Sample records for al-7 wt pct

  1. Structural Characterization of Sputter-Deposited 304 Stainless Steel+10 wt pct Al Coatings

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao; Suryanarayana, C.; Heinrich, Helge; Ohkubo, Tadakatsu; Hono, Kazuhiro; Cheruvu, N. S.

    2012-08-01

    An SS304 + 10 wt pct Al (with a nominal composition of Fe-18Cr-8Ni-10Al by wt pct and corresponding to Fe-17Cr-6Ni-17Al by at. pct) coating was deposited on a 304-type austenitic stainless steel (Fe-18Cr-8Ni by wt pct) substrate by the magnetron sputter-deposition technique using two targets: 304-type stainless steel (SS304) and Al. The as-deposited coatings were characterized by X-ray diffraction, transmission electron microscopy, and three-dimensional (3-D) atom probe techniques. The coating consists of columnar grains with α ferrite with the body-centered cubic (bcc) (A2) structure and precipitates with a B2 structure. It also has a deposition-induced layered structure with two alternative layers (of 3.2 nm wavelength): one rich in Fe and Cr, and the other enriched with Al and Ni. The layer with high Ni and Al contents has a B2 structure. Direct confirmation of the presence of B2 phase in the coating was obtained by electron diffraction and 3-D atom probe techniques.

  2. Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen

    2016-10-01

    Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement

  3. Effect of LiF as Sintering Agent on the Densification and Phase Formation in Al2O3-4 Wt Pct Nb2O5 Ceramic Compound

    NASA Astrophysics Data System (ADS)

    Santos, J. L.; Marçal, R. L. S. B.; Jesus, P. R. R.; Gomes, A. V.; Lima, E. P.; Monteiro, S. N.; de Campos, J. B.; Louro, L. H. L.

    2017-10-01

    Different amounts of LiF were added to an Al2O3-4 pct Nb2O5 basic ceramic, as sintering agent. Improved new ceramics were obtained with LiF concentrations varying from 0.25 to 1.50 wt pct and three sintering temperatures of 1573 K, 1623 K, and 1673 K (1300 °C, 1350 °C, and 1400 °C). The addition of 0.5 wt pct LiF yielded the highest densification, 94 pct of the theoretical density, in association with a sintering temperature of 1673 K (1400 °C). Based on X-ray diffraction (XRD), this improvement was due not only to the presence of transformed phases, more precisely Nb3O7F, but also to the absence of LiAl5O8. The preferential interaction of LiF with Nb2O5, instead of Al2O3, contributed to increase the alumina sintering ability by liquid phase formation. Scanning electron microscopy (SEM) results revealed well-connected grains and isolated pores, whereas the chemical composition analysis by energy dispersive energy (EDX) indicated a preferential interaction of fluorine with niobium, in agreement with the results of XRD. It was also observed from thermal analysis that the polyethylene glycol binder burnout temperature increased for all LiF concentrations. This may be related to the formation of hydrogen bridge bonds.

  4. Observation of the TWIP + TRIP Plasticity-Enhancement Mechanism in Al-Added 6 Wt Pct Medium Mn Steel

    NASA Astrophysics Data System (ADS)

    Lee, Seawoong; Lee, Kyooyoung; De Cooman, Bruno C.

    2015-06-01

    The intercritically annealed Fe-0.15 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl and Fe-0.30 pctC-6.0 pctMn-1.5 pctSi-3.0 pctAl medium Mn steels were found to have improved mechanical properties due to the TWIP and TRIP plasticity-enhancing mechanisms being activated in succession during tensile deformation. The increase of the C content from 0.15 to 0.30 pct resulted in ultra-high strength properties and a strength-ductility balance of approximately 65,000 MPa-pct, i.e., equivalent to the strength-ductility balance of high Mn TWIP steel with a fully austenitic microstructure.

  5. Phase development in a U-7 wt.% Mo vs. Al-7 wt.% Ge diffusion couple

    NASA Astrophysics Data System (ADS)

    Perez, E.; Keiser, D. D.; Sohn, Y. H.

    2013-10-01

    Fuel development for the Reduced Enrichment for Research and Test Reactors (RERTR) program has demonstrated that U-Mo alloys in contact with Al develop interaction regions with phases that have poor irradiation behavior. The addition of Si to the Al has been considered with positive results. In this study, compositional modification is considered by replacing Si with Ge to determine the effect on the phase development in the system. The microstructural and phase development of a diffusion couple of U-7 wt.% Mo in contact with Al-7 wt.% Ge was examined by transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy. The interdiffusion zone developed a microstructure that included the cubic-UGe3 phase and amorphous phases. The UGe3 phase was observed with and without Mo and Al solid solution developing a (U,Mo)(Al,Ge)3 phase.

  6. Wear mechanisms in hybrid composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)

    NASA Astrophysics Data System (ADS)

    Ames, W.; Alpas, A. T.

    1995-01-01

    The wear behavior of A356 aluminum alloy (Al-7 Pct Si-0.3 Pct Mg) matrix composites reinforced with 20 vol Pct SiC particles and 3 or 10 vol Pct graphite was investigated. These hybrid composites represent the merging of two philosophies in tribological material design: soft-particle lubrication by graphite and hard-particle reinforcement by carbide particles. The wear tests were performed using a block-on-ring (SAE 52100 steel) wear machine under dry sliding conditions within a load range of 1 to 441 N. The microstructural and compositional changes that took place during wear were characterized using scanning electron microscopy (SEM), Auger electron spectroscopy (AES), energy-dispersive X-ray spectroscopy (EDXA), and X-ray diffractometry (XRD). The wear resistance of 3 Pct graphite-20 Pct SiC-A356 hybrid composite was comparable to 20 Pct SiC-A356 without graphite at low and medium loads. At loads below 20 N, both hybrid and 20 Pct SiC-A356 composites without graphite demonstrated wear rates up to 10 times lower than the unreinforced A356 alloy due to the load-carrying capacity of SiC particles. The wear resistance of 3 Pct graphite 20 Pct SiC-A356 was 1 to 2 times higher than 10 Pct graphite-containing hybrid composites at high loads. However, graphite addition reduced the counterface wear. The unreinforced A356 and 20 Pct SiC-A356 showed a transition from mild to severe wear at 95 N and 225 N, respectively. Hybrid composites with 3 Pct and 10 Pct graphite did not show such a transition over the entire load range, indicating that graphite improved the seizure resistance of the composites. Tribolayers, mainly consisting of a compacted mixture of graphite, iron oxides, and aluminum, were generated on the surfaces of the hybrid composites. In the hybrid composites, the elimination of the severe wear (and hence the improvement in seizure resistance) was attributed to the reduction in friction-induced surface heating due to the presence of graphite- and iron

  7. Comparative study of the influence of natural convection on directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si alloys

    NASA Astrophysics Data System (ADS)

    Zhou, B. H.; Jung, H.; Mangelinck-Noël, N.; Nguyen-Thi, H.; Billia, B.; Liu, Q. S.; Lan, C. W.

    We present numerical simulations of thermosolutal convection for directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al 7 wt% Si, but not in Al 3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant.

  8. Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots

    NASA Astrophysics Data System (ADS)

    Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.

    2013-06-01

    A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.

  9. Effect of Multi-Scale Thermoelectric Magnetic Convection on Solidification Microstructure in Directionally Solidified Al-Si Alloys Under a Transverse Magnetic Field

    NASA Astrophysics Data System (ADS)

    Li, Xi; Du, Dafan; Gagnoud, Annie; Ren, Zhongming; Fautrelle, Yves; Moreau, Rene

    2014-11-01

    The influence of a transverse magnetic field ( B < 1 T) on the solidification structure in directionally solidified Al-Si alloys was investigated. Experimental results indicate that the magnetic field caused macrosegregation, dendrite refinement, and a decrease in the length of the mushy zone in both Al-7 wt pct Si alloy and Al-7 wt pct Si-1 wt pct Fe alloys. Moreover, the application of the magnetic field is capable of separating the Fe-rich intermetallic phases from Al-7 wt pct Si-1 wt pct Fe alloy. Thermoelectric magnetic convection (TEMC) was numerically simulated during the directional solidification of Al-Si alloys. The results reveal that the TEMC increases to a maximum () when the magnetic field reaches a critical magnetic field strength (), and then decreases as the magnetic field strength increases further. The TEMC exhibits the multi-scales effects: the and values are different at various scales, with decreasing and increasing as the scale decreases. The modification of the solidification structure under the magnetic field should be attributed to the TEMC on the sample and dendrite scales.

  10. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  11. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  12. Role of Si on the Diffusional Interactions Between U-Mo and Al-Si Alloys at 823 K (550 °C)

    NASA Astrophysics Data System (ADS)

    Perez, Emmanuel; Sohn, Yong-Ho; Keiser, Dennis D.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloy fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interaction products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and result in premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7 wt pct Mo, U-10 wt pct Mo and U-12 wt pct Mo in contact with pure Al, Al-2 wt pct Si, and Al-5 wt pct Si, annealed at 823 K (550 °C) for 1, 5 and 20 hours. Scanning electron microscopy and transmission electron microscopy were employed for the analysis. Diffusion couples consisting of U-Mo in contact with pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. Additions of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al- and Si-enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In these couples, the (U,Mo)(Al,Si)3 phase was observed throughout the interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  13. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    NASA Astrophysics Data System (ADS)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  14. Relationship between Defect Size and Fatigue Life Distributions in Al-7 Pct Si-Mg Alloy Castings

    NASA Astrophysics Data System (ADS)

    Tiryakioğlu, Murat

    2009-07-01

    A new method for predicting the variability in fatigue life of castings was developed by combining the size distribution for the fatigue-initiating defects and a fatigue life model based on the Paris-Erdoğan law for crack propagation. Two datasets for the fatigue-initiating defects in Al-7 pct Si-Mg alloy castings, reported previously in the literature, were used to demonstrate that (1) the size of fatigue-initiating defects follow the Gumbel distribution; (2) the crack propagation model developed previously provides respectable fits to experimental data; and (3) the method developed in the present study expresses the variability in both datasets, almost as well as the lognormal distribution and better than the Weibull distribution.

  15. Microstructures and Surface Stabilities of {Ni-0.4C-6Ta- xCr, 0 ≤ x ≤ 50 Wt Pct} Cast Alloys at High Temperature

    NASA Astrophysics Data System (ADS)

    Berthod, Patrice

    2018-06-01

    Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.

  16. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  17. Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2010-02-01

    Heat treatments were performed using an isothermal bainitic transformation (IBT) temperature compatible with continuous hot-dip galvanizing on two high Al-low Si transformation induced plasticity (TRIP)-assisted steels. Both steels had 0.2 wt pct C and 1.5 wt pct Mn; one had 1.5 wt pct Al and the other had 1 wt pct Al and 0.5 wt pct Si. Two different intercritical annealing (IA) temperatures were used, resulting in intercritical microstructures of 50 pct ferrite (α)-50 pct austenite (γ) and 65 pct α-35 pct γ. Using the IBT temperature of 465 °C, five IBT times were tested: 4, 30, 60, 90, and 120 seconds. Increasing the IBT time resulted in a decrease in the ultimate tensile strength (UTS) and an increase in the uniform elongation, yield strength, and yield point elongation. The uniform elongation was higher when using the 50 pct α-50 pct γ IA temperature when compared to the 65 pct α-35 pct γ IA temperature. The best combinations of strength and ductility and their corresponding heat treatments were as follows: a tensile strength of 895 MPa and uniform elongation of 0.26 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 90-second IBT time; a tensile strength of 880 MPa and uniform elongation of 0.27 for the 1.5 pct Al TRIP steel at the 50 pct γ IA temperature and 120-second IBT time; and a tensile strength of 1009 MPa and uniform elongation of 0.22 for the 1 pct Al-0.5 pct Si TRIP steel at the 50 pct γ IA temperature and 120-second IBT time.

  18. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  19. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  20. Effect of Zn Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloys Processed by Gravity Die Casting

    NASA Astrophysics Data System (ADS)

    Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin

    2018-06-01

    The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.

  1. Selective Oxidation and Reactive Wetting During Hot-Dip Galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2012-07-01

    Selective oxidation and reactive wetting during continuous galvanizing were studied for a low-alloy transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, 1.0 pct Al and 0.5 pct Si. Three process atmospheres were tested during annealing prior to galvanizing: 220 K (-53 °C) dew point (dp) N2-20 pct H2, 243 K (-30 °C) dp N2-5 pct H2 and 278 K (+5 °C) dp N2-5 pct H2. The process atmosphere oxygen partial pressure affected the oxide chemistry, morphology and thickness. For the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres, film and nodule-type manganese, silicon and aluminum containing oxides were observed at the surface. For the 278 K (+5 °C) dp atmosphere, MnO was observed at the grain boundaries and as thicker localized surface films. Oxide morphology, thickness and chemistry affected reactive wetting, with complete wetting being observed for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres and incomplete reactive wetting being observed for the 278 K (+5 °C) dp atmosphere. Complete reactive wetting for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres was attributed to a combination of zinc bridging of oxides, aluminothermic reduction of surface oxides and wetting of the oxides. Incomplete wetting for the 278 K (+5 °C) dp atmosphere was attributed to localized thick MnO films.

  2. Effect of W Contents on Martensitic Transformation and Shape Memory Effect in Co-Al-W Alloys

    NASA Astrophysics Data System (ADS)

    Yang, X.; Qian, B. N.; Peng, H. B.; Wu, B. J.; Wen, Y. H.

    2018-04-01

    To clarify the effect of W contents on the shape memory effect (SME) in the Co-Al alloys and its influencing mechanism, the SME, martensitic transformation, and deformation behavior were studied in the Co-7Al-xW ( x = 0, 4, 6, 9 wt pct) alloys. The results showed that the additions of W all deteriorated the SME in Co-7Al alloy when deformed at room temperature. However, when deformed in liquid nitrogen, the SME in Co-7Al alloy could be remarkably improved from 43 to 78 pct after the addition of 4 pct W, above which the SME decreased rapidly with the increase of W content although the yield strength of the parent phase rose due to the solution strengthening of W. The deterioration in SME induced by the excessive addition of W could be ascribed to its resulting significant drop of the start temperature of martensitic transformation.

  3. Atom-Probe Tomographic Investigation of Austenite Stability and Carbide Precipitation in a TRIP-Assisted 10 Wt Pct Ni Steel and Its Weld Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.

    2018-04-01

    Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.

  4. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  5. Identification of strengthening phases in Al-Cu-Li alloy Weldalite (tm) 049

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Microstructure property relationships were determined for a family of ultrahigh strength weldable Al-Cu-Li based alloys referred to as Weldalite (tm) alloys. The highest strength variant of this family, Weldalite 049, has a high Cu/Li wt pct. ratio with a nominal composition of Al-6.3Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr. Increasing the alloy's lithium content above 1.3 wt pct. resulted in a decrease in both yield and ultimate tensile strength. Strength was shown to be strongly dependent on lithium content, with a maximum in strength occurring in the range of about 1.1 to 1.4 wt pct. lithium. The strengthening phases present in Weldalite 049 (1.3Li) and an Al-6.3Cu-1.9Li-0.4Mg-0.14Zr alloy were identified using transmission electron microscopy (TEM).

  6. Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Sohn, Il

    2012-12-01

    The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.

  7. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  8. Analysis of NiAlTa precipitates in beta-NiAl + 2 at. pct Ta alloy

    NASA Technical Reports Server (NTRS)

    Pathare, V.; Michal, G. M.; Vedula, K.; Nathal, M. V.

    1987-01-01

    Results are reported from experiments performed to identify the precipitates, and their orientation in the matrix, in a beta-NiAl alloy containing 2 at. pct. Ta after undergoing creep test at 1300 K. Test specimens formed by extruding hot powders were compressed at 1300 K for about 50 hr at a strain rate averaging 6/1 million per sec. The specimens were then thinned and examined under an electron microscope and by X-ray diffractometry. An intermetallic NiAlTa compound with a hexagonal Cl4 structure appeared as second phase precipitates in the samples, exhibiting plate-like shapes and a habit plane close to (012). The prism planes of the hexagonal NiAlTa precipitates paralleled the closest packed planes in the cubic beta-NiAl matrix.

  9. Effects of Electromagnetic Stirring on the Microstructure and High-Temperature Mechanical Properties of a Hyper-eutectic Al-Si-Cu-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Jang, Youngsoo; Choi, Byounghee; Kang, Byungkeun; Hong, Chun Pyo

    2015-02-01

    A liquid treatment method by electromagnetic stirring was applied to a hyper-eutectic Al-15wt pctSi-4wt pctCu-3wt pctNi alloy for the piston manufacturing with diecasting process in order to improve high-temperature mechanical properties of the piston heads. The mechanical properties, such as hardness, high-temperature tensile stress, thermal expansion, and high-temperature relative wear resistance, were estimated using the specimens taken from the liquid-treated diecast products, and the results were compared with those of a conventional metal-mold-cast piston.

  10. CAFE simulation of columnar-to-equiaxed transition in Al-7wt%Si alloys directionally solidified under microgravity

    NASA Astrophysics Data System (ADS)

    Liu, D. R.; Mangelinck-Noël, N.; Gandin, Ch-A.; Zimmermann, G.; Sturz, L.; Nguyen Thi, H.; Billia, B.

    2016-03-01

    A two-dimensional multi-scale cellular automaton - finite element (CAFE) model is used to simulate grain structure evolution and microsegregation formation during solidification of refined Al-7wt%Si alloys under microgravity. The CAFE simulations are first qualitatively compared with the benchmark experimental data under microgravity. Qualitative agreement is obtained for the position of columnar to equiaxed transition (CET) and the CET transition mode (sharp or progressive). Further comparisons of the distributions of grain elongation factor and equivalent diameter are conducted and reveal a fair quantitative agreement.

  11. Microstructural Evolution of Al-1Fe (Weight Percent) Alloy During Accumulative Continuous Extrusion Forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Guan, Ren-Guo; Tie, Di; Shang, Ying-Qiu; Jin, Hong-Mei; Li, Hong-Chao

    2018-04-01

    As a new microstructure refining method, accumulative continuous extrusion forming (ACEF) cannot only refine metal matrix but also refine the phases that exist in it. In order to detect the refinements of grain and second phase during the process, Al-1Fe (wt pct) alloy was processed by ACEF, and the microstructural evolution was analyzed by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results revealed that the average grain size of Al-1Fe (wt pct) alloy decreased from 13 to 1.2 μm, and blocky Al3Fe phase with an average length of 300 nm was granulated to Al3Fe particle with an average diameter of 200 nm, after one pass of ACEF. Refinement of grain was attributed to continuous dynamic recrystallization (CDRX), and the granulation of Al3Fe phase included the spheroidization resulting from deformation heat and the fragmentation caused by the coupling effects of strain and thermal effect. The spheroidization worked in almost the entire deformation process, while the fragmentation required strain accumulation. However, fragmentation contributed more than spheroidization. Al3Fe particle stimulated the formation of substructure and retarded the migration of recrystallized grain boundary, but the effect of Al3Fe phase on refinement of grain could only be determined by the contrastive investigation of Al-1Fe (wt pct) alloy and pure Al.

  12. Transmission Line Modeling Applied to Hot Corrosion of Fe-40at.pctAl in Molten LiCl-KCl

    NASA Astrophysics Data System (ADS)

    Barraza-Fierro, Jesus Israel; Espinosa-Medina, Marco Antonio; Castaneda, Homero

    2015-12-01

    The effect of Cu and Li additions to the intermetallic alloy Fe-40at.pctAl on the corrosion performance in an LiCl-55wtpctKCl molten eutectic salt was studied by means of electrochemical impedance spectroscopy, transmission line modeling (TLM), and cathodic polarization. The tests were done at 723 K, 773 K, and 823 K (450 °C, 500 °C, and 550 °C), for 60 and 720 minutes. The element additions could improve the corrosion resistance of Fe-40at.pctAl in molten LiCl-KCl, while TLM could characterize and quantify the interfacial processes in hot corrosion. The polarization curves helped to establish the possible cathodic reactions in the experimental conditions.

  13. Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Boehlert, Carl J.; Wang, Qudong; Yin, Dongdi; Ding, Wenjiang

    2016-05-01

    The tension and tension-creep deformation behavior at elevated temperatures of a cast Mg-10Gd-3Y-0.5Zr (wt pct, GW103) alloy was investigated using in situ scanning electron microscopy. The tests were performed at temperatures ranging from 473 K to 598 K (200 °C to 325 °C). The active slip systems were identified using an EBSD-based slip trace analysis methodology. The results showed that for all of the tests, basal slip was the most likely system to be activated, and non-basal slip was activated to some extent depending on the temperature. No twinning was observed. For the tension tests, non-basal slip consisted of ~35 pct of the deformation modes at low temperatures (473 K and 523 K (200 °C and 250 °C)), while non-basal slip accounted for 12 and 7 pct of the deformation modes at high temperatures (573 K and 598 K (300 °C and 325 °C)), respectively. For the tension-creep tests, non-basal slip accounted for 31 pct of the total slip systems at low temperatures, while this value decreased to 10 to 16 pct at high temperatures. For a given temperature, the relative activity for prismatic slip in the tension-creep tests was slightly greater than that for the tension tests, while the activity for pyramidal slip was lower. Slip-transfer in neighboring grains was observed for the low-temperature tests. Intergranular cracking was the main cracking mode, while some intragranular cracks were observed for the tension-creep tests at high temperature and low stress. Grain boundary ledges were prevalently observed for both the tension and tension-creep tests at high temperatures, which suggests that besides dislocation slip, grain boundary sliding also contributed to the deformation.

  14. Effect of Heat Treatment on Electrochemical Properties of Mg-9 wt.%Al-2.5 wt.%Pb Alloy in Sodium Chloride Solution

    NASA Astrophysics Data System (ADS)

    Wang, Linqian; Wang, Richu; Feng, Yan; Deng, Min; Wang, Naiguang

    2017-12-01

    Mg-Al-Pb alloy can serve as a good candidate for the anode material in seawater-activated batteries. The effect of solution and aging treatment on electrochemical properties of Mg-9 wt.%Al-2.5 wt.%Pb alloy in 3.5 wt.% NaCl solution was investigated through scanning electron microscopy and electrochemical tests. The results indicate that the discharge activity of Mg-9 wt.%Al-2.5 wt.%Pb alloy decreases after solution treatment, although its anodic efficiency increases slightly. In contrast, its discharge performance and anodic efficiency, which are crucial for the application of batteries, are both enhanced after aging at 200°C for 12 h.

  15. Modeling the Flow Behavior, Recrystallization, and Crystallographic Texture in Hot-Deformed Fe-30 Wt Pct Ni Austenite

    NASA Astrophysics Data System (ADS)

    Abbod, M. F.; Sellars, C. M.; Cizek, P.; Linkens, D. A.; Mahfouf, M.

    2007-10-01

    The present work describes a hybrid modeling approach developed for predicting the flow behavior, recrystallization characteristics, and crystallographic texture evolution in a Fe-30 wt pct Ni austenitic model alloy subjected to hot plane strain compression. A series of compression tests were performed at temperatures between 850 °C and 1050 °C and strain rates between 0.1 and 10 s-1. The evolution of grain structure, crystallographic texture, and dislocation substructure was characterized in detail for a deformation temperature of 950 °C and strain rates of 0.1 and 10 s-1, using electron backscatter diffraction and transmission electron microscopy. The hybrid modeling method utilizes a combination of empirical, physically-based, and neuro-fuzzy models. The flow stress is described as a function of the applied variables of strain rate and temperature using an empirical model. The recrystallization behavior is predicted from the measured microstructural state variables of internal dislocation density, subgrain size, and misorientation between subgrains using a physically-based model. The texture evolution is modeled using artificial neural networks.

  16. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66- x CrNiB x Si ( x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza

    2016-11-01

    In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.

  17. Application of Precipitate Free Zone Growth Kinetics to the β-Phase Depletion Behavior in a CoNiCrAlY Coating Alloy: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Chen, H.

    2018-06-01

    This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.

  18. Application of Precipitate Free Zone Growth Kinetics to the β-Phase Depletion Behavior in a CoNiCrAlY Coating Alloy: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Chen, H.

    2018-03-01

    This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.

  19. Discontinuous Precipitation Reactions in Co-10Al-4C (At. Pct)

    NASA Astrophysics Data System (ADS)

    Kamali, H.; Hossein Nedjad, S.; Kaufman, M. J.; Field, R. D.; Clarke, A. J.

    2018-05-01

    The evolution of microstructure and microhardness of a Co-10Al-4C (at. pct) alloy during isothermal aging at 800 and 900 °C is reported. Fine κ-Co3AlC0.5 intermetallic precipitates form in an FCC α-Co matrix after aging at both temperatures. Lamellar discontinuous precipitation also occurred at grain boundaries and the lamellar transformation product consumed the fine κ-Co3AlC0.5 precipitates in the matrix during aging. The microhardness of the alloy decreased dramatically upon formation of the lamellar product. Transmission electron microscopy revealed that the lamellar product consists of α-Co, κ-Co3AlC0.5, and B2-CoAl phases at 800 °C. The orientation relationship between α-Co and κ-Co3AlC0.5 phases, and between α-Co and B2-CoAl phases were identified as cube-on-cube and Kurdjumov-Sachs, respectively. The discontinuous product at 900 °C was composed of alternating α-Co and κ-Co3AlC0.5 lamellae, without the B2-CoAl phase that formed at 800 °C. Additional continuous coarsening of κ-Co3AlC0.5 phase was observed in the lamellar aggregate during prolonged aging at 900 °C. The main driving force for the discontinuous reaction appears to be the reduction in both interfacial energy and elastic strain energy where the latter is attributed to the relatively high lattice mismatch between the κ-Co3AlC0.5 precipitates and the α-Co matrix.

  20. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-07-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  1. Soldering of Mg Joints Using Zn-Al Solders

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Berent, Katarzyna; Skuza, Wojciech; Janik, Katarzyna

    2018-04-01

    Magnesium has applications in the automotive and aerospace industries that can significantly contribute to greater fuel economy and environmental conservation. The Mg alloys used in the automotive industry could reduce mass by up to 70 pct, providing energy savings. However, alongside the advantages there are limitations and technological barriers to use Mg alloys. One of the advantages concerns phenomena occurring at the interface when joining materials investigated in this study, in regard to the effect of temperature and soldering time for pure Mg joints. Eutectic Zn-Al and Zn-Al alloys with 0.05 (wt pct) Li and 0.2 (wt pct) Na were used in the soldering process. The process was performed for 3, 5, and 8 minutes of contact, at temperatures of 425 °C, 450 °C, 475 °C, and 500 °C. Selected, solidified solder-substrate couples were cross-sectioned, and their interfacial microstructures were investigated by scanning electron microscopy. The experiment was designed to demonstrate the effect of time, temperature, and the addition of Li and Na on the kinetics of the dissolving Mg substrate. The addition of Li and Na to eutectic Zn-Al caused to improve mechanical properties. Higher temperatures led to reduced joint strength, which is caused by increased interfacial reaction.

  2. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  3. Droplet Evolution and Refinement During Liquid-Liquid Decomposition of Zn-6 Wt Pct Bi Immiscible Alloy Under High Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zheng, Tianxiang; Zhong, Yunbo; Wang, Jiang; Ren, Zhongming; Ren, Weili; Lei, Zuosheng; Debray, Francois; Beaugnon, Eric; Wei, Xicheng

    2018-05-01

    In situ solidification experiments on Zn-6 wt pct Bi immiscible alloys were conducted to investigate the droplet evolution under high static magnetic fields (HSMFs). The results showed that a microstructure with extremely fine Bi-rich particles distributed in the matrix can be obtained under an HSMF of 29 T. The average diameter of the Bi-rich phase decreased with the increasing magnetic flux density. Stokes sedimentation disappeared when the HSMF was larger than 18 T. Starting at an HSMF of 18 T, Bi-rich droplets grew via pure diffusion in the liquid matrix. The HSMF decreased the spacing of the droplet arrays when the cooling rate (R) was approximately 1600 °C/min. The formation of a Zn-rich phase surrounded by a Bi-rich shell at HSMFs below 18 T, when R was approximately 60 °C/min, was attributed to the thermoelectric magnetic force.

  4. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  5. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-03-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} f ), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their < {c}> -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal < {c+a}> slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}} 1}-{10{\\bar{1}} 2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} f value. A combination of basal, prismatic, and pyramidal < {c+a}> slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal < {c+a}> slip, and the improved {ɛ} f values at elevated temperatures were attributed to the vanishing activity of

  6. Contraction Twinning Dominated Tensile Deformation and Subsequent Fracture in Extruded Mg-1Mn (Wt Pct) at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Chakkedath, A.; Maiti, T.; Bohlen, J.; Yi, S.; Letzig, D.; Eisenlohr, P.; Boehlert, C. J.

    2018-06-01

    Due to their excellent strength-to-weight ratio, Mg alloys are attractive for applications where weight savings are critical. However, the limited cold formability of wrought Mg alloys severely restricts their widespread usage. In order to study the role that deformation twinning might play in limiting the elongation-to-failure ({ɛ} _{ {f}}), in-situ tensile tests along the extrusion axis of Mg-1Mn (wt pct) were performed at 323 K, 423 K, and 523 K. The alloy exhibited a strong basal texture such that most of the grains experienced compression along their < {c}> -axis during deformation. At 323 K, fracture occurred at about 10 pct strain. Although basal, prismatic, and pyramidal < {c+a}> slip activity was observed along with extension twinning, contraction twinning significantly influenced the deformation, and such twins evolved into {10{\\bar{1}}1}-{10{\\bar{1}}2} double twins. Crystal plasticity simulation showed localized shear deformation within the contraction twins and double twins due to the enhanced activity of basal slip in the reoriented twin volume. Due to this, the twin-matrix interface was identified to be a potential crack initiation site. Thus, contraction twins were considered to have led to the failure of the material at a relatively low strain, suggesting that this deformation mode is detrimental to the cold formability of Mg and its alloys. With increasing temperature, there was a significant decrease in the activity of contraction twinning as well as extension twinning, along with a decrease in the tensile strength and an increase in the {ɛ} _{ {f}} value. A combination of basal, prismatic, and pyramidal < {c+a}> slips accounted for a large percentage of the observed deformation activity at 423 K and 523 K. The lack of contraction twinning was explained by the expected decrease in the critical resolved shear stress values for pyramidal < {c+a}> slip, and the improved {ɛ} _{ {f}} values at elevated temperatures were attributed to the vanishing

  7. Wettability of MnxSiyOz by Liquid Zn-Al Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho

    2010-08-01

    The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.

  8. The effect of temperature, matrix alloying and substrate coatings on wettability and shear strength of Al/Al2O3 couples

    NASA Astrophysics Data System (ADS)

    Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.

    2004-03-01

    A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.

  9. On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA 7075 extrusion products

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, A. K.

    1998-03-01

    The deleterious effects of Fe-bearing constituent particles on the fracture toughness of wrought A1 alloys have been known. Recent studies have shown that the presence of Fe-bearing, constituent particles is also determental to the nature and growth of the hard anodic oxide coating formed on such materials. The present study, using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron probe microanalysis (EPMA), was made to examine the influence of the nature of the Fe-bearing particles on the hard anodizing behavior of AA 7075 extrusion products containing varying amounts of Si, Mn, and Fe impurities. It was found that, in the alloy containing 0.25 wt pct Si, 0.27 wt pct Mn, and 0.25 wt pct Fe, the Fe-bearing constituent particles are based on the Al12(FeMn)3Si phase (bcc with α=1.260 nm). These particles survive the hard anodizing treatment, add resistance to the electrical path, causing a rapid rise in the bath voltage with time, and cause a nonuniform growth of the anodic oxide film. In the materials containing 0.05 wt pct Si, 0.04 wt pct Mn, and 0.18 wt pct Fe, on the other hand, the formation of the Al12(FeMn)3Si-based phase is suppressed, and two different Fe-bearing phases, based on Al-Fe-Cu-Mn-based (simple cubic with a=1.265 nm) and Al7Cu2Fe, respectively form. Neither the Al-Fe-Cu-Mn-based phase nor the Al7Cu2Fe-based phase survive the hard anodizing treatment, and this results in a steady rise in the bath voltage with time and a relatively uniform growth of the anodic oxide film. Consideration of the size of the Fe-bearing, particles reveals that the smaller the particle, the more uniform the growth of the anodic oxide film.

  10. Active metal brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%)

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2018-01-01

    The application of an active braze alloy (ABA) known as Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%) to join Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) has been investigated. This ABA was selected to increase the operating temperature of the joint beyond the capabilities of typically used ABAs such as Ag-Cu-Ti-based alloys. Silica present as a secondary phase in the Al2O3 at a level of 5 wt.% enabled the ceramic component to bond to the ABA chemically by forming a layer of Si3Ti5 at the ABA/Al2O3 interface. Appropriate brazing conditions to preserve a near-continuous Si3Ti5 layer on the Al2O3 and a continuous Fe3Si layer on the Kovar® were found to be a brazing time of ≤15 min at 1025 °C or ≤2 min at 1050 °C. These conditions produced joints that did not break on handling and could be prepared easily for microscopy. Brazing for longer periods of time, up to 45 min, at these temperatures broke down the Si3Ti5 layer on the Al2O3, while brazing at ≥1075 °C for 2-45 min broke down the Fe3Si layer on the Kovar® significantly. Further complications of brazing at ≥1075 °C included leakage of the ABA out of the joint and the formation of a new brittle silicide, Ni16Si7Ti6, at the ABA/Al2O3 interface. This investigation demonstrates that it is not straightforward to join Al2O3 to Kovar® using Copper ABA®, partly because the ranges of suitable values for the brazing temperature and time are quite limited. Other approaches to increase the operating temperature of the joint are discussed.

  11. A sintering study on the β-spodumene-based glass ceramics prepared from gel-derived precursor powders with LiF additive

    NASA Astrophysics Data System (ADS)

    Wang, Moo-Chin; Wu, Nan-Chung; Yang, Sheng; Wen, Shaw-Bing

    2002-01-01

    Beta-spodumene (Li2O·Al2O3·4SiO2, LAS) powders were prepared by a sol-gel process using Si(OC2H5)4, Al(OC4H9)3, and LiNO3 as precursors and LiF as a sintering aid agent. Dilatometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and electron diffraction (ED) were utilized to study the sintering, phase transformation, microstructure, and properties of the β-spodumene glass-ceramics prepared from the gel-derived precursor powders with and without LiF additives. For the LAS precursor powders containing no LiF, the only crystalline phase obtained was β-spodumene. For the pellets containing less than 4 wt pct LiF and sintered at 1050 °C for 5 hours the crystalline phases were β-spodumene and β-eucryptite (Li2O·Al2O3·2SiO2). When the LiF content was 5 wt pct and the sintering process was carried out at 1050 °C for 5 hours, the crystalline phases were β-spodumene, β-eucryptite (triclinic), and eucryptite (rhombohedral (hex.)) phases. With the LiF additive increased from 0.5 to 4 wt pct and sintering at 1050 °C for 5 hours, the open porosity of the sintered bodies decrease from 30 to 2.1 pct. The grains size is about to 4 to 5 µm when pellect LAS compact contains LiF 3 wt pct as sintered at 1050 °C for 5 hours. The grains size grew to 8 to 25 µm with a remarkable discontinuous grain growth for pellet LAS compact contain LiF 5 wt pct sintered at 1050 °C for 5 hours. Relative densities greater than 90 pct could be obtained for the LAS precursor powders with LiF > 2 wt pct when sintered at 1050 °C for 5 hours. The coefficient of thermal expansion of the sintered bodies decreased from 8.3 × 10-7 to 5.2 × 10-7/°C (25 °C to 900 °C) as the LiF addition increased from 0 to 5 wt pct.

  12. Microstructure-strength relations in a hardenable stainless steel with 16 pct Cr, 1.5 pct Mo, and 5 pct Ni

    NASA Astrophysics Data System (ADS)

    Grobner, P. J.; Blšs, V.

    1984-07-01

    Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.

  13. Effect of Repair Welding on Electrochemical Corrosion and Stress Corrosion Cracking Behavior of TIG Welded AA2219 Aluminum Alloy in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2010-12-01

    The stress corrosion cracking (SCC) behavior of AA2219 aluminum alloy in the as-welded (AW) and repair-welded (RW) conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using the slow strain rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both BM and welded joints. The results show that the ductility ratio ( ɛ NaCl/( ɛ air)) of the BM was close to one (0.97) and reduced to 0.9 for the AW joint. This value further reduced to 0.77 after carrying out one repair welding operation. However, the RW specimen exhibited higher ductility than the single-weld specimens even in 3.5 wt pct NaCl solution. SSRT results obtained using pre-exposed samples followed by post-test metallographic observations clearly showed localized pitting corrosion along the partially melted zone (PMZ), signifying that the reduction in ductility ratio of both the AW and RW joints was more due to mechanical overload failure, caused by the localized corrosion and a consequent reduction in specimen thickness, than due to SCC. Also, the RW joint exhibited higher ductility than the AW joint both in air and the environment, although SCC index (SI) for the former is lower than that of the latter. Fractographic examination of the failed samples, in general, revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy. Microstructural examination and polarization tests further demonstrate grain boundary melting along the PMZ, and that provided the necessary electrochemical condition for the preferential cracking on that zone of the weldment.

  14. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-07-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  15. Oxide Morphology of a FeCrAl Alloy, Kanthal APMT, Following Extended Aging in Air at 300 °C to 600 °C

    NASA Astrophysics Data System (ADS)

    Li, Nan; Parker, Stephen S.; Wood, Elizabeth S.; Nelson, Andrew T.

    2018-05-01

    Iron-chromium-aluminum (FeCrAl) alloys are of interest to the nuclear materials community due to their resistance to high-temperature steam oxidation under accident conditions. The present work investigates oxide formation at temperatures relevant to light water reactor cladding operation following extended aging to assess growth kinetics, chemical composition, and microstructure of oxide formation on a commercial FeCrAl alloy, Fe-21 wt pct Cr-5 wt pct Al-3 wt pct Mo (Kanthal APMT). Aging treatments were performed for 100 to 1000 hours in stagnant air at 300 °C, 400 °C, 500 °C, and 600 °C, respectively. Oxide growth behavior under the investigated conditions follows a logarithmic time dependence. When the oxidization temperature is 400 °C or below, the oxide is amorphous. At 500 °C, isolated crystalline regions start to appear during short period aging time and expand with extended exposures. Crystalline α-Al2O3 oxide film develops at 600 °C and the correlated logarithmic rate constant decreases significantly, indicating enhanced oxidation resistance of the formed oxide film. In addition, Mo segregation at grain boundaries has been observed when the aging temperature exceeds 500 °C. The results of this study can be viewed as an upper bounding result for potential oxide coarsening during reactor operation.

  16. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    NASA Astrophysics Data System (ADS)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  17. Effect of Extrusion Parameters on Texture and Microstructure Evolution of Extruded Mg-1 pctMn and Mg-1 pctMn-Sr Alloys

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Pekguleryuz, Mihriban

    2015-01-01

    Three Mg alloys Mg-1 pctMn (M1), Mg-1 pctMn-1.3 pctSr, and Mg-1 pctMn-2.1 pctSr were subjected to two different extrusion temperatures and two different extrusion speeds in lab-scale extrusion. The extrusion temperatures of 573 K and 673 K (300 °C and 400 °C) and two ram speeds of 4 and 8 mm/s were used at constant extrusion ratio of 7. M1 exhibited strong basal texture after extrusion at 673 K (400 °C) at higher speed. At 573 K (300 °C), recrystallization in all alloys takes place completely or partially by continuous dynamic recrystallization mechanism, while particle stimulated nucleation (PSN) occurs in all M1-Sr alloys at both extrusion temperatures and speeds. At 673 K (400 °C), grain boundary bulging is the only recrystallization mechanism in alloy M1, while it occurs in combination with PSN in M1-Sr alloys. The effect of texture weakening by PSN is more significant in M1-Sr alloys extruded at 573 K (400 °C). The plant extrusion trials were carried out on Mg-1 pctMn, Mg-1 pctMn-0.3 pctSr, and Mg-1 pctMn-2.1 pctSr at 623 K (350 °C) with different speeds than in lab-scale extrusion. M1 alloy exhibited strong basal texture at both speeds, while Sr additions of 0.3 and 2.1 pct promoted similar amount of texture weakening.

  18. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  19. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  20. Effects of Heat Treatment on the Discharge Behavior of Mg-6wt.%Al-1wt.%Sn Alloy as Anode For Magnesium-Air Batteries

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhu, Hualong; Luo, Jie; Yu, Kun; Shi, Chunli; Fang, Hongjie; Zhang, Yu

    2017-05-01

    Mg-6wt.%Al-1wt.%Sn alloys under different conditions are prepared. Primary magnesium-air batteries are assembled using such experimental Mg-Al-Sn alloys as anodes. The discharge behaviors of different alloys are investigated in 3.5 wt.% NaCl solution. The results show that the solution treatment can facilitate the homogeneous distribution of alloy elements and reduce the accumulation of discharge products. The magnesium-air battery based on the solution-treated Mg-Al-Sn anode presents higher operating voltage and more stable discharge process than those on the as-cast and the aged ones. Although the solution treatment cannot effectively improve the capacity density and the anodic efficiency of the experimental Mg-Al-Sn alloy, it is an effective approach to increasing the power and the energy density during discharge process. Especially at the applied current density of 30 mA cm-2 for 5 h, the solution-treated anode supplies 1.212 V average operating voltage, the anode energy density reaches 1527.2 mWhg-1, while the cast one is 1481.3 mWhg-1 and the aged one is 1478.8 mWhg-1.

  1. Liquid-Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.

    2018-05-01

    The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

  2. Liquid-Solid Interaction in Al-Si/Al-Mn-Cu-Mg Brazing Sheets and Its Effects on Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Jin, H.; Kozdras, M. S.; Amirkhiz, B. Shalchi; Winkler, S. L.

    2018-07-01

    The liquid-solid interaction during brazing at 592 °C to 605 °C and its effects on mechanical properties were investigated in a series of Al-Si/Al-Mn-Cu-Mg brazing sheets with different Mg contents. Depending on the Mg level in core alloy and the brazing temperature, critical changes of local chemistry and microstructure related to the liquid-solid interaction occur, including solid-state diffusion, uniform clad-core interface migration, and grain boundary penetration (GBP). When the Mg in core alloy is below 1 wt pct, the interaction is limited and the formation of a dense precipitation band due to solid-state diffusion of Si from the clad to the core is dominant. As the Mg exceeds 1 wt pct, very extensive interaction occurs resulting in clad-core interface migration and GBP of Si into the core, both involving local melting and re-solidification of the core alloy. Whenever Si from the clad encounters Mg in the core due to the interaction, Mg2Si precipitates are formed leading to significant improvement of strength. However, the interface migration and GBP drastically reduce the ductility, due to the segregation of coarse secondary phase particles along the newly formed grain boundaries.

  3. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  4. Effect of Sulfur on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-S System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-10-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.

  5. Effect of graphenenano-platelets on the mechanical properties of Mg/3wt%Al alloy-nanocomposite

    NASA Astrophysics Data System (ADS)

    Kumar, Pravir; Kujur, MilliSuchita; Mallick, Ashis; Sandar Tun, Khin; Gupta, Manoj

    2018-04-01

    The bulk Mg/3%Al/0.1%GNP alloy-nano composite was fabricated using powder metallurgy route assisted with microwave sintering and followed by hot extrusion. The microstructural and Raman spectroscopy studies were performed to characterize the graphene nano-platelet(GNP).EDX tests confirmed the presence and the homogeneous distribution of Al and graphene nano-platelets in the magnesium alloy-nanocomposite. The addition of 3 wt% Al and 0.1wt%GNP to the Mg changed Vicker hardness, ultimate tensile strength and failure strain by +46.15%,+17.6% and -5% respectively. The fabricated composite offers higher resistance to the local deformation than monolithic Mg and Mg/3%Al alloy, revealed by the load/unload-indentation depth curve.

  6. Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-ming; Chen, Sinn-wen

    2001-08-01

    This study investigates the effect of electromigration upon the interfacial reactions between the promising lead-free solders, Sn-Cu and Sn-Ag, with Ni substrate. Sandwich-type reaction couples, Sn-0.7 wt% Cu/Ni/Sn-0.7 wt% Cu and Sn-3.5 wt% Ag/Ni/Sn-3.5 wt% Ag, were reacted at 160, 180, and 200 °C for various lengths of time with and without the passage of electric currents. Without passage of electric currents through the couples, only one intermetallic compound Ni3Sn4 with ˜7 at. % Cu solubility was found at both interfaces of the Sn-0.7 wt% Cu/Ni couples. With the passage of an electric current of 500 A/cm2 density, the Cu6Sn5 phase was formed at the solder/Ni interface besides the Ni3Sn4 phase. Similar to those without the passage of electric currents, only the Ni3Sn4 phase was found at the Ni/solder interface. Directions of movement of electrons, Sn, and Cu atoms are the same at the solder/Ni interface, and the growth rates of the intermetallic layers were enhanced. At the Ni/solder interface, the electrons flow in the opposite direction of the Sn and Cu movement, and the growth rates of the intermetallic layers were retarded. Only the Ni3Sn4 phase was formed from the Sn-3.5 wt% Ag/Ni interfacial reaction with and without the passage of electric currents. Similar to the Sn-0.7 wt% Cu/Ni system, the movement of electrons enhances or retards the growth rates of the intermetallic layers at the solder/Ni and Ni/solder interfaces, respectively. Calculation results show the apparent effective charge za* decreases in magnitude with raising temperatures, which indicates the electromigration effect becomes insignificant at higher temperatures.

  7. Impact Toughness of 0.2 Pct C-1.5 Pct Si-(1.5 to 5) Pct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix

    NASA Astrophysics Data System (ADS)

    Tanino, Hikaru; Horita, Masaomi; Sugimoto, Koh-Ichi

    2016-05-01

    The impact properties of 0.2 pct C-1.5 pct Si-(1.5 to 5) pct Mn transformation-induced plasticity (TRIP)-aided steels with an annealed martensite matrix which had been subjected to isothermal transformation after inter-critical annealing were investigated for potential automotive applications. The impact properties are related to the retained austenite characteristics of the steels. The products of tensile strength (TS) and Charpy impact absorbed value (CIAV) were the same for the 1.5 and 5 pct Mn steels, although the ductile-brittle transition temperature was higher for the latter. The impact properties of the 3 pct Mn steel were worse than these two steels. The high TS × CIAV value for the 5 pct Mn steel at 293 K (25 °C) was mainly caused by the TRIP effect of a larger amount of retained austenite (36 vol pct) and the hardened matrix structure; low retained austenite stability and/or a hard martensite-austenite phase reduced this value. The higher ductile-brittle transition temperature of the 5 pct Mn steel was associated with Mn segregation, a large amount of unstable retained austenite on prior austenitic grain boundaries, and decreased cleavage fracture stress owing to the high Mn content.

