Science.gov

Sample records for al-6mg alloy doped

  1. Effect of scandium on the microstructure and ageing behaviour of cast Al-6Mg alloy

    SciTech Connect

    Kaiser, M.S.; Datta, S.; Roychowdhury, A. Banerjee, M.K.

    2008-11-15

    Microstructural modification and grain refinement due to addition of scandium in Al-6Mg alloy has been studied. Transmission electron microscopy is used to understand the microstructure and precipitation behaviour in Al-6Mg alloy doped with scandium. It is seen from the microstructure that the dendrites of the cast Al-6Mg alloy have been refined significantly due to addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect in scandium added Al-6Mg alloys has been studied by subjecting the alloys containing varying amount of scandium ranging from 0.2 wt.% to 0.6 wt.% to isochronal and isothermal ageing at various temperatures for different times. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides.

  2. High strain rate superplasticity in a continuously recrystallized Al-6%Mg-0.3%Sc alloy

    SciTech Connect

    Nieh, T.G.; Hsiung, L.M.; Wadsworth, J.; Kaibyshev, R.

    1998-05-01

    The superplastic properties of a cold-rolled Al-6Mg-0.3Sc alloy were studied at temperatures between 450 and 560 C and strain rates between 10{sup {minus}4} and 10{sup 0} s{sup {minus}1}. The alloy was observed to exhibit superplasticity over wide temperature (475--520 C) and strain rate ranges ({approximately} 10{sup {minus}3}--10{sup {minus}1} s{sup {minus}1}). It was found that the addition of Sc to Al-Mg alloys resulted in a uniform distribution of fine coherent Al{sub 3}Sc precipitates which effectively pinned subgrain and grain boundaries during static and dynamic recrystallization. In this paper, the microstructural evolution during superplastic deformation was systematically examined using both optical and transmission electron microscopy. Based upon this microstructural examination, a mechanism is proposed to explain the observed high strain rate superplasticity in the alloy. A model is also proposed that describes grain boundary sliding accommodated by dislocations gliding across grains containing coherent precipitates.

  3. Multiple doping of silicon-germanium alloys for thermoelectric applications

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex

    1989-01-01

    It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.

  4. Welding and Weldability of Thorium-Doped Iridium Alloys

    SciTech Connect

    David, S.A.; Ohriner, E.K.; King, J.F.

    2000-03-12

    Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

  5. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  6. Raman studies on Ag-ion doped CdZnS luminescent alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Sethi, Ruchi; Sharma, Prashant K.; Pandey, A. C.; Kumar, Lokendra

    2010-07-01

    Un-doped and Ag-ion doped CdZnS alloy nanocrystals were synthesized using methaacrylic acid (MAA) as a capping agent. A continuous higher frequency shift in optical phonon modes was observed in the Raman spectra of the samples with increasing Zn composition demonstrating a typical 'one-mode' type behavior of the alloy material. Furthermore, the influence of MAA concentration on the optical and vibrational properties was also investigated. Transmission electron micrograph (TEM) of the samples shows that the CdZnS nanocrystals were embedded in the matrix of MAA. In addition, tremendous attention was paid towards the power induced Raman shift in the alloy nanocrystals.

  7. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    PubMed Central

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  8. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-07-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future.

  9. Effect of Lanthanum Doping on the Microstructure of Tin-Silver Solder Alloys

    NASA Astrophysics Data System (ADS)

    Pei, Min; Qu, Jianmin

    2008-03-01

    In this study, quantitative microstructure studies were performed on multiple length scales to investigate the effect of lanthanum (La) doping on Sn-Ag lead-free solder materials. Factors considered in this paper include doping amount, aging temperature, and aging time. It was found that La doping reduces the grain size significantly, and the reduced grain size remains stable during thermal aging. The size of the Ag3Sn particles is also greatly reduced by La doping, and the particles coarsen during thermal aging, albeit at a much reduced rate than in the undoped alloy. The rate of particle coarsening can be described by a cubic-root law. Another observation is that the interparticle spacing remains unaffected by the doping. Therefore, higher La doping level leads to higher volume fraction of the eutectic region due to the increased total number of Ag3Sn particles.

  10. Effect of doping and disorder on the half metallicity of full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Galanakis, I.; Özdoǧan, K.; Aktaş, B.; Şaşıoǧlu, E.

    2006-07-01

    Heusler alloys containing Co and Mn are amongst the most heavily studied half metallic ferromagnets for future applications in spintronics. Using state-of-the-art electronic structure calculations, we investigate the effect of doping and disorder on their electronic and magnetic properties. Small degrees of doping by substituting Fe or Cr for Mn scarcely affect the half metallicity. A similar effect is also achieved by mixing the sublattices occupied by the Mn and sp atoms. Thus the half metallicity is a robust property of these alloys.

  11. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  12. High-strength laser welding of aluminum-lithium scandium-doped alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  13. Separating the strengthening phase in nickel-cobalt alloys doped with tantalum

    NASA Astrophysics Data System (ADS)

    Shaipov, R. Kh.; Kerimov, E. Yu.; Slyusarenko, E. M.

    2017-02-01

    The hardness values of monophasic (fcc solid solution) and biphasic (fcc solid solution and separated phase) nickel-cobalt alloys doped with tantalum are determined using the Vickers method. Based on the resulting data, a composition-structure-hardness diagram is devised for the Co-Ni-Ta system.

  14. Oxidative Recession, Sulfur Release, and Al203 Spallation for Y-Doped Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2001-01-01

    Second-order spallation phenomena have been noted for Y-doped Rene'N5 after long term oxidation at 1150 degrees C. The reason for this behavior has not been conclusively identified. A mass equivalence analysis has shown that the surface recession resulting from oxidation has the potential of releasing about 0.15 monolayer of sulfur for every 1 mg/sq cm of oxygen reacted for an alloy containing 5 ppmw of sulfur. This amount is significant in comparison to levels that have been shown to result in first-order spallation behavior for undoped alloys. Oxidative recession is therefore speculated to be a contributing source of sulfur and second-order spallation for Y-doped alloys.

  15. Microstructure and tailoring hydrogenation performance of Y-doped Mg2Ni alloys

    NASA Astrophysics Data System (ADS)

    Song, Wenjie; Li, Jinshan; Zhang, Tiebang; Kou, Hongchao; Xue, Xiangyi

    2014-01-01

    In this work, the microstructure and the hydrogenation properties of melt-spun Mg67Ni33-xYx alloys are studied with the purpose to investigate the influence of Y doping and rapid solidification on hydrogenation performance of Mg2Ni. Mg67Ni33-xYx (x = 0, 1, 3, 6) alloys are firstly prepared in an electric resistance furnace under the protection of a covering reagent. Then, the as-cast alloys are re-melted and spun on a rotating copper roller. The phase compositions and microstructures of as-cast and melt-spun alloys are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). The hydrogen activation properties and absorption/desorption kinetics of melt-spun Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons are evaluated using an automatic Sieverts apparatus. The melt-spun Mg67Ni32Y alloy preserves high hydrogen absorption capacity and kinetics and absorbs 96% of the maximum capacity (3.79 wt. %) within 8 min. The lattice distortion caused by Y doping and the shrinkage porosity by melt-spun not only raise the hydrogen absorption/desorption rate, but significantly improve the hydrogen storage capacity of Mg67Ni33-xYx (x = 0, 1, 3, 6) alloys. The activation and hydrogen absorption/desorption mechanisms are also discussed based on a nucleation and growth theory.

  16. Magnetic-doped alloys with very large Seebeck coefficients

    NASA Technical Reports Server (NTRS)

    Sellmeyer, D. J.; Zagarins, J.

    1972-01-01

    Preliminary results of this study show that, based on selection of magnetic solute and nonmagnetic solvent from periodic table, alloys having Seebeck coefficients approaching 100 micron V/K can be obtained.

  17. Doping in the Valley of Hydrogen Solubility: A Route to Designing Hydrogen-Resistant Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Youssef, Mostafa; Yang, Ming; Yildiz, Bilge

    2016-01-01

    Hydrogen pickup and embrittlement pose a challenging safety limit for structural alloys used in a wide range of infrastructure applications, including zirconium alloys in nuclear reactors. Previous experimental observations guide the empirical design of hydrogen-resistant zirconium alloys, but the underlying mechanisms remain undecipherable. Here, we assess two critical prongs of hydrogen pickup through the ZrO2 passive film that serves as a surface barrier of zirconium alloys; the solubility of hydrogen in it—a detrimental process—and the ease of H2 gas evolution from its surface—a desirable process. By combining statistical thermodynamics and density-functional-theory calculations, we show that hydrogen solubility in ZrO2 exhibits a valley shape as a function of the chemical potential of electrons, μe . Here, μe , which is tunable by doping, serves as a physical descriptor of hydrogen resistance based on the electronic structure of ZrO2 . For designing zirconium alloys resistant against hydrogen pickup, we target either a dopant that thermodynamically minimizes the solubility of hydrogen in ZrO2 at the bottom of this valley (such as Cr) or a dopant that maximizes μe and kinetically accelerates proton reduction and H2 evolution at the surface of ZrO2 (such as Nb, Ta, Mo, W, or P). Maximizing μe also promotes the predomination of a less-mobile form of hydrogen defect, which can reduce the flux of hydrogen uptake. The analysis presented here for the case of ZrO2 passive film on Zr alloys serves as a broadly applicable and physically informed framework to uncover doping strategies to mitigate hydrogen embrittlement also in other alloys, such as austenitic steels or nickel alloys, which absorb hydrogen through their surface oxide films.

  18. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Sharma, Prashant K; Pandey, Ac

    2009-10-13

    Highly luminescent Ag-ion-doped Cd1-xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  19. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    PubMed Central

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1−xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation. PMID:20652135

  20. Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Sethi, Ruchi; Kumar, Lokendra; Sharma, Prashant K.; Pandey, A. C.

    2010-01-01

    Highly luminescent Ag-ion-doped Cd1-xZnxS (0 ≤ x ≤ 1) alloy nanocrystals were successfully synthesized by a novel wet chemical precipitation method. Influence of dopant concentration and the Zn/Cd stoichiometric variations in doped alloy nanocrystals have been investigated. The samples were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) to investigate the size and structure of the as prepared nanocrystals. A shift in LO phonon modes from micro-Raman investigations and the elemental analysis from the energy dispersive X-ray analysis (EDAX) confirms the stoichiometry of the final product. The average crystallite size was found increasing from 1.0 to 1.4 nm with gradual increase in Ag doping. It was observed that photoluminescence (PL) intensity corresponding to Ag impurity (570 nm), relative to the other two bands 480 and 520 nm that originates due to native defects, enhanced and showed slight red shift with increasing silver doping. In addition, decrease in the band gap energy of the doped nanocrystals indicates that the introduction of dopant ion in the host material influence the particle size of the nanocrystals. The composition dependent bandgap engineering in CdZnS:Ag was achieved to attain the deliberate color tunability and demonstrated successfully, which are potentially important for white light generation.

  1. Annealing group III-V compound doped silicon-germanium alloy for improved thermo-electric conversion efficiency

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W. (Inventor); Wood, Charles (Inventor); Draper, Susan L. (Inventor)

    1989-01-01

    The thermoelectric conversion efficiency of a GaP doped SiGe alloy is improved about 30 percent by annealing the alloy at a temperature above the melting point of the alloy, preferably stepwise from 1200 C to 1275 C in air to form large grains having a size over 50 microns and to form a GeGaP rich phase and a silicon rich phase containing SiP and SiO2 particles.

  2. Effects of Ag-Doping on Thermoelectric Properties of Ca(2-x)AgxSi Alloys

    NASA Astrophysics Data System (ADS)

    Duan, Xingkai; Hu, Konggang; Kuang, Jing; Jiang, Yuezhen; Yi, Dengliang

    2016-11-01

    Ca(2-x)AgxSi (0 ≤ x ≤ 0.1) with 47.5% excess of Ca alloys were fabricated by melting in a tantalum tube and hot pressing technique. Phase structures of the samples were studied by means of x-ray diffraction. The electrical conductivity and Seebeck coefficient of Ca(2-x)AgxSi alloys were studied in the temperature range of 300-873 K. The electrical conductivity of the Ag-doped samples increases within the whole test temperature range. All samples show p-type semiconductor behavior. The electrical conductivity decreases with increasing temperature from 300 K to 873 K, which is typically observed for a degenerate semiconductor. Compared with the undoped samples, Ag-doping (x = 0.04-0.1) results in decreases of Seebeck coefficient, especially Ca(2-x)AgxSi with x = 0.1. The thermal conductivity of the doped samples gradually increases with increasing the Ag-doping content. The Ca(2-x)AgxSi with x = 0.02 sample exhibits the lowest thermal conductivity within the whole test temperature range. The ZT values of Ca(2-x)AgxSi with x = 0.02 sample have an enhancement in the temperature range of 300-873 K by contrast with those of the Ca2Si sample. The maximum ZT value is 0.16 at 837 k, which is observed for the Ca(2-x)AgxSi with x = 0.04 sample.

  3. Thermoelectric properties of indium doped PbTe{sub 1-y}Se{sub y} alloys

    SciTech Connect

    Bali, Ashoka; Mallik, Ramesh Chandra; Wang, Heng; Snyder, G. Jeffrey

    2014-07-21

    Lead telluride and its alloys are well known for their thermoelectric applications. Here, a systematic study of PbTe{sub 1-y}Se{sub y} alloys doped with indium has been done. The powder X-Ray diffraction combined with Rietveld analysis confirmed the polycrystalline single phase nature of the samples, while microstructural analysis with scanning electron microscope results showed densification of samples and presence of micrometer sized particles. The temperature dependent transport properties showed that in these alloys, indium neither pinned the Fermi level as it does in PbTe, nor acted as a resonant dopant as in SnTe. At high temperatures, bipolar effect was observed which restricted the zT to 0.66 at 800 K for the sample with 30% Se content.

  4. Microstructure, Martensite Transition and Mechanical Properties Investigations of Polycrystalline Co-Ni-Al Alloys with Er Doping

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Yang, Liu; Hao, Shuai; Mao, Qitong; Lou, Shuting; Liu, Huan

    2017-02-01

    Using a multi-technique approach, we explore the effect of Er doping on the mechanical properties and phase transition temperature of polycrystalline Co-Ni-Al alloy. The un-doped alloy exhibits poor mechanical properties and a very low phase transition temperature. Therefore, the alloy could not obtain the apparent magnetic-field-induced strain. We show that the microstructure is typical of a multi-phase structure at room temperature. Within the grain boundary, a γ phase exists and is shown to continuously grow surrounding the matrix as the Er is being doped. This results in the appearance of Co2Er in the γ phase when Er rises above 0.5 at.%. The phase transformation temperature clearly increases with doping and reaches room temperature when doping is at 1 at.% Er. The yield stress and ductility of the alloy increased remarkably at first and then slightly decreased with further doping. The sample exhibits an interesting shape memory effect that is enhanced by Er doping or thermo-mechanical cycles.

  5. Microstructure, Martensite Transition and Mechanical Properties Investigations of Polycrystalline Co-Ni-Al Alloys with Er Doping

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Yang, Liu; Hao, Shuai; Mao, Qitong; Lou, Shuting; Liu, Huan

    2017-03-01

    Using a multi-technique approach, we explore the effect of Er doping on the mechanical properties and phase transition temperature of polycrystalline Co-Ni-Al alloy. The un-doped alloy exhibits poor mechanical properties and a very low phase transition temperature. Therefore, the alloy could not obtain the apparent magnetic-field-induced strain. We show that the microstructure is typical of a multi-phase structure at room temperature. Within the grain boundary, a γ phase exists and is shown to continuously grow surrounding the matrix as the Er is being doped. This results in the appearance of Co2Er in the γ phase when Er rises above 0.5 at.%. The phase transformation temperature clearly increases with doping and reaches room temperature when doping is at 1 at.% Er. The yield stress and ductility of the alloy increased remarkably at first and then slightly decreased with further doping. The sample exhibits an interesting shape memory effect that is enhanced by Er doping or thermo-mechanical cycles.

  6. High field magnetic behavior in Boron doped Fe2VAl Heusler alloys

    NASA Astrophysics Data System (ADS)

    Venkatesh, Ch.; Vasundhara, M.; Srinivas, V.; Rao, V. V.

    2016-11-01

    We have investigated the magnetic behavior of Fe2VAl1-xBx (x=0, 0.03, 0.06 and 0.1) alloys under high temperature and high magnetic field conditions separately. Although, the low temperature DC magnetization data for the alloys above x>0 show clear magnetic transitions, the zero field cooled (ZFC) and field cooled (FC) curves indicate the presence of spin cluster like features. Further, critical exponent (γ) deduced from the initial susceptibility above the Tc, does not agree with standard models derived for 3 dimensional long range magnetic systems. The deviation in γ values are consistent with the short range magnetic nature of these alloys. We further extend the analysis of magnetic behavior by carrying the magnetization measurements at high temperatures and high magnetic fields distinctly. We mainly emphasize the following observations; (i) The magnetic hysteresis loops show sharp upturns at lower fields even at 900 K for all the alloys. (ii) High temperature inverse susceptibility do not overlap until T=900 K, indicating the persistent short range magnetic correlations even at high temperatures. (iii) The Arrott's plot of magnetization data shows spontaneous moment (MS) for the x=0 alloy at higher magnetic fields which is absent at lower fields (<50 kOe), while the Boron doped samples show feeble MS at lower fields. The origin of this short range correlation is due to presence of dilute magnetic heterogeneous phases which are not detected from the X-ray diffraction method.

  7. An investigation of Pt alloy oxygen reduction catalysts in phosphoric acid doped PBI fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    A study of a phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell using commercial carbon supported, Pt alloy oxygen reduction catalysts is reported. The cathodes were made from PTFE bonded carbon supported Pt alloys without PBI but with phopshoric acid added to the electrode for ionic conductivity. Polarisation data for fuel cells with cathodes made with alloys of Pt with Ni, Co, Ru and Fe are compared with those with Pt alone as cathode at temperatures between 120 and 175 °C. With the same loading of Pt enhancement in cell performance was achieved with all alloys except Pt-Ru, in the low current density activation kinetics region of operation. The extent of enhancement depended upon the operating temperature and also the catalyst loading. In particular a Pt-Co alloy produced performance significantly better than Pt alone, e.g. a peak power, with low pressure air, of 0.25 W cm -2 with 0.2 mg Pt cm -2 of a 20 wt% Pt-Co catalyst.

  8. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy

    NASA Astrophysics Data System (ADS)

    Ju, Jia; Lou, Shuting; Yan, Chen; Yang, Liu; Li, Tao; Hao, Shuai; Wang, Xingyi; Liu, Huan

    2017-04-01

    A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0-1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio ( R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

  9. Optimally doped hybridization gap semiconductor FeGa3 as potential thermoelectric alloy*

    NASA Astrophysics Data System (ADS)

    Ponnambalam, Vijayabarathi; Morelli, Donald T.

    2014-03-01

    FeGa3, a hybridization gap semiconductor with a band gap of ~ 0.5 eV can be a potential thermoelectric material if optimally doped. Due to the involvement of d-band in the transport, high Seebeck coefficient is a possibility. To achieve the optimum doping level, Mn, Co and Zn containing FeGa3 alloys are being prepared either via the flux or solid state reaction method. Phase characterization will be carried out. Electrical and transport properties including resistivity, Seebeck and Hall coefficients and thermal conductivity will be measured over a wide temperature range of 80- 1000 K. These results will be presented and the potential of these compositions as thermoelectrics will be discussed.

  10. Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys.

    PubMed

    da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto

    2011-05-01

    The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy.

  11. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  12. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  13. Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping

    PubMed Central

    Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei

    2017-01-01

    Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152

  14. Doping and strain dependence of the electronic band structure in Ge and GeSn alloys

    NASA Astrophysics Data System (ADS)

    Xu, Chi; Gallagher, James; Senaratne, Charutha; Brown, Christopher; Fernando, Nalin; Zollner, Stefan; Kouvetakis, John; Menendez, Jose

    2015-03-01

    A systematic study of the effect of dopants and strain on the electronic structure of Ge and GeSn alloys is presented. Samples were grown by UHV-CVD on Ge-buffered Si using Ge3H8 and SnD4 as the sources of Ge and Sn, and B2H6/P(GeH3)3 as dopants. High-energy critical points in the joint-density of electronic states were studied using spectroscopic ellipsometry, which yields detailed information on the strain and doping dependence of the so-called E1, E1 +Δ1 , E0' and E2 transitions. The corresponding dependencies of the lowest direct band gap E0 and the fundamental indirect band gap Eindwere studied via room-T photoluminescence spectroscopy. Of particular interest for this work were the determination of deformation potentials, band gap renormalization effects, Burstein-Moss shifts due to the presence of carriers at band minima, and the dependence of other critical point parameters, such as amplitudes and phase angles, on the doping concentration. The selective blocking of transitions due to high doping makes it possible to investigate the precise k-space location of critical points. These studies are complemented with detailed band-structure calculations within a full-zone k-dot- p approach. Supported by AFOSR under DOD AFOSR FA9550-12-1-0208 and DOD AFOSR FA9550-13-1-0022.

  15. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    NASA Astrophysics Data System (ADS)

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-05-01

    In this work, we studied the phase transitions and exchange bias of Ni50‑xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50‑xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  16. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys.

    PubMed

    Dong, S Y; Chen, J Y; Han, Z D; Fang, Y; Zhang, L; Zhang, C L; Qian, B; Jiang, X F

    2016-05-12

    In this work, we studied the phase transitions and exchange bias of Ni50-xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50-xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  17. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    PubMed Central

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-01-01

    In this work, we studied the phase transitions and exchange bias of Ni50−xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50−xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase. PMID:27170057

  18. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    NASA Astrophysics Data System (ADS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Titanium alloy β-21S (Ti-15Mo-3Nb-3Al-0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks' solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks' solution.

  19. Doping and Alloying in the Solution-Phase Synthesis of Germanium Nanocrystals

    SciTech Connect

    Ruddy, D. A.; Neale, N. R.

    2012-01-01

    Group IV nanocrystals (NCs) are receiving increased attention as a potentially non-toxic nanomaterial for use in a number of important optoelectronic applications (e.g., solar photoconversion, photodetectors, LEDs, biological imaging). With these goals in mind, doping and alloying with Group III, IV, and V elements may play a major role in tailoring the NC properties, such as developing n-type and p-type conductivity through substitutional doping, as well as affecting the optical absorption, emission, and overall charge transport in a NC film. Here we present an extension of the mixed-valence iodide precursor methodology to incorporate Group III, IV, and V elements to produce E-GeNC materials. All main-group elements (E) that surround Ge on the periodic table (i.e., E = Al, Si, P, Ga, As, In, Sn, and Sb) can be incorporated via this methodology. The extent to which the dopant elements are included will be discussed, along with the optical absorbance, emission, and related properties of the NCs. In addition, the effect of the dopant elements on the NC growth kinetics will be discussed.

  20. Preparation and Thermoelectric Properties of Pb1-x Fe x Te Alloys Doped with Iodine

    NASA Astrophysics Data System (ADS)

    Cao, X. L.; Cai, W.; Deng, H. D.; Gao, R. L.; Fu, C. L.; Pan, F. S.

    2016-09-01

    This is the first systematic report on the preparation and thermoelectric properties of n-type Pb1-x Fe x Te alloys. Iodine-doped n-type Pb0.85Fe0.15Te polycrystalline was prepared by melting and hot-pressing techniques. The morphology and phase structure of the prepared materials were analyzed by scanning electron microscopy and x-ray diffraction, which indicated that the samples possessed a rock-salt crystal structure and showed a biphase structure. The major phase was the polycrystalline PbTe compound and the second phase was the FeTe compound. The FeTe nano-/micro-precipitates were homogeneously distributed in the PbTe matrix, which is beneficial for the reduction of the lattice thermal conductivity. The effects of the iodine content on the thermoelectric properties of I-doped Pb0.85Fe0.15Te have been investigated. The measurement results of electrical resistivity, carrier concentration, Seebeck coefficient, and thermal conductivity in the temperature range of 300-850 K indicate that the thermoelectric transport properties of the obtained samples are sensitive to the iodine content. When the concentration of iodine is about 0.6 at.%, the maximum dimensionless figure-of-merit value of ˜0.65 at 800 K was obtained.

  1. Microstructure and electrochemical hydrogenation/dehydrogenation performance of melt-spun La-doped Mg{sub 2}Ni alloys

    SciTech Connect

    Hou, Xiaojiang; Hu, Rui; Zhang, Tiebang Kou, Hongchao; Song, Wenjie; Li, Jinshan

    2015-08-15

    This work focuses on microstructure and electrochemical hydrogen storage properties of La-doped Mg{sub 2}Ni alloys. The alloys with nominal compositions of Mg{sub 2}Ni{sub 1−x}La{sub x} (x = 0, 0.1, 0.3, 0.5) were prepared via metallurgical smelting and melt-spun on a rotating copper wheel. The scanning electron microscope, X-ray diffraction, differential scanning calorimetry and transition electron microscope, galvanostatic charging/discharging and other electrochemical measurements were employed to investigate. The results show that the increasing of La content and melt-spinning speed favors the formation of Mg–Ni–La amorphous/nanocrystalline alloys. It is found that the melt-spun ribbons display increased discharge capacities and superior cycle stabilities compared to the as-cast alloys with and without La. The potentiodynamic polarization results indicate that melt-spun La-doped Mg{sub 2}Ni ribbons possess more positive corrosion potential E{sub corr} and exhibit relatively high corrosion resistance against the alkaline solution. The mechanism for electrochemical hydrogenation/dehydrogenation has been proposed based on the effect of microstructures on the mass/charge transfer process for electrode electrochemical reaction. - Highlights: • Nanocrystalline/amorphous Mg–Ni–La alloys are obtained by melt-spinning. • Microstructures of as-cast and rapid quenched Mg{sub 2}Ni{sub 1−x}La{sub x} alloys are investigated. • Electrochemical hydrogenation properties of experimental alloys are characterized. • Electrochemical hydrogen absorption/desorption mechanism is proposed.

  2. CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Wang, Lan; Chang, Jiuli; Chen, Chen; Wu, Dapeng; Xu, Fang; Jiang, Kai

    2017-04-01

    The design of efficient non-Pt counter electrode (CE) materials is highly desired in field of dye sensitized solar cell (DSC). Herein, by combining the catalytic features of N doped carbon (NC) and CoNi alloy, CoNi alloy incorporated porous N doped carbon hybrid (CoNi-NC) is synthesized for application as catalytic CE of DSC. Benefiting from the proper meso-/macroporosity with high electroactive surface area, the CoNi-NC electrode demonstrates apparently higher electrocatalytic activity for iodine reduction reaction (IRR) over pyrolyzed Pt electrode. As a consequence, the DSC based on CoNi-NC CE yields a power conversion efficiency (PCE) of 7.6%, which is superior over that of Pt CE based cell (7.2%), highlighting the bright potential of CoNi-NC in efficient and economical CE of DSC.

  3. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  4. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  5. Alloying Effects on the Phase Stability and Mechanical Properties of Doped Cu-Sn IMCs: A First-Principle Study

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yuan, Ding-Wang; Chen, Jiang-Hua; Zeng, Guang; Fan, Tou-Wen; Liu, Zi-Ran; Wu, Cui-Lan; Liu, Ling-Hong

    2016-08-01

    Cu-Sn phases are important intermetallic compounds formed at the interface between solder and substrate in the soldering process. They exist in several crystal structures ( η', η, η 1 and η 2, etc.). The solid-state phase transformation that occurs among Cu-Sn intermetallic compounds is a crucial issue for industry applications, because the associated volume change inevitably leads to microstructural instability. Generally, four alloying elements, i.e., Ni, Au, Zn, and indium (In), are used as alloying elements to stabilize the high temperature hexagonal η-phase. However, the physical mechanism of this stabilization effect, especially on the high temperature η 1 and η 2 phases, is still unclear. In the present study, first-principle calculations were performed to study the stability and mechanical properties of Cu5Sn4 ( η 1 and η 2) and Cu6Sn5 ( η') when doped with Ni, Au, Zn, and indium alloying elements. It is shown that their phase stability and mechanical properties could be enhanced by these elements in some circumstances. Ni-doping can significantly enhance both the stability and the mechanical properties of the three phases, whereas Zn-doping exhibits a significant effect on that of the η 2 phase.

  6. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    SciTech Connect

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Yu, Linwei E-mail: linwei.yu@polytechnique.edu

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  7. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  8. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    NASA Astrophysics Data System (ADS)

    Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.

    2016-12-01

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  9. Effects of Co doping on the metamagnetic states of the ferromagnetic fcc Fe-Co alloy.

    PubMed

    Ortiz-Chi, Filiberto; Aguayo, Aarón; de Coss, Romeo

    2013-01-16

    The evolution of the metamagnetic states in the ferromagnetic face centered cubic (fcc) Fe(1-x)Co(x) alloy as a function of Co concentration has been studied by means of first-principles calculations. The ground state properties were obtained using the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The alloying was modeled using the virtual crystal approximation and the magnetic states were obtained from the calculations of the total energy as a function of the spin moment, using the fixed spin moment method. For ferromagnetic fcc Fe, the binding-energy curve shows metamagnetic behavior, with two minima corresponding to a small-volume, low-spin (LS) state and a large-volume, high-spin (HS) state, which are separated by a small energy (E(LS) ≲ E(HS)). The evolution of the magnetic moment, the exchange integral (J), and the binding-energy curve is analyzed in the whole range of Co concentrations (x). The magnetic moment corresponding to the HS state decreases monotonically from 2.6 μ(B)/atom in fcc Fe to 1.7 μ(B)/atom in fcc Co. In contrast, the exchange integral for the HS state shows a maximum at around x = 0.45. The thermal dependence of the lattice parameter is evaluated with a method based on statistical mechanics using the binding-energy curve as an effective potential. It is observed that the behavior of the lattice parameter with temperature is tuned by Co doping, from negative thermal expansion in fcc Fe to positive thermal expansion in fcc Co, through the modification of the energetics of the metamagnetic states.

  10. Enhancement of magnetocaloric properties near room temperature in Ga-doped Ni50Mn34.5In15.5 Heusler-type alloy

    NASA Astrophysics Data System (ADS)

    Takeuchi, A. Y.; Guimarães, C. E.; Passamani, E. C.; Larica, C.

    2012-05-01

    A martensitic Ni50Mn34.5In15.5 Heusler-type alloy doped with Ga was studied by x-ray diffractometry and magnetization measurements. Ga-doping does not affect the austenitic phase transition but shifts the martensitic phase transformation towards room temperature, producing an enhancement of the magnetic entropy change (ΔSM) in that temperature region. Large ΔSM-values in the Ga-doped samples are attained for an applied field of 30 kOe as opposed to the field of 50 kOe commonly found for the un-doped cases. These effects (enhancement of ΔSM-values, shift to temperatures close to 300 K, and large ΔSM-values at lower applied fields) make the Ga-doped Ni50Mn34.5In15.5 Heusler-type alloys good candidates for technological applications as a solid refrigerant.

  11. Fe(3+)-Doped TiO₂ Nanotube Arrays on Ti-Fe Alloys for Enhanced Photoelectrocatalytic Activity.

    PubMed

    Yu, Jiangdong; Wu, Zhi; Gong, Cheng; Xiao, Wang; Sun, Lan; Lin, Changjian

    2016-06-06

    Highly ordered, vertically oriented Fe(3+)-doped TiO₂ nanotube arrays (Fe-TNTs) were prepared on Ti-Fe alloy substrates with different Fe contents by the electrochemical anodization method. The as-prepared Fe-TNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and related electrochemical techniques. XPS results demonstrated that Fe(3+) ions were successfully doped into TiO₂ nanotubes. The photoelectrochemical activity of Fe-TNTs was compared with that of pure TiO₂ nanotube arrays (TNTs). The results showed that Fe-TNTs grown on low concentration (0.5 wt %-1 wt % Fe) Ti-Fe alloys possessed higher photocurrent density than TNTs. The Fe-TNTs grown on Ti-Fe alloy containing 0.8 wt % Fe exhibited the highest photoelectrochemical activity and the photoelectrocatalytic degradation rate of methylene blue (MB) aqueous solution was significantly higher than that of TNTs.

