted-wave method. The influence of the multicenter nature of N2O molecule on the continuum wave function of the ejected electron has been largely considered. The computed results show good agreement with the experimental data for both outer valence 2π and inner valence 4σ orbitals.
Chemical-potential flow equations for graphene with Coulomb interactions
NASA Astrophysics Data System (ADS)
Fräßdorf, Christian; Mosig, Johannes E. M.
2018-06-01
We calculate the chemical potential dependence of the renormalized Fermi velocity and static dielectric function for Dirac quasiparticles in graphene nonperturbatively at finite temperature. By reinterpreting the chemical potential as a flow parameter in the spirit of the functional renormalization group (fRG) we obtain a set of flow equations, which describe the change of these functions upon varying the chemical potential. In contrast to the fRG the initial condition of the flow is nontrivial and has to be calculated separately. Our results are consistent with a charge carrier-independent Fermi velocity v (k ) for small densities n ≲k2/π , supporting the comparison of the zero-density fRG calculation of Bauer et al. [Phys. Rev. B 92, 121409 (2015), 10.1103/PhysRevB.92.121409], with the experiment of Elias et al. [Nat. Phys. 7, 701 (2011), 10.1038/nphys2049].
Quantum Monte Carlo calculations of NiO
NASA Astrophysics Data System (ADS)
Maezono, Ryo; Towler, Mike D.; Needs, Richard. J.
2008-03-01
We describe variational and diffusion quantum Monte Carlo (VMC and DMC) calculations [1] of NiO using a 1024-electron simulation cell. We have used a smooth, norm-conserving, Dirac-Fock pseudopotential [2] in our work. Our trial wave functions were of Slater-Jastrow form, containing orbitals generated in Gaussian-basis UHF periodic calculations. Jastrow factor is optimized using variance minimization with optimized cutoff lengths using the same scheme as our previous work. [4] We apply the lattice regulated scheme [5] to evaluate non-local pseudopotentials in DMC and find the scheme improves the smoothness of the energy-volume curve. [1] CASINO ver.2.1 User Manual, University of Cambridge (2007). [2] J.R. Trail et.al., J. Chem. Phys. 122, 014112 (2005). [3] CRYSTAL98 User's Manual, University of Torino (1998). [4] Ryo Maezono et.al., Phys. Rev. Lett., 98, 025701 (2007). [5] Michele Casula, Phys. Rev. B 74, 161102R (2006).
One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative p^{-2} U(1) Gauge Model
NASA Astrophysics Data System (ADS)
Blaschke, Daniel N.; Rofner, Arnold; Sedmik, René I. P.
2010-05-01
This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the θ-deformed non-commutative p-2 model originally introduced by Gurau et al. [Comm. Math. Phys. 287 (2009), 275-290]. It is shown that breaking terms of the form used by Vilar et al. [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433-443] to localize the BRST covariant operator (D2θ2D2)-1 lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.
Improved non-LTE simulation algorithm
NASA Astrophysics Data System (ADS)
Busquet, Michel; Klapisch, Marcel; Colombant, Denis; Fyfe, David; Gardner, John
2008-11-01
The RAdiation Dependent Ionization Model (RADIOM)- a.k.a Busquet's model-[1] has proven its success in simulating non --LTE effects in laser fusion plasmas [2]. This improved algorithm can take into account Auger effect by a new parameter fitted to SCROLL [3] results. It is independent of the photon binning thanks to a projection on a standard grid. It guarantees smoother convergence to LTE. This algorithm has been implemented in a new way in the hydro-code FASTnD. Hydro simulations on the recent subMJ targets[4], with and without non-LTE corrections will be shown. [1] M. Busquet, Phys. Fluids B 5, 4191(1993). [2] D.G. Colombant et al, Phys. Plas. 7,2046 (2000). [3] A. Bar-Shalom, J. Oreg M. Klapisch, J. Quant. Spectr. Rad. Transf. 65 ,43 (2000). [4] S. P. Obenschain, D. G. Colombant, A. J. Schmitt et al., Phys. Plasmas 13, 056320 (2006).
Czakó, Gábor; Kaledin, Alexey L; Bowman, Joel M
2010-04-28
We report the implementation of a previously suggested method to constrain a molecular system to have mode-specific vibrational energy greater than or equal to the zero-point energy in quasiclassical trajectory calculations [J. M. Bowman et al., J. Chem. Phys. 91, 2859 (1989); W. H. Miller et al., J. Chem. Phys. 91, 2863 (1989)]. The implementation is made practical by using a technique described recently [G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009)], where a normal-mode analysis is performed during the course of a trajectory and which gives only real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown by computing mode energies as a function of integration time. Radial distribution functions are also calculated using constrained quasiclassical and standard classical molecular dynamics at low temperature and at 300 K and compared to rigorous quantum path integral calculations.
Exploring magnetized liner inertial fusion with a semi-analytic model
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.; ...
2016-01-01
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, R. D.; Slutz, S. A.; Vesey, R. A.
In this paper, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
Exploring magnetized liner inertial fusion with a semi-analytic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, Ryan D.; Slutz, Stephen A.; Vesey, Roger A.
In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113,more » 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockem, A.; Lazar, M.; Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon
2008-01-15
Dispersion formalism reported in Lazar et al. [Phys. Plasmas 13, 102107 (2006)] is affected by errors due to the misfitting of the distribution function (1) used to interpret the counterstreaming plasmas, with the general dispersion relations (4) and (5), where distribution function (1) has been inserted to find the unstable solutions. The analytical approach is reviewed here, providing a correct analytical and numerical description for the cumulative effect of filamentation and Weibel instabilities arising in initially counterstreaming plasmas with temperature anisotropies. The growth rates are plotted again, and for the cumulative mode, they are orders of magnitude larger than thosemore » obtained in Lazar et al. [Phys. Plasmas 13, 102107 (2006)]. Physically, this can be understood as an increasing of the efficiency of magnetic field generation, and rather enhances the potential role of magnetic instabilities for the fast magnetization scenario in astrophysical applications.« less
Classical capacity of Gaussian thermal memory channels
NASA Astrophysics Data System (ADS)
De Palma, G.; Mari, A.; Giovannetti, V.
2014-10-01
The classical capacity of phase-invariant Gaussian channels has been recently determined under the assumption that such channels are memoryless. In this work we generalize this result by deriving the classical capacity of a model of quantum memory channel, in which the output states depend on the previous input states. In particular we extend the analysis of Lupo et al. [Phys. Rev. Lett. 104, 030501 (2010), 10.1103/PhysRevLett.104.030501 and Phys. Rev. A 82, 032312 (2010), 10.1103/PhysRevA.82.032312] from quantum limited channels to thermal attenuators and thermal amplifiers. Our result applies in many situations in which the physical communication channel is affected by nonzero memory and by thermal noise.
Reliability-Limiting Defects in GaN/AlGaN High Electron Mobility Transistors
2011-12-01
GaN grown by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett., vol. 77, no. 18, pp. 2885- 2887, 2000. [24] A. Hierro , A. R. Arehart, B...defects and impurities: Applications to III-nitrides”, J. Appl. Phys., vol. 95, pp.3851-3879, 2004. [43] A. Hierro , S. A. Ringel, M. Hansen, J. S
NASA Astrophysics Data System (ADS)
Yang, GuanYa; Wu, Jiang; Chen, ShuGuang; Zhou, WeiJun; Sun, Jian; Chen, GuanHua
2018-06-01
Neural network-based first-principles method for predicting heat of formation (HOF) was previously demonstrated to be able to achieve chemical accuracy in a broad spectrum of target molecules [L. H. Hu et al., J. Chem. Phys. 119, 11501 (2003)]. However, its accuracy deteriorates with the increase in molecular size. A closer inspection reveals a systematic correlation between the prediction error and the molecular size, which appears correctable by further statistical analysis, calling for a more sophisticated machine learning algorithm. Despite the apparent difference between simple and complex molecules, all the essential physical information is already present in a carefully selected set of small molecule representatives. A model that can capture the fundamental physics would be able to predict large and complex molecules from information extracted only from a small molecules database. To this end, a size-independent, multi-step multi-variable linear regression-neural network-B3LYP method is developed in this work, which successfully improves the overall prediction accuracy by training with smaller molecules only. And in particular, the calculation errors for larger molecules are drastically reduced to the same magnitudes as those of the smaller molecules. Specifically, the method is based on a 164-molecule database that consists of molecules made of hydrogen and carbon elements. 4 molecular descriptors were selected to encode molecule's characteristics, among which raw HOF calculated from B3LYP and the molecular size are also included. Upon the size-independent machine learning correction, the mean absolute deviation (MAD) of the B3LYP/6-311+G(3df,2p)-calculated HOF is reduced from 16.58 to 1.43 kcal/mol and from 17.33 to 1.69 kcal/mol for the training and testing sets (small molecules), respectively. Furthermore, the MAD of the testing set (large molecules) is reduced from 28.75 to 1.67 kcal/mol.
Basic Research in Electronics (JSEP)
1991-12-01
Single Crystal Growth Single crystals of Bi2Sr 2 CaCu2 O8 (BSCCO) have been prepared following the method of Mitzi , et al. [241. A mixture of oxides...P.C. van Son, H. van Kempen and P. Wyder, Phys. Rev. Lett., 50 2226 (1987). [24] D.B. Mitzi , L.W. Lombardo, A. Kapitulnik,/S.S. Laderman and R.D...Phys. Rev., 165 837 (1908). P.C. van Son, H. van Kempen and P. Wyder, Phys. Rev. Lett., 59 2228 (1987). D.B. Mitzi , L.W. Lombardo, A. Kapitulnik
Electron Energy Deposition in Atomic Oxygen
1986-12-31
the parametric fits developed by Jackman et al^ where the cross section is expressed as ij -14 6.5x10 Cf ij ( 1 -¥~ n 4L ^ ’ij (7) and the...Res. 72, 3967 (1967). 4. H.S. Porter, C.H. Jackman and A.E.S. Green, J. Chem. Phys. 65, 154 (1976) and references therein. 5. P.M. Banks, C.R...1966). 28. S.P. Roundtree and R.J.W. Henry, Phys. Rev. A6, 2106 (1972). 29. T. Sawada and P.S. Ganas, Phys. Rev. A7, 617 (1973). 30. C.H. Jackman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Reed, Lunde R; Shaw, Wendy J
2010-03-27
The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5 to 25 mol%) and B 2O 3 (20 to 0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al+B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23° to 90°C).more » Analysis by 27Al and 29Si MAS-NMR suggests Al (~98% [4]Al) and Si atoms (~100% [4]Si) occupy a tetrahedral coordination whereas, B atoms occupy both tetrahedral ([4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. But despite the changes in the B/Al ratio and B coordination, the 29Si spectra maintain a chemical shift between -88 to -84 ppm for each glass. Unlike the 29Si spectra, the 27Al resonances shift to more positive values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Raman spectroscopy was use to augment the results collected from MAS-NMR and demonstrated that NeB4 (glass sample with the highest B content) was glass-glass phase separated (e.g., heterogeneous glass). Results from SPFT experiments suggest a forward rate of reaction and pH power law coefficients,η, that are independent of B/Al under these neutral to alkaline test conditions for all homogeneous glasses. The temperature dependence shows an order of magnitude increase in the dissolution rate with a 67°C increase in temperature and suggests dissolution is controlled by a surface-mediated reaction, evident by the activation energy, E a, being between 44±8 and 48±7 kJ/mol. Forward dissolution rates, based on Na and Si release, for homogeneous glasses are independent of the B/Al ratio, whereas dissolution rates based on Al and B release are not. Dissolution rates based on B release increase with an increase in the fraction of [3]B(ring). Finally in accord with previous studies, the data discussed in this manuscript suggest rupture of the Al-O and Si-O bond as the rate-limiting step controlling the dissolution of these glasses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhargavi, K.; Srinivasa Reddy, M.; Raghava Rao, P.
Graphical abstract: The optical absorption and photoluminescence spectra of Sm ions in PbO-Al{sub 2}O{sub 3}-SiO{sub 2} glasses mixed with different concentrations of Al{sub 2}O{sub 3} have been investigated. From these spectra, the emission probabilities and also fluorescence lifetime principal transition viz., {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} of Sm{sup 3+} ions of has been evaluated. The analysis of results of these studies has indicated that there is a less radiative trapping and enhanced fluorescence lifetime and high quantum efficiency in the glasses mixed with 8.0 mol% of Al{sub 2}O{sub 3}. Highlights: Black-Right-Pointing-Pointer Glasses of the composition (40 - x)PbO-(5more » + x)Al{sub 2}O{sub 3}-54SiO{sub 2}:1.0Sm{sub 2}O{sub 3} with x = 5-10 mol% were prepared. Black-Right-Pointing-Pointer Spectroscopic properties (OA, PL and IR) were investigated. Black-Right-Pointing-Pointer Emission probability, lifetime, branching ratio of {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} transition of Sm{sup 3+} have been evaluated. Black-Right-Pointing-Pointer Analysis of the results indicated that glass mixed with 8.0 mol% exhibits high luminescence efficiency. -- Abstract: Optical absorption and photoluminescence characteristics of Sm{sup 3+} ions in lead silicate glasses mixed with different concentrations of Al{sub 2}O{sub 3} (5-10 mol%) have been investigated. From these studies, the radiative properties viz., spontaneous emission probability A, the total emission probability, the radiative lifetime {tau}{sub R}, the fluorescent branching ratio {beta} of emission transition of {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} along with other transitions for Sm{sup 3+} have been evaluated and found to be the highest for the glass mixed with 8.0 mol% of Al{sub 2}O{sub 3}.The IR spectral studies have indicated that Al{sup 3+} ions do participate in the glass network with AlO{sub 4} and AlO{sub 6} structural units and further revealed that the concentration of octahedral aluminium ions induce bonding defects in the glass network. Such bonding defects are assumed to be responsible for low phonon losses in these glasses and lead to higher values of radiative parameters for the glass mixed with 8.0 mol% of Al{sub 2}O{sub 3}.« less
NASA Astrophysics Data System (ADS)
Feng, X. J.; Zhang, J. T.; Lin, H.; Gillis, K. A.; Mehl, J. B.; Moldover, M. R.; Zhang, K.; Duan, Y. N.
2017-10-01
We report a new determination of the Boltzmann constant k B using a cylindrical acoustic gas thermometer. We determined the length of the copper cavity from measurements of its microwave resonance frequencies. This contrasts with our previous work (Zhang et al 2011 Int. J. Thermophys. 32 1297, Lin et al 2013 Metrologia 50 417, Feng et al 2015 Metrologia 52 S343) that determined the length of a different cavity using two-color optical interferometry. In this new study, the half-widths of the acoustic resonances are closer to their theoretical values than in our previous work. Despite significant changes in resonator design and the way in which the cylinder length is determined, the value of k B is substantially unchanged. We combined this result with our four previous results to calculate a global weighted mean of our k B determinations. The calculation follows CODATA’s method (Mohr and Taylor 2000 Rev. Mod. Phys. 72 351) for obtaining the weighted mean value of k B that accounts for the correlations among the measured quantities in this work and in our four previous determinations of k B. The weighted mean {{\\boldsymbol{\\hat{k}}}{B}} is 1.380 6484(28) × 10-23 J K-1 with the relative standard uncertainty of 2.0 × 10-6. The corresponding value of the universal gas constant is 8.314 459(17) J K-1 mol-1 with the relative standard uncertainty of 2.0 × 10-6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierman, J.D.; Chan, P.; Liang, J.F.
1997-05-01
reply to the Comment by C.H.Dasso et al., Phys. Rev. Lett. 78,XXX(1997). A Reply to the Comment by C.H. Dasso and J. Fern{acute a}ndez-Niello. {copyright} {ital 1997} {ital The American Physical Society}
Chalcogen doping at anionic site: A scheme towards more dispersive valence band in CuAlO2
NASA Astrophysics Data System (ADS)
Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar
2013-02-01
Using first-principles calculations, we propose to enhance the dispersion of the top of valence band at high-symmetry points by selective introduction of chalcogen (Ch) impurities at oxygen site. As ab-plane hole mobility of CuAlO2 is large enough to support a band-conduction model over a polaronic one at room temperature [M. S. Lee et al. Appl. Phys. Lett. 79, 2029, (2001); J. Tate et al. Phys. Rev. B 80, 165206, (2009)], we examine its electronic and optical properties normal to c-axis. Intrinsic indirectness of energy-gap at Γ-point can be effectively removed along with substantial increase in density of states near Fermi level (EF) upon Ch addition. This can be attributed to S 2p-Cu 3d interaction just at or below EF, which should result in significantly improved carrier mobility and conductivity profile for this important p-type TCO.
NASA Astrophysics Data System (ADS)
Hutzler, Nicholas R.; Doyle, John M.
