Science.gov

Sample records for al-doped zno azo

  1. Effect of Al Doping Concentration on Microstructure, Photoelectric Properties and Doped Mechanism of Azo Films

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Cai, Yanqing; Hou, Linyan; Ma, Penghua

    2014-05-01

    Al doped ZnO (AZO) thin films were deposited on a glass substrate by atmospheric pressure chemical vapor deposition (APCVD) method. Effect of Al doping concentration on microstructure, photoelectric properties and doped mechanism of AZO thin films were investigated. The analysis results revealed that the structural properties of the films possessed crystalline structure with a preferred (002) orientation. The best crystallization quality and minimum electrical resistivity was obtained at 5 at.% Al doped films and the minimum resistivity was 6.6 × 10-4 Ω ṡ cm. Uniform granular grains were observed on the surface of AZO films, and the average optical transmittance was above 80% in the visible range. The doped mechanism of AZO films was analyzed as follows. With Al doping in ZnO films, AlZn substitute and Ali interstice were produced, which decreased the resistivity of films. While after the limit value and with the continuing increase of Al doping concentration, free electrons were consumed and the resistivity of films increased.

  2. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  3. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  4. Electrical and optical properties of in and Al doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Park, Sang-Uk; Koh, Jung-Hyuk

    2013-07-01

    In this study, to improve the electrical and optical properties of aluminium (Al) doped zinc oxide thin films, we have added small amounts of indium (In) to Al doped ZnO thin films. We will present the results of In and Al doped ZnO thin film on glass substrates prepared by the sol-gel processing method. A rapid thermal annealing process was applied to cure the thin film properties. Different amounts of In were used to dope the AZO thin films to find the optimum process condition. The effects of crystallinity were analyzed by an x-ray diffraction method. In addition, the optical transmittance and electrical proprties of In doped AZO thin films were investigated.

  5. Influence Al doped ZnO nanostructure on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ramelan, Ari Handono; Wahyuningsih, Sayekti; Chasanah, Uswatul; Munawaroh, Hanik

    2016-04-01

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO cause of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.

  6. Al-doped ZnO nanocoatings obtained by sol-gel route

    NASA Astrophysics Data System (ADS)

    Mihaiu, S.; Toader, A.; Atkinson, I.; Anastasescu, M.; Vasilescu, M.; Zaharescu, M.; Plugaru, R.

    2010-11-01

    In recent years aluminum doped zinc oxide (AZO) film has attracted more attention due to many advantages including low cost, non-toxicity, and high stability to H2 plasma in comparison with indium tin oxide (ITO) film, the best known and used transparent conductive oxide (TCO) film. In this work, mono and multilayer Al-doped ZnO coatings have been obtained by dip coating sol-gel method on the glass and silicon supports. X-ray Diffraction, Atomic Force Microscopy (AFM) and Fluorescence Spectroscopy were used for the structural, morphological and optical characterization of the obtained coatings. The multilayer Al-doped ZnO coatings (after five layer depositions) on the silicon substrate present a polycrystalline wurtzite type structure with crystallite size of 20 nm. The AFM measurements have shown that no matter the support type, the Al-doped ZnO coatings present a similar morphology consisting in a smooth distribution of the circular grains leading also to similar values of the RMS roughness, around 2 nm. The photoluminescence properties of the Al-doped ZnO coatings depend on the number of depositions and type of substrate. Systematic study performed allows finding most suitable parameters for obtaining coatings with desired properties.

  7. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    PubMed Central

    2014-01-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799

  8. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    NASA Astrophysics Data System (ADS)

    Basu, Tanmoy; Kumar, Mohit; Sahoo, Pratap Kumar; Kanjilal, Aloke; Som, Tapobrata

    2014-04-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance.