  12. Fe3+-Doped TiO2 Nanotube Arrays on Ti-Fe Alloys for Enhanced Photoelectrocatalytic Activity

    PubMed Central

    Yu, Jiangdong; Wu, Zhi; Gong, Cheng; Xiao, Wang; Sun, Lan; Lin, Changjian

    2016-01-01

    Highly ordered, vertically oriented Fe3+-doped TiO2 nanotube arrays (Fe-TNTs) were prepared on Ti-Fe alloy substrates with different Fe contents by the electrochemical anodization method. The as-prepared Fe-TNTs were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and related electrochemical techniques. XPS results demonstrated that Fe3+ ions were successfully doped into TiO2 nanotubes. The photoelectrochemical activity of Fe-TNTs was compared with that of pure TiO2 nanotube arrays (TNTs). The results showed that Fe-TNTs grown on low concentration (0.5 wt %–1 wt % Fe) Ti-Fe alloys possessed higher photocurrent density than TNTs. The Fe-TNTs grown on Ti-Fe alloy containing 0.8 wt % Fe exhibited the highest photoelectrochemical activity and the photoelectrocatalytic degradation rate of methylene blue (MB) aqueous solution was significantly higher than that of TNTs. PMID:28335234

  13. First-principles studies of p-type nitrogen-doped α-Fe{sub 2}O{sub 3-x}S{sub x} alloys

    SciTech Connect

    Xia, Congxin An, Jiao; Zhang, Qiming; Jia, Yu

    2015-06-28

    Based on spin-polarized density functional theory, the characteristics of p-type doping are investigated in the N-doped α-Fe{sub 2}O{sub 3−x}S{sub x} alloys by means of first-principles methods. Numerical results show that when N substitutes O atom in pure α-Fe{sub 2}O{sub 3}, N impurity level is a deeper acceptor state. However, the unoccupied level is much shallower when N doped in the α-Fe{sub 2}O{sub 3−x}S{sub x} alloys, which indicates N impurity can provide good and effective p-type carriers. These predicted numerical results are interesting and useful to understand the α-Fe{sub 2}O{sub 3−x}S{sub x} alloys as a new low-cost solar cell material.

  14. Boron- and phosphorus-doped silicon germanium alloy nanocrystals—Nonthermal plasma synthesis and gas-phase thin film deposition

    SciTech Connect

    Rowe, David J. E-mail: kortshagen@umn.edu; Kortshagen, Uwe R. E-mail: kortshagen@umn.edu

    2014-02-01

    Alloyed silicon-germanium (SiGe) nanostructures are the topic of renewed research due to applications in modern optoelectronics and high-temperature thermoelectric materials. However, common techniques for producing nanostructured SiGe focus on bulk processing; therefore little is known of the physical properties of SiGe nanocrystals (NCs) synthesized from molecular precursors. In this letter, we synthesize and deposit thin films of doped SiGe NCs using a single, flow-through nonthermal plasma reactor and inertial impaction. Using x-ray and vibrational analysis, we show that the SiGe NC structure appears truly alloyed for Si{sub 1−x}Ge{sub x} for 0.16 < x < 0.24, and quantify the atomic dopant incorporation within the SiGe NC films.

  15. Microstructure, mechanical properties, and corrosion resistance of Ti-20Zr alloy in undoped and NaF doped artificial saliva

    NASA Astrophysics Data System (ADS)

    Calderon Moreno, Jose M.; Popa, Monica; Ivanescu, Steliana; Vasilescu, Cora; Drob, Silviu Iulian; Neacsu, Elena Ionela; Popa, Mihai V.

    2014-01-01

    The corrosion behavior of a new, advanced Ti-20Zr alloy with α+β microstructure (determined by optical microscopy, XRD, and SEM) and very good mechanical properties (obtained from the stress-strain curve) is studied in this paper. The composition of the alloy native passive film was determined from a XPS analysis and the long-term corrosion resistance in undoped and doped states with 0.05M NaF artificial Carter-Brugirard saliva of different pH values, simulating the severe functional conditions of a dental implant, was analyzed by electrochemical methods. This alloy possesses an advantageous balance between good mechanical resistance and plasticity and Young's modulus and exhibits more favorable electrochemical parameters and corrosion resistance than CP Ti due to its more resistant passive layer containing Ti2O3, TiO2, and ZrO2 protective oxides. After 1000 h of immersion in saliva, the protective properties of the alloy were enhanced due to the deposited surface layer that incorporated protective phosphates (shown by SEM and XPS).

  16. Theoretical investigation of Sn-doped Ge{sub 2}Sb{sub 2}Te{sub 5} alloy in crystalline phase

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K.; Singh, Gurinder; Kaura, Aman

    2015-06-24

    Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is technologically important for phase-change random access memory applications. It has been shown that the 2.2 atomic % doping of Sn weakens the Ge–Te bond strength while maintaining the symmetry of stable phase of GST. The influence of Sn doping upon the phase change characteristics of the crystalline GST alloy has been investigated by ab initio calculations. The lattice parameter, average interface distances between two adjacent (111) layers, equilibrium volume, metallic character and electrical resistance has been calculated for the stable phase of GST and Sn-doped GST.

  17. First-principles study of martensitic transformation and magnetic properties of carbon doped Ni-Mn-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Xiao, Haibo; Yang, Changping; Wang, Ruilong; Xu, Linfang; Liu, Guozhen; Marchenkov, V. V.

    2016-10-01

    The magnetic properties, structural stabilities and martensitic transformation of carbon doped Ni-Mn-Sn Heusler alloys are investigated by means of ab initio calculations in framework of the density functional theory. The results of calculations have shown that the martensitic transformation can be realized in all series of carbon doped Ni2Mn1.5Sn0.5 - xCx alloys with tetragonal ratio of 1.34, 1.40,1.42 and 1.44, respectively for x = 0.125 , 0.25 , 0.375 and 0.5. The DOS peak at the Fermi level almost disappearing in the tetragonal phase near the Fermi level is the evidence of triggering martensitic transformation which is due to the structural Jahn-Teller effect. We have also found that the difference between the austenitic and martensitic phases increases with increasing carbon content, which implies an enhancement of the martensitic phase transition temperature (TM). Besides, the electron density difference shows the enhancement of bonding between Mn and carbon atoms with the distortion taken place.

  18. Isothermal and cyclic oxidation resistance of boron-modified and germanium-doped silicide coatings for titanium alloys

    SciTech Connect

    Cockeram, B.; Rapp, R.A.

    1996-06-01

    Since titanium alloys with an adequate balance of mechanical properties and high-temperature oxidation resistance have not been developed, protective coatings are required. In the authors previous paper, B-modified and Ge-doped silicide diffusion coatings grown on Cp Ti, Ti-24Al-11Nb, Ti-22Al-27Nb, and Ti-20Al-22Nb by the halide-activated, pack-cementation method were described. In this study, isothermal and cyclic oxidation were used to evaluate the oxidation performance of these coatings in comparison to uncoated substrates. The rate-controlling mechanism for isothermal oxidation at high temperature was solid-state diffusion through a SiO{sub 2} scale, while the mechanism for low-temperature oxidation involved grain-boundary diffusion through TiO{sub 2}. Both isothermal and cyclic oxidation rates for the B-modified and Ge-doped silicide coatings were much slower than for pure TiSi{sub 2}. Oxygen contamination was not detected by microhardness measurements in the coated substrates after 200 oxidation cycles at 500-1000{degrees}C for the Ti-Al-Nb alloys, or at 500-875{degrees}C for Cp Ti. The excellent oxidation resistance for the optimum coating compositions is discussed.

  19. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  20. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  1. Ab initio prediction of the mechanical properties of alloys: The case of Ni/Mn-doped ferromagnetic Fe

    NASA Astrophysics Data System (ADS)

    Wang, Guisheng; Schönecker, Stephan; Hertzman, Staffan; Hu, Qing-Miao; Johansson, Börje; Kwon, Se Kyun; Vitos, Levente

    2015-06-01

    First-principles alloy theory, formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation, is used to study the mechanical properties of ferromagnetic body-centered cubic (bcc) Fe1 -xMx alloys (M = Mn or Ni, 0 ≤x ≤0.1 ). We consider several physical parameters accessible from ab initio calculations and their combinations in various phenomenological models to compare the effect of Mn and Ni on the properties of Fe. Alloying is found to slightly alter the lattice parameters and produce noticeable influence on elastic moduli. Both Mn and Ni decrease the surface energy and the unstable stacking fault energy associated with the {110 } surface facet and the {110 }<111 > slip system, respectively. Nickel is found to produce larger effect on the planar fault energies than Mn. The semiempirical ductility criteria by Rice and Pugh consistently predict that Ni enhances the ductility of Fe but give contradictory results in the case of Mn doping. The origin of the discrepancy between the two criteria is discussed and an alternative measure of the ductile-brittle behavior based on the theoretical cleavage strength and single-crystal shear modulus G {110 }<111 > is proposed.

  2. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    SciTech Connect

    Bali, Ashoka Chetty, Raju Mallik, Ramesh Chandra

    2014-04-24

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbS{sub x}Te{sub (1−x)} and PbSe{sub x}Te{sub (1−x)} (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

  3. Highly efficient photovoltaic cells based on In{sub 0.53}Ga{sub 0.47} as alloys with isovalent doping

    SciTech Connect

    Karlina, L. B. Vlasov, A. S.; Kulagina, M. M.; Rakova, E. P.; Timoshina, N. Kh.; Andreev, V. M.

    2010-02-15

    The effect of isovalent doping with P on the surface and bulk properties of the In{sub 0.53}Ga{sub 0.47}As alloy (below, InGaAs) was evaluated from variations in the photoluminescence and transmission spectra. It is established that isovalent doping decreases the nonradiative recombination rate in the bulk and on the surface of doped layers. The use of additional isovalent doping provided an improvement of parameters of the narrow-gap InGaAs-based solar cell used for the conversion of the concentrated solar radiation. The maximum efficiency of photovoltaic conversion in a spectral range of 900-1840 nm was 7.4-7.35% at a ratio of concentration of the solar radiation of 500-1000 for the AM1.5D Low AOD spectrum.

  4. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  5. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  6. Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, Chongyang; Xu, Feng; Chen, Jing; Min, Huihua; Dong, Hui; Tong, Ling; Qasim, Khan; Li, Shengli; Sun, Litao

    2016-01-01

    Designing a new class of non-noble metal catalysts with triiodide reduction activity and stability comparable to those of conventional Pt is extremely significant for the application of dye-sensitized solar cells (DSSCs). Here, we demonstrate newly designed counter electrode (CE) materials of onion-like nitrogen-doped carbon encapsulating metal alloys (ONC@MAs) such as FeNi3 (ONC@FeNi3) or FeCo (ONC@FeCo), by a facile and scalable pyrolysis method. The resulting composite catalysts show superior catalytic activities towards the triiodide reduction and exhibit low charge transfer resistance between the electrode surfaces and electrolytes. As a result, the DSSCs based on ONC@FeCo and ONC@FeNi3 achieve outstanding power conversion efficiencies (PCEs) of 8.26% and 8.87%, respectively, which can rival the 8.28% of Pt-based DSSC. Moreover, the excellent electrochemical stabilities for both the two catalysts also have been corroborated by electrochemical impendence spectra and cyclic voltammetry (CV). Noticeably, TEM investigation further reveals that the N-doped graphitic carbon onions exhibit the high structural stability in iodine-containing medium even subject to hundreds of CV scanning. These results make ONC@MAs the promising candidates to supersede costly Pt as efficient and stable CEs for DSSCs.

  7. Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model

    NASA Astrophysics Data System (ADS)

    Rong, Xi-Ming; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (˜ 0.6Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

  8. Bacteria Adherence Properties of Nitrogen-Doped TiO2 Coatings by Plasma Surface Alloying Technique

    NASA Astrophysics Data System (ADS)

    Wang, Hefeng; Tang, Bin; Li, Xiuyan; Fan, Ailan

    Titanium nitride coatings on 316L stainless steel (S. S) were obtained by plasma surface alloying technique. Nitrogen-doped titanium dioxide (TiO2-xNx) was synthesized by oxidative annealing the resulted TiNx coatings in air. The reference TiO2 samples were also prepared by oxidation of sputtered Ti coatings. The as-prepared coatings were characterized by X-ray diffraction, glow discharge optical emission spectrometer (GDOES), scanning electron microscopy, X-ray hotoelectron spectroscopy and UV-Vis spectrophotometry, respectively. The bacteria adherence property of the TiO2-xNx coatings on stainless steel on the oral bacteria Streptococcus Mutans was investigated and compared with that of stainless steel by fluorescence microscopy. The mechanism of the bacteria adherence was discussed. The results show that the TiO2-xNx coatings are composed of anatase crystalline structure. SEM measurement indicates a rough surface morphology with three-dimensional homogenous protuberances after annealing treatment. Optical properties reveal an extended tailing of the absorption edge toward the visible region due to nitrogen presence. The band gap of the N-doped sample is reduced from 2.29 eV to 1.90 eV compared with the pure TiO2 one. Because of the different roughness and microstructure, the TiO2-xNx coatings inhibit the bacteria adherence.

  9. Procedures for a modified tritium trick-helium doping and residual tritium analysis of vanadium alloys

    NASA Astrophysics Data System (ADS)

    Ramey, D. W.; Braski, D. N.

    1985-05-01

    A modified tritium trick technique was used to implant three levels of 3He in V-15% Cr-5% Ti and Vanstar-7 specimens. The modifications include: (1) wrapping of the specimens with tantalum foil to minimize oxygen contamination and (2) tritiation treatment at 400°C to prevent vanadium tritide formation and to produce a 3He bubble distribution similar to that produced during elevated temperature irradiation. Preliminary results show that both modifications were successful. An electrochemical dissolution technique was developed to determine residual tritium levels in the vanadium alloys. Measured residual tritium levels after tritium removal were in the range of 500 to 1400 μCi/g (0.88 to 2.99 appm tritium in the alloy). Tritium solubilities in the alloys were calculated from the tritium decay time and the measured 3He content. Vanstar-7 specimens consistently absorbed about half as much tritium, and subsequently contained half as much 3He as V-15% Cr-5% Ti. Implanting 3He in vanadium alloys via the tritium trick offers a convenient technique to study the mechanism of helium embrittlement without irradiation and should provide a rapid screening method to help develop embrittlement-resistant vanadium alloys.

  10. Nitrogen-doped, FeNi alloy nanoparticle-decorated graphene as an efficient and stable electrode for electrochemical supercapacitors in acid medium

    NASA Astrophysics Data System (ADS)

    El-Deen, Ahmed G.; El-Newehy, Mohamed; Kim, Cheol Sang; Barakat, Nasser AM

    2015-03-01

    Nitrogen-doped graphene decorated by iron-nickel alloy is introduced as a promising electrode material for supercapacitors. Compared to pristine and Ni-decorated graphene, in acid media, the introduced electrode revealed excellent specific capacitance as the corresponding specific capacitance was multiplied around ten times with capacity retention maintained at 94.9% for 1,000 cycles. Briefly, iron acetate, nickel acetate, urea, and graphene oxide were ultrasonicated and subjected to MW heating and then sintered with melanin in Ar. The introduced N-doped FeNi@Gr exhibits remarkable electrochemical behavior with long-term stability.

  11. Tetragonality of carbon-doped ferromagnetic iron alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, N.; Skorodumova, N. V.; Medvedeva, A.; Andersson, J.; Nilson, G.; Johansson, B.; Vitos, L.

    2012-01-01

    Using density-functional theory in combination with the exact muffin-tin orbital (EMTO) method and coherent potential approximation, we investigate the alloying effect on the tetragonality of Fe-C solid solution forming the basis of steels. In order to assess the accuracy of our approach, first we perform a detailed study of the performance of the EMTO method for the Fe16C1 binary system by comparing the EMTO results to those obtained using the projector augmented wave method. In the second step, we introduce different substitutional alloying elements (Al, Cr, Co, Ni) into the Fe matrix and study their impact on the structural parameters. We demonstrate that a small amount of Al, Co, and Ni enhances the tetragonal lattice ratio of Fe16C1 whereas Cr leaves the ratio almost unchanged. The obtained trends are correlated with the single-crystal elastic parameters calculated for carbon-free alloys.

  12. Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Khan, Mahmud; Dubenko, Igor; Stadler, Shane; Jung, J.; Stoyko, S. S.; Mar, Arthur; Quetz, Abdiel; Samanta, Tapas; Ali, Naushad; Chow, K. H.

    2013-03-01

    A series of Mn rich Ni50Mn37-xCrxSb13 Heusler alloys have been investigated by dc magnetization and electrical resistivity measurements. Due to the weakening of the Ni-Mn hybridization, the martensitic transition shifts to lower temperatures with increasing Cr concentration, while the saturation magnetization at 5 K increases. The magnetoresistance and exchange bias properties are dramatically suppressed with increasing Cr concentration. The observed behaviors suggest that substitution of Cr for Mn in Ni50Mn37-xCrxSb13 Heusler alloys not only destabilizes the martensitic phase but also enhances ferromagnetism in the system. The possible mechanisms responsible for the observed behavior are discussed.

  13. Anisotropy of solid Si-liquid (Al,Si) interfacial tension in the binary and Sr-doped Al-Si eutectic alloy

    NASA Astrophysics Data System (ADS)

    Sens, H.; Eustathopoulos, N.; Camel, D.

    1989-12-01

    The atomic structure of interfaces between solid Si and liquid Al-Si alloys with or without Sr doping is derived from measurements of the orientation dependence of the interfacial tension at 873 K. This involves analysing the shape of small liquid droplets inside silicon grains. The results are discussed on the basis of simple broken-bond models and the periodic bond chain concept.

  14. Origin of magnetic anisotropy in doped Ce2Co17 alloys

    DOE PAGES

    Ke, Liqin; Kukusta, D. A.; Johnson, Duane D.

    2016-10-21

    Magnetocrystalline anisotropy (MCA) in doped Ce2Co17 and other competing structures was investigated using density functional theory. We confirmed that the MCA contribution from dumbbell Co sites is very negative. Replacing Co dumbbell atoms with a pair of Fe or Mn atoms greatly enhance the uniaxial anisotropy, which agrees quantitatively with experiment, and this enhancement arises from electronic-structure features near the Fermi level, mostly associated with dumbbell sites. With Co dumbbell atoms replaced by other elements, the variation of anisotropy is generally a collective effect and contributions from other sublattices may change significantly. Furthermore, we found that Zr doping promotes themore » formation of 1-5 structure that exhibits a large uniaxial anisotropy, such that Zr is the most effective element to enhance MCA in this system.« less

  15. Heavily nickel-doped zinc oxide nanostructures prepared by hydrothermal oxidation of electro-deposited alloy films and their photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Rehman, Naeem-ur-; Mehmood, Mazhar; Ali, Farhat; Rasheed, Muhammad Asim; Younas, Muhammad; Ling, Francis C. C.; Ali, Syed Mansoor

    2014-11-01

    Wurtzite ZnO nanostructures doped with up to 17 at% Ni have been formed by hydrothermal oxidation of electrodeposited Zn-Ni alloy films. The wire diameter decreases with Ni content, up to about 20-50 nm for the Zn0.83Ni0.17O nanowires formed in NaCl solution. A strong ultra-violet emission is seen in the photoluminescence spectra obtained at 10 K and room temperature. A substantial visible emission exhibited by un-doped ZnO nanostructures formed in pure water becomes negligible by nickel doping and almost completely vanishes for the samples prepared in chloride solution, due to higher crystalline quality.

  16. Synergistic effect of alloying elements doping and external pressure on the elastic property of Ni{sub 3}Al: A first-principles study

    SciTech Connect

    Li, C. Shang, J.; Yue, Z.; Kou, L.

    2015-07-15

    In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the other elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.

  17. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  18. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    SciTech Connect

    Zheng, M.; He, Y.R.; Rapp, R.A.

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  19. Alloy formation during molecular beam epitaxy growth of Si-doped InAs nanowires on GaAs[111]B.

    PubMed

    Davydok, Anton; Rieger, Torsten; Biermanns, Andreas; Saqib, Muhammad; Grap, Thomas; Lepsa, Mihail Ion; Pietsch, Ullrich

    2013-08-01

    Vertically aligned InAs nanowires (NWs) doped with Si were grown self-assisted by molecular beam epitaxy on GaAs[111]B substrates covered with a thin SiO x layer. Using out-of-plane X-ray diffraction, the influence of Si supply on the growth process and nanostructure formation was studied. It was found that the number of parasitic crystallites grown between the NWs increases with increasing Si flux. In addition, the formation of a Ga0.2In0.8As alloy was observed if the growth was performed on samples covered by a defective oxide layer. This alloy formation is observed within the crystallites and not within the nanowires. The Ga concentration is determined from the lattice mismatch of the crystallites relative to the InAs nanowires. No alloy formation is found for samples with faultless oxide layers.

  20. The chromium doping of Ni{sub 3}Fe alloy and restructuring of grain boundary ensemble at the phase transition A1→L1{sub 2}

    SciTech Connect

    Perevalova, Olga; Koneva, Nina; Kozlov, Eduard

    2016-01-15

    The grain boundary structure of the Ni{sub 3}(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L1{sub 2}. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L1{sub 2} in the Ni{sub 3}(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

  1. Alloy formation during molecular beam epitaxy growth of Si-doped InAs nanowires on GaAs[111]B

    PubMed Central

    Davydok, Anton; Rieger, Torsten; Biermanns, Andreas; Saqib, Muhammad; Grap, Thomas; Lepsa, Mihail Ion; Pietsch, Ullrich

    2013-01-01

    Vertically aligned InAs nanowires (NWs) doped with Si were grown self-assisted by molecular beam epitaxy on GaAs[111]B substrates covered with a thin SiOx layer. Using out-of-plane X-ray diffraction, the influence of Si supply on the growth process and nanostructure formation was studied. It was found that the number of parasitic crystallites grown between the NWs increases with increasing Si flux. In addition, the formation of a Ga0.2In0.8As alloy was observed if the growth was performed on samples covered by a defective oxide layer. This alloy formation is observed within the crystallites and not within the nanowires. The Ga concentration is determined from the lattice mismatch of the crystallites relative to the InAs nanowires. No alloy formation is found for samples with faultless oxide layers. PMID:24046494

  2. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice.

    PubMed

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-14

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  3. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-03-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN.

  4. Experimental evidences for reducing Mg activation energy in high Al-content AlGaN alloy by MgGa δ doping in (AlN)m/(GaN)n superlattice

    PubMed Central

    Wang, Xiao; Wang, Wei; Wang, Jingli; Wu, Hao; Liu, Chang

    2017-01-01

    P-type doping in high Al-content AlGaN alloys is a main challenge for realizing AlGaN-based deep ultraviolet optoelectronics devices. According to the first-principles calculations, Mg activation energy may be reduced so that a high hole concentration can be obtained by introducing nanoscale (AlN)5/(GaN)1 superlattice (SL) in Al0.83Ga0.17N disorder alloy. In this work, experimental evidences were achieved by analyzing Mg doped high Al-content AlGaN alloys and Mg doped AlGaN SLs as well as MgGa δ doped AlGaN SLs. Mg acceptor activation energy was significantly reduced from 0.378 to 0.331 eV by using MgGa δ doping in SLs instead of traditional doping in alloys. This new process was confirmed to be able to realize high p-type doping in high Al-content AlGaN. PMID:28290480

  5. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  6. Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains

    NASA Astrophysics Data System (ADS)

    Panneer Muthuselvam, I.; Bhowmik, R. N.

    2010-04-01

    We doped Ho3+ in CoFe1.95Ho0.05O4 spinel ferrite by mechanical alloying and subsequent annealing at different temperatures (600-1200 °C). We understood the structural and magnetic properties of the samples using X-ray diffraction, SEM, Thermal analysis (TGA and DTA), and VSM measurement. The samples have shown structural stabilization within cubic spinel phase for the annealing temperature (TAN)≥800 °C. Thermal activated grain growth kinetics has been accompanied with the substantial decrease in lattice strain. The gain size dependent magnetism is evident from the variation of magnetic moment, remanent magnetization and coercivity of the material. The paramagnetic to ferrimagnetic transition temperature TC (˜805 K) seems to be grain size independent in the present material. The magnetic nanograins, either single domain/pseudo-single domain (50-64 nm) or multi-domain (above 64 nm) regime, showed superparamagnetic blocking below Tm, which is below TC (805 K) and also well above the room temperature.

  7. Effect of hydrostatic pressure and alloy composition on sulfur- and selenium-related impurity states in heavily doped n-type GaxIn1-xSb

    NASA Astrophysics Data System (ADS)

    Zitouni, K.; Kadri, A.; Aulombard, R. L.

    1986-08-01

    The properties of sulfur- and selenium-related impurity states have been studied as a function of pressure and composition in heavily doped GaxIn1-xSb. Hall-coefficient and electrical-resistivity measurements were made under hydrostatic pressures of up to 25 kbar, in the alloy composition range 0.30<~x<~0.78 and in the temperature range 77 K<~T<~300 K. In both S-doped and Se-doped samples, the results show the existence of an impurity level forming a localized resonance in the Γ1c band continuum. At x=0.78 and P=0 kbar, the resonance lay ~130+/-10 meV and ~180+/-10 meV above the Γ1c band edge in S-doped and Se-doped samples, respectively. As x decreased, the resonance remained almost fixed with respect to the top of the valence band. As the pressure increased, the impurity level was driven into the fundamental gap, independently of nearby band edges, thus demonstrating ``deep-level behavior.'' Furthermore, the pressure-induced occupation of this impurity level led to time-dependent effects at T<~110 K. The activated thermal electron emission over a potential barrier gave clear evidence for a large lattice relaxation around the impurity centers. These results show the dominant effect of the local non-Coulombic component of the impurity potential, suggesting the complex nature of the impurity centers.

  8. Effect of Ce Doping on Microwave Absorption Properties of Pr2Fe17 Alloy

    NASA Astrophysics Data System (ADS)

    Cheng, Lichun; Xiong, Jilei; Zhou, Huaiying; Pan, Shunkang; Huang, Hehua

    2016-02-01

    Ce x Pr2- x Fe17 ( x = 0.0, 0.1, 0.2, 0.3, 0.4) alloy powders were successfully synthesized by arc smelting and a high energy ball milling method. The structure, morphology, magnetic properties and electromagnetic parameters of the powders were studied by x-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The results show that the saturation magnetization decreases with an increase of Ce concentration. The minimum absorption peak frequency shifts towards a higher frequency region firstly and then towards a lower frequency region based upon the Ce concentration. The Ce x Pr2- x Fe17 alloys exhibit good microwave absorbing properties. The minimum reflection loss of Ce0.1Pr1.9Fe17 powder is about -13.67 dB at 6.40 GHz, and the frequency bandwidth of RL < -8 dB reaches about 2.24 GHz with a thickness of 1.8 mm.

  9. Isoelectronic co-doping

    DOEpatents

    Mascarenhas, Angelo

    2004-11-09

    Isoelectronic co-doping of semiconductor compounds and alloys with deep acceptors and deep donors is used to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, N and Bi, to customize solar cells, thermal voltaic cells, light emitting diodes, photodetectors, and lasers on GaP, InP, GaAs, Ge, and Si substrates. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  10. Initial oxidation of pure and K doped NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Tollefsen, H.; Raaen, S.

    2009-06-01

    Initial oxidation of pure and K doped nitinol has been studied by photoelectron spectroscopy. The composition of the TiOx layer that forms on the surface is found to depend on the temperature during oxidation. The oxidation at high temperatures results in enhanced formation of lower oxides, whereas TiO2 predominates for oxidation at lower temperatures, e.g., 70 °C. Submonolayer coverage of K on NiTi enhances the formation of TiO2 on the expense of lower oxides, which is of consequence for formation of a protective oxide layer and biocompatibility. Oxidation in the martensitic phase was found to be independent of temperature for temperatures between -40 and 10 °C, whereas in the austenitic phase the oxide growth is thermally activated.

  11. Multifunctional Ti1-xTaxO2: Ta doping or alloying?

    NASA Astrophysics Data System (ADS)

    Barman, A. Roy; Motapothula, M.; Annadi, A.; Gopinadhan, K.; Zhao, Y. L.; Yong, Z.; Santoso, I.; Ariando, Breese, M.; Rusydi, A.; Dhar, S.; Venkatesan, T.

    2011-02-01

    Useful electronic, magnetic, and optical properties have been proposed and observed in thin films of Ti1-xMxO2 (M=Ta,Nb,V). In this work, we have studied phase formation for films of Ti1-xTaxO2 prepared by pulsed laser deposition. We show that substitutional Ta in TiO2 results in a different material system in terms of its electronic properties. Moss-Burstein shift is ruled out by comparing the electrical transport data of anatase and rutile TiO2. Vegard's law fit to the blueshift data and the high energy optical reflectivity studies confirm the formation of an alloy with a distinct band structure.

  12. Electrical properties and stability of p-type ZnO film enhanced by alloying with S and heavy doping of Cu

    SciTech Connect

    Pan, H. L.; Yang, T.; Xu, Y.; Yao, B.; Zhang, B. Y.; Liu, W. W.; Shen, D. Z.

    2010-10-04

    Single wurtzite p-type Zn{sub 1-y}Cu{sub y}O{sub 1-x}S{sub x} alloy films with 0.081{<=}x{<=}0.186 and 0.09{<=}y{<=}0.159 were grown on quartz reproducibly by magnetron sputtering. The alloys show very stable p-type conductivity with a hole concentration of 4.31-5.78x10{sup 19} cm{sup -3}, a resistivity of 0.29-0.34 {Omega} cm and a mobility of 0.32-0.49 cm{sup 2} V{sup -1} s{sup -1}. The p-type conductivity is attributed to substitution of Cu{sup +1} for the Zn site, and the ionization energy of the Cu{sup +1} acceptor is measured to be 53 meV, much less than that of Cu-doped ZnO reported previously. The small ionization energy is due to Cu heavy doping and increase in valence band maximum of ZnO induced by alloying with S.

  13. Enhanced thermoelectric properties and development of nanotwins in Na-doped Bi0.5Sb1.5Te3 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Lee, Jae Ki; Park, Su-Dong; Ryu, Byungki; Lee, Ji Eun; Kim, Bong-Seo; Min, Bok-Ki; Joo, Sung-Jae; Lee, Hee-Woong; Cho, Young-Rae

    2016-03-01

    We found that Na is a good source to develop twin structures in the Bi-Te system, such as Ag as noted in a previous study. The twin boundaries had a considerable influence on reductions of the lattice thermal conductivity due to phonon scattering by the nano-ordered layers and on reductions of the electrical resistivity owing to the defects generated by the substitution of Na into the cation sites. Here, we report the enhanced thermoelectric properties of a Na-doped p-type Bi0.5Sb1.5Te3 alloy. Measurements show that the electrical resistivity and the Seebeck coefficient decrease with Na doping due to an increase in the free carrier (hole) concentration and that the lattice thermal conductivity decreases with Na doping. The achieved maximum ZT value was 1.20 at 423 K, which is approximately 20% higher than that of Bi0.5Sb1.5Te3 under the same fabrication conditions. These results were achievable by controlling the morphology of the twin structure and the carrier concentration by means of Na doping. [Figure not available: see fulltext.

  14. Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Zhong, Yijun; Zhou, Wei; Shao, Zongping

    2017-01-01

    Efficient oxygen evolution reaction (OER) catalysts are required to facilitate the large-scale exploitation of renewable energy resources and applications in electrochemical energy conversion technologies. Here, we show that metal alloy-based hybrids can provide higher electrocatalytic activity than their individual metal-based hybrids. In particular, NiCo alloys encapsulated within nitrogen-doped carbon nanotubes (NiCo@NCNTs) showed higher OER activities in an alkaline solution than the individual metal hybrids (Ni@NCNTs and Co@NCNTs), highlighting a synergy between the Ni and Co components. NiCo@NCNTs pyrolyzed at 800 °C displayed an overpotential of ∼41 mV at a current density of 10 mA cm-2 and were more stable than IrO2 during 1000-cycle accelerated durability testing at a scan rate of 100 mV s-1.