  8. The fracture resistance of 1420 and 1421 Al-Mg-Li alloys

    NASA Technical Reports Server (NTRS)

    Birt, M. J.; Hafley, R. A.; Wagner, J. A.; Lisagor, W. B.

    1993-01-01

    The resistance to stable crack growth in 1420-T6 (Al-5Mg-2.1Li-0.1Zr-0.01Sc, less than 0.06Fe, in wt pct) and 1421-T6 (Al-4.7Mg-1.9Li-0.09Zr-0.2Sc, less than 0.06Fe) Al-Mg-Li alloys was investigated, based on the R curves generated in accordance with ASTM E561-86 and fractography analyses. The crack resistance of 1420 and 1421 alloys was found to be comparable to that of the conventional Space Shuttle External Tank Al alloy, 2219-T87. The main differences in the fracture behaviors arose from differences in the alloys' microstructures. In the case of 1420 alloy, a slightly enhanced toughness behavior was observed, due to the T-phase precipitates, which may have promoted more homogeneous deformation and enhanced microvoid coalescence. In the case of 1421 alloy, the addition of Sc led to a refined grain size and resulted in slightly reduced toughness.

  9. Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, Deni; Josse, Claudie; Nguyen, Patrick; Gey, Nathalie; Ratel-Ramond, Nicolas; de Parseval, Philippe; Thebault, Yannick; Malard, Benoit; Lacaze, Jacques; Salvo, Luc

    2015-07-01

    The microstructure of a high-purity Al-6.5Si-1Fe (wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Fe-bearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading.

  10. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    NASA Astrophysics Data System (ADS)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  11. Development of powder metallurgy 2XXX series Al alloys for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1984-01-01

    The objective of the present investigation was to improve the strength and fracture toughness combination of P/M 2124 Al alloys in accordance with NASA program goals for damage tolerance and fatigue resistance. Two (2) P/M compositions based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.12 and 0.60 wt. pct. Zr were selected for investigation. The rapid solidification rates produced by atomization were observed to prohibit the precipitation of coarse, primary Al3Zr in both alloys. A major portion of the Zr precipitated as finely distributed, coherent Al3Zr phases during vacuum preheating and solution heat treatment. The proper balance between Cu and Mg contents eliminated undissolved, soluble constituents such as Al2CuMg and Al2Cu during atomization. The resultant extruded microstructures produced a unique combination of strength and fracture toughness. An increase in the volume fraction of coherent Al3Zr, unlike incoherent Al20Cu2Mn3 dispersoids, strengthened the P/M Al base alloy either directly by dislocation-precipitate interactions, indirectly by a retardation of recrystallization, or a combination of both mechanisms. Furthermore, coherent Al3Zr does not appear to degrade toughness to the extent that incoherent Al20Cu2Mn3 does. Consequently, the addition of 0.60 wt. pct. Zr to the base alloy, incorporated with a 774K (935 F) solution heat treatment temperature, produces an alloy which exceeds all tensile property and fracture toughness goals for damage tolerant and fatigue resistant applications in the naturally aged condition.

  12. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  13. Evolution of Microstructure and Stress Corrosion Cracking Behavior of AA2219 Plate to Ring Weld Joints in 3.5 Wt Pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Narayanan, P. Ramesh; Sharma, S. C.

    2016-04-01

    AA2219 aluminum alloy plate (T87) and ring (T851) were joined by tungsten inert gas (TIG) welding using multi-pass welding. The mechanical properties and stress corrosion cracking (SCC) resistance of the above base metals (BMs) in different directions (L, LT, and ST) were examined. Similarly, the weld metal joined by plate to plate and plate to ring (PR) joints was evaluated. The results revealed that the mechanical properties of the ring were comparatively lower than the plate. This was found to be due to the extremely coarse grain size of the ring along with severe Cu-rich segregation along the grain boundaries when compared to the plate material. The SCC resistance of the base and weldments were found to be good and not susceptible to SCC. This was shown to be due to high values of SCC index (>0.9) and the typical ductile cracking morphology of the BM and the weld joints after SCC test in the environment (3.5 wt pct NaCl) when compared to test performed in the control environment (air). However, the corrosion resistance of the weld interface between the FZ and ring was inferior to the FZ-plate interface.

  14. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    NASA Technical Reports Server (NTRS)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  15. The effect of grain boundary chemistry on Intergranular stress corrosion cracking of Ni-Cr-Fe alloys in 50 Pct NaOH at 140 °C

    NASA Astrophysics Data System (ADS)

    Sung, J. K.; Koch, J.; Angeliu, T.; Was, G. S.

    1992-10-01

    The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.

  16. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.

    2017-08-01

    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  17. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  18. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  19. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This lastmore » phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)« less

  20. 1200 and 1300 K slow plastic compression properties of Ni-50Al composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    XD synthesis, powder blending, and hot pressing techniques have been utilized to produce NiAl composites containing 4, 7.5, 15, and 25 vol pct alumina whiskers and hybrid composite materials with 15 vol pct Al2O3 + 10 or 20 vol pct, nominally 1 micron TiB2 particles. The resistance to slow plastic flow was determined at 1200 and 1300 K via compression testing in air under constant velocity conditions. The stress-strain behavior of the intermetallic composites depended on the fraction of second phases where the 4 and 7.5 percent Al2O3 materials flowed at a nominally constant stress after about 2 percent deformation, while all the other composites exhibited diffuse yielding followed by strain softening. The flow stress-strain rate properties increased with volume fraction of Al2O3 whiskers except for the 4 and 7.5 percent materials, which had similar strengths. The hybrid composite NiAl + 15Al2O3 + 10TiB2 was substantially stronger than the materials simply containing alumina. Deformation in these composites can be described by the Kelly and Street model of creep in perfectly bonded, rigid, discontinuous fiber materials.

  1. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-12-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  2. Directionally Solidified Aluminum - 7 wt% Silicon Alloys: Comparison of Earth and International Space Station Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N,; Tewari, Surendra; Rajamure, R. S.; Erdman, Robert; Poirier, David

    2012-01-01

    Primary dendrite arm spacings of Al-7 wt% Si alloy directionally solidified in low gravity environment of space (MICAST-6 and MICAST-7: Thermal gradient approx. 19 to 26 K/cm, Growth speeds varying from 5 to 50 microns/s show good agreement with the Hunt-Lu model. Primary dendrite trunk diameters of the ISS processed samples show a good fit with a simple analytical model based on Kirkwood s approach, proposed here. Natural convection, a) decreases primary dendrite arm spacing. b) appears to increase primary dendrite trunk diameter.

  3. Grain Growth in Nanocrystalline Mg-Al Thin Films

    DOE PAGES

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; ...

    2017-10-05

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  4. Grain Growth in Nanocrystalline Mg-Al Thin Films

    NASA Astrophysics Data System (ADS)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-12-01

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  5. Phase Equilibria of ``Cu2O''-``FeO''-CaO-MgO-Al2O3 Slags at PO2 of 10-8.5 atm in Equilibrium with Metallic Copper for a Copper Slag Cleaning Production

    NASA Astrophysics Data System (ADS)

    Henao, Hector M.; Pizarro, Claudio; Font, Jonkion; Moyano, Alex; Hayes, Peter C.; Jak, Evgueni

    2010-12-01

    Limited data are available on phase equilibria of the multicomponent slag system at the oxygen partial pressures used in the copper smelting, converting, and slag-cleaning processes. Recently, experimental procedures have been developed and have been applied successfully to characterize several complex industrial slags. The experimental procedures involve high-temperature equilibration on a substrate and quenching followed by electron probe X-ray microanalysis. This technique has been used to construct the liquidus for the “Cu2O”-“FeO”-SiO2-based slags with 2 wt pct of CaO, 0.5 wt pct of MgO, and 4.0 wt pct of Al2O3 at controlled oxygen partial pressures in equilibrium with metallic copper. The selected ranges of compositions and temperatures are directly relevant to the copper slag-cleaning processes. The new experimental equilibrium results are presented in the form of ternary sections and as a liquidus temperature vs Fe/SiO2 weight ratio diagram. The experimental results are compared with the FactSage thermodynamic model calculations.

  6. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; Li, Shimin; Apelian, Diran; Shyam, Amit; Allen Haynes, J.; Rodriguez, Andres F.

    2018-06-01

    The hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: "V"-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on the variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.

  7. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    DOE PAGES

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher; ...

    2018-02-16

    Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less

  8. Hot-Tearing Assessment of Multicomponent Nongrain-Refined Al-Cu Alloys for Permanent Mold Castings Based on Load Measurements in a Constrained Mold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S.; Mirmiran, Seyed; Glaspie, Christopher

    Here, the hot-tearing resistance of multicomponent Al-Cu alloys during permanent mold casting was investigated using a constrained permanent mold in which the load and temperature were measured. The nominal Cu composition was varied from 5 to 8 wt pct. Casting experiments were conducted without adding any grain-refining inoculants. The following variables, which were obtained from the measured load data during casting, were considered to assess the hot-tearing resistance of the Al-Cu multicomponent alloys: “V”-like signature in the load rate variation, load at solidus point, and load rate average over the freezing range. In addition, a hot-tearing criterion based on themore » variation of the fraction of solid in the late stages of solidification was used. It was found that all criteria considered can accurately predict the alloys with the lowest and highest hot-tear resistance, respectively. It was found that the rate of measured load during casting could be used to indicate substantial hot tearing. However, the load rate variation could not be used to detect when small hot tears were present. Among all the criteria considered, the load at the solidus point shows an excellent agreement with experimentally observed hot-tearing resistance for all but one alloy. The poorly resistant hot-tearing alloys exhibited mainly coarse columnar grains while the most hot-tearing resistant alloys exhibited a much more refined grain microstructure. This is the first study in which good hot-tear resistance is demonstrated for multicomponent Al-Cu alloys with nominal Cu content greater than 7 wt pct.« less

  9. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  10. Post-irradiation examination of uranium 7 wt% molybdenum atomized dispersion fuel

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Koonen, E.; Jarousse, C.; Huet, F.; Trotabas, M.; Boyard, M.; Guillot, S.; Sannen, L.; Verwerft, M.

    2004-10-01

    Two low-enriched uranium fuel plates consisting of U-7wt%Mo atomized powder dispersed in an aluminum matrix, have been irradiated in the FUTURE irradiation rig of the BR2 reactor at SCK•CEN. The plates were submitted to a heat flux of maximum 353 W/cm 2 while the surface cladding temperature is kept below 130 °C. After 40 full power days, visual examination and profilometry of the fuel plates revealed an increase of the plate thickness. In view of this observation, the irradiation campaign was prematurely stopped and the fuel plates were retrieved from the reactor, having at their end-of-life a maximum burn-up of 32.8% 235U (6.5% FIMA). The microstructure of one of the fuel plates has been characterized in an extensive post-irradiation campaign. The U(Mo) fuel particles have been found to interact with the Al matrix, resulting in an interaction layer which can be identified as (U,Mo)Al 3 and (U,Mo)Al 4. Based on the composition of the interaction layer it is shown that the observed physical parameters like thickness of the interaction layer between the Al matrix and the U(Mo) fuel particles compare well to the values calculated by the MAIA code, an U(Mo) behavior modeling code developed by the Commissariat à l'énergie atomique (CEA).

  11. Effect of Melt Convection and Solid Transport on Macrosegregation and Grain Structure in Equiaxed Al-Cu Alloys

    NASA Technical Reports Server (NTRS)

    Rerko, Rodney S.; deGroh, Henry C., III; Beckermann, Christoph; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Macrosegregation in metal casting can be caused by thermal and solutal melt convection, and the transport of unattached solid crystals. These free grains can be a result of, for example, nucleation in the bulk liquid or dendrite fragmentation. In an effort to develop a comprehensive numerical model for the casting of alloys, an experimental study has been conducted to generate benchmark data with which such a solidification model could be tested. The specific goal of the experiments was to examine equiaxed solidification in situations where sinking of grains is (and is not) expected. The objectives were: 1) experimentally study the effects of solid transport and thermosolutal convection on macrosegregation and grain size distribution patterns; and 2) provide a complete set of controlled thermal boundary conditions, temperature data, segregation data, and grain size data, to validate numerical codes. The alloys used were Al-1 wt. pct. Cu, and Al-10 wt. pct. Cu with various amounts of the grain refiner TiB2 added. Cylindrical samples were either cooled from the top, or the bottom. Several trends in the data stand out. In attempting to model these experiments, concentrating on experiments that show clear trends or differences is recommended.

  12. Influence of Mg on Grain Refinement of Near Eutectic Al-Si Alloys

    NASA Astrophysics Data System (ADS)

    Ravi, K. R.; Manivannan, S.; Phanikumar, G.; Murty, B. S.; Sundarraj, Suresh

    2011-07-01

    Although the grain-refinement practice is well established for wrought Al alloys, in the case of foundry alloys such as near eutectic Al-Si alloys, the underlying mechanisms and the use of grain refiners need better understanding. Conventional grain refiners such as Al-5Ti-1B are not effective in grain refining the Al-Si alloys due to the poisoning effect of Si. In this work, we report the results of a newly developed grain refiner, which can effectively grain refine as well as modify eutectic and primary Si in near eutectic Al-Si alloys. Among the material choices, the grain refining response with Al-1Ti-3B master alloy is found to be superior compared to the conventional Al-5Ti-1B master alloy. It was also found that magnesium additions of 0.2 wt pct along with the Al-1Ti-3B master alloy further enhance the near eutectic Al-Si alloy's grain refining efficiency, thus leading to improved bulk mechanical properties. We have found that magnesium essentially scavenges the oxygen present on the surface of nucleant particles, improves wettability, and reduces the agglomeration tendency of boride particles, thereby enhancing grain refining efficiency. It allows the nucleant particles to act as potent and active nucleation sites even at levels as low as 0.2 pct in the Al-1Ti-3B master alloy.

  13. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  14. Recycling of Magnesium Alloy Employing Refining and Solid Oxide Membrane (SOM) Electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Zink, Peter A.; Pal, Uday B.; Powell, Adam C.

    2013-04-01

    Pure magnesium was recycled from partially oxidized 50.5 wt pct Mg-Al scrap alloy and AZ91 Mg alloy (9 wt pct Al, 1 wt pct Zn). Refining experiments were performed using a eutectic mixture of MgF2-CaF2 molten salt (flux). During the experiments, potentiodynamic scans were performed to determine the electrorefining potentials for magnesium dissolution and magnesium bubble nucleation in the flux. The measured electrorefining potential for magnesium bubble nucleation increased over time as the magnesium content inside the magnesium alloy decreased. Potentiostatic holds and electrochemical impedance spectroscopy were employed to measure the electronic and ionic resistances of the flux. The electronic resistivity of the flux varied inversely with the magnesium solubility. Up to 100 pct of the magnesium was refined from the Mg-Al scrap alloy by dissolving magnesium and its oxide into the flux followed by argon-assisted evaporation of dissolved magnesium and subsequently condensing the magnesium vapor. Solid oxide membrane electrolysis was also employed in the system to enable additional magnesium recovery from magnesium oxide in the partially oxidized Mg-Al scrap. In an experiment employing AZ91 Mg alloy, only the refining step was carried out. The calculated refining yield of magnesium from the AZ91 alloy was near 100 pct.

  15. Physicochemical Properties of Industrial Aluminum Electrolytes Enriching Li and K: The Liquidus Temperature

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-jun; Shuang, Ya-jing; Li, Jie; Chen, Shi-yue; Lai, Yan-qing; Zhang, Hong-liang; Liu, Ye-xiang

    2017-04-01

    The alumina contains plenty of Li2O and K2O as a result of using low-grade bauxite in China. Thus, LiF and KF will be enriched in the electrolytes with the operation of the cell, so that the composition and physicochemical properties of electrolytes have been changed. The effects of LiF, KF, and CR on the liquidus temperature of electrolytes based on the xNaF·AlF3-5 wt pct CaF2-2.5 wt pct Al2O3-0.5 wt pct MgF2 system have been investigated in this study. The results show that the liquidus temperature decreases by 5.13 K to 10.74 K (5.13 °C to 10.74 °C) per 1 wt pct addition of LiF and that the liquidus temperature decreases by 1.63 K to 3.8 K (1.63 °C to 3.8 °C) with per 1 wt pct addition of KF. When adding LiF and KF together, it has the interplay between LiF and KF. Under different electrolyte systems, the interplay between LiF and KF is complex. The effect of CR on liquidus temperature has been related to the concentration of LiF and KF.

  16. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, Eric R.; La Robina, Michael; Li, Huijun

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  17. Mechanical properties of particulate composites based on a body-centered-cubic Mg-Li alloy containing boron

    NASA Technical Reports Server (NTRS)

    Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.

    1989-01-01

    The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).

  18. Al-rich objects in ordinary chondrites - Related origin of carbonaceous and ordinary chondrites and their constituents

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1984-01-01

    A description is given of 169 Al-rich objects (arbitrarily defined as having 10 wt pct or more of Al2O3) from 24 ordinary chondrites of types 3 and 4, five regolith breccias containing unequilibrated material, the unique meteorite Kakangari, and a few ordinary chondrites of types 5 and 6. On the basis of shape and texture, the Al-rich objects are divided into chondrules (round, with igneous textures), irregularly shaped inclusions (similar to type F and spinel-rich complex Ca-Al-rich inclusions), and fragments (probably fragments of Al-rich chondrules and inclusions). For descriptive purposes, the Al-rich chondrules are further subdivided into compositional subgroups, although they are entirely transitional.

  19. Stress Corrosion Cracking Behavior of Multipass TIG-Welded AA2219 Aluminum Alloy in 3.5 wt pct NaCl Solution

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Sreekumar, K.; Raja, V. S.

    2012-09-01

    The stress corrosion cracking (SCC) behavior of the AA2219 aluminum alloy in the single-pass (SP) and multipass (MP) welded conditions was examined and compared with that of the base metal (BM) in 3.5 wt pct NaCl solution using a slow-strain-rate technique (SSRT). The reduction in ductility was used as a parameter to evaluate the SCC susceptibility of both the BM and welded joints. The results showed that the ductility ratio ( ɛ NaCl/( ɛ air) was 0.97 and 0.96, respectively, for the BM and MP welded joint, and the same was marginally reduced to 0.9 for the SP welded joint. The fractographic examination of the failed samples revealed a typical ductile cracking morphology for all the base and welded joints, indicating the good environmental cracking resistance of this alloy under all welded conditions. To understand the decrease in the ductility of the SP welded joint, preexposure SSRT followed by microstructural observations were made, which showed that the decrease in ductility ratio of the SP welded joint was caused by the electrochemical pitting that assisted the nucleation of cracks in the form of corrosion induced mechanical cracking rather than true SCC failure of the alloy. The microstructural examination and polarization tests demonstrated a clear grain boundary (GB) sensitization of the PMZ, resulting in severe galvanic corrosion of the SP weld joint, which initiated the necessary conditions for the localized corrosion and cracking along the PMZ. The absence of PMZ and a refined fusion zone (FZ) structure because of the lesser heat input and postweld heating effect improved the galvanic corrosion resistance of the MP welded joint greatly, and thus, failure occurred along the FZ.

  20. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    NASA Astrophysics Data System (ADS)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.

  1. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was <2% of that of the matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  2. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  3. Effects of Melt Convection and Solid Transport on Macrosegregation and Grain Structure in Equiaxed Al-Cu Alloys

    NASA Technical Reports Server (NTRS)

    Rerko, Rodney S.; deGroh, Henry C., III; Beckermann, Christoph

    2000-01-01

    Macrosegregation in metal casting can be caused by thermal and solutal melt convection, and the transport of unattached solid crystals resulting from nucleation in the bulk liquid or dendrite fragmentation. To develop a comprehensive numerical model for the casting of alloys, an experimental study has been conducted to generate benchmark data with which such a solidification model could be tested. The objectives were: (1) experimentally study the effects of solid transport and thermosolutal convection on macrosegregation and grain size; and (2) provide a complete set of boundary conditions temperature data, segregation data, and grain size data - to validate numerical models. Through the control of end cooling and side wall heating, radial temperature gradients in the sample and furnace were minimized. Thus the vertical crucible wall was adiabatic. Samples at room temperature were 24 cc and 95 mm long. The alloys used were Al-1 wt. pct. Cu, and Al- 10 wt. pct. Cu; the starting point for solidification was isothermal at 710 and 685 C respectively. To induce an equiaxed structure various amounts of the grain refiner TiB2 were added. Samples were either cooled from the top, or the bottom. Several trends in the data stand out. In attempting to model these experiments, concentrating on these trends or differences may be beneficial.

  4. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  5. A Thermodynamic Model to Estimate the Formation of Complex Nitrides of Al x Mg(1- x)N in Silicon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Yan; Zhang, Lifeng; Li, Ming; Sridhar, Seetharaman

    2018-06-01

    A complex nitride of Al x Mg(1- x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10-7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.

  6. Electrochemical Codeposition of Al-Li-Mg Alloys at Solid Aluminum Electrode from LiCl-KCl-MgCl2 Molten Salt System

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Mi Lin; Chen, Ye; Han, Wei; de Yan, Yong; Cao, Peng

    2010-06-01

    The electrochemical codeposition of Mg and Li at an aluminium electrode in LiCl-KCl (50:50 wt pct) melts containing different concentrations of MgCl2 at 893 K (620 °C) to form Al-Li-Mg alloys was investigated. Cyclic voltammograms showed that the potential of Li metal deposition at an Al electrode, before the addition of MgCl2, is more positive than that of Li metal deposition at an Mo electrode, which indicated the formation of an Al-Li alloy. The underpotential deposition of magnesium at an aluminium electrode leads to the formation of Al-Mg alloys, and the succeeding underpotential deposition of lithium on predeposited Al-Mg alloys leads to the formation of Al-Li-Mg alloys. Chronopotentiometric measurements indicated that the codeposition of Mg and Li occurs at current densities lower than -0.668 A cm-2 in LiCl-KCl-MgCl2 (8 wt pct) melts at an aluminium electrode. The chronoamperometric studies indicated that the onset potential for the codeposition of Mg and Li is -2.000 V, and the codeposition of Mg and Li at an aluminium electrode is formed into Al-Li-Mg alloys when the applied potentials are more negative than -2.000 V. X-ray diffraction and inductively coupled plasma analysis indicated that Al-Li-Mg alloys with different lithium and magnesium contents were prepared via potentiostatic and galvanostatic electrolysis. The microstructure of typical dual phases of the Al-Li-Mg alloy was characterized by an optical microscope and by scanning electron microscopy. The analysis of energy dispersive spectrometry showed that the elements of Al and Mg distribute homogeneously in the Al-Li-Mg alloy. The lithium and magnesium contents of Al-Li-Mg alloys can be controlled by MgCl2 concentrations and by electrolytic parameters.

  7. A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Yeum, K.; Maples, A. L.

    1987-01-01

    A computer model is used to predict the formation and degree of microporosity in a directionally solidified Al-4.5 wt pct Cu alloy, considering the interplay between solidification shrinkage and gas porosity. Macrosegregation theory is used to determine the local pressure within the interdendritic liquid. Results show interdendritic porosity for initial hydrogen contents in the 0.03-1 ppm range, and none below contents of 0.03. An increase in either the thermal gradient or the solidification rate is show to decrease the amount of interdendritic porosity.

  8. Radial macrosegregation and dendrite clustering in directionally solidified Al-7Si and Al-19Cu alloys

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-05-01

    Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.

  9. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  10. Introduction of a PCT-based algorithm to guide antibiotic prescription in COPD exacerbation.

    PubMed

    Picart, J; Moiton, M P; Gaüzère, B-A; Gazaille, V; Combes, X; DiBernardo, S

    2016-12-01

    Prescribing antibiotics for COPD exacerbations is not easy. Procalcitonin (PCT) is a useful biomarker that helps reduce the rate of antibiotic therapies. However, its proper cut-off levels are often unknown. We aimed to assess the impact of a PCT-based algorithm to guide antibiotic therapy prescription in COPD exacerbations. We conducted an observational, retrospective, and before/after study. We reviewed physician practices regarding PCT test and antibiotic therapy prescription to all patients hospitalized for COPD exacerbation. We then analyzed the rate of antibiotic prescriptions and the number of PCT tests prescribed before and after the introduction of a protocol validated by previous high-power studies. The primary endpoint was the rate of antibiotic prescriptions. A total of 124 patients before protocol and 121 patients after protocol were included. Antibiotic prescriptions decreased by 41% after protocol introduction (59% vs. 35%, P<0.001), with no increase in morbidity and mortality at Day 30. Compliance with protocol was complete in 60% of cases and partial (no PCT guidance to discontinue antibiotics) in 8% of cases. Both antibiotic duration (8.3 days vs. 8.7 days) and length of hospital stay (8.5 days vs. 8.3 days, P=0.78) did not change. Hospital physicians are already using PCT-based algorithm to guide antibiotic prescription in COPD exacerbations. Disseminating information on the appropriate PCT cut-off level to use to decide whether or not to initiate antibiotics is effective. Its proper use should be clarified to reduce antibiotic prescriptions to these overexposed patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Pandey, A. B.; Mishra, R. S.; Mahajan, Y. R.

    1996-02-01

    The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

  12. Investigation of reaction kinetics and interfacial phase formation in Ti3Al + Nb composites

    NASA Technical Reports Server (NTRS)

    Wawner, F. E.; Gundel, D. B.

    1992-01-01

    Titanium aluminide metal matrix composites are prominent materials systems being considered for high temperature aerospace applications. One of the major problems with this material is the reactivity between existing reinforcements and the matrix after prolonged thermal exposure. This paper presents results from an investigation of reaction kinetics between Ti-14Al-21Nb (wt pct) and SCS-6 fibers and SiC fibers with surface coatings of TiB2, TiC, TiN, W, and Si. Microstructural evaluation of the reaction layers as well as matrix regions around the fibers is presented.

  13. Effects of Complex Modification by Sr-Sb on the Microstructures and Mechanical Properties of Al-18 wt % Mg₂Si-4.5Cu Alloys.

    PubMed

    Sun, Youhong; Ma, Shaoming; Wang, Huiyuan; Chen, Lei; Gao, Ke; Ma, Yinlong; Liu, Baochang

    2016-03-04

    This research was carried out to investigate the influence of Sr-Sb on the microstructures and mechanical properties of Al-18 wt % Mg₂Si-4.5Cu alloys. After the addition of 0.2 wt % Sr-Sb, the morphologies of primary Mg₂Si transformed from equiaxed dendrite to cube in as-cast alloys and the average size of primary Mg₂Si decreased from ~50 to ~20 μm. The shape of eutectic Mg₂Si changed from Chinese script to short rod. After extrusion and T6 heat treatment, the ultimate tensile strength of modified alloy at room temperature (RT) and 100 °C increased respectively from 229 to 288 MPa, and from 231 to 272 MPa. The elongation-to-failure only slightly improved from 2.9% to 3.8% and from 3.3% to 3.7% at RT and 100 °C, respectively. The tensile fracture surface revealed a transition from brittle fracture to ductile fracture after modifying by 0.2 wt % Sr-Sb.

  14. The Effect of TiO2 on the Liquidus Zone and Apparent Viscosity of SiO2-CaO-8wt.%MgO-14wt.%Al2O3 System

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Zhang, Jie; Xu, Jian

    TiO2 has been approved as a viscosity-decreasing agent in blast furnace slag under inert atmosphere both by experimental and structure calculation. However, the validity of the above conclusion in a much bigger zone in CaO-SiO2-Al2O3-MgO phase diagram has not approved. The viscosity of slag dependent on the TiO2 content and basicity were measured in the present work. It was found that the viscosity and viscous activation energy decrease with increasing TiO2 content and basicity at a reasonable range, indicating TiO2 behaved as a viscosity-decreasing agent by depolymerizing the silicate network structure when its less than 50wt. %. The liquidity of the slag can be improved when TiO2 content less than 50wt. % and basicity from 0.5 to 1.1. The free running temperature increase at TiO2 content from 10wt.% to 30wt. %. The results of calculation does not agree well with the experimental values at a high basicity of 1.3 with TiO2 content from 20wt.% to 30wt.% and the lower basicity of 0.5 with TiO2 content more than 50wt.%.

  15. Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing

    NASA Astrophysics Data System (ADS)

    Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés

    2018-04-01

    A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.

  16. An environment-friendly phosphate chemical conversion coating on novel Mg-9Li-7Al-1Sn and Mg-9Li-5Al-3Sn-1Zn alloys with remarkable corrosion protection

    NASA Astrophysics Data System (ADS)

    Maurya, Rita; Siddiqui, Abdul Rahim; Balani, Kantesh

    2018-06-01

    An environment-friendly phosphate chemical conversion (PCC) coating has been deposited on novel LAT971 (Mg-9 wt%Li-7 wt%Al-1 wt%Sn) and LATZ9531 (Mg-9 wt%Li-5 wt%Al-3 wt%Sn-1 wt%Zn) alloys for improving their corrosion resistance. A dense and homogeneous flower like morphology (∼30 μm thick) was observed on the PCC coated Mg-Li based alloys. The presence of calcium hydrogen phosphate hydrate, tricalcium phosphate and trimagnesium phosphate were confirmed from the X-ray diffraction and X-ray photoelectron spectroscopy analysis. A lower corrosion current density of 6.74 × 10-7 mA/cm2 and 5.39 × 10-7 mA/cm2 was obtained for PCC coated alloys in 3.5% NaCl aqueous solution than that of uncoated LAT971 (0.82 mA/cm2) and LATZ9531 (0.34 mA/cm2) alloys, respectively, which offers corrosion protection efficiency of >99%. Electrochemical impedance spectroscopy (EIS) has revealed that the inner PCC coating (at coating/substrate interface) delay the direct contact between electrolyte and substrate, which offered higher charge transfer resistance (>4 orders of magnitude) than that of uncoated alloys. Thus, the PCC coating provides an effective corrosion protection to the ultra-lightweight LAT971 and LATZ9531 alloys surface and may be helpful in proving good anchoring with the top organic coatings or paints.

  17. Corrosion and Mechanical Properties of Al-5 At. Pct Cr Produced by Cryomilling and Subsequent Consolidation at Various Temperatures

    NASA Astrophysics Data System (ADS)

    Esquivel, J.; Darling, K. A.; Murdoch, H. A.; Gupta, R. K.

    2018-04-01

    An Al-5 at. pct Cr alloy was produced by high-energy ball milling at liquid nitrogen temperature followed by consolidation using equal-channel axial extrusion at 200 °C, 300 °C and 450 °C. The microstructure and corrosion response were compared with a cast alloy of the same composition. Rather than the intermetallics expected by the phase diagram and seen in the cast alloy, consolidated HEBM alloys exhibited extended solid solubility of Cr in the aluminum matrix in addition to a finely dispersed Cr-rich phase. This led to improvement in the corrosion behavior as investigated via potentiodynamic polarization and constant immersion tests in NaCl solution. Hardness and tensile tests were performed to evaluate the mechanical properties. The highest consolidation temperature (450 °C) contributed to significant grain growth and Cr diffusion, lessening the beneficial effects of processing with HEBM.

  18. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  19. 1200 to 1400 K slow strain rate compressive properties of NiAl/Ni2AlTi-base materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.

    1989-01-01

    An attempt to apply the Martin Marietta Corporation's XD technology to the fabrication of NiAl-Ni2AlTi materials with improved creep properties is presented. Composite materials, containing from 0 to 30 vol pct of nominally 1-micron-diameter TiB2 particles in the intermetallic matrix have been produced by the XD process and compacted by hot pressing. Such composites demonstrated significant strength increases, approaching 3-fold for the 20 vol pct materials, in comparison to the unreinforced aluminide. This behavior was accomplished without deleterious side effects as the grain boundaries and particle-matrix interfaces were intact after compressive deformation to 10 percent or more strain. Typical true compressive stress-strain diagrams for materials tested in air between 1200 and 1400 K at approximate strain rates of 1.7 x 10 to the -6th/sec are presented.

  20. Effects of NaBF4 + NaF on the Tensile and Impact Properties of Al-Si-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Zongning; Wang, Tongmin; Zhao, Yufei; Zheng, Yuanping; Kang, Huijun

    2015-05-01

    NaBF4 + NaF were found to play three roles, i.e., Fe-eliminator, grain refiner, and eutectic modifier, in treating A356 alloy with a high Fe content. The joint effects led to significant improvement in both tensile and impact properties of thus treated alloy. The multiple reactions between the NaBF4 + NaF and Al-Si-Mg-Fe system are suggested to form Fe2B, AlB2, and Na in the melt, as per thermodynamic analysis. The three are responsible for Fe removal, grain refinement, and eutectic modification, respectively. When NaBF4 and NaF are mixed in weight ratio of 1:1, an optimum addition rate is in the range between 1.0 and 2.0 wt pct for treating AlSi7Mg0.3Fe0.65 alloy, based on the results of tensile and impact tests. Excessive addition of the salt may deteriorate the mechanical properties of the alloy, basically owing to overmodification of Si and contamination of salt inclusions.

  1. The surface variation of Ti-14Al-21Nb as a function of temperature under ultrahigh vacuum conditions

    NASA Technical Reports Server (NTRS)

    Lee, W. S.; Sankaran, S. N.; Outlaw, R. A.; Clark, R. K.

    1990-01-01

    The effect of temperature, at conditions of ultrahigh vacuum, on the surface composition of the Ti-14Al-21Nb (in wt pct) alloy was investigated in samples heated to 1000 C in 100 C increments. Results of AES spectroscopy revealed that the Ti-14Al-21Nb alloy surface is extremely sensitive to temperature. At 300 C, the carbon and oxygen began to rapidly dissolve into the alloy, and at 600 C, bulk S segregated to the surface. The variation in the surface composition was extensive and different over the temperature range studied, indicating that there may be substantial changes in the hydrogen transport.

  2. Influence of molybdenum on the creep properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.; Pearson, D. D.

    1990-01-01

    The Mo content of an alloy series based on Ni-6 wt pct Al-6 wt pct Ta was systematically varied from 9.8 to 14.6 wt pct, in order to ascertain the influence of Mo on the creep properties of single crystals. The optimum initial gamma-gamma prime microstructure for raft development and creep strength was established in each alloy before testing. It was found that, as the Mo content increased from 9.8 to 14.0 percent, the magnitude of the lattice mismatch increased; upon reaching 14.6 percent, a degradation of mechanical properties occurred due to the precipitation of a third phase. These results suggest that small refractory metal content and initial gamma-prime variations can profoundly affect mechanical properties.

  3. Porphyria Cutanea Tarda (PCT)

    MedlinePlus

    ... the UROD enzyme in red blood cells (erythrocytes). Molecular genetic testing is available for familial PCT if the ... org.uk Website: http://www.porphyria.org.uk Genetic and Rare ... porphyrias. In: The Metabolic and Molecular Basis of Inherited Disease, 8th ed. Scriver CR, ...

  4. Morphology of Upper and Lower Bainite with 0.7 Mass Pct C

    NASA Astrophysics Data System (ADS)

    Yin, Jiaqing; Hillert, Mats; Borgenstam, Annika

    2017-09-01

    There has been an on-going discussion on the difference in formation mechanisms of upper and lower bainite. Various suggestions have been supported by reference to observed morphologies and illustrated with idealized sketches of morphologies. In order to obtain a better basis for discussions about the difference in mechanism, the morphology of bainite in an Fe-C alloy with 0.7 mass pct carbon was now studied in some detail from 823 K to 548 K (550 °C to 275 °C) at temperature intervals of 50 K or less. The work focused on bainite seen to start from a grain boundary in the plane of polish and showing an advancing tip in the remaining austenite. The results indicate that there is no essential difference with temperature regarding the ferritic skeleton of feathery bainite. The second stage of bainite formation, which involves the formation of both ferrite and cementite, was regarded as a eutectoid transformation and the resulting morphologies were analyzed in terms of two modes, degenerate and cooperative eutectoid transformation. There was no sharp difference between upper and lower bainite. Ways to define the difference were discussed.

  5. Mechanical and Wear Properties of Sb- and Y-Added Mg-9Al-1Zn (AZ91) Alloy

    NASA Astrophysics Data System (ADS)

    Boby, Arun; Srinivasan, A.; Pillai, U. T. S.; Pai, B. C.

    2015-09-01

    This paper studies the effect of Sb and Y additions on the microstructure and mechanical properties of the AZ91 alloy. The results indicate that the Sb and Y additions lead to the formation of Mg3Sb2 and Al2Y phases. These phases modify the morphology of the β-Mg17Al12 phase, and hence refine the microstructure. The effects of Sb and Y additions on the aging behavior have also been investigated. Aging of the AZ91 alloy results in the formation of continuous and discontinuous types of precipitates. Whereas Sb and Y additions to AZ91 alloy suppresses the formation of discontinuous precipitate. The paper also reports the mechanical properties of as-cast and aged Sb-added AZ91-xY alloys for room and high temperatures. The optimum tensile properties are obtained with the alloy having the combined addition of 0.5 wt pct Sb and 0.6 wt pct Y. The fracture surface of AZ91-0.5Sb-0.6Y alloy reveals more quasi-cleavage type of failure with a cleavage fracture than the base alloy. At HT, the AZ91-0.5Sb-0.6Y alloy displays more cleavage facets connected with tearing ridges and shallow dimples than AZ91 alloy. Furthermore, it observed the improvement in wear resistance through the addition of Y. The worn surface reveals abrasion, oxidation, delamination, and plastic deformation wear mechanisms.

  6. Macrosegregation during plane front directional solidification of Csl-1 wt. percent Tll alloy

    NASA Technical Reports Server (NTRS)

    Sidawi, I. M. S.; Tewari, S. N.

    1991-01-01

    Macrosegregation produced during vertical Bridgeman directional solidification of Csl-1 wt. pct. Tll in crucibles of varying diameter, from 0.5 to 2.0 cm, was examined. Gravity driven convection is present in the melt even in the smallest crucible diameter of 0.5 cm. Observed solutal profiles are in agreement with the analytical boundary layer model of Favier which describes macrosegregation in the presence of convection. The scintillation efficiency of Csl decreases along the specimen length as the thallium iodide content of the alloy increases.

  7. Formation of the lamellar structure in Group IA and IIID iron meteorites

    NASA Technical Reports Server (NTRS)

    Kowalik, J. A.; Williams, D. B.; Goldstein, J. I.

    1988-01-01

    Analytical EM, light microscopy, and electron microprobe analysis are used to study the lamellar plessite structure of Group IA and IIID iron meteorites. The alpha lamellae in IIID structures contained a compositional gradient from 6.1 + or - 0.7 wt pct Ni at the center of the alpha lamellae to 3.6 + or - 0.5 wt pct at the alpha/gamma interface. For the Group IA irons, compositions of 4 wt pct Ni in alpha and about 48 wt pct Ni in gamma are found. Convergent beam electron diffraction was used to characterize the orientation relations at the alpha/gamma interface in the lamellar regions of both Group IA and IIID. The phase transformations responsible for the observed lamellar structure in the IA and IIID chemical groups were also investigated.

  8. The effect of trace additions of Zn on the precipitation behavior of alloy 8090 during artificial aging

    NASA Technical Reports Server (NTRS)

    Kilmer, R. J.; Stoner, G. E.

    1991-01-01

    The effect(s) of trace additions of Zn to the artificial aging behavior of alloy 8090 (Al-Li-Cu-Mg-Zr) was investigated in the approximate composition range 0-1 wt-pct Zn. Trace Zn additions were found to delay aging and under equivalent aging treatments (100 hrs at 160 C) the alloy without Zn and the 1.07 wt-pct Zn alloy developed delta-prime-free zones along subgrain boundaries, while the alloys of 0.21 and 0.58 wt-pct Zn did not. DSC analysis indicated that Zn was being incorporated into the delta-prime, shifting it's exotherm to higher temperatures, while having little if any effect on its associated endotherm making it unlikely that it is an artifact of a solvus shift. In the 8090 + 1.07 wt-pct Zn alloy, coarse precipitates were found to reside on subgrain boundaries and EDS indicated that they were rich in Cu and Zn. It was also noted that in the Zn containing 8090 varients, the S prime precipitates were more coarse in size than the baseline 8090.

  9. Early Assessment of Pancreatic Infections and Overall Prognosis in Severe Acute Pancreatitis by Procalcitonin (PCT)

    PubMed Central

    Rau, Bettina M.; Kemppainen, Esko A.; Gumbs, Andrew A.; Büchler, Markus W.; Wegscheider, Karl; Bassi, Claudio; Puolakkainen, Pauli A.; Beger, Hans G.

    2007-01-01

    Background: Pancreatic infections and sepsis are major complications in severe acute pancreatitis (AP) with significant impact on management and outcome. We investigated the value of Procalcitonin (PCT) for identifying patients at risk to develop pancreatic infections in severe AP. Methods: A total of 104 patients with predicted severe AP were enrolled in five European academic surgical centers within 96 hours of symptom onset. PCT was measured prospectively by a semi-automated immunoassay in each center, C-reactive protein (CRP) was routinely assessed. Both parameters were monitored over a maximum of 21 consecutive days and in weekly intervals thereafter. Results: In contrast to CRP, PCT concentrations were significantly elevated in patients with pancreatic infections and associated multiorgan dysfunction syndrome (MODS) who all required surgery (n = 10) and in nonsurvivors (n = 8) early after onset of symptoms. PCT levels revealed only a moderate increase in patients with pancreatic infections in the absence of MODS (n = 7), all of whom were managed nonoperatively without mortality. A PCT value of ≥3.5 ng/mL on 2 consecutive days was superior to CRP ≥430 mg/L for the assessment of infected necrosis with MODS or nonsurvival as determined by ROC analysis with a sensitivity and specificity of 93% and 88% for PCT and 40% and 100% for CRP, respectively (P < 0.01). The single or combined prediction of the two major complications was already possible on the third and fourth day after onset of symptoms with a sensitivity and specificity of 79% and 93% for PCT ≥3.8 ng/mL compared with 36% and 97% for CRP ≥430 mg/L, respectively (P = 0.002). Conclusion: Monitoring of PCT allows early and reliable assessment of clinically relevant pancreatic infections and overall prognosis in AP. This single test parameter significantly contributes to an improved stratification of patients at risk to develop major complications. PMID:17457167

  10. Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy

    NASA Astrophysics Data System (ADS)

    Friedli, Jonathan; Fife, J. L.; di Napoli, P.; Rappaz, M.

    2013-12-01

    Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from to in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid-liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.

  11. Preparation of MgO-SnO2-TiO2 Materials and Their Corrosion in Na3AlF6-AlF3-K3AlF6 Bath

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Sang, Shaobai; Ren, Bo; Qin, Qingwei; Yang, Jianhong

    2015-01-01

    New types of refractory materials need to be developed for designing the so-called ledge-free sidewalls of the Hall-Héroult cell for aluminum extraction, which are currently constructed using Si3N4 bonded SiC refractories. In the present paper, MgO-based materials as potential candidate sidewalls were prepared using fused magnesia, tin dioxide, and anatase powder as starting materials. The reaction sintering process of the MgO-SnO2-TiO2 materials was investigated by means of X-ray diffraction and scanning electron microscope (SEM). All the specimens were corroded in a Na3AlF6-AlF3-K3AlF6 bath to assess the electrolyte corrosion resistance. The results show that reaction sintering occurs in the MgO-SnO2-TiO2 system in the range of 1373 K to 1873 K (1100 °C to 1600 °C). Firstly, MgO reacts separately with TiO2 and SnO2 to produce the Mg2TiO4 and Mg2SnO4 phases at 1373 K (1100 °C), which in turn react to form the Mg2Ti x Sn1-x O4 composite spinel at temperatures above 1373 K (1100 °C). All the specimens prepared are composed of the composite spinel and periclase phases. Increasing the SnO2 addition from 2 to 10 wt pct enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed composite spinels in the MgO matrix, but the density of the specimen decreases when the amount of SnO2 added is higher than 10 wt pct due to larger volume expansion and agglomeration of the composite spinel. The MgO-SnO2-TiO2 refractories prepared exhibit good corrosion resistance to the electrolyte melts owing to their high density and formation of the composite spinel in the specimens. Their corrosion resistance increases progressively with the increase in the SnO2 addition owing to the formation of more chemically stable composite spinel.

  12. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    NASA Astrophysics Data System (ADS)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  13. The Nature of Metallurgical Reactions in Underwater Welding,

    DTIC Science & Technology

    1987-04-01

    Christensen continuous cooling transformation ( CCT ) diagram , as et. al. (7-10r)have introduced basic concepts for an instructional procedure to understand...experienced a 0.3 wt. pct. the final shape and position of nucleation curves on decrease from the surface composition at 30 bars the CCT diagram . Olson and...desired weld metal composition to form acicular ferrite and side plate ferrite S-XH20 P (eq. 7) resulted. Figure 7 is a schematic CCT diagram H20

  14. Nonlinear relationship between the Product Consistency Test (PCT) response and the Al/B ratio in a soda-lime aluminoborosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooqi, Rahmat Ullah; Hrma, Pavel

    2016-06-01

    We have investigated the effect of A1/B ratio on the Product Consistency Test (PCT) response. In an aluminoborosilicate soda-lime glass based on a modified International Simple Glass, ISG-3, the A1/B ratio varied from 0 to 0.55 (in mole fractions). In agreement with various models of the PCT response as a function of glass composition, we observed a monotonic increase of B and Na releases with decreasing A1/B mole ratio, but only when the ratio was higher than 0.05. Below this value (A1/B < 0.05), we observed a sharp decrease that we attribute to B in tetrahedral coordination.

  15. Evaluation of the residual stresses in 95wt%Al2O3-5wt% SiC wear protection coating using X-Ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Adel K.; Hammoudi, Zaid S.; Student Samah Rasheed, M. Sc.