2014-06-01
Cryogenic buffer gas cooled beams and cells can be used to study many species, from atoms and polar molecules to biomolecules. We report on recent applications of this technique to improve the limit on the electron electric dipole moment [1], load polar molecules into a magnetic trap through optical pumping [2], perform chirally sensitive microwave spectroscopy on polyatomic molecules [3], progress towards magneto-optical trapping of polar molecules [4], and studies of atom-molecule sticking [5]. [1] The ACME Collaboration: J. Baron et al., Science 343, p. 269 (2014) [2] B. Hemmerling et al., arXiv:1310.2669, to appear in Phys. Rev. Lett. [3] D. Patterson, M. Schnell, & J. M. Doyle, Nature 497, p. 475 (2013) [4] H. Lu et al., arXiv:1310.3239, to appear in New. J. Phys. [5] J. Piskorski et al., under preparation
NASA Astrophysics Data System (ADS)
Friha, Hela; Feraud, Geraldine; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Brechignac, Philippe; Troy, Tyler; Schmidt, Timothy; Dhaouadi, Zoubeida
2014-06-01
Naphthalene (Np) and its methylated derivatives (1-Me-Np and 2-Me-Np) are prototype molecules for spectroscopists as first members of the polycyclic aromatic hydrocarbons (PAHs) family. High resolution studies are capable to explore the details of the internal rotation of the methyl group. Although this was achieved in neutral PAHs, the task is not the same in cations. Me-Np cations have been probed by resonance-enhanced multiphoton dissociation, showing only very broad and unresolved spectra, while absorption in argon matrix revealed more resolved vibronic bands. The electronic absorption gas phase spectra of 1-Me-Np^+ and 2-Me-Np^+ were measured using an Ar-tagging technique. In both cases, a band system was observed in the visible range and assigned to the D_2← D_0 transition. The 1-Me-Np^+ absorption bands revealed a red shift of 808 cm-1, relative to Np^+ (14 906 cm-1), while for 2-Me-Np^+ a blue shift of 226 cm-1 was found. A short vibrational progression was also observed. Moreover, insights into the internal rotation motion of the CH_3 were inferred, although intrinsic broadening due to intramolecular relaxation was present. These measurements were supported by detailed quantum chemical calculations that allowed exploration of the potential energy curves, along with a complete simulation of the harmonic FC factors using the cumulant Gaussian fluctuations formalism, extended to include the internal rotation. see for instance Baba et al, J.Phys.Chem.A, 2009, 113, 2366 Dunbar et al, J. Am. Chem. Soc. 1976, 98, 7994-7999; J.Phys.Chem. 1985, 89, 3617 Andrews et al, J.Phys.Chem. 1982, 86, 2916 Pino et al, J. Chem. Phys. 1999, 111, 7337-7347
Electronic Spectroscopy of Trapped PAH Photofragments
NASA Astrophysics Data System (ADS)
Joblin, Christine; Bonnamy, Anthony
2016-06-01
The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C. Joblin, Mol. Astrophys. 2 (2015), 12-17 M. Rapacioli, A. Simon, C.C.M. Marshall, et al., J. Phys. Chem. A 119 (2015), 12845-12854 European Research Council grant ERC-2013-SyG, Grant Agreement n. 610256 NANOCOSMOS.
NASA Astrophysics Data System (ADS)
Stoker, J. B.; Mantica, P. F.; Bazin, D.; Bickley, A.; Becerril, A.; Crawford, H.; Cruse, K.; Estrade, A.; Mosby, M.; Guess, C. J.; Hitt, G. W.; Lorusso, G.; Matos, M.; Meharchand, R.; Minamisono, K.; Montes, F.; Pereira, J.; Perdikakis, G.; Pinter, J. S.; Schatz, H.; Vredevoogd, J.; Zegers, R. G. T.
2008-10-01
The β-decay half-life ^84Mo governs leakage out of the Zr-Nb cycle, a high temperature rp-process endpoint in x-ray binaries [1]. Treatment of the background and the poor statistics accumulated during the previous half-life measurement leave questions about statistical and systematic errors. We have remeasured the half-life of ^84Mo using a concerted setup of the NSCL β-Counting System [3] and 16 detectors from the Segmented Germanium Array [4]. We will report the half-life for ^84Mo, deduced using 40 times the previous sample size. The application of the NSCL RF Fragment Separator to remove unwanted isotopes, and hence reduce background for the half-life measurement, will also be discussed. [1] H. Schatz et al., Phys. Rep. 294, 167 1998 [2] P. Kienle et al., Prog. Part. Nuc. Phys. 46, 73 2001 [3] J. Prisciandaro et al., NIM A 505, 140 2003 [4] W. Mueller et al., NIM A 466, 492 2001 [5] D. Gorelov et al. PAC 2005, Knoxville, TN, May 16-20
Fermi-surface reconstruction by stripe order in cuprate superconductors
NASA Astrophysics Data System (ADS)
Laliberté, Francis
2012-02-01
The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBCO, application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order [1,2,3]. In another cuprate, Eu-LSCO, the onset of stripe order - a modulation of spin and charge densities - at low temperature is well established [4]. By a comparative study of thermoelectric transport in the cuprates YBCO and Eu-LSCO, we show that the two materials exhibit a very similar process of Fermi-surface reconstruction as a function of temperature and doping [5,6]. This strongly suggests that Fermi-surface reconstruction is caused by stripe order in both cases, compelling evidence that stripe order is a generic tendency of hole-doped cuprates.[4pt] Work done in collaboration with J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou, D. LeBoeuf, M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Pyon, T. Takayama, H. Takagi, I. Sheikin, L. Malone, C. Proust, K. Behnia and L. Taillefer.[4pt] [1] N. Doiron-Leyraud et al., Nature 447, 565 (2007).[0pt] [2] D. LeBoeuf et al., Nature 450, 533 (2007).[0pt] [3] D. LeBoeuf et al., Phys. Rev. B 83, 054506 (2011).[0pt] [4] J. Fink et al., Phys. Rev. B 83, 092503 (2011).[0pt] [5] J. Chang et al., Phys. Rev. Lett. 104, 057005 (2010).[0pt] [6] F. Lalibert'e et al., Nat. Commun. 2, 432 (2011).
PREFACE: Cell-substrate interactions Cell-substrate interactions
NASA Astrophysics Data System (ADS)
Gardel, Margaret; Schwarz, Ulrich
2010-05-01
One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin and Engler use force spectroscopy mapping to characterize the spatial distribution of adhesive sites on the substrate [6]. Scrimgeour et al describe a new method to adhesively pattern self-assembled monolayers for cell adhesion by a simple photobleaching setup [7] and Stricker et al demonstrate how elastic substrates can be combined with microcontact printing to improve the reconstruction of traction forces [8]. The work by Metzner et al shows that meaningful results on the cell-substrate interactions can be extracted also from experiments in which cells interact with biofunctionalized beads [9]. If cells start to adhere to a substrate, the main rate-limiting step is establishment of close contact between the plasma membrane and the substrate. This process can be followed with high spatial and temporal resolution with reflection interference microscopy, as demonstrated by Ryzhkov et al for mouse embryonic fibroblasts [10] and by Cretel et al for T lymphocytes [11]. Once mature adhesion has been achieved, the integrin-based focal adhesions providing anchorage to the substrate are strongly connected to the actin cytoskeleton, the main determinant of cell shape and structure. Heil and Spatz use microfabricated pillars to perturb the mechanical balance and quantitatively characterize the fast response of the focal adhesions [12]. A similar approach is used by Kirchenbüchler et al, who use deformation of an elastic substrate to demonstrate that the weak link in the mechanical system of substrate, adhesions and actin cytoskeleton is most likely located at the adhesion-cytoskeleton interface [13]. Rather than using external perturbations, Zemel et al quantify and model how cells spontaneously polarize their cytoskeleton in response to the physical properties of the substrate [14]. Quantitative analysis of cellular data has become standard in the field of cell-substrate interactions. Moreover, theoretical models for cell-substrate interactions help us to identify and understand the mechanisms underlying the observed phenomena in these complex systems. Recently, a large effort has been invested into understanding how force transmitted by the actin cytoskeleton changes the state of focal adhesions. In the contribution by Biton and Safran, this issue is addressed for the case that force arises from shear flow over an adhering cell [15]. Another important source for force on focal adhesions is actin retrograde flow, which has been demonstrated before to show variable coupling to the underlying layer of adhesion receptors. Two contributions discuss how stochastic bond dynamics at the cell-substrate interface is modulated by physical factors. The model by Sabass and Schwarz suggests that dissipation in the actin cytoskeleton stabilizes bond dynamics [16] and the model by Li et al suggests that catch bonding and multiple layers are important elements of the way focal adhesions function [17]. If interacting with an elastic environment, the combined system of focal adhesions and actin cytoskeleton can be used by cells to sense its rigidity and to make decisions on its response. Moshayedi et al show that great care has to be taken when preparing soft elastic substrates for cell culture studies and then use their protocols to quantitatively evaluate the mechanosensitive response of astrocytes from the brain [18]. The cellular system used by Lee et al is pericytes from the microvasculature, for which the authors show that they exert sufficient forces to stimulate vascular endothelial cells [19]. Buxboim et al use the technology of soft elastic substrates to measure how far mesenchymal stem cells can mechanically sense into their substrate [20]. The mechanical activity of cells observed in two-dimensional cell culture has significant consequences for both physiological and disease-related situations, including cell migration, tissue maintenance and tumor growth. Jannat et al show that chemotaxis of neutrophils, that is the first line of the immune system, is strongly modulated by mechanosensing on substrates of varying stiffness [21]. Mogilner and Rubinstein present a theoretical systems analysis for the shape of rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar assays, how force is distributed within a layer of epithelial cells [23]. For three-dimensional tissue models, new techniques have to be developed to characterize the complex mechanics of hydrogels. Levental et al [24] and Kotlarchyk et al [25] approach this challenge with mechanical and optical methods, respectively. Narayanan et al combine experiments and continuum models to explore how chemo-mechanical interactions influence tumor growth [26]. References [1] Chen C S, Mrksich M, Huang S, Whitesides G M and Ingber D E 1997 Geometric control of cell life and death Science 276 1425 [2] Pelham R J Jr and Wang Y-L 1997 Cell locomotion and focal adhesions are regulated by substrate flexibility Proc. Natl. Acad. Sci. USA 94 13661 [3] Engler A J, Sen S, Sweeney H L and Discher D E 2006 Matrix elasticity directs stem cell lineage specification Cell 126 677-89 [4] Geiger B, Spatz J P and Bershadsky A D 2009 Environmental sensing through focal adhesions Nat. Rev. Mol. Cell Biol. 10 21 [5] Boettiger D and Wehrle-Haller B 2010 Integrin and glycocalyx mediated contributions to cell adhesion identified by single cell force spectroscopy J. Phys.: Condens. Matter 22 194101 [6] Chirasatitsin S and Engler A J 2010 Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping J. Phys.: Condens. Matter 22 194102 [7] Scrimgeour J, Kodali V K, Kovari D T and Curtis J E 2010 Photobleaching-activated micropatterning on self-assembled monolayers J. Phys.: Condens. Matter 22 194103 [8] Stricker J, Sabass B, Schwarz U S and Gardel M L 2010 Optimization of traction force microscopy for micron-sized focal adhesions J. Phys.: Condens. Matter 22 194104 [9] Metzner C, Raupach C, Mierke C T and Fabry B 2010 Fluctuations of cytoskeleton-bound microbeads—the effect of bead-receptor binding dynamics J. Phys.: Condens. Matter 22 194105 [10] Ryzhkov P, Prass M, Gummich M, Kühn J-S, Oettmeier C and Döbereiner H-G 2010 Adhesion patterns in early cell spreading J. Phys.: Condens. Matter 22 194106 [11] Cretel E, Touchard D, Benoliel A M, Bongrand P and Pierres A 2010 Early contacts between T lymphocytes and activating surfaces J. Phys.: Condens. Matter 22 194107 [12] Heil P and Spatz J P 2010 Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics J. Phys.: Condens. Matter 22 194108 [13] Kirchenbüchler D, Born S, Kirchgeßner N, Houben S, Hoffmann B and Merkel R 2010 Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins J. Phys.: Condens. Matter 22 194109 [14] Zemel A, Rehfeldt F, Brown A E X, Discher D E and Safran S A 2010 Cell shape, spreading symmetry, and the polarization of stress-fibers in cells J. Phys.: Condens. Matter 22 194110 [15] Biton Y Y and Safran S A 2010 Theory of the mechanical response of focal adhesions to shear flow J. Phys.: Condens. Matter 22 194111 [16] Sabass B and Schwarz U S 2010 Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation J. Phys.: Condens. Matter 22 194112 [17] Li Y, Bhimalapuram P and Dinner A R 2010 Model for how retrograde actin flow regulates adhesion traction stresses J. Phys.: Condens. Matter 22 194113 [18] Moshayedi P, da F Costa L, Christ A, Lacour S P, Fawcett J, Guck J and Franze K 2010 Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry J. Phys.: Condens. Matter 22 194114 [19] Lee S, Zeiger A, Maloney J M, Kotecki M, Van Vliet K J and Herman I M 2010 Pericyte contraction at the cell-material interface can modulate the microvascular niche J. Phys.: Condens. Matter 22 194115 [20] Buxboim A, Rajagopal K, Brown A E X and Discher D E 2010 How deeply cells feel: methods for thin gels J. Phys.: Condens. Matter 22 194116 [21] Jannat R A, Robbins G P, Ricart B G, Dembo M and Hammer D A 2010 Neutrophil adhesion and chemotaxis depend on substrate mechanics J. Phys.: Condens. Matter 22 194117 [22] Mogilner A and Rubinstein B 2010 Actin disassembly 'clock' and membrane tension determine cell shape and turning: a mathematical method J. Phys.: Condens. Matter 22 194118 [23] Saez A, Anon E, Ghibaudo M, du Roure O, Di Meglio J-M, Hersen P, Silberzan P, Buguin A, Ladoux B 2010 Traction forces exerted by epithelial cell sheets J. Phys.: Condens. Matter 22 194119 [24] Levental I, Levental K R, Klein E A, Assoian R, Miller R T, Wells R G and Janmey P A 2010 A simple indentation device for measuring micrometer-scale tissue stiffness J. Phys.: Condens. Matter 22 194120 [25] Kotlarchyk M A, Botvinick E L and Putnam A J 2010 Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging J. Phys.: Condens. Matter 22 194121 [26] Narayanan H, Verner S N, Mills K L, Kemkemer R and Garikipati K 2010 In silico estimates of the free energy rates in growing tumor spheroids J. Phys.: Condens. Matter 22 194122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-04-15
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the mainmore » result of the work by Niknam et al. is incorrect.« less
Status of the NIST Penning-Trap Neutron Lifetime Measurement
NASA Astrophysics Data System (ADS)
Snow, W. M.; Fei, X.; Chowdhuri, Z.; Dewey, M. S.; Gilliam, D.; Nico, J. S.; Greene, G. L.
1998-10-01
The decay rate of the free neutron is important input for Big-Bang Nucleosynthesis calculations of the primordial ^4He abundance in the universe(T. P. Walker et al, Astrophys. J. 376, 51 (1991).) and for tests of the electroweak model in the charged-current sector(I. S. Towner, Nucl. Phys. A540, 478 (1992).). We will describe an experiment in progress at NIST to measure the neutron decay rate. The technique uses a Penning trap to trap and count protons from in-beam neutron decay(J. Byrne et al., Phys. Rev. Lett. 65, 289 (1990).) and an absolutely calibrated beam monitor to measure the neutron density in the beam(R. D. Scott et al., Nucl. Inst. Meth. A362, 151 (1995).). We will present data taken in the spring and summer of 1998.
Electron-electron interactions in doped graphene sheets
NASA Astrophysics Data System (ADS)
Polini, Marco
2012-02-01
In this talk I will review some of the most important electronic properties of graphene. I will first discuss the appearance of plasmaron satellite bands in both angle-resolved photoemission [1] and STM spectra [2,3], emphasizing the important role of the sublattice pseudospin degree of freedom. I will then illustrate some unusual features, which appear only beyond the widely used Random Phase Approximation, characterizing plasmons and Drude weight of the electron gas in this material [4].[4pt] [1] A. Bostwick et al., Science 328, 999 (2010).[0pt] [2] V.W. Brar et al., Phys. Rev. Lett. 104, 036805 (2010).[0pt] [3] A. Principi, M. Polini, and A.H. MacDonald, to be submitted[0pt] [4] S.H. Abedinpour et al., Phys. Rev. B 84, 045429 (2011).