  15. Electronic tuning of the transport properties of off-stoichiometric Pb{sub x}Sn{sub 1−x}Te thermoelectric alloys by Bi{sub 2}Te{sub 3} doping

    SciTech Connect

    Guttmann, Gilad M.; Dadon, David; Gelbstein, Yaniv

    2015-08-14

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations had motivated many researchers to seek for novel renewable energy conversion methods. Thermoelectric direct conversion of thermal into electrical energies is such a method, in which common compositions include IV-VI semiconducting compounds (e.g., PbTe and SnTe) and their alloys. For approaching practical thermoelectric devices, the current research is focused on electronic optimization of off-stoichiometric p-type Pb{sub x}Sn{sub 1−x}Te alloys by tuning of Bi{sub 2}Te{sub 3} doping and/or SnTe alloying levels, while avoiding the less mechanically favorable Na dopant. It was shown that upon such doping/alloying, higher ZTs, compared to those of previously reported undoped Pb{sub 0.5}Sn{sub 0.5}Te alloy, were obtained at temperatures lower than 210–340 °C, depending of the exact doping/alloying level. It was demonstrated that upon optimal grading of the carrier concentration, a maximal thermoelectric efficiency enhancement of ∼38%, compared to that of an undoped material, is expected.

  16. Shear punch testing of {sup 59}Ni isotopically-doped model austenitic alloys after irradiation in FFTF at different He/dpa ratios

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1998-03-01

    A series of three model alloys, Fe-15Cr-25Ni, Fe-15Cr-25Ni-0.04P and Fe-15Cr45Ni were irradiated side-by-side in FFTF-MOTA in both the annealed and the cold worked condition in each of two variants, one using naturally occurring isotopic mixtures, and another doped with {sup 59}Ni to generate relatively high helium-to-dpa ratios. Previous papers in this series have addressed the influence of helium on radiation-induced evolution of microstructure, dimensional stability and mechanical properties, the latter using miniature-tensile specimens. In the final paper of this experimental series, three sets of irradiations conducted at different temperatures and displacement rates were examined by shear punch testing of standard microscopy disks. The results were used to determine the influence of helium generation rate, alloy starting condition, irradiation temperature and total neutron exposure. The results were also compared with the miniature tensile data obtained earlier. In general, all alloys approached saturation levels of strength and ductility that were relatively independent of He/dpa ratio and starting condition, but were sensitive to the irradiation temperature and total exposure. Some small influence of helium/dpa ratio on the shear strength is visible in the two series that ran at {approximately}490 C, but is not evident at 365 C.

  17. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    SciTech Connect

    Xiao, H. B.; Yang, C. P. Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-05-28

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T{sub M}). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  18. Enhancing the cyclability of Li-O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst

    NASA Astrophysics Data System (ADS)

    Leng, Limin; Li, Jing; Zeng, Xiaoyuan; Song, Huiyu; Shu, Ting; Wang, Haishui; Liao, Shijun

    2017-01-01

    An efficient ORR/OER catalyst was developed by anchoring highly dispersed bimetallic PdM (M = Fe, Co, Ni) alloy nanoparticles on nitrogen-doped reduced graphene oxide (N-rGO). This new type of catalyst exhibited excellent ORR/OER activity, and the addition of transition metals also significantly improved catalytic stability, with the catalyst containing Fe (PdFe/N-rGO) exhibiting the best stability. A battery using this PdFe/N-rGO catalyst was capable of long-term stable cycling for 400 cycles (2000 h) with a limited capacity of 1000 mAh g-1 at 400 mA g-1, which was much longer than a battery with Pd/N-rGO as the catalyst (only 80 cycles, 400 h). We attribute the high performance of these catalysts to the high surface area of N-rGO, the anchoring of highly dispersed Pd alloy nanoparticles, and the prevention of Pd alloy nanoparticle aggregation and dissolution by the presence of the transition metals.

  19. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  20. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  1. Large and reversible elastocaloric effect near room temperature in a Ga-doped Ni-Mn-In metamagnetic shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Camarillo, Juan-Pablo; Aguilar-Ortiz, Christian-Omar; Flores-Zúñiga, Horacio; Ríos-Jara, David; Soto-Parra, Daniel-Enrique; Stern-Taulats, Enric; Mañosa, Lluís; Planes, Antoni

    We report a giant elastocaloric effect near room temperature in a polycrystalline Ga-doped Ni-Mn-In ferromagnetic shape-memory alloy. The elastocaloric effect has been quantified by measuring both isothermal stress-induced entropy changes and adiabatic stress-induced temperature changes. A reproducible maximum entropy change, ΔSrev≃ 25 JṡK‑1ṡkg‑1, upon cycling across the martensitic transition was obtained by application of a compressive stress of 100MPa. The corresponding maximum amount of cooling, ΔTadi≃‑4.9K, was measured when this stress was rapidly removed. These values are comparable with those reported for giant magnetocaloric materials, which are induced by application and release of a high magnetic field. Therefore, the studied material is a good candidate to be used in solid-state refrigeration devices based on the elastocaloric effect.

  2. Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys

    PubMed Central

    Tian, Fanghua; Cao, Kaiyan; Zhang, Yin; Zeng, Yuyang; Zhang, Rui; Chang, Tieyan; Zhou, Chao; Xu, Minwei; Song, Xiaoping; Yang, Sen

    2016-01-01

    A spontaneous exchange bias (SEB) discovered by Wang et al. [Phys. Rev. Lett. 106 (2011) 077203.] after zero-field cooling (ZFC) has attracted recent attention due to its interesting physics. In this letter, we report a giant SEB tuned by Sb-doping in Ni50Mn38Ga12-xSbx Heusler alloys. Such an SEB was switched on below the blocking temperature of approximately 50 K. The maximum exchange bias HE can arrive at 2930 Oe in a Ni50Mn38Ga10Sb2 sample after ZFC to 2 K. Further studies showed that this SEB was attributable to interaction of superspin glass (SSG) and antiferromagnetic matix, which was triggered by the crossover of SSG from canonical spin glass to a cluster spin glass. Our results not only explain the underlying physics of SEB, but also provide a way to tune and control the SEB performance. PMID:27478090

  3. Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Junying; Cui, Midou; Wang, Mingkun; Sui, Huidong; Yang, Kun; Li, Ling; Zhang, Wenming; Li, Xiaowei; Fu, Guangsheng; Hagfeldt, Anders; Zhang, Yucang

    2016-10-01

    Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electrocatalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs.

  4. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting.

    PubMed

    Gharsallah, Mouna; Serrano-Sanchez, Federico; Nemes, Norbert M; Martinez, Jose Luis; Alonso, Jose Antonio

    2017-12-01

    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm(-1)K(-1) at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K(-1) at 400 K, which is also beneficial for improved thermoelectric efficiency.

  5. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

    NASA Astrophysics Data System (ADS)

    Gharsallah, Mouna; Serrano-Sanchez, Federico; Nemes, Norbert M.; Martinez, Jose Luis; Alonso, Jose Antonio

    2017-01-01

    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm-1K-1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K-1 at 400 K, which is also beneficial for improved thermoelectric efficiency.

  6. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong

    2016-03-01

    Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.

  7. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  8. Corrosion potential behavior in high temperature water of noble metal-doped alloys coatings deposited by underwater thermal spraying

    SciTech Connect

    Kim, Y.J.; Andresen, P.L.; Gray, D.M.; Lau, Y.C.; Offer, H.P.

    1995-12-31

    The electrochemical corrosion potential of 304 stainless steel coated under water by hyper-velocity oxy-fuel and plasma spray techniques using noble metal doped powders was measured to evaluate the catalytic behavior in high temperature water under various water chemistry conditions. Thermal spray coatings of noble metal doped powders exhibited catalytic behavior for the recombination of oxygen and hydrogen in high temperature water which causes the corrosion potential to decrease well below a critical value of {minus}230 mV{sub she} for the intergranular stress corrosion cracking protection in water. This was observed in water containing various amounts of oxygen and hydrogen peroxide when stoichiometric excess hydrogen was present.

  9. Giant enhancement in the magnetostrictive effect of FeGa alloys doped with low levels of terbium

    NASA Astrophysics Data System (ADS)

    Jiang, Liping; Yang, Jiandong; Hao, Hongbo; Zhang, Guangrui; Wu, Shuangxia; Chen, Yajie; Obi, Ogheneyunume; Fitchorov, Trifon; Harris, Vincent G.

    2013-06-01

    We present the effects of terbium additives upon the microstructure and magnetic properties of Fe83Ga17Tbx alloys (x = 0, 0.2, 0.4, 0.6, and 0.8), prepared by vacuum electric arc-melting and directional solidification techniques. Experiments indicate that small amounts of terbium more than double the saturation magnetostriction of a [110] textured Fe83Ga17 alloy with λ = 72 × 10-6 and lower the magnetostriction saturation field. The pronounced increase in magnetostriction stems from the appearance of [100] texture in polycrystalline alloys. It is verified that [110] and [100] textures are enhanced by the introduction of terbium atoms preferentially residing in a Tb-rich intergranular phase.

  10. Improvement of Thermoelectric-Properties for Mg-Based Quaternary Compounds With Doping via Bulk Mechanical Alloying

    DTIC Science & Technology

    2010-02-05

    solid - state synthesis . The melting and solidification method 4-6) suffers from many...materials with practical reliability via the solid - state synthesis . In the present project, this processing route is first applied to make solid state synthesis of...Experiment: Intense straining to drive the solid - state synthesis is applied to a starting material by the bulk mechanical alloying (BMA). As

  11. Half-metallicity and optoelectronic properties of V-doped zincblende ZnS and CdS alloys

    NASA Astrophysics Data System (ADS)

    El Amine Monir, Mohammed; Baltache, H.; Khenata, R.; Murtaza, G.; Ahmed, R.; Ahmed, Waleed. K.; Omran, S. Bin; Bouhemadou, A.

    2016-02-01

    In this paper, spin-polarized density functional calculations on the structural, electronic, optical and magnetic properties of the zincblende structure of the Zn1-xVxS and Cd1-xVxS alloys at x = 0.25 in the ferromagnetic (FM) ordering has been investigated. The study is accomplished using the full-potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) self-consistent scheme of calculations. To incorporate the exchange correlation component in the total energy calculations of the crystal, Perdew-Burke and Ernzerhof (PBE) parameterization for the generalized gradient approximation (GGA) and GGA+U are employed. Basically, for both alloys, to address their structural properties, we calculated their equilibrium lattice constants, bulk moduli as well as pressure derivatives. In general, from the analysis of the obtained electronic band structure of these alloys, the half-metallic nature of Zn0.75V0.25S and nearly half-metallic nature of the Cd0.75V0.25S alloy are demonstrated. The plotted density of states (DOS) curves project spin-exchange splitting energy Δx(d) and Δx(pd) as generated by V-3d states. It has been clearly evident that the effective potential results for the spin-down case are more striking than for the spin-up case. In order to describe the magnetic behavior of these alloys, the exchange constants N0α (valence band) and N0β (conduction band) as well as the magnetic moment values are estimated. The calculated results of the magnetic moment show that the main source in the reduction of the local magnetic moment of V in the alloys in comparison with its free value is a p-d orbital hybridization and partial transfer to nonmagnetic sites of (Zn, S) and (Cd, S) in Zn0.75V0.25S and Cd0.75V0.25S alloys. In addition, a study concerning optical properties, such as the refractive index, reflectivity and absorption coefficients is performed to determine their potential for optical and optoelectronic devices.

  12. Unusual Solidification Behavior of the Suction-Cast Cu-Zr-Al-Y Alloy Doped with Fe

    NASA Astrophysics Data System (ADS)

    Kozieł, Tomasz; Cios, Grzegorz; Latuch, Jerzy; Pajor, Krzysztof; Bała, Piotr

    2017-04-01

    The effect of iron addition on the microstructure of the Cu-Zr-Al-Y glass-forming alloy was studied. Despite a high superficial cooling rate, small Fe additions (1.5 and 3 pct) induced formation of crystalline CuZr and AlCu2Zr phases on the outer layers of suction-cast rods. As the melt composition near the solid/liquid interface was depleted in Fe, the remaining melt vitrified at a relatively low cooling rate.

  13. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm‑2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  14. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    PubMed Central

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  15. Oxygen diffusion in niobia-doped zirconia as surrogate for oxide film on Zr-Nb alloy: AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Yamana, Teppei; Arima, Tatsumi; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya

    2013-11-01

    The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0-2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ˜1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO and by no segregation of Nb ions in the space-charge layers, respectively.

  16. Solid solubility in 1:13 phase of doping element for La(Fe,Si)13 alloys

    NASA Astrophysics Data System (ADS)

    Zong, S. T.; Wang, C. L.; Long, Y.; Fu, B.; Shi, J. M.; Han, J.; Zhao, Y. Y.

    2016-05-01

    The influences of Ni, Cr and Nb as substitution elements for Fe were investigated. The change in microstructure and the magnetic properties have been discussed in detail. Substitution elements Ni, Cr and Nb not only have limited solubility in NaZn13-type (1:13) phase, but also hinder the peritectoid reaction. Ni element mainly enters into La-rich phase while Cr element mainly concentrates in α-Fe phase, which both have detriment effect on the peritectoid reaction, leading to a large residual of impurity phases after annealing and a decrease of magnetic entropy change. Besides, Ni and Cr participated in peritectoid reaction by entering parent phases but slightly entering 1:13 phase, which would cause the disappearance of first order magnetic phase transition. A new phase (Fe,Si)2Nb was found when Nb element substitutes Fe in La(Fe,Si)13, suggesting that Nb does not participate in peritectoid reaction and only exists in (Fe,Si)2Nb phase after annealing. The alloy with Nb substitution maintains the first order magnetic phase transition character.

  17. Structural studies of calcium phosphate doped with titanium and zirconium obtained by high-energy mechanical alloying

    NASA Astrophysics Data System (ADS)

    Silva, C. C.; Sombra, A. S. B.

    2009-12-01

    In this paper, we present a new variation of the solid-state procedure on the synthesis of bioceramics with titanium (CapTi) and zirconium (CapZr), considering that zirconium (ZrO2) and titanium oxide (TiO2) are strengthening agents, due to their superb force and fracture toughness. The high efficiency of the calcination process opens a new way of producing commercial amounts of nanocrystalline bioceramics. In this work, a new variation of the solid-state procedure method was used to produce nanocrystalline powders of titanium and zirconium, using two different experimental chemical routes: CapTi: Ca(H2PO4)2+TiO2 and CapZr: Ca(H2PO4)2+ZrO2. The powders were submitted to calcination processes (CapTic and CapZrc) at 800, 900 and 1000 °C. The calcium titanium phosphate phase, CaTi4P6O24, was obtained in the CapTic reaction and the calcium zirconium phosphate, CaZr4P6O24, was obtained in the CapZrc reaction. The obtained ceramics were characterized by x-ray powder diffraction (XRD), infrared (IR) spectroscopy, Raman scattering spectroscopy (RSS) and scanning electron microscopy (SEM) analysis. This method was compared with the milling process (CapTim and CapZrm), where in the last process the melting is not necessary and the powder obtained is nanocrystalline. The calcium titanium phosphate phase, CaTi4P6O24, was obtained in the reaction CapTim, but in CapZrm the formation of any calcium phosphate phase even after 15 h of dry mechanical alloying was not observed.

  18. Magnetostrain and magnetocaloric effect by field-induced reverse martensitic transformation for Pd-doped Ni45Co5Mn37In13 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Li, Z.; Xu, K.; Yang, H. M.; Zhang, Y. L.; Jing, C.

    2015-06-01

    In the present work, polycrystalline Ni45Co5-xPdxMn37In13 (x = 0, 0.5, 1, and 3) Heusler alloys were prepared. The influences of Pd substitution for Co on crystal structure, martensitic transformation (MT), and magnetic properties have been carefully investigated for these quinary alloys. The structure measurement indicates that every sample possesses L10 martensitic structure at room temperature. With increasing of Pd content, it is found that the MT region shifts towards higher temperature, but the Curie transition region of austenitic state moves to lower temperature. Owing to the fact that the MT gradually approaches Curie point, the magnetization of austenitic phase is significantly decreased, while the one of martensitic phase almost remains unchanged. In addition, the functional properties associated with the field-induced reverse MT have been also studied in Ni45Co5-xPdxMn37In13 (x = 0, 0.5, and 1) alloys. In comparison to quaternary parent alloy, both of enhanced magnetostrain (0.3%) and isothermal entropy change (25 J/kg K) are observed in quinary Ni45Co4.5Pd0.5Mn37In13 alloy under an applied magnetic field up to 3 T. The implication of such results has been discussed in detail.

  19. Tellurium n-type doping of highly mismatched amorphous GaN1-xAsx alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN1-xAsx layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN1-xAsx layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN1-xAsx layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN1-xAsx layers has been determined.

  20. Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures

    SciTech Connect

    Nieh, T.G.; Hsiung, L.M.; Nguyen, N.; Wadsworth, J.; Kaibyshev, R.

    1997-05-01

    The high-temperature properties of the binary Al-Mg and the ternary Al-Mg-Sc alloys have been studied by Sawtell and Jensen. The tensile elongation value for the Al-4Mg-0.5Sc alloy was quite remarkable ({approximately}1,000%). The high elongation was apparently attributed to a fine distribution of Al{sub 3}Sc particles in the alloy. However, the exact role of Al{sub 3}Sc on the microstructural evolution in the Al-Mg alloy was not clear. Also, the strain rate sensitivity value was found to vary with strain rate and temperature, suggesting there might exist a change in deformation mechanisms. Several years ago, research in Russia also led to the development of an Al-6Mg-0.3Sc alloy (designated Al 1570). The purpose of this paper is to demonstrate the effectiveness of Al{sub 3}Sc in stabilizing the substructure/structure in aluminum and to relate the microstructural evolution to the formability of this alloy.

  1. Thermoelectric properties of Cu-doped n-type (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-x}Cu{sub x}Se{sub 3}){sub 0.1}(x=0-0.2) alloys

    SciTech Connect

    Cui, J.L. Mao, L.D.; Yang, W.; Xu, X.B.; Chen, D.Y.; Xiu, W.J.

    2007-12-15

    n-Type (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-x}Cu{sub x}Se{sub 3}){sub 0.1} (x=0-0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu{sub 2.86}Te{sub 2} precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x{<=}0.1) can reduce the lattice thermal conductivity ({kappa}{sub L}), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi{sub 2}Se{sub 0.3}Te{sub 2.7} (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies. - Graphical abstract: After Cu-doping with x=0.1, the highest ZT value of 0.98 is obtained at 417 K, which is about 0.32 and 0.12 higher than those of Cu-free Bi{sub 2}Se{sub 0.3}Te{sub 2.7} and the Ag-doped alloys (Bi{sub 2}Te{sub 3}){sub 0.9}-(Bi{sub 2-x}Ag{sub x}Se{sub 3}){sub 0.1} (x=0.4), respectively.

  2. High Thermoelectric Performance by Convergence of Bands in IV-VI Semiconductors, Heavily Doped PbTe, and Alloys/Nanocomposites

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.

  3. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion.

    PubMed

    Mróz, Waldemar; Budner, Bogusław; Syroka, Renata; Niedzielski, Kryspin; Golański, Grzegorz; Slósarczyk, Anna; Schwarze, Dieter; Douglas, Timothy E L

    2015-01-01

    The use of porous titanium-based implant materials for bone contact has been gaining ground in recent years. Selective laser melting (SLM) is a rapid prototyping method by which porous implants with highly defined external dimensions and internal architecture can be produced. The coating of porous implants produced by SLM with ceramic layers based on calcium phosphate (CaP) remains relatively unexplored, as does the doping of such coatings with magnesium (Mg) to promote bone formation. In this study, Mg-doped coatings of the CaP types octacalcium phosphate and hydroxyapatite (HA) were deposited on such porous implants using the pulsed laser deposition method. The coated implants were subsequently implanted in a rabbit femoral defect model for 6 months. Uncoated implants served as a reference material. Bone-implant contact and bone volume in the region of interest were evaluated by histopathological techniques using a tri-chromatographic Masson-Goldner staining method and by microcomputed tomography (µCT) analysis of the volume of interest in the vicinity of implants. Histopathological analysis revealed that all implant types integrated directly with surrounding bone with ingrowth of newly formed bone into the pores of the implants. Biocompatibility of all implant types was demonstrated by the absence of inflammatory infiltration by mononuclear cells (lymphocytes), neutrophils, and eosinophils. No osteoclastic or foreign body reaction was observed in the vicinity of the implants. µCT analysis revealed a significant increase in bone volume for implants coated with Mg-doped HA compared to uncoated implants.

  4. Anomalous transport and thermal properties of NiTi and with Cu and Fe-doped shape memory alloys near the martensitic transition

    NASA Astrophysics Data System (ADS)

    Ingale, B. D.; Wei, W. C.; Chang, P. C.; Kuo, Y. K.; Wu, S. K.

    2011-12-01

    The temperature dependent electrical and thermal properties including electrical resistivity (ρ), specific heat (CP), Seebeck coefficient (S) and thermal conductivity (κ) have been studied for the polycrystalline NiTi, Ti50Ni40Cu10 and Ti50Ni48.5Fe1.5 shape memory alloys from 10-400 K. It was found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic behavior throughout the temperature range investigated. A significant thermal hysteresis between warming and cooling was observed in all the three alloys which is a manifestation of the first-order nature of martensitic transitions. Our results indicate the presence of two stage martnesite transformations, i.e. B2 → B19 → B19' for Ti50Ni40Cu10 while B2 → R → B19' for NiTi and Ti50Ni48.5Fe1.5 alloys. An analysis on the measured thermal conductivity reveals that the anomalous feature in κ at the B19 ↔ B19' transformation for Ti50Ni40Cu10 is essentially attributed to the electronic contribution, while an enormously large peak in warming run observed at the B19 → B2 transformation is due to the change in lattice thermal conductivity.

  5. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  6. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    SciTech Connect

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  7. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    NASA Astrophysics Data System (ADS)

    Yu, Ang-Yang; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-01

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO2interface. We calculate the segregation energy of the doped Ti/TiO2 interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO2 interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO2 interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO2 interfaces. Alloying effects on the Curie temperature of the Ti/TiO2 interface have been elaborated.

  8. In Situ Fabrication of PtCo Alloy Embedded in Nitrogen-Doped Graphene Nanopores as Synergistic Catalyst for Oxygen Reduction Reaction

    SciTech Connect

    Zhong, Xing; Wang, Lei; Zhou, Hu; Qin, Yingying; Xu, Wenlei; Jiang, Yu; Sun, Youyi; Shi, Zheqi; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jian-guo

    2015-11-23

    A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPG for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).

  9. Reducing Mg acceptor activation-energy in Al(0.83)Ga(0.17)N disorder alloy substituted by nanoscale (AlN)₅/(GaN)₁ superlattice using Mg(Ga) δ-doping: Mg local-structure effect.

    PubMed

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-10-23

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al(0.83)Ga(0.17)N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al(0.83)Ga(0.17)N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 10(19) cm(-3) can be obtained in (AlN)5/(GaN)1 SL by Mg(Ga) δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN.

  10. Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect

    PubMed Central

    Zhong, Hong-xia; Shi, Jun-jie; Zhang, Min; Jiang, Xin-he; Huang, Pu; Ding, Yi-min

    2014-01-01

    Improving p-type doping efficiency in Al-rich AlGaN alloys is a worldwide problem for the realization of AlGaN-based deep ultraviolet optoelectronic devices. In order to solve this problem, we calculate Mg acceptor activation energy and investigate its relationship with Mg local structure in nanoscale (AlN)5/(GaN)1 superlattice (SL), a substitution for Al0.83Ga0.17N disorder alloy, using first-principles calculations. A universal picture to reduce acceptor activation energy in wide-gap semiconductors is given for the first time. By reducing the volume of the acceptor local structure slightly, its activation energy can be decreased remarkably. Our results show that Mg acceptor activation energy can be reduced significantly from 0.44 eV in Al0.83Ga0.17N disorder alloy to 0.26 eV, very close to the Mg acceptor activation energy in GaN, and a high hole concentration in the order of 1019 cm−3 can be obtained in (AlN)5/(GaN)1 SL by MgGa δ-doping owing to GaN-monolayer modulation. We thus open up a new way to reduce Mg acceptor activation energy and increase hole concentration in Al-rich AlGaN. PMID:25338639

  11. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  12. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  13. Effects of Al3(Sc,Zr) and Shear Band Formation on the Tensile Properties and Fracture Behavior of Al-Mg-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele

    2015-11-01

    The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.

  14. Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices

    DOEpatents

    Mascarenhas, Angelo

    2015-07-07

    Isoelectronic co-doping of semiconductor compounds and alloys with acceptors and deep donors is sued to decrease bandgap, to increase concentration of the dopant constituents in the resulting alloys, and to increase carrier mobilities lifetimes. For example, Group III-V compounds and alloys, such as GaAs and GaP, are isoelectronically co-doped with, for example, B and Bi, to customize solar cells, and other semiconductor devices. Isoelectronically co-doped Group II-VI compounds and alloys are also included.

  15. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  16. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  17. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  18. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  19. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  20. Silver doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-04-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 at% to 4.32 at% for steel and from 3.04 at% to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficacy (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using scratch test. The antibacterial efficacy changed with silver doping up to 99.9 %. Our investigation was focused on minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  1. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  2. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  3. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  4. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  5. Helium generation rates in isotopically tailored Fe-Cr-Ni alloys irradiated in FFTF/MOTA

    SciTech Connect

    Greenwood, L.R.; Garner, F.A.; Oliver, B.M.

    1991-11-01

    Three Fe-Cr-Ni alloys have been doped with 0.4% {sup 59}Ni for side-by-side irradiations of doped and undoped materials in order to determine the effects of fusion-relevant levels of helium production on microstructural development and mechanical properties. The alloys were irradiated in three successive cycles of the Materials Open Test Assembly (MOTA) located in the Fast Flux Test Facility (FFTF). Following irradiation, helium levels were measured by isotope dilution mass spectrometry. The highest level of helium achieved in doped alloys was 172 appm at 9.1 dpa for a helium(appm)-to-dpa ratio of 18.9. The overall pattern of predicted helium generation rates in doped and undoped alloys is in good agreement with the helium measurements.

  6. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  7. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  8. Electron mobility in modulation-doped heterostructures

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Ruda, H. E.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A model for electron mobility in a two-dimensional electron gas confined in a triangular well was developed. All major scattering processes (deformation potential and piezoelectric acoustic, polar optical, ionized impurity, and alloy disorder) were included, as well as intrasubband and intersubband scattering. The model is applied to two types of modulation-doped heterostructures, namely GaAs-GaAlAs and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As. In the former case, phonons and remote ionized impurities ultimately limit the mobility, whereas in the latter, alloy disorder is a predominant scattering process at low temperatures. The calculated mobilities are in very good agreement with recently reported experimental characteristics for both GaAs-Ga(1-x)Al(x)As and In(0.53)Ga(0.47)As-Al(0.52)In(0.48)As modulation-doped heterostructures.

  9. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  10. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  11. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  12. Gene doping.

    PubMed

    Azzazy, Hassan M E

    2010-01-01

    Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.

  13. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  14. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  15. Mechanism for Increasing Dopant Incorporation in Semiconductors Via Doped Nanostructures

    SciTech Connect

    Kuskovsky,I.; Gu, Y.; Gong, Y.; Yan, H.; Lau, J.; Noyan, I.; Neumark, G.; Maksimov, O.; Zhou, X.; et al.

    2006-01-01

    A long-standing problem for ZnSe (and related alloys) has been to obtain good p-type doping. Recent work has given about an order-of-magnitude improvement in such doping by use of Te as a 'codopant' to facilitate the introduction of an acceptor dopant (N), since it is known that p-ZnTe can be obtained quite readily; the Te was introduced in submonolayer quantities via planar ({delta}) doping during molecular beam epitaxy. Here, we examine the mechanism of this improved doping. We show that it resides in the formation of ZnTe-rich nanoislands, with the N embedded in these. This result is obtained by studies involving transmission electron microscopy, high-resolution x-ray diffraction, secondary-ion mass spectroscopy, and temperature quenching of photoluminescence. We note that these nanoislands appear quite unique, in providing doping of semiconductors, and thus are of great interest of their own.

  16. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOEpatents

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  17. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  18. Surface and Interfacial Properties of Ga0.47In0.53As Alloys.

    DTIC Science & Technology

    2014-09-26

    S. TYPE OF REPORT & PERIOD COVERED Surface and Interfacial Properties of Final Report Ga0 471n0 53As Alloys April 1. 󈨘 to March 31,󈨙S. PERFORMING...for growing binary and ternary III-V alloy semiconducting layers. Gallium arsenide layers grown with this MBE system have electrical properties which... properties and impurity * 2 doping with both donors and acceptors of this system. However, the availability of the two ternary alloys : Ino 52A10 48As

  19. Origin of magnetic anisotropy in doped Ce2Co17 alloys

    SciTech Connect

    Ke, Liqin; Kukusta, D. A.; Johnson, Duane D.

    2016-10-21

    Magnetocrystalline anisotropy (MCA) in doped Ce2Co17 and other competing structures was investigated using density functional theory. We confirmed that the MCA contribution from dumbbell Co sites is very negative. Replacing Co dumbbell atoms with a pair of Fe or Mn atoms greatly enhance the uniaxial anisotropy, which agrees quantitatively with experiment, and this enhancement arises from electronic-structure features near the Fermi level, mostly associated with dumbbell sites. With Co dumbbell atoms replaced by other elements, the variation of anisotropy is generally a collective effect and contributions from other sublattices may change significantly. Furthermore, we found that Zr doping promotes the formation of 1-5 structure that exhibits a large uniaxial anisotropy, such that Zr is the most effective element to enhance MCA in this system.

  20. Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy.

    PubMed

    Wenner, Sigurd; Jones, Lewys; Marioara, Calin D; Holmestad, Randi

    2017-05-01

    Scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDS) is a common technique for chemical mapping in thin samples. Obtaining high-resolution elemental maps in the STEM is jointly dependent on stepping the sharply focused electron probe in a precise raster, on collecting a significant number of characteristic X-rays over time, and on avoiding damage to the sample. In this work, 80kV aberration-corrected STEM-EDS mapping was performed on ordered precipitates in aluminium alloys. Probe and sample instability problems are handled by acquiring series of annular dark-field (ADF) images and simultaneous EDS volumes, which are aligned and non-rigidly registered after acquisition. The summed EDS volumes yield elemental maps of Al, Mg, Si, and Cu, with sufficient resolution and signal-to-noise ratio to determine the elemental species of each atomic column in a periodic structure, and in some cases the species of single atomic columns. Within the uncertainty of the technique, S and β" phases were found to have pure elemental atomic columns with compositions Al2CuMg and Al2Mg5Si4, respectively. The Q' phase showed some variation in chemistry across a single precipitate, although the majority of unit cells had a composition Al6Mg6Si7.2Cu2.

  1. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-03-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1- x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1- x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1- x Sn x alloys with low Sn composition ( x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1- x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1- x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  2. Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Bhargava, Nupur; Gupta, Jay Prakash; Faleev, Nikolai; Wielunski, Leszek; Kolodzey, James

    2017-01-01

    The thermal stability of undoped and boron-doped germanium tin (Ge1-x Sn x ) alloys grown by molecular beam epitaxy with varying composition and layer thickness was investigated. The alloys were annealed in forming gas at various temperatures up to 800°C for 1 min using rapid thermal processing, and were characterized using high-resolution x-ray diffraction and Rutherford backscattering spectrometry. It was found that the Ge1-x Sn x alloys were stable to well above the growth temperature, but the stability decreased with increasing thickness, Sn content, and doping. Ge1-x Sn x alloys with low Sn composition (x ˜ 0.025) were stable up to 700°C, and for a given Sn composition, the undoped alloys were more thermally stable than the doped alloys. As the thickness of the Ge0.975Sn0.025 alloys increased to about 950 nm, the temperature of thermal stability dropped to 500°C. As the Sn composition of the 90 nm-Ge1-x Sn x alloys increased up to x = 0.08, the temperature of thermal stability dropped to 300°C. At higher annealing temperatures, the Ge1-x Sn x alloy degraded with lower crystal quality, and a gradient in the Sn composition appeared, which may be due to Sn diffusion or segregation.