  9. Environmental stability of solution processed Al-doped ZnO naoparticulate thin films using surface modification technique

    NASA Astrophysics Data System (ADS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2014-12-01

    The environmental stability of solution processed Al-doped ZnO (AZO) thin films was enhanced by functionalizing the film surface with a thin self-assembled molecular layer. Functionalization of AZO films was performed using two types of molecules having identical 12-carbon alkyl chain termination but different functional groups: dodecanethiol (DDT) and dodecanoic acid (DDA). Surface modified AZO films were examined using electrical resistivity measurements, contact angle measurements and quantitative nanomechanical property mapping atomic force microscopy. The hydrophobic layer inhibits the penetration of oxygen and water into the AZO's grain boundaries thus significantly increasing the environmental stability over unmodified AZO. Surface modified AZO films using DDT exhibited lower electrical resistivity compared to DDA functionalized AZO films. Our study demonstrates a new approach for improving the physical properties of oxide based nanoparticulate films for device applications.

  10. Synthesis of high-quality Al-doped ZnO nanoink

    NASA Astrophysics Data System (ADS)

    Thu, Tran V.; Maenosono, Shinya

    2010-01-01

    Al-doped ZnO (AZO) nanoparticles (NPs) have been synthesized via the thermal decomposition of metal acetylacetonate precursors in a nonoxygen and nonpolar solvent. Long-chain alkyl amines have been utilized to terminate the growth of AZO NPs and to stabilize them. The NPs have been characterized by a number of techniques as monocrystalline, exhibiting a hexagonal (wurtzite) structure with sizes from 8 to 13 nm. The composition of Al in the resulting NP is related solely to the composition of the reaction mixture and the size is controllable with the temperature of the reaction. The AZO NP dispersion has been proven to be stable over a 24 h period by dynamic light scattering measurements. The influence of the synthetic conditions, such as temperature, reaction time and the Al doping content, on the properties of NPs have also been investigated. An optically transparent AZO thin film was fabricated using the AZO nanoink by spin casting followed by annealing. The resulting film resistivity was measured to be 5.0×10-3 Ω cm.

  11. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  12. Tailoring Energy Bandgap of Al Doped ZnO Thin Films Grown by Vacuum Thermal Evaporation Method.

    PubMed

    Vyas, Sumit; Singh, Shaivalini; Chakrabarti, P

    2015-12-01

    The paper presents the results of our experimental investigation pertaining to tailoring of energy bandgap and other associated characteristics of undoped and Al doped ZnO (AZO) thin film by varying the atomic concentration of Al in ZnO. Thin films of ZnO and ZnO doped with Al (1, 3, and 5 atomic percent (at.%)) were deposited on silicon substrate for structural characterization and on glass substrate for optical characterization. The dependence of structural and optical properties of Al doped ZnO on the atomic concentration of Al added to ZnO has been reported. On the basis of the experimental results an empirical formula has been proposed to calculate the energy bandgap of AZO theoretically in the range of 1 to 5 at.% of Al. The study revealed that AZO films are composed of smaller and larger number of grains as compared to pure ZnO counterpart and density of the grains was found to increase as the Al concentration increased (from 1 to 5 at.%). The transmittance in the visible region was greater than 90% and found to increase with increasing Al concentration up to 5 at.%. The optical bandgap was found to increase initially with increase in atomic concentration of Al concentration up to 3 at.% and decrease thereafter with increasing concentration of Al. PMID:26682390

  13. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  14. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  15. Effect of seed layer on the self assembly of spray pyrolyzed Al-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2013-03-01

    Al-doped ZnO (AlZO) nanorod arrays and nanostructures were fabricated on seed coated glass substrates via CoSP (Continuous Spray Pyrolysis) reactor. The as-synthesized aluminium doped ZnO nanoparticles and nanorods were analyzed through different characterization techniques. There were no significant changes found in the structure with doping of Al but the morphology of the film changed to branched nanorods and nanosheets with the change in seed solution and annealing temperature, respectively. Also, the current-voltage curves of the ZnO and AZO nanorod arrays was measured and it was found that the current response of AZO nanorods was higher than that of ZnO nanorods, proving the Al incorporation as a dopant.