Recent results of Daya Bay reactor neutrino experiment
NASA Astrophysics Data System (ADS)
Leitner, R.; Daya Bay Collaboration
2017-04-01
The Daya Bay reactor neutrino experiment has been designed to precisely measure the least known neutrino mixing angle θ13. In March 2012, Daya Bay collaboration announced [Daya Bay Collaboration (F. P. An et al.), Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803] the observation of non-zero value of sin2 2θ13. Because of large statistics of detected antineutrinos and excellent performance of the experiment, Daya Bay continuously improves the precision of world best measurement of sin2 2θ13. In addition it provides results on neutrino mass splitting Δ mee2 competitive with measurements of other experiments, results on precise measurement of reactor fluxes and on limits of the existence of hypothetical fourth neutrino. In this paper, we report the results available by the time of the 6th Capri workshop: the measurement of oscillation parameters sin2 (2θ13) = 0.084 ± 0.005 and | Δmee2 | = (2.42 ± 0.11) ×10-3eV2 [Daya Bay Collaboration (F. P. An et al.), New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) no. 11, 111802], searches for sterile neutrinos [Daya Bay Collaboration (F. P. An et al.) Search for a Light Sterile Neutrino at Daya Bay, Phys. Rev. Lett. 113 (2014) 141802] and precise measurement of reactor neutrino flux [Daya Bay Collaboration (F. P. An et al.), Measurement of the Reactor Anti-neutrino Flux and Spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) no. 6, 061801]. These are based on 621 days of measurement, most of the data has been taken in full detector configuration. More precise results [Daya Bay Collaboration (F. P. An et al.), Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, arxiv:arXiv:1610.04802] with 1230 days of operation have been presented few weeks later at the Neutrino 2016 conference.
Assessment of the GLLB-SC potential for solid-state properties and attempts for improvement
NASA Astrophysics Data System (ADS)
Tran, Fabien; Ehsan, Sohaib; Blaha, Peter
2018-02-01
Based on the work of Gritsenko et al. (GLLB) [Phys. Rev. A 51, 1944 (1995), 10.1103/PhysRevA.51.1944], the method of Kuisma et al. [Phys. Rev. B 82, 115106 (2010), 10.1103/PhysRevB.82.115106] to calculate the band gap in solids was shown to be much more accurate than the common local density approximation (LDA) and generalized gradient approximation (GGA). The main feature of the GLLB-SC potential (SC stands for solid and correlation) is to lead to a nonzero derivative discontinuity that can be conveniently calculated and then added to the Kohn-Sham band gap for a comparison with the experimental band gap. In this work, a thorough comparison of GLLB-SC with other methods, e.g., the modified Becke-Johnson (mBJ) potential [Tran and Blaha, Phys. Rev. Lett. 102, 226401 (2009), 10.1103/PhysRevLett.102.226401], for electronic, magnetic, and density-related properties is presented. It is shown that for the band gap, GLLB-SC does not perform as well as mBJ for systems with a small band gap and strongly correlated systems, but is on average of similar accuracy as hybrid functionals. The results on itinerant metals indicate that GLLB-SC overestimates significantly the magnetic moment (much more than mBJ does), but leads to excellent results for the electric field gradient, for which mBJ is in general not recommended. In the aim of improving the results, variants of the GLLB-SC potential are also tested.
Laboratory studies of key gas-phase HOx-NOx coupling reactions.
NASA Astrophysics Data System (ADS)
Dillon, Terry J.; Dulitz, Katrin; Crowley, John N.
2013-04-01
The HOx (OH & HO2) and NOx (NO & NO2) families of atmospheric radicals are coupled via a number of gas-phase reactions. These reactions have a substantial impact by controlling radical propagation / termination in catalytic cycles, so modifying the oxidation power of the atmosphere and its rate of O3 production. However, field measurements {1-3} have demonstrated that our understanding of HOx - NOx chemistry is incomplete. We have identified four reactions (R1-R4) where the database is particularly unsatisfactory, leading to large uncertainties in atmospheric models {4-5}. HO2 + NO -> OH + NO2 (R1a) HO2 + NO (+ M) -> HNO3 (+ M) (R1b) NO2* + H2O -> NO2 + H2O (R2a) NO2* + H2O -> OH + HONO (R2b) NO3* + H2O -> NO3 + H2O (R3a) NO3* + H2O -> OH + HNO3 (R3b) OH + HNO3 -> H2O + NO3 (R4) In this experimental work, laser-based kinetic and spectroscopic tools were used to investigate recent observations {6-7} of HNO3 formation from the (otherwise radical propagating) HO2 + NO (R1), and OH formation following absorption of abundant, long wavelength photons by NO2 {8} and NO3 in the presence of water vapour (R2, R3). Uncertainties {9} associated with a classical HOx-NOx coupling reaction (R4) were also addressed. Critical photochemical parameters so derived have included absolute rate coefficients for (R1) and (R4) and product yields (R1b, R2b, R3b). The atmospheric implications of these results will be discussed. References: {1} Faloona, I. et al. J. Geophys. Res., 105, 3771-3783, 2000.; {2} Thakur, A.N. et al., Atmos. Environ., 33, 1403-1422, 1999.; {3} Wennberg, P.O. et al., Geophys. Res. Lett., 26, 1373-1376, 1999.; {4} Cariolle, D. et al., Atmos. Chem. Phys., 8, 4061-4068, 2008.; {5} Wennberg P.O. and Dabdub, D. Science, 319, 2008. ; {6} Butkovskaya, N. et al., J. Phys. Chem. A, 111, 9047-9053, 2007.; {7} Butkovskaya, N. et al., J. Phys. Chem. A, 109, 6509-6520, 2005.; {8} Li, S.P. et al., Science, 319, 1657-1660, 2008. {9} Brown, S.S. et al., J. Phys. Chem., 103, 3031-3037, 1999.
Nuclear Data Sheets for A = 42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Singh, Balraj
The experimental data are evaluated for known nuclides of mass number A = 42 (Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr). Detailed evaluated level properties and related information are presented, including adopted values of level and γ–ray energies, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes earlier full evaluations of A = 42 published by B. Singh, J.A. Cameron – Nucl.Data Sheets 92, 1 (2001) and P.M. Endt – Nucl. Phys. A521, 1 (1990); Errata and Addenda Nucl. Phys. A529, 763 (1991); Errata Nucl. Phys. A564, 609 (1993)more » (also P.M. Endt – Nucl. Phys. A633, 1 (1998) update). No excited states are known in {sup 42}Al, {sup 42}P, {sup 42}V and {sup 42}Cr, and structure information for {sup 42}Si and {sup 42}S is quite limited. There are no decay schemes available for the decay of {sup 42}Al, {sup 42}Si, {sup 42}P, {sup 42}V and {sup 42}Cr, while the decay schemes of {sup 42}Cl and {sup 42}Ti are incomplete in view of scarcity of data, and large gap between their Q–values and the highest energy levels populated in corresponding daughter nuclei. Structures of {sup 42}Ca, {sup 42}K, {sup 42}Sc and {sup 42}Ar nuclides remain the most extensively studied via many different nuclear reactions and decays.« less
Halogenation effects on electron collisions with CF3Cl, CF2Cl2, and CFCl3
NASA Astrophysics Data System (ADS)
Freitas, T. C.; Lopes, A. R.; Azeredo, A. D.; Bettega, M. H. F.
2016-04-01
We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ∗ resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.
Quarter-flux Hofstadter lattice in a qubit-compatible microwave cavity array
NASA Astrophysics Data System (ADS)
Owens, Clai; LaChapelle, Aman; Saxberg, Brendan; Anderson, Brandon M.; Ma, Ruichao; Simon, Jonathan; Schuster, David I.
2018-01-01
Topological and strongly correlated materials are exciting frontiers in condensed-matter physics, married prominently in studies of the fractional quantum Hall effect [H. L. Stormer et al., Rev. Mod. Phys. 71, S298 (1999), 10.1103/RevModPhys.71.S298], There is an active effort to develop synthetic materials where the microscopic dynamics and ordering arising from the interplay of topology and interaction may be directly explored. In this work, we demonstrate an architecture for exploration of topological matter constructed from tunnel-coupled, time-reversal-broken microwave cavities that are both low loss and compatible with Josephson-junction-mediated interactions [A. Wallraff et al., Nature (London) 431, 162 (2004), 10.1038/nature02851]. Following our proposed protocol [B. M. Anderson et al., Phys. Rev. X 6, 041043 (2016), 10.1103/PhysRevX.6.041043], we implement a square lattice Hofstadter model at a quarter flux per plaquette (α =1 /4 ), with time-reversal symmetry broken through the chiral Wannier orbital of resonators coupled to yttrium-iron-garnet spheres. We demonstrate site-resolved spectroscopy of the lattice, time-resolved dynamics of its edge channels, and a direct measurement of the dispersion of the edge channels. Finally, we demonstrate the flexibility of the approach by erecting a tunnel barrier and investigating dynamics across it. With the introduction of Josephson junctions to mediate interactions between photons, this platform is poised to explore strongly correlated topological quantum science in a synthetic system.
NASA Astrophysics Data System (ADS)
Robert Huber, J.
2003-08-01
Based on recently reported experimental results from various groups, the barrier height (or transition state energy) for the T 1 dissociation of acetaldehyde, CH 3CHO → CH 3 + HCO, is determined to lie between 12.3 and 12.9 kcal mol -1. This result is compared with predictions from recent ab initio calculations.
Physics Without Physics. The Power of Information-theoretical Principles
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2017-01-01
David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called "relativistic regime" of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacon, L.; Escande, D. F.; Piovesan, P.
2009-11-01
The existence of a Reversed Field Pinch (RFP) dynamo as a (laminar) helical self-organization was anticipated by MHD numerical studies [1]. High current operation in RFX-mod experiment shows such a helical self-organization: strong internal electron transport barriers (ITB) appear and magnetic chaos healing is diagnosed when Single Helical Axis (SHAx) regimes are achieved [2]. We present results of the field line tracing code NEMATO [3] applied to study the magnetic topology resulting from 3D MHD simulations, with the aim of clarifying the conditions for chaos healing in SHAx states. First tests confirm the basic picture: the magnetic chaos due to island overlap is significantly reduced after the expulsion of the dominant mode separatrix. The possible synergy with the presence of magnetic and/or flow shear at the SHAx ITB will also be discussed [4].[4pt] [1] S. Cappello, Plasma Phys. Control. Fusion (2004) & references therein [0pt] [2] R. Lorenzini et al., Nature Phys. (2009) [0pt] [3] J. M. Finn and L. Chacon, Phys. Plasmas (2005) [0pt] [4] M.E. Puiatti et al invited presentation EPS 2009 conference, submitted to Plasma Phys. Control. Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyama, R.; Hershkowitz, N.; Majeski, R.
A comparison of phenomenological features of plasmas is made with a special emphasis on radio-frequency induced transport, which are maintained when a set of two closely spaced dual half-turn antennas in a central cell of the Phaedrus-B axisymmetric tandem mirror [J. J. Browning {ital et al.}, Phys. Fluids B {bold 1}, 1692 (1989)] is phased to excite electromagnetic fields in the ion cyclotron range of frequencies (ICRF) with m={minus}1 (rotating with ions) and m=+1 (rotating with electrons) azimuthal modes. Positive and negative electric currents are measured to flow axially to the end walls in the cases of m={minus}1 and m=+1more » excitations, respectively. These parallel nonambipolar ion and electron fluxes are observed to be accompanied by azimuthal ion flows in the same directions as the antenna-excitation modes m. The phenomena are argued in terms of radial particle fluxes due to a nonambipolar transport mechanism [Hojo and Hatori, J. Phys. Soc. Jpn. {bold 60}, 2510 (1991); Hatakeyama {ital et al.}, J. Phys. Soc. Jpn. {bold 60}, 2815 (1991), and Phys. Rev. E {bold 52}, 6664 (1995)], which are induced when azimuthally traveling ICRF waves are absorbed in the magnetized plasma column. {copyright} {ital 1997 American Institute of Physics.}« less
Modeling collective behavior of molecules in nanoscale direct deposition processes
NASA Astrophysics Data System (ADS)
Lee, Nam-Kyung; Hong, Seunghun
2006-03-01
We present a theoretical model describing the collective behavior of molecules in nanoscale direct deposition processes such as dip-pen nanolithography. We show that strong intermolecular interactions combined with nonuniform substrate-molecule interactions can produce various shapes of molecular patterns including fractal-like structures. Computer simulations reveal circular and starlike patterns at low and intermediate densities of preferentially attractive surface sites, respectively. At large density of such surface sites, the molecules form a two-dimensional invasion percolation cluster. Previous experimental results showing anisotropic patterns of various chemical and biological molecules correspond to the starlike regime [P. Manandhar et al., Phys. Rev. Lett. 90, 115505 (2003); J.-H. Lim and C. A. Mirkin, Adv. Mater. (Weinheim, Ger.) 14, 1474 (2002); D. L. Wilson et al., Proc. Natl. Acad. Sci. U.S.A. 98, 13660 (2001); M. Su et al., Appl. Phys. Lett. 84, 4200 (2004); R. McKendry et al., Nano Lett. 2, 713 (2002); H. Zhou et al., Appl. Surf. Sci. 236, 18 (2004); G. Agarwal et al., J. Am. Chem. Soc. 125, 580 (2003)].
NASA Astrophysics Data System (ADS)
Wickramaratne, Darshana; Shen, Jimmy-Xuan; Alkauskas, Audrius; Van de Walle, Chris G.
2018-02-01
In a recent article [Phys. Rev. B 91, 205315 (2015), 10.1103/PhysRevB.91.205315] Shi, Xu, and Wang presented a comparison of several formalisms to calculate nonradiative recombination rates and concluded the "one-dimensional (1D) quantum formula" that was used by Alkauskas et al. [Phys. Rev. B 90, 075202 (2014), 10.1103/PhysRevB.90.075202] is insufficient to accurately describe nonradiative capture rates. Our analysis of the results of Shi, Xu, and Wang indicates that their conclusions about the 1D quantum formula are unfounded and stem from an error in their calculations. Our own calculations demonstrate that the 1D quantum formula approach yields reliable and accurate results for nonradiative recombination rates.
Analysis of photon count data from single-molecule fluorescence experiments
NASA Astrophysics Data System (ADS)
Burzykowski, T.; Szubiakowski, J.; Rydén, T.
2003-03-01
We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].