  3. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    DOE PAGES

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explainmore » that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.« less

  4. The Mg impurity in nitride alloys

    SciTech Connect

    Zvanut, M. E.; Willoughby, W. R.; Sunay, U. R.; Koleske, D. D.; Allerman, A. A.; Wang, Ke; Araki, Tsutomu; Nanishi, Yasushi

    2014-02-21

    Although several magnetic resonance studies address the Mg acceptor in GaN, there are few reports on Mg doping in the alloys, where hole production depends strongly on the Al or In content. Our electron paramagnetic resonance (EPR) measurements of the p-type alloys suggest that the Mg impurity retains the axial symmetry, characteristic of a p-type dopant in both alloys; however, In and Al produce additional, different characteristics of the acceptor. In InGaN, the behavior is consistent with a lowering of the acceptor level and increasing hole density as In concentration increases. For AlGaN, the amount of neutral Mg decreases with increasing Al content, which is attributed to different kinetics of hydrogen diffusion thought to occur in samples with higher Al mole fraction.

  5. On the doping limit for strain stability retention in phosphorus doped Si:C

    SciTech Connect

    Chuang, Yao-Teng; Hu, Kuan-Kan; Woon, Wei-Yen

    2014-07-21

    Strain stability of phosphorus doped pseudomorphically strained Si:C alloy is investigated via high-resolution X-ray diffractometry, Fourier transform infrared spectroscopy, and Hall measurement. Significant strain relaxations are found under post-annealing treatment far below β-SiC precipitation threshold temperature, especially for the highest phosphorus doped case. Most of the substitutional carbon is retained and no further β-SiC formation can be found for all samples investigated. Volume compensation through gettering of interstitial atoms around substitutional carbon is considered as a probable mechanism for the observed strain relaxation. The strain relaxation effect can be further reduced with HF treatment prior to post-annealing process. We found an upper limit for ion implant dose (<1 × 10{sup 14} atom/cm{sup 2}) for the retention of strain stability in phosphorus doped Si:C.

  6. Cu-doped AlN: A possible spinaligner at room-temperature grown by molecular beam epitaxy?

    SciTech Connect

    Ganz, P. R.; Schaadt, D. M.

    2011-12-23

    Cu-doped AlN was prepared by plasma assisted molecular beam epitaxy on C-plane sapphire substrates. The growth conditions were investigated for different Cu to Al flux ratios from 1.0% to 4.0%. The formation of Cu-Al alloys on the surface was observed for all doping level. In contrast to Cu-doped GaN, all samples showed diamagnetic behavior determined by SQUID measurements.

  7. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  8. Ionization delocalization and ALCHEMI of B2-ordered alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.

    1995-06-01

    Purpose of this paper is to demonstrate that the major assumption underlying the ALCHEMI formulation is justified: that the degree of ionization localization of an elemental shell can be accounted for by a linear coefficient; and to introduce a potential method, which would be applicable to B2-ordered alloys, of independently extracting the ratio of coefficients L{sub jk} necessary for delocalization correction. A Cr-doped FeAl alloy and a series of Fe-doped NiAl alloys with 0.25-12 at. % Fe were analyzed. Excellent linearity of the data substantiates the use of linear coefficients to model ionization localization. It was investigated whether the L{sub jk} acquired at a (110) systematics orientation could be accurately applied to ALCHEMI data acquired at (200).

  9. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  10. Silver-doped metal layers for medical applications

    NASA Astrophysics Data System (ADS)

    Kocourek, T.; Jelínek, M.; Mikšovský, J.; Jurek, K.; Weiserová, M.

    2014-08-01

    Biological, physical and mechanical properties of silver-doped layers of titanium alloy Ti6Al4V and 316 L steel prepared by pulsed laser deposition were studied. Metallic silver-doped coatings could be a new route for antibacterial protection in medicine. Thin films of silver and silver-doped materials were synthesized using KrF excimer laser deposition. The materials were ablated from two targets, which were composed either from titanium alloy with silver segments or from steel with silver segments. The concentration of silver ranged from 1.54 to 4.32 at% for steel and from 3.04 to 13.05 at% for titanium alloy. The layer properties such as silver content, structure, adhesion, surface wettability, and antibacterial efficiency (evaluated by Escherichia coli and Bacillus subtilis bacteria) were measured. Film adhesion was studied using a scratch test. The antibacterial efficiency changed with silver doping up to 99.9 %. Our investigation was focused on the minimum Ag concentration needed to reach high antibacterial efficiency, high film adhesion, and hardness.

  11. Phase transformations in rapidly quenched Al-Cr-Zr alloys during heat treatment

    NASA Astrophysics Data System (ADS)

    Zvereva, N. L.; Kazakova, E. F.; Dmitrieva, N. E.

    2017-02-01

    Results from studying the effect zirconium has on solid-phase processes in aluminum-chromium alloys are presented. Rapidly quenched alloys are prepared via melt spinning. The quenching rate is 106 K/s. By means of physicochemical analysis, it is shown that doping Al-Cr alloys with zirconium improves the thermal stability of supersaturated solid solutions and stabilizes their microcrystalline structure; this hinders the coagulation of intermetallic phases and thus improves the hardness of the alloys. It is found that supersaturated solid solutions of Cr and Zr in aluminum undergo stepwise decomposition; the temperature and time parameters of each step are shown in TTT diagrams.

  12. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    SciTech Connect

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  13. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  14. Improving p-type doping efficiency in Al{sub 0.83}Ga{sub 0.17}N alloy substituted by nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice with Mg{sub Ga}-O{sub N} δ-codoping: Role of O-atom in GaN monolayer

    SciTech Connect

    Zhong, Hong-xia; Shi, Jun-jie Jiang, Xin-he; Huang, Pu; Ding, Yi-min; Zhang, Min

    2015-01-15

    We calculate Mg-acceptor activation energy E{sub A} and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on E{sub A} in nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice (SL), a substitution for Al{sub 0.83}Ga{sub 0.17}N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMg{sub Ga}-O{sub N} (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing E{sub A}. The shorter the Mg-O bond is, the smaller the E{sub A} is. The Mg-acceptor activation energy can be reduced significantly by nMg{sub Ga}-O{sub N} δ-codoping. Our calculated E{sub A} for 2Mg{sub Ga}-O{sub N} is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg{sub Ga}-O{sub N}, which results in a high hole concentration in the order of 10{sup 20} cm{sup −3} at room temperature in (AlN){sub 5}/(GaN){sub 1} SL. Our results prove that nMg{sub Ga}-O{sub N} (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  15. The Anti-Doping Movement.

    PubMed

    Willick, Stuart E; Miller, Geoffrey D; Eichner, Daniel

    2016-03-01

    Historical reports of doping in sports date as far back as the ancient Greek Olympic Games. The anti-doping community considers doping in sports to be cheating and a violation of the spirit of sport. During the past century, there has been an increasing awareness of the extent of doping in sports and the health risks of doping. In response, the anti-doping movement has endeavored to educate athletes and others about the health risks of doping and promote a level playing field. Doping control is now undertaken in most countries around the world and at most elite sports competitions. As athletes have found new ways to dope, however, the anti-doping community has endeavored to strengthen its educational and deterrence efforts. It is incumbent upon sports medicine professionals to understand the health risks of doping and all doping control processes.

  16. Polarization induced doped transistor

    SciTech Connect

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  17. Reducing Grain-Boundary Resistivity of Copper Nanowires by Doping

    NASA Astrophysics Data System (ADS)

    César, Mathieu; Gall, Daniel; Guo, Hong

    2016-05-01

    The resistance of doped single grain boundaries (GBs) in copper is calculated from first principles and systematically compared to its pure single GB equivalent. As a first step, a state-of-the-art ab initio method is used to calculate the resistivity of doped bulk copper for 16 doping elements at concentration 1 at. %. Results are in qualitatively excellent and quantitatively reasonable agreement with the corresponding experimental data, and allow us to determine Ag, Zn, Mg, Pd, Al, and In as best candidates for GB doping. These atoms have a minimal impact on the bulk resistivity, while they also conform to a set of established criteria for alloying with copper. Then, the specific resistivity of six twin GBs is determined for these elements over a wide spectrum of doping concentrations for the submonolayer and the monolayer GB complexions. Reduced resistivity is observed for Zn, Mg, Al, In, and other elements in two high-Σ GBs, and is qualitatively related to the segregation enthalpy as well as to a low number of empty states around the Fermi energy in the boundary plane region of the GB. The results indicate the possibility for a reduced net resistivity in copper interconnects by GB doping.

  18. Silica mesoporous thin films as containers for benzotriazole for corrosion protection of 2024 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Recloux, Isaline; Mouanga, Maixent; Druart, Marie-Eve; Paint, Yoann; Olivier, Marie-Georges

    2015-08-01

    This work contributes to the development of a new environmentally friendly alternative pretreatment for 2024 aluminium alloys to replace hexavalent chromium based conversion layers in the aeronautical field. A silica mesoporous thin film, synthesized through the evaporation induced self-assembly process, was doped with benzotriazole to obtain active corrosion protection. Inhibitor loading contents were correlated with pore characteristics. The release kinetics was studied as function of pH. The application of the doped mesoporous film on 2024 aluminium alloy revealed a slowing down of corrosion processes, demonstrating its potential as an active inhibitor storage layer.

  19. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys

    SciTech Connect

    Claudio, Tania; Stein, Niklas; Peterman, Nils; Stroppa, Daniel; Koza, Michael M.; Wiggers, Hartmut; Klobes, B.; Schierning, Gabi; Hermann, Raphael P.

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param- eter variations.

  20. Stress corrosion cracking of welded Alloy 600 penetration mockups

    SciTech Connect

    Sarver, J.M.; Pathania, R.S.; Stuckey, K.; Fyfitch, S.; Gelpi, A.; Foucault, M.; Hunt, E.S.

    1995-12-31

    The primary water stress corrosion cracking (PWSCC) of Alloy 600 in components other than steam generators is a problem of increasing concern for nuclear power plants. Of greatest concern at the present time is the PWSCC of Alloy 600 vessel head penetrations. The common elements of these components are threefold: (1) the Alloy 600 material has a susceptible microstructure, (2) the Alloy 600 material is either a thick-walled tube or a bar which has been machined into a thick-walled tube, and (3) the Alloy 600 material has been welded into a structure such that high residual welding stresses exist in the postwelded Alloy 600 material. The objectives of the present program were to evaluate the PWSCC behavior of various configurations of welded Alloy 600 penetrations, and possible remedial measures which would prevent or retard PWSCC in these components. Mockups were instrumented to permit instantaneous remote sensing of through-wall cracking and were autoclave tested along with control C-rings in a doped steam environment. Following the test exposures, the mockups were split and examined to characterize the cracking morphology and the material microstructure. A Weibull distribution was used to analyze the time-to-failure results, and the observed cracking locations were compared to residual stress levels predicted by an elastic-plastic finite element analysis of the mockups.

  1. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-04-01

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping.

  2. Improved thermoelectric properties in heavily doped FeGa3

    NASA Astrophysics Data System (ADS)

    Ponnambalam, V.; Morelli, Donald T.

    2015-12-01

    FeGa3, a hybridization gap semiconductor, has been substituted with an n-type dopant Ge to form a series of compositions FeGa3-xGex. Electrical and thermal transport properties of these compositions have been studied. Change in carrier density (n) is evident from the Hall measurements. The carrier density (n) can be as high as ˜1021 cm-3 in these compositions. In order to study the role of heavy doping on the thermoelectric properties of FeGa3, an alloy series Fe1-yCoyGa3-xGex has also been synthesized with higher concentrations of Ge (x = 0.1-0.35) and Co (y = 0.1-0.5). From resistivity and Seebeck coefficient measurements, it appears that heavy doping is accomplished by the simultaneous substitutions of Ge and Co. The systematic change in both resistivity (ρ) and Seebeck coefficient (α) is possibly due to change in the carrier density (n). The power factor (PF) α2/ρ improves steadily with increasing carrier density and the best PF ˜1.1 mW/m K2 is observed for the heavily doped compositions at 875 K. In the alloy series Fe1-yCoyGa3-xGex, thermal conductivity is also reduced substantially due to point defect scattering. Due to higher power factors, the figure of merit ZT improves to 0.25 at 875 K for the heavily doped compositions.

  3. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  4. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  5. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  6. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  7. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  8. Aero dopes and varnishes

    NASA Technical Reports Server (NTRS)

    Britton, H T S

    1927-01-01

    Before proceeding to discuss the preparation of dope solutions, it will be necessary to consider some of the essential properties which should be possessed of a dope film, deposited in and on the surface of an aero fabric. The first is that it should tighten the material and second it should withstand weathering.

  9. Rhenium alloying of tungsten heavy alloys

    SciTech Connect

    German, R.M.; Bose, A.; Jerman, G.

    1989-01-01

    Alloying experiments were performed using rhenium additions to a classic 90 mass % tungsten heavy alloy. The mixed-powder system was liquid phase sintered to full density at 1500 C in 60 min The rhenium-modified alloys exhibited a smaller grain size, higher hardness, higher strength, and lower ductility than the unalloyed system. For an alloy with a composition of 84W-6Re-8Ni-2Fe, the sintered density was 17, 4 Mg/m{sup 3} with a yield strength of 815 MPa, tensile strength of 1180 MPa, and elongation to failure of 13%. This property combination results from the aggregate effects of grain size reduction and solid solution hardening due to rhenium. In the unalloyed system these properties require post-sintering swaging and aging; thus, alloying with rhenium is most attractive for applications where net shaping is desired, such as by powder injection molding.

  10. Doped graphene supercapacitors

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, Nanjundan; Baek, Jong-Beom

    2015-12-01

    Heteroatom-doped graphitic frameworks have received great attention in energy research, since doping endows graphitic structures with a wide spectrum of properties, especially critical for electrochemical supercapacitors, which tend to complement or compete with the current lithium-ion battery technology/devices. This article reviews the latest developments in the chemical modification/doping strategies of graphene and highlights the versatility of such heteroatom-doped graphitic structures. Their role as supercapacitor electrodes is discussed in detail. This review is specifically focused on the concept of material synthesis, techniques for electrode fabrication and metrics of performance, predominantly covering the last four years. Challenges and insights into the future research and perspectives on the development of novel electrode architectures for electrochemical supercapacitors based on doped graphene are also discussed.

  11. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  12. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2

    SciTech Connect

    Wang, C. L.; Liu, J.; Mudryk, Y.; Gschneidner, Jr., K. A.; Long, Y.; Pecharsky, V. K.

    2015-12-19

    In this study, the magnetic properties and magnetic entropy changes of DyCo2Bx (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, the relative cooling power (RCP) of DyCo2 and the B doped alloys remains nearly constant.

  13. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2

    DOE PAGES

    Wang, C. L.; Liu, J.; Mudryk, Y.; ...

    2015-12-19

    In this study, the magnetic properties and magnetic entropy changes of DyCo2Bx (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, the relative cooling power (RCP) ofmore » DyCo2 and the B doped alloys remains nearly constant.« less

  14. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2

    NASA Astrophysics Data System (ADS)

    Wang, C. L.; Liu, J.; Mudryk, Y.; Gschneidner, K. A.; Long, Y.; Pecharsky, V. K.

    2016-05-01

    The magnetic properties and magnetic entropy changes of DyCo2Bx (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, the relative cooling power (RCP) of DyCo2 and the B doped alloys remains nearly constant.

  15. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2

    DOE PAGES

    Wang, C. L.; Liu, J.; Mudryk, Y.; ...

    2015-12-19

    The magnetic properties and magnetic entropy changes of DyCo2Bx (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. Furthermore, the relative cooling power (RCP) of DyCo2 and themore » B doped alloys remains nearly constant.« less

  16. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo2

    SciTech Connect

    Wang, C. L.; Liu, J.; Mudryk, Y.; Gschneidner, Jr., K. A.; Long, Y.; Pecharsky, V. K.

    2015-12-19

    The magnetic properties and magnetic entropy changes of DyCo2Bx (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (TC) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo2 caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo2Bx changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. Furthermore, the relative cooling power (RCP) of DyCo2 and the B doped alloys remains nearly constant.

  17. Tuning the emission colors of semiconductor nanocrystals beyond their bandgap tunability: all in the dope.

    PubMed

    Jana, Santanu; Manna, Goutam; Srivastava, Bhupendra B; Pradhan, Narayan

    2013-11-25

    Adopting the concept of one dopant for one color, all the prominent emitting colors in the visible windows are obtained by doping selective dopants (Ag, Cu, Ni, and Cu) in an appropriate host (alloy of Cdx Zn1-x S) with fixed size/composition and bandgap. Analyzing the origin of these emissions the relative position of respective dopant states are correlated.

  18. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  19. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  20. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  1. Microadditions to alloys of the system Cu-Sn-Ti

    SciTech Connect

    Kizikov, E.D.; Kebko, V.P.

    1987-07-01

    The authors assess the microstructure and some mechanical properties of a Cu-20% Sn-10% Ti alloy, used extensively as binders for diamond drill bits, under the influence of a series of dopants including lanthanum, yttrium, vanadium, molybdenum, rhenium, boron, lanthanum hexaboride, silicon nitride, titanium nitride, and titanium carbide. Doping procedures are outlined. Microadditions of all dopants were found to promote ductility, yield strength, and structural transformations.

  2. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  3. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  4. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  5. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    NASA Astrophysics Data System (ADS)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  6. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V.

    PubMed

    Zhou, Huan; Kong, Shiqin; Pan, Yan; Zhang, Zhiguo; Deng, Linhong

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification.

  7. Magnetic and structural characteristics of PrCo13-xSiO alloys and their nitrides

    SciTech Connect

    Huang, M.Q.; Wallace, W.E.; Obermyer, R.T.; Simizu, S.; Sankar, S.G.

    1996-01-31

    PrCo13-xSix alloys with 0 <= x <= 4.5 have been synthesized and studied at temperatures from 10 to 1273 K and in fields up to 17 kOe. The structure and magnetic properties of the alloys vary significantly with changes in Si content x. In the alloys with x = 0, TMA and XRD studies show the phases present to be Pr2Co17 and Co. For x = 1.5 or 2.0, the alloys are essentially single-phase fcc materials (NaZn13 structure type). At larger values of x the ternary alloy formed in a bet structure (Ce2Ni17Si0 structure type). Replacement of Co by Si in PrCo13 results in a drop in T{sub c} from 1318 K (for LaCo13) to approx. 900 K for fcc Pr(Co.Si)13 alloy and to approx. 20 K for bct Pr(Co.Si)sub 13 alloys. There is also a large drop in magnetization from 104.6 emu/g for the alloy with x = 1.5 to 19.2 emu/g for the alloys with x = 4.0. A bct alloy (x = 3.5) showed negligible magnetic anisotropy. Si doping sharply reduces the Co moment. Si doping also reduces tbe Pr moment to 1.5 micrometer sub s (fcc alloys) and to 1.8 micrometers sub s (bct alloys). Nitrogenation fails to improve Pr(Co.Si)13 alloys as permanent magnet materials.

  8. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  9. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ruochen; Qian, Mingfang; Zhang, Xuexi; Qin, Faxiang; Wei, Longsha; Xing, Dawei; Cui, Xiping; Sun, Jianfei; Geng, Lin; Peng, Huaxin

    2017-04-01

    Giant magnetocaloric effect in Ni-Mn-X (X=In, Sn, Sb) Heusler alloys has been revealed due to the significant shift of the martensite transformation temperatures under a bias magnetic field. However, the magnetic hysteresis during the magnetization and demagnetization cycles creates a large hysteresis loss and reduces the refrigeration capacity. Here we demonstrated that the magnetic hysteresis loss in Ni-Mn-Sb alloys was effectively reduced by Si-doping. The quaternary Ni49.0Mn38.4Sb11.7Si0.9 alloy exhibited martensite and magnetic transitions around room temperature. Maximum magnetic entropy change ΔSm 9.4 J/kg K and working temperature interval 7.0 K were achieved attributed to the martensite transformation under a magnetic field of 5 T. Meanwhile, the average magnetic hysteresis loss for Ni49.0Mn38.4Sb11.7Si0.9 alloy was 2.1 J/kg, much smaller than that for Ni49.0Mn38.5Sb12.5 alloy, 11.4 J/kg. As a result, a refrigeration capacity of 50.2 J/kg was obtained in the Ni49.0Mn38.4Sb11.7Si0.9 alloy. This result shows that Si-doped Ni-Mn-Sb alloys may act as a potential material system for magnetic refrigeration.

  10. Development of high-emittance scales on thoriated nickel-chromium-aluminum-base alloys. [produced by high temperature oxidation

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, I. G.; Wilcox, B. A.

    1973-01-01

    The surface regions of a DSNiCrAl alloy have been doped, by a pack diffusion process, with small amounts of Mn, Fe, or Co, and the effect of these dopants on the total normal emissivity of the scales produced by subsequent high temperature oxidation has been measured. While all three elements lead to a modest increase in emissivity, (up to 23% greater than the undoped alloy) only the change caused by manganese is thermally stable. However, this increased emissivity is within 85 percent of that of TDNiCr oxidized to form a chromia scale. The maganese-doped alloy is some 50 percent weaker than undoped DSNiCrAl after the doping treatment, and approximately 30 percent weaker after oxidation.

  11. InxGa1-xP Nanowire Growth Dynamics Strongly Affected by Doping Using Diethylzinc.

    PubMed

    Otnes, Gaute; Heurlin, Magnus; Zeng, Xulu; Borgström, Magnus T

    2017-02-08

    Semiconductor nanowires are versatile building blocks for optoelectronic devices, in part because nanowires offer an increased freedom in material design due to relaxed constraints on lattice matching during the epitaxial growth. This enables the growth of ternary alloy nanowires in which the bandgap is tunable over a large energy range, desirable for optoelectronic devices. However, little is known about the effects of doping in the ternary nanowire materials, a prerequisite for applications. Here we present a study of p-doping of InxGa1-xP nanowires and show that the growth dynamics are strongly affected when diethylzinc is used as a dopant precursor. Specifically, using in situ optical reflectometry and high-resolution transmission electron microscopy we show that the doping results in a smaller nanowire diameter, a more predominant zincblende crystal structure, a more Ga-rich composition, and an increased axial growth rate. We attribute these effects to changes in seed particle wetting angle and increased TMGa pyrolysis efficiency upon introducing diethylzinc. Lastly, we demonstrate degenerate p-doping levels in InxGa1-xP nanowires by the realization of an Esaki tunnel diode. Our findings provide insights into the growth dynamics of ternary alloy nanowires during doping, thus potentially enabling the realization of such nanowires with high compositional homogeneity and controlled doping for high-performance optoelectronics devices.

  12. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  13. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  14. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  15. [Doping: effectiveness, consequences, prevention].

    PubMed

    Guezennec, C Y

    2001-02-01

    The use of doping is linked with the history of sports. Doping abuse escalated until the mid sixties when government and sports authorities responded with antidoping laws and drug testing. Today, the details of substances detected in controls give a good indication on the importance of doping use. Three classes of pharmaceuticals account for most of the positive controls. They are anabolic steroids, stimulants and narcotics. Their use can be related with the goal of the athletes. Anabolic steroids are mainly used in sports such as bodybuilding or weight lifting in order to develop strength. Stimulants are used in sports were speed favors performance. All the products that enhance blood oxygen transportation are used in endurance sports, their efficacy is not scientifically demonstrated, but their use does result in real risks. Several studies have evidenced the medical problems resulting from prolonged doping. Doping control is impaired by the fact that many products now used, e.g. EPO or rhGH, are not detectable. Regular medical examination of athletes could help prevent use of doping.

  16. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  17. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  18. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  19. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  20. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  1. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  2. Zinc Alloys for the Fabrication of Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  3. First principles study of bismuth alloying effects in GaAs saturable absorber.

    PubMed

    Li, Dechun; Yang, Ming; Zhao, Shengzhi; Cai, Yongqing; Feng, Yuanping

    2012-05-07

    First principles hybrid functional calculations have been carried out to study electronic properties of GaAs with Bi alloying effects. It is found that the doping of Bi into GaAs reduces the bandgap due to the intraband level repulsions between Bi induced states and host states, and the Bi-related impurity states originate from the hybridization of Bi-6p and its nearest As-4p orbitals. With the increase of Bi concentration in GaAs, the bandgap decreases monotonously. The calculated optical properties of the undoped and Bi-doped GaAs are similar except the shift toward lower energy of absorption edge and main absorption peaks with Bi doping. These results suggest a promising application of GaBi(x)As(1-x) alloy as semiconductor saturable absorber in Q-switched or mode-locked laser.

  4. Ab initio study of thermoelectric properties of doped SnO{sub 2} superlattices

    SciTech Connect

    Borges, P.D.; Silva, D.E.S.; Castro, N.S.; Ferreira, C.R.; Pinto, F.G.; Tronto, J.; Scolfaro, L.

    2015-11-15

    Transparent conductive oxides, such as tin dioxide (SnO{sub 2}), have recently shown to be promising materials for thermoelectric applications. In this work we studied the thermoelectric properties of Fe-, Sb- and Zn-uniformly doping and co-doping SnO{sub 2}, as well as of Sb and Zn planar (or delta)-doped layers in SnO{sub 2} forming oxide superlattices (SLs). Based on the semiclassical Boltzmann transport equations (BTE) in conjunction with ab initio electronic structure calculations, the Seebeck coefficient (S) and figure of merit (ZT) are obtained for these systems, and are compared with available experimental data. The delta doping approach introduces a remarkable modification in the electronic structure of tin dioxide, when compared with the uniform doping, and colossal values for ZT are predicted for the delta-doped oxide SLs. This result is a consequence of the two-dimensional electronic confinement and the strong anisotropy introduced by the doped planes. In comparison with the uniformly doped systems, our predictions reveal a promising use of delta-doped SnO{sub 2} SLs for enhanced S and ZT, which emerge as potential candidates for thermoelectric applications. - Graphical abstract: Band structure and Figure of merit for SnO2:Sb superlattice along Z direction, P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto and L. Scolfaro, Ab initio study of thermoelectric properties of doped SnO2 superlattices. - Highlights: • Thermoelectric properties of SnO{sub 2}-based alloys and superlattices. • High figure of merit is predicted for planar-doped SnO{sub 2} superlattices. • Nanotechnology has an important role for the development of thermoelectric devices.

  5. Enhanced stress durability of nano resonators with scandium doped electrodes

    SciTech Connect

    Nuessl, R.; Jewula, T.; Binninger, C.; Drozd, R.; Ruile, W.; Beckmeier, D.; Sulima, T.; Eisele, I.; Hansch, W.

    2010-11-15

    To explore mechanical stress durability of thin aluminum-scandium (AlSc) films, 0.86 GHz nano resonators with AlSc electrodes have been manufactured. Four different samples have been prepared altering the Sc content in the alloy between 0.0% and 2.5%. A final lift-off step accomplished manufacture procedure of the devices. The resonators have been operated with heavy load to determine power durability. The resonators with AlSc electrodes show increased power durability compared to conventional Al metallized devices. Texture and grain structure of all films have been investigated by means of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM). Material fatigue of electrodes has been visualized by scanning electron microscopy (SEM). The refined grain structure of these alloys can explain the enhanced mechanical stress durability of AlSc electrodes. - Research Highlights: {yields}Enhanced power durability of SAW devices with Sc doped electrodes. {yields}Refined grain structure of Sc doped Al films. {yields}Sudden device breakdown of highly Sc doped devices.

  6. Heavily Doped PBSE with High Thermoelectric Performance

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Wang, Heng (Inventor); Pei, Yanzhong (Inventor)

    2015-01-01

    The present invention discloses heavily doped PbSe with high thermoelectric performance. Thermoelectric property measurements disclosed herein indicated that PbSe is high zT material for mid-to-high temperature thermoelectric applications. At 850 K a peak zT (is) greater than 1.3 was observed when n(sub H) approximately 1.0 X 10(exp 20) cm(exp -3). The present invention also discloses that a number of strategies used to improve zT of PbTe, such as alloying with other elements, nanostructuring and band modification may also be used to further improve zT in PbSe.

  7. Disorder influenced magnetic phase transition in the Ce(Fe 0.9 Ru 0.1)2 alloy.

    PubMed

    Chattopadhyay, M K; Roy, S B

    2010-06-16

    We have studied a 10% Ru-doped CeFe(2) alloy, Ce(Fe(0.9)Ru(0.1))(2), through magnetization, magnetotransport, and heat capacity measurements. This study shows that, while this alloy is antiferromagnetic at low temperatures and paramagnetic at high temperatures, there exists evidence of ferromagnetic ordering in the intermediate temperature regime. We show here that with 10% Ru doping the first order magnetic transition observed in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 is reduced to a quasi-continuous phase transition. The characteristic thermomagnetic history effects associated with the ferromagnetic-antiferromagnetic phase transition in the Ce(Fe(1 - x)Ru(x))(2) alloys with x < 0.08 are not observed in the Ce(Fe(0.9)Ru(0.1))(2) alloy. This alloy continues to exhibit the large magnetoresistance and large magnetocaloric effect associated with this first order magnetic transition in the alloys with smaller Ru concentration, but it does not show any energy loss due to thermomagnetic hysteresis. The present work thus shows how the introduction of quenched disorder due to alloying effects may be used to tune the first order magnetic transition in a material for more efficient functional use.

  8. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  9. Thermoelectric performance of electron and hole doped PtSb2

    SciTech Connect

    Saeed, Yasir; Singh, Nirprenda; Schwingenschlogl, Udo; Parker, David S

    2013-01-01

    We investigate the thermoelectric properties of electron and hole doped PtSb2. Our results show that for doping of 0.04 holes per unit cell (1:5 1020 cm 3) PtSb2 shows a high Seebeck coefficient at room temperature, which can also be achieved at other temperatures by controlling the carrier concentration (both electron and hole). The electrical conductivity becomes temperature independent when the doping exceeds some 0.2 electrons/holes per unit cell. The figure of merit at 800 K in electron and hole doped PtSb2 is comparatively low at 0.13 and 0.21, respectively, but may increase significantly with As alloying due to the likely opening of a band gap and reduction of the lattice thermal conductivity

  10. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  11. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  12. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  13. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  14. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  15. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  16. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  17. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  18. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  19. Effect of Yttrium doping on structural and magnetic properties of Dysprosium

    NASA Astrophysics Data System (ADS)

    Jena, Rudra Prasad; Baidya, Arunmay; Lakhani, Archana

    2016-11-01

    A comparative structural and magneto transport study has been performed on the Dysprosium (Dy) and Yttrium (Y) doped Dysprosium (Dy-Y) alloys in order to study the effect of Y concentration, temperature and magnetic field on the magnetic states and transitions of Dy-Y alloys. The magnetic state of Dy and Dy-Y alloys having lower Y substitutions change from Paramagnetic (PM) to Helimagnetic (HM) state via second order phase transition and from Helimagnetic state to Ferromagnetic (FM) state via first order phase transition. Small change in lattice parameters, strain and micro-strain is observed with X-ray diffraction on replacement with Y ions. Neel temperature and Curie temperature both show a decreasing trend on diluting Dy with non-magnetic Y in small concentrations. PM to HM and HM to FM transitions in the lower substitutional alloys discussed in this manuscript show a direct transition from PM to FM state at fields above 1.5 T.

  20. Nanocrystal diffusion doping.

    PubMed

    Vlaskin, Vladimir A; Barrows, Charles J; Erickson, Christian S; Gamelin, Daniel R

    2013-09-25

    A diffusion-based synthesis of doped colloidal semiconductor nanocrystals is demonstrated. This approach involves thermodynamically controlled addition of both impurity cations and host anions to preformed seed nanocrystals under equilibrium conditions, rather than kinetically controlled doping during growth. This chemistry allows thermodynamic crystal compositions to be prepared without sacrificing other kinetically trapped properties such as shape, size, or crystallographic phase. This doping chemistry thus shares some similarities with cation-exchange reactions, but proceeds without the loss of host cations and excels at the introduction of relatively unreactive impurity ions that have not been previously accessible using cation exchange. Specifically, we demonstrate the preparation of Cd(1-x)Mn(x)Se (0 ≤ x ≤ ∼0.2) nanocrystals with narrow size distribution, unprecedentedly high Mn(2+) content, and very large magneto-optical effects by diffusion of Mn(2+) into seed CdSe nanocrystals grown by hot injection. Controlling the solution and lattice chemical potentials of Cd(2+) and Mn(2+) allows Mn(2+) diffusion into the internal volumes of the CdSe nanocrystals with negligible Ostwald ripening, while retaining the crystallographic phase (wurtzite or zinc blende), shape anisotropy, and ensemble size uniformity of the seed nanocrystals. Experimental results for diffusion doping of other nanocrystals with other cations are also presented that indicate this method may be generalized, providing access to a variety of new doped semiconductor nanostructures not previously attainable by kinetic routes or cation exchange.