    2018-02-01

    This paper aims to measuring the residual stresses practically in wear protection coatings using the sin2ψ method according to X-ray diffraction technique. The wear protection coatings used in this study was composite coating 95wt% Al2O3-5wt% SiC, while bond coat was AlNi alloy produced by using flame spraying technique on the mild steel substrate. The diffraction angle, 2θ, is measured experimentally and then the lattice spacing is calculated from the diffraction angle, and the known X-ray wavelength using Bragg’s Law. Once the dspacing values are known, they can be plotted versus sin2ψ, (ψ is the tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior as in the case of a homogenous isotropic sample in a biaxial stress state is included. The plot of dspacing versus sin2ψ is a straight line which slope is proportional to stress. On the other hand, the second set of samples showed oscillatory dspacing versus sin2ψ behaviour. The oscillatory behaviour indicates the presence of inhomogeneous stress distribution. In this case the X-ray elastic constants must be used instead of Young’s modulus (E) and Poisson ratio (ν)values. These constants can be obtained from the literature for a given material and reflection combination. The value of the residual stresses for the present coating calculated was compressive stresses (-325.6758MPa).

  16. Long cycle life rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Pasquariello, D. M.; Willstaedt, E. B.; Abraham, K. M.

    1992-01-01

    Cycle life and safety of delta-LiAl/TiS2 cells were evaluated using laboratory and AA-size cells. Analysis of the alloys (which contained 60, 70, 80, or 85 wt-pct. lithium and are designated 60 LiAl etc.) showed them to contain a mixture of elemental Li and Al4Li9. Cycling efficiencies correlated with the amount of free lithium in the anode. Using an electrolyte with the composition 48 v/o THF:48 v/o 2-MeTHF:4 v/o 2-MeF/LiAsF6(1.5M), a 70 LiAl/TiS2 laboratory cell yielded a cycling efficiency of 96.4 pct. when cycled at a 100 pct. discharge depth which compares well with Li anode cycling efficiencies of 96 to 97.5 pct. obtained previously in this electrolyte. The highest cycling efficiency of any delta-LiAl/TiS2 laboratory cell was 96.7 pct. when the 60 LiAl alloy was used with the 35 v/o PC:35 v/o EC:30 v/o triglyme/LiAsF6(1.0M) electrolyte. The 70 LiAl alloy was selected for further testing in AA cells since it was malleable for the fabrication of spirally wound electrodes, and its overall cycling performance was sufficiently good. AA-size 70 LiAl/TiS2 cells appear to have capacity/rate properties similar to those for identical Li/TiS2 cells. The use of the delta-LiAl alloy anodes does not appear to offer any safety advantage when cycled cells are shorted or heated.

  17. Post-irradiation examination of prototype Al-64 wt% U{sub 3}Si{sub 2} fuel rods from NRU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, D.F.; Primeau, M.F.; Buchanan, C.

    1997-08-01

    Three prototype fuel rods containing Al-64 wt% U{sub 3}Si{sub 2} (3.15 gU/cm{sup 3}) have been irradiated to their design burnup in the NRU reactor without incident. The fuel was fabricated using production-scale equipment and processes previously developed for Al-U{sub 3}Si fuel fabrication at Chalk River Laboratories, and special equipment developed for U{sub 3}Si{sub 2} powder production and handling. The rods were irradiated in NRU up to 87 at% U-235 burnup under typical driver fuel conditions; i.e., nominal coolant inlet temperature 37{degrees}C, inlet pressure 654 kPa, mass flow 12.4 L/s, and element linear power ratings up to 73 kW/m. Post-irradiation examinationsmore » showed that the fuel elements survived the irradiation without defects. Fuel core diametral increases and volumetric swelling were significantly lower than that of Al-61 wt% U{sub 3}Si fuel irradiated under similar conditions. This irradiation demonstrated that the fabrication techniques are adequate for full-scale fuel manufacture, and qualified the fuel for use in AECL`s research reactors.« less

  18. B Removal by Zr Addition in Electromagnetic Solidification Refinement of Si with Si-Al Melt

    NASA Astrophysics Data System (ADS)

    Lei, Yun; Ma, Wenhui; Sun, Luen; Dai, Yongnian; Morita, Kazuki

    2016-02-01

    This study investigated a new process of enhancing B removal by adding small amounts of Zr in the electromagnetic solidification refinement of Si with Si-Al melt. B in Si was removed by as much as 97.2 pct by adding less than 1057 ppma Zr, and the added Zr was removed by as much as 99.7 pct. In addition, Zr is more effective in enhancing B removal than Ti in the same electromagnetic solidification refining process.

  19. PCT funding. Beggars belief.

    PubMed

    Hacking, John

    2003-04-10

    At the pace of change set for implementing the new PCT funding formula over the next three years, it will take more than 20 years to achieve equity. If the minimum increases were set lower it would largely be achieved within five years. The current state of affairs perpetuates the north-south health divide.

  20. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

    NASA Astrophysics Data System (ADS)

    Lauer, M.; Ghods, M.; Angart, S. G.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-08-01

    As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

  1. Analytical evaluation of Lumipulse® BRAHMS PCT CLEIA assay and clinical performances in an unselected population as compared with central lab PCT assay.

    PubMed

    Dupuy, Anne Marie; Né, Maxence; Bargnoux, Anne Sophie; Badiou, Stéphanie; Cristol, Jean Paul

    2017-03-01

    We report the analytical performances of the Lumipulse®G BRAHMS PCT assay (Fujirebio, Courteboeuf, France) and the concordance with BRAHMS PCT Kryptor CompactPlus© results from central laboratory. Lumipulse®G BRAHMS PCT immunoassay on Lumipulse®G600II instrument is a chemiluminescence enzyme immunoassay (CLEIA). Analytical performances included imprecision study, linearity, limit of detection and comparison study on 138 plasma specimen on Lumipulse®G600II vs plasma on Kryptor CompactPlus©. The intra and inter assay imprecision of Lumipulse®G BRAHMS PCT was between 2 and 5%. The LoD in our condition was 0.0029ng/mL in accordance with the LoD provided by the manufacturer (0.0048ng/mL). The linear equation of linearity was y=1,001×-0,052 with r 2 =0.99, with a mean recovery (SD) percentage of 1.8% (8%). Correlation studies showed a good correlation (r=0.99) between plasma on Kryptor and Lumipulse, with a bias of 0.02 in the range from 0.12 to 1ng/mL. The new adaptation developed from Fujirebio on quantification of PCT with CLEIA technology from monoclonal antibodies from ThermoFisher appears to be acceptable for clinical use. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Effects of W on microstructure of as-cast 28 wt.%Cr–2.6 wt.%C–(0–10)wt.%W irons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imurai, S.; Thanachayanont, C.; Pearce, J.T.H.

    2015-01-15

    Microstructures of as-cast 28 wt.%Cr–2.6 wt.%C irons containing (0–10)wt.%W with the Cr/C ratio about 10 were studied and related to their hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the irons with 1 to 10 wt.%W addition was hypereutectic containing large primary M{sub 7}C{sub 3}, whereas the reference iron without W addition was hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. The volume fractions of primary M{sub 7}C{sub 3}more » and the total carbides increased, but that of eutectic carbides decreased with increasing the W content of the irons. W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C and M{sub 23}C{sub 6}. At about 4 wt.%W, two eutectic carbides including M{sub 7}C{sub 3} and M{sub 6}C were observed together with primary M{sub 7}C{sub 3}. At 10 wt.%W, multiple carbides including primary M{sub 7}C{sub 3}, fish-bone M{sub 23}C{sub 6}, and M{sub 6}C were observed. M{sub x}C where x = 3 or less has not been found due possibly to the high M/C ratio in the studied irons. W distribution to all carbides has been determined increasing from ca. 0.3 to 0.8 in mass fraction as the W content in the irons was increased. W addition led to an increase in Vickers macro-hardness of the irons up to 671 kgf/(mm){sup 2} (HV30/15) obtained from the iron with 10 wt.%W. The formation of primary M{sub 7}C{sub 3} and aggregates of M{sub 6}C and M{sub 23}C{sub 6} were the main reasons for hardness increase, indicating potentially improved wear performance of the as-cast irons with W addition. - Highlights: • W addition at 1 up to 10 wt.%W to Fe–28Cr–2.6C produced “hypereutectic” structure. • W addition promoted the formation of W-rich M{sub 7}C{sub 3}, M{sub 6}C

  3. Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    NASA Astrophysics Data System (ADS)

    Zimmermann, G.; Sturz, L.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Li, Y. Z.; Gandin, C.-A.; Fleurisson, R.; Guillemot, G.; McFadden, S.; Mooney, R. P.; Voorhees, P.; Roosz, A.; Ronaföldi, A.; Beckermann, C.; Karma, A.; Chen, C.-H.; Warnken, N.; Saad, A.; Grün, G.-U.; Grohn, M.; Poitrault, I.; Pehl, T.; Nagy, I.; Todt, D.; Minster, O.; Sillekens, W.

    2017-08-01

    During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton-finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

  4. A Study of the Hot Workability of Al-8.5 Wt Pct Mg Alloys for Armor Plate Applications

    DTIC Science & Technology

    1989-01-01

    427°C (500, 600, 700, and 800’F) to determine a suitable deformation temperature for the homogenization study. Later it was learned that a lower...alloys, only occurred above 5200C (.7°). Rater, according to fractographie examinaton, the decrease in e, at higher temperatures and/or higher strain...edge cracks that were several centimeters deep opened up at the drilled thermocouple hole; the remainder of the slab was almost free of edge cracks

  5. Acoustic emission from a solidifying aluminum-lithium alloy

    NASA Technical Reports Server (NTRS)

    Henkel, D. P.; Wood, J. D.

    1992-01-01

    Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.

  6. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    NASA Astrophysics Data System (ADS)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  7. Hot Ductility Behavior of an 8 Pct Cr Roller Steel

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Sun, Shuhua; Shi, Zhongping; Wang, Bo; Fu, Wantang

    2015-04-01

    The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s-1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener-Hollomon parameter (ln Z) was found to be a second-order polynomial. When ln Z was greater than 40 s-1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When ln Z was between 32 and 40 s-1, the hot ductility was excellent and the main fracture mechanism was void linking. When ln Z was below 32 s-1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.

  8. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braszczyńska-Malik, K.N., E-mail: kacha@wip.pcz.pl; Grzybowska, A.

    2016-05-15

    The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al{sub 11}RE{sub 3} and Al{sub 10}RE{sub 2}Mn{sub 7} intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al{sub 2}RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensilemore » and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al{sub 11}RE{sub 3} phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.« less

  9. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    PubMed

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  10. Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit

    2017-06-01

    Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

  11. Influence wt.% of SiC and borax on the mechanical properties of AlSi-Mg-TiB-SiC composite by the method of semi solid stir casting

    NASA Astrophysics Data System (ADS)

    Bhiftime, E. I.; Guterres, Natalino F. D. S.; Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2017-04-01

    SiC particle reinforced metal matrix composites (MMCs) with solid semi stir casting method is becoming popular in recent application (automotive, aerospace). Stirring the semi solid condition is proven to enhance the bond between matrix and reinforcement. The purpose of this study is to investigate the effect of the SiC wt.% and the addition of borax on mechanical properties of composite AlSi-Mg-TiB-SiC and AlSi-Mg-TiB-SiC/Borax. Specimens was tested focusing on the density, porosity, tensile test, impact test microstructure and SEM. AlSi is used as a matrix reinforced by SiC with percentage variations (10, 15, 20 wt.%). Giving wt.% Borax which is the ratio of 1: 4 between wt.% SiC. The addition of 1.5% of TiB gives grain refinement. The use of semi-solid stir casting method is able to increase the absorption of SiC particles into a matrix AlSi evenly. The improved composite presented here can be used as a guideline to make a new composite.

  12. PCT MAO’s Enhanced Performance by Specially Designed Sealers for Superior Service & Environments

    DTIC Science & Technology

    2014-11-01

    PCT’s Process is with low silicon content. • Aluminized Steel + PCT MAO can be a cost effective alternative to Stainless Steel, Super Duplex...is applied PCT – P seal • Typical Layer thickness: 40-80 micron* • Organic sealer • Hydrophobic surface, reduces sedimentation...PCT - S seal • Typical Layer thickness: 10-40 micron* • Organo-ceramic sealer • Hydrophobic surface, reduces sedimentation. PCT Classic 1000

  13. Mechanical Behavior of Three-Dimensional Braided Nickel-Based Superalloys Synthesized via Pack Cementation

    NASA Astrophysics Data System (ADS)

    Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.

  14. A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Lee, Su-Wan; Cho, Jung-Wook; Park, Min-Seok; Lee, Hae-Geon; Kang, Youn-Bae

    2013-04-01

    In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 °C to 1550 °C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steel; thus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.

  15. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  16. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-03-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  17. Effect of Be Modification on the Oxide Bifilms and Tensile Strength Reliability of Al-Si-Mg Alloys Containing Excess Fe

    NASA Astrophysics Data System (ADS)

    Asadian Nozari, M.; Taghiabadi, R.; Karimzadeh, M.; Ghoncheh, M. H.

    2018-06-01

    The effect of oxide bifilms and Be modification (0.2 wt pct) on the tensile strength reliability of the as-cast and T6 heat-treated Al-9Si-0.35Mg-1.5Fe alloy was investigated using Weibull analysis. For this purpose, the density of oxide bifilms in the molten alloy was intentionally increased by surface agitation. According to the results, Be modifies the β-Al5FeSi particles to the less harmful α-Fe compounds and substantially decreases the bifilm density in the castings leading to improved tensile properties and higher reliability. Moreover, the beneficial effect of Be was found to be more in the samples containing higher amounts of bifilms. For instance, in the heat-treated condition, Be increased the Weibull modulus of the non-agitated and surface-agitated samples by 4 and 94 pct, respectively. This improvement can be attributed to the strengthening effect of Be on the young surface oxides so that they resist more against rupture when melt is subjected to the surface turbulence. The reduced pressure test and fractography investigations also confirmed the reduction of bifilm density and bifilm-related defects in Be-modified samples.

  18. Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-10-01

    Hypoeutectic Al-19 wt.% Cu alloys were directionally solidified at two different growth speeds in cylindrical molds that featured an abrupt increase in cross-section, from 3.2 to 9.5 mm in diameter. The effects of thermosolutal convection and shrinkage flow induced by the cross-section change on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation were seen, particularly in the larger cross-section after expansion. Negative longitudinal macrosegregation right after the cross-section increase was observed; the extent of macrosegregation, however, decreases with increasing growth speed. Both thermal and flow effects due to cross-section change were seen to influence the radial macrosegregation immediately before, and after the expansion. Radial macrosegregation pattern was found to be changing as the mushy zone enters the larger cross-section region above the cross-section change where the solidification is in its unsteady state. The effect of the solutal expansion coefficient on macrosegregation was studied by comparing the degree of thermosolutal convection in Al-19 wt.% Cu with a previous study in which we investigated Al-7 wt.% Si. A two-dimensional model accounting for both shrinkage and thermosolutal convection was used to simulate the resulting steepling, as well as the axial and radial macrosegregation. The experimentally observed macrosegregation associated with the expansion during directional solidification is well predicted by the numerical simulations.

  19. Effects of Different Boron Compounds on the Corrosion Resistance of Andalusite-Based Low-Cement Castables in Contact with Molten Al Alloy

    NASA Astrophysics Data System (ADS)

    Adabifiroozjaei, Esmaeil; Koshy, Pramod; Sorrell, Charles Chris

    2012-02-01

    Interfacial reactions between Al alloy and andalusite low-cement castables (LCCs) containing 5 wt pct B2O3, B4C, and BN were analyzed at 1123 K and 1433 K (850 °C and 1160 °C) using the Alcoa cup test. The results showed that the addition of boron-containing materials led to the formation of aluminoborate (9Al2O3.2B2O3) and glassy phase containing boron in the prefiring temperature (1373 K [1100 °C]), which consequently improved the corrosion resistance of the refractories. The high heat of formation of the aluminoborate phase (which increased its stability to reactions with molten Al alloy) and the low solubility of boron in molten Al were the major factors that contributed to the improvement in the corrosion resistance of B-doped samples.

  20. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications.

    PubMed

    Bowen, Patrick K; Seitz, Jan-Marten; Guillory, Roger J; Braykovich, Jacob P; Zhao, Shan; Goldman, Jeremy; Drelich, Jaroslaw W

    2018-01-01

    Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0.19-0.27%) were observed. Intergranular corrosion was observed during residence of Zn-Al alloys in the murine aorta, suggesting a different corrosion mechanism than that of pure zinc. This mode of failure needs to be avoided for stent applications because the intergranular corrosion caused cracking and fragmentation of the implants, although the composition of corrosion products was roughly identical between non- and Al-containing materials. In spite of differences in corrosion mechanisms, the cross-sectional reduction of metals in murine aorta was nearly identical at 30-40% and 40-50% after 4.5 and 6 months, respectively, for pure Zn and Zn-Al alloys. Histopathological analysis and evaluation of arterial tissue compatibility around Zn-Al alloys failed to identify areas of necrosis, though both chronic and acute inflammatory indications were present. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 245-258, 2018. © 2017 Wiley Periodicals, Inc.

  1. GEANT4 Tuning For pCT Development

    NASA Astrophysics Data System (ADS)

    Yevseyeva, Olga; de Assis, Joaquim T.; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, João A. P.; Díaz, Katherin S.; Hormaza, Joel M.; Lopes, Ricardo T.

    2011-08-01

    Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. Moreover, the spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through aluminum absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadrontherapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code, or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development.

  2. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    NASA Technical Reports Server (NTRS)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  3. Effect of TiC addition on fracture toughness of Al6061 alloy

    NASA Astrophysics Data System (ADS)

    Raviraj, M. S.; Sharanprabhu, C. M.; Mohankumar, G. C.

    2018-04-01

    Al 6061 matrix was reinforced with different proportions of TiC particles such as 3wt%, 5wt% and 7wt% and the effect on fracture toughness was studied. Al-TiC metal matrix composites were produced by stir casting method to ensure uniform distribution of the TiC particulates in the Al matrix. LEFM (Linear Elastic Fracture Mechanics) has been used to characterize the fracture toughness using various specimen geometries. The compact tension (CT) specimens with straight through notch were machined as per ASTM E399 specifications. All the specimens were machined to have constant a/W=0.5 and B/W was varied from 0.2 to 0.7. A sharp crack initiation was done at the end of notch by fatigue loading using servo-hydraulic controlled testing machine. Load v/s crack mouth opening displacement (CMOD) data was plotted and stress intensity factor, KQ determined. Critical stress intensity factor KIC was obtained by plotting KQ v/s thickness of specimen data. The fracture toughness of the composites varied between 16-19 MPa√m as compared to 23MPa√m for base alloy Al6061. Composites with 3wt% and 7wt% TiC showed better fracture toughness than 5wt% TiC reinforced Al metal matrix composites.

  4. -Based Slag System

    NASA Astrophysics Data System (ADS)

    Jiang, Binbin; Wang, Wanlin; Sohn, Il; Wei, Juan; Zhou, Lejun; Lu, Boxun

    2014-06-01

    The crystallization behavior of a CaO-Al2O3-based slag system with various ZrO2 content (from 1 to 5 wt pct) and CaO/Al2O3 (C/A) ratio (from 0.8 to 1.2) has been studied by using single hot thermocouple technology (SHTT) in this article. The continuous-cooling-transformation (CCT) diagrams and time-temperature-transformation (TTT) diagrams of the above slag system were constructed for the analysis of the varying crystallization behaviors. The results suggested that Al2O3 tended to enhance the slag samples crystallization when the C/A ratio ranged from 0.8 to 1.2, and the critical cooling rate and crystallization temperature increased with the decrease of C/A ratio; meanwhile, the incubation time was also getting shorter with the reduction of C/A ratio. The addition of ZrO2 would enhance the crystallization of slag samples because of the induced heterogeneous nucleation of molten slag. However, the general crystallization was determined by the balance between molten slag viscosity and heterogeneous nucleation, such that Sample 3 (C/A = 1.0, ZrO2 = 3 pct, B2O3 = 10 pct, Li2O = 3 pct [in wt pct]) would demonstrate the strongest crystallization kinetics in a high-temperature zone. The different crystals formed during the tests were also analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).

  5. Letter report on PCT/Monolith glass ceramic corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less

  6. Effect of Carbon on Microstructure and Mechanical Properties of Low C-1.6 pct Mn-0.1 pct Cr-0.3 pct Mo-0.0005 pct B Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.

    2014-11-01

    Effect of carbon on the microstructure and mechanical properties of 0.011 and 0.032 pct carbon dual-phase steels was investigated. r m value was increased to 1.52 at around 400 MPa tensile strength level through the optimal design in the steel chemistry and proper control of phase transformation during continuous galvanizing cycle. The isolated martensite particles are expected to increase the strength but are expected not to be desirable for the deep drawability.

  7. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    NASA Astrophysics Data System (ADS)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  8. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  9. Deposition Mechanism and Microstructure of Laser-Assisted Cold-Sprayed (LACS) Al-12 wt.%Si Coatings: Effects of Laser Power

    NASA Astrophysics Data System (ADS)

    Olakanmi, E. O.; Tlotleng, M.; Meacock, C.; Pityana, S.; Doyoyo, M.

    2013-06-01

    Surface treatment is one of the most costly processes for treating metallic components against corrosion. Laser-assisted cold spray (LACS) has an opportunity to decrease those costs particularly in transportation systems, chemical industries, and renewable energy systems. This article highlights some of those potential applications. In the LACS process, a laser beam irradiates the substrate and the particles, thereby softening both of them. Consequently, the particles deform upon impact at the substrate and build up a coating. To circumvent the processing problems associated with cold-spray (CS) deposition of low-temperature, corrosion-resistant Al-12 wt.%Si coatings, a preliminary investigation detailing the effect of laser power on its LACS deposition mechanism and microstructural properties is presented. The deposition efficiency, the microstructure, and the microhardness of the LACS-deposited coatings produced by a 4.4-kW Nd:YAG laser system were evaluated. The outcome of this study shows that pore- and crack-free Al-12 wt.%Si coatings were deposited via softening by laser irradiation and adiabatic shearing phenomena at an optimum laser power of 2.5 kW.

  10. Structural characterization of sputter-deposited SS304+x aluminum (x = 0, 4, 7 and 10 wt.%) coatings and mechanically milled titanium, zirconium and hafnium powders

    NASA Astrophysics Data System (ADS)

    Seelam, Uma Maheswara Rao

    Study of the metastable phases obtained by non-equilibrium processing techniques has come a long way during the past five decades. New metastable phases have often given new perspectives to the research on synthesis of novel materials systems. Metastable materials produced by two non-equilibrium processing methods were studied for this dissertation---304-type austenitic stainless steel (SS304 or Fe-18Cr-8Ni)+aluminum coatings produced by plasma enhanced magnetron sputter-deposition (PEMS) and nanocrystalline Ti, Zr and Hf powders processed by mechanical milling (MM). The objective of the study was to understand the crystallographic and microstructural aspects of these materials. Four SS304+Al coatings with a nominal Al percentages of 0, 4, 7 and 10 wt.% in the coatings were deposited on an SS304 substrate by PEMS using SS304 and Al targets. The as-deposited coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and three-dimensional atom probe microscopy (3DAP). Surface morphology and chemical analysis were studied by SEM. Phase identification was carried out by XRD and TEM. The microstructural features of all the coatings, as observed in the TEM, consisted of columnar grains with the columnar grain width (a measure of grain size) increasing with an increase in the Al content. The coatings had grains with average grain sizes of about 100, 290, 320 and 980 nm, respectively for 0, 4, 7 and 10 wt.% Al. The observed grain structures and increase in grain size were related to substrate temperature during deposition. XRD results indicated that the Al-free coating consisted of the non-equilibrium ferrite and sigma phases. In the 4Al, 7Al and 10Al coatings, equilibrium ferrite and B2 phases were observed but no sigma phase was found. In 10Al coating, we were able to demonstrate experimentally using 3DAP studies that NiAl phase formation is preferred over the FeAl phase at nano scale. During

  11. Early diagnostic value of plasma PCT and BG assay for CRBSI after OLT.

    PubMed

    Chen, J; Wang, Y; Shen, Z; Zhu, Z; Song, Y; Han, R

    2011-06-01

    The aim was to evaluate the role of procalcitonin (PCT) and (1-3)-β-D-glucan (BG) tests for early detection or exclusion of central venous catheter-related bloodstream infections (CRBSI) in patients after orthotopic liver transplantation (OLT). Fifty-five patients with clinically suspected CRBSI were assessed after OLT in this prospective study. On the day of clinical suspicion of CRBSI, blood samples were obtained from central venous catheters and a peripheral vein for blood cultures and from a peripheral vein for PCT and BG tests. Plasma PCT and BG values were measured by using an immunoluminometric assay and Fungitell BG assay, respectively. No prisoners or organs from prisoners were used in this study. Twenty-five patients (45%) were diagnosed with CRBIS. Among them, 13 (52%) displayed gram-positive bacteriemia, 11 (44%) gram-negative bacteriemia, and 1 (4%) fungemia. The PCT values were higher in CRBSI than in non-CRBSI patients (P = .003). CRBSI patients did not show significant increases in plasma BG values compared with non-CRBSI subjects (P = .051). PCT and BG area under receiver operating characteristic curves were 0.840 and 0.486, respectively. Sensitivity, specificity, and positive and negative predictive values of a PCT of ≥ 3.1 ng/mL for the diagnosis of CRBSI were 0.72, 0.87, 0.82, and 0.79, respectively. The figures for a BG of ≥ 83 pg/mL were 0.32, 0.90, 0.73, and 0.61, respectively. Among the 24 patients with bacteria infections, PCT was higher in patients with gram-negative than those with gram-positive bacterial infections (P = .022). We concluded that the PCT assay may be a useful rapid diagnostic adjunct for the diagnosis of suspected CRBSI in OLT patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Microstructural investigation of Sr-modified Al-15 wt%Si alloys in the range from micrometer to atomic scale.

    PubMed

    Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J

    2011-05-01

    Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. 1073 K (800 °C) Isothermal Section of the Co-Al-V System

    NASA Astrophysics Data System (ADS)

    Liao, Guangjing; Yin, Fucheng; Liu, Ye; Zhao, Manxiu

    2017-08-01

    The isothermal section of the Co-Al-V ternary system at 1073 K (800 °C) has been determined by means of X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Thirteen three-phase regions have been confirmed experimentally. A new ternary compound named `T' phase (Al2CoV) is found in this study which possesses a face-centered cubic (fcc) structure with a lattice parameter of 11.7224 Å. The T phase can be in equilibrium with Al3V, Al8V5, α-V, Al5Co2, and AlCo. The maximum solubility of Al in Co3V, σ-CoV, and CoV3 is 5.6, 6.3, and 4 at. pct, respectively. The maximum solubility of Co in Al3V, Al8V5, and α-V is 1.1, 2.5, and 24.9 at. pct, respectively. The maximum solubility of V in Al9Co2, Al13Co4, Al3Co, Al5Co2, AlCo, and α-Co is 0.3, 0.2, 0.1, 2.1, 35.0, and 16.4 at. pct, respectively.

  14. Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.

    1990-01-01

    Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.

  15. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-04-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  16. Mitigating Intergranular Stress Corrosion Cracking in Age-Hardenable Al-Zn-Mg-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Ajay Krishnan, M.; Raja, V. S.; Shukla, Shweta; Vaidya, S. M.

    2018-06-01

    This article reports an attempt to develop high-strength aluminum alloys of 7xxx series resistant to intergranular stress corrosion cracking (SCC). A novel aging technique reported in this work exhibited improved strength levels (as high as 100 MPa to that of conventional overaged temper for AA 7050) with significant resistance to SCC measured even at a low strain rate (10-7 s-1) in 3.5 wt pct NaCl. The novel aging heat treatment produced a microstructure that is finer and dense enough in the matrix to impart strength, whereas it is enriched with Cu on the grain boundaries to impart SCC resistance. A detailed explanation for the enhanced strength and SCC resistance is discussed.

  17. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  18. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Sediako, Dimitry G.; Kasprzak, Wojciech

    2015-09-01

    Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

  19. The microstructural dependence of wear resistance in austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  20. The influence of heat treatment on the structure and properties of a near-α titanium alloy

    NASA Astrophysics Data System (ADS)

    Sridhar, G.; Kutumbarao, V. V.; Sarma, D. S.

    1987-06-01

    The microstructure and tensile properties of a near-α titanium alloy, IMI-829 (Ti-6.1 wt pct Al-3.2 wt pct Zr-3.3 wt pct Sn-0.5 wt pct Mo-1 wt pct Nb-0.32 wt pct Si) have been studied after solutionizing (and no subsequent aging) at two different temperatures separately, one above the β transus (1050 °C) and another below the β transus (975 °C) followed by various cooling rates (furnace, air, oil, or water). While 1050 °C treatment resulted in coarse Widmanstätten structures on furnace or air cooling, fine Widmanstätten structure on oil quenching and martensitic structure on water quenching, 975 °C treatment produced duplex microstructures consisting of equiaxed alpha and partially transformed beta phases. Transmission electron microscopy studies revealed the morphology, size, and distribution of the α, β, and martensite phases and also the presence of small ellipsoidal suicide particles and an interface phase with fcc structure at almost all α-β interfaces. The oil quenched structure from 1050 °C has been found to be a mixture of fine Widmanstätten α coexisting with martensite laths and retained beta at the lath boundaries. Silicides with hcp structure of about 0.4 μm size were observed in specimens solution treated at 975 °C. The interface phase is seen in all slowly-cooled specimens. The YS and UTS are superior for 975 °C treatment compared to 1050 °C treatment after water quenching or oil quenching. The tensile ductility values are superior for any cooling rate after 975 °C solution treatment as compared to 1050 °C solution treatment. The specimens failed in tension diagonally by shear after 1050 °C treatment and by cup and cone fracture after 975 °C treatment. In all cases fracture has taken place by microvoid coalescence and in most cases, along the α-β boundaries.

  1. Static and dynamic oxidation of Ti-14Al-21Nb and coatings

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Sankaran, S. N.; Clark, R. K.; Wallace, T. A.

    1989-01-01

    The oxidation of Ti-14Al-21Nb (wt pct) was studied under static conditions at 649 to 1093 C for as long as 120 hr, and under simulated hypersonic flight (dynamic oxidation) conditions at 982 C for as many as 16 half-hour cycles. Under simulated hypersonic flight conditions heavy oxidation and spalling of the oxide was observed. It was concluded that titanium aluminides used in hypersonic applications must have oxidation-protective coatings. In this preliminary study coatings about 1 micron thick were applied by sputter deposition, from solutions, and from sol-gels. It was found that, because of cracks and porosity, the sputter-deposited coatings did not have sufficient film integrity to shield the alloy. Some of the coatings applied from sol-gels demonstrated film integrity in 1 hr exposures at 982 C.

  2. Examination of oxide scales in the SEM using backscattered electron images

    NASA Technical Reports Server (NTRS)

    Price, C. W.; Wright, I. G.; Wallwork, G. R.

    1973-01-01

    The complementary use of the scanning electron microscope in the backscattered electron mode with the more usual secondary electron mode results in a significant increase in the versatility of the instrument, since regions of different chemical composition can be readily detected, and their morphology examined. The use of this technique to examine complex oxide scales formed on heat-resistant alloys is described, and in particular the location of thoria particles in the scale formed on a Ni-20 wt pct Cr-2.3 wt pct ThO2 alloy, and the examination of the behavior of yttrium during the high-temperature oxidation of a Co-Cr-Al-Y alloy are discussed.

  3. The influence of processing parameters on microstructural development of low-weight-percent primary, pro-eutectic, dendritic alloys during directional solidification

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Kim, Shinwoo; Woodward, Tracey; Wang, T. G.

    1992-01-01

    Alloy compositions centering about Sn- 5 to 15 wt pct Al and Pb- 4 to 20 wt pct Cu have been directionally solidified as a function of growth rate and orientation with respect to earth's gravity vector. The effect of these processing variables on macrosegregation is presented, and the consequence of a structural transition from primary columnar to equiaxed dendritic growth is examined. Effects detrimental to microstructure and attributed to density variations are shown to be minimized by a novel processing technique. In view of the ground-based results, some considerations follow regarding what might be gained by solidifying these alloys in a microgravity environment.

  4. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  5. Study of Ordering and Properties in Fe-Ga Alloys With 18 and 21 at. pct Ga

    NASA Astrophysics Data System (ADS)

    Golovin, Igor S.; Dubov, L. Yu.; Funtikov, Yu. V.; Palacheva, V. V.; Cifre, J.; Hamana, D.

    2015-03-01

    Dynamical mechanical and positron annihilation spectroscopies were applied to study the structure of two Fe-Ga alloys with 18 and 21 at. pct Ga after quenching and subsequent annealing. It was found that the alloy with 18 pct Ga has much better damping capacity (Ψ ≈ 30 pct) than the alloy with 21 pct Ga (Ψ ≈ 5 pct). The reason for that is the ordering of the Ga atoms in Fe-21Ga alloy. Ordering processes in both alloys are studied at heating by differential scanning calorimetry, dilatometry, and internal friction or by step-by-step annealing using positron annihilation spectroscopy and hardness tests. Experimental results are explained by sequence of ordering transitions: A2 → D03 → L12.

  6. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  7. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-04-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  8. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  9. Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Miszczyk, M. M.; Paul, H.

    2015-08-01

    The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.

  10. TEM Studies of Boron-Modified 17Cr-7Ni Precipitation-Hardenable Stainless Steel via Rapid Solidification Route

    NASA Astrophysics Data System (ADS)

    Gupta, Ankur; Bhargava, A. K.; Tewari, R.; Tiwari, A. N.

    2013-09-01

    Commercial grade 17Cr-7Ni precipitation-hardenable stainless steel has been modified by adding boron in the range 0.45 to 1.8 wt pct and using the chill block melt-spinning technique of rapid solidification (RS). Application of RS has been found to increase the solid solubility of boron and hardness of 17Cr-7Ni precipitation-hardenable stainless steel. The hardness of the boron-modified rapidly solidified alloys has been found to increase up to ~280 pct after isochronal aging to peak hardness. A TEM study has been carried out to understand the aging behavior. The presence of M23(B,C)6 and M2(B,C) borocarbides and epsilon-carbide in the matrix of austenite and ferrite with a change in heat treatment temperature has been observed. A new equation for Creq is also developed which includes the boron factor on ferrite phase stability. The study also emphasizes that aluminum only takes part in ferrite phase stabilization and remains in the solution.

  11. Sintered Intermetallic Reinforced 434L Ferritic Stainless Steel Composites

    NASA Astrophysics Data System (ADS)

    Upadhyaya, A.; Balaji, S.

    2009-03-01

    The present study examines the effect of aluminide (Ni3Al, Fe3Al) additions on the sintering behavior of ferritic 434L stainless steels during solid-state sintering (SSS) and supersolidus liquid-phase sintering (SLPS). 434L stainless steel matrix composites containing 5 and 10 wt pct of each aluminide were consolidated at 1200 °C (SSS) and 1400 °C (SLPS). The effects of sintering and aluminide additions on the densification, microstructural evolution, mechanical, tribological, and corrosion behavior of sintered ferritic (434L) stainless steels were investigated. The performances of the 434L-aluminide composites were compared with the straight 434L stainless steels processed at similar conditions. Supersolidus sintering resulted in significant improvement in densification, mechanical, wear, and corrosion resistance in both straight 434L and 434L-aluminide composites. Fe3Al additions to 434L stainless steels result in improved wear resistance without significant degradation of corrosion resistance in 3.56 wt pct NaCl solution.

  12. Convection and macrosegregation in Al-19Cu alloy directionally solidified through an abrupt contraction in cross-section: A comparison with Al-7Si

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2017-02-01

    Hypoeutectic Al-19 wt. % Cu alloys were directionally solidified in cylindrical molds that featured an abrupt cross-section decrease 9.5 to 3.2 mm in diameter). Thermo-solutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-section before contraction. This alloy shows positive longitudinal macrosegregation near the contraction followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. The degree of thermo-solutal convection was compared to another study investigating directional solidification of Al-7 wt. % Si [1] in order to study the effect of solutal expansion coefficient on macrosegregation. An interesting change of the radial macrosegregation profile, attributable to the area-change-induced-shrinkage flow, was observed very close to the contraction. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification, the resulting steepling as well as axial and radial macrosegregation. The experimentally observed macrosegregation associated with the contraction during directional solidification was well predicted by the numerical simulations.

  13. Experimental Investigation of the 1073 K (800 °C) Isothermal Section of the Al-V-Zr Ternary System

    NASA Astrophysics Data System (ADS)

    Zhu, Yude; Ouyang, Xuemei; Yin, Fucheng; Zhao, Manxiu; Lou, Jia

    2018-03-01

    This work is focused on an experimental investigation of the phase equilibria of the Al-V-Zr system at 1073 K (800 °C). The phase equilibria were analyzed using scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry and X-ray diffraction. The results confirmed the presence of twelve three-phase regions and one ternary compound, Τ, which contains 10.0 to 16.5 at. pct Zr, 52.8 to 55.2 at. pct Al, and 29.3 to 36.3 at. pct V. The T phase can be in equilibrium with Al8V5, Al3Zr, Al2Zr, and α-V. The T phase belongs to the tetragonal crystal system with confirmed lattice parameters of a = 0.658531 nm and c = 0.517334 nm. The Al2Zr phase region is extraordinarily large and can be in equilibrium with all the compounds in the Al-Zr and V-Zr systems, with the exception of the AlZr phase.

  14. Atmospheres

    NASA Astrophysics Data System (ADS)

    Bott, June; Yin, Hongbin; Sridhar, Seetharaman

    2014-12-01

    When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.

  15. The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy.

    PubMed

    El-Sayed, Mahmoud Ahmed

    2016-01-01

    Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings.

  16. The Behaviour of Bifilm Defects in Cast Al-7Si-Mg Alloy

    PubMed Central

    2016-01-01

    Double oxide films (bifilms) are significant defects in the casting of light alloys, and have been shown to decrease tensile and fatigue properties, and also to increase their scatter, making casting properties unreproducible and unreliable. A bifilm consists of doubled-over oxide films containing a gas-filled crevice and is formed due to surface turbulence of the liquid metal during handling and/or pouring. Previous studies has shown that the nature of oxide film defects may change with time, as the atmosphere inside the bifilm could be consumed by reaction with the surrounding melt, which may enhance the mechanical properties of Al alloy castings. As a proxy for a bifilm, an air bubble was trapped within an Al-7wt.%Si-0.3wt.%Mg (2L99) alloy melt, subjected to stirring. The effect of different parameters such as the holding time, stirring velocity and melt temperature on the change in gas composition of the bubble was investigated, using a design of experiments (DoE) approach. Also, the solid species inside the bubbles solidified in the melt were examined using SEM. The results suggested that both oxygen and nitrogen inside the bifilm would be consumed by reaction with the surrounding melt producing MgAl2O4 and AlN, respectively. Also, hydrogen was suggested to consistently diffuse into the defect. The reaction rates and the rate of H diffusion were shown to increase upon increasing the holding time and temperature, and stirring velocity. Such significant effect of the process parameters studied on the gaseous content of the bubble suggesting that a careful control of such parameters might lead to the deactivation of bifilm defects, or at least elimination of their deteriorous effect in light alloy castings. PMID:27529350

  17. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  18. The Effect of Nb Addition on the Microstructure and the High-Temperature Strength of Fe3Al Aluminide

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Švec, Martin; Král, Robert; Veselý, Jozef; Lukáč, Pavel; Vlasák, Tomáš

    2018-02-01

    The microstructural and high-temperature mechanical properties of Fe-26Al-xNb (x = 3 and 5 at. pct) are compared. The alloys were investigated "as cast" and after hot rolling at 1473 K (1200 °C). Scanning electron microscopes equipped with EDS and EBSD were used for the microstructure and phase identification. The addition of 3 at. pct of Nb into the Fe3Al matrix leads to the formation of C14 λ—Laves phase (Fe,Al)2Nb (LP) particles spread in the Fe3Al matrix, while an eutectic with thin lamellae of LP C14 λ—Laves phase (Fe,Al)2Nb and matrix is also formed in the iron aluminide with 5 at. pct of Nb. The presence of incoherent precipitates is connected with the enhancement of the high-temperature strength and creep resistance.

  19. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon

    2010-02-01

    Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.

  20. Predictive comparisons of procalcitonin (PCT) level, arterial ketone body ratio (AKBR), APACHE III score and multiple organ dysfunction score (MODS) in systemic inflammatory response syndrome (SIRS).

    PubMed

    Lee, Young-Joo; Park, Chan-Hee; Yun, Jang-Woon; Lee, Young-Suk

    2004-02-29

    Procalcitonin (PCT) is a newly introduced marker of systemic inflammation and bacterial infection. A marked increase in circulating PCT level in critically ill patients has been related with the severity of illness and poor survival. The goal of this study was to compare the prognostic power of PCT and three other parameters, the arterial ketone body ratio (AKBR), the acute physiology, age, chronic health evaluation (APACHE) III score and the multiple organ dysfunction score (MODS), in the differentiation between survivors and nonsurvivors of systemic inflammatory response syndrome (SIRS). The study was performed in 95 patients over 16 years of age who met the criteria of SIRS. PCT and AKBR were assayed in arterial blood samples. The APACHE III score and MODS were recorded after the first 24 hours of surgical ICU (SICU) admission and then daily for two weeks or until either discharge or death. The patients were divided into two groups, survivors (n=71) and nonsurvivors (n=24), in accordance with the ICU outcome. They were also divided into three groups according to the trend of PCT level: declining, increasing or no change. Significant differences between survivors and nonsurvivors were found in APACHE III score and MODS throughout the study period, but in PCT value only up to the 7th day and in AKBR only up to the 3rd day. PCT values of the three groups were not significantly different on the first day between survivors and nonsurvivors. Receiver operating characteristic (ROC) curves for prediction of mortality by PCT, AKBR, APACHE III score and MODS were 0.690, 0.320, 0.915 and 0.913, respectively, on the admission day. In conclusion, PCT could have some use as a mortality predictor in SIRS patients but was less reliable than APACHE III score or MODS.

  1. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-05-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  2. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-07-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  3. Composition of the Cayley Formation at Apollo 16 as inferred from impact melt splashes

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Horz, Friedrich; See, Thomas H.

    1986-01-01

    Abundances of major and trace elements and magnetic properties of 50 impact melt splashes (IMSs) from the Apollo 16 landing site are analzyed to determine the composition of their meteoritic component. MgO-Sc and Ca-Sc variation diagrams and least-squares mixing models are utilized to analyze the IMS, soil, and rock data. Consideration is given to progenitor lithologies of the IMS, the number of impact events represented by the IMS, and the heterogeneity of impact melts from single events. It is observed that the IMSs are composed of either a mixture of anorthosite and low-Sc impact melt rocks or anorthositic norite. It is determined that the surface Cayley layer is composed of TiO2, MgO, Sc, and La concentrations of 0.69, and 7.1 wt pct and 10.5 and 21.2 microg/g, respectively and 0.38 and 5.9 wt pct and 6.1 and 11.8 microg/g, respectively, for the subsurface Cayley layer. The Descartes Formation composition is estimated as TiO2, MgO, Sc, and La concentrations of 0.25, and 3.5 wt pct and 7.7 and 2.2 microg/g, respectively.

  4. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    NASA Astrophysics Data System (ADS)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  5. The identification of group II inclusions in carbonaceous chondrites by electron probe microanalysis of perovskite

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Wood, J. A.

    1985-01-01

    The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.

  6. Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Bhat, B. N.

    1999-01-01

    Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0

  7. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  8. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip

    2017-01-01

    The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192

  9. Microstructure-property relationships in Al-Cu-Li-Ag-Mg Weldalite (tm) alloys, part 2

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    The microstructure and mechanical properties of the ultrahigh strength Al-Cu-Li-Ag-Mg alloy, Weldalite (tm) 049, were studied. Specifically, the microstructural features along with tensile strength, weldability, Young's modulus and fracture toughness were studied for Weldalite (tm) 049 type alloys with Li contents ranging from 1.3 to 1.9 wt. pct. The tensile properties of Weldalite 049 and Weldalite 049 reinforced with TiB2 particles fabricated using the XD (tm) process were also evaluated at cryogenic, room, and elevated temperatures. In addition, an experimental alloy, similar in composition to Weldalite 049 but without the Ag+Mg, was fabricated. The microstructure of this alloy was compared with that of Weldalite 049 in the T6 condition to assess the effect of Ag+Mg on nucleation of strengthening phases in the absence of cold work.

  10. Relationship between acute kidney injury and serum procalcitonin (PCT) concentration in critically ill patients with influenza infection.

    PubMed

    Rodríguez, A; Reyes, L F; Monclou, J; Suberviola, B; Bodí, M; Sirgo, G; Solé-Violán, J; Guardiola, J; Barahona, D; Díaz, E; Martín-Loeches, I; Restrepo, M I

    2018-02-09

    Serum procalcitonin (PCT) concentration could be increased in patients with renal dysfunction in the absence of bacterial infection. To determine the interactions among serum renal biomarkers of acute kidney injury (AKI) and serum PCT concentration, in patients admitted to the intensive care unit (ICU) due to lung influenza infection. Secondary analysis of a prospective multicentre observational study. 148 Spanish ICUs. ICU patients admitted with influenza infection without bacterial co-infection. Clinical, laboratory and hemodynamic variables were recorded. AKI was classified as AKI I or II based on creatinine (Cr) concentrations (≥1.60-2.50mg/dL and Cr≥2.51-3.99mg/dL, respectively). Patients with chronic renal disease, receiving renal replacement treatment or with Cr>4mg/dL were excluded. Spearman's correlation, simple and multiple linear regression analysis were performed. None. Out of 663 patients included in the study, 52 (8.2%) and 10 (1.6%) developed AKI I and II, respectively. Patients with AKI were significantly older, had more comorbid conditions and were more severally ill. PCT concentrations were higher in patients with AKI (2.62 [0.60-10.0]ng/mL vs. 0.40 [0.13-1.20]ng/mL, p=0.002). Weak correlations between Cr/PCT (rho=0.18) and Urea (U)/PCT (rho=0.19) were identified. Simple linear regression showed poor interaction between Cr/U and PCT concentrations (Cr R 2 =0.03 and U R 2 =0.018). Similar results were observed during multiple linear regression analysis (Cr R 2 =0.046 and U R 2 =0.013). Although PCT concentrations were slightly higher in patients with AKI, high PCT concentrations are not explained by AKI and could be warning sign of a potential bacterial infection. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  11. Effect of Cooling Rate and Chemical Composition on Microstructure and Properties of Naturally Cooled Vanadium-Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Karmakar, Anish; Sahu, Pooja; Neogy, Suman; Chakrabarti, Debalay; Mitra, Rahul; Mukherjee, Subrata; Kundu, Saurabh

    2017-04-01

    Samples from two V-microalloyed steels (0.05 wt pct V) having different C and N levels, namely high-C low-N steel, HCLN (0.22 wt pct C, 0.007 wt pct N) and low-C high-N steel, LCHN (0.06 wt pct C, 0.013 wt pct N) were naturally cooled from 1373 K (1100 °C) to room temperature over a range of cooling rates (0.07 to 3.33 K/s). Samples from a plain C-Mn steel (0.06 wt pct C, 0.007 wt pct N) were also subjected to the same heat treatment for comparison. The effect of cooling rate and steel composition on microstructures, precipitates, and tensile properties has been investigated. Due to the presence of large fraction of harder constituents, like pearlite and bainite, HCLN steel showed higher strength and lower ductility than LCHN steel. LCHN steel, on the other hand, showed good combination of strength and ductility due to its predominantly ferrite matrix with precipitation strengthening. The V-precipitate size was more refined and the precipitate density was higher in HCLN steel than that in LCHN steel. This observation confirms the importance of C content in V-microalloyed steel in terms of precipitation strengthening. An intermediate cooling rate ( 1.4 K/s) has been found to be the optimum choice in order to maximize the precipitation strengthening in V-containing steels.