PERSPECTIVE: Snow matters in the polar regions
NASA Astrophysics Data System (ADS)
Sodeau, John
2010-03-01
Antarctica is not quite as chemically pristine as might sometimes be thought (Jones et al 2008). For example, as elsewhere, reduced sulfur species such as dimethylsulfide (DMS) are emitted from biogenic marine sources at the poles (Read et al 2008). Somewhat less well known is that inland (as opposed to coastal) field campaigns have also detected, within the Antarctic boundary layer (ABL), emissions containing unexpectedly high levels of diverse, oxidizing chemicals such as NOx, nitrate ions, formaldehyde, ozone and hydrogen peroxide (Honrath et al 1999, Hutterli et al 2004, Sumner and Shepson 1999). And then there are the halogen-containing compounds (Simpson et al 2007). The transformation of DMS to sulfate aerosols capable of acting as cloud condensation nuclei often proceeds via one main oxidized product of DMS, namely methanesulfonic acid (MSA). Two specific reactions have been well studied to date in this regard, namely DMS plus either OH or NO3 radicals. Corresponding reactions with halogen radicals, which also contribute to the oxidizing capacity of our atmosphere, have generally been considered to be of less importance. The reason for this view is that even though the reactivity of bromine- and iodine-containing radicals is much greater than that of OH, the halogens were thought to be relatively scarce in the polar atmosphere. However both BrO (and IO) have been detected in the Antarctic CHABLIS campaign, as discussed in depth in the Atmospheric Chemistry and Physics special issue of 2008, see Jones et al (2008). It was subsequently shown that calculated MSA production from the DMS/BrO reaction may be about an order of magnitude greater than when the OH radical was the oxidizing reactant. The recent analytical measurements by Antony et al (2010) of MSA, Br and NO3 found in snow along the Ingrid Christensen Coast of East Antarctica are important in the above field context. Hence it would appear that the concentrations of these ions in ice-cap sites are up to 30 times greater than those found in ice-free areas. The main question to ask is: how might the bromine have become released to the atmosphere? Many ideas have, in fact, been put forward over the last few years as to how such polar ocean-troposphere exchanges can take place. Much of the interest was driven by the so-called 'sudden' ozone depletion episodes first detected in Arctic air during the 1990s alongside simultaneous bromine 'explosions' which were monitored by ground-based instrumentation and satellite (as the radical BrO) over sea-ice covered by snowpack (Hausmann and Platt 1994, Schonhardt et al 2008). The likely precursors suggested, to date, have been sea-salt, frost-flowers and anthropogenic contents rather than organo- bromine matter (Simpson et al 2007). Associated processing routes including the formation of HOBr, the need for acidity, the involvement of trihalide ions and the potential role of freezing processes and the quasi-liquid layer have all been discussed in this context (Abbatt 1994, Neshyba et al 2009, O'Driscoll et al 2006). Computational work has also led to suggestions that preferential surface dispersion of the more highly polarizable halides (iodide and bromide ions) may lead to their direct interfacial reaction with atmospheric ozone leading to BrO or IO formation (Jungwirth and Winter 2008). The involvement of snow micro-algae in the production of halo-compounds such as CHBr3 and CH2Br2 in Antarctica cannot, of course, be ignored following the measurement of these compounds by Sturges and co-workers over 15 years ago (Sturges et al 1993). And the measurement of high levels of nutrient discussed in the recent work by Antony et al (2010) in the ice-cap areas do provide a basis for understanding why micro- algae growth in snow might be promoted. However the question still comes back to: how are these halo-compounds processed to produce 'active' species like BrO radicals, HOBr, Br atoms, Br2 gas or interhalogens such as BrCl? The relatively long history of this topic was surveyed extensively in 2007 and the answer is probably not related to the photolysis of the halogeno-carbons although the transformation processes are still not completely understood (Simpson et al 2007). This topic along with the potential involvement of both iodine and chlorine species is decidedly 'hot' in the intriguing world of polar cryochemistry. The Antony et al (2010) paper is actually entitled 'Is cloud seeding in coastal Antarctica linked to bromine and nitrate variability in snow?'. Although the nitrate ions were discussed in terms of being a simple nutrient in the study, the photochemistry of nitrate ions in snow has actually become an important focus of research in the laboratory. A further review by Grannas et al (2007) is recommended in this respect. But important questions remain regarding the fate of the NO and NO2 molecules produced in the primary photolytic channels, especially if concentrated into ice 'micropockets' (Hellebust et al 2007). Furthermore the impacts of newly discovered reactions such as HO2/NO to directly produce nitric acid, at the expense of NOx, have not yet been quantified in the polar ABL context (Cariolle et al 2008). Then there is peroxyacetylnitrate (PAN; Mills et al 2007) and other organo-nitrates and their possible interactions with mercury and the halides . . . Clearly, Antarctica is not chemically pristine and snow-ice interfaces in both the laboratory and the field have become a very challenging medium for exploring new and unexpected chemistry relevant to our atmosphere. References Abbatt J P D 1994 Heterogeneous reaction of HOBr with HBr and HCl on ice surfaces at 228 K Geophys. Res. Lett. 21 665-8 Antony R et al 2010 Is cloud seeding in coastal Antarctica linked to bromine and nitrate variability in snow? Environ. Res. Lett. 5 014009 Cariolle D et al 2008 Impact of the new HNO3-forming channel of the HO2 + NO reaction on tropospheric HNO3, NOx, HOx and ozone Atmos. Chem. Phys. 8 4061-8 Grannas A M et al 2007 An overview of snow photochemistry: evidence, mechanisms and impacts Atmos. Chem. Phys. 7 4329-73 Hausmann M and Platt U 1994 Spectroscopic measurement of bromine oxide and ozone in the high Arctic during polar sunrise experiment 1992 J. Geophys. Res. Atmos. 99 25399-413 Hellebust S et al 2007 Potential role of the nitroacidium ion on HONO emissions from the snowpack J. Phys. Chem. A 111 1167-71 Honrath R et al 1999 Evidence of NOx production within or upon ice particles in the Greenland snowpack Geophys. Res. Lett. 26 695-8 Hutterli M A et al 2004 Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole Atmos. Environ. 38 5439-50 Jones A E et al 2008 Chemistry of the Antarctic boundary layer and the interface with snow: an overview of the CHABLIS campaign Atmos. Chem. Phys. 8 3789-803 Jungwirth P and Winter B 2008 Ions at aqueous interfaces: from water surface to hydrated proteins Ann. Rev. Phys. Chem. 59 343-66 Mills G P et al 2007 Seasonal variation of peroxyacetylnitrate (PAN) in coastal Antarctica measured with a new instrument for the detection of sub-part per trillion mixing ratios of PAN Atmos. Chem. Phys. 7 4589-99 Neshyba S et al 2009 Molecular dynamics study of ice-vapor interactions via the quasi-liquid layer J. Phys. Chem. C 113 4597-604 O'Driscoll P et al 2006 Freezing halide ion solutions and the release of interhalogens to the atmosphere J. Phys. Chem. A 110 4615-8 Read K A et al 2008 DMS and MSA measurements in the Antarctic boundary layer: impact of BrO on MSA production Atmos. Chem. Phys. 8 2985-97 Schonhardt A et al 2008 Observations of iodine monoxide columns from satellite Atmos. Chem. Phys. 8 637-53 Simpson W R et al 2007 Halogens and their role in polar boundary-layer ozone depletion Atmos. Chem. Phys. 7 4375-418 Sturges W T et al 1993 Spring measurements of tropospheric bromine at Barrow, Alaska Geophys. Res. Lett. 20 201-4 Sumner A L and Shepson P B 1999 Snowpack production of formaldehyde and its effect on the Arctic troposphere Nature 398 230-3
Reflectionless CMV Matrices and Scattering Theory
NASA Astrophysics Data System (ADS)
Chu, Sherry; Landon, Benjamin; Panangaden, Jane
2015-04-01
Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).
NASA Astrophysics Data System (ADS)
Zha, Xin-Wei; Ma, Gang-Long
2011-02-01
It is a recent observation that entanglement classification for qubits is closely related to stochastic local operations and classical communication (SLOCC) invariants. Verstraete et al.[Phys. Rev. A 65 (2002) 052112] showed that for pure states of four qubits there are nine different degenerate SLOCC entanglement classes. Li et al.[Phys. Rev. A 76 (2007) 052311] showed that there are at feast 28 distinct true SLOCC entanglement classes for four qubits by means of the SLOCC invariant and semi-invariant. We give 16 different entanglement classes for four qubits by means of basic SLOCC invariants.
Experimental comparison of symmetry in rugby and cylindrical holhraums
NASA Astrophysics Data System (ADS)
Philippe, Franck; Tassin, Veronique; Laffite, Stephane; Monteil, Marie-Christine; Bastian, Josiane; Lours, Laurence; Villette, Bruno; Stemmler, Philippe; Bednarczyk, Sophie; Reneaume, Benoit; di Nicola, Pascale; Raffin, Vincent
2007-11-01
Recently, holhraum shape optimization has been investigated as a practical way to achieve ignition at lower energy [1][2]. Rugby shaped holhraums theoretically allow better energetic coupling and symmetry control than classical cylinders. As a first step toward an experimental validation of this design, this talk presents the results of experiments on the OMEGA laser facility dedicated to the comparison of symmetry in cylindrical and rugby holhraums. Foamball radiographs and Symcaps emission contours for both type of holhraums are compared to numerical simulation results. [1] M. Vandenboomgaerde et al., accepted by Phys. Rev. Lett. [2] P. Amendt et al., Phys. Plasmas 14, 056312 (2007)
Radio-frequency measurement of an asymmetric single electron transistor
NASA Astrophysics Data System (ADS)
Ji, Zhongqing; Xue, Weiwei; Rimberg, A. J.
2007-03-01
Since the invention of the radio-frequency single-electron transistor (RF-SET) by Schoelkopf et al.,[1] most measurements have focused on the symmetric single electron transistor. It has been shown, however, that the symmetric SET has a rather low measurement efficiency in its normal working regime.[2][3] Recently, it has been pointed out that an asymmetric SET can be considerably more efficient than a symmetric SET as a quantum amplifier. In this case the measurement efficiency of the asymmetric SET becomes similar to that of the quantum point contact (QPC) detector which can approach the quantum limit. We investigate the asymmetric SET by fabricating Al/AlOx SETs with junction areas 40x40 nm^2 and 40x80nm^2 and total resistance of about 25kφ. The results of RF and DC characterization of such asymmetric SETs will be discussed. [1] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, D. E. Prober, Science, 280, 1242 (1998). [2] A. N. Korotkov, Phys. Rev. B, 63, 085312 (2001); 63, 115403 (2001). [3] D. Mozyrsky, I. Martin, and M. B. Hastings, Phys. Rev. Lett., 92, 018303 (2004). [4] S. A. Gurvitz and G. P. Berman, Phys. Rev. B, 72 , 073303(2005).
Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M.; Tynan, G. R.; Holland, C.
2010-03-15
Frequency-resolved nonlinear internal and kinetic energy transfer rates have been measured in the Controlled Shear Decorrelation Experiment (CSDX) linear plasma device using a recently developed technique [Xu et al., Phys. Plasmas 16, 042312 (2009)]. The results clearly show a net kinetic energy transfer into the zonal flow frequency region, consistent with previous time-domain observations of turbulence-driven shear flows [Tynan et al., Plasma Phys. Controlled Fusion 48, S51 (2006)]. The experimentally measured dispersion relation has been used to map the frequency-resolved energy transfer rates into the wave number domain, which shows that the shear flow drive comes from midrange (k{sub t}hetarho{submore » S}>0.3) drift fluctuations, and the strongest flow drive comes from k{sub t}hetarho{sub S}approx =1 fluctuations. Linear growth rates have been inferred from a linearized Hasegawa-Wakatani model [Hasegawa et al., Phys. Fluids 22, 2122 (1979)], which indicates that the m=0 mode is linearly stable and the m=1-10 modes (corresponding to k{sub t}hetarho{sub S}>0.3) are linearly unstable for the n=1 and n=2 radial eigenmodes. This is consistent with our energy transfer measurements.« less
A nonlocal fluid closure for antiparallel reconnection
NASA Astrophysics Data System (ADS)
Ng, J.; Hakim, A.; Bhattacharjee, A.
2016-12-01
The integration of kinetic effects in fluid models is an important problem in global simulations of the Earth's magnetosphere and space weather modelling. In particular, it has been shown that ion kinetics play an important role in the dynamics of large reconnecting systems, and that fluid models can account of some of these effects[1,2] . Here we introduce a new fluid model and closure for collisionless magnetic reconnection and more general applications. Taking moments of the kinetic equation, we evolve the full pressure tensor for electrons and ions, which includes the off diagonal terms necessary for reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework [3]. Using the island coalescence problem as a test, we show how the nonlocal ion closure improves on the typical collisional closures used for ten-moment models and circumvents the need for a colllisional free parameter. Finally, we extend the closure to study guide-field reconnection and discuss the implementation of a twenty-moment model.[1] A. Stanier et al. Phys Rev Lett (2015)[2] J. Ng et al. Phys Plasmas (2015)[3] G. Hammett et al. Phys Rev Lett (1990)
NASA Astrophysics Data System (ADS)
Cai, X. D.; O'Brien, Edward E.; Ladeinde, Foluso
1996-11-01
Direct numerical simulation of decaying, isotropic, compressible turbulence in three dimensions is used to examine the behavior of fluctuations in density, temperature, and pressure when the initial conditions include temperature fluctuations larger than pressure fluctuations. The numerical procedure is described elsewhere (Ladeinde, F. et al.,) Phys. Fluids 7(11), pp. 2848 (1995), the initial turbulence Mach number range is subsonic, 0.3 to 0.7, and, following Ghosh and Matthaeus(Ghosh, S. and Matthaeus, W. H. Phys. Fluids A, pp. 148 (1991)), the initial compressible turbulence is characterized as a: mostly solenoidal, b: random, or c: longitudinal. These cases represent, respectively, ratios of initial kinetic energy in the compressible modes to total initial kinetic energy, say \\chi_0, which are either a: very small, b: about 0.6, or c: near unity. Thermodynamic scalings at the lowest values of initial Mach number and \\chi0 follow the predictions of Zank and Matthaeus (Zank, G. P. and Matthaeus, W. H. Phys. Fluids A(3), pp. 69 (1991)), but not otherwise. The relationship between \\chi, Mach number, and compressible pressure predicted by Sarkar et al.(Sarkar, S. et al.,) J. Fluid Mech. 227, pp. 473 (1991) applies, on average, to all cases computed.
NASA Astrophysics Data System (ADS)
Bauwens, Maite; Stavrakou, Trissevgeni; Müller, Jean-François; De Smedt, Isabelle; Van Roozendael, Michel
2016-04-01
Isoprene is one of the most largely emitted hydrocarbons in the atmosphere, with global annual emissions estimated at about 500 Tg, but with large uncertainties (Arneth et al., 2011). Here we use the source inversion approach to derive top-down biogenic isoprene emission estimates for the period between 2005 and 2014 constrained by formaldehyde observations, a high-yield intermediate in the oxidation of isoprene in the atmosphere. Formaldehyde columns retrieved from the Ozone Monitoring Instrument (OMI) are used to constrain the IMAGESv2 global chemistry-transport model and its adjoint code (Stavrakou et al., 2009). The MEGAN-MOHYCAN isoprene emissions (Stavrakou et al., 2014) are used as bottom-up inventory in the model. The inversions are performed separately for each year of the study period, and monthly emissions are derived for every model grid cell. The inversion results are compared to independent isoprene emissions from GUESS-ES (Arneth et al., 2007) and MEGAN-MACC (Sinderalova et al., 2014) and to top-down fluxes based on GOME-2 formaldehyde columns (Bauwens et al., 2014; Stavrakou et al., 2015). The mean global annual OMI-based isoprene flux for the period 2005-2014 is estimated to be 270 Tg, with small interannual variation. This estimate is by 20% lower with regard to the a priori inventory on average, but on the regional scale strong emission updates are inferred. The OMI-based emissions are substantially lower than the MEGAN-MACC and the GUESS-ES inventory, but agree well with the isoprene fluxes constrained by GOME-2 formaldehyde columns. Strong emission reductions are derived over tropical regions. The seasonal pattern of isoprene emissions is generally well preserved after inversion and relatively consistent with other inventories, lending confidence to the MEGAN parameterization of the a priori inventory. In boreal regions the isoprene emission trend is positive and reinforced after inversion, whereas the inversion suggests negative trends in the rainforests of Equatorial Africa and South America. The top-down isoprene fluxes are available at a resolution of 0.5°x0.5° between 2005 and 2014 at the GlobEmission website (http://www.globemission.eu). References: Arneth, A., et al.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO 2-isoprene interaction, Atmos. Chem. Phys., 7(1), 31-53, 2007. Arneth, A., et al.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11(15), 8037-8052, 2011. Bauwens, M., et al.: Satellite-based isoprene emission estimates (2007-2012) from the GlobEmission project, in ACCENT-Plus Symposium 2013 Proceedings., 2014. Stavrakou, T., et al.: Isoprene emissions over Asia 1979 - 2012: impact of climate and land-use changes, Atmos. Chem. Phys., 14(9), 4587-4605, doi:10.5194/acp-14-4587-2014, 2014. Stavrakou, T., et al.: How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI?, Atmos. Chem. Phys., 15(20), 11861-11884, doi:10.5194/acp-15-11861-2015, 2015. Stavrakou, T., et al.: Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns, Atmos. Chem. Phys., 9(3), 1037-1060, doi:10.5194/acp-9-1037-2009, 2009.
NASA Astrophysics Data System (ADS)
Grevel, Klaus-Dieter; Schoenitz, Mirko; Skrok, Volker; Navrotsky, Alexandra; Schreyer, Werner
2001-08-01
The enthalpy of drop-solution in molten 2PbO.B2O3 of synthetic and natural lawsonite, CaAl2(Si2O7)(OH)2.H2O, was measured by high-temperature oxide melt calorimetry. The enthalpy of formation determined for the synthetic material is ΔfHOxides=-168.7+/-3.4 kJ mol-1, or ΔfH0298=-4,872.5+/-4.0 kJ mol-1. These values are in reasonable agreement with previously published data, although previous calorimetric work yielded slightly more exothermic data and optimisation methods resulted in slightly less exothermic values. The equilibrium conditions for the dehydration of lawsonite to zoisite, kyanite and quartz/coesite at pressures and temperatures up to 5 GPa and 850 °C were determined by piston cylinder experiments. These results, other recent phase equilibrium data, and new calorimetric and thermophysical data for lawsonite and zoisite, Ca2Al3(SiO4)(Si2O7)O(OH), were used to constrain a mathematical programming analysis of the thermodynamic data for these two minerals in the chemical system CaO-Al2O3-SiO2-H2O (CASH). The following data for lawsonite and zoisite were obtained: ΔfH0298 (lawsonite)=-4,865.68 kJ mol-1 , S0298 (lawsonite)=229.27 J K-1 mol-1 , ΔfH0298 (zoisite)=-6,888.99 kJ mol-1 , S0298 (zoisite)=297.71 J K-1 mol-1 . Additionally, a recalculation of the bulk modulus of lawsonite yielded K=120.7 GPa, which is in good agreement with recent experimental work.