  1. Doping in Zinc Selenide

    NASA Astrophysics Data System (ADS)

    Wheeler, Edward Dean

    An experimental technique ensuring the incorporation of substitutional arsenic and copper doping in ZnSe is presented. Two techniques are investigated. In each, neutron transmutation doping is employed to introduce arsenic and copper dopants in ZnSe. In the first technique, as-grown crystals of ZnSe are exposed to thermal neutrons. The crystals are thermally annealed after irradiation in order to repair the neutron induced lattice damage. The thermal annealing schedules employed in this work, however, do not fully repair the ZnSe lattice. In the second technique, homoepitaxial layers of ZnSe are deposited with irradiated zinc and selenium as source materials. High quality layers of ZnSe, characterized by x-ray diffraction and low temperature photoluminescence, are produced. The long half lives of As^ {75} and Zn^{65} allow the epitaxial layers to be formed prior to nuclear decay. Since the nuclear recoil associated with the decays are not sufficient to displace the dopant nuclei from their substitutional lattice sites, the technique results in isolated As_{Se } or isolated Cu_{Zn } being introduced in layers of ZnSe after crystal growth. Since the dopants are introduced in the bulk crystal after crystal growth, the doping process is decoupled from any interactions present during crystal growth. A technique in which crystal doping is decoupled from crystal growth provides several unique probes for arsenic and copper doping in ZnSe.

  2. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    NASA Astrophysics Data System (ADS)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  3. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  4. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  5. Doped Boron Carbide-Based Polymers: Fundamental Studies of a Novel Class of Materials for Enhanced Neutron Detection

    DTIC Science & Technology

    2016-03-01

    Jeffry A. Kelber, Peter A. Dowben 17 Patent Applications : QNTM-0004-PCT Novel Semiconducting Alloy Polymers Formed from...Doped boron carbide-based polymers : Fundamental studies of a novel class of materials for enhanced neutron detection Distribution Statement A...DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION . REPORT DOCUMENTATION PAGE Form Approved OMB No

  6. Optical properties of ZnO doped with Cobalt ions

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Yu; Zakrzewski, A. J.; Witkowski, B. S.; Godlewski, M.

    2016-09-01

    While doping with rare earth ions is used for emission activation, doping with transition metal ions is often used to get specific magnetic properties of a given host material. Recently investigations of transition metal doped materials focused on chances of achieving a room temperature ferromagnetic response. This is because carrier mediated room temperature ferromagnetic order was theoretically predicted for ZnO doped with Mn or Co ions. Such order is required for some of spintronics applications. To realize RT FM both Mn and Co should stay in 2+ charge state, expected when Mn/Co substitute zinc in ZnO. Both ZnMnO and ZnCoO alloys show a strong absorption band, which appears below ZnO band gap transitions. The origin of this absorption in ZnCoO is discussed in the present work. We show based on the results of photoluminescence and photo-ESR investigations that the broad absorption band is related to Co photo-ionization.

  7. Silver antimony Ohmic contacts to moderately doped n-type germanium

    SciTech Connect

    Dumas, D. C. S.; Gallacher, K.; Millar, R.; Paul, D. J.; MacLaren, I.; Myronov, M.; Leadley, D. R.

    2014-04-21

    A self doping contact consisting of a silver/antimony alloy that produces an Ohmic contact to moderately doped n-type germanium (doped to a factor of four above the metal-insulator transition) has been investigated. An evaporation of a mixed alloy of Ag/Sb (99%/1%) onto n-Ge (N{sub D}=1×10{sup 18} cm{sup −3}) annealed at 400 °C produces an Ohmic contact with a measured specific contact resistivity of (1.1±0.2)×10{sup −5} Ω-cm{sup 2}. It is proposed that the Ohmic behaviour arises from an increased doping concentration at the Ge surface due to the preferential evaporation of Sb confirmed by transmission electron microscope analysis. It is suggested that the doping concentration has increased to a level where field emission will be the dominate conduction mechanism. This was deduced from the low temperature electrical characterisation of the contact, which exhibits Ohmic behaviour down to a temperature of 6.5 K.

  8. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  9. Importance of doping and frustration in itinerant Fe-doped Cr2Al

    SciTech Connect

    Susner, M. A.; Parker, D. S.; Sefat, A. S.

    2015-05-12

    We performed an experimental and theoretical study comparing the effects of Fe-doping of Cr2Al, an antiferromagnet with a N el temperature of 670 K, with known results on Fe-doping of antiferromagnetic bcc Cr. (Cr1-xFex)2Al materials are found to exhibit a rapid suppression of antiferromagnetic order with the presence of Fe, decreasing TN to 170 K for x=0.10. Antiferromagnetic behavior disappears entirely at x≈0.125 after which point increasing paramagnetic behavior is exhibited. Moreover, this is unlike the effects of Fe doping of bcc antiferromagnetic Cr, in which TN gradually decreases followed by the appearance of a ferromagnetic state. Theoretical calculations explain that the Cr2Al-Fe suppression of magnetic order originates from two effects: the first is band narrowing caused by doping of additional electrons from Fe substitution that weakens itinerant magnetism; the second is magnetic frustration of the Cr itinerant moments in Fe-substituted Cr2Al. In pure-phase Cr2Al, the Cr moments have an antiparallel alignment; however, these are destroyed through Fe substitution and the preference of Fe for parallel alignment with Cr. This is unlike bulk Fe-doped Cr alloys in which the Fe anti-aligns with the Cr atoms, and speaks to the importance of the Al atoms in the magnetic structure of Cr2Al and Fe-doped Cr2Al.

  10. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation

    SciTech Connect

    Li, Xufan; Lin, Ming -Wei; Basile, Leonardo; Hus, Saban M.; Puretzky, Alexander A.; Lee, Jaekwang; Kuo, Yen -Chien; Chang, Lo -Yueh; Wang, Kai; Idrobo, Juan C.; Li, An -Ping; Chen, Chia-Hao; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-07-06

    Doping and alloying are effective ways to engineer the band structure and modulate the optoelectronic functionality of monolayer transition metal dichalcogenides (TMDs). In this work, we explore the synthesis and electronic properties of monolayer Mo1-xWxSe2 (0 < x < 0.18) alloys with almost 100% alloying degree. The isoelectronic substitutional doping of tungsten for molybdenum in the monolayer MoSe2 is shown to suppress its intrinsically n-type conduction behavior, with p-type conduction gradually emerging to become dominant with increasing W concentration in the alloys. Atomic resolution Z-contrast electron microscopy show that W is shown to substitute directly for Mo without the introduction of noticeable vacancy or interstitial defects, however with randomly-distributed W-rich regions ~2 nm in diameter. Scanning tunneling microscopy/spectroscopy measurements reveal that these W-rich regions exhibit a local band structure with the valence band maximum (VBM) closer to the Fermi level as compared with the Mo-rich regions in the monolayer Mo1-xWxSe2 crystal. These localized upshifts of the VBM in the local band structure appear responsible for the overall p-type behavior observed for the monolayer Mo1-xWxSe2 crystals. Stacked monolayers of n-type MoSe2 and p-type Mo1-xWxSe2 were demonstrated to form atomically thin, vertically stacked p n homojunctions with gate-tunable characteristics, which appear useful for future optoelectronic applications. Lastly, these results indicate that alloying with isoelectronic dopant atoms appears to be an effective and advantageous alternate strategy to doping or alloying with electron donors or acceptors in two-dimensional TMDs.

  11. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation

    DOE PAGES

    Li, Xufan; Lin, Ming -Wei; Basile, Leonardo; ...

    2016-07-06

    Doping and alloying are effective ways to engineer the band structure and modulate the optoelectronic functionality of monolayer transition metal dichalcogenides (TMDs). In this work, we explore the synthesis and electronic properties of monolayer Mo1-xWxSe2 (0 < x < 0.18) alloys with almost 100% alloying degree. The isoelectronic substitutional doping of tungsten for molybdenum in the monolayer MoSe2 is shown to suppress its intrinsically n-type conduction behavior, with p-type conduction gradually emerging to become dominant with increasing W concentration in the alloys. Atomic resolution Z-contrast electron microscopy show that W is shown to substitute directly for Mo without the introductionmore » of noticeable vacancy or interstitial defects, however with randomly-distributed W-rich regions ~2 nm in diameter. Scanning tunneling microscopy/spectroscopy measurements reveal that these W-rich regions exhibit a local band structure with the valence band maximum (VBM) closer to the Fermi level as compared with the Mo-rich regions in the monolayer Mo1-xWxSe2 crystal. These localized upshifts of the VBM in the local band structure appear responsible for the overall p-type behavior observed for the monolayer Mo1-xWxSe2 crystals. Stacked monolayers of n-type MoSe2 and p-type Mo1-xWxSe2 were demonstrated to form atomically thin, vertically stacked p n homojunctions with gate-tunable characteristics, which appear useful for future optoelectronic applications. Lastly, these results indicate that alloying with isoelectronic dopant atoms appears to be an effective and advantageous alternate strategy to doping or alloying with electron donors or acceptors in two-dimensional TMDs.« less

  12. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  13. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  14. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  15. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  16. Dope, Fiends, and Myths.

    ERIC Educational Resources Information Center

    Reasons, Charles E.

    Since the social reality of the drug problem has largely emanated from the diffuse conceptions of the drug user, an analysis of the history of the "dope fiend" mythology is presented in this paper in an attempt to assess the manner in which certain publics are informed about the problem. A content analysis of drug-related imagery was made from…

  17. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    DTIC Science & Technology

    1981-04-01

    alloys --* Aluminum Alloys --*Copper alloys --*Gold alloys --*Nickel Alloys --*Silver alloys --*Iron alloys --*Palladium alloys ... aluminum -magnesium, and copper-zinc) are given for 27 compositions: 0 (pure element).* For aluminum -copper, aluninu.-eagnes tur, end copper-zinc alloy ...available data and infor- mation. The ten binary alloy systems selected are the systems of aluminum - copper, aluminum -magnesium, copper-gold,

  18. High-strength, creep-resistant molybdenum alloy and process for producing the same

    SciTech Connect

    Bianco, Robert; Buckman, Jr. William R.; Geller, Clint B.

    1997-12-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume ({approximately}1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum.

  19. Spin-polarization and electronic properties of half-metallic Heusler alloys calculated from first principles.

    PubMed

    Galanakis, I; Mavropoulos, Ph

    2007-08-08

    Half-metallic Heusler alloys are amongst the most promising materials for future magneto-electronic applications. We review some recent results on the electronic properties of these compounds. The origin of the gap in these half-metallic alloys and its connection to the magnetic properties are well understood. Changing the lattice parameter slightly shifts the Fermi level. Spin-orbit coupling induces states within the gap but the alloys keep a very high degree of spin polarization at the Fermi level. Small degrees of doping and disorder as well as defects with low formation energy have little effect on the properties of the gap, while temperature effects can lead to a quick loss of half-metallicity. Finally, we discuss two special issues: the case of quaternary Heusler alloys and the half-metallic ferrimagnets.

  20. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  1. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  2. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  3. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  4. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1986-01-14

    ftoc*o~ow7 and Idenify’ by block nam. bor) Electron mobility , Lattice Relaxation, Bond Length, Bond Energy, Mixing Enthalpies, Band Structure, Core...including: (1) generalization of Brooks’ formula for alloy-scattering limited electron mobility to including multiple bands and indirect gaps, (2...calculation of SiGe alloys band structure, electron mobility and core-exciton binding energy and • :linewidth, (3) comprehensive calculation of bond

  5. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  6. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  7. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    SciTech Connect

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  8. The photoluminescence properties of Er{sup 3+}-doped ZrO{sub 2} nanotube arrays prepared by anodization

    SciTech Connect

    Wang, Xixin; Zhao, Jianling; Du, Peng; Guo, Limin; Xu, Xuewen; Tang, Chengchun

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Er{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of Zr–Er alloy. ► Small tetragonal zirconia crystallites are tended to be formed due to the doping of Er{sup 3+}. ► Under excitation at 317 nm, the ZrO{sub 2} nantube arrays have strongest photoluminescence intensity. -- Abstract: Er{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of Zr–Er alloy which was obtained by melting zirconium with 1.0 wt% erbium. The morphology, structure and photoluminescence properties were studied through scanning electron microscope, transmission electron microscope, X-ray diffraction and photoluminescence analyzer. X-ray diffraction results indicate that doping of Er{sup 3+} affects the crystal structure and grain size obviously and the Er{sup 3+}-doped samples tend to form small tetragonal grains. Photoluminescence analyses show that when Er{sup 3+}-doped zirconia nanotube arrays are excited at 317 nm, there are two strong photoluminescence emission peaks at 373 nm and 415 nm. When the excitation wavelength is 257 nm, a photoluminescence emission peak appears at 363 nm. Under same measurement conditions, emission peaks of the undoped ZrO{sub 2} nanotube arrays are very weak.

  9. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  10. Preparation and photoluminescence properties of Sm3+-doped ZrO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Fu, Ning; Wang, Xixin; Ma, Yuanhui; Wang, Mingli; Li, Jiaxin; Zhao, Jianling

    2016-04-01

    Zr-Sm (3 at.% Sm) alloy was prepared through a powder metallurgical method. Sm3+-doped ZrO2 nanotube arrays have been achieved directly by anodizing the Zr-Sm alloy. The effects of electrolyte and annealing temperature on the morphologies and structures of the nanotube arrays were studied. The photoluminescence properties of Sm3+-doped ZrO2 nanotube arrays prepared in aqueous solution and formamide  +  glycerol solution were studied in detail as well. Results show that tetragonal ZrO2 promoted the photoluminescence efficiency of this system. Under excitation at 407 nm, the sample prepared in aqueous solution annealed at 600 °C displayed the strongest emission peak at 571 nm, corresponding to the 4G5/2  →  6H5/2 samarium transition.

  11. Characteristics of deposited boron doping diamond on tungsten carbide insert by MPECVD

    NASA Astrophysics Data System (ADS)

    Kim, Jong Seok; Park, Yeong Min; Kim, Jeong Wan; Tulugan, Kelimu; Kim, Tae Gyu

    2015-03-01

    Diamond-coated cutting tools are used primarily for machining non-ferrous materials such as aluminum-silicon alloys, copper alloys, fiber-reinforced polymers, green ceramics and graphite. Because the tool life of cemented carbide cutting tool is greatly improved by diamond coating, and typically more than 10 times of the tool life is obtained. However, research of boron-doped diamond (BDD) coating tool has not been fully researched yet. In this study, we have succeeded to make boron-doped microcrystalline and nanocrystalline diamond-coated Co-cemented tungsten carbide (WC-Co) inserts. Microcrystalline BDD thin film is deposited on WC-Co insert by using microwave plasma enhanced chemical vapor deposition (MPECVD) method. Scanning electron microscope (SEM) and Raman spectroscopy are used to characterize the as-deposited diamond films.1,2

  12. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium

    SciTech Connect

    Zou, Minmin; Li, Jing-Feng; Kita, Takuji

    2013-02-15

    Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV{sub 0.8}Ti{sub 0.4}Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 Degree-Sign C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 Degree-Sign C, which is relatively high for p-type half-Heusler alloys. Highlights: Black-Right-Pointing-Pointer Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. Black-Right-Pointing-Pointer Substituting V with Ti changes the electrical behavior from n-type to p-type. Black-Right-Pointing-Pointer Thermoelectric properties are improved by optimizing sintering temperature. Black-Right-Pointing-Pointer Thermoelectric properties are further improved by applying annealing treatment. Black-Right-Pointing-Pointer A high ZT value of 0.43 is obtained at 500 Degree-Sign C for p-type Ti-doped FeVSb alloys.

  13. Nanocrystalline Hydroxyapatite/Si Coating by Mechanical Alloying Technique

    PubMed Central

    Hannora, Ahmed E.; Mukasyan, Alexander S.; Mansurov, Zulkhair A.

    2012-01-01

    A novel approach for depositing hydroxyapatite (HA) films on titanium substrates by using mechanical alloying (MA) technique has been developed. However, it was shown that one-hour heat treatment at 800°C of such mechanically coated HA layer leads to partial transformation of desired HA phase to beta-tri-calcium phosphate (β-TCP) phase. It appears that the grain boundary and interface defects formed during MA promote this transformation. It was discovered that doping HA by silicon results in hindering this phase transformation process. The Si-doped HA does not show phase transition to β-TCP or decomposition after heat treatment even at 900°C. PMID:22312324

  14. First-principles study of electronic properties of B and C doped CuNNi3

    NASA Astrophysics Data System (ADS)

    Kumar, Surender; Singh, Prabhakar P.

    2016-02-01

    We have performed ab initio electronic structure calculations for {{CuN}}1-x{{{B}}}x{{Ni}}3 and {{CuN}}1-x{{{C}}}x{{Ni}}3 (x=0.0{--}0.25) alloys using the Green's-function-based Korringa-Kohn-Rostoker method, formulated within atomic sphere approximation. The disorder in {{N}} sub-lattice is treated within single-site coherent potential approximation. The spin-polarized calculations predict CuNNi3 and its alloys {{CuN}}1-x{{{B}}}x{{Ni}}3 and {{CuN}}1-x{{{C}}}x{{Ni}}3 to be non-magnetic for the entire doping range. For ordered phase, the density of states (DOS) at Fermi energy is mainly composed of Ni 3d states with small contributions from N 2p and Cu 3d states as well. Additionally, we observe a high DOS peak at {-}0.6 {eV} which arises from Ni and Cu 3d states. For both {{CuN}}1-x{{{B}}}x{{Ni}}3 and {{CuN}}1-x{{{C}}}x{{Ni}}3 alloys, the DOS at Fermi energy decreases monotonically with concentration. This is in sharp contrast to what is expected for a hole doped system with high DOS peak below Fermi energy. The decrease in DOS at Fermi energy is more prominent in {{CuN}}1-x{{{B}}}x{{Ni}}3 alloys. Hence the {{B}} doping is found to be more deteriorating to superconductivity than {{C}}. Moreover, the doping induced effects are not entirely rigid-band like, rather a moderate redistribution of electronic states is observed.

  15. Isoelectronic Tungsten Doping in Monolayer MoSe2 for Carrier Type Modulation.

    PubMed

    Li, Xufan; Lin, Ming-Wei; Basile, Leonardo; Hus, Saban M; Puretzky, Alexander A; Lee, Jaekwang; Kuo, Yen-Chien; Chang, Lo-Yueh; Wang, Kai; Idrobo, Juan C; Li, An-Ping; Chen, Chia-Hao; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-10-01

    Carrier-type modulation is demonstrated in 2D transition metal dichalcogenides as n-type monolayer MoSe2 is converted to nondegenerate p-type monolayer Mo1-x Wx Se2 through isoelectronic doping. Although the alloys are mesoscopically uniform, the p-type conduction in monolayer Mo1-x Wx Se2 appears to originate from the upshift of the valenceband maximum toward the Fermi level at highly localized "W-rich" regions in the lattice.

  16. Ion track doping

    NASA Astrophysics Data System (ADS)

    Fink, D.; Chadderton, L. T.; Cruz, S. A.; Fahrner, W. R.; Hnatowicz, V.; Te Kaat, E. H.; Melnikov, A. A.; Varichenko, V. S.; Zaitsev, A. M.

    1994-10-01

    Longitudinal dopant distribution along ion tracks in soft (polymers [1?5]) and hard (diamond [6,7]) condensed carbonaceous matter have been studied by neutron depth profiling and cathodoluminesence. Both in-diffusion from the aqueous phase and energetic ion implantation were used in primary track doping. In-situ self-decoration of tracks and post-implantation with a secondary ion species were used in the specific case of ion implantation. Radial dopant distributions were also studied by means of a modified tomographic procedure. Decorative doping of ion bombarded solids is useful in probing track structure, and especially in pointing the way to potential development of nanometric-sized electronic devices.

  17. Erythropoietin and blood doping

    PubMed Central

    Robinson, N; Giraud, S; Saudan, C; Baume, N; Avois, L; Mangin, P; Saugy, M

    2006-01-01

    Objective and method To outline the direct and indirect approaches in the fight against blood doping in sports, the different strategies that have been used and are currently being used to fight efficiently against blood doping are presented and discussed. Results and conclusions The paper outlines the different approaches and diagnostic tools that some federations have to identify and target sportspeople demonstrating abnormal blood profiles. Originally blood tests were introduced for medical reasons and for limiting misuse of recombinant human erythropoietin (rHuEPO). In this way it became possible to prevent athletes with haematocrit levels well above normal, and potentially dangerous for their health, competing in sport. Today, with nearly a decade of blood testing experience, sports authorities should be familiar with some of the limitations and specially the ability of blood tests performed prior to competitions to fight efficiently against the misuse of rHuEPO, blood transfusion, and artificial haemoglobin. PMID:16799100

  18. Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content.

    PubMed

    Li, H X; Gao, J E; Wu, Y; Jiao, Z B; Ma, D; Stoica, A D; Wang, X L; Ren, Y; Miller, M K; Lu, Z P

    2013-01-01

    The glass-forming ability (GFA) of alloys with a high-solvent content such as soft magnetic Fe-based and Al-based alloys is usually limited due to strong formation of the solvent-based solid solution phase. Herein, we report that the GFA of soft magnetic Fe-based alloys (with >70 at.% Fe to ensure large saturation magnetization) could be dramatically improved by doping with only 0.3 at.% Cu which has a positive enthalpy of mixing with Fe. It was found that an appropriate Cu addition could enhance the liquid phase stability and crystallization resistance by destabilizing the α-Fe nano-clusters due to the necessity to redistribute the Cu atoms. However, excessive Cu doping would stimulate nucleation of the α-Fe nano-clusters due to the repulsive nature between the Fe and Cu atoms, thus deteriorating the GFA. Our findings provide new insights into understanding of glass formation in general.

  19. Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content

    NASA Astrophysics Data System (ADS)

    Li, H. X.; Gao, J. E.; Wu, Y.; Jiao, Z. B.; Ma, D.; Stoica, A. D.; Wang, X. L.; Ren, Y.; Miller, M. K.; Lu, Z. P.

    2013-06-01

    The glass-forming ability (GFA) of alloys with a high-solvent content such as soft magnetic Fe-based and Al-based alloys is usually limited due to strong formation of the solvent-based solid solution phase. Herein, we report that the GFA of soft magnetic Fe-based alloys (with >70 at.% Fe to ensure large saturation magnetization) could be dramatically improved by doping with only 0.3 at.% Cu which has a positive enthalpy of mixing with Fe. It was found that an appropriate Cu addition could enhance the liquid phase stability and crystallization resistance by destabilizing the α-Fe nano-clusters due to the necessity to redistribute the Cu atoms. However, excessive Cu doping would stimulate nucleation of the α-Fe nano-clusters due to the repulsive nature between the Fe and Cu atoms, thus deteriorating the GFA. Our findings provide new insights into understanding of glass formation in general.

  20. Corrosion behaviour of Nitinol alloy coated with alkylsilanes and polypyrrole.

    PubMed

    Flamini, D O; Saidman, S B

    2014-11-01

    Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test.

  1. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  2. [Doping in sports].

    PubMed

    Seĭfulla, R D; Rozhkova, E A; Rodchenkov, G M; Appolonova, S A; Kulikova, E V

    2006-01-01

    Drugs used by athletes for the improvement of results are described and classified with respect to chemical structure and pharmacological action. The main groups of drugs treated as doping are considered and the WADA requirements to prohibited preparations are formulated. The main effects produced by drugs on the athletes and animals (race horses, fight dogs, etc ) are described and the measures of therapy against side effects are outlined.

  3. [Doping and urologic tumors].

    PubMed

    Pinto, F; Sacco, E; Volpe, A; Gardi, M; Totaro, A; Calarco, A; Racioppi, M; Gulino, G; D'Addessi, A; Bassi, P F

    2010-01-01

    Several substances such as growth hormone (GH), erythropoietin (Epo), and anabolic steroids (AS) are improperly utilized to increase the performance of athletes. Evaluating the potential cancer risk associated with doping agents is difficult since these drugs are often used at very high doses and in combination with other licit or illicit drugs. The GH, via its mediator, the insulin-like growth factor 1 (IGF-1), is involved in the development and progression of cancer. Animal studies suggested that high levels of GH/IGF-1 increase progression of androgen-independent prostate cancer. Clinical data regarding prostate cancer are mostly based on epidemiological studies or indirect data such as IGF-1 high levels in patients with prostate cancer. Even if experimental studies showed a correlation between Epo and cancer, no clinical data are currently available on cancer development related to Epo as a doping agent. Androgens are involved in prostate carcinogenesis modulating genes that regulate cell proliferation, apoptosis and angiogenesis. Most information on AS is anecdotal (case reports on prostate, kidney and testicular cancers). Prospective epidemiologic studies failed to support the hypothesis that circulating androgens are positively associated with prostate cancer risk. Currently, clinical and epidemiological studies supporting association between doping and urological neoplasias are not available. Nowadays, exposure to doping agents starts more prematurely with a consequent longer exposition period; drugs are often used at very high doses and in combination with other licit or illicit drugs. Due to all these elements it is impossible to predict all the side effects, including cancer; more detailed studies are therefore necessary.

  4. Specific features of sample preparation from amorphous aluminum alloys for transmission electron microscopy

    SciTech Connect

    Volkov, P. A.; Todorova, E. V.; Bakhteeva, N. D.; Ivanova, A. G.; Vasil'ev, A. L.

    2011-05-15

    An aluminum amorphous alloy doped with transition (Fe and Ni) and rare earth (La) metals has been used as an object of systematic study of the structural transformations that are characteristic of different methods of sample preparation for transmission electron microscopy (the mechanical tearing of ribbons, electrochemical thinning, and Ar{sup +}-ion etching under different conditions). The results of X-ray diffraction analysis and a calorimetric study of the structure in comparison with electron microscopy data made it possible to determine the optimal method of sample preparation, which ensures minimum distortions in the structure of metastable amorphous alloys with a low crystallization temperature.

  5. Oxidation characteristics of Ti-14Al-21Nb ingot alloy

    NASA Technical Reports Server (NTRS)

    Sankaran, Sankara N.; Clark, Ronald K.; Unnam, Jalaiah; Wiedemann, Karl E.

    1990-01-01

    Static oxidation kinetics of Ti14Al21Nb (wt pct) ingot alloy were studied in air over the temperature interval of 649 to 1093 C in a thermogravimetric apparatus. The oxidation products were characterized by x ray diffraction, electron microprobe analysis, energy dispersive x ray analysis, and Auger electron spectroscopy. Cross-sections of the oxidized samples were also examined using light and scanning electron microscopy. The oxidation rate was substantially lower than the conventional alloys of titanium, but the kinetics displayed a complex behavior involving two or more oxidation rates depending on the temperature and duration of exposure. The primary oxide formed was TiO2, but this oxide was doped with Nb. Small amounts of Al2O3 and TiN were also present in the scale. Diffusion of oxygen into the alloy was observed and the diffusivity seemed to be dependent on the microstructure of the metal. A model was presented to explain the oxidation behavior of the alloy in terms of the reduction in the oxygen diffusivity in the oxide caused by the modification of the defect structure of TiO2 by Nb ions.

  6. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  7. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  8. Selective dissolution in binary alloys

    NASA Astrophysics Data System (ADS)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  9. Tissue Response to Base-Metal Dental Alloys.

    DTIC Science & Technology

    RESPONSE(BIOLOGY), *CASTING ALLOYS, *BASE METAL, * DENTAL PROSTHESES, TISSUES(BIOLOGY), COMPATIBILITY, NICKEL ALLOYS, BERYLLIUM, DENTISTRY, CANCER, HISTOLOGY, DENTAL IMPLANTOLOGY , COBALT ALLOYS, CHROMIUM ALLOYS.

  10. Finding the Alloy Genome

    NASA Astrophysics Data System (ADS)

    Hart, Gus L. W.; Nelson, Lance J.; Zhou, Fei; Ozolins, Vidvuds

    2012-10-01

    First-principles codes can nowadays provide hundreds of high-fidelity enthalpies on thousands of alloy systems with a modest investment of a few tens of millions of CPU hours. But a mere database of enthalpies provides only the starting point for uncovering the ``alloy genome.'' What one needs to fundamentally change alloy discovery and design are complete searches over candidate structures (not just hundreds of known experimental phases) and models that can be used to simulate both kinetics and thermodynamics. Despite more than a decade of effort by many groups, developing robust models for these simulations is still a human-time-intensive endeavor. Compressive sensing solves this problem in dramatic fashion by automatically extracting the ``sparse model'' of an alloy in only minutes. This new paradigm to model building has enabled a new framework that will uncover, automatically and in a general way across the periodic table, the important components of such models and reveal the underlying ``genome'' of alloy physics.

  11. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  12. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  13. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  14. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  15. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil.

    PubMed

    Vishwakarma, Riteshkumar; Shinde, Sachin M; Rosmi, Mohamad Saufi; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-09

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  16. Influence of oxygen on nitrogen-doped carbon nanofiber growth directly on nichrome foil

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Riteshkumar; Shinde, Sachin M.; Saufi Rosmi, Mohamad; Takahashi, Chisato; Papon, Remi; Mahyavanshi, Rakesh D.; Ishii, Yosuke; Kawasaki, Shinji; Kalita, Golap; Tanemura, Masaki

    2016-09-01

    The synthesis of various nitrogen-doped (N-doped) carbon nanostructures has been significantly explored as an alternative material for energy storage and metal-free catalytic applications. Here, we reveal a direct growth technique of N-doped carbon nanofibers (CNFs) on flexible nichrome (NiCr) foil using melamine as a solid precursor. Highly reactive Cr plays a critical role in the nanofiber growth process on the metal alloy foil in an atmospheric pressure chemical vapor deposition (APCVD) process. Oxidation of Cr occurs in the presence of oxygen impurities, where Ni nanoparticles are formed on the surface and assist the growth of nanofibers. Energy-dispersive x-ray spectroscopy (EDXS) and x-ray photoelectron spectroscopy (XPS) clearly show the transformation process of the NiCr foil surface with annealing in the presence of oxygen impurities. The structural change of NiCr foil assists one-dimensional (1D) CNF growth, rather than the lateral two-dimensional (2D) growth. The incorporation of distinctive graphitic and pyridinic nitrogen in the graphene lattice are observed in the synthesized nanofiber, owing to better nitrogen solubility. Our finding shows an effective approach for the synthesis of highly N-doped carbon nanostructures directly on Cr-based metal alloys for various applications.

  17. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  18. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  19. Thermoelectric properties of pressure-sintered Si(0.8)Ge(0.2) thermoelectric alloys

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.; Laskow, William; Hanson, Jack O.; Van Der Beck, Roland R.; Gorsuch, Paul D.

    1991-01-01

    The thermoelectric properties of 28 sintered Si(0.8)Ge(0.2) alloys, heavily doped with either B or P and prepared from powders with median particle sizes ranging from about 1 to over 100 microns, have been determined from 300 to 1300 K. The thermal conductivity decreases with decreasing particle size; however, the figure of merit is not significantly increased due to a compensating reduction in the electrical conductivity. The thermoelectric figure of merit is in good agreement with results of Dismukes et al. (1964) on similarly doped alloys prepared by zone-leveling techniques. The electrical and thermal conductivity are found to be sensitive to preparation procedure while the Seebeck coefficient and figure of merit are much less sensitive. The high-temperature electrical properties are consistent with charge carrier scattering by acoustic or optical phonons.

  20. Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys

    DOE PAGES

    Claudio, Tania; Stein, Niklas; Peterman, Nils; ...