  12. Biaxial extrusion of polyimide LARC-TPI and LARC-TPI blends

    NASA Technical Reports Server (NTRS)

    Haghighat, R. Ross; Elandjian, Lucy; Lusignea, Richard W.

    1990-01-01

    Biaxial films of polyimide LARC-TPI and LARC-TPI/liquid crystal polymer Xydar were extruded directly from the melt for the first time via an innovative extrusion technique. Three types of films, neat LARC-TPI, LARC-TPI/10 wt pct and 30 wt pct blends were processed as a part of this NASA-funded program. Processability was greatly enhanced by incorporating Xydar. The coefficient of thermal expansion was reduced from 34 ppm/C for the neat LARC-TPI to 15 ppm/C for the 10 wt pct Xydar blend and ultimately down to 1 to 3 ppm/C for the 30 wt pct blend films in the direction of extrusion. The maximum improvement in stiffness was realized by incorporating 10 wt pct Xydar (2.8 GPa up to 4.9 GPa). Tensile strength, however, experienced a drop as a result of Xydar addition, probably caused by inefficient mixing of the two phases.

  13. Combustion synthesis of AlB2-Al2O3 composite powders with AlB2 nanowire structures

    NASA Astrophysics Data System (ADS)

    Yang, Pan; Xiao, Guoqing; Ding, Donghai; Ren, Yun; Yang, Shoulei; Lv, Lihua; Hou, Xing

    2018-05-01

    Using of Al and B2O3 powders as starting materials, and Mg-Al alloy as additives, AlB2-Al2O3 composite powders with AlB2 nanowire structures were successfully fabricated via combustion synthesis method in Ar atmosphere at a pressure of 1.5 MPa. The effect of different amount of Mg-Al alloy on the phase compositions and morphology of the combustion products was investigated. The results revealed that AlB2 and Al2O3 increased, whereas Al decreased with the content of Mg-Al alloy increasing. The impurities MgAl2O4 and AlB12 would exist in the sample with adding of 18 wt% Mg-Al alloy. Interestingly, FESEM/TEM/EDS results showed that AlB2 nanowires were observed in the products when the content of Mg-Al alloy is 6 wt% and 12 wt%. The more AlB2 nanowires can be found as the content of Mg-Al alloy increased. And the yield of AlB2 nanowires with the diameter of about 200 nanometers (nm) and the length up to several tens of micrometers (μm) in the combustion product is highest when the content of Mg-Al alloy is 12 wt%. The vapor, such as Mg-Al (g), B2O2 (g), AlO (g) and Al2O (g), produced during the process of combustion synthesis, reacted with each other to yield AlB2 nanowires by vapor-solid (VS) mechanism and the corresponding model was also proposed.

  14. Reduction of Chromite in Liquid Fe-Cr-C-Si Alloys

    NASA Astrophysics Data System (ADS)

    Demir, Orhan; Eric, R. Hurman

    1994-08-01

    The kinetics and the mechanism of the reduction of chromite in Fe-Cr-C-Si alloys were studied in the temperature range of 1534 °C to 1702 °C under an inert argon atmosphere. The rotating cylinder technique was used. The melt consisted of 10 and 20 wt Pct chromium, the carbon content varied from 2.8 wt Pct to saturation, and the silicon content varied from 0 to 2 wt Pct. The rotational speed of the chromite cylinder ranged from 100 to 1000 rpm. The initial chromium to iron ratios of the melts varied between 0.11 and 0.26. In Fe-C melts, the effect of rotational speed on the reduction of chromite was very limited. Carbon saturation (5.4 wt Pct) of the alloy caused the reduction to increase 1.5 times over the reduction observed in the unsaturated (4.87 wt Pct) alloy at a given rotational speed. The addition of chromium to the carbon-saturated Fe-C alloy increased the reduction rate. The addition of silicon to the liquid phase increased the reduction rate drastically. The reduction of chromite in Fe-Cr-C melts is hindered because of the formation of, approximately, a 1.5-mm-thick M7C3-type carbide layer around the chromite cylinders. This carbide layer did not form when silicon was present in the melt. It was found that the reduction rate is controlled by the liquid-state mass transfer of oxygen. The calculated apparent activation energies for diffusion were 102.9 and 92.9 kJ/mol of oxygen in the Si-O and C-O systems, respectively.

  15. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    NASA Astrophysics Data System (ADS)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  16. Structure of the orthorhombic form of Mn(2)Al(7), Fe(2)Al(7), and (Mn(0.7)Fe(0.3))(2)Al(7) that by twinning produces grains with decagonal point-group symmetry.

    PubMed

    Pauling, L

    1988-04-01

    Analysis of electron diffraction photographs of grains of Mn(2)Al(7), Fe(2)Al(7), and (Mn(0.7)Fe(0.3))(2)Al(7) leads to the conclusion that they are 5-fold twins of a 1664-atom orthorhombic crystal with a = 32.86 A, b = 31.23 A, and c = 24.80 A and with 16 icosahedral clusters of 104 atoms in positions shifted by small amounts from those of the cubic beta-tungsten structure.

  17. Structure of the orthorhombic form of Mn2Al7, Fe2Al7, and (Mn0.7Fe0.3)2Al7 that by twinning produces grains with decagonal point-group symmetry

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of electron diffraction photographs of grains of Mn2Al7, Fe2Al7, and (Mn0.7Fe0.3)2Al7 leads to the conclusion that they are 5-fold twins of a 1664-atom orthorhombic crystal with a = 32.86 Å, b = 31.23 Å, and c = 24.80 Å and with 16 icosahedral clusters of 104 atoms in positions shifted by small amounts from those of the cubic β-tungsten structure. PMID:16593921

  18. Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags

    NASA Astrophysics Data System (ADS)

    Lü, Jian-fang; Jin, Zhe-nan; Yang, Hong-ying; Tong, Lin-lin; Chen, Guo-bao; Xiao, Fa-xin

    2017-07-01

    An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.

  19. Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3 Powder Consolidated Parts

    PubMed Central

    Hao, Liang

    2014-01-01

    In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879

  20. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  1. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  2. Detection of PCT and urinary β2 -MG enhances the accuracy for localization diagnosing pediatric urinary tract infection.

    PubMed

    Fang, Jian; Luan, Jiangwei; Zhu, Gaohong; Qi, Chang; Wang, Dandan

    2017-09-01

    The purpose of this article was to investigate whether the combination of urinary beta 2 microglobulin (urinary β 2 -MG) and procalcitonin (PCT) diagnosis could enhance the localization diagnostic precision of pediatric urinary tract infection comparing with single diagnosis. A study was conducted in the Nephrology Department of Wuhan women and children's health care centre. This study incorporated 85 participants, including 35 children who were diagnosed as upper urinary tract infection (UUTI) with the symptom of fever and 50 children who conducted lower urinary tract infection (LUTI). Levels of PCT and urinary β 2 -MG in both UUTI and LUTI patients were measured and compared. The level of PCT and β 2 -MG were both significantly higher in UUTI group compared with in LUTI group. AUC of urinary β 2 -MG ROC (sensitivity of 71.4%, specificity of 90.0%) was significantly smaller than that of PCT ROC (sensitivity of 77.1%, specificity of 96.0%) in the single diagnosis. Although in the combined diagnosis, the sensitivity and specificity increased to 88.6% and 98%, respectively. Both PCT and β 2 -MG could be used to localize the UTI. Introducing urinary β 2 -MG into PCT diagnosis could increase the sensitivity and specificity of UTI lesion diagnosis in clinical practice. © 2016 The Authors Journal of Clinical Laboratory Analysis Published by Wiley Periodicals, Inc.

  3. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  4. Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect

    NASA Astrophysics Data System (ADS)

    Bagherpour-Torghabeh, Hamed; Raiszadeh, Ramin; Doostmohammadi, Hamid

    2017-12-01

    The effect of mechanical stirring of aluminum melts containing 0.3, 0.7, and 4.5 wt pct Mg with a graphite rotor with different rotation speeds of 85 and 220 RPM on the behavior of bifilms was investigated using a reduced pressure test. The results showed that the mechanical stirring at 85 RPM accelerated the healing of the bifilms by increasing the rate of formation of cracks on the bifilms and hence accelerated the consumption of their atmosphere and provided enough Mg for the transformation of the alumina layers of the bifilms to spinel. Mechanical stirring with a high speed of 220 RPM caused aspiration of the surface oxide into the melt to form new bifilms which counteracted the healing of the previously presented bifilms.

  5. Expression of MMP-2 and TIMP-1 in cerebrospinal fluid and the correlation with dynamic changes of serum PCT in neonatal purulent meningitis

    PubMed Central

    Chen, Huilan; Wu, Fei; Fu, Rong; Feng, Xiangchun

    2018-01-01

    Matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels in cerebrospinal fluid of pediatric patients with neonatal purulent meningitis were observed to analyze changes in serum procalcitonin (PCT) and the correlation among the three factors (MMP-2, TIMP-1 and PCT). Sixty pediatric patients with neonatal purulent meningitis from April 2015 to December 2016 were enrolled as the purulent meningitis group and 60 pediatric patients with viral encephalitis treated during the same period were enrolled as the viral encephalitis group. Additionally, 60 healthy newborns who underwent physical examinations in our hospital during the same period were enrolled as the control group. The levels of MMP-2 were 136.73±25.42 ng/ml in the purulent meningitis group, 45.32±6.57 ng/ml in the viral encephalitis group and 1.32±0.51 ng/ml in the control group and the differences between the three groups were statistically significant (F=15.052, p<0.05). The levels of TIMP-1 in cerebrospinal fluid were 374.55±36.04 ng/ml in the purulent meningitis group, 176.61±21.06 ng/ml in the viral encephalitis group and 7.72±2.44 ng/ml in the control group. The serum levels of PCT were 14.56±2.21 ng/ml in the purulent meningitis group, 9.04±1.17 ng/ml in the viral encephalitis group and 0.38±0.14 ng/ml in the control group. The level of MMP-2 in cerebrospinal fluid of pediatric patients in the purulent meningitis group was positively correlated with the level of serum PCT (r=0.582, p<0.05); the level of TIMP-1 in cerebrospinal fluid of pediatric patients in the viral encephalitis group was positively correlated with the level of serum PCT (r=0.635, p<0.05). In conclusion, MMP-2 and TIMP-1 were positively correlated with the levels of serum PCT, suggesting that MMP-2, TIMP-1 and PCT were involved in the occurrence and development of neonatal purulent meningitis. PMID:29399119

  6. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    NASA Astrophysics Data System (ADS)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  7. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tammy J. Harrell; Troy D. Topping; Haiming Wen

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grainedmore » material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.« less

  8. Dielectric characterization of TiO2, Al2O3 - Nanoparticle loaded epoxy resin

    NASA Astrophysics Data System (ADS)

    Thakor, S. G.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    In present work, the dielectric properties of two different nanoparticle loaded Bisphenol A-epoxy resin were carried out at room temperature. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction (i.e 0.5 wt%,0.7 wt%,1 wt%,1.5 wt%,1.7 wt%,2 wt%). TiO2 and Al2O3 nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured using Agilent E4980A precision LCR meter in frequency range of 103 Hz to 106 Hz. The dependency of dielectric behavior on type and concentration of nanoparticle in considered frequency range are discussed in detail.

  9. Pre-aging time dependence of microstructure and mechanical properties in nanostructured Al-2wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Azad, Bahram; Borhani, Ehsan

    2016-03-01

    This work is focused on the effect of pre-aging time on the properties of Al-2wt%Cu alloy processed by accumulative roll bonding (ARB) process. Following aged at 190 °C for 10 or 30 min, the samples were deformed up to a strain of 4.8 by the ARB process. The microstructure evolution was investigated by transmission electron microscope and electron backscattering diffraction analyzes. The results showed that the Al2Cu precipitates were formed with different sizes due to the different pre-aging times and the finer precipitates were more effective on the formation of high angle grain boundaries during the ARB process. The grain size of Aged-10 min and Aged-30 min specimens decreased to 400 nm and 420 nm, respectively, after 6 cycles of the ARB process. Also, the final texture after 6 cycles of the ARB process, shown in the {111} pole figure, were different depending on the starting microstructures. The mechanical properties of specimens were investigated by the Vickers microhardness measurements and the tensile tests. The results showed that the mechanical properties are affected by the starting microstructure. The mechanical properties of Aged-10 min specimen were different compared to Aged-30 min specimen due to the different size of the pre-existing precipitates. Although by continuing process, the precipitates were probably dissolved due to the heavy deformation.

  10. Creation of Y2Ti2O7 nanoprecipitates to strengthen the Fe-14Cr-3Al-2W steels by adding Ti hydride and Y2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Linbo; Bai, Zhonglian; Shen, Hailong; Wang, Chenxi; Liu, Tong

    2017-05-01

    In order to prohibit the formation of large Y-Al-O precipitates, Ti hydride nanoparticles (NPs) were prepared and used to replace Ti as raw particles to fabricate the oxide dispersion strengthened (ODS) Fe-14Cr-3Al-2W-0.35Y2O3 steels by mechanical alloying (MA) and hot isostatic pressing (HIP). As the content of Ti hydride increases from 0.1 to 0.5 and 1.0 wt%, the oxide nanoprecipitates in the ODS steels changes from Y3Al5O12 phase to Y2Ti2O7 phase (semicoherent with the matrix), and the particle size is successfully reduced. The tensile strength of the ODS steel increases remarkably with increasing Ti hydride content. The sample with 1.0 wt% Ti hydride exhibits a high strength of 1049 MPa at 25 °C and 278 MPa at 700 °C. The creation of Y2Ti2O7 nanoprecipitates by adding Ti hydride NPs opens a new way to control the structure and size of the oxide precipitates in the ODS steels.

  11. Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, Diane M.; Sanders, William A.

    1989-01-01

    Si3N4 test bars containing additions of BN, B4C, and C, were hot isostatically pressed in Ta cladding at 1900 and 2050 C to 98.9 percent to 99.5 percent theoretical density. Room-temperature strength data on specimens containing 2 wt pct BN and 0.5 wt pct C were comparable to data obtained for Si3N4 sintered with Y2O3, Y2O3 and Al2O3, or ZrO2. The 1370 C strengths were less than those obtained for additions of Y2O3 or ZrO2 but greater than those obtained from a combination of Y2O3 and Al2O3. SEM fractography indicated that, as with other types of Si3N4, room-temperature strength was controlled by processing flaws. The decrease in strength at 1370 C was typical of Si3N4 having an amorphous grain-boundary phase. The primary advantage of nonoxide additions appears to be in facilitating specimen removal from the Ta cladding.

  12. Elevated temperature slow plastic deformation of NiAl/TiB2 particulate composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Mannan, S. K.; Sprissler, B.; Viswanadham, R. K.

    1988-01-01

    The 'XD' process for production of discontinuously-reinforced metal-matrix composites has been used to enhance the high-temperature strength of NiAl-TiB2 composites with particulate densities of up to 30 vol pct. SEM, TEM, and optical characterizations of the resulting microstructures showed the average TiB2 particle size to be about 1 micron, while the average grain of the NiAl matrix was of the order of 10 microns. Elevated temperature compression tests conducted at 1200 and 1300 K indicated flow strengths to increase with TiB2 content, so that the 20 vol pct TiB2-reinforced composite was three times stronger than the unreinforced NiAl; this is ascribed to the very high density of microstructural tangled dislocations, loops, and subgrain boundaries connecting the particles.

  13. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    NASA Technical Reports Server (NTRS)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  14. Characterization of the dimensional stability of advanced metallic materials using an optical test bench structure

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Timothy P.

    1991-01-01

    The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.

  15. Strengthening of Fe3Al Aluminides by One or Two Solute Elements

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Petr; Daniš, Stanislav; Minárik, Peter; Pešička, Josef; Král, Robert

    2017-09-01

    The compressive yield stress of Fe-26Al with additives Ti (0.5 to 4 at. pct), Cr (0.5 to 8 at. pct), Mo (0.5 to 4 at. pct), and V (0.5 to 8 at. pct) at 1073 K (800 °C) has been determined. The effect of the concentration of diverse solutes on the yield stress at 1073 K (800 °C) was compared, and the additivity of the effects of solutes was tested. The effects in iron aluminides with two solutes (V and Ti, Ti and Cr, V and Cr) are compared with those of a single solute V, Ti, and Cr. It is found that the additivity of yield stress increments is valid only for lower solute concentrations. When the amount of the solute atoms increases, the yield stress increment is substantially higher than the sum of the yield stress increments of single solutes. This behavior is related to the high-temperature order in iron aluminides.

  16. Study on Microstructure and Mechanical Properties of Al-Li Based Alloys Processed by Extrusion.

    PubMed

    Kim, Yong-Ho; Yoo, Hyo-Sang; Jung, Chang-Gi; Son, Hyeon-Taek

    2018-03-01

    Aluminum and its alloys, due to their low density, high specific strength and high corrosion resistance amongst various structural materials, are used in a wide range of industrial applications for different aqueous solutions. In the present study, we studied effects of Ce addition on microstructure and mechanical properties of Al-2Li-1Cu-0.8Mg-0.1Zr alloys. The melt was held at 780 °C for 20 min and poured into a mold. And as-cast Al alloys were hot-extruded into a plate that was 4 mm in thickness with a reduction ratio of 14:1. The extruded plates were held at 540 °C for 4 hr in water quenching to solution treatment them. As-extruded Al-2Li-1Cu-0.8Mg-0.1Zr-xCe (x = 0.3, 0.6, 0.9 and 1.2 wt.%) alloys are composed of Al, AlLi, AlCuLi and Al11Ce3 phases. By increasing the Ce content from 0 to 1.2 wt.%, the Al11Ce3 phase is increased, after solution treatment the AlLi and AlCuLi phases are decreased. With increasing Ce addition from 0 to 1.2 wt.%, the average grain size of the as-extruded Al alloys were decreased slightly from 100.7, 113.74, 84.3, 74.7 and 61.7 μm and ultimate tensile strength was decreased slightly from 267.59, 264.92, 237.40, 220.93 and 207.83 MPa at room temperature. After solution treatment, ultimate tensile strength was measured with 205.13, 198.12, 195.50, 198.27 and 208.01 MPa at room temperature.

  17. Evaluation of Microstructure and Mechanical Properties of Nano-Y2O3-Dispersed Ferritic Alloy Synthesized by Mechanical Alloying and Consolidated by High-Pressure Sintering

    NASA Astrophysics Data System (ADS)

    Karak, Swapan Kumar; Dutta Majumdar, J.; Witczak, Zbigniew; Lojkowski, Witold; Ciupiński, Łukasz; Kurzydłowski, K. J.; Manna, Indranil

    2013-06-01

    In this study, an attempt has been made to synthesize 1.0 wt pct nano-Y2O3-dispersed ferritic alloys with nominal compositions: 83.0 Fe-13.5 Cr-2.0 Al-0.5 Ti (alloy A), 79.0 Fe-17.5 Cr-2.0 Al-0.5 Ti (alloy B), 75.0 Fe-21.5 Cr-2.0 Al-0.5 Ti (alloy C), and 71.0 Fe-25.5 Cr-2.0 Al-0.5 Ti (alloy D) steels (all in wt pct) by solid-state mechanical alloying route and consolidation the milled powder by high-pressure sintering at 873 K, 1073 K, and 1273 K (600°C, 800°C, and 1000°C) using 8 GPa uniaxial pressure for 3 minutes. Subsequently, an extensive effort has been undertaken to characterize the microstructural and phase evolution by X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. Mechanical properties including hardness, compressive strength, Young's modulus, and fracture toughness were determined using micro/nano-indentation unit and universal testing machine. The present ferritic alloys record extraordinary levels of compressive strength (from 1150 to 2550 MPa), Young's modulus (from 200 to 240 GPa), indentation fracture toughness (from 3.6 to 15.4 MPa√m), and hardness (from13.5 to 18.5 GPa) and measure up to 1.5 through 2 times greater strength but with a lower density (~7.4 Mg/m3) than other oxide dispersion-strengthened ferritic steels (<1200 MPa) or tungsten-based alloys (<2200 MPa). Besides superior mechanical strength, the novelty of these alloys lies in the unique microstructure comprising uniform distribution of either nanometric (~10 nm) oxide (Y2Ti2O7/Y2TiO5 or un-reacted Y2O3) or intermetallic (Fe11TiY and Al9.22Cr2.78Y) particles' ferritic matrix useful for grain boundary pinning and creep resistance.

  18. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis.

    PubMed

    Rodríguez, Alejandro H; Avilés-Jurado, Francesc X; Díaz, Emili; Schuetz, Philipp; Trefler, Sandra I; Solé-Violán, Jordi; Cordero, Lourdes; Vidaur, Loreto; Estella, Ángel; Pozo Laderas, Juan C; Socias, Lorenzo; Vergara, Juan C; Zaragoza, Rafael; Bonastre, Juan; Guerrero, José E; Suberviola, Borja; Cilloniz, Catia; Restrepo, Marcos I; Martín-Loeches, Ignacio

    2016-02-01

    To define which variables upon ICU admission could be related to the presence of coinfection using CHAID (Chi-squared Automatic Interaction Detection) analysis. A secondary analysis from a prospective, multicentre, observational study (2009-2014) in ICU patients with confirmed A(H1N1)pdm09 infection. We assessed the potential of biomarkers and clinical variables upon admission to the ICU for coinfection diagnosis using CHAID analysis. Performance of cut-off points obtained was determined on the basis of the binominal distributions of the true (+) and true (-) results. Of the 972 patients included, 196 (20.3%) had coinfection. Procalcitonin (PCT; ng/mL 2.4 vs. 0.5, p < 0.001), but not C-reactive protein (CRP; mg/dL 25 vs. 38.5; p = 0.62) was higher in patients with coinfection. In CHAID analyses, PCT was the most important variable for coinfection. PCT <0.29 ng/mL showed high sensitivity (Se = 88.2%), low Sp (33.2%) and high negative predictive value (NPV = 91.9%). The absence of shock improved classification capacity. Thus, for PCT <0.29 ng/mL, the Se was 84%, the Sp 43% and an NPV of 94% with a post-test probability of coinfection of only 6%. PCT has a high negative predictive value (94%) and lower PCT levels seems to be a good tool for excluding coinfection, particularly for patients without shock. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  19. Global and Local Mechanical Properties of Autogenously Laser Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cao, Xinjin; Kabir, Abu Syed H.; Wanjara, Priti; Gholipour, Javad; Birur, Anand; Cuddy, Jonathan; Medraj, Mamoun

    2014-03-01

    Ti-6Al-4V sheets, 3.2-mm in thickness, were butt welded using a continuous wave 4 kW Nd:YAG laser welding system. The effect of two main process parameters, laser power and welding speed, on the joint integrity was characterized in terms of the joint geometry, defects, microstructure, hardness, and tensile properties. In particular, a digital image correlation technique was used to determine the local tensile properties of the welds. It was determined that a wide range of heat inputs can be used to fully penetrate the Ti-6Al-4V butt joints during laser welding. At high laser power levels, however, significant defects such as underfill and porosity, can occur and cause marked degradation in the joint integrity and performance. At low welding speeds, however, significant porosity occurs due to its growth and the potential collapse of instable keyholes. Intermediate to relatively high levels of heat input allow maximization of the joint integrity and performance by limiting the underfill and porosity defects. In considering the effect of the two main defects on the joint integrity, the underfill defect was found to be more damaging to the mechanical performance of the weldment than the porosity. Specifically, it was determined that the maximum tolerable underfill depth for Ti-6Al-4V is approximately 6 pct of the workpiece thickness, which is slightly stricter than the value of 7 pct specified in AWS D17.1 for fusion welding in aerospace applications. Hence, employing optimized laser process parameters allows the underfill depth to be maintained within the tolerable limit (6 pct), which in turn prevents degradation in both the weld strength and ductility. To this end, the ability to maintain weld ductility in Ti-6Al-4V by means of applying a high energy density laser welding process presents a significant advantage over conventional arc welding for the assembly of aerospace components.

  20. Macrosegregation in Al-7Si alloy caused by abrupt cross-section change during directional solidification

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2016-09-01

    Hypoeutectic Al-7 wt .% Si alloys were directionally solidified vertically downward in cylindrical molds that incorporated an abrupt cross-section decrease (9.5 mm to 3.2 mm diameter) which, after 5 cm, reverted back to 9.5 mm diameter in a Bridgman furnace; two constant growth speeds and thermal gradients were investigated. Thermosolutal convection and cross-section-change-induced shrinkage flow effects on macrosegregation were investigated. Dendrite clustering and extensive radial macrosegregation was seen, particularly in the larger cross-sections, before contraction and after expansion, this more evident at the lower growth speed. This alloy shows positive longitudinal macrosegregation near cross-section decrease followed by negative macrosegregation right after it; the extent of macrosegregation, however, decreases with increasing growth speed. Primary dendrite steepling intensified as solidification proceeded into the narrower section and negative longitudinal macrosegregation was seen on the re-entrant shelves at expansion. A two-dimensional model accounting for both shrinkage and thermo-solutal convection was used to simulate solidification and the resulting mushy-zone steepling and macrosegregation. The experimentally observed longitudinal and radial macrosegregation associated with the cross-section changes during directional solidification of an Al-7Si alloy is well captured by the numerical simulations.

  1. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  2. Wt1 Flip-Flops Chromatin in a CTCF Domain

    PubMed Central

    Gurudatta, B. V.; Corces, Victor G.

    2011-01-01

    CTCF plays diverse roles in nuclear organization and transcriptional regulation. In this issue of Developmental Cell, Essafi et al. (2011) report a mechanism by which the repressive or active state of chromatin in a domain defined by CTCF can be switched by the Wt1 transcription factor to regulate gene expression. PMID:21920307

  3. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  4. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  5. Asthenospheric kimberlites: Volatile contents and bulk compositions at 7 GPa

    NASA Astrophysics Data System (ADS)

    Stamm, Natalia; Schmidt, Max W.

    2017-09-01

    During ascent, kimberlites react with the lithospheric mantle, entrain and assimilate xenolithic material, loose volatiles and suffer from syn- and post-magmatic alteration. Consequently, kimberlite rocks deviate heavily from their primary melt. Experiments at 7 GPa, 1300-1480 °C, 10-30 wt% CO2 and 0.46 wt% H2O on a proposed primitive composition from the Jericho kimberlite show that saturation with a lherzolitic mineral assemblage occurs only at 1300-1350 °C for a carbonatitic melt with <8 wt% SiO2 and >35 wt% CO2. At asthenospheric temperatures of >1400 °C, where the Jericho melt stays kimberlitic, this composition saturates only in low-Ca pyroxene, garnet and partly olivine. We hence forced the primitive Jericho kimberlite into multiple saturation with a lherzolitic assemblage by adding a compound peridotite. Saturation in olivine, low- and high-Ca pyroxene and garnet was obtained at 1400-1650 °C (7 GPa), melts are kimberlitic with 18-29 wt% SiO2 + Al2O3, 22.1-24.6 wt% MgO, 15-27 wt% CO2 and 0.4-7.1 wt% H2O; with a trade-off of H2O vs. CO2 and temperature. Melts in equilibrium with high-Ca pyroxene with typical mantle compositions have ≥2.5 wt% Na2O, much higher than the commonly proposed 0.1-0.2 wt%. The experiments allow for a model of kimberlite origin in the convective upper mantle, which only requires mantle upwelling that causes melting at the depth where elemental carbon (in metal, diamond or carbide) converts to CO2 (at ∼250 km). If primary melts leading to kimberlites contain a few wt% H2O, then adiabatic temperatures of 1400-1500 °C would yield asthenospheric mantle melts that are kimberlitic (>18 wt% SiO2 + Al2O3) but not carbonatitic (<10 wt% SiO2 + Al2O3) in composition, carbonatites only forming 100-200 °C below the adiabat. These kimberlites represent small melt fractions concentrating CO2 and H2O and then acquire part of their chemical signature by assimilation/fractionation during ascent in the subcratonic lithosphere.

  6. Effect of a prior stretch on the aging response of an Al-Cu-Li-Ag-Mg-Zr alloy

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.; Pickens, J. R.

    1990-01-01

    The effect of a prior stretching of an aluminum alloy Al-5.3Cu-1.4Li-0.4Ag-0.4Mg-0.17Zr (in wt pct) on the microstructure that develops during aging of this alloy was investigated by comparing TEM and SAD observations and hardness curves with results for the unstretched alloy. The results suggest that stretching introduces a significant number of dislocations which may act as vacanacy sinks by sweeping vacancies away and thereby decreasing the vacancy concentration available for influencing the natural aging response. In the stretched and near-peak aged condition, a fine homogeneous distribution of T1, theta-prime, and S-prime phases were observed in an alpha solid solution matrix. Upon overaging, virtually all of the theta-prime and most of the S-prime phases were found to dissolve, leaving behind a microstructure of T1 precipitates.

  7. Effect of AlB2 on the P-threshold in Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Wu, Yuying; Liu, Xiangfa

    2018-06-01

    The nucleation of primary Si in Al-Si alloys has been investigated in this work. It was found that there was a threshold concentration of P, below which AlP can not heterogeneous nucleate primary Si in Al-12 wt%Si alloy. AlB2 can not nucleate primary Si directly, but the presence of AlB2 may assist the nucleation of AlP leading to the nucleation of primary Si particles. In addition, with addition of AlB2, the nucleation efficiency of AlP can be improved in Al-18 wt%Si alloy. The orientation relationship between AlB2 and AlP has been calculated, and the adsorption model for AlB2 and AlP was proposed in this work.

  8. Development of powder metallurgy 2XXX series Al alloy plate and sheet materials for high temperature aircraft structural applications, FY 1983/1984

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1985-01-01

    The objective of this investigation is to fabricate and evaluate PM 2124 Al alloy plate and sheet materials according to NASA program goals for damage tolerance and fatigue resistance. Previous research has indicated the outstanding strength-toughness relationship available with PM 2124 Al-Zr modified alloy compositions in extruded product forms. The range of processing conditions was explored in the fabrication of plate and sheet gage materials, as well as the resultant mechanical and metallurgical properties. The PM composition based on Al-3.70 Cu-1.85 Mg-0.20 Mn with 0.60 wt. pct. Zr was selected. Flat rolled material consisting of 0.250 in. thick plate was fabricated using selected thermal mechanical treatments (TMT). The schedule of TMT operations was designed to yield the extreme conditions of grain structure normally encountered in the fabrication of flat rolled products, specifically recrystallized and unrecrystallized. The PM Al alloy plate and sheet materials exhibited improved strength properties at thin gages compared to IM Al alloys, as a consequence of their enhanced ability to inhibit recrystallization and grain growth. In addition, the PM 2124 Al alloys offer much better combinations of strength and toughnessover equivalent IM Al. The alloy microstructures were examined by optical metallographic texture techniques in order to establish the metallurgical basis for these significant property improvements.

  9. Effect of Al content on impact resistance behavior of Al-Ti-B4C composite fabricated under air atmosphere.

    PubMed

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-12-01

    Reaction behavior, mechanical property and impact resistance of TiC-TiB 2 /Al composite reacted from Al-Ti-B 4 C system with various Al content via combination method of combustion synthesis and hot pressed sintering under air was investigated. Al content was the key point to the variation of mechanical property and impact resistance. Increasing Al content could increase the density, strength and toughness of the composite. Due to exorbitant ceramic content, 10wt.% and 20wt.% Al-Ti-B 4 C composites exhibited poor molding ability and machinability. Flexural strength, fracture toughness, compressive strength and impact toughness of 30-50wt.% Al-Ti-B 4 C composite were higher than those of Al matrix. The intergranular fracture dispersed and defused impact load and restricted crack extension, enhancing the impact resistance of the composite. The composite with 50wt.% Al content owned highest mechanical properties and impact resistance. The results were useful for the application of TiC-TiB 2 /Al composite in impact resistance field of ceramic reinforced Al matrix composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The mechanisms of dispersion strengthening and fracture in Al-based XD(tm) alloys, part 1

    NASA Technical Reports Server (NTRS)

    Aikin, R. M., Jr.

    1990-01-01

    The influence of reinforcement size, volume fraction, and matrix deformation behavior on room and elevated temperature strength; the fracture toughness; and the fatigue crack growth rate of metal matrix composites of Al-4(pct)Cu-1.5(pct)Mg with TiB2 were examined. The influence of reinforcement volume fraction was also examined for pure aluminum with TiB2. Higher TiB2 volume fractions increased the tensile yield strength at both room and elevated temperatures, and reduced the elongation to fracture. Tensile tests also indicate that small particles provided a greater increase in strength for a given volume fraction than larger particles, whereas elongation to fracture appeared to be insensitive to reinforcement size. Interparticle spacing appears to be the factor that controls the strength of these alloys, with the exact nature of the dependence relying on the nature of dislocation slip in the matrix (planar vs. diffuse). The isothermal aging response of the precipitation strengthened Al-4(pct)Cu-1.5(pct)Mg alloys was not accelerated by the presence of TiB2. Cold work prior to artificial aging created additional geometrically necessary dislocations which serve as heterogeneous nucleation sites leading to accelerated aging, a finer precipitate size, and an increase in the strength of the alloy.

  11. Diagnostic value of sTREM-1, IL-8, PCT, and CRP in febrile neutropenia after autologous stem cell transplantation.

    PubMed

    Michel, C S; Teschner, D; Wagner, E M; Theobald, M; Radsak, Markus P

    2017-12-01

    Infections and infectious complications are the major cause of morbidity and mortality in febrile neutropenic patients after autologous stem cell transplantation. Laboratory biomarkers are helpful for early identification of critically ill patients and optimal therapy management. Several studies in adult non-neutropenic patients proposed sTREM-1 as a superior biomarker for identification of septic patients as well as a predictor for survival in these patients compared with procalcitonin (PCT), C-reactive protein (CRP), or interleukin-8 (IL-8). Here, to assess the utility of PCT, CRP, IL-8, and sTREM-1 in febrile neutropenia, 44 patients presenting with febrile neutropenia after autologous stem cell transplantation were recruited in a single-center prospective pilot study. We analyzed PCT and CRP as well as IL-8 and sTREM-1 levels pre- and post-transplantation at defined time points. In 20 of 44 patients, concentration of sTREM-1 was under the detection level at appearance of febrile neutropenia. Mean levels of PCT, IL-8, and CRP were significantly increased in infections of critically ill patients who by dysfunction or failure of one or more organs/system depend on survival from advanced instruments of monitoring and therapy. However, all tested biomarkers could not distinguish between presence and absence of bloodstream infection. The combination of the biomarkers PCT and IL-8 achieved a high sensitivity of 90% and specificity of 74% for the identification of serious complications in febrile neutropenia, whereas the combination of CRP and PCT or IL-8 achieved a high sensitivity of 100%, but with the addition of a low specificity of 47or 41%. In conclusion, we found that the measurement of sTREM-1 concentration at presentation of febrile neutropenia is not useful to identify bacterial bloodstream infections and critically ill patients. PCT and IL-8 are useful biomarkers for the early identification of critically ill patients, compared to CRP and sTREM-1 in febrile

  12. The effect of cathodic polarization on the corrosion fatigue behavior of a precipitation hardened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Duquette, D. J.

    1986-02-01

    Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.

  13. Effect of Mn and AlTiB Addition and Heattreatment on the Microstructures and Mechanical Properties of Al-Si-Fe-Cu-Zr Alloy.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-09-01

    The microstructure and mechanical properties of as-extruded Al-0.1 wt%Si-0.2 wt%Fe- 0.4 wt%Cu-0.04 wt%Zr-xMn-xAlTiB (x = 1.0 wt%) alloys under various annealing processes were investigated and compared. After the as-cast billets were kept at 400 °C for 1 hr, hot extrusion was carried out with a reduction ratio of 38:1. In the case of the as-extruded Al-Si-Fe-Cu-Zr alloy at annealed at 620 °C, large equiaxed grain was observed. When the Mn content is 1.0 wt%, the phase exhibits a skeleton morphology, the phase formation in which Mn participated. Also, the volume fraction of the intermetallic compounds increased with Mn and AlTiB addition. For the Al-0.1Si-0.2Fe-0.4Cu-0.04Zr alloy with Mn and AlTiB addition from 1.0 wt%, the ultimate tensile strength increased from 100.47 to 119.41 to 110.49 MPa. The tensile strength of the as-extruded alloys improved with the addition of Mn and AlTiB due to the formation of Mn and AlTiB-containing intermetallic compounds.

  14. Research on Diamantane and other High Density Hydrocarbon Fuels.

    DTIC Science & Technology

    1979-10-01

    CH2 C 2 solvent ,= : 5.21 6.87 exo- OCPD . 18.61 Isomers of THTriCPD endo ,exo ,endo-THTri CPD tI 156 238 I.. 5,939R NO METHOD RT AREA AREA % 5.21 761680...0743122-1 HEATED OCPD 5300 E.JANOSKI 773417Cut Atmos. TFJUP.. 11T. G1S. VOL- MLS. SP.GR.GO/60 F WT.PCT VOL.PCT. h:)q n n-n n n 473 900 17.0 18.7

  15. The diagnostic value of CRP, IL-8, PCT, and sTREM-1 in the detection of bacterial infections in pediatric oncology patients with febrile neutropenia.

    PubMed

    Miedema, Karin G E; de Bont, Eveline S J M; Elferink, Rob F M Oude; van Vliet, Michel J; Nijhuis, Claudi S M Oude; Kamps, Willem A; Tissing, Wim J E

    2011-10-01

    In this study, we evaluated C-reactive protein (CRP), interleukin (IL)-8, procalcitonin (PCT), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) as predictors for bacterial infection in febrile neutropenia, plus their usefulness in febrile neutropenia during chemotherapy-induced gastrointestinal mucositis. Plasma was obtained from pediatric oncology patients at presentation with febrile neutropenia (n = 43) and 24-48 h later (n = 17). The patients were classified as having or not having a bacterial infection. Plasma was also obtained of patients in the absence and in the presence of mucositis (n = 26). At presentation with febrile neutropenia, median IL-8 and PCT levels were significantly increased in patients with a bacterial infection, in contrast to CRP and sTREM-1. IL-8 was the most sensitive marker for the early detection of bacterial infection, in combination with clinical parameters or PCT the sensitivity reached 100%. After 24-48 h, only PCT was significantly elevated during bacterial infection. IL-8 levels were significantly increased during mucositis. Mucositis did not cause considerable changes in PCT levels. IL-8 is the most useful marker for the early detection of bacterial infections, compared with CRP, PCT, and sTREM-1. IL-8 in combination with clinical parameters or PCT might be even more useful. Gastrointestinal mucositis alone does not affect PCT levels, in contrast to IL-8 levels, and therefore, PCT might be more useful for the detection of bacterial infections during mucositis than IL-8.

  16. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-SiO2, has a density of 3.39 g/cu cm, a thermal expansion coefficient of 6.6 x 10 to the -6th/C, a glass-transition temperature of 910 C, and a dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot-pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass have been studied. CIP'd samples, after appropriate heat treatments, always crystallized out as celsian, whereas presence of 5-10 wt pct of an additive was necessary for formation of celsian in sintered as well as hot-pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot-pressing resulted in fully dense samples.

  17. Wt1 flip-flops chromatin in a CTCF domain.

    PubMed

    Gurudatta, B V; Corces, Victor G

    2011-09-13

    CTCF plays diverse roles in nuclear organization and transcriptional regulation. In this issue of Developmental Cell, Essafi et al. (2011) report a mechanism by which the repressive or active state of chromatin in a domain defined by CTCF can be switched by the Wt1 transcription factor to regulate gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effects of substituting ytterbium for scandium on the microstructure and properties of Al-Sc and Al-Mg-Sc alloys =

    NASA Astrophysics Data System (ADS)

    Tuan, Nguyen Quoc

    Al(Sc) alloys represent a new class of potential alloys for high performance structural applications. The excellent properties obtained from the combination of solid-solution hardening and precipitation hardening in Al-Mg-Sc alloys make these alloys very attractive to automotive, aerospace, and structural applications. However, the Sc high cost limits the applications and the addition of cheaper alloying elements that substitutes partially Sc are not only desirable but crucial. In order to reduce the cost of Sc-containing Al alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-Sc-Yb and Al-Mg-Sc-Yb alloys in comparison with Al-Sc and Al-Mg-Sc alloys were studied. The results showed the similarity of microstructure, hardness and aging behaviour of Al-0.24Sc-0.07Yb alloy in comparison with Al-0.28Sc alloy and Al-4 wt% Mg-0.3 wt% Sc alloy with Al-4 wt% Mg-0.24 wt% Sc-0.06 wt% Yb alloy. The approximately spheroidal Al3Sc and Al3(Sc,Yb) precipitates were uniformly distributed throughout the alpha-Al matrix. The precipitates remain fully coherent with alpha-Al matrix even after aging at high temperature for long time. In another aspect, the grain refinement in Al-Mg-Sc alloys with and without ultrasonic treatment at various pouring temperatures was investigated. The average grain size of Al-Mg-Sc alloy remarkably decreases by increasing the content of Mg or by adding 0.3 wt% of Sc. The pouring temperature has a strong effect on the microstructure of Al-1Mg-0.3Sc alloy. Lower pouring temperature leads to smaller grain size and more homogeneous microstructure. Ultrasonic vibration proved to be a potential grain refinement technique of Al-1Mg-0.3Sc. Significant grain refinement was obtained by applying ultrasonic treatment within the temperature range from 700 to 740 °C. The corrosion behaviour of Al-Sc, Al-Sc-Yb, Al-Mg, Al-Mg-Sc and Al-Mg-Sc-Yb alloys in 3.5 wt% NaCl solution was investigated by immersion and potentiodynamic

  19. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  20. A study on wear resistance and microcrack of the Ti 3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Squartini, Tiziano; He, Qingshan

    2010-12-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  1. High-Temperature Flow Stress and Recrystallization Characteristics of Al-Bearing Microalloyed TWIP Steels

    NASA Astrophysics Data System (ADS)

    Somani, Mahesh Chandra; Porter, David A.; Hamada, Atef S.; Karjalainen, L. Pentti

    2015-11-01

    In this study, the effects of microalloying (Nb,V) and aluminum on the constitutive flow behavior and static recrystallization (SRX) characteristics of microalloyed TWIP steels (Fe-20Mn-0.6C-Al-(Nb,V)) have been investigated under hot deformation conditions. Compression tests in a Gleeble simulator, including the double-hit technique, enabled the acquisition of flow stress and recrystallization data. These were analyzed to determine the powers of strain and strain rate as well as the activation energies of deformation and recrystallization ( Q def and Q rex). Aluminum increased the flow stress and activation energy of deformation and delayed the onset of dynamic recrystallization of microalloyed TWIP steels. While microalloying with V up to 0.3 pct seems to have little or no effect on the SRX kinetics, microalloying with 0.026 pct Nb significantly slowed down the SRX rate, similarly as in the case of low C-Mn steels. Addition of high aluminum (4.9 pct) marginally retarded the SRX kinetics in comparison with the steels with low aluminum (1.5 pct), with or without microalloying with V.

  2. Surface characterization of implant materials c.p. Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments.

    PubMed

    Sittig, C; Textor, M; Spencer, N D; Wieland, M; Vallotton, P H

    1999-01-01

    The biocompatibility of commercially pure titanium and its alloys is closely related to their surface properties, with both the composition of the protecting oxide film and the surface topography playing an important role. Surfaces of commercially pure titanium and of the two alloys Ti-6Al-7Nb and Ti-6Al-4V (wt %) have been investigated following three different pretreatments: polishing, nitric acid passivation and pickling in nitric acid-hydrogen fluoride. Nitric acid treatment is found to substantially reduce the concentration of surface contaminants present after polishing. The natural 4-6 nm thick oxide layer on commercially pure titanium is composed of titanium oxide in different oxidation states (TiO2, Ti2O3 and TiO), while for the alloys, aluminium and niobium or vanadium are additionally present in oxidized form (Al2O3, Nb2O5 or V-oxides). The concentrations of the alloying elements at the surface are shown to be strongly dependent on the pretreatment process. While pickling increases the surface roughness of both commercially pure titanium and the alloys, different mechanisms appear to be involved. In the case of commercially pure titanium, the dissolution rate depends on grain orientation, whereas in the case of the two alloys, selective alpha-phase dissolution and enrichment of the beta-phase appears to occur. Copyright 1999 Kluwer Academic Publishers

  3. Undercooling, Liquid Separation and Solidification of Cu-Co Alloys

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Li, D.; Rathz, J.; Williams, G.

    1998-01-01

    Large undercooling can induce not only various solidification pathways, but also a precursor reaction, or liquid separation. This paper deals with the latter effect of undercooling using examples of the Cu-Co system which has a flattened liquidus. Bulk Cu-Co alloys (about 7mm diameter) at compositions ranging from 10 to 90 wt pct Co were highly undercooled using a fluxing technique. Except for Cu-90 wt pct Co, liquid separation was directly observed as undercooling exceeded a critical value depending on the composition. It was also confirmed by a microstructural transition from dendrites to droplets above the critical undercooling. Finally, theoretical calculations regarding the metastable miscibility boundary and maximum droplet radius were made to analyze the experimental results.