NASA Astrophysics Data System (ADS)
Chen, Yu-Hsin
2012-10-01
When exceeding the critical power Pcr, an intense laser pulse propagating in a gas collapses into one or multiple ``filaments,'' which can extend meters in length with weakly ionized plasma and local intensity ˜ 10^13 W/cm^2 radially confined in a diameter of < 100 μm [1]. While it has been generally accepted the nonlinear self-focusing of the laser pulse leading to beam collapse is stabilized by plasma generation [2], neither the field-induced nonlinearity nor the plasma generation had been directly measured. This uncertainty has given rise to recent controversy about whether plasma generation does indeed counteract the positive nonlinearity [3, 4]. For even a basic understanding of femtosecond filamentation and for applications, the focusing and defocusing mechanisms---nonlinear self-focusing and ionization---must be understood. By employing a single-shot, time-resolved technique based on spectral interferometry [5] to study the constituents of air, it is found that the rotational responses in O2 and N2 are the dominant nonlinear effect in filamentary propagation when the laser pulse duration is longer than ˜ 100fs. Furthermore, we find that the instantaneous nonlinearity scales linearly up to the ionization threshold [6], eliminating any possibility of an ionization-free negative stabilization [3] of filamentation. This is confirmed by space-resolved electron density measurements in meter-long filaments produced with different pulse durations, using optical interferometry with a grazing-incidence, ps-delayed probe [7].[4pt] [1] A. Braun et al., Opt. Lett. 20, 73 (1995).[0pt] [2] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).[0pt] [3] V. Loriot et al., Opt. Express 17, 13429 (2009).[0pt] [4] P. B'ejot et al., Phys. Rev. Lett. 104, 103903 (2010).[0pt] [5] Y.-H. Chen et al., Opt. Express 15, 7458 (2007); Opt. Express 15, 11341 (2007).[0pt] [6] J. K. Wahlstrand et al., Phys. Rev. Lett. 107, 103901 (2011).[0pt] [7] Y.-H. Chen et al., Phys. Rev. Lett. 105, 215005 (2010).
Csanak, George; Inal, Mokhtar K; Fontes, Christopher John; ...
2015-04-15
The present corrigendum is dedicated to correcting unfortunate errors made in certain equations of our paper [1]. We should first stress the point that those errors have no serious consequences on the main results of the paper and most derived equations remain valid. This is a follow-up to the first corrigendum which was reported in reference [2] to correct errors of a similar nature in another previously reported work [3]. The source of all those errors resides in the treatment of charged-particle scattering and the subtle manipulations made to obtain some of the equations in both references [1, 3]. Allmore » equation numbers cited here correspond to those of [1] unless specified otherwise.« less
Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces
NASA Astrophysics Data System (ADS)
Kimmerle, Achim; Momtazur Rahman, Md.; Werner, Sabrina; Mack, Sebastian; Wolf, Andreas; Richter, Armin; Haug, Halvard
2016-01-01
We investigate the surface recombination velocity Sp at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1-14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953-959 (1992); 35, 961-967 (1992)], the intrinsic carrier concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598-1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684-3695 (1998)]. The results show an increased Sp at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1-6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30-36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181-1183 (1993)].
Retrieval of tropospheric HCHO in El Salvador using ground based DOAS
NASA Astrophysics Data System (ADS)
Abarca, W.; Gamez, K.; Rudamas, C.
2017-12-01
Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)
Fast wave power flow along SOL field lines in NSTX
NASA Astrophysics Data System (ADS)
Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.
2012-10-01
On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.
Self-similar magnetohydrodynamic model for direct current discharge fireball experiments
NASA Astrophysics Data System (ADS)
Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.
2006-11-01
Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].
NASA Astrophysics Data System (ADS)
Golub, R.; Kaufman, C.; Müller, G.; Steyerl, A.
2015-12-01
The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first noted by Commins [Am. J. Phys. 59, 1077 (1991), 10.1119/1.16616] and investigated in detail by Pendlebury et al. [Phys. Rev. A 70, 032102 (2004), 10.1103/PhysRevA.70.032102]. Their analysis was based on the Bloch equations. In subsequent work using the spin-density matrix, Lamoreaux and Golub [Phys. Rev. A 71, 032104 (2005), 10.1103/PhysRevA.71.032104] showed the relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently, we presented a solution of the Schrödinger equation for spin-1 /2 particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [A. Steyerl et al., Phys. Rev. A 89, 052129 (2014), 10.1103/PhysRevA.89.052129]. Here, we extend this work to show how the Redfield theory follows directly from the Schrödinger equation solution. This serves to highlight the conditions of validity of the Redfield theory, a subject of considerable discussion in the literature [e.g., M. P. Nicholas et al., Prog. Nucl. Magn. Reson. Spectrosc. 57, 111 (2010), 10.1016/j.pnmrs.2010.04.003]. Our results can be applied where the Redfield result no longer holds, such as observation times on the order of or shorter than the correlation time and nonstochastic systems, and thus we can illustrate the transient spin dynamics, i.e., the gradual development of the shift with increasing time subsequent to the start of the free precession. We consider systems with rough, diffuse reflecting walls, cylindrical trap geometry with arbitrary cross section, and field perturbations that do not, in the frame of the moving particles, average to zero in time. We show by direct, detailed, calculation the agreement of the results from the Schrödinger equation with the Redfield theory for the cases of a rectangular cell with specular walls and of a circular cell with diffuse reflecting walls.
Validation of electronic structure methods for isomerization reactions of large organic molecules.
Luo, Sijie; Zhao, Yan; Truhlar, Donald G
2011-08-14
In this work the ISOL24 database of isomerization energies of large organic molecules presented by Huenerbein et al. [Phys. Chem. Chem. Phys., 2010, 12, 6940] is updated, resulting in the new benchmark database called ISOL24/11, and this database is used to test 50 electronic model chemistries. To accomplish the update, the very expensive and highly accurate CCSD(T)-F12a/aug-cc-pVDZ method is first exploited to investigate a six-reaction subset of the 24 reactions, and by comparison of various methods with the benchmark, MCQCISD-MPW is confirmed to be of high accuracy. The final ISOL24/11 database is composed of six reaction energies calculated by CCSD(T)-F12a/aug-cc-pVDZ and 18 calculated by MCQCISD-MPW. We then tested 40 single-component density functionals (both local and hybrid), eight doubly hybrid functionals, and two other methods against ISOL24/11. It is found that the SCS-MP3/CBS method, which is used as benchmark for the original ISOL24, has an MUE of 1.68 kcal mol(-1), which is close to or larger than some of the best tested DFT methods. Using the new benchmark, we find ωB97X-D and MC3MPWB to be the best single-component and doubly hybrid functionals respectively, with PBE0-D3 and MC3MPW performing almost as well. The best single-component density functionals without molecular mechanics dispersion-like terms are M08-SO, M08-HX, M05-2X, and M06-2X. The best single-component density functionals without Hartree-Fock exchange are M06-L-D3 when MM terms are included and M06-L when they are not.
Probing Hydrogen Diffusion under High Pressure
NASA Astrophysics Data System (ADS)
Bove, L. E.; Klotz, S.; Strassle, T.; Saitta, M.
2012-12-01
The study of the microscopic mechanism governing hydrogen and hydrogen-based liquids (as water, ammonia and methane) diffusion is crucial for a variety of scientific issues spanning most of natural sciences. As an example, characterizing hydrogen diffusion in a confined medium, like in porous systems or zeolites, is fundamental in problems relating to environment, hydrogen storage and industrial applications [1]. The presence of water diffusion in the minerals of the Earth's mantle have strong incidence on the processes governing volcanic eruptions and intermediate-depth seismicity. As last example, knowing in details the microscopic dynamics of hydrogen-based simple liquids under extreme conditions is essential in order to interpret observations and develop models of planet interiors [2]. On the other hand, water and other simple hydrogen-based liquids have always been key systems in the development of modern condensed-matter physics, because of their simple electronic structure and the peculiar properties deriving from the hydrogen-bond network. Their high compressibility and chemical reactivity have made these systems very challenging to study experimentally under static high P-T conditions. In the last few years, a large effort has been undertaken by several groups around the world [2] to extend the static and dynamic techniques to high temperatures and pressures, a program in which our group has been actively involved [3-6]. However, while the structure of water and other hydrogenated liquids of geological interest, is now known up to almost 20 GPa, the study of their transport properties greatly lags behind. We have recently developed a new large-volume gasket-anvil ensemble for the Paris-Edinburgh press based on a novel toroidal design [7], which allows to perform quasi elastic neutron scattering measurements on hydrogen based liquids up to one order of magnitude higher pressures (5 GPa) respect to what was achievable with standard methods [8]. The large volume HP press can be now warmed up to 600K and the peculiar geometry of the gasket assure an excellent signal to background ratio. This new device has been recently settled up on neutron scattering facilities (PSI, ILL), successfully showing that very high quality data can be obtained on liquid water, and more generally on hydrogenated liquids dynamics under high pressure. Some new exciting results on the diffusion mechanism in hot dense water will be presented [9]. Possible future implementation of the device to reach the 20GPa and 1000K conditions will be also discussed. References [1] C. Cavazzoni et al., Science 283, 44 (1999) ; T. Guillot, Science 286 (1999), 72 . 77. [2] Some of the most active groups in this field are the Geophysical Laboratory (USA), Lawrence Livermore National Laboratory (USA), CEA/DAM (France) and the Bayerisches Geoinstitut (Allemagne). [3] Klotz S et al, Phys. Rev. Lett. 96 149602, 2006. [4] Nelmes R J Nature Phys. 2 414, 2006. [5] S. Klotz, L. Bove et al., Nature Mat. 8, 405 (2009). [6] L.E. Bove et al., Phys. Rev. Lett., 106 (2011) . [7] L. E. Bove et al., Phys. Appl. Lett., in preparation (2012). [8] A. Cunsolo et al., Journal of Chem. Phys. 124, 084503 (2006). [9] L.E. Bove et al., Phys. Rev. Lett., submitted (2012) .
NASA Astrophysics Data System (ADS)
Moučka, Filip; Kolafa, Jiří; Lísal, Martin; Smith, William R.
2018-06-01
We present a molecular-level simulation study of CaCl2 in water and crystalline hydrates formed by CaCl2 at ambient (298.15 K, 1 bar) conditions and at a high-temperature high-pressure state (365 K, 275 bars) typical of hydraulic fracturing conditions in natural-gas extraction, at which experimental properties are poorly characterized. We focus on simulations of chemical potentials in both solution and crystalline phases and on the salt solubility, the first time to our knowledge that such properties have been investigated by molecular simulation for divalent aqueous electrolytes. We first extend our osmotic ensemble Monte Carlo simulation technique [F. Moučka et al., J. Phys. Chem. B 115, 7849-7861 (2011)] to such solutions. We then describe and apply new methodology for the simulation of the chemical potentials of the experimentally observed crystalline hydrates at ambient conditions (antarcticite, CaCl2.6H2O) and at high-temperature conditions (sinjarite, CaCl2.2H2O). We implement our methodologies using for both phases the CaCl2 transferable force field (FF) based on simple point charge-extended water developed by Mamatkulov et al. [J. Chem. Phys. 138, 024505 (2013)], based on training sets involving single-ion and ion-pair low-concentration solution properties at near-ambient conditions. We find that simulations of the solution chemical potentials at high concentrations are somewhat problematic, exhibiting densities diverging from experimental values and accompanied by dramatically decreasing particle mobility. For the solid phases, the sinjarite crystalline lattice differs from experiment only slightly, whereas the simulations of antarcticite completely fail, due to instability of the crystalline lattice. The FF thus only successfully yields the sinjarite solubility, but its value m = 8.0(7) mol kg-1H2O lies well below the experimentally observed solubility range at 1 bar pressure of (12m, 15m) in the temperature interval (320 K, 400 K). We conclude that the used FF does not provide a good description of the experimental properties considered and suggest that improvement must take into account the crystalline properties.
Thermalization of Interstellar CO
NASA Astrophysics Data System (ADS)
Oka, Takeshi; Xiao, Han; Lynch, Phillip
2009-06-01
Unlike radio emission of CO, infrared absorption of CO give column densities in each rotational level directly when weak transitions like overtone bands or ^{13}CO or C^{18}O isotope bands are used. This allows more straightforward determination of temperature (T) and density (n) of the environment than the large velocity gradient (LVG) model used to determine them from antenna temperatures of radio emission. In order to facilitate such determination, we have solved the steady state linear simultaneous equations for thermalization of CO and calculated population ratios of rotational levels as a function of T and n as we did for H_3^+. We thus get two-dimensional graph of column density ratios, for example, N(J=1)/N(J=0) and N(J=2)/N(J=0) as a function of T and n or variation of it when other population ratios are used. As for H_3^+ we can invert the graph to obtain graphs of T versus n as functions of population ratios which is more convenient to apply to observed data. We use rate constants of collision-induced transitions between CO and ortho- and para-H_2 theoretically calculated by Fowler and Wernli et al. which have been compiled and extended by Schöier et al. As the first approximation, only spontaneous emissions are considered and other radiative effects such as induced emission and absorption are ignored. The results are applied to CO column densities observed toward the Galactic center, that is, CO in the three spiral arms, 3-kpc (Norma), 4.5-kpc (Scutum), and local arms (Sagittarius), and in the Central Molecular Zone. T. Oka and E. Epp, ApJ, 613, 349 (2004) M. Goto, Usuda, Nagata, Geballe, McCall, Indriolo, Suto, Henning, Morong, and Oka, ApJ, 688, 306 (2008) D. R. Fowler, J. Phys. B: At. Mol. Opt. Phys. 34, 2731 (2001) M. Wernli, P. Valiron, A. Faure, L. Wiesenfeld, P. Jankowski, and K. Szalewicz, A & A, 446, 367 (2006) F. L. Schöier, F. F. S. van der Tak, E. F. van Dishoeck, and J. H. Black, A & A, 432, 369 (2005)
Moučka, Filip; Kolafa, Jiří; Lísal, Martin; Smith, William R
2018-06-14
We present a molecular-level simulation study of CaCl 2 in water and crystalline hydrates formed by CaCl 2 at ambient (298.15 K, 1 bar) conditions and at a high-temperature high-pressure state (365 K, 275 bars) typical of hydraulic fracturing conditions in natural-gas extraction, at which experimental properties are poorly characterized. We focus on simulations of chemical potentials in both solution and crystalline phases and on the salt solubility, the first time to our knowledge that such properties have been investigated by molecular simulation for divalent aqueous electrolytes. We first extend our osmotic ensemble Monte Carlo simulation technique [F. Moučka et al., J. Phys. Chem. B 115, 7849-7861 (2011)] to such solutions. We then describe and apply new methodology for the simulation of the chemical potentials of the experimentally observed crystalline hydrates at ambient conditions (antarcticite, CaCl 2 ·6H 2 O) and at high-temperature conditions (sinjarite, CaCl 2 ·2H 2 O). We implement our methodologies using for both phases the CaCl 2 transferable force field (FF) based on simple point charge-extended water developed by Mamatkulov et al. [J. Chem. Phys. 138, 024505 (2013)], based on training sets involving single-ion and ion-pair low-concentration solution properties at near-ambient conditions. We find that simulations of the solution chemical potentials at high concentrations are somewhat problematic, exhibiting densities diverging from experimental values and accompanied by dramatically decreasing particle mobility. For the solid phases, the sinjarite crystalline lattice differs from experiment only slightly, whereas the simulations of antarcticite completely fail, due to instability of the crystalline lattice. The FF thus only successfully yields the sinjarite solubility, but its value m = 8.0(7) mol kg -1 H 2 O lies well below the experimentally observed solubility range at 1 bar pressure of (12m, 15m) in the temperature interval (320 K, 400 K). We conclude that the used FF does not provide a good description of the experimental properties considered and suggest that improvement must take into account the crystalline properties.
NASA Astrophysics Data System (ADS)
Bernardin, Cédric; Landim, Claudio
2010-12-01
We examine the entropy of stationary nonequilibrium measures of boundary driven symmetric simple exclusion processes. In contrast with the Gibbs-Shannon entropy (Bahadoran in J. Stat. Phys. 126(4-5):1069-1082, 2007; Derrida et al. in J. Stat. Phys. 126(4-5):1083-1108, 2007), the entropy of nonequilibrium stationary states differs from the entropy of local equilibrium states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Liwen F.; Wright, Joshua; Perdue, Brian R.
Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thole et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes.
Comment on "Direct counterfactual transmission of a quantum state"
NASA Astrophysics Data System (ADS)
Vaidman, L.
2016-06-01
The protocol for counterfactual transmission of a qubit [Z.-H. Li et al., Phys. Rev. A 92, 052315 (2015), 10.1103/PhysRevA.92.052315] relies on the counterfactuality of transmissions of bit 1 and of bit 0. Since counterfactuality of transmission of bit 0 is not established, the claim of counterfactuality of transmission of a quantum state is not established too.