    2015-10-26

    The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less

  1. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  2. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  3. Effect of Polishing on the Friction Behaviors and Cutting Performance of Boron-Doped Diamond Films on WC-Co Inserts

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Shen, Bin; Sun, Fanghong; Zhang, Zhiming

    2014-04-01

    Boron doped (B-doped) diamond films are deposited onto WC-Co inserts by HFCVD with the mixture of acetone, trimethyl borate (C3H9BO3) and H2. The as-deposited B-doped diamond films are characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) spectroscopy, Raman spectroscopy, 3D surface topography based on white-light interferometry and Rockwell hardness tester. The effects of mechanical polishing on the friction behavior and cutting performance of B-doped diamond are evaluated by ball-on-plate type reciprocating tribometer and turning of aluminum alloy 7075 materials, respectively. For comparison, the same tests are also conducted for the bare WC-Co inserts with smooth surface. Friction tests suggest that the unpolished and polished B-doped diamond films possess relatively low fluctuation of friction coefficient than as-received bare WC-Co samples. The average stable friction coefficient for B-doped diamond films decreases apparently after mechanical polishing. The values for WC-Co sample, unpolished and polished B-doped diamond films are approximately 0.38, 0.25 and 0.11, respectively. The cutting results demonstrate that the low friction coefficient and high adhesive strength of B-doped diamond films play an essential role in the cutting performance enhancement of the WC-Co inserts. However, the mechanical polishing process may lower the adhesive strength of B-doped diamond films. Consequently, the polished B-doped diamond coated inserts show premature wear in the machining of adhesive aluminum alloy materials.

  4. Orbital Processing of High-Quality Zn-Alloyed CdTe Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.; Dudley, M.; Raghothamachar, B.; Alexander, J. I. D.; Carlson, F. M.; Gillies, D.; Volz, M.; Ritter, T. M.; DiMarzio, D.

    1999-01-01

    The objective of this research is to investigate the influences of gravitationally-dependent phenomena (hydrostatic and buoyant) on the growth and quality of doped and alloyed Cadmium-Zinc-Telluride (CdZnTe) crystals grown by the modified seeded Bridgman-Stockbarger technique. It is hypothesized that the damping of the gravitationally-dependent buoyancy convection will substantially enhance chemical homogeneity and the near-elimination of hydrostatic pressure will enable significant reduction in defect (dislocations and twins) density.

  5. Antimony-doped graphene nanoplatelets

    PubMed Central

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-01-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts. PMID:25997811

  6. [Medication, athletes and doping regulations].

    PubMed

    Hartgens, F

    2008-08-16

    Doping is defined as an offence of the antidopingcode of the World Anti-Doping Agency (WADA). To uphold the code WADA has composed a list of prohibited substances and methods. The composition of the list is based on three mainstays: fair play, health risks and spirit of the sport. Among the prohibited substances are anabolic agents, erythropoietin, beta2-sympathicomimetics, growth hormone and masking agents. For some medications athletes may receive a therapeutic use exemption. Enforcement of the antidoping-code is performed by doping controls. For this purpose, blood and urine samples of athletes are collected and analysed. In 2006 approximately 200,000 samples were analysed worldwide, with 1.96% being tested positive. All physicians should be aware of the possibility that athletes use medication subjected to the doping regulations. There are guidelines for physicians on doping-related issues in medical practice.

  7. Antimony-doped graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Jeon, In-Yup; Choi, Min; Choi, Hyun-Jung; Jung, Sun-Min; Kim, Min-Jung; Seo, Jeong-Min; Bae, Seo-Yoon; Yoo, Seonyoung; Kim, Guntae; Jeong, Hu Young; Park, Noejung; Baek, Jong-Beom

    2015-05-01

    Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalysts.

  8. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  9. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  10. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  11. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  12. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  13. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  14. High density and taper-free boron doped Si{sub 1−x}Ge{sub x} nanowire via two-step growth process

    SciTech Connect

    Periwal, Priyanka; Salem, Bassem; Bassani, Franck; Baron, Thierry; Barnes, Jean-Paul

    2014-07-01

    The authors study Au catalyzed chemical vapor growth of Si{sub 1−x}Ge{sub x} alloyed nanowires in the presence of diborane, serving as a dopant precursor. Our experiments reveal that introduction of diborane has a significant effect on doping and morphology. Boron exposure poisons the Au catalyst surface, suppresses catalyst activity, and causes significantly tapered wires, as a result of conformal growth. The authors develop here a two-step method to obtain high density and taper-free boron doped Si{sub 1−x}Ge{sub x} alloy nanowires. The two-step process consists of: (1) growth of a small undoped Si{sub 1−x}Ge{sub x} section and (2) introduction of diborane to form a boron doped Si{sub 1−x}Ge{sub x} section. The catalyst preparation step remarkably influences wire yield, quality and morphology. The authors show that dopant-ratio influences wire resistivity and morphology. Resistivity for high boron doped Si{sub 1−x}Ge{sub x} nanowire is 6 mΩ-cm. Four probe measurements show that it is possible to dope Si{sub 1−x}Ge{sub x} alloy nanowires with diborane.

  15. Superconductivity in the splat-cooled UMo alloys

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Sowa, S.; Krupska, M.; Paukov, M.; Tkach, I.; Havela, L.

    2015-03-01

    We have investigated the superconductivity in splat-cooled UMo alloys by low-temperature resistivity and specific-heat measurements down to 0.4 K. The γ-U materials, such as U-Mo15 (with 15 at.% Mo doping), exhibit a conventional BCS superconductivity with Tc = 2.1 K and upper critical field exceeding 5 T, much higher than that for α-U materials. The alloys with <10 at.% Mo doping consist of a mixed γ + α-U phase. The superconducting transition in the U-Mo6 revealed by a smooth decrease below 1.5 K and a sharp drop at 0.6 K in the resistivity indicating that γ-U grains are embedded in the α-U matrix. The superconductivity transition was revealed by λ-type peak at Tc in the C(T) curve only for U-Mo15, while only one broad peak at Tc in the C(T) curves were observed for other UMo splats. With applying the magnetic fields, the resistivity jumps and specific-heat peaks move to lower temperatures. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  16. Microstructure, mechanical and bio-corrosion properties of Mn-doped Mg-Zn-Ca bulk metallic glass composites.

    PubMed

    Wang, Jingfeng; Huang, Song; Li, Yang; Wei, Yiyun; Xi, Xingfeng; Cai, Kaiyong

    2013-10-01

    The effects of Mn substitution for Mg on the microstructure, mechanical properties, and corrosion behavior of Mg69-xZn27Ca4Mnx (x=0, 0.5 and 1at.%) alloys were investigated using X-ray diffraction, compressive tests, electrochemical treatments, and immersion tests, respectively. Microstructural observations showed that the Mg69Zn27Ca4 alloy was mainly amorphous. The addition of Mn decreases the glass-forming ability, which results in a decreased strength from 545 MPa to 364 MPa. However, this strength is still suitable for implant application. Polarization and immersion tests in the simulated body fluid at 37 °C revealed that the Mn-doped Mg-Zn-Ca alloys have significantly higher corrosion resistance than traditional ZK60 and pure Mg alloys. Cytotoxicity test showed that cell viabilities of osteoblasts cultured with Mn-doped Mg-Zn-Ca alloys extracts were higher than that of pure Mg. Mg68.5Zn27Ca4Mn0.5 exhibits the highest bio-corrosion resistance, biocompatibility and has desirable mechanical properties, which could suggest to be used as biomedical materials in the future.

  17. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    PubMed

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  18. Concerning the energy levels of silver in Ge-Si alloys

    SciTech Connect

    Tahirov, V. I.; Agamaliev, Z. A.; Sadixova, S. R.; Guliev, A. F.; Gahramanov, N. F.

    2012-03-15

    The emission from impurity states of silver (an element of the IB subgroup) in a Ge-Si alloy, containing 18 at % Si, has been studied. The donor level of silver has been found in crystals doubly doped with gallium and silver, while its first acceptor level has been revealed in crystals doped with only silver. Single crystals were grown by pulling from a melt using a feeding rod. Doping with gallium was performed by introducing this element into the feeding rod, and silver was introduced into the crystals via diffusion. The positions of the donor and first acceptor Ag levels with respect to the top of the valence band were found by analyzing the temperature dependence of the Hall coefficient and the electroneutrality equation for the crystal: 0.06 and 0.29 eV, respectively.

  19. Property enhancement by grain refinement of zinc-aluminium foundry alloys

    NASA Astrophysics Data System (ADS)

    Krajewski, W. K.; Greer, A. L.; Piwowarski, G.; Krajewski, P. K.

    2016-03-01

    Development of cast alloys with good mechanical properties and involving less energy consumption during their melting is one of the key demands of today's industry. Zinc foundry alloys of high and medium Al content, i.e. Zn-(15-30) wt.% Al and Zn-(8-12) wt.% Al, can satisfy these requirements. The present paper summarizes the work [1-9] on improving properties of sand-cast ZnAl10 (Zn-10 wt.% Al) and ZnAl25 (Zn-25 wt. % Al) alloys by melt inoculation. Special attention was devoted to improving ductility, whilst preserving high damping properties at the same time. The composition and structural modification of medium- and high-aluminium zinc alloys influence their strength, tribological properties and structural stability. In a series of studies, Zn - (10-12) wt. % Al and Zn - (25-26) wt.% Al - (1-2.5) wt.% Cu alloys have been doped with different levels of added Ti. The melted alloys were inoculated with ZnTi-based refiners and it was observed that the dendritic structure is significantly finer already after addition of 50 - 100 ppm Ti to the melted alloys. The alloy's structure and mechanical properties have been studied using: SEM (scanning electron microscopy), LM (light microscopy), dilatometry, pin-on-disc wear, and tensile strength measurements. Grain refinement leads to significant improvement of ductility in the binary high-aluminium Zn-(25-27) Al alloys while in the medium-aluminium alloys the effect is rather weak. In the ternary alloys Zn-26Al-Cu, replacing a part of Cu with Ti allows dimensional changes to be reduced while preserving good tribological properties. Furthermore, the high initial damping properties were nearly entirely preserved after inoculation. The results obtained allow us to characterize grain refinement of the examined high-aluminium zinc alloys as a promising process leading to the improvement of their properties. At the same time, using low melting ZnTi-based master alloys makes it possible to avoid the excessive melt overheating

  20. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    SciTech Connect

    Kleinerman, Nadezhda M. Serikov, Vadim V. Vershinin, Aleksandr V. Mushnikov, Nikolai V. Stashkova, Liudmila A.

    2014-10-27

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)

  1. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  2. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  3. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  4. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  5. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  6. Mutual Passivation in Dilulte GaNxAs1-x Alloys

    SciTech Connect

    Yu, K.M.; Walukiewicz, W.; Wu, J.; Mars, D.E.; Scarpulla, M.A.; Dubon, O.D.; Ridgway, M.C.; Geisz, J.F.

    2005-03-21

    The dilute GaN{sub x}As{sub 1-x} alloys (with x up to 0.05) have exhibited many unusual properties as compared to the conventional binary and ternary semiconductor alloys. We report on a new effect in the GaN{sub x}As{sub 1-x} alloy system in which electrically active substitutional group IV donors and isoelectronic N atoms passivate each other's activity. This mutual passivation occurs in dilute GaN{sub x}As{sub 1-x} doped with group IV donors through the formation of nearest neighbor IV{sub Ga-}N{sub As} pairs when the samples are annealed under conditions such that the diffusion length of the donors is greater than or equal to the average distance between donor and N atoms. The passivation of the shallow donors and the N{sub As} atoms is manifested in a drastic reduction in the free electron concentration and, simultaneously, an increase in the fundamental band gap. This mutual passivation effect is demonstrated in both Si and Ge doped GaN{sub x}As{sub 1-x} alloys. Analytical calculations of the passivation process based on Ga vacancies mediated diffusion show good agreement with the experimental results.

  7. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    SciTech Connect

    Benafan, O. E-mail: raj@ucf.edu; Vaidyanathan, R. E-mail: raj@ucf.edu; Chen, S.-Y.; Kar, A.

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  8. Highly efficient functional GexPb1-xTe based thermoelectric alloys.

    PubMed

    Gelbstein, Yaniv; Davidow, Joseph

    2014-10-07

    Methods for enhancement of the direct thermal to electrical energy conversion efficiency, upon development of advanced thermoelectric materials, are constantly investigated mainly for efficient implementation of thermoelectric devices in automotive vehicles, for converting the waste heat generated in such engines into useful electrical power and thereby reduction of the fuel consumption and CO2 emission levels. It was recently shown that GeTe based compounds and specifically GeTe-PbTe rich alloys are efficient p-type thermoelectric compositions. In the current research, Bi2Te3 doping and PbTe alloying effects in GexPb1-xTe alloys, subjected to phase separation reactions, were investigated for identifying the phase separation potential for enhancement of the thermoelectric properties beyond a pure alloying effect. All of the investigated compositions exhibit maximal dimensionless figure of merit, ZT, values beyond 1, with the extraordinary value of 2.1 found for the 5% Bi2Te3 doped-Ge0.87Pb0.13Te composition, considered as among the highest ever reported.

  9. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment.

    PubMed

    Benafan, O; Chen, S-Y; Kar, A; Vaidyanathan, R

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  10. Synthesis and Characterization of Titanium-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting

    SciTech Connect

    Tang, H.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M.; Turner, J.; Yan, Y.

    2011-12-15

    We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

  11. Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting

    SciTech Connect

    Tang Houwen; Matin, M. A.; Wang, Heli; Deutsch, Todd; Al-Jassim, Mowafak; Turner, John; Yan, Yanfa

    2011-12-15

    We have synthesized pure and Ti-alloyed hematite thin films on F doped SnO{sub 2} coated glass substrates by radio frequency magnetron co-sputtering of iron oxide and titanium targets in mixed Ar/O{sub 2} and mixed N{sub 2}/O{sub 2} ambient. We found that the hematite films deposited in the N{sub 2}/O{sub 2} ambient exhibit much poorer crystallinity than the films deposited in the Ar/O{sub 2} ambient. We determined that Ti alloying leads to increased electron carrier concentration and crystallinity, and reduced bandgaps. Moreover, Ti-alloyed hematite thin films exhibited improved photoelectrochemical performance as compared with the pure hematite films: The photocurrents were enhanced and the photocurrent onset shifted to less positive potentials.

  12. Effects of self-irradiated damage on physical properties of stabilized Pu alloys

    NASA Astrophysics Data System (ADS)

    Freibert, F.; Martinez, B.; Baiardo, J. P.; Olivas, J.; Ronquillo, R.

    2000-07-01

    Our team is currently conducting experiments in the areas of thermal, physical and magnetic properties of Pu239 alloys doped with small quantities of Pu238 in an effort to further our understanding of alterations in electronic structure and self-irradiated damage in these alloys. The combination of data from these measurements will provide the following information: elastic properties and material compressibility, relative lattice defect concentration, microstructure alterations and phase homogeneity, phase transition onset temperature, intermediate phase stability, and transformation type. This series of measurements will provide a unique before and after picture of aging in these stabilized alloys, therefore answering important questions concerning these materials and providing valuable comparisons between newly cast materials and site-returned materials.

  13. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    PubMed

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, p<0.05). The diameters of lamellar structure Ag-Cu nanoparticles were measured to be approximately 30 nm. The composition of the Ag-Cu nanoparticles determined by TEM-energy-dispersive spectroscopy was 56.28 at.% Ag-43.72 at.% Cu. A light-shaded phase was found mixing with dark Cu-Sn reaction particles in the reaction zones of Ag-Cu nanoparticle-doped amalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (p<0.05) and no current peak was observed at -325mV that related to Ag-Hg phase and Cu6Sn5 phase in anodic polarization curves. The results indicated that the corrosion resistance of high-copper single-composition amalgam could be improved by Ag-Cu nanoparticle-doping.

  14. Fe Doped CdTeS Magnetic Quantum Dots for Bioimaging†

    PubMed Central

    Saha, Ajoy K.; Sharma, Parvesh; Sohn, Han-Byul; Ghosh, Siddhartha; Das, Ritesh. K.; Hebard, Arthur F.; Zeng, Huadong; Baligand, Celine; Walter, Glenn A.

    2013-01-01

    A facile synthesis of 3-6 nm, water dispersible, near-infrared (NIR) emitting, quantum dots (QDs) magnetically doped with Fe is presented. Doping of alloyed CdTeS nanocrystals with Fe was achieved in situ using a simple hydrothermal method. The magnetic quantum dots (MQDs) were capped with NAcetyl-Cysteine (NAC) ligands, containing thiol and carboxylic acid functional groups to provide stable aqueous dispersion. The optical and magnetic properties of the Fe doped MQDs were characterized using several techniques. The synthesized MQDs are tuned to emit in the Vis-NIR (530-738 nm) wavelength regime and have high quantum yields (67.5-10%). NIR emitting (738 nm) MQDs having 5.6 atomic% Fe content exhibited saturation magnetization of 85 emu/gm[Fe] at room temperature. Proton transverse relaxivity of the Fe doped MQDs (738 nm) at 4.7 T was determined to be 3.6 mM−1s−1. The functional evaluation of NIR MQDs has been demonstrated using phantom and in vitro studies. These water dispersible, NIR emitting and MR contrast producing Fe doped CdTeS MQDs, in unagglomerated form, have the potential to act as multimodal contrast agents for tracking live cells. PMID:24634776

  15. Tungsten carbide laser alloying of a low alloyed steel

    NASA Astrophysics Data System (ADS)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  16. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  17. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  18. Alloying ZnS in the hexagonal phase to create high-performing transparent conducting materials.

    PubMed

    Faghaninia, Alireza; Bhatt, Kunal Rajesh; Lo, Cynthia S

    2016-08-10

    Alloyed zinc sulfide (ZnS) has shown promise as a relatively inexpensive and earth-abundant transparent conducting material (TCM). Though Cu-doped ZnS has been identified as a high-performing p-type TCM, the corresponding n-doped ZnS has, to date, been challenging to synthesize in a controlled manner; this is because the dopant atoms compete with hole-inducing zinc vacancies near the conduction band minimum as the most thermodynamically stable intrinsic point defects. We thus aim to identify the most promising n-type ZnS-based TCM, with the optimal combination of physical stability, transparency, and electrical conductivity. Using a relatively new method for calculating the free energy of both the sphalerite (cubic) and wurtzite (hexagonal) phases of undoped and doped ZnS, we find that doped ZnS is more stable in the hexagonal structure. This, for the first time, fundamentally explains previous experimental observations of the coexistence of both phases in doped ZnS; hence, it profoundly impacts future work on sulfide TCMs. We also employ hybrid density functional theory calculations and a new carrier transport model, AMSET (ab initio model for mobility and Seebeck coefficient using the Boltzmann transport equation), to analyze the defect physics and electron mobility of the different cation- (B, Al, Ga, In) and anion-doped (F, Cl, Br, I) ZnS, in both the cubic and hexagonal phases, at various dopant compositions, temperatures, and carrier concentrations. Among all doped ZnS candidates, Al-doped ZnS (AZS) exhibits the highest dopant solubility, largest electronic band gap, and highest electrical conductivity of 3830, 1905, and 321 S cm(-1), corresponding to the possible carrier concentrations of n = 10(21), 10(20), and 10(19) cm(-3), respectively, at the optimal 6.25% dopant concentration of Al and the temperature of 300 K.

  19. DESIGN DATA STUDY FOR COATED COLUMBIUM ALLOYS

    DTIC Science & Technology

    ANTIOXIDANTS, * COATINGS , * NIOBIUM ALLOYS, *REFRACTORY COATINGS , *SILICON COATINGS , ALLOYS, ALUMINUM, DEFORMATION, ELASTIC PROPERTIES, HIGH...TEMPERATURE, OXIDATION, PLASTIC PROPERTIES, REENTRY VEHICLES, REFRACTORY MATERIALS, SHEETS, SILICIDES , VACUUM APPARATUS, VAPOR PLATING, ZIRCONIUM ALLOYS

  20. Materials data handbook, Inconel alloy 718

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  1. Free energy and phase diagram of chromium alloys

    SciTech Connect

    Fishman, R.S. ); Liu, S.H. )

    1993-08-01

    The phase diagram of chromium alloys is remarkably rich. At the Neel temperature of 310 K, pure chromium undergoes a weakly first-order phase transition into an incommensurate spin-density wave (SDW) state. When doped with more than 0.2% manganese, this transition becomes second order and the SDW becomes commensurate. Over 25 years ago, Koehler [ital et] [ital al]. and Komura, Hamaguchi, and Kunitomi observed a first-order commensurate-to-incommensurate (CI) transition in CrMn alloys. The temperature of this CI transition decreased to zero as the manganese concentration increases from about 0.2% to about 1.5%. Using mean-field theory, we have constructed the free energy and phase diagram of chromium alloys in the presence of electron scattering. In the absence of scattering, the phase diagram allows a first-order phase transition from the incommensurate to the commensurate states with decreasing temperature. But if the damping is sufficiently large, the phase-separation curve flips from the right side of the tricritical point to the left. So within a small window of manganese concentrations, the commensurate state undergoes a first-order transition into the incommensurate state with decreasing temperature, in agreement with the experiments of Koehler [ital et] [ital al]. At zero temperature, we find a first-order phase transition from the incommensurate to the commensurate state with manganese doping, in agreement with the work of Komura, Hamaguchi, and Kunitomi. In the absence of damping, the zero-temperature energy gap [Delta](0) in the commensurate regime is independent of manganese concentration. But in the presence of damping [Delta](0) becomes an increasing function of the manganese concentration.

  2. Free energy and phase diagram of chromium alloys

    NASA Astrophysics Data System (ADS)

    Fishman, R. S.; Liu, S. H.

    1993-08-01

    The phase diagram of chromium alloys is remarkably rich. At the Néel temperature of 310 K, pure chromium undergoes a weakly first-order phase transition into an incommensurate spin-density wave (SDW) state. When doped with more than 0.2% manganese, this transition becomes second order and the SDW becomes commensurate. Over 25 years ago, Koehler et al. and Komura, Hamaguchi, and Kunitomi observed a first-order commensurate-to-incommensurate (CI) transition in CrMn alloys. The temperature of this CI transition decreased to zero as the manganese concentration increases from about 0.2% to about 1.5%. Using mean-field theory, we have constructed the free energy and phase diagram of chromium alloys in the presence of electron scattering. In the absence of scattering, the phase diagram allows a first-order phase transition from the incommensurate to the commensurate states with decreasing temperature. But if the damping is sufficiently large, the phase-separation curve flips from the right side of the tricritical point to the left. So within a small window of manganese concentrations, the commensurate state undergoes a first-order transition into the incommensurate state with decreasing temperature, in agreement with the experiments of Koehler et al. At zero temperature, we find a first-order phase transition from the incommensurate to the commensurate state with manganese doping, in agreement with the work of Komura, Hamaguchi, and Kunitomi. In the absence of damping, the zero-temperature energy gap Δ(0) in the commensurate regime is independent of manganese concentration. But in the presence of damping Δ(0) becomes an increasing function of the manganese concentration.

  3. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  4. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  5. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  6. Study of Pb-doped Ge{sub 2}Sb{sub 2}Te{sub 5} in crystalline phase using first principle calculations

    SciTech Connect

    Singh, Janpreet; Tripathi, S. K. E-mail: surya-tr@yahoo.com; Singh, Gurinder; Kaura, Aman

    2015-08-28

    To improve the phase change characteristics of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb{sub 2}Te{sub 3} segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can control any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.

  7. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  8. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  9. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  10. Machine Casting of Ferrous Alloys.

    DTIC Science & Technology

    possible today. Extensive work was conducted on casting of semi-solid alloys when highly fluid (’ Rheocasting ’) and when thixotropically gelled...Thixocasting’). In initial phases of the program, copper base alloys and cast iron alloys were prepared with special non-dendritic Rheocast structure by batch...processing. Compatibility studies were carried out to select materials suitable for preparing cast iron with the Rheocast structure. Design

  11. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  12. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  13. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  14. Electrical Resisitivity in Metals and Metallic Alloys from First Principles

    NASA Astrophysics Data System (ADS)

    Slepko, Alexander; Shankar, Sadasivan; Weber, Justin; Demkov, Alexander

    2013-03-01

    We have developed a method for estimation of resistivity of metals and their alloys based on ab initio methods. The formalism is based on quantifying electron phonon interactions using Boltzmann-based electronic transport and plane wave-based density functional theory for electronic structure and phonon frequencies. We explicitly take into account long wave length scattering, energy band dispersion and interaction between impurities, often omitted in previous approaches. Given the detailed nature of our formalism, we will explain deviations from the most-used Matthiessen's Rule. We have tested our technique on Al, Cu, and Al-doping in Copper. Our resisitivity values compare very well with experimental data at room temperature; Al 2.75 μΩ cm (experimental, 2.83 μΩ cm), Cu 1.81 μΩ cm (experimental, 1.66 μΩ cm). We were also able to estimate the drops in conductivity of Cu due to alloying with Al for a wide range of composition (from dilute to concentrated alloys) which are consistent with the experiments. Given the general nature of our formalism, we believe that it is extendable to nanostructures.

  15. Towards low-dimensional hole systems in Be-doped GaAs nanowires.

    PubMed

    Ullah, A R; Gluschke, J G; Krogstrup, P; Sørensen, C B; Nygård, J; Micolich, A P

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin-orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio [Formula: see text], and sub-threshold slope 50 mV/dec at [Formula: see text] K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  16. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Gluschke, J. G.; Krogstrup, P.; Sørensen, C. B.; Nygård, J.; Micolich, A. P.

    2017-03-01

    GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top-gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good transistor performance for moderate doping, with conduction freezing out at low temperature for lowly doped nanowires and inability to reach a clear off-state under gating for the highly doped nanowires. Our best devices give on-state conductivity 95 nS, off-state conductivity 2 pS, on-off ratio ∼ {10}4, and sub-threshold slope 50 mV/dec at T=4 K. Lastly, we made a device featuring a moderately doped nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a plateau in the sub-threshold region that is reproducible in separate cool-downs and indicative of possible conductance quantisation highlighting the potential for future quantum device studies in this material system.

  17. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  18. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  19. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  20. Epitaxial Silicon Doped With Antimony

    NASA Technical Reports Server (NTRS)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  1. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dai, P.; Tan, M.; Wu, Y. Y.; Ji, L.; Bian, L. F.; Lu, S. L.; Yang, H.

    2015-03-01

    Solid-state tellurium (Te) is used as an n-type dopant of AlInP grown by molecular beam epitaxy (MBE). The carrier concentration proportionally increases with increasing Te beam equivalent pressure (BEP) up to a high doping density of 1×1019 cm-3. The incorporation of Te into AlInP results in a mirror-like surface at a moderate doping density due to its surfactant effect, while the surface roughness increased with a further rising of Te doping concentration. Furthermore, for the same In and Al flux ratio, the increase of the Te flux leads to a decreased In-content, but little effect on the alloy's disorder is observed. The highly Te-doped AlInP was used in a GaAs solar cell as a window layer. As compared with the solar cell with the Si-doped AlInP window layer, the device with the Te-doped AlInP window layer exhibits the higher efficiency and an extended increase under concentrated solar illumination, due to the benefits of the higher doping density in the Te-doped epilayer.

  2. Enhancement of spin polarization via Fermi level tuning in Co{sub 2}MnSn{sub 1−x}Sb{sub x} (x = 0, 0.25. 0.5, 0.75, 1) Heusler alloys

    SciTech Connect

    Singh, Mukhtiyar Thakur, Jyoti; Kashyap, Manish K.; Saini, Hardev S.

    2014-04-24

    Full potential approach has been employed to tune Fermi level in Co{sub 2}MnSn{sub 1−x}Sb{sub x} (x = 0, 0.25, 0.5, 0.75, 1) Heulser alloys for enhancement of spin polarization and finding signature of half metallicity. Present density functional theory (DFT) based calculation indicates that stoichoimetric Heusler alloy, Co{sub 2}MnSn is not a half-metallic ferromagnet but the doping of Sb in it results in the shifting of E{sup F} in well-defined energy gap which leads the 100% spin polarization in the resultant alloys. The magnetism in present alloys is governed by localized moment on Mn atom mainly. The tuning of half-metallicity using doping can be proved as an ideal technique to search the new materials which can accomplish the need of spintronics.

  3. Investigation of H2 and H2S adsorption on niobium- and copper-doped palladium surfaces.

    PubMed

    Ozdogan, Ekin; Wilcox, Jennifer

    2010-10-14

    Alloying or doping Pd may be an option for overcoming sulfur poisoning. The current investigation probes the mechanism associated with sulfur binding to determine if Nb and Cu are appropriate doping metals. In this study, the effect of doping Pd with Cu or Nb on the binding strength of H(2) and H(2)S was investigated using plane-wave density functional theory-based electronic structure calculations to determine mechanisms of adsorption. Results of this work indicate that for pure Pd and Pd-doped surfaces, H(2) dissociates with the H atoms most stable on the fcc-fcc site. The overall d-band centers calculated for H(2) adsorption at the fcc-fcc site for the pure and doped-Pd surfaces indicate that the H(2) adsorption strength trend is Pd > Cu > Nb. Regarding H(2)S adsorption on Pd and Pd-doped surfaces, it was found that Cu has a lower affinity for H(2)S compared to Pd and Nb. The calculation of the local density of states of the s-, p-, and d-orbitals of the adsorbate-surface complex reveals an increase in the occupation of s-and p-states of the adsorbate and d-states of the dopant metals upon adsorption. In addition, the H(2)S binding trend is found to be Cu < Pd < Nb, with the doped-Cu surfaces exhibiting the weakest binding and doped-Nb surfaces the strongest binding. Geometry comparisons of each H(2)S-adsorbed complex shows that the hydrogen atoms are located closest to the surface in the case of Nb, indicating that the strong H-surface interaction leads to the enhanced adsorption behavior, rather than the S-surface interaction; in fact, the sulfur atom is located furthest from the surface doped with Nb.

  4. Substitutional doping in nanocrystal superlattices

    NASA Astrophysics Data System (ADS)

    Cargnello, Matteo; Johnston-Peck, Aaron C.; Diroll, Benjamin T.; Wong, Eric; Datta, Bianca; Damodhar, Divij; Doan-Nguyen, Vicky V. T.; Herzing, Andrew A.; Kagan, Cherie R.; Murray, Christopher B.

    2015-08-01

    Doping is a process in which atomic impurities are intentionally added to a host material to modify its properties. It has had a revolutionary impact in altering or introducing electronic, magnetic, luminescent, and catalytic properties for several applications, for example in semiconductors. Here we explore and demonstrate the extension of the concept of substitutional atomic doping to nanometre-scale crystal doping, in which one nanocrystal is used to replace another to form doped self-assembled superlattices. Towards this goal, we show that gold nanocrystals act as substitutional dopants in superlattices of cadmium selenide or lead selenide nanocrystals when the size of the gold nanocrystal is very close to that of the host. The gold nanocrystals occupy random positions in the superlattice and their density is readily and widely controllable, analogous to the case of atomic doping, but here through nanocrystal self-assembly. We also show that the electronic properties of the superlattices are highly tunable and strongly affected by the presence and density of the gold nanocrystal dopants. The conductivity of lead selenide films, for example, can be manipulated over at least six orders of magnitude by the addition of gold nanocrystals and is explained by a percolation model. As this process relies on the self-assembly of uniform nanocrystals, it can be generally applied to assemble a wide variety of nanocrystal-doped structures for electronic, optical, magnetic, and catalytic materials.

  5. Genetic Doping and Health Damages

    PubMed Central

    Fallahi, AA; Ravasi, AA; Farhud, DD

    2011-01-01

    Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049

  6. Metastability and inverse magnetocaloric effect in doped manganite (Nd(0.25)Sm(0.25)Sr(0.5)MnO3) and ferromagnetic shape memory alloy (Ni2Mn(1.36)Sn(0.64)): a comparison.

    PubMed

    Chatterjee, S; Giri, S; Majumdar, S

    2012-09-12

    The manganite Nd(0.25)Sm(0.25)Sr(0.5)MnO(3) (NSSMO) shows a first-order metal to insulator transition on cooling, which is concomitant with a magnetic transition from the ferromagnetic to antiferromagnetic state. In some respect the sample shows a striking similarity with Ni-Mn-Sn based ferromagnetic shape memory alloys (FSMAs) undergoing a first-order magneto-structural transition, and efforts have been made to highlight the similarities and dissimilarities of the studied manganite with one such FSMA of composition Ni(2)Mn(1.36)Sn(0.64). From our transport and magnetic investigations, the region of transition in the NSSMO is found to be highly metastable, with a clear indication of a magnetically arrested state which persists even when the sample is cooled down to the lowest temperature of measurement. Interestingly, the studied manganite shows an inverse magnetocaloric effect similar to the FSMA. However, a striking difference between the two compositions is evident in the low-temperature magneto-transport behavior: while a clear signature of tunneling magnetoresistance is present in NSSMO due to the coexisting metallic and insulating clusters of nanometer dimension, the studied FSMA do not show such behavior due to the absence of any insulating phase in the intermetallic alloy.