  4. Constitution of pseudobinary hypoeutectic beta-NiAl + alpha-V alloys

    NASA Technical Reports Server (NTRS)

    Cotton, J. D.; Kaufman, M. J.; Noebe, R. D.

    1991-01-01

    The formation of pseudobinary eutectics between NiAl (beta) and V (alpha) at high temperatures was investigated as a possible way of improving the ductility and toughness of the alloy. It is found that a pseudobinary eutectic, characterized by a large beta+alpha field, is formed in the Ni-Al-V ternary system below about 1370 C. The high-temperature solubility of V in beta is about 14 percent, decreasing markedly with decreasing temperature and increasing Al content above 50 at. pct Al. The pseudobinary hypoeutectic exibits crack resistance under indentation loading.

  5. Thermal properties of U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong-Tak; Yang, Jae Ho; Oh, Jang Soo; Won, Ju-Jin; Sohn, Dong-Seong

    2017-12-01

    The thermal diffusivity and heat capacity of U-7Mo/Al and U-7Mo/Al-5Si as functions of U-Mo fuel volume fraction and temperature were measured. The density of the sample was measured at room temperature and estimated using thermal expansion data at elevated temperatures. Using the measured data, the thermal conductivity was obtained as a function of U-Mo volume fraction and temperature. The thermal conductivity of U-7Mo/Al-5Si was found to be lower than that of U-7Mo/Al because of the Si addition to the Al. Due to a lower porosity and reduced interaction between U-Mo and Al in the sample, the thermal conductivity data reported in the present study were higher than those in the literature. The present data were found to be in agreement with the predictions of theoretical models.

  6. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  7. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1987-01-01

    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.

  8. The Predictive Value of Coefficient of PCT × BG for Anastomotic Leak in Esophageal Carcinoma Patients With ARDS After Esophagectomy.

    PubMed

    Li, Huan; Wang, Daofeng; Wei, Wenxiao; Ouyang, Lamei; Lou, Ning

    2017-01-01

    Anastomotic leak was a potentially severe life-threatening complication of esophagectomy, which drew attention in consequence of progressive dyspnea until acute respiratory distress syndrome (ARDS) due to the early asymptomatic presentation. Respiratory failure, caused by ARDS as the severe presentation of anastomotic leak, is the most common organ failure. CRP (C-reactive protein), procalcitonin (PCT), and Blood G (BG) test are the sensitivity markers for inflammatory, sepsis, and fungemia, respectively. Early recognition and intervention treatment of anastomotic leak may alleviate complication and improve outcome. We retrospectively analyzed 71 patients, accepting mechanical ventilation support because of ARDS as the complication after radical resection of esophagus cancer. Clinical data were collected from the patients' electronic medical records, including their clinically hematological examination, drainage fluid cultures, and sputum culture. Accord to appearance of anastomotic leak or not, all patients were divided into 2 groups, leak group and no-leak group. Inflammatory markers, such as CRP, PCT, and the coefficient of BG and PCT, were significantly different between the 2 groups. Respiratory index, white blood cell, hemoglobin (HBG), platelet (PLT), and other clinical factors were not significantly different between the 2 groups. Receiver operating characteristic curves were constructed to calculate the sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve for various cutoff levels of several factors. Blood G tests presented the better predicting value for anastomotic leak. Blood G tests and PCT should be tested after esophagectomy. The coefficient of PCT and BG (>260) is of great significance, and clinical value to predict anastomotic leak for patients with postesophagectomy ARDS, early PCT and BG test, and especially, dynamic variation may alleviate complication and improve outcome.

  9. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  10. Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Platelet Count and Plateletcrit (PCT) as predictors of in-hospital paediatric mortality: a case-control Study.

    PubMed

    Golwala, Zainab Mohammedi; Shah, Hardik; Gupta, Neeraj; Sreenivas, V; Puliyel, Jacob M

    2016-06-01

    Thrombocytopenia has been shown to predict mortality. We hypothesize that platelet indices may be more useful prognostic indicators. Our study subjects were children one month to 14 years old admitted to our hospital. To determine whether platelet count, plateletcrit (PCT), mean platelet volume (MPV) and platelet distribution width (PDW) and their ratios can predict mortality in hospitalised children. Children who died during hospital stay were the cases. Controls were age matched children admitted contemporaneously. The first blood sample after admission was used for analysis. Receiver operating characteristic (ROC) curve was used to identify the best threshold for measured variables and the ratios studied. Multiple regression analysis was done to identify independent predictors of mortality. Forty cases and forty controls were studied. Platelet count, PCT and the ratios of MPV/Platelet count, MPV/PCT, PDW/Platelet count, PDW/PCT and MPV × PDW/Platelet count × PCT were significantly different among children who survived compared to those who died. On multiple regression analysis the ratio of MPV/PCT, PDW/Platelet count and MPV/Platelet count were risk factors for mortality with an odds ratio of 4.31(95% CI, 1.69-10.99), 3.86 (95% CI, 1.53-9.75), 3.45 (95% CI, 1.38-8.64) respectively. In 67% of the patients who died MPV/PCT ratio was above 41.8 and PDW/Platelet count was above 3.86. In 65% of patients who died MPV/Platelet count was above 3.45. The MPV/PCT, PDW/Platelet count and MPV/Platelet count, in the first sample after admission in this case control study were predictors of mortality and could predict 65% to 67% of deaths accurately.

  11. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  12. Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

    NASA Astrophysics Data System (ADS)

    Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming

    2017-01-01

    The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

  13. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  14. Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloy

    NASA Astrophysics Data System (ADS)

    Laik, A.; Shirzadi, A. A.; Sharma, G.; Tewari, R.; Jayakumar, T.; Dey, G. K.

    2015-02-01

    Microstructural evolution and interfacial reactions during vacuum brazing of grade-2 Ti and 304L-type stainless steel (SS) using eutectic alloy Ag-28 wt pct Cu were investigated. A thin Ni-depleted zone of -Fe(Cr, Ni) solid solution formed on the SS-side of the braze zone (BZ). Cu from the braze alloy, in combination with the dissolved Fe and Ti from the base materials, formed a layer of ternary compound , adjacent to Ti in the BZ. In addition, four binary intermetallic compounds, CuTi, CuTi, CuTi and CuTi formed as parallel contiguous layers in the BZ. The unreacted Ag solidified as islands within the layers of CuTi and CuTi. Formation of an amorphous phase at certain locations in the BZ could be revealed. The -Ti(Cu) layer, formed due to diffusion of Cu into Ti-based material, transformed to an -Ti + CuTi eutectoid with lamellar morphology. Tensile test showed that the brazed joints had strength of 112 MPa and failed at the BZ. The possible sequence of events that led to the final microstructure and the mode of failure of these joints were delineated.

  15. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-06-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  16. Use of Industrial Waste (Al-Dross, Red Mud, Mill Scale) as Fluxing Agents in the Sulfurization of Fe-Ni-Cu-Co Alloy by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Heo, Jung Ho; Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2018-03-01

    The use of industrial waste [mill scale (MS), red mud (RM), Al-dross (AD)] as fluxing agents in the sulfurization of Fe-Ni-Cu-Co alloy to matte (Fe-Ni-Cu-Co-S) by carbothermic reduction of CaSO4 was investigated at 1673 K (1400 °C). The sulfurization efficiency (SE) was 76 (± 2) pct at RM or AD single fluxing. However, SE drastically increased to approximately 89 pct at a `5AD + 5MS' combination, which was equivalent to reagent-grade chemical `5Al2O3 + 5Fe2O3' fluxing (SE = 88 pct). The present results can be used to improve the cost-effective recovery of rare metals (Ni and Co) from deep sea manganese nodules.

  17. 1000 to 1300 K slow plastic compression properties of Al-deficient NiAl

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, K. S.; Mannan, S. K.

    1991-01-01

    Nickel aluminides containing 37, 38.5 and 40 at. pct Al have been fabricated by XD synthesis and hot pressing. Such materials were compression tested in air under constant velocity conditions between 1000 and 1300 K. Examination of the microstructures of hot pressed and compression tested aluminides indicated that the structure consisted of two phases, gamma-prime and NiAl, for essentially all conditions, where gamma-prime was usually found on the NiAl grain boundaries. The stress-strain behavior of all three intermetallics was similar where flow at a nominally constant stress occurred after about two-percent plastic deformation. Furthermore, the 1000 to 1300 K flow stress-strain rate properties are nearly identical for these materials, and they are much lower than those for XD processed Ni-50Al. The overall deformation of the two phase nickel aluminides appears to be controlled by dislocation climb in NiAl rather than processes in gamma-prime.

  18. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  19. PCT Databank: A Tool for Planning, Implementation and Monitoring of Integrated Preventive Chemotherapy for Control of Neglected Tropical Diseases (NTD)

    PubMed Central

    Mikhailov, Alexei; Yajima, Aya; Mbabazi, PS; Gabrielli, Albis F.; Montresor, Antonio; Engels, Dirk

    2017-01-01

    The integration of vertical control programmes of neglected tropical diseases (NTDs) aims at containing operational cost, simplifies the application of the control measures and extends the intervention coverage. The Preventive Chemotherapy and Transmission Control (PCT) Databank was established by the World Health Organization to facilitate the sharing of data among the different partners involved in control activities and collects and compiles historical and current information on disease-specific epidemiological situation, the geographical overlapping of NTDs and the progress of control activities in all the NTD-endemic countries. The summary of country-specific epidemiological maps and the progress of control activities is available online as the online PCT Databank and Country Profiles. The annual progress of preventive chemotherapy (PC) interventions targeting at specific NTDs is also annually reported in the Weekly Epidemiological Record (WER). In this paper, we elucidated the methodology of data collection, compilation and mapping to establish the PCT Databank and presented the key features of the associated three online outputs, i.e. the online PCT Databank, the Country Profile and the WER. PMID:22357399

  20. A PCT algorithm for discontinuation of antibiotic therapy is a cost-effective way to reduce antibiotic exposure in adult intensive care patients with sepsis.

    PubMed

    Kip, Michelle M A; Kusters, Ron; IJzerman, Maarten J; Steuten, Lotte M G

    2015-01-01

    Procalcitonin (PCT) is a specific marker for differentiating bacterial from non-infective causes of inflammation. It can be used to guide initiation and duration of antibiotic therapy in intensive care unit (ICU) patients with suspected sepsis, and might reduce the duration of hospital stay. Limiting antibiotic treatment duration is highly important because antibiotic over-use may cause patient harm, prolonged hospital stay, and resistance development. Several systematic reviews show that a PCT algorithm for antibiotic discontinuation is safe, but upfront investment required for PCT remains an important barrier against implementation. The current study investigates to what extent this PCT algorithm is a cost-effective use of scarce healthcare resources in ICU patients with sepsis compared to current practice. A decision tree was developed to estimate the health economic consequences of the PCT algorithm for antibiotic discontinuation from a Dutch hospital perspective. Input data were obtained from a systematic literature review. When necessary, additional information was gathered from open interviews with clinical chemists and intensivists. The primary effectiveness measure is defined as the number of antibiotic days, and cost-effectiveness is expressed as incremental costs per antibiotic day avoided. The PCT algorithm for antibiotic discontinuation is expected to reduce hospital spending by circa € 3503 per patient, indicating savings of 9.2%. Savings are mainly due to reductions in length of hospital stay, number of blood cultures performed, and, importantly, days on antibiotic therapy. Probabilistic and one-way sensitivity analyses showed the model outcome to be robust against changes in model inputs. Proven safe, a PCT algorithm for antibiotic discontinuation is a cost-effective means of reducing antibiotic exposure in adult ICU patients with sepsis, compared to current practice. Additional resources required for PCT are more than offset by downstream cost

  1. Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue

    NASA Astrophysics Data System (ADS)

    Sawaguchi, Tak Ahiro; Kausträter, Gregor; Yawny, Alejandro; Wagner, Martin; Eggeler, Gunther

    2003-12-01

    The structural fatigue of pseudoelastic Ni-Ti wires (50.9 at. pct Ni) was investigated using bending-rotation fatigue (BRF) tests, where a bent and otherwise unconstrained wire was forced to rotate at different rotational speeds. The number of cycles to failure ( N f ) was measured for different bending radii and wire thicknesses (1.0, 1.2, and 1.4 mm). The wires consisted of an alloy with a 50-nm grain size, no precipitates, and some TiC inclusions. In BRF tests, the surface of the wire is subjected to tension-compression cycles, and fatigue lives can be related to the maximum tension and compression strain amplitudes ( ɛ a ) in the wire surface. The resulting ɛ a - N f curves can be subdivided into three regimes. At ɛ a > 1 pct rupture occurs early (low N f ) and the fatigue-rupture characteristics were strongly dependent on ɛ a and the rotational speed (regime 1). For 0.75 pct < ɛ a < 1 pct, fatigue lives strongly increase and are characterized by a significant statistical scatter (regime 2). For ɛ a < 0.75 pct, no fatigue rupture occurs up to cycle numbers of 106 (regime 3). Using scanning electron microscopy (SEM), it was shown that surface cracks formed in regions with local stress raisers (such as inclusions and/or scratches). The growth of surface cracks during fatigue loading produced striations on the rupture surface; during final rupture, ductile voids form. The microstructural details of fatigue-damage accumulation during BRF testing are described and discussed.

  2. The Effects of Antimony Addition on the Microstructural, Mechanical, and Thermal Properties of Sn-3.0Ag-0.5Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Sungkhaphaitoon, Phairote; Plookphol, Thawatchai

    2018-02-01

    In this study, we investigated the effects produced by the addition of antimony (Sb) to Sn-3.0Ag-0.5Cu-based solder alloys. Our focus was the alloys' microstructural, mechanical, and thermal properties. We evaluated the effects by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential scanning calorimetry (DSC), and a universal testing machine (UTM). The results showed that a part of the Sb was dissolved in the Sn matrix phase, and the remaining one participated in the formation of intermetallic compounds (IMCs) of Ag3(Sn,Sb) and Cu6(Sn,Sb)5. In the alloy containing the highest wt pct Sb, the added component resulted in the formation of SnSb compound and small particle pinning of Ag3(Sn,Sb) along the grain boundary of the IMCs. Our tests of the Sn-3.0Ag-0.5Cu solder alloys' mechanical properties showed that the effects produced by the addition of Sb varied as a function of the wt pct Sb content. The ultimate tensile strength (UTS) increased from 29.21 to a maximum value of 40.44 MPa, but the pct elongation (pct EL) decreased from 48.0 to a minimum 25.43 pct. Principally, the alloys containing Sb had higher UTS and lower pct EL than Sb-free solder alloys due to the strengthening effects of solid solution and second-phase dispersion. Thermal analysis showed that the alloys containing Sb had a slightly higher melting point and that the addition amount ranging from 0.5 to 3.0 wt pct Sb did not significantly change the solidus and liquidus temperatures compared with the Sb-free solder alloys. Thus, the optimal concentration of Sb in the alloys was 3.0 wt pct because the microstructure and the ultimate tensile strength of the SAC305 solder alloys were improved.

  3. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    NASA Astrophysics Data System (ADS)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  4. Correlation between CD64 and PCT levels in cerebrospinal fluid and degree of hearing impairment sequelae in neonates with purulent meningitis.

    PubMed

    Liu, Cui; Zhao, Dongchi

    2017-12-01

    This study investigated the possible correlation between the degree of hearing impairment caused by neonatal purulent meningitis and the levels of CD64 and PCT in cerebrospinal fluid of patients, and assessed the prognostic value of such levels. We recorded data from 156 cases of neonatal purulent meningitis retrospectively. All the patients received brainstem response audiometry, and cerebrospinal fluid samples were collected within the first day after admission through lumbar puncture. Flow cytometry was used to detect CD64 levels and enzyme-linked fluorescent assay was used to detect PCT levels. The children with hearing impairment were followed up for 1 year and brainstem response audiometry was performed again in them. We found that 43.59% of the children showed different degrees of hearing impairment, and 55% of them did not fully recover. The levels of PCT and CD64 in cerebrospinal fluid of children with hearing impairment were significantly higher than those of children with normal hearing (P<0.01). The levels of PCT and CD64 in mild, moderate and severe hearing impaired children increased gradually with higher degrees of impairment, and the differences between groups were significant (P<0.01). During the follow-up, it was found that the levels of PCT and CD64 in children correlated well with the degree of hearing recovery, and the differences between groups were significant (P<0.01). In our study, approximately 1/4 children with purulent meningitis showed long-term hearing impairment. Based on our analyses, the levels of CD64 and PCT in cerebrospinal fluid can be used to predict the degree and long-term prognosis of hearing impairment caused by purulent meningitis in children.

  5. Measurement of Mechanical Coherency Temperature and Solid Volume Fraction in Al-Zn Alloys Using In Situ X-ray Diffraction During Casting

    NASA Astrophysics Data System (ADS)

    Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael

    2015-09-01

    During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.

  6. Mechanical Behavior of Additively Manufactured Uranium-6 wt. pct. Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, A. S.; Wraith, M. W.; Burke, S. C.

    This report describes an effort to process uranium-6 weight% niobium using laser powder bed fusion. The chemistry, crystallography, microstructure and mechanical response resulting from this process are discussed with particular emphasis on the effect of the laser powder bed fusion process on impurities. In an effort to achieve homogenization and uniform mechanical behavior from different builds, as well as to induce a more conventional loading response, we explore post-processing heat treatments on this complex alloy. Elevated temperature heat treatment for recrystallization is evaluated and the effect of recrystallization on mechanical behavior in laser powder bed fusion processed U-6Nb is discussed.more » Wrought-like mechanical behavior and grain sizes are achieved through post-processing and are reported herein.« less

  7. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  8. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less

  9. Microstructure and Tensile Properties of Sn-1Ag-0.5Cu Solder Alloy Bearing Al for Electronics Applications

    NASA Astrophysics Data System (ADS)

    Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama

    2012-08-01

    This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.

  10. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using

  11. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14 wt%Li-1 wt%Al-0.1 wt%Ce alloy

    NASA Astrophysics Data System (ADS)

    Ma, Yibin; Li, Ning; Li, Deyu; Zhang, Milin; Huang, Xiaomei

    2012-11-01

    Mg-14Li-1Al-0.1Ce alloy is immersed in NH4VO3 + K3(Fe(CN)6) solutions with different NH4VO3 and/or K3(Fe(CN)6) concentrations, and different immersion time. The surface morphology and composition of the vanadate coating are then characterized by scanning electron microscopy with energy dispersion spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), and the corrosion behavior of the conversion coating is studied by polarization technique and electrochemical impedance spectroscopy (EIS). The experimental results indicate that the vanadate film with better corrosion resistance forms on Mg-Li-Al-Ce surface after the sample is immersed in 30 g L-1 NH4VO3 + 3.75 g L-1 K3(Fe(CN)6) solution at 80 °C for 10 min. The coating consists of V2O5, Li2O and Mg(OH)2.

  12. Post irradiation analysis of RERTR-7A, 7B and RERTR-8 tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofman, G.L.; Kim, Yeon Soo; Shevlyakov, G.V.

    2008-07-15

    Addition of 2 wt% or more of silicon in the Al matrix for U-Mo/Al dispersion fuel has proved to be effective in reducing interaction layer growth from the RERTR-7A test to a burnup of {approx}100 at% U-235 (LEU equivalent). The recent RERTR-8 test also showed the consistent results. In this paper, we present the post irradiation analysis results of these tests. A considerable number of monolithic fuel plates were irradiated in the RERTR-7A and RERTR-8 tests. The post irradiation results of these plates are also included. The RERTR-7B test was a lower burnup test with similar power to the RERTR-7A.more » In this test, dispersion fuel plates with U-7Mo-1Ti and U- 7Mo-2Zr in Al-5Si were irradiated. The post irradiation results of these plates are also covered. (author)« less

  13. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  14. Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms

    PubMed Central

    Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke

    2015-01-01

    The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpression of the truncated Ex4a(+)WT1 isoform inhibited the major WT1-mediated transcriptional activation of anti-apoptotic Bcl-xL gene promoter and induced mitochondrial damage and apoptosis. Conversely, suppression of the Ex4a(+)WT1 isoform by Ex4a-specific siRNA attenuated apoptosis. These results indicated that the Ex4a(+)WT1 isoform exerted dominant negative effects on anti-apoptotic function of major WT1 isoforms. Ex4a(+)WT1 isoform was endogenously expressed as a minor isoform in myeloid leukemia and solid tumor cells and increased regardless of decrease in major WT1 isoforms during apoptosis, suggesting the dominant negative effects on anti-apoptotic function of major WT1 isoforms. These results indicated that Ex4a(+)WT1 isoform had an important physiological function that regulated oncogenic function of major WT1 isoforms. PMID:26090994

  15. Mechanical properties of Al-Cu alloy-SiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggara, B. S., E-mail: anggorobs1960@yahoo.com; Handoko, E.; Soegijono, B.

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to getmore » better quality of back to back hardness Vickers of Al-Cu alloys.« less

  16. Mechanical properties of Al-Cu alloy-SiC composites

    NASA Astrophysics Data System (ADS)

    Anggara, B. S.; Handoko, E.; Soegijono, B.

    2014-09-01

    The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.

  17. Low-Al and high-Al trondhjemites in the Huai'an Complex, North China Craton: Geochemistry, zircon U-Pb and Hf isotopes, and implications for Neoarchean crustal growth and remelting

    NASA Astrophysics Data System (ADS)

    Zhang, Hua-Feng; Zhai, Ming-Guo; Santosh, M.; Li, Sheng-Rong

    2012-04-01

    Voluminous tonalite-trondhjemite-granodiorite (TTG) magmas were emplaced in the Huai'an Complex of North China Craton (NCC) during the Neoarchean. Here we present the geochemical characteristics of these rocks and identify low-Al (LAl) and high-Al (HAl) types of trondhjemites within the TTG suite. The LAl group displays high silica (SiO2 = 77-80 wt.%), and low Al2O3 contents (11.06-11.89 wt.%), a strongly peraluminous (A/CNK = 1.16 and 1.19) composition and enrichment in HREE (LaN/YbN = 4 and 5, GdN/YbN = 0.35 and 0.9). Their low Rb (13 and 28 ppm), Th (0.3 and 7.0 ppm), relatively high Na2O/K2O values (3.6 and 4.1) and MgO (0.63 and 0.68 wt.%) with moderately high Mg# (36 and 53), suggest crystallization from a primitive source. The HAl group is characterized by relatively low SiO2 (67.22-71.57 wt.%) and high Al2O3 contents (16.35-16.41 wt.%) with trace element contents and distribution patterns closely comparable to those of Archean high-Al TTGs. Our geochemical data do not favor a direct genetic link between the LAl and HAl trondhjemite groups. The zircon U-Pb data reveal that the LAl and HAl groups represent coeval intrusions at ca. 2.55-2.5 Ga. In situ analysis of Hf isotopes in the zircons (ɛHf = +5.6 to +10, and TDM = 2462-2595 Ma), together with the geochemical features of the low-Al trondhjemites suggest that they were generated under relatively low pressure (<8 kbar), through low degree partial melting of a newly accreted amphibolitic crust. Taking into consideration the contemporaneous (2.55-2.50 Ga) high-Al TTGs widely exposed in the Huai'an Complex, we suggest that the low-Al trondhjemites were formed by intraplating of mantle-derived magmas, and the coeval high-Al TTGs were produced by partial melting of a thickened lower crust, triggered by underplating. Our study attests to a major episode of Neoarchean crustal growth in the NCC, and remelting induced by underplating and intraplating of mantle-derived magmas.

  18. The improvement of the mechanical properties of PMMA denture base by Al2O3 particles with nitrile rubber

    NASA Astrophysics Data System (ADS)

    Alhareb, Ahmed Omran; Akil, Hazizan Md; Ahmad, Zainal Arifin

    2017-07-01

    Poly methyl methacrylate (PMMA) is mostly used for fabrication of denture base by heat-curing technique. Therefore, the purpose of this study is to investigate the effect of Al2O3 filler as toughening particles together with nitrile butadiene rubber (NBR) particles as impact modifier were used to reinforce PMMA denture base materials on the impact strength (IS) and fracture toughness (KIC). PMMA powder was mixed with liquid methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The powder components are PMMA, benzoyl peroxide, NBR (5, 7.5 and 10 wt%), and Al2O3 filler (5 wt%) treated by silane. The liquid components are 90% of methyl methacrylate and 10 % ethylene glycol dimethacryate. FTIR analyses confirmed that the Al2O3 filler was successfully treated with silane as coupling agent. The morphology of fracture surfaces was characterized using field emission scanning electron microscopy (FESEM). The results shown that IS and KIC improved significantly when using treated the Al2O3 filler. IS has increased to 56% (8.26 KJ/m2) and 73% (2.77 MPa.m1/2) for KIC when treated Al2O3 filler compared to unreinforced PMMA matrix. Statistical analyses of data results were significantly improved (P<0.05) when using 7.5 wt% NBR with treated Al2O3 filler compared to other the compositions.

  19. Microstructural characterization of a thin film ZrN diffusion barrier in an As-fabricated U-7Mo/Al matrix dispersion fuel plate

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven

    2015-03-01

    The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.

  20. Effect of thermo-mechanical processing on microstructure and mechanical properties of U - Nb - Zr alloys: Part 2 - U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr

    NASA Astrophysics Data System (ADS)

    Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo

    2018-04-01

    The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.

  1. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE PAGES

    Collette, R.; King, J.; Buesch, C.; ...

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  2. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Buesch, C.

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  3. Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun

    2014-09-01

    Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.

  4. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    NASA Astrophysics Data System (ADS)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  5. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  6. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  7. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100 °C

    NASA Astrophysics Data System (ADS)

    Neudorf, D. A.; Elliott, J. F.

    1980-12-01

    The thermodynamic properties of Na2O-SiO2 and Na2O-SiO2-CaO melts have been measured using the galvanic cellbegin{array}{*{20}c} {O_2 (g), (Na_2 O), Pt} \\ {Na_2 O - WO_3 liq} \\ left| begin{gathered} Na^ + \\ β - alumina \\ right| begin{array}{*{20}c} {Pt,(Na_2 O), O_2 (g)} \\ {Na_2 O - SiO_2 - CaO liq} \\ Activities of Na2O were calculated from the reversible emf of the cell. This is possible because the activity of Na2O in the Na2O-WO3 liquid is known from previous work. Data for the binary Na2O-SiO2 system were obtained between 1000 and 1100 °C and for compositions ranging from 25 wt pct to 40 wt pct Na2O. At 1050 °C, Loga_{Na_2 O} varied from approximately 10.2 at 25 wt pct Na2O to approximately -8.3 at 40 wt pct Na2O, the dependence with respect to composition being nearly linear. The Gibbs-Duhem equation was used to calculate the activities of SiO2(s), and the integral mixing properties, G M, HM, and S M, were derived. At the di-silicate composition, G M = -83 kJ/mol, H M = -41 kJ mol and S M = 33 J/mol K at 1000 °C. (Standard states are pure, liquid Na2O and pure, solid tridymite.) The activity data are interpreted in terms of the polymeric nature of silicate melts. Activities of Na2O in the Na2O-CaO-SiO2 system were measured for the 25, 30 and 35 wt pct Na2O binary compositions with up to 10 wt pct CaO added. The addition of CaO caused an increase in the activity of Na2O at constantN_{Na_2 O} /N_{SiO_2 } . The experimental data agree well with the behavior predicted by Richardson’s ternary mixing model.

  8. WT1: a weak spot in KRAS-induced transformation

    PubMed Central

    Licciulli, Silvia; Kissil, Joseph L.

    2010-01-01

    Activating mutations in the Ras alleles are found frequently in tumors, making the proteins they encode highly attractive candidate therapeutic targets. However, Ras proteins have proven difficult to target directly. Recent approaches have therefore focused on identifying indirect targets to inhibit Ras-induced oncogenesis. For example, RNAi-based negative selection screens to identify genes that when silenced in concert with activating Ras mutations are incompatible with cellular proliferation, a concept known as synthetic lethality. In this issue of the JCI, Vicent et al. report on the identification of Wilms tumor 1 (Wt1) as a Kras synthetic-lethal gene in a mouse model of lung adenocarcinoma. Silencing of Wt1 in cells expressing an endogenous allele of activated Kras triggers senescence in vitro and has an impact on tumor progression in vivo. These findings are of significant interest given previous studies suggesting that the ability of oncogenic Kras to induce senescence versus proliferation depends on its levels of expression. PMID:20972324

  9. KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Kang, Xiang-Dong; Cheng, Hui-Ming

    2005-10-01

    A method for preparation of Ti-doped NaAlH4 with high hydrogen capacity was developed, in which the NaH/Al mixture was mechanically milled with a catalytic amount of KH together with metallic Ti. The addition of KH was found to result in a pronounced improvement in the dehydriding performance of the Na3AlH6/NaH+Al step. As a result, the practical cycling hydrogen capacity has been markedly enhanced from 3.3 wt % for the Ti-doped hydride to 4.7 wt % for KH+Ti co-doped material. Moreover, the pronounced enhancement on hydrogen capacity arising upon adding KH was observed to persist in the following dehydrogenation/hydrogenation cycles. Structural investigation shows that the addition of KH has led to a lattice expansion. Moreover, it was found that the enthalpy change of the Na3AlH6/NaH+Al decomposition step underwent a considerable decrease upon adding KH. Therefore, the observed property improvement may be ascribed to a favorable thermodynamic adjustment arising upon the addition of KH.

  10. Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier

    NASA Astrophysics Data System (ADS)

    Perez, E.; Yao, B.; Keiser, D. D., Jr.; Sohn, Y. H.

    2010-07-01

    For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr 2, γ-UZr, Zr solid-solution and Mo 2Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si) 2Zr, (Al, Si)Zr 3 (Al, Si) 3Zr, and AlSi 4Zr 5. Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system.

  11. Carrier Compensation Induced by Thermal Annealing in Al-Doped ZnO Films

    PubMed Central

    Koida, Takashi; Kaneko, Tetsuya; Shibata, Hajime

    2017-01-01

    This study investigated carrier compensation induced by thermal annealing in sputtered ZnO:Al (Al2O3: 0.25, 0.5, 1.0, and 2.0 wt %) films. The films were post-annealed in a N2 atmosphere at low (1 × 10−23 atm) and high (1 × 10−4 atm) oxygen partial pressures (PO2). In ZnO:Al films with low Al contents (i.e., 0.25 wt %), the carrier density (n) began to decrease at annealing temperatures (Ta) of 600 °C at low PO2. At higher PO2 and/or Al contents, n values began to decrease significantly at lower Ta (ca. 400 °C). In addition, Zn became desorbed from the films during heating in a high vacuum (i.e., <1 × 10−7 Pa). These results suggest the following: (i) Zn interstitials and Zn vacancies are created in the ZnO lattice during post-annealing treatments, thereby leading to carrier compensation by acceptor-type Zn vacancies; (ii) The compensation behavior is significantly enhanced for ZnO:Al films with high Al contents. PMID:28772501

  12. Laser Cladding of Ti-6Al-4V Alloy with Ti-Al2O3 Coating for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Mthisi, A.; Popoola, A. P. I.; Adebiyi, D. I.; Popoola, O. M.

    2018-05-01

    The indispensable properties of Ti-6Al-4V alloy coupled with poor tribological properties and delayed bioactivity make it a subject of interest to explore in biomedical application. A quite number of numerous coatings have been employed on titanium alloys, with aim to overcome the poor properties exhibited by this alloy. In this work, the possibility of laser cladding different ad-mixed powders (Ti - 5 wt.% Al2O3 and Ti - 8wt.% Al2O3) on Ti-6Al-4V at various laser scan speed (0.6 and 0.8 m/min) were investigated. The microstructure, phase constituents and corrosion of the resultant coatings were characterized by scanning electron microscope (SEM), Optical microscope, X-Ray diffractometer (XRD) and potentiostat respectively. The electrochemical behaviour of the produced coatings was studied in a simulated body fluid (Hanks solution). The microstructural results show that a defect free coating is achieved at low scan speed and ad-mixed of Ti-5 wt. % Al2O3. Cladding of Ti - Al2O3 improved the corrosion resistance of Ti-6Al-4V alloy regardless of varying neither scan speed nor ad-mixed percentage. However, Ti-5 wt.% Al2O3 coating produced at low scan speed revealed the highest corrosion resistance among the coatings due to better quality coating layer. Henceforth, this coating may be suitable for biomedical applications.

  13. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereloma, E.V.; Shekhter, A.; Miller, M.K.

    2004-11-08

    Changes in the solute distribution as well as the evolution of precipitation, microstructure and mechanical properties have been studied in an experimental maraging Fe-20Ni-1.8Mn-1.5Ti-0.59Al (wt%) alloy during ageing at 550 deg C. An initial hardening reaction within 5 s is reported, which is remarkable in terms of extent and rapidity. This strengthening was caused by the formation of complex multi-component atomic co-clusters containing primarily Ni-Ti-Al as well as some Mn. This cluster strengthened condition produced the optimum toughness observed throughout the ageing sequence. After 60 s ageing, the appearance of discrete precipitation of needle-shaped {eta}-Ni{sub 3}Ti particles was associated withmore » a second rise in hardness towards an eventual peak at 600 s. This precipitation hardening was accompanied by an increase in tensile strength and a decrease in ductility. A reverse transformation of martensite to austenite occurs progressively during ageing and this contributes to the initial and secondary softening.« less

  14. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Sanders, W. A.; Kiser, J. D.

    1988-01-01

    Glasses in the yttria-silica system with 20-40 mol pct Y2O3 have been subjected to recrystallization studies after melting at 1900-2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma-prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat-treatment in air at 1100-1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristobalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  15. Crystallization and characterization of Y2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Lee, William E.; Sanders, W. A.; Kiser, J. D.

    1991-01-01

    Glasses in the yttria-silica system with 20 to 40 mol pct Y2O3 were subjected to recrystallization studies after melting at 1900 to 2100 C in W crucibles in 1 and 50 atm N2. The TEM and XRD results obtained indicate the presence of the delta, gamma, gamma prime, and beta-Y2Si2O7 crystalline phases, depending on melting and quenching conditions. Heat treatment in air at 1100 to 1600 C increased the amount of crystallization, and led to the formation of Y2SiO5, cristabalite, and polymorphs of Y2Si2O7. Also investigated were the effects of 5 and 10 wt pct zirconia additions.

  16. Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Çadırlı, Emin

    2013-05-01

    Al(100-x)-Cux alloys (x=3 wt%, 6 wt%, 15 wt%, 24 wt% and 33 wt%) were prepared using metals of 99.99% high purity in vacuum atmosphere. These alloys were directionally solidified under steady-state conditions by using a Bridgman-type directional solidification furnace. Solidification parameters (G, V and ), microstructure parameters (λ1, λ2 and λE) and mechanical properties (HV, σ) of the Al-Cu alloys were measured. Microstructure parameters were expressed as functions of solidification parameters by using a linear regression analysis. The dependency of HV, σ on the cooling rate, microstructure parameters and composition were determined. According to experimental results, the microhardness and ultimate tensile strength of the solidified samples was increased by increasing the cooling rate and Cu content, but decreased with increasing microstructure parameters. The microscopic fracture surfaces of the different samples were observed using scanning electron microscopy. Fractographic analysis of the tensile fracture surfaces showed that the type of fracture significantly changed from ductile to brittle depending on the composition.

  17. Elevated temperature strengthening of a melt spun austenitic steel by TiB2

    NASA Technical Reports Server (NTRS)

    Michal, G. M.; Glasgow, T. K.; Moore, T. J.

    1986-01-01

    Mechanical properties of an iron-based alloy containing (by wt pct) 33Ni, 2Al, 6Ti, and 2B (resulting in an alloy containing 10 vol pct TiB2) were evaluated by hardness and tensile testing. The alloy was cast as a ribbon using a dual 'free-jet' variation of Jech et al. (1984) method of chill-block melt-spinning against a copper wheel; to simulate thermal cycles the alloy ribbon would experience during compaction into shapes, various segments of the ribbon were annealed under a vacuum at temperatures ranging from 500 to 1150 C. The results show that maximum strengths at 650 and 760 C were developed in ribbons annealed at 1100 C; in these ribbons an optimal combination of grain coarsening with minimum TiB2 particle growth was observed. However, the elevated-temperature strength of the TiB2-strengthened alloy under optimal annealing conditions was poorer than that of conventional iron-based superalloys strengthened by gamma-prime precipitates.

  18. Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.

    1991-01-01

    High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.

  19. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  20. Correlation Between Pre-annealing Temperature and {110}<001> Annealing Texture in C- and Al-Free Fe-3 Pct Si-0.1 Pct Mn-0.002 Pct S Electrical Steel

    NASA Astrophysics Data System (ADS)

    Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo

    2017-06-01

    In C- and Al-free electrical steel, the increase in primary grain size with increasing pre-annealing temperature causes the transition in annealing texture after final annealing from {110} + {100} to {110}. The strip pre-annealed at 1073 K (800 °C) shows a low magnetic induction B8(T) of 1.784 T after final annealing. The strip pre-annealed at 1223 K (950 °C) shows a sharp {110}<001> Goss texture, producing a high magnetic induction B8(T) of 1.914 T comparable to that of the conventional electrical steels.

  1. The thermoluminescence sensitivity-metamorphism relationship in ordinary chondrites - Experimental data on the mechanism and implications for terrestrial systems

    NASA Technical Reports Server (NTRS)

    Guimon, R. K.; Sears, D. W. G.; Lofgren, G. E.

    1986-01-01

    Hydrothermal annealing experiments have been performed on samples of the Sharps meteorite in order to investigate the mechanism responsible for the metamorphism-related, 10-to-the-5th-fold range in the thermoluminescence (TL) sensitivity in ordinary chondrites. Duplicate 50 mg samples of meteorite were annealed under the following conditions: (1) 168 h at 785 C and 1 kbar; (2) the same time, temperature and pressure, but with 2 wt pct water; (3) 174 h at 855 C and 0.77 kbar with 2 wt pct water and 2 molal sodium disilicate (NadiSi); (4) the same time, temperature and pressure as the preceding samples, but with 10 wt pct H2O and 2 molal NadiSi. Samples annealed under the first three sets of conditions showed little or no change in their TL sensitivities, however the samples annealed with 10 wt pct water and 2 molal NadiSi showed a three-fold to 10-fold increase in TL sensitivity, and the temperature of the TL peak was suggestive of feldspar in the high-temperature form. It is suggested that these data are consistent with the TL sensitivity-metamorphism relationship in ordinary chondrites being due to the formation of the TL phosphor, feldspar, by the crystallization of chondrule glass.

  2. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  3. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  4. Development of Al2O3 fiber-reinforced Al2O3-based ceramics.

    PubMed

    Tanimoto, Yasuhiro; Nemoto, Kimiya

    2004-09-01

    The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.

  5. Primary Dendrite Arm Spacings in Al-7Si Alloy Directionally Solidified on the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Samples from directionally solidified Al- 7 wt. % Si have been analyzed for primary dendrite arm spacing (lambda) and radial macrosegregation. The alloy was directionally solidified (DS) aboard the ISS to determine the effect of mitigating convection on lambda and macrosegregation. Samples from terrestrial DS-experiments thermal histories are discussed for comparison. In some experiments, lambda was measured in microstructures that developed during the transition from one speed to another. To represent DS in the presence of no convection, the Hunt-Lu model was used to represent diffusion controlled growth under steady-state conditions. By sectioning cross-sections throughout the entire length of a solidified sample, lambda was measured and calculated using the model. During steady-state, there was reasonable agreement between the measured and calculated lambda's in the space-grown samples. In terrestrial samples, the differences between measured and calculated lambda's indicated that the dendritic growth was influenced by convection.

  6. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    PubMed

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (<3 nm in size) embedded in N-doped carbon nanorods (nano-TiN@N-C) by a facile one-step calcination process. The prepared nano-TiN@N-C exhibits superior catalytic activity for hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  7. Low Temperature Superplasticity of Ti-6Al-4V Processed by Warm Multidirectional Forging (Preprint)

    DTIC Science & Technology

    2012-07-01

    microstructure in the two-phase titanium alloy Ti- 6Al - 4V . A microstructure with a grain size of 135 nm was attained, enabling low-temperature...the / titanium alloy Ti- 6Al - 4V [3]. The great interest in microstructure refinement is associated with significantly reduced superplastic (SP...consisted of the / titanium alloy Ti- 6Al - 4V with a nominal composition (in weight pct.) of 6.3 Al, 4.1 V, 0.18 Fe, 0.03 Si, 0.02 Zr, 0.01 C, 0.18 O, 0.01 N

  8. Production of al-si alloy feedstocks using the solvent hot mixing method

    NASA Astrophysics Data System (ADS)

    Ni, J. Q.; Han, K. Q.; Yu, M. H.

    2018-05-01

    Powder injection molding is a promising low-cost technique for net shape processing of metal and ceramic components. This study aimed to investigate a new method for preparing aluminium (Al) – silicon (Si) alloy feedstock using the solvent hot mixing process. For this purpose, micron-sized Al-Si (20 wt. %) alloy powder was mixed with a binder consisting of 55 wt. % carnauba wax, 45 wt. % high-density polyethylene, and 3 wt. % stearic acid in a hot xylene bath. The scanning electron microscopy technique, thermogravimetric analysis, density measurement and torque measurements were used to verify the homogeneity of the feedstock. Moreover, the feedstock was chosen to perform the molding, debinding cycle and sintering. An Al-Si (20 wt. %) alloy part was successfully produced using this new method.

  9. Synthesis of Al₂Ca Dispersoids by Powder Metallurgy Using a Mg-Al Alloy and CaO Particles.

    PubMed

    Fujita, Junji; Umeda, Junko; Kondoh, Katsuyoshi

    2017-06-28

    The elemental mixture of Mg-6 wt %Al-1 wt %Zn-0.3 wt %Mn (AZ61B) alloy powder and CaO particles was consolidated by an equal-channel angular bulk mechanical alloying (ECABMA) process to form a composite precursor. Subsequently, the precursor was subjected to a heat treatment to synthesize fine Al₂Ca particles via a solid-state reaction between the Mg-Al matrix and CaO additives. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and electron probe micro-analysis on the precursor indicated that 4.7-at % Al atoms formed a supersaturated solid solution in the α-Mg matrix. Transmission electron microscopy-EDS and X-ray diffraction analyses on the AZ61B composite precursor with 10-vol % CaO particles obtained by heat treatment confirmed that CaO additives were thermally decomposed in the Mg-Al alloy, and the solid-soluted Ca atoms diffused along the α-Mg grain boundaries. Al atoms also diffused to the grain boundaries because of attraction to the Ca atoms resulting from a strong reactivity between Al and Ca. As a result, needle-like (Mg,Al)₂Ca intermetallics were formed as intermediate precipitates in the initial reaction stage during the heat treatment. Finally, the precipitates were transformed into spherical Al₂Ca particles by the substitution of Al atoms for Mg atoms in (Mg,Al)₂Ca after a long heat treatment.

  10. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  11. Mechanical Properties of β-Ti-35Nb-2.5Sn Alloy Synthesized by Mechanical Alloying and Pulsed Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Omran, Abdel-Nasser; Woo, Kee-Do; Lee, Hyun Bom

    2012-12-01

    A developed Ti-35 pct Nb-2.5 pct Sn (wt pct) alloy was synthesized by mechanical alloying using high-energy ball-milled powders, and the powder consolidation was done by pulsed current activated sintering (PCAS). The starting powder materials were mixed for 24 hours and then milled by high-energy ball milling (HEBM) for 1, 4, and 12 hours. The bulk solid samples were fabricated by PCAS at 1073 K to 1373 K (800 °C to 1100 °C) for a short time, followed by rapid cooling to 773 K (500 °C). The relative density of the sintered samples was about 93 pct. The Ti was completely transformed from α to β-Ti phase after milling for 12 hours in powder state, and the specimen sintered at 1546 K (1273 °C) was almost transformed to β-Ti phase. The homogeneity of the sintered specimen increased with increasing milling time and sintering temperature, as did its hardness, reaching 400 HV after 12 hours of milling. The Young's modulus was almost constant for all sintered Ti-35 pct Nb-2.5 pct Sn specimens at different milling times. The Young's modulus was low (63.55 to 65.3 GPa) compared to that of the standard alloy of Ti-6Al-4V (100 GPa). The wear resistance of the sintered specimen increased with increasing milling time. The 12-hour milled powder exhibited the best wear resistance.

  12. Microstructural Evolution and Phase Formation in Rapidly Solidified Ni-25.3 At. Pct Si Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Leigang; Cochrane, Robert F.; Mullis, Andrew M.

    2015-10-01

    The drop-tube technique was used to solidify droplets of the Ni-25.3 at. pct Si alloy at high cooling rates. XRD, SEM, and TEM analysis revealed that the metastable phase, Ni25Si9, formed as the dominant phase in all ranges of the droplets, with γ-Ni31Si12 and β 1-Ni3Si also being present. Three different microstructures were observed: the regular and anomalous eutectic structures and near single-phase structure containing small inclusions of a second phase, termed here as heteroclite structure. Both eutectic structures comprise alternating lamellae of Ni25Si9 and β 1-Ni3Si, which, we conjecture, is a consequence of an unobserved eutectic reaction between the Ni25Si9 and β 1-Ni3Si phases. The matrix of the heteroclite structure is also identified as the metastable phase Ni25Si9, in which twined growth is observed in the TEM. As the cooling rate is increased (particle size decreased), the proportion of droplets displaying the entire heteroclite structure tends to increase, with its fraction increasing from 13.91 pct (300 to 500 µm) to 40.10 pct (75 to 106 µm). The thermodynamic properties of the Ni25Si9 phase were also studied by in-situ heating during XRD analysis and by DTA. This showed the decomposition of Ni25Si9 to β 1 and γ-Ni31Si12 for temperatures in excess of 790 K (517 °C).

  13. Derivation of Apollo 14 High-Al Basalts at Discrete Times: Rb-Sr Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Hui. Hejiu; Neal, Clive, R.; Shih, Chi-Yu; Nyquist, Laurence E.