  16. Sputter deposition of Al-doped ZnO films with various incident angles

    SciTech Connect

    Sato, Yasushi; Yanagisawa, Kei; Oka, Nobuto; Nakamura, Shin-ichi; Shigesato, Yuzo

    2009-09-15

    Al-doped ZnO (AZO) films were sputter deposited on glass substrates heated at 200 degree sign C under incident angles of sputtered particles at 0 degree sign (incidence normal to substrate), 20 deg., 40 deg., 60 deg., and 80 deg. In the case of normal incidence, x-ray diffraction pole figures show a strong [001] preferred orientation normal to the film surface. In contrast, in the case wherein the incident angles were higher than 60 degree sign , the [001] orientation inclined by 25 deg. - 35 deg. toward the direction of sputtered particles. Transmission electron microscopy revealed that the tilt angle of the [001] orientation increased with increasing angle of the incident sputtered particles, whereas the columnar structure did not show any sign of inclination with respect to the substrate plane.

  17. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films

    SciTech Connect

    Banerjee, P; Lee, W. J.; Bae, K. R.; Lee, Sang Bok; Rubloff, Gary W

    2010-01-01

    Al-doped ZnO (AZO) films of ∼100 nm thickness with various Aldoping were prepared at 150 °C by atomic layer deposition on quartz substrates. At low Aldoping, the films were strongly textured along the [100] direction, while at higher Aldoping the films remained amorphous. Atomic force microscopy results showed that Al–O cycles when inserted in a ZnOfilm, corresponding to a few atomic percent Al, could remarkably reduce the surface roughness of the films. Hall measurements revealed a maximum mobility of 17.7 cm{sup 2} /V s . Film resistivity reached a minima of 4.4×10{sup −3}  Ω cm whereas the carrier concentration reached a maxima of 1.7×10{sup 20}  cm{sup −3} , at 3 at. % Al. The band gap of AZO films varied from 3.23 eV for undoped ZnOfilms to 3.73 eV for AZO films with 24.6 at. % Al. Optical transmittance over 80% was obtained in the visible region. The detrimental impact of increased Al resulting in decreased conductivity due to doping past 3.0 at. % is evident in the x-ray diffraction data, as an abrupt increase in the optical band gap and as a deviation from the Burstein–Moss effect.

  18. Transparent conducting Si-codoped Al-doped ZnO thin films prepared by magnetron sputtering using Al-doped ZnO powder targets containing SiC

    SciTech Connect

    Nomoto, Jun-ichi; Miyata, Toshihiro; Minami, Tadatsugu

    2009-07-15

    Transparent conducting Al-doped ZnO (AZO) thin films codoped with Si, or Si-codoped AZO (AZO:Si), were prepared by radio-frequency magnetron sputtering using a powder mixture of ZnO, Al{sub 2}O{sub 3}, and SiC as the target; the Si content (Si/[Si+Zn] atomic ratio) was varied from 0 to 1 at. %, but the Al content (Al/[Al+Zn] atomic ratio) was held constant. To investigate the effect of carbon on the electrical properties of AZO:Si thin films prepared using the powder targets containing SiC, the authors also prepared thin films using a mixture of ZnO, Al{sub 2}O{sub 3}, and SiO{sub 2} or SiO powders as the target. They found that when AZO:Si thin films were deposited on glass substrates at about 200 degree sign C, both Al and Si doped into ZnO acted as effective donors and the atomic carbon originating from the sputtered target acted as a reducing agent. As a result, sufficient improvement was obtained in the spatial distribution of resistivity on the substrate surface in AZO:Si thin films prepared with a Si content (Si/[Si+Zn] atomic ratio) of 0.75 at. % using powder targets containing SiC. The improvement in resistivity distribution was mainly attributed to increases in both carrier concentration and Hall mobility at locations on the substrate corresponding to the target erosion region. In addition, the resistivity stability of AZO: Si thin films exposed to air for 30 min at a high temperature was found to improve with increasing Si content.

  19. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    PubMed Central

    2012-01-01

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. PMID:22222067

  20. Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer.