  7. Large-scale production of Si{sub 0.8}Ge{sub 0.2} thermoelectric alloys by mechanical alloying

    SciTech Connect

    Cook, B.A.; Harringa, J.L.; Loughin, S.; Centurioni, D.X.

    1993-10-01

    Advanced processing techniques were combined with refinements in composition to produce homogeneous, production-scale quantities of n- and p-type Si{sub 0.8}Ge{sub 0.2} alloys with improved thermoelectric properties. Two p-type compacts of Si{sub 0.8}Ge{sub 0.2} doped with 0.8 atom% boron and one n-type compact doped with 0.8 m/o GaP and a P/Ga ratio of 2.38 were prepared by mechanical alloying. Resulting powders were consolidated into 7.62 cm diameter compacts by vacuum hot pressing. Transport and thermoelectric properties were measured. As-pressed samples were found to have low carrier mobility. Metallographic analysis revealed a sub-micron grain size which would suggest a high density of grain boundary potential barriers. A heat treatment was applied and the measurements were repeated. The post-treatment p-type samples showed a 33% grain growth and an integrated average figure of merit of 0.6{times}10{sup {minus}3} K{sup {minus}1} over the 573--1273 K range. This paper presents the details of fabrication method and compares the thermoelectric properties with the properties of similar alloys manufactured by traditional vacuum casting and hot pressing.

  8. Substitution effect on magnetic and electrical properties of half-Heusler alloy Ni{sub 1−x}Co{sub x}Mn{sub 1−y}Fe{sub y}Sb

    SciTech Connect

    Kushwaha, Varun Sharma, Himanshu Dixit, Dinesh Tomy, C. V.; Tulapurkar, Ashwin

    2014-04-24

    We have studied the effects of Co and Fe doping on the magnetic and electrical properties of half-Heusler compound NiMnSb. The alloys were prepared by arc-melting method in the presence of Argon gas. The powder X-ray diffraction of the each alloy was performed in air at room temperature. The magnetic and electrical properties were performed in the temperature range 2–400 K and in magnetic field up to 1 T.

  9. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  10. Gallium-doped indium oxide nanoleaves: Structural characterization, growth mechanism and optical properties

    NASA Astrophysics Data System (ADS)

    Liu, Lizhu; Chen, Yiqing; Guo, Linliang; Guo, Taibo; Zhu, Yunqing; Su, Yong; Jia, Chong; Wei, Meiqin; Cheng, Yinfen

    2011-11-01

    The novel two-dimensional (2-D) Ga-doped In2O3 nanoleaves are synthesized by a simple one-step carbonthermal evaporation method using Cu-Sn alloy as the substrates. Two basic parts construct this leaf-like nanostructure: a long central trunk and two tapered nanoribbons in symmetric distribution in relation to the trunk. The Ga-In-O alloy particles are located at or close to the tips of the central trunks and serve as catalysts for the central trunk growth by the self-catalytic vapor-liquid-solid (VLS) mechanism. And the homoepitaxial growth of tapered nanoribbon on the surface of the central trunk can be explained by vapor-solid (VS) mechanism. The room-temperature photoluminescence (PL) measurement of this nanoscaled Ga-doped In2O3 transparent conducting oxide (TCO) detected two blue peaks located at 432 nm and 481 nm, respectively, which can be used by Ru-based dye and indicates potential application in dye-sensitized solar cells (DSSCs). The successful preparation of this novel 2-D Ga-doped In2O3 nanoleaves not only enriches the synthesis of TCO materials, but also provides new blocks in future architecture of functional nano-devices.

  11. Comparative study of structure formation and mechanical behavior of age-hardened Ti–Nb–Zr and Ti–Nb–Ta shape memory alloys

    SciTech Connect

    Inaekyan, K.; Brailovski, V.; Prokoshkin, S.; Pushin, V.; Dubinskiy, S.; Sheremetyev, V.

    2015-05-15

    This work sets out to study the peculiar effects of aging treatment on the structure and mechanical behavior of cold-rolled and annealed biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) (at.%) shape memory alloys by means of transmission electron microscopy, X-ray diffractometry, functional fatigue and thermomechanical testing techniques. Dissimilar effects of aging treatment on the mechanical behavior of Zr- and Ta-doped alloys are explained by the differences in the ω-phase formation rate, precipitate size, fraction and distribution, and by their effect on the alloys' critical stresses and transformation temperatures. Even short-time aging of the TNZ alloy leads to its drastic embrittlement caused by “overaging”. On the contrary, during aging of the TNT alloy, formation of finely dispersed ω-phase precipitates is gradual and controllable, which makes it possible to finely adjust the TNT alloy functional properties using precipitation hardening mechanisms. To create in this alloy nanosubgrained dislocation substructure containing highly-dispersed coherent nanosized ω-phase precipitates, the following optimum thermomechanical treatment is recommended: cold rolling (true strain 0.37), followed by post-deformation annealing (600 °C, 15–30 min) and age-hardening (300 °C, 30 min) thermal treatments. It is shown that in TNT alloy, pre-transition diffraction effects (diffuse reflections) can “mask” the β-phase substructure and morphology of secondary phases. - Highlights: • TNZ alloy is characterized by much higher ω-phase precipitation rate than TNT alloy. • Difference in precipitation rates is linked to the difference in Zr and Ta diffusion mobility. • Aging of nanosubgrained TNZ alloy worsens its properties irrespective of the aging time. • Aging time of nanosubgrained TNT alloy can be optimized to improve its properties.

  12. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  13. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  14. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  15. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  16. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  17. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  18. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect.

  19. DEVELOPMENT OF PROTECTIVE COATINGS FOR TANTALUM-BASE ALLOYS

    DTIC Science & Technology

    PHASE STUDIES, PHYSICAL PROPERTIES, REFRACTORY MATERIALS, SILICIDES , SILICON COATINGS , SILICON COMPOUNDS, TANTALUM, TENSILE PROPERTIES, TITANIUM COMPOUNDS, TUNGSTEN ALLOYS, VANADIUM ALLOYS, VAPOR PLATING, ZINC COATINGS ....TANTALUM ALLOYS, ALLOYS, ALUMINUM COATINGS , ALUMINUM COMPOUNDS, BORON COMPOUNDS, CERAMIC COATINGS , CHROMIUM COMPOUNDS, COATINGS , FLAME SPRAYING...HAFNIUM ALLOYS, HAFNIUM COMPOUNDS, HARDNESS, HEAT RESISTANT ALLOYS, INTERMETALLIC COMPOUNDS, METAMATHEMATICS, NIOBIUM ALLOYS, OSCILLOGRAPHS, OXIDES

  20. Effect of Mn on microstructure and corrosion properties of extruded Mg-1%Zn alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Ma, Y.; Xi, Z. Z.; Xu, C. J.; Lv, Z. L.

    2017-03-01

    The microstructure of the extruded Mg-1Zn alloy doped with different content of manganese was analyzed by optical microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffractometry. The mass-loss immersion method and electrochemical test were used to evaluate the corrosion properties. The results show that the microstructure of the extruded Mg-1%Zn-x%Mn (mass fraction, x=0.4, 0.8, 1.2) alloys consists of α-Mg and α-Mn, the grain size of α-Mg decreases with increasing Mn content. Electrochemical corrosion behavior of the alloys is similar. Mn has considerable effect on the corrosion rate, the corrosion process is exacerbated by the galvanic corrosion occurred at interface between α-Mg and α-Mn. The corrosion rate increases as the Mn content increases. Mg-1%Zn-0.4% Mn alloy exhibits the best corrosion resistance between the Mg-1%Zn-x%Mn alloys

  1. Alloy development for irradiation performance in fusion reactors. Annual report, September 1979-September 1980

    SciTech Connect

    Harling, O K; Grant, N J

    1980-12-01

    This report summarizes the research and development work performed during the second year of an M.I.T. project directed toward the development of improved structural alloys for the fusion reactor first wall application. Several new alloys have been produced by rapid solidification. Emphasis in alloy design and production has been placed on producing austenitic Type 316SS with fine dispersions of TiC and Al/sub 2/O/sub 3/ particles. Results of mechanical and microstructural tests are presented. A number of neutron irradiations have been initiated on samples fabricated from alloys produced in this project. A dual beam, heavy ion and helium ion, irradiation was completed using several alloys and a range of temperatures, damage rates and total doses. Modeling of irradiation phenomena has been continued with emphasis in the last year upon understanding the effect of recoil resolution on relatively stable second phase particles. Work continued to fully characterize the microstructure of several ZrB/sub 2/ doped stainless steels.

  2. Multisource Synergistic Electrocatalytic Oxidation Effect of Strongly Coupled PdM (M = Sn, Pb)/N-doped Graphene Nanocomposite on Small Organic Molecules

    PubMed Central

    Wu, Peng; Huang, Yiyin; Kang, Longtian; Wu, Maoxiang; Wang, Yaobing

    2015-01-01

    A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm−2) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm−2) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved. PMID:26434949

  3. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  4. Lightweight Disk Alloy Development

    DTIC Science & Technology

    1991-04-01

    2001 (1982). 45. K C. Russell and J. W Eddington , JI Mat. Sci., 6, 20 (1972). 46. M. J. Lequeux, Ph.D. Thesis, Univ. de Paris-Sud (1979). 47. P S ...AD-A237 064 UGHTWEIGHT DISK ALLOY DEVELOPMENT S . M. Russel, C. C. Law and M. J. Blackburn Uted Te lowkles Corpoaton Prat & Whtney Govnment Enes...Space Propulo P. 0. Box 109600 West Palm Beach, FL 33410-9600 P. C. Clapp and D. M. Pease Istitute of Materials Science 9 ELECT Fg AW 11il S E Final

  5. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  6. Doping and thrombosis in sports.

    PubMed

    Lippi, Giuseppe; Banfi, Giuseppe

    2011-11-01

    Historically, humans have long sought to enhance their "athletic" performance to increase body weight, aggressiveness, mental concentration and physical strength, contextually reducing fatigue, pain, and improving recovery. Although regular training is the mainstay for achieving these targets, the ancillary use of ergogenic aids has become commonplace in all sports. The demarcation between ergogenic aids and doping substances or practices is continuously challenging and mostly based on perceptions regarding the corruption of the fairness of competition and the potential side effects or adverse events arising from the use of otherwise unnecessary ergogenic substances. A kaleidoscope of side effects has been associated with the use of doping agents, including behavioral, skeletal, endocrinologic, metabolic, hemodynamic, and cardiovascular imbalances. Among the various doping substances, the most striking association with thrombotic complications has been reported for androgenic anabolic steroids (i.e., cardiomyopathy, fatal and nonfatal arrhythmias, myocardial infarction [MI], intracardiac thrombosis, stroke, venous thromboembolism [VTE], limb arterial thrombosis, branch retinal vein occlusion, cerebral venous sinus thrombosis) and blood boosting (i.e., VTE and MI, especially for epoetin and analogs). The potential thrombotic complication arising from misuse of other doping agents such as the administration of cortisol, growth hormone, prolactin, cocaine, and platelet-derived preparations is instead speculative or anecdotal at best. The present article provides an overview on the epidemiological association as well as the underlying biochemical and biological mechanisms linking the practice of doping in sports with the development of thrombosis.

  7. Site occupation, phase stability, crystal and electronic structures of the doped S phase (Al2CuMg)

    NASA Astrophysics Data System (ADS)

    Gu, Jianglong; Gu, Huimin; Zhai, Yuchun; Ma, Peihua

    2016-07-01

    The S phase (Al2CuMg) is an important strengthening phase for the Al-Cu-Mg alloys, which are widely used in the aerospace and transportation industries. The commonly added alloying elements (Mn, Ti, Zr) and the impurity elements (Fe and Si) in the Al-Cu-Mg alloys are always found in the S phase. First-principles calculations based on the density functional theory (DFT) were used to investigate the influence of doping Mn, Ti, Zr, Fe and Si elements on the S phase. Key findings demonstrated that these elements prefer to occupy different atomic sites in the S phase. Ti and Zr improved the structural stability of the S phase. The bulk modulus of the Fe, Si, Ti and Zr doped S phases becomes larger than that of the pure S phase. Both the crystal and electronic structures of the S phase are affected by the dopants. The results of this study provide a better theoretical understanding of the S phase, providing guidance for improved composition design and performance optimization of Al-Cu-Mg alloys.

  8. Stable palladium alloys for diffusion of hydrogen

    NASA Technical Reports Server (NTRS)

    Patapoff, M.

    1973-01-01

    Literature search on hydrogen absorption effect on palladium alloys revealed existence of alloy compositions in which alpha--beta transition does not take place. Survey conclusions: 40 percent gold alloy of palladium should be used in place of palladium; alloy must be free of interstitial impurities; and metallic surfaces of tube must be clean.

  9. Interaction Of Hydrogen With Metal Alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Montano, J. W.

    1993-01-01

    Report describes experiments on interaction of hydrogen with number of metal alloys. Discusses relationship between metallurgical and crystallographic aspects of structures of alloys and observed distributions of hydrogen on charging. Also discusses effect of formation of hydrides on resistances of alloys to hydrogen. Describes attempt to correlate structures and compositions of alloys with their abilities to resist embrittlement by hydrogen.

  10. THEORY OF DIFFUSION IN ORDERING ALLOYS

    DTIC Science & Technology

    interstitial atoms through the interstices Diffusion of interstitial atoms in alloys with a body - centered cubic lattice Diffusion of...sites of the alloy The case of an alloy with body - centered cubic lattic structure The case of an alloy with a face-centered cubic lattic

  11. Tri-iodide reduction activity of ultra-small size PtFe nanoparticles supported nitrogen-doped graphene as counter electrode for dye-sensitized solar cell.

    PubMed

    Nechiyil, Divya; Vinayan, B P; Ramaprabhu, S

    2017-02-15

    Efficient and cost effective counter electrode (CE) is pre-requisite for the commercialization of dye-sensitized solar cell (DSSC). Present work investigates ultra small size platinum-iron alloy nanoparticles dispersed over nitrogen-doped graphene (PtFe/NG) as an effective counter electrode for DSSC. Hereby we achieve low loading of Pt by alloying with Fe accompanied by superior electrocatalytic activity towards the iodide-triiodide (I(-)/I3(-)) mechanism. Enhancement in electrocatalytic performance of PtFe/NG has been shown by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization analysis. PtFe/NG counter electrode exhibits higher power conversion efficiency (∼6.12%) with lower charge transfer resistance, which helps in faster diffusion of I(-)/I3(-) ions as compared to NG and Pt/NG counter electrodes. The increased electrocatalytic activity of PtFe/NG is due to the collective effect of intrinsic electronic effects by alloying, uniform dispersion of small PtFe alloy nanoparticles over nitrogen doped graphene, and additional catalytic sites offered by nitrogen-doped graphene.

  12. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    PubMed

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  13. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  14. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  15. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection.

  16. Mn-Doped Multinary CIZS and AIZS Nanocrystals.

    PubMed

    Manna, Goutam; Jana, Santanu; Bose, Riya; Pradhan, Narayan

    2012-09-20

    Multinary nanocrystals (CuInS2, CIS, and AgInS2, AIS) are widely known for their strong defect state emission. On alloying with Zn (CIZS and AIZS), stable and intense emission tunable in visible and NIR windows has already been achieved. In these nanocrystals, the photogenerated hole efficiently moves to the defect-induced state and recombines with the electron in the conduction band. As a result, the defect state emission is predominantly observed without any band edge excitonic emission. Herein, we report the doping of the transition-metal ion Mn in these nanocrystals, which in certain compositions of the host nanocrystals quenches this strong defect state emission and predominantly shows the spin-flip Mn emission. Though several Mn-doped semiconductor nanocrystals are reported in the literature, these nanocrystals are of its first kind that can be excited in the visible window, do not contain the toxic element Cd, and provide efficient emission. Hence, when Mn emission is required, these multinary nanocrystals can be the ideal versatile materials for widespread technological applications.

  17. Comments on the thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys

    NASA Astrophysics Data System (ADS)

    Rowe, D. M.; Fu, L. W.; Williams, S. G. K.

    1993-05-01

    The recent results of C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck, and P. D. Gorsuch [J. Appl. Phys. 69, 4333 (1991)] regarding the effect of grain size on the thermoelectric figure of merit of heavily doped p-type silicon germanium alloys are compared to earlier results on similar materials. The data confirm that the room-temperature figure-of-merit is significantly increased in materials with a small grain size.

  18. Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.

    PubMed

    Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V

    2016-10-01

    The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite.

  19. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys.

    PubMed

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-10-03

    Dual-phase (Fe83Ga17)100-xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy.

  20. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys

    PubMed Central

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-01-01

    Dual-phase (Fe83Ga17)100−xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy. PMID:27694839

  1. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    PubMed

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp(2) carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  2. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes

    PubMed Central

    Halpern, Jeffrey M.; Martin, Heidi B.

    2014-01-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes. PMID:25404788

  3. Investigating enhanced mechanical properties in dual-phase Fe-Ga-Tb alloys

    NASA Astrophysics Data System (ADS)

    Meng, Chongzheng; Wang, Hui; Wu, Yuye; Liu, Jinghua; Jiang, Chengbao

    2016-10-01

    Dual-phase (Fe83Ga17)100‑xTbx alloys with 0 ≤ x ≤ 1 were synthesized by arc melting and homogenization treatment. The microstructures and the corresponding mechanical properties were systematically investigated. The chemical composition of the body centered cubic matrix is Fe83Ga17. The monoclinic second phase was composed of meltable precipitates with approximate composition Fe57Ga33Tb10. The nano-hardness of matrix and precipitates were 2.55 ± 0.17 GPa and 6.81 ± 1.03 GPa, respectively. Both the ultimate tensile strength (UTS) and fracture strain (ε) of the alloys were improved by the precipitates for x ≤ 0.2 alloys, but the strain decreases significantly at higher values of x. As potential structural-functional materials, the best mechanical properties obtained were a UTS of 595 ± 10 MPa and an ε of 3.5 ± 0.1%, four-fold and seven-fold improvements compared with the un-doped alloy. The mechanism for these anomalous changes of mechanical properties was attributed to the dispersed precipitates and semi-coherent interfaces, which serve as strong obstacles to dislocation motion and reduce the stress concentration at the grain boundaries. A sizeable improvement of magnetostriction induced by the precipitates in the range 0 ≤ x ≤ 0.2 was discovered and an optimal value of 150 ± 5 ppm is found, over three times higher than that of the un-doped alloy.

  4. Developing strategies for detection of gene doping.

    PubMed

    Baoutina, Anna; Alexander, Ian E; Rasko, John E J; Emslie, Kerry R

    2008-01-01

    It is feared that the use of gene transfer technology to enhance athletic performance, the practice that has received the term 'gene doping', may soon become a real threat to the world of sport. As recognised by the anti-doping community, gene doping, like doping in any form, undermines principles of fair play in sport and most importantly, involves major health risks to athletes who partake in gene doping. One attraction of gene doping for such athletes and their entourage lies in the apparent difficulty of detecting its use. Since the realisation of the threat of gene doping to sport in 2001, the anti-doping community and scientists from different disciplines concerned with potential misuse of gene therapy technologies for performance enhancement have focused extensive efforts on developing robust methods for gene doping detection which could be used by the World Anti-Doping Agency to monitor athletes and would meet the requirements of a legally defensible test. Here we review the approaches and technologies which are being evaluated for the detection of gene doping, as well as for monitoring the efficacy of legitimate gene therapy, in relation to the detection target, the type of sample required for analysis and detection methods. We examine the accumulated knowledge on responses of the body, at both cellular and systemic levels, to gene transfer and evaluate strategies for gene doping detection based on current knowledge of gene technology, immunology, transcriptomics, proteomics, biochemistry and physiology.

  5. Incubational domain characterization in lightly doped ceria

    SciTech Connect

    Li Zhipeng; Mori, Toshiyuki; John Auchterlonie, Graeme; Zou Jin; Drennan, John

    2012-08-15

    Microstructures of both Gd- and Y-doped ceria with different doping level (i.e., 10 at% and 25 at%) have been comprehensively characterized by means of high resolution transmission electron microscopy and selected area electron diffraction. Coherent nano-sized domains can be widely observed in heavily doped ceria. Nevertheless, it was found that a large amount of dislocations actually exist in lightly doped ceria instead of heavily doped ones. Furthermore, incubational domains can be detected in lightly doped ceria, with dislocations located at the interfaces. The interactions between such linear dislocations and dopant defects have been simulated accordingly. As a consequence, the formation mechanism of incubational domains is rationalized in terms of the interaction between intrinsic dislocations of doped ceria and dopant defects. This study offers the insights into the initial state and related mechanism of the formation of nano-sized domains, which have been widely observed in heavily rare-earth-doped ceria in recent years. - Graphical abstract: Interactions between dislocations and dopants lead to incubational domain formation in lightly doped ceria. Highlights: Black-Right-Pointing-Pointer Microstructures were characterized in both heavily and light Gd-/Y-doped ceria. Black-Right-Pointing-Pointer Dislocations are existed in lightly doped ceria rather than heavily doped one. Black-Right-Pointing-Pointer Interactions between dislocations and dopant defects were simulated. Black-Right-Pointing-Pointer Formation of dislocation associated incubational domain is rationalized.

  6. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  7. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  8. Boron doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  9. Boron doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  10. Joint properties of cast Fe-Pt magnetic alloy laser welded to gold alloys.

    PubMed

    Watanabe, Ikuya; Nguyen, Khoi; Benson, P Andrew; Tanaka, Yasuhiro

    2006-01-01

    This study investigated the joint properties of a cast Fe-Pt magnetic alloy (Fe-36 at % Pt) laser welded to three gold alloys. The gold alloys used were ADA Type II and Type IV gold alloys, and an Ag-based (Ag-Au) gold alloy. Cast plates (0.5 x 3.0 x 10 mm) were prepared for each alloy. After the cast Fe-Pt plates were heat treated, they were butted against each of the three alloys and then laser welded with Nd:YAG laser at 200 V. Homogeneously welded specimens were also prepared for each alloy. Tensile testing was conducted at a crosshead speed of 1 mm/min. Failure load (N) and elongation (%) were recorded. After tensile testing, the fractured surfaces were examined with the use of SEM. The failure-load values of the group of alloys welded homogeneously were ranked in the order of: Ag-Au alloy > Type IV alloy > Type II alloy > Fe-Pt alloy. The Type IV alloy welded to Fe-Pt alloy had the highest failure-load value among the three alloys tested. The elongation results tended to follow a similar pattern. The results of this study indicated that Type IV gold alloy is a suitable alloy for metal frameworks to which cast Fe-Pt magnetic alloy is laser welded.

  11. High performance alloy electroforming

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Winkelman, D. M.

    1989-01-01

    Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718.

  12. DISPERSION STRENGTHENED NICKEL-BASE ALLOYS.

    DTIC Science & Technology

    The swaged cone of extruded Nichrome-thoria alloys prepared by the thermal decomposition of thorium nitrate onto alloy powder indicated descreased... swaging of these dispersion-strengthened Nichrome alloys was dependent on the presence of a mild steel jacket on the alloy rod as a result of the canned...extrusion practice. Efforts to cold swage the alloy materials without this jacket were unsuccessful. (Author)

  13. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  14. RETRACTED: Effect of F- ions on spectroscopic properties of Yb3+-doped zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Wang, Guonian; Zhang, Junjie; Dai, Shixun; Yang, Jianhu; Jiang, Zhonghong

    2005-06-01

    This article has been retracted at the request of the Editors, after a reader brought the following to their attention. Reason: The article substantially reproduces parts of articles published by the same authors in the Journal of Luminescence (“Effect of F- ions on physical and spectroscopic properties of Yb3+-doped TeO2 glasses”, Volume 113, Issues 1-2, Pages 27-32) and the Journal of Alloys and Compounds (“Fluorescence lifetime increase by introduction of F- ions in ytterbium-doped TeO2-based glasses”, Volume 393, Issues 1-2, Pages 279-282). There was also a failure to cite either of these articles. These other articles have also been retracted. This action has been agreed by the Editors of the three journals.

  15. Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals

    NASA Astrophysics Data System (ADS)

    Bhaumik, Saikat; Ghosh, Batu; Pal, Amlan J.

    2011-08-01

    We have introduced copper-doped semiconducting nanocrystals in light-emitting diodes (LEDs). Characteristics of the devices show that electroluminescence (EL) emission in these LEDs is color tunable. In copper-doped ZnS nanocrystals in the core and Zn1-xCdxS host as a shell-layer, photoluminescence (PL) arises from a transition from conduction band-edge of the host to 3d-levels of copper-ions. The PL of the nanocrystals and hence the EL of LEDs based on such nanostructures become tunable by varying the Cd-content in Zn-Cd-S alloys, that is, Zn1-xCdxS with different values of x, which changes the conduction band-edge of the host.

  16. Properties of doped semiconducting materials

    NASA Astrophysics Data System (ADS)

    Zemskov, V. S.

    The papers contained in this volume focus on the physicochemical principles of the doping of semiconductor materials. Topics discussed include impurity atoms and atomic levels, phase diagrams of the semiconductor-dopant system, distribution coefficients, dopant diffusion, and macro- and microsegregation of doping components. Attention is also given to the interaction between dopant atoms and lattice defects and the structure and decomposition of semiconductor-dopant solid solutions. Experimental data are presented for single crystals and epitaxial films of III-V, IV-VI, and II-VI semiconductors.

  17. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  18. Influence of arsenic species on the growth and properties of GaAsBi alloys

    NASA Astrophysics Data System (ADS)

    Field, R. L., III; Occena, J.; Jen, T.; Luengo-Kovac, M.; Yarlagadda, B.; Sih, V.; Kurdak, C.; Goldman, R. S.

    2015-03-01

    Due to the significant bandgap reduction associated with bismuth incorporation, dilute bismuthide semiconductor alloys have been proposed for high-efficiency optoelectronic devices. To achieve significant incorporation of bismuth into GaAsBi, molecular beam epitaxy at low temperature is required. Furthermore, many groups use As2 for low-temperature growth of GaAsBi, presumably due to historical reports of improved photoluminescence for low-temperature growth of GaAs with As2 in comparison with As4. Here, we show that Bi incorporation into GaAs is favorable over a wider range of growth conditions with As4 in comparison with As2. The preference for Bi incorporation with As4 is associated with the differences in the likelihood for As2 vs. As4 to replace weakly bonded surface Bi2. For growth with As4, the electron mobility for GaAsBi:Si is as high as 2500 cm2/V-s for Si-doped (n ~ 1018 cm-3) GaAsBi, higher than reported values for growth using As2. The hole mobility of Si-doped GaAsBi is essentially independent of x up to 0.043, making Si a promising alternative to C or Be for p-type doping of GaAsBi and related bismuthide alloys. In addition, a comparison of the photoluminescence spectra of films grown with both As2 and As4 will be discussed.

  19. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  20. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  1. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  2. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  3. Oxygen reduction of several gold alloys in 1-molar potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Miller, R. O.

    1975-01-01

    With rotated disk-and-ring equipment, polarograms and other electrochemical measurements were made of oxygen reduction in 1-molar potassium hydroxide on an equiatomic gold-copper (Au-Cu) alloy and a Au-Cu alloy doped with either indium (In) or cobalt (Co) and on Au doped with either nickel (Ni) or platinum (Pt). The results were compared with those for pure Au and pure Pt. The two-electron reaction dominated on all Au alloys as it did on Au. The polarographic results at lower polarization potentials were compared, assuming exclusively a two-step reduction. A qualified ranking of cathodic electrocatalytic activity on the freshly polished reduced disks was indicated: anodized Au Au-Cu-In Au-Cu Au-Cu-Co is equivalent or equal to Au-Pt Au-Ni. Aging in distilled water improved the electrocatalytic efficiency of Au-Cu-Co, Au-Cu, and (to a lesser extent) Au-Cu-In.

  4. Rapid and High-Efficiency Laser-Alloying Formation of ZnMgO Nanocrystals

    PubMed Central

    Liu, Peisheng; Wang, Hao; Chen, Jun; Li, Xiaoming; Zeng, Haibo

    2016-01-01

    Applications of ZnMgO nanocrystals (NCs), especially in photoelectric detectors, have significant limitations because of the unresolved phase separation in the synthesis process. Here, we propose a rapid and highly efficient ZnMgO NC alloying method based on pulsed laser ablation in liquid. The limit value of homogeneous magnesium (Mg) is pushed from 37% to 62%, and the optical band gap is increased to 3.7 eV with high doping efficiency (>100%). Further investigations on the lattice geometry of ZnMgO NCs indicate that all ZnMgO NCs are hexagonal wurtzite structures, and the (002) and (100) peaks shift to higher diffraction angles with the increase in Mg doping content. The calculated results of the lattice constants a and c slightly decrease based on Bragg’s law and lattice geometry equations. Furthermore, the relationship between annealing temperature and the limit value of homogeneous Mg is examined, and the results reveal that the latter decreases with the former because of the phase separation of MgO. A probable mechanism of zinc magnesium alloy is introduced to expound on the details of the laser-alloying process. PMID:27324296

  5. Effects of the Electronic Doping In the Stability of the Metal Hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, Monica-Araceli; Rivas-Silva, Juan-Francisco; de La Peña-Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter

    2015-03-01

    Despite metal hydrides light weight and high hydrogen volumetric densities, the Hydrogen desorption process requires excessively high temperatures due to their high stability. Attempts for improvement the hydrogenation properties have been focus on the introduction of defects, impurities and doping on the metal hydride. We present a systematic study of the electronic doping effects on the stability of a model system, NaH doped with magnesium, forming the alloying system Na1-xMgxH. We use the density functional theory (DFT) and the self-consistent version of the virtual crystal approximation (VCA) to model the doping of NaH with Mg. The evolution of the ground state structural and electronic properties is analyzed as a function of Mg-content. The full-phonon dispersion, calculated by the linear response theory (LRT) and density functional perturbation theory (DFPT), is analyzed for several Mg-concentrations, paying special attention to the crystal stability and the correlations with the electronic structure. Applying the quasiharmonic approximation (QHA), the free energy from zero-point motion is obtained, and its influence on the properties under study is analyzed. This work is partially supported by the VIEP-BUAP (OMPS-EXC14-I) and CONACYT-Mexico (No. 221807) projects.

  6. Enhancement of thermoelectric performance in composite materials through locally-modulated doping

    NASA Astrophysics Data System (ADS)

    Adams, Michael J.; Jin, Hyungyu; Heremans, Joseph P.

    2015-03-01

    Composites of organic or inorganic constituents are often considered as a way to yield high thermoelectric figure of merit. The limit of this approach is set by the effective medium theory, which demonstrates formally that a composite of two materials A and B cannot have higher figure of merit than the highest of either A or B, in the absence of interaction between A and B. In this work, we show that this limit can be lifted by introducing into a host material a second phase that behaves differently vis-a-vis electrons than vis-a-vis phonons. This phase consists of electrically and thermally insulating islands of material that locally dope the semiconducting host. Doped material near the islands provides electrically conductive volumes for charge carriers. Phonons, unaffected by local doping, are scattered by the islands. Thermopower is less affected by the doped regions than electrical conductivity, by an intrinsic mathematical property of the effective medium theory. We employ this concept in Bi1-xSbx alloys and in p-type (Bi1-xSbx)2 Te3 compounds, which are known as good thermoelectric materials at cryogenic and room temperatures, respectively. Experimental transport data and the local microscopic characterizations of the samples are presented. Supported by DOE US-China Clean Energy Research Center SubK 3002041929, and by AFOSR MURI FA9550-10-1-0533.

  7. DFT study of selective hydrogenation of acetylene to ethylene on Pd doping Ag nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2016-11-01

    Recently, it has been reported that the reaction selectivity of catalytic hydrogenation of acetylene to ethylene can be significantly enhanced via the approach of Pd mono-atomic catalysis [Pei et al. ACS Catal. 5 (2015) 3717-3725]. To explain the catalytic mechanism of this binary alloy catalyst, C2H2 hydrogenation reactions on Pd doping Ag nanoclusters are studied using density functional theory simulations. The simulation results indicate that H2 and C2H2 can simultaneously bind with a single Pd doping atom no matter it is on vertex and edge sites of Ag clusters. The following H2 dissociation and C2H2 hydrogenation are not difficult since the corresponding reaction barrier values are no more than 0.58 eV. The generated C2H4 molecule can not be further hydrogenated since it locates on the top of Pd doping atom, which is the only adsorption site for H2. On two Pd doping atoms at contiguous sites of Ag clusters, C2H4 hydrogenation reactions can be carried out since there are enough sites for co-adsorption of H2 and C2H4.