Properties of the State of the Art of Bulk III-V Nitride Substrates and Homoepitaxial Layers
2010-01-01
Bockowski M, Kamler G, Litwin -Staszewska E and Porowski S 2005 J. Cryst. Growth 281 38 [69] Grzegory I, Lucznik B, Bockowski M, Pastuszka B, Kamler G...and Han J Y 2002 Phys. Rev. B 66 233311 [106] Litwin -Staszewska E et al 1999 Phys. Status Solidi b 216 567 [107] Freitas J A Jr, Gowda M, Tischler J
NASA Astrophysics Data System (ADS)
Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars
2014-10-01
We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.
Thermodynamic constraints on the amplitude of quantum oscillations
Shekhter, Arkady; Modic, K. A.; McDonald, R. D.; ...
2017-03-23
Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. In this paper, we suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. Finally, we show that the traditional theoretical approaches beyondmore » Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.« less
Comment on "Acoustical observation of bubble oscillations induced by bubble popping"
NASA Astrophysics Data System (ADS)
Blanc, É.; Ollivier, F.; Antkowiak, A.; Wunenburger, R.
2015-03-01
We have reproduced the experiment of acoustic monitoring of spontaneous popping of single soap bubbles standing in air reported by Ding et al. [2aa Phys. Rev. E 75, 041601 (2007), 10.1103/PhysRevE.75.041601]. By using a single microphone and two different signal acquisition systems recording in parallel the signal at the microphone output, among them the system used by Ding et al., we have experimentally evidenced that the acoustic precursors of bubble popping events detected by Ding et al. actually result from an acausal artifact of the signal processing performed by their acquisition system which lies outside of its prescribed working frequency range. No acoustic precursor of popping could be evidenced with the microphone used in these experiments, whose sensitivity is 1 V Pa-1 and frequency range is 500 Hz-100 kHz.
Controlling resonant photonic transport along optical waveguides by two-level atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Conghua; College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068; Wei Lianfu
2011-10-15
Recent works [Shen et al., Phys. Rev. Lett. 95, 213001 (2005); Zhou et al., Phys. Rev. Lett. 101, 100501 (2008)] showed that the incident photons cannot transmit along an optical waveguide containing a resonant two-level atom (TLA). Here we propose an approach to overcome such a difficulty by using asymmetric couplings between the photons and a TLA. Our numerical results show that the transmission spectrum of the photon depends on both the frequency of the incident photons and the photon-TLA couplings. Consequently, this system can serve as a controllable photon attenuator, by which the transmission probability of the resonantly incidentmore » photons can be changed from 0% to 100%. A possible application to explain the recent experimental observations [Astafiev et al., Science 327, 840 (2010)] is also discussed.« less
Antimonide-Based Compound Semiconductors for Low-Power Electronics
2013-01-01
A, Madan HS, Kirk AP, Zhao DA, Mourey DA, Hudait MK, et al. Fermi level unpinning of GaSb (100) using plasma enhanced atomic layer deposition of...et al. Atomic layer deposition of Al2O3 on GaSb using in situ hydrogen plasma exposure. Appl Phys Lett. 2012;101: 231601. [18] Ali A, Madan H
NASA Astrophysics Data System (ADS)
Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2014-02-01
The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.
The Evolution of Ih C_60 Vibrational Modes in Planar Polymerized C_60.
NASA Astrophysics Data System (ADS)
Adams, G. B.; Page, J. B.
2001-03-01
We have used first-principles local-orbital-based molecular dynamics(O.F. Sankey and D.J. Niklewski, Phys. Rev. B40), 3979 (1989). to simulate a wide variety of planar polymers of C_60, including the orthorhombic (O), tetrahedral (T), and rhombohedral (R) polymers which have been reported experimentally. It has been customary to assume that the vibrational modes of the polymers are moderately perturbed Ih C_60 vibrational modes.(See, for example V.A. Davydov et al.), Phys. Rev. B61, 11936 (2000) or V.C. Long et al., Phys. Rev. B 61, 13191 (2000). To test this assumption, we have expanded the polymer vibrational eigenvectors in the eigenvectors of Ih C_60, thus determining quantitatively the percentage contribution of each Ih C_60 mode to each polymer vibrational mode. We find that for many polymer modes the assumption is not justified. We report our results for selected Raman- and IR-active vibrational modes of the observed polymers.
Convergent close-coupling calculations of positron-magnesium scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor
2011-06-15
The single-center convergent close-coupling method has been applied to positron-magnesium scattering at incident energies from 0.01 to 100 eV. Cross sections are presented for elastic scattering and excitation of 3 {sup 1}P, as well as for the total ionization and total scattering processes. We also provide an estimate of the positronium formation cross section. The results agree very well with the measurements of the total cross section by Stein et al. [Nucl. Instrum. Methods Phys. Res. Sect. B 143, 68 (1998)], and consistent with the positronium formation measurements of Surdutovich et al. [Phys. Rev. A 68, 022709 (2003)] for positronmore » energies above the ionization threshold. For energies below the positronium formation threshold (0.8 eV) we find a large P-wave resonance at 0.17 eV. A similar resonance behavior was found by Mitroy and Bromley [Phys. Rev. Lett. 98, 173001 (2007)] at an energy of 0.1 eV.« less
A Converse Approach to NMR Chemical Shifts for Norm-Conserving Pseudopotentials
NASA Astrophysics Data System (ADS)
Lopez, Graham; Ceresoli, Davide; Marzari, Nicola; Thonhauser, Timo
2010-03-01
Building on the recently developed converse approach for the ab-initio calculation of NMR chemical shifts [1], we present a corresponding framework that is suitable in connection with norm-conserving pseudopotentials. Our approach uses the GIPAW transformation [2] to set up a formalism where the derivative of the orbital magnetization [3] is taken with respect to a microscopic, localized magnetic dipole in the presence of pseudopotentials. The advantages of our method are that it is conceptually simple, the need for a linear-response framework is avoided, and it is applicable to large systems. We present results for calculations of several well-studied systems, including the carbon, hydrogen, fluorine, and phosphorus shifts in various molecules and solids. Our results are in very good agreement with both linear-response calculations and experimental results.[4pt] [1] T. Thonhauser et al., J. Chem. Phys. 131, 101101 (2009).[2] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).[3] T. Thonhauser et al., Phys. Rev. Lett. 95, 137205 (2005).
Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-
NASA Astrophysics Data System (ADS)
Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav
2018-02-01
The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.
No evidence of reduced collectivity in Coulomb-excited Sn isotopes
NASA Astrophysics Data System (ADS)
Kumar, R.; Saxena, M.; Doornenbal, P.; Jhingan, A.; Banerjee, A.; Bhowmik, R. K.; Dutt, S.; Garg, R.; Joshi, C.; Mishra, V.; Napiorkowski, P. J.; Prajapati, S.; Söderström, P.-A.; Kumar, N.; Wollersheim, H.-J.
2017-11-01
In a series of Coulomb excitation experiments the first excited 2+ states in semimagic
Beating dark-dark solitons and Zitterbewegung in spin-orbit-coupled Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Achilleos, V.; Frantzeskakis, D. J.; Kevrekidis, P. G.
2014-03-01
We present families of beating dark-dark solitons in spin-orbit (SO) -coupled Bose-Einstein condensates. These families consist of solitons residing simultaneously in the two bands of the energy spectrum. The soliton components are characterized by two different spatial and temporal scales, which are identified by a multiscale expansion method. The solitons are "beating" ones, as they perform density oscillations. The characteristic frequency of the latter is relevant to Zitterbewegung (ZB) oscillations, which were recently observed in experiments with SO-coupled condensates [C. Qu et al., Phys. Rev. A 88, 021604(R) (2013), 10.1103/PhysRevA.88.021604; L. J. LeBlanc et al., New J. Phys. 15, 073011 (2013), 10.1088/1367-2630/15/7/073011]. We find that spin oscillations may occur, depending on the parity of each soliton branch, which consequently lead to ZB oscillations of the beating dark solitons. Analytical results are corroborated by numerical simulations, illustrating the robustness of the solitons.
Critical Casimir forces, Goldstone modes and anomalous wetting
NASA Astrophysics Data System (ADS)
Balibar, Sebastien
2004-03-01
We have measured the contact angle of a ^3He - ^4He interface on a sapphire window, near the tricritical temperature Tt of liquid helium mixtures (T. Ueno et al., J. Low Temp. Phys. 130, 543, 2003). We have found the first experimental evidence of a violation of "critical point wetting", the general phenomenon introduced by J.W. Cahn in 1977. We then proposed that Fisher and de Gennes' "critical Casimir effect" provides the necessary long range force for this anomalous wetting behavior to occur (T. Ueno et al. Phys. Rev. Lett. 90, 116102, 2003). Our measurements are now extended to the superfluid region far below the tricritical temperature T_t. Our goal is to test the prediction by M. Kardar and R. Golestanian that the confinement of Goldstone modes in superfluid films leads to an additionnal contribution to the Casimir force (M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233, 1999). We compare theoretical predictions to experimental results.
Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.
NASA Astrophysics Data System (ADS)
Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy
2006-03-01
The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (<50 K) and near natural linewidth resolution (˜50 MHz) facilitated analysis of the ^55Mn (I=5/2) and ^1H (I=1/2) hyperfine structure. A comparison of the derived field-free parameters with those obtained from sub- Doppler optical measurements will be made. Progress on the analysis of the Stark effect will be given. J.R. Bochinski, E.R. Hudson, H.J. Lewandowski, and J. Ye, Phys. Rev. A 70, 043410 (2004). S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, and G. Meijer, Phys. Rev. A 64, 041401(R) (2001) report the first molecular beam production of MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).
Nuclear Structure Near the N=Z Line in the A=80 Region
NASA Astrophysics Data System (ADS)
Gross, Carl J.
1996-11-01
Self-conjugate nuclei are unique laboratory systems which allow specific facets of nuclear structure to be explored. Shell gaps present in the single-particle spectra are reinforced by both proton and neutron Fermi levels. As a result of this localized occupation, proton-neutron correlations can contribute to the overall pairing energy resulting in a more stable system. Through the use of large germanium detector arrays and recoil separators, these nuclei, which are produced with extremely small fusion-evaporation cross-sections, have been observed using in-beam spectroscopic techniques only within the past decade. Typically, only the first two or three transitions have been observed. Now that even more efficient germanium arrays and recoil mass spectrometers are being coupled together, more detailed spectroscopic information may be obtained. Data will be presented for the self-conjugate odd-odd nucleus ^74Rb (D. Rudolph, et al. al.), Phys. Rev. Lett. 76, 376 (1996) whose energy level spacings are more like the even-even isotone ^74Kr than its nearest odd-odd neighbor ^76Rb. The Tz = +1/2 nuclei ^75Rb and ^77Sr (C. J. Gross, et al. al.), Phys. Rev. C 49, R580 (1994) reveal possible evidence for neutron-proton correlations at moderate spins and these data will also be presented. In addition, a systematic study of the Tz = 1 nuclei ^74Kr, ^78Sr, ^82Zr, and ^86Mo (D. Rudolph, et al. al.), Phys. Rev. C 54, 117 (1996) has been undertaken. These nuclei, reveal how the collectivity changes throughout the region. This work was supported by the U. S. Department of Energy under contracts DE-AC05-76OR00033 and DE-AC05-96OR22464.
A comparative study of the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Bai, X.; Deng, X.-L.; Jiang, L.
2018-07-01
In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.
A comparative study of the single-mode Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Bai, X.; Deng, X.-L.; Jiang, L.
2017-11-01
In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.
Feng, Bao-Feng; Ling, Liming; Zhu, Zuonong
2017-08-01
Our paper [Phys. Rev. E 93, 052227 (2016)PREHBM2470-004510.1103/PhysRevE.93.052227], proposing an integrable model for the propagation of ultrashort pulses, has recently received a Comment by Youssoufa et al. [Phys. Rev. E 96, 026201 (2017)10.1103/PhysRevE.96.026201] about a possible flaw in its derivation. We point out that their claim is incorrect since we have stated explicitly that a term is neglected to derive our model equation in our paper. Furthermore, the integrable model is validated by comparing with the normalized Maxwell equation and other known integrable models. Moreover, we show that a similar approximation has to be performed in deriving the same integrable equation as explained in the Comment.
Calculating work in weakly driven quantum master equations: Backward and forward equations
NASA Astrophysics Data System (ADS)
Liu, Fei
2016-01-01
I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.
Short-pulse laser amplification and saturation using stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.; Lundquist, P. B.; Sarkisyan, S.; Nelson-Melby, E.
2010-11-01
Recent theoretical and experimental work has focused on using backward-stimulated Raman scattering (BSRS) in plasmas as a means of laser pulse amplification and compression [1,2,3]. We present initial computational and experimental work on SRS amplification in a capillary-discharge generated Xe plasma. The experimental set-up uses a 200 ps pump pulse with an 800 nm wavelength seeded by a 100 fs pulse from a broadband source and counter-propagates the pulses through a plasma of length 1 cm and diameter 0.1 cm. Results from initial experiments characterizing the plasma and on short-pulse amplification will be presented. Additionally, we present results from calculations using pF3d [4], and discuss the role of SRS saturation and determine the possible significance of electron trapping with a model implemented in pF3d [5]. [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998). [2] V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82 4448 (1999). [3] R. K. Kirkwood, E. Dewald, and C. Niemann, et al., Phys. Plasmas 14 113109 (2007). [4] R. L. Berger, B. F. Lasinski, T. B. Kaiser, et al., Phys. Fluids B 5 2243 (1993). [5] H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14 012702 (2007). Supported by US DOE and LANS, LLC under contract DE-AC52-06NA25396. LA-UR-10-04787
Multiphoton Coherent Manipulation in Large Spin Qubits
NASA Astrophysics Data System (ADS)
Chiorescu, Irinel
2009-03-01
Manipulation of quantum information allows certain algorithms to be performed at unparalleled speeds. Photons are an ideal choice to manipulate qubits as they interact with quantum systems in predictable ways. They are a versatile tool for manipulating, reading/coupling qubits and for encoding/transferring quantum information over long distances. Spin-based qubits have well known behavior under photon driving and can be potentially operated up to room temperature. When diluted enough to avoid uncontrolled spin-spin interactions, a variety of spin qubits show long coherence times, e.g. the nitrogen vacancies in pure diamonds (1,2), nitrogen atoms trapped in a C60 cage (3), Ho3+ and Cr5+ ions (4,5) and molecular magnets (6,7). We have used large spin Mn2+ ions (S=5/2) to realize a six level system that can be operated by means of single as well as multi-photon coherent Rabi oscillations (8). This spin system has a very small anisotropy whose effect can be tuned in-situ to turn the system into a multi-level harmonic system. This offer new ways of manipulating, reading and resetting a spin qubit. Decoherence effects are strongly reduced by the quasi-isotropic electron interaction with the crystal field and with the 55Mn nuclear spins. [0pt] 1. R. Hanson et al., Science 320, 352 (2008). [0pt] 2. M.V. Gurudev Dutt et al., Science 316, 1312 (2007). [0pt] 3. G.W. Morley et al., Phys. Rev. Lett. 98, 220501 (2007). [0pt] 4. S. Bertaina et al., Nat. Nanotech. 2, 39 (2007). [0pt] 5. S. Nellutla et al., Phys. Rev. Lett. 99, 137601 (2007). [0pt] 6. A. Ardavan et al., Phys. Rev. Lett. 98, 057201 (2007). [0pt] 7. S. Bertaina et al., Nature 453, 203,(2008). [0pt] 8. S. Bertaina et al., submitted.
Large-scale control strategy for drag reduction in turbulent channel flows
NASA Astrophysics Data System (ADS)
Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle
2017-06-01
In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.
GRILLIX: a 3D turbulence code based on the flux-coordinate independent approach
NASA Astrophysics Data System (ADS)
Stegmeir, Andreas; Coster, David; Ross, Alexander; Maj, Omar; Lackner, Karl; Poli, Emanuele
2018-03-01
The GRILLIX code is presented with which plasma turbulence/transport in various geometries can be simulated in 3D. The distinguishing feature of the code is that it is based on the flux-coordinate independent approach (FCI) (Hariri and Ottaviani 2013 Comput. Phys. Commun. 184 2419; Stegmeir et al 2016 Comput. Phys. Commun. 198 139). Cylindrical or Cartesian grids are used on which perpendicular operators are discretised via standard finite difference methods and parallel operators via a field line tracing and interpolation procedure (field line map). This offers a very high flexibility with respect to geometry, especially a separatrix with X-point(s) or a magnetic axis can be treated easily in contrast to approaches which are based on field aligned coordinates and suffer from coordinate singularities. Aiming finally for simulation of edge and scrape-off layer (SOL) turbulence, an isothermal electrostatic drift-reduced Braginskii model (Zeiler et al 1997 Phys. Plasmas 4 2134) has been implemented in GRILLIX. We present the numerical approach, which is based on a toroidally staggered formulation of the FCI, we show verification of the code with the method of manufactured solutions and show a benchmark based on a TORPEX blob experiment, previously performed by several edge/SOL codes (Riva et al 2016 Plasma Phys. Control. Fusion 58 044005). Examples for slab, circular, limiter and diverted geometry are presented. Finally, the results show that the FCI approach in general and GRILLIX in particular are viable approaches in order to tackle simulation of edge/SOL turbulence in diverted geometry.