    PubMed

    Prosa, Mario; Tessarolo, Marta; Bolognesi, Margherita; Margeat, Olivier; Gedefaw, Desta; Gaceur, Meriem; Videlot-Ackermann, Christine; Andersson, Mats R; Muccini, Michele; Seri, Mirko; Ackermann, Jörg

    2016-01-27

    Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level. PMID:26751271

  1. Field-induced doping-mediated tunability in work function of Al-doped ZnO: Kelvin probe force microscopy and first-principle theory

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Mookerjee, Sumit; Som, Tapobrata

    2016-09-01

    We demonstrate that the work function of Al-doped ZnO (AZO) can be tuned externally by applying an electric field. Our experimental investigations using Kelvin probe force microscopy show that by applying a positive or negative tip bias, the work function of AZO film can be enhanced or reduced, which corroborates well with the observed charge transport using conductive atomic force microscopy. These findings are further confirmed by calculations based on first-principles theory. Tuning the work function of AZO by applying an external electric field is not only important to control the charge transport across it, but also to design an Ohmic contact for advanced functional devices.

  2. Enhancement ZnO nanofiber as semiconductor for dye-sensitized solar cells by using Al doped

    NASA Astrophysics Data System (ADS)

    Sutanto, Bayu; Arifin, Zainal; Suyitno, Hadi, Syamsul; Pranoto, Lia Muliani; Agustia, Yuda Virgantara

    2016-03-01

    The purpose of this research is to produce Al-doped ZnO (AZO) nanofibers in order to enhance the performance of Dye-Sensitized Solar Cell (DSSC). AZO nanofiber semiconductor was manufactured by electrospinning process of Zinc Acetate Dehydrate (Zn(CH3COO)2) solution and precursor of Polyvinyl Acetate (PVA). The doping process of Al was built by dissolving 0-4 wt% in concentrations of AlCl3 to Zinc Acetate. AZO green fiber was sintered at temperature 500°C for an hour. The result shows that Al doped ZnO had capability to increase the electrical conductivity of semiconductor for doping 0, 1, 2, 3, and 4 wt% for 2,07×10-3; 3,71×10-3; 3,59 ×10-3; 3,10 ×10-3 and 2,74 ×10-3 S/m. The best performance of DSSC with 3 cm2 active area was obtained at 1 wt% Al-ZnO which the value of VOC, ISC, FF, and efficiency were 508,43 mV, 3,125 mA, 38,76%, and 0,411% respectively. These coincide with the electrical conductivity of semiconductor and the crystal size of XRD result that has the smallest size as compared to other doping variations.

  3. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  4. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing

    NASA Astrophysics Data System (ADS)

    Vunnam, S.; Ankireddy, K.; Kellar, J.; Cross, W.

    2014-05-01

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10-2 Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate.

  5. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  6. On the variations of optical property and electronic structure in heavily Al-doped ZnO films during double-step growth process

    SciTech Connect

    Hu, Q. C.; Ding, K. Zhang, J. Y.; Yan, F. P.; Pan, D. M.; Huang, F.; Chiou, J. W.

    2014-01-13

    We have investigated the variations of optical property and electronic structure in heavily Al-doped ZnO (AZO) films during the growth process, which were formed by first creating Zn vacancies in O{sub 2}-rich atmosphere and second filling the vacancies with Zn atoms in Zn-vapor atmosphere. After the first step, the high-resistance AZO films have the same optical bandgap with nominally undoped ZnO, indicating that negligible variations in the fundamental bandgap happened to the AZO films although Al atom was incorporated into the ZnO lattice. After the second step, once free electrons were brought into the lattice by Zn-filling, the optical transition energy blueshifts due to the band-filling effect. X-ray absorption fine structure measurements suggest that Zn-filling process decreased the unoccupied states of the conduction band, but not raised the conduction band minimum.

  7. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  8. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  9. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    PubMed Central

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials. PMID:26753877

  10. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Wang, Jingfeng; Kong, Yi; Zhou, Jia; Wu, Jinzhu; Wang, Gang; Bi, Hai; Wu, Xiaohong; Qin, Wei; Li, Qingkun

    2016-01-01

    In this communication, we present a versatile and controllable strategy for formation of superhydrophobic micro/nano hierarchical Al doped ZnO (AZO) films with a water contact angle (CA) of 170 ± 4°. This strategy involves a two-step layer-by-layer process employing an atomic layer deposition (ALD) technique followed by a hydrothermal method, and the resulting novel AZO surface layer consists of (100) dominant nano-rice-like AZO seed layer (the water CA of 110 ± 4°) covered with micro-peony-like AZO top. The growth mechanisms and superhydrophobic properties of the hierarchical AZO layer are discussed. It is believed that the present route holds promise for future success in the design and development of practical superhydrophobic materials.