  8. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    PubMed

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings.

  9. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Fuks, D.; Komisarchik, G.; Kaller, M.; Gelbstein, Y.

    2016-08-01

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shown also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed.

  10. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  11. Alloy design for intrinsically ductile refractory high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  12. Solution and precipitation hardening in carbon-doped two-phase {gamma}-titanium aluminides

    SciTech Connect

    Appel, F.; Christoph, U.; Wagner, R.

    1997-12-31

    A two-phase titanium aluminide alloy was systematically doped with carbon to improve its high temperature strength. Solid solutions and precipitates of carbon were formed by different thermal treatments. A fine dispersion of perovskite precipitates was found to be very effective for improving the high temperature strength and creep resistance of the material. The strengthening mechanisms were characterized by flow stresses and activation parameters. The investigations were accompanied by electron microscope observation of the defect structure which was generated during deformation. Special attention was paid on the interaction mechanisms of perfect and twinning dislocations with the carbide precipitates.

  13. Field induced polarization and magnetization behaviour of Gd-doped lead magnesium niobate ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Adityanarayan; Gupta, Surya Mohan; Nigam, Arun Kumar

    2016-05-01

    Both superparaelectric and superparamagnetic behaviour has been observed in rare earth magnetic ion Gd3+ doped Lead Magnesium Niobate (Gd-PMN). Field induced polarization and magnetization studies reveal hystresis loss free P-E and M-H loop at 300K and 5K, respectively. Temperature dependence of inverse susceptibility plot shows deviation at a temperature "td" when fitted with the Curie-Weiss law. This deviation has been attributed to transition from paramagnetic to superparamagnetic behaviour as reported in amorphous Pd-Ni-Fe-P alloys.

  14. PULSION® HP: Tunable, High Productivity Plasma Doping

    NASA Astrophysics Data System (ADS)

    Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.

    2011-01-01

    Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.

  15. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: nitrogen-enhanced nanostructural evolution and its effect on phase stability.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2013-04-01

    Our previous studies indicate that nitrogen addition suppresses the athermal γ (face-centered cubic, fcc)→ε (hexagonal close-packed, hcp) martensitic transformation of biomedical Co-Cr-Mo alloys and ultimately offers large elongation to failure while maintaining high strength. In the present study, structural evolution and dislocation slip as an elementary process in the martensitic transformation in Co-Cr-Mo alloys were investigated to reveal the origin of their enhanced γ phase stability due to nitrogen addition. Alloy specimens with and without nitrogen addition were prepared. The N-doped alloys had a single-phase γ matrix, whereas the N-free alloys had a γ/ε duplex microstructure. Irrespective of the nitrogen content, dislocations frequently dissociated into Shockley partial dislocations with stacking faults. This indicates that nitrogen has little effect on the stability of the γ phase, which is also predicted by thermodynamic calculations. We discovered short-range ordering (SRO) or nanoscale Cr2N precipitates in the γ matrix of the N-containing alloy specimens, and it was revealed that both SRO and nanoprecipitates function as obstacles to the glide of partial dislocations and consequently significantly affect the kinetics of the γ→ε martensitic transformation. Since the formation of ε martensite plays a crucial role in plastic deformation and wear behavior, the developed nanostructural modification associated with nitrogen addition must be a promising strategy for highly durable orthopedic implants.

  16. Mechanical alloying of biocompatible Co-28Cr-6Mo alloy.

    PubMed

    Sánchez-De Jesús, F; Bolarín-Miró, A M; Torres-Villaseñor, G; Cortés-Escobedo, C A; Betancourt-Cantera, J A

    2010-07-01

    We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.

  17. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  18. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2010-01-01

    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  19. Electric and adhesion properties of an interface between Sn1 - x Mn x Te single crystals and Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Alieva, T. D.; Akhundova, N. M.; Abdinova, G. D.; Bagieva, G. Z.; Abdinov, D. Sh.

    2016-05-01

    The adhesion and electric properties of an interface between Sn1 - x Mn x Te single crystals and a 57 wt % Bi and 43 wt % Sn alloy in a temperature range of ˜77-300 K are studied. It is shown that the Bi-Sn alloy and the above single crystals form an ohmic contact that exhibits fairly high work of adhesion and strength of adhesion, along with low contact resistance. The deposition of the Bi-Sn alloy on the end faces of the crystals results in the formation of such intermediate phases as Bi2Te3 and SnTe at the interface, the doping of the near-contact region of the crystal, and the filling of vacancies in the tin sublattice in this region with diffusing atoms of the contact alloy components.

  20. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    SciTech Connect

    Sujan, G.K. Haseeb, A.S.M.A. Afifi, A.B.M.

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  1. Epitaxial Nd-doped α-(Al(1-x)Ga(x))2O3 films on sapphire for solid-state waveguide lasers.

    PubMed

    Kumaran, Raveen; Tiedje, Thomas; Webster, Scott E; Penson, Shawn; Li, Wei

    2010-11-15

    Single-crystal aluminum-gallium oxide films have been grown by molecular beam epitaxy in the corundum phase. Films of the (Al(1-x)Ga(x))(2)O(3) alloys doped with neodymium have favorable properties for solid-state waveguide lasers, including a high-thermal-conductivity sapphire substrate and a dominant emission peak in the 1090-1096 nm wavelength range. The peak position is linearly correlated to the unit cell volume, which is dependent on film composition and stress. Varying the Ga-Al alloy composition during growth will enable the fabrication of graded-index layers for tunable lasing wavelengths and low scattering losses at the interfaces.

  2. (Magnetic properties of doped semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Research continued on the transport behavior of doped semiconductors on both sides of the metal-insulator transition, and the approach to the transition from both the insulating and the metallic side. Work is described on magneto resistance of a series of metallic Si:B samples and CdSe. (CBS)

  3. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  4. Method of doping organic semiconductors

    DOEpatents

    Kloc, Christian Leo [Constance, DE; Ramirez, Arthur Penn [Summit, NJ; So, Woo-Young [New Providence, NJ

    2012-02-28

    A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.

  5. Hormones as doping in sports.

    PubMed

    Duntas, Leonidas H; Popovic, Vera

    2013-04-01

    Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.

  6. Metallic alloy stability studies

    NASA Technical Reports Server (NTRS)

    Firth, G. C.

    1983-01-01

    The dimensional stability of candidate cryogenic wind tunnel model materials was investigated. Flat specimens of candidate materials were fabricated and cryo-cycled to assess relative dimensional stability. Existing 2-dimensional airfoil models as well as models in various stages of manufacture were also cryo-cycled. The tests indicate that 18 Ni maraging steel offers the greatest dimensional stability and that PH 13-8 Mo stainless steel is the most stable of the stainless steels. Dimensional stability is influenced primarily by metallurgical transformations (austenitic to martensitic) and manufacturing-induced stresses. These factors can be minimized by utilization of stable alloys, refinement of existing manufacturing techniques, and incorporation of new manufacturing technologies.

  7. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  8. Manufacturing of High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  9. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  10. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  11. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  12. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  13. Research and Development on Titanium Alloys

    DTIC Science & Technology

    1949-10-31

    svmym lIfe. Th~e rAnge of cOmposila Ivwstpted in the bin"rtniaum-stiver sistems was extended to 5% snw an M~an~Ajmm loy cntprn 0.1 Is beryllium were...extended to 5,0 per cent silverl and titanium- beryllium alloys containing 0.1 to-1.0 per cent berylliuma were inveitiga~ted. None of~ these alloys had...of: 1. Binary titanium-germanium alloys. 2. Binary titanium-nickel alloys. 3, Binary titanium-silver alloys. 4. Binary titanium- beryllium alloys. 5

  14. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  15. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  16. Accelerated steam plus hydrogen tests for Alloy 600 wrought and welded specimens

    SciTech Connect

    Kroenke, W.C.; Powell, G.J.; Hyatt, B.Z.; Economy, G.; Jacko, R.

    1995-12-31

    A chemical cracking test has been used to quickly obtain intergranular stress corrosion cracking (SCC) as it occurs in Alloy 600 wrought metal and EN82 weld metal in deaerated high temperature water environments. The test, referred to hereafter as the doped steam test, involves exposing the specimen surface of interest to 3000 psig (20.7 MPa), 750 F (400 C) superheated stagnant steam raised from water that contains 100 ppm each of chloride, fluoride, sulfate, and nitrate sodium salts and to 10 psia (69 kPa) hydrogen partial pressure. Alloy 600 and EN82 bent beam specimens loaded to various known stress levels were exposed to this doped steam environment for periods of one to eight weeks. Threshold behaviors were determined from this test series. For specimens loaded above the threshold stress, SCC occurred in less than one week. Welded specimens with partial penetration EN82 welds were also subjected to the doped steam environment in the built-in crevice associated with partial penetration welds. During this test, cracking occurred in both the weld and wrought materials. The weld cracks initiated at the root and grew through the entire thickness of the weld throat in two weeks. Metallographic sections in the crack region and fractographs of the weld crack surface confirmed the presence of the multiple branched intergranular cracking expected in SCC. The results clearly indicate that the superheated stagnant steam with hydrogen and these four dopants provides a useful environment to assess the tensile stress condition of Alloy 600 wrought metal and EN82 weld metal specimens.

  17. Yttrium influence on the alumina growth mechanism on an FeCr23Al5 alloy

    NASA Astrophysics Data System (ADS)

    Huntz, A. M.; Abderrazik, G. Ben; Moulin, G.; Young, E. W. A.; De Wit, J. H. W.

    1987-07-01

    The mechanism by which yttrium modifies alumina growth was studied by comparing the behaviour of a high purity FeCr23Al5 alloy, either undoped or Y doped by implantation. By combining several techniques, in particular XPS, nuclear reaction analyses and electrochemical measurements, it is shown that the growth of Al2O3 scales on pure samples is mainly ensured by aluminum short-circuit diffusion. The presence of yttrium promotes the oxygen diffusion along grain boundaries, while retarding Al short-circuit diffusion and increasing Al lattice diffusion. From this growth mechanism with both cationic amd anionic diffusion along different paths, suggestions for the improvement of scale adherence due to yttrium are proposed. The simultaneous study of C- and Y-doped samples indicates that synergetic effects occur.

  18. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, M.; Wang, W. Q.; Wang, W. H.; Chen, J. L.; Wu, G. H.; Meng, F. B.; Liu, H. Y.; Liu, B. D.; Qu, J. P.

    2002-11-01

    Quaternary Heusler alloy Ni2)(Mn,FeGa has been studied systematically for the structure, martensitic transformation, and magnetic properties in two systems of Ni50.5Mn25-xFexGa24.5 and Ni50.4Mn28-xFexGa21.6. Substituting Fe for Mn up to about 70%, the pure L21 phase and the thermoelastic martensitic transformation still can be observed in these quaternary systems. Iron doping dropped the martensitic transformation temperature from 220 to 140 K, increased the Curie temperature from 351 to 429 K, and broadened the thermal hysteresis from about 7 to 18 K. Magnetic analysis revealed that Fe atoms contribute to the net magnetization of the material with a moment lower than that of Mn. The temperature dependence of magnetic-field-induced strains has been improved by this doping method.

  19. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  20. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48-xCuxNi42Sn10 Heusler alloys

    NASA Astrophysics Data System (ADS)

    Liu, Changqin; Li, Zhe; Zhang, Yuanlei; Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan; Xu, Kun; Deng, Dongmei; Jing, Chao

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn48-xCuxNi42Sn10 alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (TcM) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (TcA) is almost unchanged. It was found that the structures undergo L21 and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn48Ni42Sn10 was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn48Ni42Sn10 alloys.

  1. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  2. Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe{sub 2−x}V{sub 1+x}Al

    SciTech Connect

    Nishino, Y. Tamada, Y.

    2014-03-28

    The thermoelectric properties of Heusler-type Fe{sub 2−x}V{sub 1+x}Al{sub 1−y}Si{sub y} and Fe{sub 2−x}V{sub 1+x−y}Ti{sub y}Al alloys have been investigated to clarify which off-stoichiometric alloy, i.e., V-rich (x > 0) or V-poor (x < 0), is more effective in enhancing the Seebeck coefficient when doped by Si and Ti, while retaining a low electrical resistivity. Large Seebeck coefficients of −182 μV/K and 110 μV/K at 300 K are obtained for n-type Fe{sub 1.95}V{sub 1.05}Al{sub 0.97}Si{sub 0.03} and p-type Fe{sub 2.04}V{sub 0.93}Ti{sub 0.03}Al, respectively. When the Seebeck coefficient is plotted as a function of valence electron concentration (VEC), the VEC dependence for the doped off-stoichiometric alloys falls on characteristic curves depending on the off-stoichiometric composition x. It is concluded that a larger Seebeck coefficient with a negative sign can be obtained for the V-rich alloys rather than the V-poor alloys, whilst good p-type materials are always derived from the V-poor alloys. Substantial enhancements in the Seebeck coefficient for the off-stoichiometric alloys could be achieved by a favorable modification in the electronic structure around the Fermi level through the antisite V or Fe defect formation.

  3. Density functional theory study of the effects of alloying additions on sulfur adsorption on nickel surfaces

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Chen, Zhong; Kulish, Vadym V.; Bai, Kewu; Wu, Ping

    2013-01-01

    Reactions of hydrogen sulfide (H2S) with Nickel/Ytrria-doped zirconia (Ni/YDZ) anode materials might cause degradation of the performance of solid oxide fuel cells when S containing fuels are used. In this paper, we employ density functional theory to investigate S adsorption on metal (M)-doped and undoped Ni(0 0 1) and Ni(1 1 1) surfaces. Based on the performed calculations, we analyze the effects of 12 alloying additions (Ag, Au, Al, Bi, Cd, Co, Cu, Fe, Sn, Sb, V, and Zn) on the temperature of transition between clean (S atoms do not adsorb on the surfaces) and contaminated (S atoms can adsorb on the surfaces spontaneously) M-doped Ni surfaces for different concentrations of H2S in the fuel. Predicted results are consistent with many experimental studies relevant to S poisoning of both Ni/YDZ and M-doped Ni/YDZ anode materials. This study is important to understand S poisoning phenomena and to develop new S tolerant anode materials.

  4. The erosion resistance of tool alloys in foundry melt the Zamak 4 - 1

    NASA Astrophysics Data System (ADS)

    Muhametzyanova, GF; Kolesnikov, M. S.; Muhametzyanov, I. R.

    2016-06-01

    The paper considers the resistance against erosion dissolution in the melt of foundry Zamak 4 - 1 die steels used for press machine parts manufacturing for injection molding, and hard alloys system WC - Co. It is established that the solubility in the melt Zamak - 4 - 1 steel of 4H5MFS and DI - 22 are promising for the parts fabrication of metal-wire casting machines of CLT and IDRA types. A significant reserve to increase the resistance of metal wires is the use of cast steel, as well as in electroslag and electro-beam remelting options. Metal-ceramic alloy doped with chromium VK25H may be recommended for reinforcement of heavily loaded parts of the press-nodes of hot casting machines under pressure.

  5. Effect of oxide films on hydrogen permeability of candidate Stirling engine heater head tube alloys

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.; Misencik, J. A.

    1981-01-01

    The effect of oxide films developed in situ from CO/CO2 doped hydrogen on high pressure hydrogen permeability at 820 C was studied on N-155, A-286, IN 800, 19-9DL, Nitronic 40, HS-188, and IN 718 tubing in a Stirling materials simulator. The hydrogen permeability decreased with increasing dopant levels of CO or CO2 and corresponding decreases in oxide porosity. Minor reactive alloying elements strongly influenced permeability. At high levels of CO or CO2, a liquid oxide formed on alloys with greater than 50 percent Fe. This caused increased permeability. The oxides formed on the inside tube walls were analyzed and their effective permeabilities were calculated.

  6. Oxidation Behavior and Chlorination Treatment to Improve Oxidation Resistance of Nb-Mo-Si-B Alloys

    SciTech Connect

    Behrani, Vikas

    2004-01-01

    This thesis is written in an alternate format. The thesis is composed of a general introduction, two original manuscripts, and a general conclusion. References cited within each chapter are given at the end of each chapter. The general introduction starts with the driving force behind this research, and gives an overview of previous work on boron doped molybdenum silicides, Nb/Nb5Si3 composites, boron modified niobium silicides and molybdenum niobium silicides. Chapter 2 focuses on the oxidation behavior of Nb-Mo-Si-B alloys. Chapter 3 contains studies on a novel chlorination technique to improve the oxidation resistance of Nb-Mo-Si-B alloys. Chapter 4 summarizes the important results in this study.

  7. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying

    SciTech Connect

    Pele, Vincent; Barreteau, Celine; Berardan, David; Zhao, Lidong; Dragoe, Nita

    2013-07-15

    We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similar to that of samples synthesized by a classical path.

  8. Preliminary Results of Activated Sintering Mechanism and Grain Boundary Prewetting/premelting in Nickel-doped Tungsten

    SciTech Connect

    Gupta, V K; Yoon, D H; Luo, Jian; Meyer III, Harry M

    2005-01-01

    Supported by prior lattice-gas and phase-field simulations, we proposed that nanoscale intergranular and surficial amorphous films in multicomponent ceramic materials can be treated as a case of combined interfacial prewetting and premelting. Consequently, a class of parallel interfacial phenomena, i.e., coupled interfacial adsorption and disordering, is anticipated to occur in multicomponent metallic alloys. An exploratory study was carried out wherein grain boundary segregation in a model binary metallic alloy (Ni-doped W) was characterized as a function of temperature and dopant concentration. Doped specimens were prepared using high purity chemicals, sintered in flowing H2/N2 mixture, and examined using Auger spectroscopy and electron microscopy. Preliminary results are presented and discussed with respect to a prewetting/premelting model versus the classical Langmuir-McLean and BET models. An additional goal of this study is to resolve the long-standing mystery of solid-state activated sintering mechanism for nickel-doped tungsten. Use of ultra-pure materials confirmed the occurrence of nickel activated sintering of tungsten in the solid-state. We demonstrated that, contrary to the previous belief, Ni-rich secondary bulk phase does not penetrate along GBs and the solid-state activator should be a nanoscale interfacial phase that does not appear in the bulk phase diagram. The solid-state activated sintering in the model metallic system of Ni-doped W is therefore attributed to the enhance diffusion in a coupled grain boundary disordering and adsorption region, analogous to activated sintering via accelerated mass transport in nanoscale intergranular and surficial amorphous film in the model oxide system of Bi2O3-doped ZnO.

  9. Electron dominated thermoelectric response in MNiSn (M: Ti, Zr, Hf) half-Heusler alloys.

    PubMed

    Gandi, Appala Naidu; Schwingenschlögl, Udo

    2016-05-18

    We solve the transport equations of the electrons and phonons to understand the thermoelectric behaviour of the technologically important half-Heusler alloys MNiSn (M: Ti, Zr, Hf). Doping is simulated within the rigid band approximation. We clarify the origin of the electron dominated thermoelectric response and determine the carrier concentrations with maximal figures of merit. The phonon mean free path is studied to calculate the grain size below which grain refinement methods can enforce ballistic heat conduction to enhance the figure of merit.

  10. Selection and Evaluation of Heat-Resistant Alloys for Planar SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Weil, K. Scott; Paxton, Dean M.; Stevenson, Jeffry W.

    2002-11-21

    Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

  11. Electrical and structural properties of In-implanted Si1–xGex alloys

    DOE PAGES

    Feng, Ruixing; Kremer, F.; Sprouster, D. J.; ...

    2016-01-14

    Here, we report on the effects of dopant concentration and substrate stoichiometry on the electrical and structural properties of In-implanted Si1–xGex alloys. Correlating the fraction of electrically active In atoms from Hall Effect measurements with the In atomic environment determined by X-ray absorption spectroscopy, we observed the transition from electrically active, substitutional In at low In concentration to electrically inactive metallic In at high In concentration. The In solid-solubility limit has been quantified and was dependent on the Si1–xGex alloy stoichiometry; the solid-solubility limit increased as the Ge fraction increased. This result was consistent with density functional theory calculations ofmore » two In atoms in a Si1–xGex supercell that demonstrated that In–In pairing was energetically favorable for x ≲ 0.7 and energetically unfavorable for x ≳ 0.7. Transmission electron microscopy imaging further complemented the results described earlier with the In concentration and Si1–xGex alloy stoichiometry dependencies readily visible. We have demonstrated that low resistivity values can be achieved with In implantation in Si1–xGex alloys, and this combination of dopant and substrate represents an effective doping protocol.« less

  12. Biomaterial Co-Cr-Mo Alloys Nano Coating Calcium Phosphate Orthopedic Treatment

    NASA Astrophysics Data System (ADS)

    Palaniappan, N.; Inwati, Gajendra Kumar; Singh, Man

    2014-08-01

    The modem study a thermal martensitic transformation of biomedical Co-Cr-Mo alloys and ultimately offers large elongation to failure while maintaining high strength. In the future study, structural evolution and dislocation slip as an elementary process in the martensitic transformation in Co-Cr-Mo alloys were investigated to reveal the origin of their enhanced phase stability due to nitrogen addition and coating of calcium phosphate specimens with and without nitrogen addition were prepared. The N-doped alloys had a single-phase matrix, whereas the N-free alloys had a duplex microstructure. Irrespective of the nitrogen content, dislocations frequently dissociated into Shockley partial dislocations with stacking faults. The Nano range coating of calcium phosphate function as obstacles to the glide of partial dislocations and consequently significantly affect the kinetics of the martensitic transformation. As a result, the formation of marten site plays a crucial role in plastic deformation and wear behavior, the developed nanostructures modification associated with nitrogen addition must be a promising strategy for highly durable orthopedic implants.

  13. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  14. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  15. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  16. Alloys developed for high temperature applications

    NASA Astrophysics Data System (ADS)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  17. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  18. A brief review of co-doping

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Tse, Kinfai; Wong, Manhoi; Zhang, Yiou; Zhu, Junyi

    2016-12-01

    Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.

  19. Biomarker monitoring in sports doping control.

    PubMed

    Pottgiesser, Torben; Schumacher, Yorck Olaf

    2012-06-01

    Biomarker monitoring can be considered a new era in the effort against doping. Opposed to the old concept in doping control of direct detection of a prohibited substance in a biological sample such as urine or blood, the new paradigm allows a personalized longitudinal monitoring of biomarkers that indicate non-physiological responses independently of the used doping technique or substance, and may cause sanctioning of illicit practices. This review presents the development of biomarker monitoring in sports doping control and focuses on the implementation of the Athlete Biological Passport as the current concept of the World Anti Doping Agency for the detection of blood doping (hematological module). The scope of the article extends to the description of novel biomarkers and future concepts of application.

  20. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  1. Electronic structure of O-doped SiGe calculated by DFT + U method

    NASA Astrophysics Data System (ADS)

    Zhao, Zong-Yan; Yang, Wen; Yang, Pei-Zhi

    2016-12-01

    To more in depth understand the doping effects of oxygen on SiGe alloys, both the micro-structure and properties of O-doped SiGe (including: bulk, (001) surface, and (110) surface) are calculated by DFT + U method in the present work. The calculated results are as follows. (i) The (110) surface is the main exposing surface of SiGe, in which O impurity prefers to occupy the surface vacancy sites. (ii) For O interstitial doping on SiGe (110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers. (iii) The finding about decreased surface work function of O-doped SiGe (110) surface can confirm previous experimental observations. (iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-SiGe-based solar cells in the future. Project supported by the Natural Science Foundation of Yunnan Province, China (Grant No. 2015FB123), the 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project, China (Grant No. 2015HB015), and the National Natural Science Foundation of China (Grant No. U1037604).

  2. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  3. Phosphorous doping a semiconductor particle

    DOEpatents

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  4. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  5. Shape memory alloys. Ultralow-fatigue shape memory alloy films.

    PubMed

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-29

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  6. Tarnish of dental alloys by oral microorganisms.

    PubMed

    Vaidyanathan, T K; Vaidyanathan, J; Linke, H A; Schulman, A

    1991-11-01

    Five dental alloys, on exposure to blood and chocolate media with and without inoculated microorganisms, showed varying degrees of tarnish. The results indicated a composition-dependent tarnish behavior of alloys in microorganism-inoculated media, indicating a potential role for the oral microorganisms in inducing clinically observed tarnish of dental alloys. Actinomyces viscosus and periodontal pocket specimens show a similarity in their activity to induce tarnish in base metal-containing dental alloys.

  7. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  8. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  9. HEAT TREATED U-Nb ALLOYS

    DOEpatents

    McGeary, R.K.; Justusson, W.M.

    1959-11-24

    A fuel element for a nuclear reactor is described comprising an alloy containing uranium and from 7 to 20 wt.% niobium, the alloy being substantially in the gamma phase and having been produced by working an ingot of the alloy into the desired shape, homogenizing it by annealing it at a temperature in the gamma phase field, and quenching it to retain the gamma phase structure of the alloy.

  10. Contact dermatitis from beryllium in dental alloys.

    PubMed

    Haberman, A L; Pratt, M; Storrs, F J

    1993-03-01

    An increasing number of metals with the potential to cause allergic contact dermatitis have found their way into dental alloys for economic and practical reasons. 2 patients are reported who developed gingivitis adjacent to the Rexillium III alloy in their dental prostheses. Patch testing demonstrated positive reactions to beryllium sulfate, a component of the alloy. Components of dental alloys and the mechanism of the contact dermatitis are discussed.

  11. Self-disintegrating Raney metal alloys

    DOEpatents

    Oden, Laurance L.; Russell, James H.

    1979-01-01

    A method of preparing a Raney metal alloy which is capable of self-disintegrating when contacted with water vapor. The self-disintegrating property is imparted to the alloy by incorporating into the alloy from 0.4 to 0.8 weight percent carbon. The alloy is useful in forming powder which can be converted to a Raney metal catalyst with increased surface area and catalytic activity.

  12. HIGH-TEMPERATURE OXIDATION PROTECTIVE COATINGS FOR VANADIUM-BASE ALLOYS

    DTIC Science & Technology

    SILICIDES , SILICON COATINGS , THIN FILM STORAGE DEVICES, TITANIUM ALLOYS, VAPOR PLATING, YTTRIUM COMPOUNDS, ZINC ALLOYS, ZINC COATINGS ....ANTIOXIDANTS, *METAL COATINGS , *REFRACTORY COATINGS , *VANADIUM ALLOYS, ALUMINUM ALLOYS, CERAMIC COATINGS , CHROMIUM ALLOYS, CLADDING, FLAME SPRAYING...HIGH TEMPERATURE, INTERMETALLIC COMPOUNDS, IODINE COMPOUNDS, IRON ALLOYS, MAGNESIUM ALLOYS, NICKEL ALLOYS, NICKEL COMPOUNDS, NIOBIUM ALLOYS, OXIDES

  13. Synthesis and Microstructure Evolution of Nano-Titania Doped Silicon Coatings

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Umapathy, H.; Mohanty, P.

    2010-01-01

    The Anatase phase of Titania (TiO2) in nanocrystalline form is a well known photocatalyst. Photocatalysts are commercially used to accelerate photoreactions and increase photovoltaic efficiency such as in solar cells. This study investigates the in-flight synthesis of Titania and its doping into a Silicon matrix resulting in a catalyst-dispersed coating. A liquid precursor of Titanium Isopropoxide and ethanol was coaxially fed into the plasma gun to form Titania nanoparticles, while Silicon powder was externally injected downstream. Coatings of 75-150 μm thick were deposited onto flat coupons. Further, Silicon powder was alloyed with aluminum to promote crystallization and reduce the amorphous phase in the Silicon matrix. Dense coatings containing nano-Titania particles were observed under electron microscope. X-ray diffraction showed that both the Rutile and Anatase phases of the Titania exist. The influence of process parameters and aluminum alloying on the microstructure evolution of the doped coatings is analyzed and presented.

  14. Role of aluminum in silver paste contact to boron-doped silicon emitters

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Roelofs, Katherine E.; Subramoney, Shekhar; Lloyd, Kathryn; Zhang, Lei

    2017-01-01

    The addition of aluminum to silver metallization pastes has been found to lower the contact resistivity of a silver metallization on boron-doped silicon emitters for n-type Si solar cells. However, the addition of Al also induces more surface recombination and increases the Ag pattern's line resistivity, both of which ultimately limit the cell efficiency. There is a need to develop a fundamental understanding of the role that Al plays in reducing the contact resistivity and to explore alternative additives. A fritless silver paste is used to allow direct analysis of the impact of Al on the Ag-Si interfacial microstructure and isolate the influence of Al on the electrical contact from the complicated Ag-Si interfacial glass layer. Electrical analysis shows that in a simplified system, Al decreases the contact resistivity by about three orders of magnitude. Detailed microstructural studies show that in the presence of Al, microscale metallic spikes of Al-Ag alloy and nanoscale metallic spikes of Ag-Si alloy penetrate the surface of the boron-doped Si emitters. These results demonstrate the role of Al in reducing the contact resistivity through the formation of micro- and nano-scale metallic spikes, allowing the direct contact to the emitters.

  15. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  16. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  17. Quasicrystal-reinforced Mg alloys

    PubMed Central

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-01-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg–Zn–Y and Mg–Zn–Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α-Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg–Zn–Y alloys, the co-presence of I and Ca2Mg6Zn3 phases by addition of Ca can significantly enhance formability, while in Mg–Zn–Al alloys, the co-presence of the I-phase and Mg2Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg–Zn–Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg–Zn–Al–Sn alloys is attributed to the presence of finely distributed Mg2Sn and I-phase particles embedded in the α-Mg matrix. PMID:27877660

  18. Blood doping and its detection.

    PubMed

    Jelkmann, Wolfgang; Lundby, Carsten

    2011-09-01

    Hemoglobin mass is a key factor for maximal exercise capacity. Some athletes apply prohibited techniques and substances with intent to increase hemoglobin mass and physical performance, and this is often difficult to prove directly. Autologous red blood cell transfusion cannot be traced on reinfusion, and also recombinant erythropoietic proteins are detectable only within a certain timeframe. Novel erythropoietic substances, such as mimetics of erythropoietin (Epo) and activators of the Epo gene, may soon enter the sports scene. In addition, Epo gene transfer maneuvers are imaginable. Effective since December 2009, the World Anti-Doping Agency has therefore implemented "Athlete Biologic Passport Operating Guidelines," which are based on the monitoring of several parameters for mature red blood cells and reticulocytes. Blood doping may be assumed, when these parameters change in a nonphysiologic way. Hematologists should be familiar with blood doping practices as they may play an important role in evaluating blood profiles of athletes with respect to manipulations, as contrasted with the established diagnosis of clinical disorders and genetic variations.

  19. RETRACTED: Investigation of structural, optical and electronic properties in Al-Sn co-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pan, Zhanchang; Tian, Xinlong; Wu, Shoukun; Yu, Xia; Li, Zhuliang; Deng, Jianfeng; Xiao, Chumin; Hu, Guanghui; Wei, Zhigang

    2013-01-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Figures 3 and 4 of this paper have also been presented as belonging to other materials in other publications. This observation is evidence of fraud and therefore it is not certain that the described research and conclusions of this paper belong to the presented images. Figures 3 and 4 of this paper can also be found in: Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures, Materials Science in Semiconductor Processing, 2014, 17, 162-167, http://dx.doi.org/10.1016/j.mssp.2013.09.023 Highly transparent and conductive Sn/F and Al co-doped ZnO thin films prepared by sol-gel method, Journal of Alloys and Compounds, 2014,583, 32-38, http://dx.doi.org/10.1016/j.jallcom.2013.06.192 Properties of fluorine and tin co-doped ZnO thin films deposited by sol-gel method, Journal of Alloys and Compounds, 2013,576, 31-37, http://dx.doi.org/10.1016/j.jallcom.2013.04.132

  20. Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy

    NASA Astrophysics Data System (ADS)

    Lany, Stephan; Stevanovic, Vladan

    2013-03-01

    The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.