Hyperbolic metamaterial nanostructures to tune charge-transfer dynamics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lee, Kwang Jin; Xiao, Yiming; Woo, Jae Heun; Kim, Eun Sun; Kreher, David; Attias, André-Jean; Mathevet, Fabrice; Ribierre, Jean-Charles; Wu, Jeong Weon; André, Pascal
2016-09-01
Charge transfer (CT) is an essential phenomenon relevant to numerous fields including biology, physics and chemistry.1-5 Here, we demonstrate that multi-layered hyperbolic metamaterial (HMM) substrates alter organic semiconductor CT dynamics.6 With triphenylene:perylene diimide dyad supramolecular self-assemblies prepared on HMM substrates, we show that both charge separation (CS) and charge recombination (CR) characteristic times are increased by factors of 2.5 and 1.6, respectively, resulting in longer-lived CT states. We successfully rationalize the experimental data by extending Marcus theory framework with dipole image interactions tuning the driving force. The number of metal-dielectric pairs alters the HMM interfacial effective dielectric constant and becomes a solid analogue to solvent polarizability. Based on the experimental results and extended Marcus theory framework, we find that CS and CR processes are located in normal and inverted regions on Marcus parabola diagram, respectively. The model and further PH3T:PCBM data show that the phenomenon is general and that molecular and substrate engineering offer a wide range of kinetic tailoring opportunities. This work opens the path toward novel artificial substrates designed to control CT dynamics with potential applications in fields including optoelectronics, organic solar cells and chemistry. 1. Marcus, Rev. Mod. Phys., 1993, 65, 599. 2. Marcus, Phys. Chem. Chem. Phys., 2012, 14, 13729. 3. Lambert, et al., Nat. Phys., 2012, 9, 10. 4. C. Clavero, Nat. Photon., 2014, 8, 95. 5. A. Canaguier-Durand, et al., Angew. Chem. Int. Ed., 2013, 52, 10533. 6. K. J. Lee, et al., Submitted, 2015, arxiv.org/abs/1510.08574.
Halogenation effects on electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, T. C., E-mail: tcf03@fisica.ufpr.br; Lopes, A. R.; Bettega, M. H. F.
2016-04-28
We report differential and integral elastic cross sections for low-energy electron collisions with CF{sub 3}Cl, CF{sub 2}Cl{sub 2}, and CFCl{sub 3} molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)]more » and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ{sup ∗} resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.« less
Local 2D-2D tunneling in high mobility electron systems
NASA Astrophysics Data System (ADS)
Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur
2012-02-01
Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dabbs, Daniel M.; Ramachandran, Usha; Lu, Sang
Citric acid has been shown to act as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous suspensions of aluminum-containing particles. Solutions of aluminum chloride, with and without citric acid added, were titrated with NaO(aq). The presence and size of particles were determined using quasi-elastic light scattering. In solutions that contained no citric acid, particles formed instantaneously when NaOH(aq) was added but these were observed to rapidly diminish in size, disappearing at OH/Al ratios below 2.5 mol/mol. When the OH/Al ratio wasmore » raised beyond 2.5 by addingmoreNaOH(aq), suspensions of colloidally stable particles formed. Large polycations containing 13 aluminum atoms were detected by 27Al solution NMR in citric-acid-free solutions with OH/Al ratios slightly lower than 2.5. In comparison, adding citric acid to solutions of aluminum chloride inhibited the formation of large aluminum-containing polycations. The absence of the polycations prevents or retards the subsequent formation of particles, indicating that the polycations, when present, act as seeds to the formation of new particles. Particles did not form in solutions with a citric acid/aluminum ratio of 0.8 until sufficient NaOH(aq) was added to raise the OH/Al ratio to 3.29. By comparison, lower amounts of citric acid did not prevent particles from forming but did retard the rate of growth.« less
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
Microwave spectroscopy of high-L Rydberg states of nickel
NASA Astrophysics Data System (ADS)
Lindsay, Mark D.; Keele, Julie A.; Woods, Shannon L.; Lundeen, Stephen R.
2010-03-01
High-L non-penetrating Rydberg levels of nickel display a fine structure pattern consisting of six levels for each value of L. This pattern was studied recently with the optical RESIS technique, determining initial values of the quadrupole moment and polarizabilities of the ^2D5/2 ground state of Ni^+ [1]. Measurements are now in progress using the microwave RESIS technique [2], which promises much more precise measurements of the fine structure and of the related core properties, including the permanent hexadecapole moment.[4pt] [1] Julie A. Keele, et. al., to be published, Phys. Rev. A[0pt] [2] M.E. Hanni, et. al., Phys. Rev. A 78, 062510 (2008)
Numerical simulation of transmission coefficient using c-number Langevin equation
NASA Astrophysics Data System (ADS)
Barik, Debashis; Bag, Bidhan Chandra; Ray, Deb Shankar
2003-12-01
We numerically implement the reactive flux formalism on the basis of a recently proposed c-number Langevin equation [Barik et al., J. Chem. Phys. 119, 680 (2003); Banerjee et al., Phys. Rev. E 65, 021109 (2002)] to calculate transmission coefficient. The Kramers' turnover, the T2 enhancement of the rate at low temperatures and other related features of temporal behavior of the transmission coefficient over a range of temperature down to absolute zero, noise correlation, and friction are examined for a double well potential and compared with other known results. This simple method is based on canonical quantization and Wigner quasiclassical phase space function and takes care of quantum effects due to the system order by order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boroun, G. R., E-mail: grboroun@gmail.com, E-mail: boroun@razi.ac.ir; Zarrin, S.; Dadfar, S.
We evaluate the non-singlet spin-dependent structure function g{sub 1}{sup NS} at leading order (LO) and next-to-leading order (NLO) by using the Laplace-transform technique and method of characteristics and also obtain its first moment at NLO. The polarized non-singlet structure function results are compared with the data from HERMES (A. Airapetian et al., Phys. Rev. D 75, 012007 (2007)) and E143 (K. Abe et al. (E143 Collab.), Phys. Rev. D 58, 112003 (1998)) at LO and NLO analyses and the first-moment the result at NLO is compared with the result of the NLO GRSV2000 fit. Considering the solution, this method ismore » valid at low- and large-x regions.« less
A Scalable Implementation of Van der Waals Density Functionals
NASA Astrophysics Data System (ADS)
Wu, Jun; Gygi, Francois
2010-03-01
Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).
Xu, Jin; Zha, Xiaoling; Wu, Yumei; Ke, Qingping; Yu, Weifang
2016-05-11
SO2 capacity of the obtained TMG-AlPO-5/cordierite honeycomb ceramic (CHC) adsorbent was measured to be 1.13 mol per mol TMG. More importantly, compared with literature reported supported ionic liquids, it is featured by a significantly improved adsorption rate (t0.9 reduced from >30 min to ∼0.1 min) and negligible pressure drop.
The electric Aharonov-Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weder, Ricardo
The seminal paper of Aharonov and Bohm [Phys. Rev. 115, 485 (1959)] is at the origin of a very extensive literature in some of the more fundamental issues in physics. They claimed that electromagnetic fields can act at a distance on charged particles even if they are identically zero in the region of space where the particles propagate, that the fundamental electromagnetic quantities in quantum physics are not only the electromagnetic fields but also the circulations of the electromagnetic potentials; what gives them a real physical significance. They proposed two experiments to verify their theoretical conclusions. The magnetic Aharonov-Bohm effect,more » where an electron is influenced by a magnetic field that is zero in the region of space accessible to the electron, and the electric Aharonov-Bohm effect where an electron is affected by a time-dependent electric potential that is constant in the region where the electron is propagating, i.e., such that the electric field vanishes along its trajectory. The Aharonov-Bohm effects imply such a strong departure from the physical intuition coming from classical physics that it is no wonder that they remain a highly controversial issue after more than fifty years, in spite of the fact that they are discussed in most of the text books in quantum mechanics. The magnetic case has been studied extensively. The experimental issues were settled by the remarkable experiments of Tonomura et al. [Phys. Rev. Lett. 48, 1443 (1982); Phys. Rev. Lett. 56, 792 (1986)] with toroidal magnets, that gave a strong evidence of the existence of the effect, and by the recent experiment of Caprez et al. [Phys. Rev. Lett. 99, 210401 (2007)] that shows that the results of the Tonomura et al. experiments cannot be explained by the action of a force. The theoretical issues were settled by Ballesteros and Weder [Commun. Math. Phys. 285, 345 (2009); J. Math. Phys. 50, 122108 (2009); Commun. Math. Phys. 303, 175 (2011)] who rigorously proved that quantum mechanics predicts the experimental results of Tonomura et al. and of Caprez et al. The electric Aharonov-Bohm effect has been much less studied. Actually, its existence, that has not been confirmed experimentally, is a very controversial issue. In their 1959 paper Aharonov and Bohm proposed an ansatz for the solution to the Schroedinger equation in regions where there is a time-dependent electric potential that is constant in space. It consists in multiplying the free evolution by a phase given by the integral in time of the potential. The validity of this ansatz predicts interference fringes between parts of a coherent electron beam that are subjected to different potentials. In this paper we prove that the exact solution to the Schroedinger equation is given by the Aharonov-Bohm ansatz up to an error bound in norm that is uniform in time and that decays as a constant divided by the velocity. Our results give, for the first time, a rigorous proof that quantum mechanics predicts the existence of the electric Aharonov-Bohm effect, under conditions that we provide. We hope that our results will stimulate the experimental research on the electric Aharonov-Bohm effect.« less
Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel
2016-01-28
Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.
Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.
2012-06-01
Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua
2018-04-01
In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.
Au-induced deep groove nanowire structure on the Ge(001) surface: DFT calculations
NASA Astrophysics Data System (ADS)
Tsay, Shiow-Fon
2016-09-01
The atomic geometry, stability, and electronic properties of self-organized Au induced nanowires on the Ge(001) surface are investigated based on the density-functional theory in GGA and the stoichiometry of Au. A giant Ge zigzag chain structure is suggested for 0.75 ML Au coverage, which displays c(8 × 2) deep groove zigzag nanowire structure simulated STM images. The top layer Ge and Au atomic disorder introduces the chevron units into the zigzag nanowire structure STM image as per the experimental observations. The zigzag Ge nanowire exhibits a semi-metallic characteristic, and the electric transport occurs in between the Ge zigzag nanowire and the subsurface. The system exhibits obvious electronic correlations among the Ge nanowire, the nano-facet Au trimers and the deeper layer Ge atoms, that play an important role in the electronic structure. At surface Brillouin zone boundaries, an anisotropic two-dimensional upward parabolic surface-state band is consistent with the ARPES spectra reported by Nakatsuji et al. [Phys. Rev. B 80, 081406(R) (2009); Phys. Rev. B 84, 115411 (2011)]; this electronic structure is different from the quasi-one-dimensional energy trough reported by Schäfer et al. [Phys. Rev. Lett. 101, 236802 (2008); Phys. Rev. B 83, 121411(R) (2011)].
Martiniani, Stefano; Schrenk, K Julian; Stevenson, Jacob D; Wales, David J; Frenkel, Daan
2016-01-01
We present a numerical calculation of the total number of disordered jammed configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V. To make these calculations tractable, we increase the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)10.1103/PhysRevLett.106.245502] and Asenjo et al. [Phys. Rev. Lett. 112, 098002 (2014)10.1103/PhysRevLett.112.098002] and we extend the method to allow computation of the configurational entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in the potential energy landscape. This relation is well described by a power law. Our methodology to compute the number of minima in the potential energy landscape should be applicable to a wide range of other enumeration problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution of the extrema of a scalar cost function that depends on many degrees of freedom.
Evaluation of counterfactuality in counterfactual communication protocols
NASA Astrophysics Data System (ADS)
Arvidsson-Shukur, D. R. M.; Barnes, C. H. W.; Gottfries, A. N. O.
2017-12-01
We provide an in-depth investigation of parameter estimation in nested Mach-Zehnder interferometers (NMZIs) using two information measures: the Fisher information and the Shannon mutual information. Protocols for counterfactual communication have, so far, been based on two different definitions of counterfactuality. In particular, some schemes have been based on NMZI devices, and have recently been subject to criticism. We provide a methodology for evaluating the counterfactuality of these protocols, based on an information-theoretical framework. More specifically, we make the assumption that any realistic quantum channel in MZI structures will have some weak uncontrolled interaction. We then use the Fisher information of this interaction to measure counterfactual violations. The measure is used to evaluate the suggested counterfactual communication protocol of H. Salih et al. [Phys. Rev. Lett. 110, 170502 (2013), 10.1103/PhysRevLett.110.170502]. The protocol of D. R. M. Arvidsson-Shukur and C. H. W. Barnes [Phys. Rev. A 94, 062303 (2016), 10.1103/PhysRevA.94.062303], based on a different definition, is evaluated with a probability measure. Our results show that the definition of Arvidsson-Shukur and Barnes is satisfied by their scheme, while that of Salih et al. is only satisfied by perfect quantum channels. For realistic devices the latter protocol does not achieve its objective.
Lattice-mediated magnetic order melting in TbMnO3
NASA Astrophysics Data System (ADS)
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; Ma, Chao; Koohpayeh, Seyed M.; Zhu, Yimei; Bernhard, Christian; Johnson, Steven L.; Carbone, Fabrizio
2018-03-01
Recent ultrafast magnetic-sensitive measurements [Johnson et al., Phys. Rev. B 92, 184429 (2015), 10.1103/PhysRevB.92.184429; Bothschafter et al., Phys. Rev. B 96, 184414 (2017), 10.1103/PhysRevB.96.184414] have revealed a delayed melting of the long-range cycloid spin order in TbMnO3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.
NASA Astrophysics Data System (ADS)
Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao
2018-03-01
In this response, we explain the points mentioned by R. Rani and R. Bhatia in their Comment for our previous paper [AIP Advances 5, 097130 (2015)], that the high value of β obtained in Song et al. [AIP Advances 5, 097130 (2015)] is misleading because it does not corroborate with the obtained Jmax, and the obtained value of Jmax is "low" in the mentioned study as compared to the reported values [J. Appl. Phys. 111, 044307 (2012) & Appl. Phys. Lett. 102, 033102 (2013)]. For the high value of β, the obtained current Jmax is corroborated but such high value is mainly due to the multistage effect when CNTs are deposited on the rough surface of reduced graphene. For the "low" Jmax, although this is true when compared with Sameera et al. [J. Appl. Phys. 111, 044307 (2012) and Appl. Phys. Lett. 102, 033102 (2013)], but we believe that our value is a generally common value when compared with other reports [Diam. Relat. Mater. 47, 1 (2014); J. Alloys Compd. 610, 659 (2014); J. Nanomater. 2013, 5239 (2013)] using the similar method as described in our paper. Therefore, the conclusions from the experimental results on field emission performance of CNT/graphene composite materials in our paper are reliable.
Lifshitz transition with interactions in high magnetic fields: Application to CeIn3
NASA Astrophysics Data System (ADS)
Schlottmann, Pedro
2012-02-01
The N'eel ordered state of CeIn3 is suppressed by a magnetic field of 61 T at ambient pressure. There is a second transition at ˜45 T, which has been associated with a Lifshitz transition [1,2]. Skin depth measurements [2] indicate that the transition is discontinuous as T ->0. Motivated by this transition we study the effects of Landau quantization and interaction among carriers on a Lifshitz transition. The Landau quantization leads to quasi-one-dimensional behavior for the direction parallel to the field. Repulsive Coulomb interactions give rise to a gas of strongly coupled carriers [3]. The density correlation function is calculated for a special long-ranged potential [4]. It is concluded that in CeIn3 a pocket is being emptied as a function of field in a discontinuous fashion in the ground state. This discontinuity is gradually smeared by the temperature [4] in agreement with the skin depth experiments [2]. 0.05in [1] S.E. Sebastian et al, PNAS 106, 7741 (2009). [2] K.M. Purcell et al, Phys. Rev. B 79, 214428 (2009). [3] P. Schlottmann and R. Gerhardts, Z. Phys. B 34, 363 (1979). [4] P. Schlottmann, Phys. Rev. B 83, 115133 (2011); J. Appl. Phys., in print.