    2012-01-01

    Pristine Apollo 14 (A-14) high-Al basalts represent the oldest volcanic deposits returned from the Moon [1,2] and are relatively enriched in Al2O3 (>11 wt%) compared to other mare basalts (7-11 wt%). Literature Rb-Sr isotopic data suggest there are at least three different eruption episodes for the A-14 high-Al basalts spanning the age range approx.4.3 Ga to approx.3.95 Ga [1,3]. Therefore, the high-Al basalts may record lunar mantle evolution between the formation of lunar crust (approx.4.4 Ga) and the main basin-filling mare volcanism (<3.85 Ga) [4]. The high-Al basalts were originally classified into five compositional groups [5,6], and then regrouped into three with a possible fourth comprising 14072 based on the whole-rock incompatible trace element (ITE) ratios and Rb-Sr radiometric ages [7]. However, Rb-Sr ages of these basalts from different laboratories may not be consistent with each other because of the use of different 87Rb decay constants [8] and different isochron derivation methods over the last four decades. This study involved a literature search for Rb-Sr isotopic data previously reported for the high-Al basalts. With the re-calculated Rb-Sr radiometric ages, eruption episodes of A-14 high-Al basalts were determined, and their petrogenesis was investigated in light of the "new" Rb-Sr isotopic data and published trace element abundances of these basalts.

  14. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Fusco, M.; Komarasamy, M.; Mishra, R. S.; Bourham, M.; Murty, K. L.

    2017-11-01

    High entropy alloys are a new class of metallic materials with potential for use in a wide variety of applications including their use in corrosive environment. The present study focused on the corrosion behavior of a single-phase, face-centered cubic high entropy alloy (HEA) Al0.1CoCrFeNi in as-cast condition, and the results are compared with the corrosion behavior of the SS304. The microstructural characterization of the alloys in as-received condition was carried out using optical microscopy, electron backscattered diffraction, energy dispersive spectroscopy, and X-ray diffraction. Corrosion behavior was studied using potentiodynamic polarization test in a 3.5 wt% NaCl solution and electrochemical impedance spectroscopy at room temperature. It was observed that the general corrosion resistance of the HEA was better than that of SS304. Pitting potential of the HEA was found to be superior to that of the SS304. Corrosion pits size was slightly smaller in SS304 than that in the HEA. 3D imaging determined that the pit depths were of the same order in both cases. Overall, the HEA Al0.1CoCrFeNi demonstrated a better resistance to general and pitting corrosion.

  15. Thermal Treatment, Sliding Wear and Saline Corrosion of Al In Situ Reinforced with Mg2Si and Ex Situ Reinforced with TiC Particles

    NASA Astrophysics Data System (ADS)

    Lekatou, A. G.; Poulia, A.; Mavros, H.; Karantzalis, A. E.

    2018-02-01

    The main objective of this work is to produce a composite consisting of (a) a cast heat-treatable Al-Mg-Si alloy with high contents of Mg for corrosion resistance and Si to offset the Mg-due poor castability (in situ hypoeutectic Mg2Si/Al composite) and (b) TiC particles at high enough volume fractions (≤ 15%), in order to achieve a satisfactory combination of wear and corrosion performance. TiCp/Al-7Mg-5Si (wt.%) composites were produced by flux-assisted casting followed by solution and aging heat treatment. Solution treatment led to a relatively uniform dispersion and shape rounding of Mg2Si precipitates and Si particles. TiC particle addition resulted in refinement of primary Al, modification of the Mg2Si Chinese script morphology and refinement/spheroidization of primary Mg2Si. Heat treatment combined with TiC addition notably improved the sliding wear resistance of Al-7Mg-5Si. A wear mechanism has been proposed. The TiC/Al interfaces remained intact of corrosion during potentiodynamic polarization of the heat-treated materials in 3.5 wt.% NaCl. Different main forms of localized corrosion in 3.5 wt.% NaCl were identified for each TiC content (0, 5, 15 vol.%), depending on specific degradation favoring microstructural features (topology/size/interface wetting) at each composition.

  16. Effect of environment on fracture toughness of 96 wt pct alumina

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Tikare, Veena; Salem, Jonathan A.

    1993-01-01

    An effort is made to deepen understanding of environmental effects on the fracture toughness of an alumina composition that contains a residual glassy phase, by ascertaining the fracture toughness under atmospheric conditions in such varied environments as air distilled water, silicone oil, and liquid nitrogen. Fracture toughness was determined via the single-edge-precracked beam technique. Weibull strength parameters are compared for polished specimens tested both in air and silicone environments.

  17. Mg-Al-Ca In-Situ Composites with a Refined Eutectic Structure and Their Compressive Properties

    NASA Astrophysics Data System (ADS)

    Shi, Ling-Ling; Xu, Jian; Ma, Evan

    2008-05-01

    In a series of Mg x (Al2Ca)100- x (76 ≤ x ≤ 87) ternary alloys near the Mg-(Mg,Al)2Ca pseudo-binary eutectic point, different phases and morphologies based on ultrafine eutectic microstructure have been obtained by controlling the composition and changing the cooling rate via either induction melting or copper mold casting. For 81 ≤ x ≤ 87, the chill-cast alloys with ductile Mg dendrites embedded in an ultrafine [Mg + (Mg,Al)2Ca] eutectic matrix exhibit gradually increased fracture strength from 415 to 491 MPa with the decrease of Mg content. At x = 79, the Mg79Al14Ca7 alloy contains hard (Mg,Al)2Ca precipitates coexisting with ductile Mg dendrite, dispersed in the strong eutectic matrix. This alloy exhibits the highest compressive fracture strength (600 MPa), and the specific strength reaches 3.4 × 105 N·m·kg-1. The alloys all exhibit substantial plastic strain (5 to 6 pct). The attainment of such a combination of strength and plasticity is an interesting and useful step in improving the mechanical properties of lightweight Mg alloys.

  18. Precipitation process in a Mg–Gd–Y alloy grain-refined by Al addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Jichun; CAST Cooperative Research Centre, Department of Materials Engineering, Monash University, Victoria 3800; Zhu, Suming, E-mail: suming.zhu@monash.edu

    2014-02-15

    The precipitation process in Mg–10Gd–3Y (wt.%) alloy grain-refined by 0.8 wt.% Al addition has been investigated by transmission electron microscopy. The alloy was given a solution treatment at 520 °C for 6 h plus 550 °C for 7 h before ageing at 250 °C. Plate-shaped intermetallic particles with the 18R-type long-period stacking ordered structure were observed in the solution-treated state. Upon isothermal ageing at 250 °C, the following precipitation sequence was identified for the α-Mg supersaturated solution: β″ (D0{sub 19}) → β′ (bco) → β{sub 1} (fcc) → β (fcc). The observed precipitation process and age hardening response in themore » Al grain-refined Mg–10Gd–3Y alloy are compared with those reported in the Zr grain-refined counterpart. - Highlights: • The precipitation process in Mg–10Gd–3Y–0.8Al (wt.%) alloy has been investigated. • Particles with the 18R-type LPSO structure were observed in the solution state. • Upon ageing at 250 °C, the precipitation sequence is: β″ → β′ → β1 (fcc) → β. • The Al grain-refined alloy has a lower hardness than the Zr refined counterpart.« less

  19. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  20. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  1. Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B.

    PubMed

    Gong, Chunjie; Tu, Hao; Wu, Changjun; Wang, Jianhua; Su, Xuping

    2018-03-20

    An hypereutectic Al-18Si alloy was modified via an Al-3B master alloy. The effect of the added Al-3B and the modification temperature on the microstructure, tensile fracture morphologies, and mechanical properties of the alloy were investigated using an optical microscope, Image-Pro Plus 6.0, a scanning electron microscope, and a universal testing machine. The results show that the size of the primary Si and its fraction decreased at first, and then increased as an additional amount of Al-3B was added. When the added Al-3B reached 0.2 wt %, the fraction of the primary Si in the Al-18Si alloy decreased with an increase in temperature. Compared with the unmodified Al-18Si alloy, the tensile strength and elongation of the alloy modified at 850 °C with 0.2 wt % Al-3B increased by 25% and 81%, respectively. The tensile fracture of the modified Al-18Si alloy exhibited partial ductile fracture characteristics, but there were more areas with ductile characteristics compared with that of the unmodified Al-18Si alloy.

  2. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  3. WT - WIND TUNNEL PERFORMANCE ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    WT was developed to calculate fan rotor power requirements and output thrust for a closed loop wind tunnel. The program uses blade element theory to calculate aerodynamic forces along the blade using airfoil lift and drag characteristics at an appropriate blade aspect ratio. A tip loss model is also used which reduces the lift coefficient to zero for the outer three percent of the blade radius. The application of momentum theory is not used to determine the axial velocity at the rotor plane. Unlike a propeller, the wind tunnel rotor is prevented from producing an increase in velocity in the slipstream. Instead, velocities at the rotor plane are used as input. Other input for WT includes rotational speed, rotor geometry, and airfoil characteristics. Inputs for rotor blade geometry include blade radius, hub radius, number of blades, and pitch angle. Airfoil aerodynamic inputs include angle at zero lift coefficient, positive stall angle, drag coefficient at zero lift coefficient, and drag coefficient at stall. WT is written in APL2 using IBM's APL2 interpreter for IBM PC series and compatible computers running MS-DOS. WT requires a CGA or better color monitor for display. It also requires 640K of RAM and MS-DOS v3.1 or later for execution. Both an MS-DOS executable and the source code are provided on the distribution medium. The standard distribution medium for WT is a 5.25 inch 360K MS-DOS format diskette in PKZIP format. The utility to unarchive the files, PKUNZIP, is also included. WT was developed in 1991. APL2 and IBM PC are registered trademarks of International Business Machines Corporation. MS-DOS is a registered trademark of Microsoft Corporation. PKUNZIP is a registered trademark of PKWare, Inc.

  4. Gravitational effects on the weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding of 304 stainless steel and Al-4 wt% Cu alloy.

    PubMed

    Kang, Namhyun; Singh, Jogender; Kulkarni, Anil K

    2004-11-01

    Effects of gravitational acceleration were investigated on the weld pool shape and microstructural evolution for 304 stainless steel and Al-4wt% Cu alloy. Effects of welding heat source were investigated by using laser beam welding (LBW) and gas tungsten arc welding (GTAW). As the gravitational level was increased from low gravity (LG approximately 1.2 g) to high gravity (HG approximately 1.8 g) using a NASA KC-135 aircraft, the weld pool shape for 304 stainless steel was influenced considerably during GTAW. However, insignificant change in the microstructure and solute distribution was observed at gravitational levels between LG and HG. The GTAW on Al-4 wt% Cu alloy was used to investigate the effect of gravitational orientation on the weld solidification behavior. Gravitational orientation was manipulated by varying the welding direction with respect to gravity vector; that is, by welding upward opposing gravity ( ||-U) and downward with gravity ( ||-D) on a vertical weld piece and welding perpendicular to gravity (perpendicular) on a horizontal weld piece. Under the same welding conditions, a larger primary dendrite spacing in the ||-U weld was observed near the weld pool surface and the fusion boundary than in the case of perpendicular or ||-D welds. The ||-D weld exhibited different solidification morphology and abnormal S shape of solidification rate curve during its growth. For 304 stainless steel GTAW, significant effects of gravitational orientation were observed on the weld pool shape that was associated with weld surface morphology and convection flow. However, the weld pool shape for LBW was mostly constant with respect to the gravitational orientation.

  5. Genotype-phenotype associations in WT1 glomerulopathy.

    PubMed

    Lipska, Beata S; Ranchin, Bruno; Iatropoulos, Paraskevas; Gellermann, Jutta; Melk, Anette; Ozaltin, Fatih; Caridi, Gianluca; Seeman, Tomas; Tory, Kalman; Jankauskiene, Augustina; Zurowska, Aleksandra; Szczepanska, Maria; Wasilewska, Anna; Harambat, Jerome; Trautmann, Agnes; Peco-Antic, Amira; Borzecka, Halina; Moczulska, Anna; Saeed, Bassam; Bogdanovic, Radovan; Kalyoncu, Mukaddes; Simkova, Eva; Erdogan, Ozlem; Vrljicak, Kristina; Teixeira, Ana; Azocar, Marta; Schaefer, Franz

    2014-05-01

    WT1 mutations cause a wide spectrum of renal and extrarenal manifestations. Here we evaluated disease prevalence, phenotype spectrum, and genotype-phenotype correlations of 61 patients with WT1-related steroid-resistant nephrotic syndrome relative to 700 WT1-negative patients, all with steroid-resistant nephrotic syndrome. WT1 patients more frequently presented with chronic kidney disease and hypertension at diagnosis and exhibited more rapid disease progression. Focal segmental glomerulosclerosis was equally prevalent in both cohorts, but diffuse mesangial sclerosis was largely specific for WT1 disease and was present in 34% of cases. Sex reversal and/or urogenital abnormalities (52%), Wilms tumor (38%), and gonadoblastoma (5%) were almost exclusive to WT1 disease. Missense substitutions affecting DNA-binding residues were associated with diffuse mesangial sclerosis (74%), early steroid-resistant nephrotic syndrome onset, and rapid progression to ESRD. Truncating mutations conferred the highest Wilms tumor risk (78%) but typically late-onset steroid-resistant nephrotic syndrome. Intronic (KTS) mutations were most likely to present as isolated steroid-resistant nephrotic syndrome (37%) with a median onset at an age of 4.5 years, focal segmental glomerulosclerosis on biopsy, and slow progression (median ESRD age 13.6 years). Thus, there is a wide range of expressivity, solid genotype-phenotype associations, and a high risk and significance of extrarenal complications in WT1-associated nephropathy. We suggest that all children with steroid-resistant nephrotic syndrome undergo WT1 gene screening.

  6. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  7. Laboratory Study on Prevention of CaO-Containing ASTM "D-Type" Inclusions in Al-Deoxidized Low-Oxygen Steel Melts During Basic Slag Refining

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Wang, Xin-Hua; Yang, Die; Lei, Shao-Long; Wang, Kun-Peng

    2015-12-01

    Present work was attempted to explore the possibility of preventing CaO-containing inclusions in Al-deoxidized low-oxygen special steel during basic slag refining, which were known as ASTM D-type inclusions. Based on the analysis on formation thermodynamics of CaO-containing inclusions, a series of laboratory experiments were designed and carried out in a vacuum induction furnace. During the experiments, slag/steel reaction equilibrium was intentionally suppressed with the aim to decrease the CaO contents in inclusions, which is different from ordinary concept that slag/steel reaction should be promoted for better control of inclusions. The obtained results showed that high cleanliness of steel was obtained in all the steel melts, with total oxygen contents varied between 0.0003 and 0.0010 pct. Simultaneously, formation of CaO-containing inclusions was successfully prohibited, and all the formed oxide inclusions were MgO-Al2O3 or/and Al2O3 in very small sizes of about 1 to 3 μm. And 90 pct to nearly 98 pct of them were wrapped by relative thicker MnS outer surface layers to produce dual-phased "(MgO-Al2O3) + MnS" or "Al2O3 + MnS" complex inclusions. Because of much better ductility of MnS, certain deformability of these complex inclusions can be expected which is helpful to improve fatigue resistance property of steel. Only very limited number of singular MnS inclusions were with sizes larger than 13 μm, which were formed during solidification because of. In the end, formation of oxide inclusions in steel was qualitatively evaluated and discussed.

  8. Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials

    NASA Astrophysics Data System (ADS)

    Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.

    2000-12-01

    Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.

  9. Microstructure of a Creep-Resistant 10 Pct Chromium Steel Containing 250 ppm Boron

    NASA Astrophysics Data System (ADS)

    Golpayegani, Ardeshir; Liu, Fang; Svensson, Henrik; Andersson, Marcus; Andrén, Hans-Olof

    2011-04-01

    The microstructure of a trial martensitic chromium steel containing a high content of boron (250 ppm) was characterized in detail in the as-tempered and aged conditions. This steel has a similar composition and heat treatment as the TAF steel that still is unsurpassed in creep strength among all 9 to 12 pct chromium steels. Characterization was performed by using scanning electron microscopy, energy-filtered transmission electron microscopy, secondary ion mass spectroscopy, and atom probe tomography. Focus was placed on investigating different types of precipitates that play a key role in improving the creep resistance of these steels. The low tempering temperature of 963 K (690 °C) is enough for the precipitation of the full volume fraction of both MX and M23C6. A high boron content, more than 1 at. pct, was found in M23C6 precipitates and they grow slowly during aging. The high boron level in the steel results in metal borides rather than BN with the approximate formula (Mo0.66Cr0.34)2(Fe0.75V0.25)B2. Two families of MX precipitates were found, one at lath boundaries about 35 nm in size and one dense inside the laths, only 5 to 15 nm in size.

  10. The Colony meteorite and variations in CO3 chondrite properties

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; James, J. A.; Keck, B. D.; Weeks, K. S.; Sears, D. W. G.

    1985-01-01

    The Colony meteorite is one of the least equilibrated CO3 chondrites, yet differs from normal CO chondrites in that, while Al, Sc, V, Cr, Ir, Fe, Au, and Ga abundances are consistent with a CO chondrite classification, certain lithophile, siderophile, and chalcophile contents are depleted by factors of 10-40 percent. Colony is badly weathered, and its Fe, Ni abundance of about 19 wt pct is similar to that of the Kainsaz CO3 unweathered fall but higher than all other CO3 chondrites.

  11. Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System

    PubMed Central

    Zhao, Qian; Liang, Yunhong; Zhang, Zhihui; Li, Xiujuan; Ren, Luquan

    2016-01-01

    Mechanical property and impact resistance mechanism of bionic layered composite was investigated. Due to light weight and high strength property, white clam shell was chosen as bionic model for design of bionic layered composite. The intercoupling model between hard layer and soft layer was identical to the layered microstructure and hardness tendency of the white clam shell, which connected the bionic design and fabrication. TiC-TiB2 reinforced Al matrix composites fabricated from Al-Ti-B4C system with 40 wt. %, 50 wt. % and 30 wt. % Al contents were treated as an outer layer, middle layer and inner layer in hard layers. Pure Al matrix was regarded as a soft layer. Compared with traditional homogenous Al-Ti-B4C composite, bionic layered composite exhibited high mechanical properties including flexural strength, fracture toughness, compressive strength and impact toughness. The intercoupling effect of layered structure and combination model of hard and soft played a key role in high impact resistance of the bionic layered composite, proving the feasibility and practicability of the bionic model of a white clam shell. PMID:28773827

  12. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    NASA Astrophysics Data System (ADS)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  14. Magnetostriction Increase of Polycrystalline Fe-Al-B Thin Sheets after Thermomechanical Process

    NASA Astrophysics Data System (ADS)

    Dias, M. B. S.; Fulop, G. O.; Baldan, C. A.; Bormio-Nunes, C.

    2017-12-01

    Magnetostrictive materials are applied in several types of sensors, actuators, and energy harvesting. In particular, for AC devices, thin materials are desired to reduce eddy current losses. It is well known that the magnetostriction of single crystals and textured materials is higher than in polycrystalline ones, however, the cost and manufacture speed are crucial to be used as parts of commercial devices. Therefore, polycrystalline samples are strong candidates for common applications. In this work, (Fe x Al100- x )98.4B1.6 ( x = 86.6, 82 and 79.4) alloys were rolled down to 0.7 mm of thickness and annealed at 1473 K (1200 °C) for 2 hours aiming to reduce the thickness of the samples without deteriorating the magnetic properties. The alloys, even with higher contents of Al, were easily deformed to the thickness of 0.7 mm and this ability is attributed to the presence of the Fe2B phase. After the thermomechanical process, new isotropic recrystallized grains emerged and the longitudinal magnetostriction increased to 75.8, 16.9, and 3.2 pct, achieving 28.3, 28.4, and 28.8 ppm, respectively, for x = 86.6, 82, and 79.4. The piezomagnetic coefficient obtained of 4 nm/A is a suitable actuating sensitivity.

  15. Surface tension measurements of aqueous ammonium chloride (NH4Cl) in air

    NASA Technical Reports Server (NTRS)

    Lowry, S. A.; Mccay, M. H.; Mccay, T. D.; Gray, P. A.

    1989-01-01

    Aqueous NH4Cl's solidification is often used to model metal alloy solidification processes. The present determinations of the magnitude of the variation of aqueous NH4Cl's surface tension as a function of both temperature and solutal concentration were conducted at 3, 24, and 40 C over the 72-100 wt pct water solutal range. In general, the surface tension increases 0.31 dyn/cm per percent decrease in wt pct of water, and decreases 0.13 dyn/cm for each increase in deg C. Attention is given to the experimental apparatus employed.

  16. Characterization of Al-Mg Alloy Aged at Low Temperatures

    DOE PAGES

    Yi, Gaosong; Cullen, David A.; Littrell, Kenneth C.; ...

    2017-02-06

    For this research, long-term aged [343 K (70 °C) for 30 months and natural exposure for over 10 years] Al 5456 H116 samples were characterized using electron backscatter diffraction (EBSD), scanning transmission electron microscopy (STEM), state-of-the-art energy-dispersive X-ray spectroscopy (EDS) systems, and small-angle neutron scattering (SANS). ASTM G-67 mass loss tests of the sensitized Al 5456 alloy samples were conducted. Intragranular Mg-rich precipitates, such as Guinier–Preston (GP) zones, were confirmed in Al 5456 H116 aged at 343 K (70 °C) for 30 months, and the volume of these precipitates is 1.39 pct. β' phase is identified at the grain boundarymore » of a navy ship sample, while high-resolution STEM results reveal no intragranular precipitates. Intergranular corrosion (IGC) of Al 5456 was found to be related to the continuity of intergranular precipitates.« less

  17. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  18. PCT theorem for fields with arbitrary high-energy behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, W.

    1986-07-01

    A neutral scalar field A(x) is considered that has to be smeared by Fourier transforms of C/sup infinity/ functions with compact support but otherwise fulfills all the Wightman axioms, except strict local commutativity. It is shown to fulfill the PCT symmetry condition (where ..cap omega.. denotes the vacuum state vector) <..cap omega..Vertical BarA(x/sub 1/) xxx A(x/sub n/)..cap omega..> = <..cap omega..Vertical BarA(-x/sub n/) xxx A(-x/sub 1/)..cap omega..> if and only if <..cap omega..Vertical BarA(x/sub 1/) xxx A(x/sub n/)..cap omega..> -<..cap omega..Vertical BarA(x/sub n/) xxx A(x/sub 1/)..cap omega..> can be represented, in a sense, as an infinite sum of derivatives ofmore » measures with supports containing no Jost points.« less

  19. Cellular Automaton Study of Hydrogen Porosity Evolution Coupled with Dendrite Growth During Solidification in the Molten Pool of Al-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Yu, Fengyi; Liu, Xiangbo; She, Lvbo

    2017-09-01

    Welding porosity defects significantly reduce the mechanical properties of welded joints. In this paper, the hydrogen porosity evolution coupled with dendrite growth during solidification in the molten pool of Al-4.0 wt pct Cu alloy was modeled and simulated. Three phases, including a liquid phase, a solid phase, and a gas phase, were considered in this model. The growth of dendrites and hydrogen gas pores was reproduced using a cellular automaton (CA) approach. The diffusion of solute and hydrogen was calculated using the finite difference method (FDM). Columnar and equiaxed dendrite growth with porosity evolution were simulated. Competitive growth between different dendrites and porosities was observed. Dendrite morphology was influenced by porosity formation near dendrites. After solidification, when the porosities were surrounded by dendrites, they could not escape from the liquid, and they made pores that existed in the welded joints. With the increase in the cooling rate, the average diameter of porosities decreased, and the average number of porosities increased. The average diameter of porosities and the number of porosities in the simulation results had the same trend as the experimental results.

  20. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  1. Randomized Phase II Trial of Adjuvant WT-1 Analog Peptide Vaccine in Patients with Malignant Pleural Mesothelioma after Completion of Multimodality Therapy

    DTIC Science & Technology

    2017-11-01

    journal of cancer research : Gann 1999; 90(2): 194-204. 6. Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia...and myelodysplastic syndrome : therapeutic potential of WT1 targeted therapies. Leukemia 2003; 17(7): 1301-12. 7. Cheever MA, Allison JP, Ferris AS...Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid

  2. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  3. Reflectance spectroscopy of palagonite and iron-rich montmorillonite clay mixtures - Implications for the surface composition of Mars

    NASA Technical Reports Server (NTRS)

    Orenberg, James; Handy, Jonathan

    1992-01-01

    The diffuse reflectance spectra of Hawaiian palagonite mixtures with an Fe-rich montmorillonite have prompted their present use as spectral analogs of the Martian surface. Like the Mars spectrum and unlike clays, the 2.2-micron reflectance spectrum absorption band is not present in the palagonite sample; neither is the 2.2-micron Al-OH clay lattice band seen in palagonite-montmorillonite mixtures, where the latter component remains below 15 wt pct. Fe-rich montmorillonite clay may therefore be present in Mars, in combination with palagonite, while remaining undetected in remotely sensed spectra.

  4. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  5. Processing of In-Situ Al-AlN Metal Matrix Composites via Direct Nitridation Method

    DTIC Science & Technology

    1998-04-01

    to prepare the aluminum melts with desired chemical compositions. Table 1. Chemical compositions of the starting materials. Alloy Mg Fe Cr Si Ni Al...Al 0.001 0.11 0.001 0.04 0.005 bal. Alloy Al Fe Cr Si Ni Mg Mg 0.01 0.12 0.001 0.03 0.006 bal. The ingots were initially cut to chunks with...hours. Figure 26 shows the optical micrographs obtained from the ingots after nitridation reaction of the alloys initially containing Al- 5wt .% Si

  6. Experimental investigation of amount of nano-Al2O3 on mechanical properties of Al-based nano-composites fabricated by powder metallurgy (PM)

    NASA Astrophysics Data System (ADS)

    Razzaqi, A.; Liaghat, Gh.; Razmkhah, O.

    2017-10-01

    In this paper, mechanical properties of Aluminum (Al) matrix nano-composites, fabricated by Powder Metallurgy (PM) method, has been investigated. Alumina (Al2O3) nano particles were added in amounts of 0, 2.5, 5, 7.5 and 10 weight percentages (wt%). For this purpose, Al powder (particle size: 20 µm) and nano-Al2O3 (particle size: 20 nm) in various weight percentages were mixed and milled in a blade mixer for 15 minutes in 1500 rpm. Then, the obtained mixture, compacted by means of a two piece die and uniaxial cold press of about 600 MPa and cold iso-static press (CIP), required for different tests. After that, the samples sintered in 600°C for 90 minutes. Compression and three-point bending tests performed on samples and the results, led us to obtain the optimized particle size for achieving best mechanical properties.

  7. Decagonal quasicrystal and related crystalline phases in Mn-Ga alloys with 52 to 63 a/o Ga

    NASA Astrophysics Data System (ADS)

    Wu, J. S.; Kuo, K. H.

    1997-03-01

    A decagonal quasicrystal (DQC) and six related intermetallic phases with large unit cells have been found in binary Mn-Ga alloys with 52 to 63 at. pct Ga by means of transmission electron microscopy (TEM). As does the Al-Mn DQC, the Ga-Mn DQC also has a periodicity of 1.25 nm along its tenfold axis. However, its Mn content, determined by electron microprobe X-ray analysis (about 45 to 50 at. pct Mn), is much higher than that of the Al-Mn DQC (about 20 to 30 at. pct Mn). The compositions of the intermetallic phases are about 53, 56, 58, and 62 at. pct Ga, corresponding respectively to the unknown structures of MnGa (50.7 to 53.4 at. pct Ga), Mn5Ga6 (55 at pct Ga), Mn5Ga7 (57.9 at. pct Ga), and Mn3Ga5 (62.9 at. pct Ga) given in the binary Mn-Ga phase diagram ( Metals Hand-book, T.B. Massalski, J.L. Murray, L.H. Benneft, and H. Baker, eds., ASM, Metals Park, OH, 1986, vol. 2, p. 1144). Their lattice types have been determined by selected area electron diffraction. The ferromagnetic Mn3Ga5 is tetragonal, a=1.25 nm and c=2.50 nm; Mn5Ga7 is orthorhombic, a=4.57 nm, b=1.25 nm, and c=1.44 nm; Mn5Ga6 has two different but closely related orthorhombic unit cells, a=1.26 nm, b=1.25 nm, and c=1.48 nm as well as a=0.77 nm, b=1.25 nm, and c=2.36 nm; MnGa also has two different and related unit cells, one orthorhombic with a=2.04 nm, b=1.25 nm, and c=1.48 nm and the other monoclinic with a=2.59 nm, b=1.25 nm, c=1.15 nm, and β≈=110 deg. All these orthorhombic phases have b=1.25 nm, being the same as the periodicity along the tenfold axis of the Ga-Mn and Al-Mn DQCs. Moreover, all these six intermetallic phases give electron diffraction patterns displaying a pseudo-tenfold distribution of strong diffraction spots and are considered to be crystalline approximants of the Ga-Mn DQC.

  8. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    NASA Astrophysics Data System (ADS)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  9. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors.

    PubMed

    Motamedi, Fariba Jian; Badro, Danielle A; Clarkson, Michael; Lecca, M Rita; Bradford, Stephen T; Buske, Fabian A; Saar, Kathrin; Hübner, Norbert; Brändli, André W; Schedl, Andreas

    2014-07-17

    Kidney organogenesis requires the tight control of proliferation, differentiation and apoptosis of renal progenitor cells. How the balance between these cellular decisions is achieved remains elusive. The Wilms' tumour suppressor Wt1 is required for progenitor survival, but the molecular cause for renal agenesis in mutants is poorly understood. Here we demonstrate that lack of Wt1 abolishes fibroblast growth factor (FGF) and induces BMP/pSMAD signalling within the metanephric mesenchyme. Addition of recombinant FGFs or inhibition of pSMAD signalling rescues progenitor cell apoptosis induced by the loss of Wt1. We further show that recombinant BMP4, but not BMP7, induces an apoptotic response within the early kidney that can be suppressed by simultaneous addition of FGFs. These data reveal a hitherto unknown sensitivity of early renal progenitors to pSMAD signalling, establishes FGF and pSMAD signalling as antagonistic forces in early kidney development and places WT1 as a key regulator of pro-survival FGF signalling pathway genes.

  10. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  11. Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al-Cu alloys: Effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase

    NASA Astrophysics Data System (ADS)

    Barros, André Santos; Magno, Igor Alexsander; Souza, Fabrício Andrade; Mota, Carlos Alberto; Moreira, Antonio Luciano; Silva, Maria Adrina; Rocha, Otávio Lima

    2015-05-01

    In this work, the effect of the growth rate (VL) and cooling rate (TR), primary dendritic arm spacing (λ1) and Al2Cu intermetallic phase on the microhardness was investigated during transient horizontal directional solidification of Al-3wt%Cu and Al-8wt%Cu alloys. Microstructural characterization of the investigated alloys was performed using traditional techniques of metallography, optical and SEM microscopy and X-Ray diffraction. The microhardness evolution as a function of the thermal and microstructural parameters (VL, TR, and λ1) was evaluated using power and Hall-Petch type experimental laws, which were compared with other laws in the literature. In order to examine the effect of the Al2Cu intermetallic phase, microhardness measurements were performed in interdendritic regions. Finally, a comparative analysis was performed between the experimental data of this work and theoretical models from the literature that have been proposed to predict primary dendrite arm spacing, which have been tested in numerous works considering upward directional solidification.

  12. Derivation of Apollo 14 High-Al Basalts from Distinct Source Regions at Discrete Times: New Constraints

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Shih, C.-Y.; Reese, Y.; Nyquist, L. E.; Kramer, G. Y.

    2006-01-01

    Apollo 14 basalts occur predominantly as clasts in breccias, but represent the oldest volcanic products that were returned from the Moon [1]. These basalts are relatively enriched in Al2O3 (11-16 wt%) compared to other mare basalts (7-11 wt%) and were originally classified into 5 compositional groups [2,3]. Neal et al. [4] proposed that a continuum of compositions existed. These were related through assimilation (of KREEP) and fractional crystallization (AFC). Age data, however, show that at least three volcanic episodes are recorded in the sample collection [1,5,6]. Recent work has demonstrated that there are three, possibly four groups of basalts in the Apollo 14 sample collection that were erupted from different source regions at different times [7]. This conclusion was based upon incompatible trace element (ITE) ratios of elements that should not be fractionated from one another during partial melting (Fig. 1). These groups are defined as Group A (Groups 4 & 5 of [3]), Group B (Groups 1 & 2 of [3]), and Group C (Group 3 of [3]). Basalt 14072 is distinct from Groups A-C.

  13. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ping; Zhang, Yi; Xia, Yu; Jiang, Wei-Bing; Liu, Hui; Liu, Wang; Gao, Yun-Xia; Zhang, Tao; Fang, Qian-Feng

    2017-03-01

    A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7- x La3Zr2- x Nb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

  14. Enthalpies of formation of CaAl4O7 and CaAl12O19 (hibonite) by high temperature, alkali borate solution calorimetry

    NASA Technical Reports Server (NTRS)

    Geiger, C. A.; Kleppa, O. J.; Grossman, L.; Mysen, B. O.; Lattimer, J. M.

    1988-01-01

    Enthalpies of formation were determined for two calcium aluminate phases, CaAl4O7 and CaAl12O19, using high-temperature alkali borate solution calorimetry. The aluminates were synthesized by multiple-cycle heating and grinding stoichiometric mixtures of CaCO3 and Al2O3, and the products were characteized by X-ray diffraction and SEM microbeam analysis. The data on impurities (CaAl4O7 was found to be about 89.00 percent pure by weight and the CaAl12O19 samples about 91.48 percent pure) were used to correct the heat of solution values of the synthetic products. The enthalpies of formation, at 1063 K, from oxides, were found to be equal to -(25.6 + or - 4.7) kJ/g.f.w. for CaAl4O7 and -(33.0 + or - 9.7) kJ/g.f.w. for CaAl12O19; the respective standard enthalpies of formation from elements, at 298 K, were estimated to be -4007 + or - 5.2 kJ/g.f.w. and -10,722 + or - 12 kJ/g.f.w.

  15. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

    NASA Astrophysics Data System (ADS)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.

    2017-04-01

    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  16. Studies of Al-Ti Alloys by SEM

    NASA Astrophysics Data System (ADS)

    Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.

    2007-04-01

    Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.

  17. [Fluorescence quantitative PCR detection of WT1 gene expression in peripheral blood of patients with acute leukemias and its clinical implications].

    PubMed

    Bai, Bo; Wang, Hong-Wei; Xu, Yong-Qun; Yang, Hei-Nu; Qiao, Zhen-Hua

    2005-08-01

    To elucidate the expression of WT1 in all types of leukemias and its implications for monitoring minimal residual disease in patients with acute leukemia, the peripheral blood from 55 leukemia patients and 10 normal voluteer was detected by using FQ-RT-PCR. Follow-up monitoring of WT1 expression of peripheral blood was performed for 20 patients with acute leukemia. The results showed that the expression of WT1 gene in all types of leukemias was significantly higher than that in normal control (P < 0.001). For ANLL and ALL patients, the survival time in the group of WT1 WT1 > 6.8 x 10(-3), (P = 0.027). Follow-up detection of the expression of WT1 in peripheral blood samples from 20 acute leukemia patients, 7 cases relapsed after complete remission has been done. In 5 of 7 relapsed patients, the expression of WT1 had obviously increased about 2 - 3 months before clinical relapse became apparent. It is concluded that the established FQ-RT-PCR method is accurate and specific. The expression of WT1 gene is relatively high in all types of leukemias compared with normal peripheral blood cells, the higher WT1 expression may associate with poor prognosis in acute leukemia, and the dynamics of WT1 level correlate with the disease status. The quantitative assessment of WT1 expression in peripheral blood samples by FQ-RT-PCR may be a useful tool for monitoring minimal residual disease.

  18. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  19. Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.

    2005-05-01

    XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.

  20. The influence of ZnO incorporation on the aqueous leaching characteristics of a borosilicate glass

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Gregg, D. J.; Karatchevtseva, I.; Griffiths, G. J.; Olufson, K.; Rees, Gregory J.; Hanna, John V.

    2017-10-01

    With increasing ZnO content, short term aqueous durability enhancement of all elements in borosilicate glasses containing 1.0 and 3.85 wt% ZnO was evident in 7-day PCT-B tests. In 14-day MCC-1 type leach tests conducted at 90 °C, surface alteration was very clear in the undoped glass via the formation of strongly altered amorphous material which tended to spall off the surface. No sign of crystallinity was detected by grazing incidence X-ray diffraction or electron microscopy of the surface layers and the surface material was very rich in silica. For the ZnO-bearing glasses, significant growth of particles following PCT leaching for 7 days was observed, due to a build-up of surface ZnO-containing Si-rich material and possible agglomeration. This alteration layer was also observed in MCC-1 type experiments in which cross-section SEM-EDS data were obtained. Raman, infrared and 11B and 29Si MAS NMR spectroscopy showed only slight changes in boron speciation on the addition of up to 9.1 wt% ZnO. Bulk positron annihilation lifetime spectra (PALS) of glasses containing 0-3.85 wt% ZnO could be analysed with three distinct lifetimes and also showed only slight differences. These results indicate that the basic glass structure was essentially not influenced by the ZnO content and that the passivation of the alteration layer is promoted by ZnO content.

  1. CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY

    NASA Astrophysics Data System (ADS)

    Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong

    2013-07-01

    The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.

  2. Oxidation studies of Fe10CrAl-RE alloys exposed to Pb at 550 °C for 10,000 h

    NASA Astrophysics Data System (ADS)

    Ejenstam, Jesper; Halvarsson, Mats; Weidow, Jonathan; Jönsson, Bo; Szakalos, Peter

    2013-11-01

    Five experimental FeCrAl-RE alloys have been exposed up to 10,000 h in stagnant liquid Pb at 550 °C. The test matrix consisted of three 10 wt.% Cr alloys, with an Al content ranging from 4 to 8 wt.% (10Cr-4Al, 10Cr-6Al and 10Cr-8Al), one alloy without additions of reactive elements (RE) (10Cr-6Al), and one reference alloy with 21 wt.% Cr and 5 wt.% Al (21Cr-5Al). The evaluation showed a clear difference in oxidation properties, and it was possible to divide the alloys into two distinct groups. A critical Al concentration in the interval of 4-6 wt.% at the given RE content was required to form a thin protective oxide. However, the absence of RE addition in one of the two 10Cr-6Al alloys resulted in a significant reduction in oxidation resistance, comparable with 10Cr-4Al. None of the alloys were severely corroded, however Pb penetrated to a relatively large extent into the porous oxide of the low performing alloys. A 100 nm thick oxide scale, partly consisting of alumina (Al2O3), was observed for the high performing 10Cr-6Al alloy. The Fe10CrAl-RE alloys showed overall very good corrosion resistance and are hence a promising new alloy category for liquid Pb applications.

  3. Mechanical Properties of the TiAl IRIS Alloy

    NASA Astrophysics Data System (ADS)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  4. A Comparison in Mechanical Properties of Cermets of Calcium Silicate with Ti-55Ni and Ti-6Al-4V Alloys for Hard Tissues Replacement

    PubMed Central

    Pramanik, Sumit; Shirazi, Seyed Farid Seyed; Mehrali, Mehdi; Yau, Yat-Huang; Abu Osman, Noor Azuan

    2014-01-01

    This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements. PMID:25538954

  5. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gujba, Kachalla Abdullahi

    Composites are engineered materials developed from constituent materials; matrix and reinforcements, to attain synergistic behavior at the micro and macroscopic level which are different from the individual materials. The high specific strength, low weight, excellent chemical resistance and fatigue endurance makes these composites superior than other materials despite anisotropic behaviors. Metal matrix composites (MMCs) have excellent physical and mechanical properties and alumium (Al) alloy composites have gained considerable interest and are used in multiple industries including: aerospace, structural and automotive. The aim of this research work is to develop an advanced Al-based nanocomposites reinforced with Carbon nanotubes (CNTs) and silicon carbide particulates (SiCp) nanophases using mechanical alloying and advanced consolidation procedure (Non-conventional) i.e. Spark Plasma Sintering (SPS) using two types of aluminum alloys (Al-7Si-0.3mg and Al-12Si-0.3Mg). Different concentrations of SiCp and CNTs were added and ball milled for different milling periods under controlled atmosphere to study the effect of milling time and the distribution of the second phases. Characterization techniques were used to investigate the morphology of the as received monolithic and milled powder using Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive Spectroscopy (EDS), X-Ray Mapping, X-Ray Diffraction (XRD) and Particle Size Analyses (PSA). The results revealed that the addition of high concentrations of SiCp and CNTs in both alloys aided in refining the structure of the resulting powder further as the reinforcement particles acted like a grinding agent. Good distribution of reinforcing particles was observed from SEM and no compositional fluctuations were observed from the EDS. Some degree of agglomerations was observed despite the ethyl alcohol sonication effect of the CNTs before ball milling. From the XRD; continuous reduction in crystallite size and

  6. Interfacial Chemical Interactions in the (Alumina/Graphite/Al Alloys) System: Thermodynamic Modeling and Experimental Results

    NASA Astrophysics Data System (ADS)

    Gelbstein, M.; Edry, I.; Froumin, N.; Frage, N.

    2009-04-01

    The stability of alumina-coated graphite couples in liquid Al is investigated in the 1373 to 1573 K temperature range. A thermodynamic model was carried out to determine the mechanisms controlling the couple stability and the effect of alloying Al with high melting point element for instance U (up to 3 at. pct). It was established that the dissolved uranium dose not play any role in the interfacial interactions and that the couple stability is governed by the interactions with Al resulting in the release of gaseous products. The experiments focused on wetting kinetics under conditions allowing for an in-situ reduction of the alumina coating by the liquid Al. The experimental results confirm the predictions of the thermodynamic analysis.

  7. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Sparks, Donald L.

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates usingmore » WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.« less

  8. Fabrication of Eu doped CdO [Al/Eu-nCdO/p-Si/Al] photodiodes by perfume atomizer based spray technique for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Ganesh, V.; Shkir, Mohd; Chandramohan, R.; Arun Kumar, K. Deva; Valanarasu, S.; Kathalingam, A.; AlFaify, S.

    2018-05-01

    In this study, thin films of cadmium oxide (CdO) with different concentrations (0, 1, 3, and 5 wt%) of Eu doping were deposited onto Si and glass substrates by a novel and facile spray technique using simple perfume atomizer for the first time. Prepared films were characterized for structural, morphological, optical properties and the photo diode studies, using X-ray diffraction, scanning electron microscope, UV-Vis spectrophotometer, Isbnd V characteristics, and fundamental parameters are reported. All the prepared Eu:CdO films exhibit cubic structure. The preferential orientation is along (200) plane. Scanning electron microscopy study indicates the growth of smooth and pin-hole free films with clusters of homogeneous grains. The values of band gap energy are found to be varying from 2.42 to 2.33 eV for various Eu doping concentration from 0 to 5 wt%. EDAX studies revealed the presence of Eu, Cd and O elements without any other impurities. FTIR spectra showed a peak at 575 cm-1 confirming the stretching mode of Cdsbnd O. The resistivity (ρ), high carrier concentration (n) and carrier mobility (μ) for 3 wt% CdO thin film are found to be 0.452 × 10-3(Ω.cm), 17.82 × 1020 cm-3 and 7.757 cm2/V, respectively. Current-voltage measurements on the fabricated nanostructured Al/Eu-nCdO/p-Si/Al heterojunction device showed a non-linear electric characteristics indicating diode like behaviour.

  9. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  10. 7 CFR 51.2954 - Tolerances for grade defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... chart. Tolerances for Grade Defects Grade External (shell) defects Internal (kernel) defects Color of kernel U.S. No. 1. 10 pct, by count for splits. 5 pct. by count, for other shell defects, including not... tolerance to reduce the required 70 pct of “light amber” kernels or the required 40 pct of “light” kernels...

  11. Evolution of the plasma-sprayed microstructure in 7 wt% yttria-stabilized zirconia thermal barrier coatings during uniaxial stress relaxation and the concomitant changes in material properties

    NASA Astrophysics Data System (ADS)

    Petorak, Christopher

    The understanding of failure mechanisms in plasma sprayed 7 wt% yttria stabilized zirconia (YSZ) is a key step toward optimizing thermal barrier coating (TBC) usage, design, and life prediction. The purpose of the present work is to characterize and understand the stress relaxation behavior occurring in plasma-sprayed YSZ coatings, so that the correlating magnitude of unfavorable tensile stress, which coatings experienced upon cooling, may be reduced through microstructural design. The microstructure and properties of as-sprayed coatings changes immensely during service at high temperature, and therefore the effects of long heat-treatment times, and the concomitant change within the microstructure, on the time-dependent mechanical behavior of stand-alone YSZ coatings was studied in parallel with the as-sprayed coating condition. Aside from influencing the mechanical properties, stress relaxation also affects the insulating efficiency of plasma-sprayed 7wt% YSZ coatings. Directionally dependent changes in microstructure due to stress relaxation of a uniaxially applied stress at 1200°C were observed in plasma-sprayed coatings. Small angle neutron scattering (SANS) investigation of coatings after stress relaxation displayed a 46% reduction in the specific surface area connected to the load-orientation dependent closure of void surface area perpendicular to the applied load when compared to coatings sintered in air, i.e. no applied load. These anisotropic microstructural changes were linked to the thermal properties of the coating. For example, a coating stress relaxed from 60 MPa for 5-min at 1200°C exhibited a thermal conductivity of 2.1 W/m-K. A coating that was only heat-treated for 5-min at 1200°C (i.e. no stress applied) exhibited a thermal conductivity of 1.7 W/m·K. In the current study, uniaxial stress relaxation in plasma-sprayed 7wt% YSZ coatings was determined the result of: (1) A more uniform distribution of the applied load with time, (2) A reduction

  12. An Atom-Probe Tomographic Study of Arc Welds in a Multi-Component High-Strength Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Hunter, Allen H.; Farren, Jeffrey D.; DuPont, John N.; Seidman, David N.

    2013-04-01

    An experimental plate steel with the composition Fe-1.39Cu-2.7Ni-0.58Al-0.48Mn-0.48Si-0.065Nb-0.05C (wt pct) or alternatively Fe-1.43Cu-2.61Ni-1.21Al-0.48Mn-0.98Si-0.039Nb-0.23C at. pct has been recently produced at Northwestern University for use in Naval hull and deck applications—it is designated NUCu-140. To understand the microstructural changes occurring in NUCu-140 steel after gas-metal arc welding (GMAW), a detailed study of the heat-affected and fusion zones was performed throughout the weld cross section using microhardness, metallographic, chemical, and atom-probe tomographic analyses. Local-electrode atom-probe (LEAP) tomography was employed to measure the morphology and compositions of Cu-rich precipitates from each region. The mean radius, number density, volume fraction, and compositions of the precipitates, as well as the interfacial concentration profiles, are measured. The Cu precipitates dissolve partially from the heat-affected zone (HAZ) thermal cycle, and freshly formed sub-nanometer radius Cu-rich precipitates nucleate in both the HAZ and fusion zone (FZ) during cooling; however, the precipitation of Cu during cooling in the HAZ and FZ is not sufficient to restore the lost strength. The precipitation in the FZ is reduced compared to the HAZ due to a mismatched Cu composition of the weld. Multi-pass welding is suggested to restore strength in the GMAW sample by promoting Cu precipitate nucleation and growth in the HAZ and FZ.