Dependence of e31,f on polar axis texture for tetragonal Pb(Zrx,Ti1-x)O3 thin films
NASA Astrophysics Data System (ADS)
Yeager, Charles B.; Ehara, Yoshitaka; Oshima, Naoya; Funakubo, Hiroshi; Trolier-McKinstry, Susan
2014-09-01
It was shown by Ouyang et al. [Appl. Phys. Lett. 86, 152901 (2005)] that the piezoelectric e31,f coefficient is largest parallel to the spontaneous polarization in tetragonal PbZrxTi1-xO3 (PZT) films. However, the expected piezoelectric data are typically calculated from phenomenological constants derived from data on ceramic PZT. In this work, the dependence of e31,f on c-axis texture fraction, f001, for {001}PZT thin films was measured by growing films with systematically changed f001 using CaF2, MgO, SrTiO3, and Si substrates. An approximately linear increase in e31,f with f001 was observed for compositions up to 43 mol. % Zr, and 100% c-domain properties were extrapolated. It was demonstrated that c-axis PZT films can achieve e31,f exceeding -12 C/m2 for many tetragonal compositions. The energy harvesting figure of merit, e31,f2/ɛr, for c-axis PZT films surpassed 0.8 C2/m4. This is larger than the figure of merit of gradient-free PZT films grown on Si substrates by a factor of four.
Submillimeter Wave Spectrum of Thioacetaldehyde and its Search in SgrB2
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Ellinger, Y.; McGuire, Brett A.; Remijan, Anthony
2017-06-01
Sulfur chemistry in the interstellar medium is clearly misunderstood, the tenth most abundant element in the Galaxy, it is depleted in molecular clouds by a factor of 1000. This suggests that sulfur chemistry is important on icy grain mantles, and that sulfur-bearing molecules may be not detected yet due to the lack of laboratory data. The present study is about thioacetaldehyde (CH_3CHS), the analog of acetaldehyde. Previously, the rotational spectra were recorded up to 40 GHz. New spectra were recorded from 150 to 660 GHz using the Lille solid-state based spectrometer. The new fast version of the spectrometer using DDS component is particulary suitable for reactive species like thioacetaldehyde. Thioacetaldehyde was produced in-situ by pyrolisis at 750° {C} and introduced in a 1m long pyrex cell in a flow mode. Analysis of the spectra is not obvious, like in acetaldehyde, as this molecule exhibits internal rotation of the methyl group. The internal rotation barrier is higher in thioacetaldehyde, 542 cm-1, than in acetaldehyde, 408 cm-1. However, the coupling between the internal rotation and the overall rotation in thioacetaldehyde is strong, the coupling parameter ρ value is 0.261 just slightly smaller than the acetaldehyde value of 0.329. The spectroscopic results and its searches in SgrB2 will be presented. A. Tieftrunk; et al., 1994, A&A 289, 579 H. Kroto; et al., 1974, Chem. Phys. Lett. 29, 265 H. Kroto; et al., 1976, J. Mol. Spectrosc. 62, 346 This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under ANR-13-BS05-0008-02 IMOLABS
NASA Astrophysics Data System (ADS)
Ardenghi, Juan S.; Castagnino, M.; Campoamor-Stursberg, R.
2009-10-01
The nonrelativistic limit of the centrally extended Poincaré group is considered and their consequences in the modal Hamiltonian interpretation of quantum mechanics are discussed [O. Lombardi and M. Castagnino, Stud. Hist. Philos. Mod. Phys 39, 380 (2008); J. Phys, Conf. Ser. 128, 012014 (2008)]. Through the assumption that in quantum field theory the Casimir operators of the Poincaré group actualize, the nonrelativistic limit of the latter group yields to the actualization of the Casimir operators of the Galilei group, which is in agreement with the actualization rule of previous versions of modal Hamiltonian interpretation [Ardenghi et al., Found. Phys. (submitted)].
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Bellini, V.; Bocquet, J. P.; Capogni, M.; Curciarello, F.; D'Angelo, A.; De Leo, V.; Didelez, J. P.; Di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Lapik, A. M.; Levi Sandri, P.; Lleres, A.; Mammoliti, F.; Manganaro, M.; Moricciani, D.; Mushkarenkov, A. N.; Nedorezov, V. G.; Rebreyend, D.; Rudnev, N. V.; Schaerf, C.; Sperduto, M. L.; Sutera, M. C.; Turinge, A.; Vegna, V.; Zonta, I.
2014-05-01
Differential and total cross section measurements on η' photoproduction were published by the CLAS Collaboration (M. Dugger et al., Phys.Rev.Lett.96, 062001 (2006) and M. Williams et al., Phys.Rev.C80, 045213 (2009)) for center-of-mass energies from near the threshold up to 2.84 GeV, and by the CB-ELSA-TAPS Collaboration (V. Crede et al., Phys.Rev.C80, 055202 (2009)) up to 2.36 GeV and also making a precise threshold scan of the differential cross section in the 1446 - 1527.4 MeV γ beam energy range. However, the wide information about reaction cross sections are not sufficient to understand the role of resonances involved in the process. Different theoretical works stressed the importance to have also polarization observables in order to solve the ambiguity in the choice of the parameters used in their models. We present the analysis of the η' photoproduction off the proton, identifying the meson via the γγ, π0π0η, and π+π-η decay modes by using the GRAAL apparatus; and we show the preliminary GRAAL results on the beam asymmetry Σ from the threshold (1.446 GeV) up to 1.5 GeV.
NASA Astrophysics Data System (ADS)
Busquet, Michel; Klapisch, Marcel; Bar-Shalom, Avi; Oreg, Josse
2010-11-01
The main contribution to spectral properties of astrophysics mixtures come often from Iron. On the other hand, in the so-called domain of ``Laboratory Astrophysics,'' where astrophysics phenomena are scaled down to the laboratory, Xenon (and Argon) are commonly used gases. At so called ``warm'' temperatures (T=5-50eV), L-shell Iron and M-shell Xenon present a very large number of spectral lines, originating from billions of levels. More often than not, Local Thermodynamical Equilibrium is assumed, leading to noticeable simplification of the computation. Nevertheless, complex and powerful atomic structure codes are required. We take benefit of powerful statistics and numerics, included in our atomic structure codes, STA[1] and HULLAC[2], to generate the required spectra. Recent improvements in both fields (statistics, numerics and convergence control) allow obtaining large databases (ro x T grid of > 200x200 points, and > 10000 frequencies) for temperature down to a few eV. We plan to port these improvements in the NLTE code SCROLL[3]. [1] A.Bar-Shalom, et al, Phys. Rev. A 40, 3183 (1989) [2] M.Busquet,et al, J.Phys. IV France 133, 973-975 (2006); A.Bar-Shalom, M.Klapisch, J.Oreg, J.Oreg, JQSRT 71, 169, (2001) [3] A.Bar-Shalom, et al, Phys. Rev. E 56, R70 (1997)
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2007-10-01
During the last several years we have undertaken a systematic study of heavy residues formed in quasi-elastic and deep- inelastic collisions near and below the Fermi energy [1,2]. Presently, we are exploring the possibility of extracting information on the dynamics by comparing our heavy residue data to calculations using microscopic models based on the quantum molecular dynamics approach (QMD). We have performed detailed calculations of QMD type using the recent version of the constrained molecular dynamics code CoMD of M. Papa [3]. CoMD is especially designed for reactions near the Fermi energy. It implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, thus restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our residue data will be presented and discussed in detail. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003); Nucl. Instrum. Methods B 204 166 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
NASA Astrophysics Data System (ADS)
Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.
2008-10-01
A systematic study of quasi-elastic and deep-inelastic collisions at Fermi energies has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight in the dynamics and the nuclear equation of state by comparing our experimental heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. At present, we have performed detailed calculations using the code CoMD (Constrained Molecular Dynamics) of A. Bonasera and M. Papa [3]. The code implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, effectively restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our data will be presented and implications concerning the isospin part of the nuclear equation of state will be discussed. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).
NASA Astrophysics Data System (ADS)
Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady
2012-10-01
We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).
Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers
NASA Astrophysics Data System (ADS)
Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.
2011-05-01
Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi < 0.5, k⊥ being the characteristic perpendicular wavenumber and ρi the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k⊥ρi > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.
Pinning mode of integer quantum Hall Wigner crystal of skyrmions
NASA Astrophysics Data System (ADS)
Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-03-01
Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).
First-principles Raman Spectra of Lead Titanate with Pressure
NASA Astrophysics Data System (ADS)
Schad, A.; Ganesh, P.; Cohen, R. E.; Ahart, M.
2010-03-01
PbTiO3 displays[1,2] a morphotropic phase boundary (MPB) under pressure at which electromechanical properties are maximal. Previously only complex solid-solutions were thought to exhibit such a boundary. To aid in the experimental study of the MPB region, we compute Raman scattering spectra of different phases of PbTiO3 with pressure using a DFT based first-principles approach and Density Functional Perturbation Theory (DFPT) [3]. The computed intensities and shifts with pressure agree very well with the experimental data measured on powder samples. Computations further allow comparison of Raman spectra and shifts in energetically competing phases raising the possibility of using calculations for experimental calibration of Raman spectra at any pressure. The results substantiate previous claims of a low-temperature monoclinic phase at the MPB at approximately 10 GPa in PbTiO3 as well as refute the possibility of an I4cm phase at higher pressures as suggested by other groups [4]. [1] Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005), [2] M. Ahart et.al., Nature 451, 545 (2008), [3] P. Hermet et.al., J. Phys.:Condens. Matter 21, 215901 (2009) [4] P.E. Janolin et.al., Phys. Rev. Lett. 101, 237601 (2008).
Magnetic Polarons in Anisotropic Quantum Dots
NASA Astrophysics Data System (ADS)
Oszwaldowski, Rafal; Petukhov, Andre; Zutic, Igor
2010-03-01
Tunability of confinement in magnetically-doped quantum dots (QDs) allows to tailor magnetism to an extent not available in bulk semiconductors. Versatile control of magnetic ordering, along with piezomagnetism, has been predicted even at a fixed number of carriers [1]. Recent experiments on colloidal QDs revealed strongly bound magnetic polarons (MPs) [2]. Previous studies of MPs in bulk semiconductors showed that the mean-field theory predicts a spurious magnetic phase transition, which is removed by taking into account spin fluctuations [3]. Here we present our theoretical results for MPs forming in QDs with pronounced magnetic anisotropy, which influences the spin fluctuations. We apply our findings to explain some peculiarities of the magnetic behavior of type-II ZnSe/(Zn,Mn)Te QDs, where magnetic polarons are found to persist to at least 200K [4]. Supported by ONR, AFOSR, and NSF-ECCS CAREER. [4pt] [1] R. M. Abolfath, A. G. Petukhov, and I. Zutic, Phys. Rev. Lett. 101, 207202 (2008); I. Zutic and A. G. Petukhov, Nature Mater.4, 623 (2009). [0pt] [2] R. Beaulac et al., Science 325, 973 (2009). [0pt] [3] T. Dietl and J. Spalek, Phys. Rev. Lett. 48, 355 (1982). [0pt] [4] I. R. Sellers, R. Oszwaldowski, et al., preprint; I. R. Sellers et al., Phys. Rev. Lett. 100, 136405 (2008).
X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.
2013-05-15
Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focusesmore » on implosion performance data in the “rocket curve” plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 μm-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remaining–below the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 μm thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V≥350 km/s with ablator mass remaining above the ignition goal.« less
Manipulation of optical-pulse-imprinted memory in a Λ system
NASA Astrophysics Data System (ADS)
Gutiérrez-Cuevas, Rodrigo; Eberly, Joseph H.
2015-09-01
We examine coherent memory manipulation in a Λ -type medium, using the second-order solution presented by Groves, Clader, and Eberly [J. Phys. B: At. Mol. Opt. Phys. 46, 224005 (2013), 10.1088/0953-4075/46/22/224005] as a guide. The analytical solution obtained using the Darboux transformation and a nonlinear superposition principle describes complicated soliton-pulse dynamics which, by an appropriate choice of parameters, can be simplified to a well-defined sequence of pulses interacting with the medium. In this report, this solution is reviewed and put to test by means of a series of numerical simulations, encompassing all the parameter space and adding the effects of homogeneous broadening due to spontaneous emission. We find that even though the decohered results deviate from the analytical prediction they do follow a similar trend that could be used as a guide for future experiments.
Origins and demonstrations of electrons with orbital angular momentum
Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.
2017-01-01
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765
Optimization of Capsule Symmetry in Z-Pinch Driven Hohlraums
NASA Astrophysics Data System (ADS)
Vesey, R. A.; Cuneo, M.; Hanson, D.; Porter, J.; Mehlhorn, T.; Ruggles, L.; Simpson, W.; Vargas, M.; Hammer, J.; Landen, O.
1999-11-01
The uniformity of the radiation flux incident on the capsule is a critical issue for indirect drive fusion using the z-pinch driven hohlraum high-yield concept(J.H. Hammer et al., Phys. Plas. 6), 2129 (1999).. Experiments on the Z accelerator at Sandia have demonstrated the ability to diagnose the uniformity of the flux striking a foam ball (surrogate capsule)(P.A. Amendt et al., Phys. Plas. 4), 1862 (1997); S.G. Glendinning et al. Rev. Sci. Instrum. 70, 536 (1999).. These single-sided drive experiments have been modeled using radiosity and radiation-hydrodynamics codes, yielding agreement with the measured ablation rate vs. angle on the foam ball. Flux uniformity at the 1-2% level needed for high-convergence capsule implosions requires a 2-sided drive (top and bottom z-pinch) configuration. Constrained optimization methods have identified hohlraum geometries with improved symmetry.
Beyond mean-field effects in Bloch Oscillations of cold atoms in an optical cavity
NASA Astrophysics Data System (ADS)
Venkatesh Balasubramanian, Prasanna; O'Dell, Duncan
2012-06-01
In our earlier publication [1] we proposed using Bloch oscillations of cold atoms inside an Fabry-Perot resonator for sensitive measurements of force. The analysis in [1] was performed using a coherent mean-field description for the atoms and the light. In the current work we extend this description substantially by including the effects of fluctuations in both the atomic and light fields. This analysis is used to set realistic limits on the precision to which the force can be measured. We also make contact with the optomechanical description of the combined atom-cavity system which has proved so successful for describing recent pioneering experiments [2].[4pt] [1] B. Prasanna Venkatesh et al, Phys. Rev. A 80, 063834 (2009).[0pt] [2] S. Gupta et al, Phys. Rev. Lett. 99, 213601 (2007); F.Brennecke et al, Science 322, 235 (2008).
Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmerle, Achim, E-mail: achim-kimmerle@gmx.de; Momtazur Rahman, Md.; Werner, Sabrina
We investigate the surface recombination velocity S{sub p} at the silicon-dielectric interface of phosphorus-doped surfaces for two industrially relevant passivation schemes for crystalline silicon solar cells. A broad range of surface dopant concentrations together with a high accuracy of evaluating the latter is achieved by incremental back-etching of the surface. The analysis of lifetime measurements and the simulation of the surface recombination consistently apply a set of well accepted models, namely, the Auger recombination by Richter et al. [Phys. Rev. B 86, 1–14 (2012)], the carrier mobility by Klaassen [Solid-State Electron. 35, 953–959 (1992); 35, 961–967 (1992)], the intrinsic carriermore » concentration for undoped silicon by Altermatt et al. [J. Appl. Phys. 93, 1598–1604 (2003)], and the band-gap narrowing by Schenk [J. Appl. Phys. 84, 3684–3695 (1998)]. The results show an increased S{sub p} at textured in respect to planar surfaces. The obtained parameterizations are applicable in modern simulation tools such as EDNA [K. R. McIntosh and P. P. Altermatt, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, Hawaii, USA (2010), pp. 1–6], PC1Dmod [Haug et al., Sol. Energy Mater. Sol. Cells 131, 30–36 (2014)], and Sentaurus Device [Synopsys, Sentaurus TCAD, Zürich, Switzerland] as well as in the analytical solution under the assumption of local charge neutrality by Cuevas et al. [IEEE Trans. Electron Devices 40, 1181–1183 (1993)].« less
1990-09-30
HEIDNER III, H . HELVAJIAN , J. S. HOLLOWAY, and J. B. KOFFEND Aerophysics Laboratory Laboratory Oleratios The Aerospace Corporation El Segundo, CA 90245... Helvajian , and J. B. Koffend, J. Chem. Phys. 87, 1520 (1987). 19. P. L Goodfriend and H . P. Woods, J. Mol. Spectrosc. 13, 63 (19614). 20. L. A...Kayatama, 7 rh Inter- national Symposium on Gas Kinetics, Gottingen, 1982. 22. R. F. Heidner, H . Helvajian , J. S. Holloway, and J. B. Koffend (to be