  13. Arsenic entrapment by nanocrystals of Al-magnetite: The role of Al in crystal growth and As retention.

    PubMed

    Freitas, Erico T F; Stroppa, Daniel G; Montoro, Luciano A; de Mello, Jaime W V; Gasparon, Massimo; Ciminelli, Virginia S T

    2016-09-01

    The nature of As-Al-Fe co-precipitates aged for 120 days are investigated in detail by High Resolution Transmission Electron Microscopy (HRTEM), Scanning TEM (STEM), electron diffraction, Energy Dispersive X-Ray Spectroscopy (EDS), Electron Energy-Loss Spectroscopy (EELS), and Energy Filtered Transmission Electron Microscopy (EFTEM). The Al present in magnetite is shown to favour As incorporation (up to 1.10 wt%) relative to Al-free magnetite and Al-goethite, but As uptake by Al-magnetite decreases with increasing Al substitution (3.53-11.37 mol% Al). Arsenic-bearing magnetite and goethite mesocrystals (MCs) are formed by oriented aggregation (OA) of primary nanoparticles (NPs). Well-crystalline magnetite likely formed by Otswald ripening was predominant in the Al-free system. The As content in Al-goethite MCs (having approximately 13% substituted Al) was close to the EDS detection limit (0.1 wt% As), but was below detection in Al-goethites with 23.00-32.19 mol% Al. Our results show for the first time the capacity of Al-magnetite to incorporate more As than Al-free magnetite, and the role of Al in favouring OA-based crystal growth under the experimental conditions, and therefore As retention in the formed MCs. The proposed mechanism of As incorporation involves adsorption of As onto the newly formed NPs. Arsenic is then trapped in the MCs as they grow by self-assembly OA upon attachment of the NPs. We conclude that Al may diffuse to the crystal faces with high surface energy to reduce the total energy of the system during the attachment events, thus favouring the oriented aggregation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multiscale modeling of a low magnetostrictive Fe-27wt%Co-0.5wt%Cr alloy

    NASA Astrophysics Data System (ADS)

    Savary, M.; Hubert, O.; Helbert, A. L.; Baudin, T.; Batonnet, R.; Waeckerlé, T.

    2018-05-01

    The present paper deals with the improvement of a multi-scale approach describing the magneto-mechanical coupling of Fe-27wt%Co-0.5wt%Cr alloy. The magnetostriction behavior is demonstrated as very different (low magnetostriction vs. high magnetostriction) when this material is submitted to two different final annealing conditions after cold rolling. The numerical data obtained from a multi-scale approach are in accordance with experimental data corresponding to the high magnetostriction level material. A bi-domain structure hypothesis is employed to explain the low magnetostriction behavior, in accordance with the effect of an applied tensile stress. A modification of the multiscale approach is proposed to match this result.

  15. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  16. Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal

    PubMed Central

    Qiang Sun, Wen; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3) has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH)3 and the catalytic reactivity of Ni2B/Al(OH)3 is increased therefore. But hydrolysis byproduct La(OH)3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material. PMID:22619596

  17. Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.

    PubMed

    Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material.

  18. Reduction in secondary dendrite arm spacing in cast eutectic Al-Si piston alloys by cerium addition

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.; Shahizan, N. R.; Gandouz, S.

    2017-01-01

    The effects of Ce on the secondary dendrite arm spacing (SDAS) and mechanical behavior of Al-Si-Cu-Mg alloys were investigated. The reduction of SDAS at different Ce concentrations was evaluated in a directional solidification experiment via computer-aided cooling curve thermal analysis (CA‒CCTA). The results showed that 0.1wt%-1.0wt% Ce addition resulted in a rapid solidification time, Δ t s, and low solidification temperature, Δ T S, whereas 0.1wt% Ce resulted in a fast solidification time, Δ t a-Al, of the α-Al phase. Furthermore, Ce addition refined the SDAS, which was reduced to approximately 36%. The mechanical properties of the alloys with and without Ce were investigated using tensile and hardness tests. The quality index ( Q) and ultimate tensile strength of (UTS) Al-Si-Cu-Mg alloys significantly improved with the addition of 0.1wt% Ce. Moreover, the base alloy hardness was improved with increasing Ce concentration.

  19. Effect of Alloying Elements, Water Vapor Content, and Temperature on the Oxidation of Interstitial-Free Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Sohn, I. R.; Pettit, F. S.; Meier, G. H.; Sridhar, S.

    2009-08-01

    The present study is an investigation of the surface and subsurface oxidation of Mn solid-solution-strengthened interstitial-free (IF) steels with the objective of elucidating the surface evolution before coating. Thermogravimetric (TG) analysis was carried out under 95 vol pct Ar + 5 vol pct (H2 + H2O) atmospheres with P_{{{text{H}}2 {text{O}}}} /P_{{{text{H}}2 }} ranging from 0.01 to 0.13 and temperatures ranging from 800 °C to 843 °C. Post-exposure characterization was carried out through scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and glancing-angle X-ray diffraction (XRD) to study the external and internal oxide evolution. The oxidation proceeds as a combination of the internal and external formation of Mn oxides. Decreasing the P_{{{text{H}}2 {text{O}}}} /P_{{{text{H}}2 }} ratios or temperature has the effect of decreasing the amount of oxidation, which is a combination of internal and external oxidation controlled by solid-state oxygen and manganese diffusion, respectively. External oxides are not continuous; they are instead concentrated near the intersection of alloy grain boundaries with the external surface. Internal oxides are concentrated along the grain boundaries. The effects of Sb (0.03 wt pct), B (10 ppm), P (0.04 and 0.08 wt pct), and Si (0.06 to 1.5 wt pct) on the oxidation were investigated. It is found that small amounts of Sb and B have a significant effect on decreasing both the external and internal oxidation, whereas Si and P increase the external and internal oxidation.

  20. Rhodamine-WT dye losses in a mountain stream environment

    USGS Publications Warehouse

    Bencala, Kenneth E.; Rathburn, Ronald E.; Jackman, Alan P.; Kennedy, Vance C.; Zellweger, Gary W.; Avanzino, Ronald J.

    1983-01-01

    A significant fraction of rhodamine WT dye was lost during a short term multitracer injection experiment in a mountain stream environment. The conservative anion chloride and the sorbing cation lithium were concurrently injected. In-stream rhodamine WT concentrations were as low as 45 percent of that expected, based on chloride data. Concentration data were available from shallow‘wells’dug near the stream course and from a seep of suspected return flow. Both rhodamine WT dye and lithium were nonconservative with respect to the conservative chloride, with rhodamine WT dye closely following the behavior of the sorbing lithium.Nonsorption and sorption mechanisms for rhodamine WT loss in a mountain stream were evaluated in laboratory experiments. Experiments evaluating nonsorption losses indicated minimal losses by such mechanisms. Laboratory experiments using sand and gravel size streambed sediments show an appreciable capacity for rhodamine WT sorption.The detection of tracers in the shallow wells and seep indicates interaction between the stream and the flow in the surrounding subsurface, intergravel water, system. The injected tracers had ample opportunity for intimate contact with materials shown in the laboratory experiments to be potentially sorptive. It is suggested that in the study stream system, interaction with streambed gravel was a significant mechanism for the attenuation of rhodamine WT dye (relative to chloride).

  1. Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Acer, Emine; Çadırlı, Emin; Erol, Harun; Kaya, Hasan; Gündüz, Mehmet

    2017-12-01

    Dendritic spacing can affect microsegregation profiles and also the formation of secondary phases within interdendritic regions, which influences the mechanical properties of cast structures. To understand dendritic spacings, it is important to understand the effects of growth rate and composition on primary dendrite arm spacing ( λ 1) and secondary dendrite arm spacing ( λ 2). In this study, aluminum alloys with concentrations of (1, 3, and 5 wt pct) Zn were directionally solidified upwards using a Bridgman-type directional solidification apparatus under a constant temperature gradient (10.3 K/mm), resulting in a wide range of growth rates (8.3-165.0 μm/s). Microstructural parameters, λ 1 and λ 2 were measured and expressed as functions of growth rate and composition using a linear regression analysis method. The values of λ 1 and λ 2 decreased with increasing growth rates. However, the values of λ 1 increased with increasing concentration of Zn in the Al-Zn alloy, but the values of λ 2 decreased systematically with an increased Zn concentration. In addition, a transition from a cellular to a dendritic structure was observed at a relatively low growth rate (16.5 μm/s) in this study of binary alloys. The experimental results were compared with predictive theoretical models as well as experimental works for dendritic spacing.

  2. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, S.; Mohanasundararaju, N.; Venkatakrishnan, P. G.; Karthik, V.

    2018-02-01

    The present study deals with investigations relating to dry sliding wear behaviour of the Al 7075 alloy, reinforced with Al2O3 and B4C. The hybrid composites are produced through Liquid Metallurgy route - Stir casting method. The amount of Al2O3 particles is varied as 3, 6, 9, 12 and 15 wt% and the amount of B4C is kept constant as 3wt%. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L27 Orthogonal array was selected for analysis of the data. The investigation is to find the effect of applied load, sliding speed and sliding distance on wear rate and Coefficient of Friction (COF) of the hybrid Al7075- Al2O3-B4C composite and to determine the optimal parameters for obtaining minimum wear rate. The samples were examined using scanning electronic microscopy after wear testing and analyzed.

  3. Comparison between B·R·A·H·M·S PCT direct, a new sensitive point-of-care testing device for rapid quantification of procalcitonin in emergency department patients and established reference methods - a prospective multinational trial.

    PubMed

    Kutz, Alexander; Hausfater, Pierre; Oppert, Michael; Alan, Murat; Grolimund, Eva; Gast, Claire; Alonso, Christine; Wissmann, Christoph; Kuehn, Christian; Bernard, Maguy; Huber, Andreas; Mueller, Beat; Schuetz, Philipp

    2016-04-01

    Procalcitonin (PCT) is increasingly being used for the diagnostic and prognostic work up of patients with suspected infections in the emergency department (ED). Recently, B·R·A·H·M·S PCT direct, the first high sensitive point-of-care test (POCT), has been developed for fast PCT measurement on capillary or venous blood samples. This is a prospective, international comparison study conducted in three European EDs. Consecutive patients with suspicion of bacterial infection were included. Duplicate determination of PCT was performed in capillary (fingertip) and venous whole blood (EDTA), and compared to the reference method. The diagnostic accuracy was evaluated by correlation and concordance analyses. Three hundred and three patients were included over a 6-month period (60.4% male, median age 65.2 years). The correlation between capillary or venous whole blood and the reference method was excellent: r2=0.96 and 0.97, sensitivity 88.1% and 93.0%, specificity 96.5% and 96.8%, concordance 93% and 95%, respectively at a 0.25 μg/L threshold. No significant bias was observed (-0.04 and -0.02 for capillary and venous whole blood) although there were 6.8% and 5.1% outliers, respectively. B·R·A·H·M·S PCT direct had a shorter time to result as compared to the reference method (25 vs. 144 min, difference 119 min, 95% CI 110-134 min, p<0.0001). This study found a high diagnostic accuracy and a faster time to result of B·R·A·H·M·S PCT direct in the ED setting, allowing shortening time to therapy and a more wide-spread use of PCT.

  4. Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Bala, Niraj

    2017-10-01

    Magnesium-based metal matrix composites (MMMCs) have emerged as good alternative material to conventional materials due to their promising advanced properties. In the present work, magnesium-based metal matrix composites (MMMCs) reinforced with B4C particles were successfully fabricated by cost-effective conventional stir casting technique. MMMCs with an average particle size of 63 µm and different weight percent (wt pct) of B4C between 3 and 12 were fabricated. Wear tests were carried out using a pin-on-disk against a steel disk under dry sliding condition at loads that varied between 1 and 5 kg at fixed sliding velocity of 1 m/s. The wear data clearly showed that wear resistance of cast composites is better than that of unreinforced magnesium, which is attributed to dispersion hardening caused by carbide particles. An increase in wt pct of B4C showed the wear resistance and hardness to increase significantly. The wear rate and coefficient of friction increased with an increase in applied load. The SEM and EDS analysis of the worn surfaces delineated the dominant wear mechanisms to be abrasion, adhesion, and oxidation under the different sliding conditions. At lower loads, the wear mechanism transformed from severe abrasive wear in pure magnesium (Mg) to mild abrasion, slight delamination, and oxidation in the Mg/12 wt pct B4C fabricated composite. At higher loads, severe abrasion, adhesion, delamination, and oxidation were found to be the major wear mechanisms in pure Mg, whereas in the Mg/12 wt pct B4C fabricated composites the corresponding mechanisms were mild abrasion, mild adhesion, slight delamination, and oxidation.

  5. Synthesis and characterization of non halogen fire retardant composite through combination of epoxy resin, Al(OH)3 additive and filler

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Sungkar, Faraj

    2017-11-01

    Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.

  6. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    NASA Technical Reports Server (NTRS)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  7. The efficacy of procalcitonin as a biomarker in the management of sepsis: slaying dragons or tilting at windmills?

    PubMed

    Sridharan, Prasanna; Chamberlain, Ronald S

    2013-12-01

    Sepsis is defined as systemic inflammatory response syndrome (SIRS) in the context of an underlying infectious process, and is associated with high rates of morbidity and mortality, particularly when initial therapy is delayed. Numerous biomarkers, including but not limited to cytokines (interleukins-2 and -6 [IL-2, IL-6] and tumor necrosis factor-α [TNF-α]), leukotrienes, acute-phase proteins (C-reactive protein [CRP]), and adhesion molecules, have been evaluated and rejected as unsuitable for the diagnosis of sepsis, predicting its severity, and guiding its treatment. Most recently, procalcitonin (PCT) has been suggested as a novel biomarker that may be useful in guiding therapeutic decision making in the management of sepsis. This article assesses critically the published literature on the clinical utility of PCT concentrations for guiding the treatment of sepsis in adult patients. A comprehensive search of all published studies of the use of serum concentrations of PCT to guide the treatment of sepsis in adult patients (1996 to 2011) was conducted with PubMed and Google Scholar. The search focused on the value of PCT concentrations to guide the diagnosis, prognosis, monitoring, and escalation and de-escalation of antbiotic therapy in these patients. Keywords searched included "procalcitonin," "sepsis," "sepsis biomarker," "sepsis diagnosis," "sepsis prognosis," "sepsis mortality," "antibiotic escalation," "antibiotic de-escalation," "antibiotic duration," and "antimicrobial stewardship." Forty-six trials evaluating the efficacy of PCT concentrations in diagnosing sepsis have been published, with 39 of these trials yielding positive results and 7 yielding negative results. Wanner et al. published the largest study (n=405) demonstrating that peak PCT concentrations occur early after injury in both patients with sepsis and those with multiple organ dysfunction syndrome (MODS). Among 17 trials assessing the prognostic value of PCT concentrations with regard to

  8. Thermomechanical Processing of Fe-6.9Al-2Cr-0.88C Steel: Intercritical Annealing Followed by Quench Tempering

    NASA Astrophysics Data System (ADS)

    Farahat, Ahmed Ismail Zaky; Mohamed, Masoud Ibrahim

    2015-01-01

    A hot forged Fe-0.88 pct C-6.9 pct Al steel was intercritically annealed at temperatures in the range of 1173 K to 1283 K (900 °C to 1010 °C), and subsequently tempered at 623 K (350 °C) to enhance the mechanical properties by microstructure modification. Room temperature compression tests were carried out to evaluate the influence of the intercritical annealing temperature on the mechanical properties. A substructure was present in the microstructure after each intercritical annealing treatment. The substructure was absent after annealing at 1263 K (990 °C) and higher temperatures. Over-aging occurred when the annealing temperature was increased to 1283 K (1010 °C). A remarkable increase in strength and ductility was achieved after annealing at 1263 K (990 °C).

  9. Portable Computer Technology (PCT) Research and Development Program Phase 2

    NASA Technical Reports Server (NTRS)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  10. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractionsmore » of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.« less

  11. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  12. Hafnium influence on the microstructure of FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Geanta, V.; Voiculescu, I.; Stanciu, E.-M.

    2016-06-01

    Due to their special properties at high temperatures, FeCrAl alloys micro-alloyed with Zr can be regarded as potential materials for use at nuclear power plants, generation 4R. These materials are resistant to oxidation at high temperatures, to corrosion, erosion and to the penetrating radiations in liquid metal environments. Also, these are able to form continuously, by the self-generation process of an oxide coating with high adhesive strength. The protective oxide layers must be textured and regenerable, with a good mechanical strength, so that crack and peeling can not appear. To improve the mechanical and chemical characteristics of the oxide layer, we introduced limited quantities of Zr, Ti, Y, Hf, Ce in the range of 1-3%wt in the FeCrAl alloy. These elements, with very high affinity to the oxygen, are capable to stabilize the alumina structure and to improve the oxide adherence to the metallic substrate. FeCrAl alloys microalloyed with Hf were prepared using VAR (Vacuum Arc Remelting) unit, under high argon purity atmosphere. Three different experimental alloys have been prepared using the same metallic matrix of Fe-14Cr-5Al, by adding of 0.5%wt Hf, 1.0%wt Hf and respectively 1.5%wt Hf. The microhardness values for the experimental alloys have been in the range 154 ... 157 HV0.2. EDAX analyses have been performed to determine chemical composition on the oxide layer and in the bulk of sample and SEM analyze has been done to determine the microstructural features. The results have shown the capacity of FeCrAl alloy to form oxide layers, with different texture and rich in elements such as Al and Hf.

  13. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  14. Slow plastic deformation of extruded NiAl-10TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, S.; Mannan, S. K.; Viswanadham, R. K.

    1990-01-01

    A dispersion of 1-micron TiB2 particles in the B2 crystal structure NiAl intermetallic can effectively increase its elevated temperature strength, in association with increasing deformation resistance with TiB2 volume fraction. Attention is presently given to alternative densification methods, which may increase the initial as-fabricated dislocation density and lead to enhanced elevated-temperature strength. The 'XD' extrusion method was used to produce NiAl with 10 vol pct TiB2. Although apparent extrusion defects were occasionally found, neither grain-boundary cracking nor particle-matrix separation occurred.

  15. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer.

    PubMed

    Koido, Shigeo; Homma, Sadamu; Okamoto, Masato; Takakura, Kazuki; Mori, Masako; Yoshizaki, Shinji; Tsukinaga, Shintaro; Odahara, Shunichi; Koyama, Seita; Imazu, Hiroo; Uchiyama, Kan; Kajihara, Mikio; Arakawa, Hiroshi; Misawa, Takeyuki; Toyama, Yoichi; Yanagisawa, Satoru; Ikegami, Masahiro; Kan, Shin; Hayashi, Kazumi; Komita, Hideo; Kamata, Yuko; Ito, Masaki; Ishidao, Takefumi; Yusa, Sei-Ichi; Shimodaira, Shigetaka; Gong, Jianlin; Sugiyama, Haruo; Ohkusa, Toshifumi; Tajiri, Hisao

    2014-08-15

    We performed a phase I trial to investigate the safety, clinical responses, and Wilms' tumor 1 (WT1)-specific immune responses following treatment with dendritic cells (DC) pulsed with a mixture of three types of WT1 peptides, including both MHC class I and II-restricted epitopes, in combination with chemotherapy. Ten stage IV patients with pancreatic ductal adenocarcinoma (PDA) and 1 patient with intrahepatic cholangiocarcinoma (ICC) who were HLA-positive for A*02:01, A*02:06, A*24:02, DRB1*04:05, DRB1*08:03, DRB1*15:01, DRB1*15:02, DPB1*05:01, or DPB1*09:01 were enrolled. The patients received one course of gemcitabine followed by biweekly intradermal vaccinations with mature DCs pulsed with MHC class I (DC/WT1-I; 2 PDA and 1 ICC), II (DC/WT1-II; 1 PDA), or I/II-restricted WT1 peptides (DC/WT1-I/II; 7 PDA), and gemcitabine. The combination therapy was well tolerated. WT1-specific IFNγ-producing CD4(+) T cells were significantly increased following treatment with DC/WT1-I/II. WT1 peptide-specific delayed-type hypersensitivity (DTH) was detected in 4 of the 7 patients with PDA vaccinated with DC/WT1-I/II and in 0 of the 3 patients with PDA vaccinated with DC/WT1-I or DC/WT1-II. The WT1-specific DTH-positive patients showed significantly improved overall survival (OS) and progression-free survival (PFS) compared with the negative control patients. In particular, all 3 patients with PDA with strong DTH reactions had a median OS of 717 days. The activation of WT1-specific immune responses by DC/WT1-I/II combined with chemotherapy may be associated with disease stability in advanced pancreatic cancer. ©2014 American Association for Cancer Research.

  16. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  17. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Mirbagheri, S. M. H.; Vali, H.; Soltani, H.

    2017-01-01

    In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

  18. Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, asbestos, Estrie region, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Panikorovskii, Taras L.; Chukanov, Nikita V.; Aksenov, Sergey M.; Mazur, Anton S.; Avdontseva, Evgenia Yu; Shilovskikh, Vladimir V.; Krivovichev, Sergey V.

    2017-12-01

    Alumovesuvianite (IMA 2016-014), ideally Ca19Al(Al,Mg)12Si18O69(OH)9, is a new vesuvianite-group member found in the rodingite zone at the contact of a gabbroid rock with host serpentinite in the abandoned Jeffrey mine, Asbestos, Estrie Region, Québec, Canada. It occurs as prismatic tetragonal crystals up to 4 × 4 × 6 mm3 in size encrusting walls of cavities in a granular diopside. Associated minerals are diopside, grossular and prehnite. Single crystals of alumovesuvianite are transparent colorless or light pink with a vitreous lustre. The dominant crystal forms are {100}, {110}, {210}, {111}, {101} and {001}. The Mohs hardness is 6.5. The specific gravitiy is D meas = 3.31(1) g/cm3 and D calc = 3.36 g/cm3, respectively. The mineral is optically uniaxial (-), ω = 1.725(2), ɛ = 1.722(2). The chemical composition, determined by SEM-WDS (wavelength-dispersive spectroscopy on a scanning electron microscope; all oxides except H2O) and TG (thermogravimety; H2O) analysis, is: SiO2 37.1 wt%, Al2O3 18.8 wt%, CaO 36.6 wt%, MgO 2.48 wt%, Mn2O3 0.67 wt%, Fe2O3 0.22 wt%, H2O 2.61 wt%, total 98.5 wt%. The empirical formula based on 19 Ca atoms per formula unit and taking into account the MAS-NMR (magic-angle spinning nuclear magnetic resonance) data, is: Ca19.00(Al0.92Fe3+ 0.08)Σ1.00(Al9.83Mg1.80Mn3+ 0.25)Σ11.88Si17.98O69.16(OH)8.44. The most intense IR absorption bands lie in the ranges 412-609, 897-1024, and 3051-3671 cm-1. The eight strongest lines of the powder X-ray diffraction pattern are ( I-d(Å)- hkl): 22-2.96-004, 100-2.761-432, 61-2.612-224, 25-2.593-600, 20-1.7658-831, 20-1.6672-734, 21-1.6247-912, and 22-1.3443-880. Alumovesuvianite is tetragonal, space group P4/ n, unit-cell parameters refined from the powder data are a = 15.5603(5) Å, c = 11.8467(4) Å, V = 2868.3(4) Å3, Z = 2. The crystal structure has been refined to R 1 = 0.036 for 3098 unique observed reflections with | F o| ≥ 4σ F . The structure refinement provides the < Y1A-O > bond length of 1

  19. Microstructure, Mechanical Properties and Corrosion Behavior of Porous Mg-6 wt.% Zn Scaffolds for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Wang, Qiyuan; Deng, Youwen; Fang, Hongjie; Jiang, Dayue; Zhang, Yu

    2018-03-01

    Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.

  20. [Influences of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite ceramics].

    PubMed

    Wang, Zhiqiang; Chen, Xiaoxu; Cai, Yingji; Lü, Bingling

    2003-06-01

    The effects of R2O-Al2O3-B2O3-SiO2 system glass and superfine alpha-Al2O3 on the sintering and phase transition of hydroxyapatite (HAP) ceramics were assessed. The results showed that alpha-Al2O3 impeded the sintering of HAP and raised the sintering temperature. When glass and alpha-Al2O3 were used together to reinforce HAP ceramics, better results could be obtained; the bending strength of multiphase HAP ceramics approached 106 MPa when 10% (wt) alpha-Al2O3 and 20%(wt) glass were used and sintered at 1200 for 1 h.

  1. Prevalence and Prognostic Impact of Wilms' Tumor 1 (WT1) Gene, Including SNP rs16754 in Cytogenetically Normal Acute Myeloblastic Leukemia (CN-AML): An Iranian Experience.

    PubMed

    Toogeh, Gholamreza; Ramzi, Mani; Faranoush, Mohammad; Amirizadeh, Naser; Haghpanah, Sezaneh; Moghadam, Mohammad; Cohan, Nader

    2016-03-01

    The aim of this study was to evaluate the effect of Wilms' tumor 1 (WT1) gene mutations in adult cytogenetically normal acute myeloblastic leukemia (CN-AML) patients on survival and clinical outcome. A total of 88 untreated Iranian adult patients with CN-AML were selected as a study group. Exons 7 (including the SNP rs16754), 8, and 9 as a WT1 gene hotspot region were evaluated by polymerase chain reaction and direct sequencing for detection of mutations. Response to treatment and clinical outcome including overall survival (OS) and disease-free survival (DFS) were evaluated according to WT1 gene mutational status. WT1 gene mutations were found in 12.5% of patients, most of which were found in exon 7. Complete remission was lower and relapse was higher in patients with WT1 gene mutation compared with WT1 gene wild type patients. OS and DFS was significantly lower in patients with WT1 gene mutation compared with patients with WT1 gene wild type (P < .001). Also, we did not find any significant effects of SNP rs16754 in exon 7 on clinical outcome and survival in patients with CN-AML. WT1 gene mutations are a predictor indicator of a poor prognosis factor in CN-AML patients. It is recommended that WT1 gene mutations be included in the molecular testing panel in order to better diagnose and confirm their prognostic significance for better management and treatment strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. WT1 isoform expression pattern in acute myeloid leukemia.

    PubMed

    Luna, Irene; Such, Esperanza; Cervera, Jose; Barragán, Eva; Ibañez, Mariam; Gómez-Seguí, Inés; López-Pavía, María; Llop, Marta; Fuster, Oscar; Dolz, Sandra; Oltra, Silvestre; Alonso, Carmen; Vera, Belén; Lorenzo, Ignacio; Martínez-Cuadrón, David; Montesinos, Pau; Senent, M Leonor; Moscardó, Federico; Bolufer, Pascual; Sanz, Miguel A

    2013-12-01

    WT1 plays a dual role in leukemia development, probably due to an imbalance in the expression of the 4 main WT1 isoforms. We quantify their expression and evaluate them in a series of AML patients. Our data showed a predominant expression of isoform D in AML, although in a lower quantity than in normal CD34+ cells. We found a positive correlation between the total WT1 expression and A, B and C isoforms. The overexpression of WT1 in AML might be due to a relative increase in A, B and C isoforms, together with a relative decrease in isoform D expression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  4. Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor.

    PubMed

    Lange, Jane; Peterson, Susan M; Takashima, Janice R; Grigoriev, Yevgeny; Ritchey, Michael L; Shamberger, Robert C; Beckwith, J Bruce; Perlman, Elizabeth; Green, Daniel M; Breslow, Norman E

    2011-08-01

    We assessed risk factors for end stage renal disease in patients with Wilms tumor without known WT1 related syndromes. We hypothesized that patients with characteristics suggestive of a WT1 etiology (early onset, stromal predominant histology, intralobar nephrogenic rests) would have a higher risk of end stage renal disease due to chronic renal failure. We predicted a high risk of end stage renal disease due to progressive bilateral Wilms tumor in patients with metachronous bilateral disease. End stage renal disease was ascertained in 100 of 7,950 nonsyndromic patients enrolled in a National Wilms Tumor Study during 1969 to 2002. Risk factors were evaluated with cumulative incidence curves and proportional hazard regressions. The cumulative incidence of end stage renal disease due to chronic renal failure 20 years after Wilms tumor diagnosis was 0.7%. For end stage renal disease due to progressive bilateral Wilms tumor the incidence was 4.0% at 3 years after diagnosis in patients with synchronous bilateral Wilms tumor and 19.3% in those with metachronous bilateral Wilms tumor. For end stage renal disease due to chronic renal failure stromal predominant histology had a HR of 6.4 relative to mixed (95% CI 3.4, 11.9; p<0.001), intralobar rests had a HR of 5.9 relative to no rests (95% CI 2.0, 17.3; p=0.001), and Wilms tumor diagnosis at less than 24 months had a HR of 1.7 relative to 24 to 48 months and 2.8 relative to greater than 48 months (p=0.003 for trend). Metachronous bilateral Wilms tumor is associated with high rates of end stage renal disease due to surgery for progressive Wilms tumor. Characteristics associated with a WT1 etiology markedly increased the risk of end stage renal disease due to chronic renal failure despite the low risk in non-WT1 syndromic cases overall. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

    NASA Astrophysics Data System (ADS)

    Liao, Chun-fa; Jiao, Yun-fen; Wang, Xu; Cai, Bo-qing; Sun, Qiang-chao; Tang, Hao

    2017-09-01

    Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature ( t) and the addition of Al2O3 ( W(Al2O3)), Sm2O3 ( W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity ( κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature ( t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3): W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.

  6. Spurious Grain Formation at Cross-Sectional Expansion During Directional Solidification: Influence of Thermosolutal Convection

    NASA Astrophysics Data System (ADS)

    Ghods, M.; Lauer, M.; Upadhyay, S. R.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2018-04-01

    Formation of spurious grains during directional solidification (DS) of Al-7 wt.% Si and Al-19 wt.% Cu alloys through an abrupt increase in cross-sectional area has been examined by experiments and by numerical simulations. Stray grains were observed in the Al-19 wt.% Cu samples and almost none in the Al-7 wt.% Si. The locations of the stray grains correlate well where numerical solutions indicate the solute-rich melt to be flowing up the thermal gradient faster than the isotherm velocity. It is proposed that the spurious grain formation occurred by fragmentation of slender tertiary dendrite arms was enhanced by thermosolutal convection. In Al-7 wt.% Si, the dendrite fragments sink in the surrounding melt and get trapped in the dendritic array growing around them, and therefore they do not grow further. In the Al-19 wt.% Cu alloy, on the other hand, the dendrite fragments float in the surrounding melt and some find conducive thermal conditions for further growth and become stray grains.

  7. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics.

    PubMed

    Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M

    2010-09-01

    Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Stabilization of cubic Li7La3Hf2O12 by Al-doping

    NASA Astrophysics Data System (ADS)

    Baklanova, Yana V.; Tyutyunnik, Alexander P.; Tarakina, Nadezda V.; Fortes, A. Dominic; Maksimova, Lidiya G.; Korona, Daniil V.; Denisova, Tatyana A.

    2018-07-01

    In this paper we report on the stabilization of cubic Li7La3Hf2O12 by Al3+ doping and present a detailed crystal structure study and lithium ion conductivity measurements of the obtained compound. Polycrystalline Al-doped Li7La3Hf2O12 was prepared by a modified solid state method. The compound consists of micrometer size grains encapsulated by a glassy phase, which helps preventing the volatilization of lithium during annealing. Al-doped Li7La3Hf2O12 crystallizes in the garnet-related structure with a cubic unit cell (sp. gr. Ia 3 bar d (230)). A structural refinement using X-ray and neutron powder diffraction data showed that the Al3+ ions occupy only tetrahedral Li+ sites in the structure. The presence of overextended leading edges of the peaks on the XRD and NPD data is described by the introduction of an additional phase with rhombohedral distortion that occurs through a stretching of the cubic phase along the body diagonal. The activation energy as well as the total conductivity at room temperature are close to values obtained for un-doped cubic Li7La3Zr2O12 and Li7La3Hf2O12 garnets, which make Al-doped Li7La3Hf2O12 a potential candidate for the application as solid electrolyte in solid-state rechargeable lithium-ion batteries.

  9. Effect of CeLa addition on the microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jiandi

    Development of high strength lithium battery shell alloy is highly desired for new energy automobile industry. The microstructures and mechanical properties of Al-Cu-Mn-Mg-Fe alloy with different CeLa additions were investigated through optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rietveld refinement and tensile testing. Experimental results indicate that Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed due to CeLa addition. Addition of 0.25 wt.% CeLa could promote the formation of denser precipitation of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe) phases, which improved the mechanical properties of the alloy at room temperature.more » However, up to 0.50 wt.% CeLa addition could promote the formation of coarse Al{sub 8}Cu{sub 4}Ce phase, Al{sub 6}Cu{sub 6}La phase and Al{sub 6}(Mn, Fe) phase, which resulted in weakened mechanical properties. - Highlights: •Al-Cu-Mn-Mg-Fe alloys with different CeLa addition were fabricated through casting and rolling. •Al{sub 8}Cu{sub 4}Ce and Al{sub 6}Cu{sub 6}La phases formed after CeLa addition. •Addition of 0.25 wt.% CeLa promoted formation of denser precipitates of Al{sub 20}Cu{sub 2}Mn{sub 3} and Al{sub 6}(Mn, Fe). •Mechanical properties of the alloy was improved after 0.25 wt.% CeLa addition.« less

  10. Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos

    2012-04-30

    We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassiummore » loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.« less

  11. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  12. Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Keskin, Mustafa

    2010-06-01

    Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates ( ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.

  13. Comparison of the Microstructure and Flux Pinning Properties of Polycrystalline YBa2Cu3O7-d Containing Zn0.95Mn0.05O or Al2O3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.

    2018-07-01

    Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.

  14. Comparison of the Microstructure and Flux Pinning Properties of Polycrystalline YBa2Cu3O7-d Containing Zn0.95Mn0.05O or Al2O3 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.

    2018-03-01

    Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.

  15. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  16. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    NASA Astrophysics Data System (ADS)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  17. Micro-nano filler metal foil on vacuum brazing of SiCp/Al composites

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Gao, Zeng; Niu, Jitai

    2016-06-01

    Using micro-nano (Al-5.25Si-26.7Cu)- xTi (wt%, x = 1.0, 1.5, 2.0, 2.5 and 3.0) foils as filler metal, the research obtained high-performance joints of aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process and Ti content on joint properties was investigated, respectively. The experimental results indicate that void free dense interface between SiC particle and metallic brazed seam with C-Al-Si-Ti product was readily obtained, and the joint shear strength enhanced with increasing brazing temperature from 560 to 580 °C or prolonging soaking time from 10 to 90 min. Sound joints with maximum shear strength of 112.5 MPa was achieved at 580 °C for soaking time of 90 min with (Al-5.25Si-26.7Cu)-2Ti filler, where Ti(AlSi)3 intermetallic is in situ strengthening phase dispersed in the joint and fracture occured in the filler metal layer. In this research, the beneficial effect of Ti addition into filler metal on improving wettability between SiC particle and metallic brazed seam was demonstrated, and capable welding parameters were broadened for SiCp/Al-MMCs with high SiC particle content.

  18. Interaction of Fe-Al-Cr-C with the melt of an alkali metal carbonate

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.

    2015-08-01

    The interaction of an Fe-Al-Cr-C (29.5 wt % Fe, 29.35 wt % Cr, 2.56 wt % C, 38.59 wt % Al) alloy with the melt of a lithium, sodium, or potassium carbonate containing 1-5 wt % addition to a salt phase is studied by gravimetry and measuring the corrosion potential and anode polarization curves in the temperature range 500-600°C. As passivators, the substances that decrease the corrosion losses due to hardening and thickening of an oxide film (lithium, sodium, potassium hydroxides) are used. As corrosion stimulators (activators), sodium chloride, fluoride, and sulfate are used. The coalloying of iron with chromium and aluminum results in high corrosion resistance against both frontal (continuous) and local (pitting, intercrystalline) corrosion as a result of formation of chemically resistant and high-adhesion oxide layers with their participation. X-ray diffraction analysis reveals gamma aluminum oxide, spinel (alumochromite) traces, and lithium aluminate at the surface.

  19. Effect of high power ultrasound on mechanical properties of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Srivastava, N.; Gupta, R.; Chaudhari, G. P.

    2018-03-01

    Effect of high power ultrasonic treatment on the solidification microstructures of Al-Si alloys containing varying content of solute Si (1, 2, 3 and 5 wt %) is investigated. Large variation in microstructures is seen and refinement of primary α-Al grains is observed. It is observed that increasing the weight percentage of solute along with ultrasonic treatment resulted in finer primary phase. By increasing the solute content from 1% to 5 wt.% in Al-Si alloys, hardness increased by about 38% without and 48% with ultrasonic treatment. Tensile strength of the alloys with ultrasonic treatment is higher as compared to those without ultrasonic treated.

  20. Wt-p53 action in human leukaemia cell lines corresponding to different stages of differentiation.

    PubMed

    Rizzo, M G; Zepparoni, A; Cristofanelli, B; Scardigli, R; Crescenzi, M; Blandino, G; Giuliacci, S; Ferrari, S; Soddu, S; Sacchi, A

    1998-05-01

    Recent studies support the potential application of the wt-p53 gene in cancer therapy. Expression of exogenous wt-p53 suppresses a variety of leukaemia phenotypes by acting on cell survival, proliferation and/or differentiation. As for tumour gene therapy, the final fate of the neoplastic cells is one of the most relevant points. We examined the effects of exogenous wt-p53 gene expression in several leukaemia cell lines to identify p53-responsive leukaemia. The temperature-sensitive p53Val135 mutant or the human wt-p53 cDNA was transduced in leukaemia cell lines representative of different acute leukaemia FAB subtypes, including M1 (KG1), M2 (HL-60), M3 (NB4), M5 (U937) and M6 (HEL 92.1.7), as well as blast crisis of chronic myelogenous leukaemia (BC-CML: K562, BV173) showing diverse differentiation features. By morphological, molecular and biochemical analyses, we have shown that exogenous wt-p53 gene expression induces apoptosis only in cells corresponding to M1, M2 and M3 of the FAB classification and in BC-CML showing morphological and cytochemical features of undifferentiated blast cells. In contrast, it promotes differentiation in the others. Interestingly, cell responsiveness was independent of the vector used and the status of the endogenous p53 gene.

  1. Co-Precipitation, Strength and Electrical Resistivity of Cu–26 wt % Ag–0.1 wt % Fe Alloy

    PubMed Central

    Li, Rui; Wang, Engang

    2017-01-01

    Both a Cu–26 wt % Ag (Fe-free) alloy and Cu–26 wt % Ag–0.1 wt % Fe (Fe-doping) alloy were subjected to different heat treatments. We studied the precipitation kinetics of Ag and Cu, microstructure evolution, magnetization, hardness, strength, and electrical resistivity of the two alloys. Fe addition was incapable of changing the precipitation kinetics of Ag and Cu; however, it decreased the size and spacing of rod-shaped Ag precipitates within a Cu matrix, because Fe might affect the elastic strain field and diffusion field, suppressing the nucleation of Ag precipitates. Magnetization curves showed that γ-Fe precipitates were precipitated out of the Cu matrix, along with Ag precipitates in Fe-doping alloy after heat treatments. The yield strength of the Fe-doping alloy was higher than that of the Fe-free alloy, and the maximum increment was about 41.3%. The electrical conductivity in the aged Fe-doping alloy was up to about 67% IACS (International Annealed Copper Standard). Hardness, strength, and electrical resistivity were intensively discussed, based on the microstructural characterization and solute contributions of both alloys. Our results demonstrated that an increasing fraction of nanoscale γ-Fe precipitates and decreasing spacing between Ag precipitates resulted in the increasing strength of the Fe-doping alloy. PMID:29207505

  2. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  3. The corrosion behavior of Fe-Mn-Al weld metals

    NASA Astrophysics Data System (ADS)

    Aidun, Daryush K.

    2001-02-01

    The corrosion resistance of a newly developed iron-base, Fe-Mn-Al austenitic, and duplex weld metal has been examined in the NACE solution consisting of 5 wt.% NaCl, 0.5 wt.% acetic acid, and the balance distilled water. The electrochemical techniques such as potentiodynamic polarization, Tafel plots, linear polarization, cyclic polarization, and open-circuit potential versus time were employed. The Fe-Mn-Al weld metals did not passivate and exhibited high corrosion rates. Fe-Cr-Ni (310 and 316) weld and base metals were also examined in the NACE solution at room temperature. The 310 and 316 base metals were more resistant to corrosion than the as-welded 310 and 316 weld metals. Postweld heat treatment (PWHT) improved the corrosion performance of the Fe-Mn-Al weld metals. The corrosion resistance of Fe-Mn-Al weld metals after PWHT was still inferior to that of the 310 and 316 weld and base metals.

  4. The frequency and significance of WT-1 expression in serous endometrial carcinoma.

    PubMed

    Hedley, Catherine; Sriraksa, Ruethairat; Showeil, Rania; Van Noorden, Susan; El-Bahrawy, Mona

    2014-09-01

    Serous endometrial carcinoma is an aggressive type of endometrial carcinoma. Wilms tumor gene 1 (WT-1) is commonly expressed in ovarian serous carcinomas and considered a diagnostic marker of these tumors. However, it is generally believed that WT-1 is rarely expressed by endometrial serous carcinoma. The aim of this study was to evaluate the frequency and significance of WT-1 expression in endometrial serous carcinoma. We studied the expression of WT-1 in formalin-fixed, paraffin-embedded tumor sections from 77 cases of endometrial serous carcinoma. Thirty-four tumors showed positive expression for WT-1 (44%). There was a statistically significant association between the presence of WT-1 expression and disease-free survival (DFS), where patients with tumors expressing WT-1 had a shorter DFS compared with those with no WT-1 expression (P = .031; median DFS, 15 and 38 months, respectively). By multivariate Cox regression analysis, DFS was independent from other clinicopathological data (tumor stage, presence of lymphovascular space invasion, cervical involvement, and extrauterine spread), indicating that WT-1 expression is independently associated with DFS. Our study shows that WT-1 is expressed in a considerable percentage of endometrial serous carcinomas, suggesting a role for WT-1 in the pathology of these tumors. This has therapeutic significance, as WT-1 is an emerging target for immunotherapy. Moreover, our results show that WT-1 has prognostic value, being predictive of DFS. As a potential prognostic marker and therapeutic target, we recommend that WT-1 expression should be included in histopathologic reports of endometrial serous carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  6. Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings.

    PubMed

    Srimaneepong, Viritpon; Yoneyama, Takayuki; Kobayashi, Equo; Doi, Hisashi; Hanawa, Takao

    2005-12-01

    Mechanical properties of laser-welded castings of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy were investigated and compared to the unwelded castings using a tensile test. Dumbbell-shaped specimens were cut at the center, and two halves of the specimens were welded with an Nd:YAG laser welding machine at 220 or 260 V of laser voltage. The mechanical strength of 260 V groups was higher than that of 220 V groups for Ti-6Al-7Nb and Co-Cr alloys except for CP Ti. All 260 V laser-welded castings of Ti-6Al-7Nb alloy and CP Ti, which fractured outside the welded joints, exhibited ductile characteristics, while all laser-welded Co-Cr alloy castings, which fractured within the welded joints, showed brittle characteristics. This study proved that the mechanical strength of laser-welded Ti-6Al-7Nb alloy and CP Ti castings was as high as that of unwelded castings, while the mechanical properties of laser-welded alloy joints were influenced by microstructural changes.

  7. Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys.

    PubMed

    Basak, C B; Babu, N Hari

    2017-07-18

    High iron impurity affects the castability and the tensile properties of the recycled Al-Si alloys due to the presence of the Fe containing intermetallic β-Al 9 Fe 2 Si 2 phase. To date only Mn addition is known to transform the β-Al 9 Fe 2 Si 2 phase in the Al-Si-Fe system. However, for the first time, as reported here, it is shown that β-phase transforms to the ω-Al 7 Cu 2 Fe phase in the presence of Cu, after solutionization at 793 K. The ω-phase decomposes below 673 K resulting into the formation of θ-Al 2 Cu phase. However, the present thermodynamic description of the Al-Si-Fe-Cu system needs finer tuning to accurately predict the stability of the ω-phase in these alloys. In the present study, an attempt was made to enhance the strength of Al-6wt%Si-2wt%Fe model recycled cast alloy with different amount of Cu addition. Microstructural and XRD analysis were carried out in detail to show the influence of Cu and the stability range of the ω-phase. Tensile properties and micro-hardness values are also reported for both as-cast and solutionized alloys with different amount of Cu without and with ageing treatment at 473 K. The increase in strength due to addition of Cu, in Fe-rich Al-Si alloys is promising from the alloy recyclability point of view.

  8. The effect of CuAl addition on the magnetic property, thermal stability and corrosion resistance of the sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Liang, J.; He, Y. Ch.; Li, Y. F.; Wang, G. F.; Ma, Q.; Liu, F.; Zhang, Y.; Zhang, X. F.

    2018-05-01

    To improve the coercivity of the Nd-Fe-B sintered magnets, the Cu29.8Al70.2 (at.%) powders with low melting point were introduced into the Nd-Fe-B magnets. The magnetic properties, microstructure, thermal stability and corrosion behavior of the sintered magnets with different amount of Cu29.8Al70.2 (0,0.25,0.50,0.75,1.0 wt.%) were investigated. When the amount of doped Cu29.8Al70.2 was less than 0.75 wt.%, the coercivity was improved, especially that of the magnets with 0.25 wt.% Cu29.8Al70.2, markedly increased to 13.97 kOe from 12.67 kOe (without CuAl). The improvement of magnetic properties could be attributed to enhanced wettability between Nd2Fe14B phase and Nd-rich phase and decreased exchange coupling between grains, which depended on the optimization of grain boundary microstructure and their distribution by codoping Cu and Al. With the addition of 0-1.0 wt.% Cu29.8Al70.2 powders, the reversible temperature coefficients of remanence and coercivity of the magnets could be also improved. The corrosion resistances was also found to be improved through small addition of Cu29.8Al70.2 powder in 3.5 wt.% NaCl solution by electrochemical and immersion tests, which could be due to the enhancement of the Nd-rich intergranular phase by addition Cu29.8Al70.2.

  9. Effects of CuZnAl Particles on Properties and Microstructure of Sn-58Bi Solder

    PubMed Central

    Yang, Fan; Zhang, Liang; Liu, Zhi-quan; Zhong, Su Juan; Ma, Jia; Bao, Li

    2017-01-01

    With the purpose of improving the properties of the Sn-58Bi lead-free solder, micro-CuZnAl particles ranging from 0 to 0.4 wt % were added into the low temperature eutectic Sn-58Bi lead-free solder. After the experimental testing of micro-CuZnAl particles on the properties and microstructure of the Sn-58Bi solders, it was found that the wettability of the Sn-58Bi solders was obviously improved with addition of CuZnAl particles. When the addition of CuZnAl particles was 0.2 wt %, the wettability of the Sn-58Bi solder performed best. At the same time, excessive addition of CuZnAl particles led to poor wettability. However, the results showed that CuZnAl particles changed the melting point of the Sn-58Bi solder slightly. The microstructure of the Sn-58Bi solder was refined by adding CuZnAl particles. When the content of CuZnAl addition was between 0.1 and 0.2 wt %, the refinement was great. In addition, the interfacial IMC layer between new composite solder and Cu substrate was thinner than that between the Sn-58Bi solder and Cu substrate. PMID:28772917

  10. Methotrexate intercalated ZnAl-layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Manjusha; Dasgupta, Sudip; Soundrapandian, Chidambaram

    2011-09-15

    The anticancerous drug methotrexate (MTX) has been intercalated into an ZnAl-layered double hydroxide (LDH) using an anion exchange technique to produce LDH-MTX hybrids having particle sizes in the range of 100-300 nm. X-ray diffraction studies revealed increases in the basal spacings of ZnAl-LDH-MTX hybrid on MTX intercalation. This was corroborated by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.9 A in pristine LDH to 21.3 A in LDH-MTX hybrid. Thermogravimetric analyses showed an increase in the decomposition temperature for the MTX molecule in the LDH-MTX hybrid indicating enhanced thermal stability of the drug moleculemore » in the LDH nanovehicle. The cumulative release profile of MTX from ZnAl-LDH-MTX hybrids in phosphate buffer saline (PBS) at pH 7.4 was successfully sustained for 48 h following Rigter-Peppas model release kinetics via diffusion. - Graphical abstract: ZnAl-layered double hydroxide intercalated with methotrexate ({approx}34% loading) promises the possibility of use of ZnAl-LDH material as drug carrier and in controlled delivery. Highlights: > ZnAl-layered double hydroxide methotrexate nanohybrid has been synthesized. > XRD and TEM studies on nanohybrid revealed successful intercalation of methotrexate. > TG and CHN analyses showed {approx}34 wt% of methotrexate loading into the nanohybrid. > Possibility of use of ZnAl-LDH material as drug carrier and in delivery.« less

  11. Enhanced Densification of PM Steels by Liquid Phase Sintering with Boron-Containing Master Alloy

    NASA Astrophysics Data System (ADS)

    Vattur Sundaram, Maheswaran; Surreddi, Kumar Babu; Hryha, Eduard; Veiga, Angela; Berg, Sigurd; Castro, Fransisco; Nyborg, Lars

    2018-01-01

    Reaching high density in PM steels is important for high-performance applications. In this study, liquid phase sintering of PM steels by adding gas-atomized Ni-Mn-B master alloy was investigated for enhancing the density levels of Fe- and Mo- prealloyed steel powder compacts. The results indicated that liquid formation occurs in two stages, beginning with the master alloy melting (LP-1) below and eutectic phase formation (LP-2) above 1373 K (1100 °C). Mo and C addition revealed a significant influence on the LP-2 temperatures and hence on the final densification behavior and mechanical properties. Microstructural embrittlement occurs with the formation of continuous boride networks along the grain boundaries, and its severity increases with carbon addition, especially for 2.5 wt pct of master alloy content. Sintering behavior, along with liquid generation, microstructural characteristics, and mechanical testing revealed that the reduced master alloy content from 2.5 to 1.5 wt pct (reaching overall boron content from 0.2 to 0.12 wt pct) was necessary for obtaining good ductility with better mechanical properties. Sintering with Ni-Mn-B master alloy enables the sintering activation by liquid phase formation in two stages to attain high density in PM steels suitable for high-performance applications.

  12. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  13. Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials

    NASA Astrophysics Data System (ADS)

    Lopes, Éder Sócrates Najar; Salvador, Camilo Augusto Fernandes; Andrade, Denis Renato; Cremasco, Alessandra; Campo, Kaio Niitsu; Caram, Rubens

    2016-06-01

    New β metastable Ti alloys based on Ti-30Nb alloy with the addition of 1, 3, or 5 wt pct Fe have been developed using the bond order and the metal d-orbital energy level ( overline{{Bo}} {-} overline{{Md}} ) design theory. The samples were prepared by arc melting, hot working, and solution heat treatment above the β transus followed by water quenching (WQ) or furnace cooling (FC). The effect of the cooling rate on the microstructure of Ti-30Nb-3Fe wt pct was investigated in detail using a modified Jominy end quench test. The results show that Fe acts as a strong β-stabilizing alloying element. The addition of Fe also leads to a reduction in the ω and α phases volumetric fractions, although the ω phase was still detected in the WQ Ti-30Nb-5Fe samples, as shown by TEM, and α phase clusters were detected by SEM in the FC Ti-30Nb-3Fe samples. Among the WQ samples, the addition of 5 wt pct Fe improves the ultimate tensile strength (from 601 to 689 MPa), reduces the final elongation (from 28 to 16 pct), and impairs the electrochemical corrosion resistance, as evaluated by potentiodynamic polarization tests in Ringer's solution. The microstructural variation arising from the addition of Fe did not change the elastic modulus (approximately 80 GPa for all experimental WQ samples). This study shows that small Fe additions can tailor the microstructure of Ti-Nb alloys, modifying α and ω phase precipitation and improving mechanical strength.

  14. Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Cho, Lawrence; Seo, Eun Jung; Jung, Geun Su; Suh, Dong Woo; De Cooman, Bruno C.

    2016-04-01

    The influence of the addition of Sn on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. A reference TRIP steel and TRIP steels containing Sn in the range of 0.05 to 1 wt pct were intercritically annealed at 1093 K (820 °C) in an N2+ 5 pct H2 gas atmosphere with a dew point of -60 °C. The thin-film oxides formed on the surface of the Sn-added CMnSi TRIP steel were investigated using transmission electron microscopy and 3-dimensional atom probe tomography. The addition of Sn (≥0.05 wt pct) changed the morphology of the xMnO·SiO2 surface oxides from a continuous film morphology to a lens-shaped island morphology. It also suppressed the formation of the Mn-rich oxides of MnO and 2MnO·SiO2. The changes in the morphology and chemistry of the surface oxides were clearly related to the surface segregation of Sn, which appeared to result in a decrease of the oxygen permeability at the surface. The formation of lens-shaped oxides improved the wettability of the CMnSi TRIP steel surface by the molten Zn. The improved wetting effect was attributed to an increased area fraction of the surface where the oxide layer was thinner. This enabled a direct, unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer in the initial stages of the hot dipping. The addition of a small amount of Sn was also found to decrease significantly the density of Zn-coating defects on CMnSi TRIP steel.

  15. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  16. Wetting and Brazing of Alumina by Sn0.3Ag0.7Cu-Ti Alloy

    NASA Astrophysics Data System (ADS)

    Kang, J. R.; Song, X. G.; Hu, S. P.; Liu, D.; Guo, W. J.; Fu, W.; Cao, J.

    2017-12-01

    The wetting behavior of Sn0.3Ag0.7Cu (wt pct) with the addition of Ti on alumina was studied at 1273 K (1000 °C) using the sessile drop method. The wettability of Sn0.3Ag0.7Cu is significantly enhanced with the addition of Ti. Ti accumulates on the interface and reacts with O, producing TiO and yields good wetting. However, wetting is inhibited in high Ti containing droplets as intense Ti-Sn reactions take place. As a result of these competing reactions, the wettability of Sn0.3Ag0.7Cu-2Ti is the best, with the lowest equilibrium contact angle 24.6 deg. Thermodynamic calculations indicate that the value of the final contact angle cos θ varies linearly with Ti fraction in the Ti-Sn reaction-free case. The influence of the Ti-Sn reaction on wetting is quantitatively characterized by the deviation from the theoretical data. The adverse impact of Ti-Sn reaction on wetting increases in intensity with the droplets containing more Ti as the reaction between Ti and Sn becomes more intense and rapid. Alumina/alumina is brazed using different Ti containing Sn0.3Ag0.7Cu-Ti brazing metals at 1273 K (1000 °C) for 25 minutes. Pores are observed in joints prepared with Sn0.3Ag0.7Cu-0.7, 3, and 4Ti because of poor wettability. The highest joints shear strength of 28.6 MPa is obtained with Sn0.3Ag0.7Cu-2Ti.

  17. Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors

    DOE PAGES

    Klein, Brianna A.; Baca, Albert G.; Armstrong, Andrew M.; ...

    2017-09-23

    Here, we present a low resistance, straightforward planar ohmic contact for Al 0.45Ga 0.55N/Al 0.3Ga 0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρ c = 2.5 × 10 -5 Ω cm², sheet resistances of R SH = 3.9 kΩ/more » $$\\blacksquare$$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al 0.45Ga 0.55N/Al 0.3Ga 0.7N HEMTs.« less

  18. Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Brianna A.; Baca, Albert G.; Armstrong, Andrew M.

    Here, we present a low resistance, straightforward planar ohmic contact for Al 0.45Ga 0.55N/Al 0.3Ga 0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρ c = 2.5 × 10 -5 Ω cm², sheet resistances of R SH = 3.9 kΩ/more » $$\\blacksquare$$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al 0.45Ga 0.55N/Al 0.3Ga 0.7N HEMTs.« less

  19. Mullite and Mullite/ZrO2-7wt.%Y2O3 Powders for Thermal Spraying of Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Wang, Y.; Lima, R. S.; Moreau, C.

    2010-01-01

    Mullite and mullite/ZrO2-7wt.%Y2O3 coatings could be thought among the main protective layers for environment barrier coatings (EBCs) to protect Si-based substrates in future gas turbine engines. Considering that feedstock of the compound powder is not commercially available, two powder processing routes Spray Drying (SD) and Flame Spheroidization (FS) were implemented for both types of powders. For each method the particle size, the morphology, and microstructure of the powder particles was determined. In addition, the effect of the heat treatment on the powder crystallinity and microstructure of FS powders was also investigated. To evaluate their suitability as feedstock materials, the powders were plasma sprayed and their in-flight particle characteristics monitored for coatings production. The powder morphology was correlated to the in-flight particle characteristics and splat morphology to gain insight about into the influence of powder characteristics on the coating formation.

  20. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    PubMed Central

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  1. Structure and photocatalytic activity studies of TiO{sub 2}-supported over Ce-modified Al-MCM-41

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna Reddy, Jakkidi; Durgakumari, Valluri, E-mail: durgakumari@iict.res.in; Subrahmanyam, Machiraju

    2009-07-01

    Ce-Al-MCM-41, TiO{sub 2}/Al-MCM-41 and TiO{sub 2}/Ce-Al-MCM-41 materials with varying contents of Ce (by impregnation) and TiO{sub 2} loaded (by solid-state dispersion) on Al-MCM-41 support are prepared. The Ce modified and TiO{sub 2} loaded composite systems are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS) techniques. The DRS and XPS of low Ce content (0.2-0.5 wt.%) modified Al-MCM-41 samples are showing more characteristic of Ce{sup 3+} species wherein cerium in interaction with Al-MCM-41 and that of high Ce (0.8, 3.0 wt.%) content modified samples are showing the characteristic of bothmore » Ce{sup 4+}and Ce{sup 3+}species. A series of Ce-modified Al-MCM-41 and TiO{sub 2} loaded composite catalysts are evaluated for photocatalytic degradation of phenol under UV irradiation. Low Ce content in Ce{sup 3+} state on Al-MCM-41 is showing good photoactivity in comparison with high Ce content samples and pure ceria. The composite TiO{sub 2}/Ce-Al-MCM-41 is showing enhanced degradation activity due decreased rate of electron-hole recombination on TiO{sub 2} surface by the redox properties of cerium. The photocatalyst TiO{sub 2}/Ce-Al-MCM-41 with an optimum of 10 wt.% TiO{sub 2} and 0.3 wt.% Ce is showing maximum phenol degradation activity. The possible mechanism of phenol degradation on the composite photocatalyst is proposed.« less

  2. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  3. Al4H7− is a resilient building block for aluminum hydrogen cluster materials

    PubMed Central

    Roach, P. J.; Reber, A. C.; Woodward, W. H.; Khanna, S. N.; Castleman, A. W.

    2007-01-01

    The formation and oxygen etching of AlnHm− clusters are characterized in a flow reactor experiment with first-principles theoretical investigations to demonstrate the exceptional stability of Al4H7−. The origin of the preponderance of Al4H7− in the mass spectra of hydrogenated aluminum anions and its resistance to O2 etching are discussed. Al4H7− is shown to have the ability to bond with ionic partners to form stable hydrides through addition of an alkali atom [XAl4H7 (X = Li-Cs)]. An intuitive model that can predict the existence of stable hydrogenated cluster species is proposed. The potential synthetic utility of the superatom assemblies built on these units is addressed. PMID:17823245

  4. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  5. Surface morphology of Al0.3Ga0.7N/Al2O3-high electron mobility transistor structure.

    PubMed

    Cörekçi, S; Usanmaz, D; Tekeli, Z; Cakmak, M; Ozçelik, S; Ozbay, E

    2008-02-01

    We present surface properties of buffer films (AIN and GaN) and Al0.3Gao.zN/Al2O3-High Electron Mobility Transistor (HEMT) structures with/without AIN interlayer grown on High Temperature (HT)-AIN buffer/Al2O3 substrate and Al2O3 substrate. We have found that the GaN surface morphology is step-flow in character and the density of dislocations was about 10(8)-10(9) cm(-2). The AFM measurements also exhibited that the presence of atomic steps with large lateral step dimension and the surface of samples was smooth. The lateral step sizes are in the range of 100-250 nm. The typical rms values of HEMT structures were found as 0.27, 0.30, and 0.70 nm. HT-AIN buffer layer can have a significant impact on the surface morphology of Al0.3Ga0.7N/Al2O3-HEMT structures.

  6. Characterisation of ATRX, DMRT1, DMRT7 and WT1 in the platypus (Ornithorhynchus anatinus).

    PubMed

    Tsend-Ayush, Enkhjargal; Lim, Shu Ly; Pask, Andrew J; Hamdan, Diana Demiyah Mohd; Renfree, Marilyn B; Grützner, Frank

    2009-01-01

    One of the most puzzling aspects of monotreme reproductive biology is how they determine sex in the absence of the SRY gene that triggers testis development in most other mammals. Although monotremes share a XX female/XY male sex chromosome system with other mammals, their sex chromosomes show homology to the chicken Z chromosome, including the DMRT1 gene, which is a dosage-dependent sex determination gene in birds. In addition, monotremes feature an extraordinary multiple sex chromosome system. However, no sex determination gene has been identified as yet on any of the five X or five Y chromosomes and there is very little knowledge about the conservation and function of other known genes in the monotreme sex determination and differentiation pathway. We have analysed the expression pattern of four evolutionarily conserved genes that are important at different stages of sexual development in therian mammals. DMRT1 is a conserved sex-determination gene that is upregulated in the male developing gonad in vertebrates, while DMRT7 is a mammal-specific spermatogenesis gene. ATRX, a chromatin remodelling protein, lies on the therian X but there is a testis-expressed Y-copy in marsupials. However, in monotremes, the ATRX orthologue is autosomal. WT1 is an evolutionarily conserved gene essential for early gonadal formation in both sexes and later in testis development. We show that these four genes in the adult platypus have the same expression pattern as in other mammals, suggesting that they have a conserved role in sexual development independent of genomic location.

  7. Preparation, mechanical strengths, and thermal

    NASA Astrophysics Data System (ADS)

    Inoue, A.; Furukawa, S.; Hagiwara, M.; Masumoto, T.

    1987-05-01

    Ni-based amorphous wires with good bending ductility have been prepared for Ni75Si8B17 and Ni78P12B10 alloys containing 1 to 2 at. pct Al or Zr by melt spinning in rotating water. The enhancement of the wire-formation tendency by the addition of Al has been clarified to be due to the increase in the stability of the melt jet through the formation of a thin A12O3 film on the outer surface. The maximum wire diameter is about 190 to 200 μm for the Ni-Si (or P)-B-Al alloys and increases to about 250 μm for the Ni-Si-B-Al-Cr alloys containing 4 to 6 at. pct Cr. The tensile fracture strength and fracture elongation are 2730 MPa and 2.9 pct for (Ni0.75Si0.08B0.17 99Al1) wire and 2170 MPa and 2.4 pct for (Ni0.78P0.12B0.1)99Al1 wire. These wires exhibit a fatigue limit under dynamic bending strain in air with a relative humidity of 65 pct; this limit is 0.50 pct for a Ni-Si-B-Al wire, which is higher by 0.15 pct than that of a Fe75Si10B15 amorphous wire. Furthermore, the Ni-base wires do not fracture during a 180-deg bending even for a sample annealed at temperatures just below the crystallization temperature, in sharp contrast to high embrittlement tendency for Fe-base amorphous alloys. Thus, the Ni-based amorphous wires have been shown to be an attractive material similar to Fe- and Co-based amorphous wires because of its high static and dynamic strength, high ductility, high stability to thermal embrittlement, and good corrosion resistance.

  8. Ignition and combustion of aluminum/magnesium alloy particles in O2 at high pressures

    NASA Technical Reports Server (NTRS)

    Roberts, Ted A.; Burton, Rodney L.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20-micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 wt pct Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a single-pulse shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed that employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times.

  9. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Sun, Yan-hui; Zeng, Ya-nan; Xu, Rui; Cai, Kai-ke

    2014-11-01

    On the basis of the practical production of non-oriented silicon steel, the formation of MgO·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace (BOF) → RH → compact strip production (CSP)". The thermodynamic and kinetic conditions of the formation of MgO·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics (CFD) software. The results showed that the MgO/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that MgO·Al2O3 inclusions were not observed before the RH refining process. In contrast, the MgO/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of MgO·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s-1 at an argon flow rate of 698 L·min-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%-0.00028wt% and [Al]s was 0.31wt%-0.37wt%; these concentrations were theoretically calculated to fall within the MgO·Al2O3 formation zone, thereby leading to the formation of MgO·Al2O3 inclusions in the steel. Thus, the formation of MgO·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the MgO content in the ladle refractory.

  10. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    NASA Astrophysics Data System (ADS)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  11. Microstructural Analysis of TiAl x N y O z Coatings Fabricated by DC Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    García-González, L.; Hernández-Torres, J.; Flores-Ramírez, N.; Martínez-Castillo, J.; García-Ramírez, P. J.; Muñoz-Saldaña, J.; Espinoza-Beltrán, F. J.

    2009-02-01

    TiAl x N y O z coatings were prepared by DC reactive sputtering on AISI D2 tool steel substrates, using a target of Ti-Al-O fabricated from a mixture of powders of Ti (22.60 wt.%), Al (24.77 wt.%), and O (52.63 wt.%). The coatings were deposited on substrates at room temperature in a reactive atmosphere of nitrogen and argon under a pressure of 8.5 × 10-3 mbar. X-ray diffraction, electron dispersive spectroscopy, Raman scattering, and nanoindentation techniques were employed to investigate the coatings. The results show that the increment in the nitrogen flow affects the structure and the mechanical properties of the coatings. The sample with the lowest nitrogen flow presented the highest hardness (10.5 GPa) and the Young’s modulus (179.5 GPa). The hardness of the coatings TiAl x N y O z as a function of crystalline grain size shows a behavior consistent with the Hall-Petch relation.

  12. Preparation of Al-La Master Alloy by Thermite Reaction in NaF-NaCl-KCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Jang, Poknam; Li, Hyonmo; Kim, Wenjae; Wang, Zhaowen; Liu, Fengguo

    2015-05-01

    A NaF-NaCl-KCl ternary system containing La2O3 was investigated for the preparation of Al-La master alloy by the thermite reaction method. The solubility of La2O3 in NaF-NaCl-KCl molten salt was determined by the method of isothermal solution saturation. Inductively coupled plasma-optical emission spectroscopy and x-ray diffraction (XRD) analyses were used to consider the content of La2O3 in molten salt and the supernatant composition of molten salt after dissolution of La2O3, respectively. The results showed that the content of NaF had a positive influence on the solubility of La2O3 in NaF-NaCl-KCl molten salts, and the solubility of La2O3 could reach 8.71 wt.% in molten salts of 50 wt.%NaF-50 wt.% (44 wt.%NaCl + 56 wt.%KCl). The XRD pattern of cooling molten salt indicated the formation of LaOF in molten salt, which was probably obtained by the reaction between NaF and La2O3. The kinetic study showed that the thermite reaction was in accord with a first-order reaction model. The main influence factors on La content in the Al-La master alloy product, including molten salt composition, amount of Al, concentration of La2O3, stirring, reduction time and temperature, were investigated by single-factor experimentation. The content of La in the Al-La master alloy could be reached to 10.1 wt.%.

  13. 7 CFR 51.2954 - Tolerances for grade defects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... damaged by mold or insects or seriously damaged by other means, of which not more than 5/6 or 5 pct may be damaged by insects, but no part of any tolerance shall be allowed for walnuts containing live insects No... adhering hulls 15 pct total, by count, including not more than 8 pct which are damaged by mold or insects...

  14. Preparation of Al-Ti Master Alloy by Electrochemical Recovery of Titanium-Reducing Slag in Molten Salts

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wang, Yaowu; Feng, Naixiang

    2018-02-01

    An electrochemical method for the preparation of an Al-Ti master alloy in Al electrolysis melts of Na3AlF6-Al2O3-LiF at 980°C was investigated. The Ti-reducing slag (5.24 wt.% Ti in the Ti-reducing slag) was obtained from the aluminothermic reduction of Na2TiF6. The cold test (i.e., the aluminothermic reduction process without applying any voltages) result revealed the capability of the Al cathode to reduce the Ti slag, and the recovery rate could reach 45.8% at 980°C over 3.5 h with the addition of 10 wt.% Ti-reducing slag. In contrast, the recovery rate of Ti after electrolysis at 3.0 V could reach 99.2%. Thus, the electrochemical treatment for Ti-reducing slag is a cooperative process involving aluminothermic and electrochemical reduction reactions. Electrochemical analysis indicated that the Ti ions are reduced to metallic Ti according to Ti4+ → Ti3+ → Ti. An Al-Ti alloy layer could be prepared on the external surface of the Mo electrode after electrolysis with the addition of 12 wt.% Ti-reducing slag.

  15. Detachment of Tertiary Dendrite Arms during Controlled Directional Solidification in Aluminum - 7 wt Percent Silicon Alloys: Observations from Ground-based and Microgravity Processed Samples

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Erdman, Robert; Van Hoose, James R.; Tewari, Surendra; Poirier, David

    2012-01-01

    Electron Back Scattered Diffraction results from cross-sections of directionally solidified aluminum 7wt% silicon alloys unexpectedly revealed tertiary dendrite arms that were detached and mis-oriented from their parent arm. More surprisingly, the same phenomenon was observed in a sample similarly processed in the quiescent microgravity environment aboard the International Space Station (ISS) in support of the joint US-European MICAST investigation. The work presented here includes a brief introduction to MICAST and the directional solidification facilities, and their capabilities, available aboard the ISS. Results from the ground-based and microgravity processed samples are compared and possible mechanisms for the observed tertiary arm detachment are suggested.

  16. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.

    1987-09-01

    A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.

  17. The surface morphology of crystals melting under solutions of different densities

    NASA Technical Reports Server (NTRS)

    Fang, Dacheng; Hellawell, A.

    1988-01-01

    Examples of solids melting beneath liquids are described for cases where the bulk liquid volume is stabilized against convection by a positive vertical temperature gradient, either with, or without local density inversion at the melting interface. The examples include ice melting beneath brine or methanol solutions and tin or lead melting under molten Sn-20 wt pct Pb or Pb-20 wt pct Sn, respectively. Without density inversion the melting is slow, purely diffusion controlled and the interfaces are smooth; with convection assisted melting the rate increases by some two orders of magnitude and the interfaces develop a rough profile - in the case of ice both irregular and quasi-steady state features are observed. The observations are discussed in terms of prevailing temperature and concentration gradients.

  18. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    NASA Astrophysics Data System (ADS)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  19. 12Cao-7Al2o3 Electride Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Rand, Lauren P. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  20. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    NASA Astrophysics Data System (ADS)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu6Sn5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 K (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu6Sn5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu6Sn5 observed, while in the melt spun alloy, Cu6Sn5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu6Sn5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. The reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu6Sn5 was maintained for both alloys.

  1. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part II. Intermetallic Coarsening Behavior of Rapidly Solidified Solders After Multiple Reflows

    DOE PAGES

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; ...

    2016-10-06

    Controlling the size, dispersion, and stability of intermetallic compounds in lead-free solder alloys is vital to creating reliable solder joints regardless of how many times the solder joints are melted and resolidified (reflowed) during circuit board assembly. In this article, the coarsening behavior of Cu x Al y and Cu 6Sn 5 in two Sn-Cu-Al alloys, a Sn-2.59Cu-0.43Al at. pct alloy produced via drip atomization and a Sn-5.39Cu-1.69Al at. pct alloy produced via melt spinning at a 5-m/s wheel speed, was characterized after multiple (1-5) reflow cycles via differential scanning calorimetry between the temperatures of 293 K and 523 Kmore » (20 °C and 250 °C). Little-to-no coarsening of the Cu x Al y particles was observed for either composition; however, clustering of Cu x Al y particles was observed. For Cu 6Sn 5 particle growth, a bimodal size distribution was observed for the drip atomized alloy, with large, faceted growth of Cu 6Sn 5 observed, while in the melt spun alloy, Cu 6Sn 5 particles displayed no significant increase in the average particle size, with irregularly shaped, nonfaceted Cu 6Sn 5 particles observed after reflow, which is consistent with shapes observed in the as-solidified alloys. The link between original alloy composition, reflow undercooling, and subsequent intermetallic coarsening behavior was discussed by using calculated solidification paths. As a result, the reflowed microstructures suggested that the heteroepitaxial relationship previously observed between the Cu x Al y and the Cu 6Sn 5 was maintained for both alloys.« less

  2. Effect of cooling after welding on microstructure and mechanical properties of 12 Pct Cr steel weld metals

    NASA Astrophysics Data System (ADS)

    Cai, Guang-Jun; Andrén, Hans-Olof; Svensson, Lars-Erik

    1997-07-01

    The microstructure of three 12 pct cr steel weld metals with different nickel and nitrogen contents was studied in as-welded condition and after postweld heat treatment with and without intercooling. Tensile strength and impact toughness of the weld metals were investigated in different postweld heat treatment conditions. In weld metals heat treated without intercooling, austenite decomposed by a eutectoid reaction that resulted in M23C6 aggregates around retained δ-ferrite. Two morphologies of M2N and MN precipitates were found in a low-dislocation α-ferrite. It was concluded that these phases were also transformed from austenite. In weld metals heat treated with intercooling, M23C6 precipitates were smaller and more homogeneously distributed. Different MN precipitates were found in the tempered martensite. The fracture mode of the weld metals at room temperature was mainly transgranular cleavage with some fibrous fracture. Intercooling treatment improved Charpy impact toughness of the 12 pct Cr steel weld metals substantially. It was found that the important microstructural factors affecting the impact toughness of the weld metals which were heat treated without intercooling were the sizes of the α-ferrite grains, nonmetallic inclusions, and M23C6 aggregates. For the weld metals heat treated with intercooling, the factors which affect the toughness of the weld metals were the sizes of martensite packets and nonmetallic inclusions.

  3. Evidence for Extremely-High-Temperature Melting in the Solar Nebula from a CaAl4O7-bearing Spherule from Murchison

    NASA Astrophysics Data System (ADS)

    Simon, S. B.; Grossman, L.; Davis, A. M.; Beckett, J. R.; Chamberlin, L.

    1993-07-01

    We have recovered a unique refractory spherule (B6) from the Murchison C2 chondrite. Approximately 140 micrometers in diameter, it is concentrically zoned, with an outer rim sequence, from outermost to innermost, of aluminous diopside (10 micrometers thick), anorthite (3 micrometers) and melilite (3 micrometers). Inside the melilite layer is a 7-micrometer-thick, nearly pure (except for a single, diverging-inward spray of hibonite crystals) layer of spinel. Inward from this layer is a 22-micrometer-wide zone of hibonite (~5.5 wt% TiO2) + spinel, in which hibonite laths, 1-4 micrometers across and up to 10 micrometers wide, are predominantly radially oriented and enclosed in spinel. Inward from this zone, presumably at the core of the inclusion, are CaAl4O7, occurring as anhedral grains ~10 micrometers across, and minor perovskite. Some of the hibonite laths protrude into the CaAl4O7. The sequence of mineral assemblages from the spinel shell inward parallels that expected for fractional crystallization of a melt of the composition of B6. Based on this, the inclusion's spherical shape, and its texture (radially oriented hibonite laths, including a diverging-inward spray; laths enclosed in spinel and protruding into CaAl4O7), we conclude that the oxide phases in B6 crystallized from a liquid. The spinel layer indicates that at least some of the spinel was molten; from the bulk composition, calculated liquidus phase relations in the system Al2O3-MgO-CaO [1], and the amount of spinel contained in the layer, we infer a melting temperature >2000 degrees C. This is >500 degrees higher than the maximum temperature at which any condensed major phase is stable at 10-3 atm in a gas of solar composition, but we see no evidence of evaporation. First, the inclusion has a Group II REE pattern, rather than a Group III or an ultrarefractory pattern, which could reflect devolatilization. Second, although evaporation of molten (but not solid) Mg2SiO4 leads to Mg isotopic mass

  4. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  5. On improving the fracture toughness of a NiAl-based alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.

    1991-01-01

    Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

  6. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  7. Audit of dental practice record-keeping: a PCT-coordinated clinical audit by Worcestershire dentists.

    PubMed

    Cole, Andrew; McMichael, Alan

    2009-07-01

    A collaborative audit of clinical record-keeping standards was performed among Worcestershire dentists. Its aims were to improve the quality of National Health Service (NHS) patient care and to assist dentists to perform well during Dental Reference Service practice visits. Worcestershire dentists with NHS contracts were invited to take part in this audit. Each dentist audited a random selection of 30 of their dental clinical records against a common framework comprising eight domains. Record-keeping, and the presence or absence of key diagnostic and treatment planning details were recorded. Grading was applied in four categories, in which grades 1 and 2 were good (1) and adequate (2), captured on data-collection sheets and centrally analysed for frequency of each grade. Out of a total of 184 Worcestershire general dental practitioners, 161 (87.5%) submitted usable responses. The audit revealed wide variation between dentists in clinical record-keeping. The recording of soft tissues (36% below grade 2), periodontal status (30%), radiographic review (27%), and note-taking (25%) all fell below the standard that had been set (brackets show proportion not meeting the standard). The results provided baseline information about the standard of record-keeping in NHS dental practices in Worcestershire. The collaborative nature of the audit enabled dissemination of individual results to participants, to facilitate comparison (anonymously) against their peers. The audit provided impetus for the Primary Care Trust (PCT) to arrange postgraduate education on record-keeping and to raise awareness among local dentists about record-keeping. The subsequent report to dentists explored the record-keeping standards expected during practice inspections undertaken by the Dental Reference Service. Worcestershire PCT's method of collaborative dental audit could potentially replace the previous national programme of dental audit, formerly coordinated locally.

  8. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S.; Kolarik, V.; Promakhov, V.; Zhukov, I.; Vorozhtsov, A.; Kuchenreuther-Hummel, V.

    2016-05-01

    Metal matrix composites (MMC) based on aluminum and reinforced with nonmetallic particles are of great practical interest due to their potentially high physico-mechanical properties. In this work, Al-Al4C3 composites were obtained by a hot-compacting method. Introduction of nanodiamonds produced by detonation to the Al powder in an amount of 10 wt.% led to the formation of ~15 wt.% of aluminum carbide during hot compacting. It was found that composite materials with the diamond content of 10 wt.% in the initial powder mix have an average microhardness of 1550 MPa, whilst the similarly compacted aluminum powder without reinforcing particles shows a hardness of 750 MPa. The mechanical properties of an Al-Al4C3 MMC at elevated test temperatures exceeded those of commercial casting aluminum alloys such as A356.

  9. Advanced Mechanical Properties of a Powder Metallurgy Ti-Al-N Alloy Doped with Ultrahigh Nitrogen Concentration

    NASA Astrophysics Data System (ADS)

    Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.

    2018-03-01

    Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.

  10. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  11. Physical properties of the Ce 2 M Al 7 Ge 4 heavy-fermion compounds ( M = Co , Ir , Ni , Pd )

    DOE PAGES

    Ghimire, N. J.; Cary, S. K.; Eley, S.; ...

    2016-05-23

    Here, we report the synthesis, crystal structure, and characterization by means of single-crystal x-ray diffraction, neutron powder diffraction, and magnetic, thermal, and transport measurements of the new heavy-fermion compounds Ce 2MAl 7Ge 4 (M=Co,Ir,Ni,Pd). These compounds crystallize in a noncentrosymmetric tetragonal space group Pmore » $$\\bar{4}$$2 1m, consisting of layers of square nets of Ce atoms separated by Ge-Al and M-Al-Ge blocks. Ce 2CoAl 7Ge 4,Ce 2IrAl 7Ge 4, and Ce 2NiAl 7Ge 4 order magnetically below TM=1.8, 1.6, and 0.8 K, respectively. There is no evidence of magnetic ordering in Ce 2PdAl 7Ge 4 down to 0.4 K. Furthermore, the small amount of entropy released in the magnetic state of Ce 2MAl 7Ge 4 (M = Co, Ir, Ni) and the reduced specific heat jump at T M suggest a strong Kondo interaction in these materials. Ce 2PdAl 7Ge 4 shows non-Fermi liquid behavior, possibly due to the presence of a nearby quantum critical point.« less

  12. Investigation of Thermal Conductivities and Expansion Coefficients of (Yb1 - x La x )2AlTaO7 Ceramics

    NASA Astrophysics Data System (ADS)

    Xiaoge, Chen; Hongsong, Zhang; Sai, Su; Yongde, Zhao; An, Tang; Haoming, Zhang

    2017-12-01

    The (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3, 0.5) ceramics were prepared by solid-state reaction method. The phase composition, microstructure, thermophysical properties of (Yb1 - x La x )2AlTaO7 ceramics were investigated. Results reveal that (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics exhibit a single pyrochlore-type structure, and the (Yb0.5La0.5)2AlTaO7 has an orthorhombic weberite structure. The thermal conductivities of (Yb1 - x La x )2AlTaO7 ( x = 0, 0.1, 0.3) ceramics decrease with increasing Yb2O3 contents. (Yb0.5La0.5)2AlTaO7 has the highest thermal conductivity among all the ceramics studied, within the range of 1.48-1.75 W/m K (20-1200 °C). The thermal expansion coefficients of (Yb1 - x La x )2AlTaO7 ceramics decrease gradually with increasing La2O3 fractions, and the thermal expansion coefficients are close to those of YSZ.

  13. Microstructural characterization and mechanical property of active soldering anodized 6061 Al alloy using Sn-3.5Ag-xTi active solders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei-Lin, E-mail: wangwl77@gmail.com; Tsai, Yi-Chia, E-mail: tij@itri.org.tw

    2012-06-15

    Active solders Sn-3.5Ag-xTi varied from x = 0 to 6 wt.% Ti addition were prepared by vacuum arc re-melting and the resultant phase formation and variation of microstructure with titanium concentration were analyzed using X-ray diffraction, optical microscopy and scanning electron microscopy. The Sn-3.5Ag-xTi active solders are used as metallic filler to join with anodized 6061 Al alloy for potential applications of providing a higher heat conduction path. Their joints and mechanical properties were characterized and evaluated in terms of titanium content. The mechanical property of joints was measured by shear testing. The joint strength was very dependent on themore » titanium content. Solder with a 0.5 wt.% Ti addition can successfully wet and bond to the anodized aluminum oxide layers of Al alloy and posses a shear strength of 16.28 {+-} 0.64 MPa. The maximum bonding strength reached 22.24 {+-} 0.70 MPa at a 3 wt.% Ti addition. Interfacial reaction phase and chemical composition were identified by a transmission electron microscope with energy dispersive spectrometer. Results showed that the Ti element reacts with anodized aluminum oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti phases at the joint interfaces. - Highlights: Black-Right-Pointing-Pointer Active solder joining of anodized Al alloy needs 0.5 wt.% Ti addition for Sn-3.5Ag. Black-Right-Pointing-Pointer The maximum bonding strength occurs at 3 wt.% Ti addition. Black-Right-Pointing-Pointer The Ti reacts with anodized Al oxide to form Al{sub 3}Ti-rich and Al{sub 3}Ti at joint interface.« less

  14. Characterization and Mechanical Properties of 2014 Aluminum Alloy Reinforced with Al2O3p Composite Produced by Two-Stage Stir Casting Route

    NASA Astrophysics Data System (ADS)

    Bharath, V.; Ajawan, Santhrusht S.; Nagaral, Madev; Auradi, Virupaxi; Kori, Shivaputrappa Amarappa

    2018-02-01

    Metal matrix composites (MMC's) form appropriate choice of materials where there is a demand for stiffness, strength combined with low weight for different applications. The applications of Aluminum based MMC's as engineering materials has been exceedingly increased in almost all industrial sectors. Aluminum strengthened with Al2O3p gives excellent physical and mechanical properties like high hardness, low density, high electrical conductivity etc., which are generally used in the field of aerospace, automobile and industrial applications. In present work, an attempt is being made to integrate 2014 Al alloy with Al2O3p by two stage stir casting with addition level of reinforcement maintained at 9 and 12 wt%. Microstructural characterization carried out using scanning electron microscopy showed fairly uniform distribution of Al2O3p with grain refinement of the matrix. These prepared composites are mechanically characterized as per the ASTM standards using computerized universal testing machine. Improvements in tensile strength, density and hardness of the prepared composites were observed with increase in the reinforcement wt%. Percentage improvements of 5.09% (9 wt%), 17.65% (12 wt%) in terms of tensile strength and 29.18% (9 wt%), 43.69% (12 wt%) in terms of hardness were obtained respectively.

  15. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  16. Expression of the Wilms' tumor gene WT1 in the murine urogenital system.

    PubMed

    Pelletier, J; Schalling, M; Buckler, A J; Rogers, A; Haber, D A; Housman, D

    1991-08-01

    The Wilms' tumor gene WT1 is a recessive oncogene that encodes a putative transcription factor implicated in nephrogenesis during kidney development. In this report we analyze expression of WT1 in the murine urogenital system. WT1 is expressed in non-germ-cell components of the testis and ovaries in both young and adult mice. In situ mRNA hybridization studies demonstrate that WT1 is expressed in the granulosa and epithelial cells of ovaries, the Sertoli cells of the testis, and in the uterine wall. In addition to the 3.1-kb WT1 transcript detected by Northern blotting of RNA from kidney, uterus, and gonads, there is an approximately 2.5-kb WT1-related mRNA species in testis. The levels of WT1 mRNA in the gonads are among the highest observed, surpassing amounts detected in the embryonic kidney. During development, these levels are differentially regulated, depending on the sexual differentiation of the gonad. Expression of WT1 mRNA in the female reproductive system does not fluctuate significantly from days 4 to 40 postpartum. In contrast, WT1 mRNA levels in the tesis increase steadily after birth, reaching their highest expression levels at day 8 postpartum and decreasing slightly as the animal matures. Expression of WT1 in the gonads is detectable as early as 12.5 days postcoitum (p.c.). As an initial step toward exploring the tissue-specific expression of WT1, DNA elements upstream of WT1 were cloned and sequenced. Three putative transcription initiation sites, utilized in testis, ovaries, and uterus, were mapped by S1 nuclease protection assays. The sequences surrounding these sites have a high G + C content, and typical upstream CCAAT and TATAA boxes are not present. These studies allowed us to identify the translation initiation site for WT1 protein synthesis. We have also used an epitope-tagging protocol to demonstrate that WT1 is a nuclear protein, consistent with its role as a transcription factor. Our results demonstrate regulation of WT1 expression

  17. Hot deformation behaviors and processing maps of B{sub 4}C/Al6061 neutron absorber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yu-Li

    In this study, the hot deformation behaviors of 30 wt.% B{sub 4}C/Al6061 neutron absorber composites (NACs) have been investigated by conducting isothermal compression tests at temperatures ranging from 653 K to 803 K and strain rates from 0.01 to 10 s{sup −1}. It was found that, during hot compression, the B{sub 4}C/Al6061 NACs exhibited a steady flow characteristic which can be expressed by the Zener-Hollomon parameter as a hyperbolic-sine function of flow stress. High average activation energy (185.62 kJ/mol) of B{sub 4}C/Al6061 NACs is noted in current study owing to the high content of B{sub 4}C particle. The optimum hotmore » working conditions for B{sub 4}C/Al6061 NACs are found to be 760–803 K/0.01–0.05 s{sup −1} based on processing map and microstructure evolution. Typical material instabilities are thought to be attributed to void formation, adiabatic shear bands (ASB), particle debonding, and matrix cracking. Finally, the effect of the plastic deformation zones (PDZs) on the microstructure evolution in this 30 wt.% B{sub 4}C/Al6061 composite is found to be very important. - Highlights: •The hot deformation behavior of the 30 wt.% B{sub 4}C/Al6061 NACs was first analyzed. •The 3D efficiency map and the instability map are developed. •The optimum hot working conditions were identified and validated by SEM and TEM. •The hot deformation schematic diagram of 30 wt.% B{sub 4}C/Al6061 NACs is developed.« less

  18. Effect of Al Addition on Microstructure of AZ91D

    NASA Astrophysics Data System (ADS)

    Joshi, Utsavi; Babu, Nadendla Hari

    Casting is a net shape or near net shape forming process so work-hardening will not be applicable for improving properties of magnesium cast alloys. Grain refinement, solid-solution strengthening, precipitation hardening and specially designed heat treatment are the techniques used to enhance the properties of these alloys. This research focusses on grain refinement of magnesium alloy AZ91D, which is a widely used commercial cast alloy. Recently, Al-B based master alloys have shown potential in grain refining AZ91D. A comparative study of the grain refinement of AZ91D by addition of 0.02wt%B, 0.04wt%B, 0.1wt%B, 0.5wt%B and 1.0wt%B of A1-5B master alloy and equivalent amount of solute element aluminium is described in this paper. Hardness profile of AZ91D alloyed with boron and aluminium is compared.

  19. Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL.

    PubMed

    Chhuneja, Parveen; Yadav, Bharat; Stirnweis, Daniel; Hurni, Severine; Kaur, Satinder; Elkot, Ahmed Fawzy; Keller, Beat; Wicker, Thomas; Sehgal, Sunish; Gill, Bikram S; Singh, Kuldeep

    2015-10-01

    A novel powdery mildew resistance gene and a new allele of Pm1 were identified and fine mapped. DNA markers suitable for marker-assisted selection have been identified. Powdery mildew caused by Blumeria graminis is one of the most important foliar diseases of wheat and causes significant yield losses worldwide. Diploid A genome species are an important genetic resource for disease resistance genes. Two powdery mildew resistance genes, identified in Triticum boeoticum (A(b)A(b)) accession pau5088, PmTb7A.1 and PmTb7A.2 were mapped on chromosome 7AL. In the present study, shotgun sequence assembly data for chromosome 7AL were utilised for fine mapping of these Pm resistance genes. Forty SSR, 73 resistance gene analogue-based sequence-tagged sites (RGA-STS) and 36 single nucleotide polymorphism markers were designed for fine mapping of PmTb7A.1 and PmTb7A.2. Twenty-one RGA-STS, 8 SSR and 13 SNP markers were mapped to 7AL. RGA-STS markers Ta7AL-4556232 and 7AL-4426363 were linked to the PmTb7A.1 and PmTb7A.2, at a genetic distance of 0.6 and 6.0 cM, respectively. The present investigation established that PmTb7A.1 is a new powdery mildew resistance gene that confers resistance to a broad range of Bgt isolates, whereas PmTb7A.2 most probably is a new allele of Pm1 based on chromosomal location and screening with Bgt isolates showing differential reaction on lines with different Pm1 alleles. The markers identified to be linked to the two Pm resistance genes are robust and can be used for marker-assisted introgression of these genes to hexaploid wheat.

  20. How much more would KNM-WT 15000 have grown?

    PubMed

    Ruff, Christopher B; Burgess, M Loring

    2015-03-01

    Because of its completeness, the juvenile Homo ergaster/erectus KNM-WT 15000 has played an important role in studies of the evolution of body form in Homo. Early attempts to estimate his adult body size used modern human growth models. However, more recent evidence, particularly from the dentition, suggests that he may have had a more chimpanzee-like growth trajectory. Here we re-estimate his adult stature and body mass using ontogenetic data derived from four African ape taxa: Pan troglodytes troglodytes, Pan troglodytes schweinfurthii, Pan paniscus, and Gorilla gorilla gorilla. The average percentage change in femoral and tibial lengths and femoral head breadth between individuals at the same stage of dental development as KNM-WT 15000 - eruption of M2s but not M3s - and adult individuals with fully fused long bone epiphyses, was determined. Results were then applied to KNM-WT 15000, and his adult size estimated from skeletal dimensions using modern human prediction formulae. Using this approach, adult stature best estimates of 176-180 cm and body mass best estimates of 80-83 kg were obtained. These estimates are close to those estimated directly from longitudinal changes in body length and body mass between 8 and 12 years of age in chimpanzees, the suggested chronological equivalent to KNM-WT 15000's remaining growth period. Thus, even using an African ape growth model, it is likely that KNM-WT 15000 would have attained close to 180 cm in stature (without a slight reduction for his lower cranial height) and 80 kg in body mass as an adult. Other evidence from the East African Early Pleistocene indicates that KNM-WT 15000 was not unusually large-bodied for his time period. Copyright © 2014 Elsevier Ltd. All rights reserved.