  11. Structural and optical properties of Al-doped ZnO films coated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Bo; Huang, Bo; Zhang, Liang-Tang; Li, Jing; Wu, Sun-Tao

    2007-12-01

    The Al-doped ZnO (AZO) films were deposited on glass by RF magnetron sputtering under different sputtering power: 75W, 120W, 160W and 200W. During the films deposition, the other sputtering conditions were maintained constant. The crystal structures of the AZO films were characterized and analyzed by X-ray diffraction. The surface morphologies of the films were observed by SEM. The transmission spectra of the films were measured using a spectrophotometer within the range from 200 to 800 nm at room temperature. The results indicate each of the films has a preferential c-axis orientation and the grain size increases with the increase of sputtering power. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics.

  12. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  13. Study of structural and optical properties of Al doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallika, A. N.; Ramachandra Reddy, A.

    2014-03-01

    This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in addition to this, the photoluminescence (PL) properties of Al doped ZnO nanoparticles were studied. This paper reports on the structural and optical properties of Al doped ZnO nanoparticles prepared through sol-gel method using poly vinyl alcohol as chelating agent. Al was effectively doped in ZnO with concentrations up to 6 atomic percent concentrations (at. %). X-ray diffraction (XRD) results revealed that all the samples do not have impurity phase indicating hexagonal wurtzite structure of ZnO formed, the average crystallite sizes were decreased with increasing Al concentrations. A compressive strain was induced with Al doping and was calculated with W-H plot analysis. The morphology of all the samples was studied from Field Emission Scanning Electron Microscope (FE-SEM). The energy band gap of the Al doped samples was estimated from UV-Vis spectrum showed an overall increase. The presence of functional groups and chemical bonding of ZnO with Al doping was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectra, and in

  14. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing. PMID:25321779

  15. Improved optical and electrical properties of rf sputtered Al doped ZnO films on polymer substrates by low-damage processes

    SciTech Connect

    Min, Hyung Seob; Yang, Min Kyu; Lee, Jeon-Kook

    2009-03-15

    Three types of low-damage radio-frequency (rf) magnetron sputtering processes--an interruptive process, a rotating cylindrical holder method, and an off-axis sputtering method--were designed and studied to reduce the film surface temperature during deposition. Low-damage sputtering processes were investigated to improve the resistivity and optical transmittance in the visible range of Al doped ZnO (AZO) thin films deposited on polymer substrates. In the case of the polyethersulfone substrate, AZO films with a resistivity of 1.0x10{sup -3} {omega} cm and an optical transmittance of 75% were obtained by the rotating repeat holder method during rf sputtering.

  16. Atomic layer deposition of Al-doped ZnO thin films

    SciTech Connect

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  17. Effects of annealing pressure and Ar+ sputtering cleaning on Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Mei, Yong; Lu, Xuemei; Fan, Xiaoxing; Kang, Dawei; Xu, Panfeng; Tan, Tianya

    2016-11-01

    Post-treatments of Al-doped ZnO films fabricated by sol-gel method were studied in condition of annealing in air, vacuum and protective ambient, as well as the follow-up Ar+ sputtering cleaning. The effect of annealing pressure on resistivity of AZO films was investigated from 105 to 10-4 Pa, where the resistivity decreased four orders of magnitude as the pressure decreased and approached to its minimum at 10 Pa. It was observed that the main decreasing of resistivity occurred in a very narrow range of middle vacuum (between 100 and 10 Pa) and high vacuum was dispensable. The XRD and XPS characterizations demonstrated that the radical increasing of oxygen vacancy, Zn interstitial and substitution of Al3+ for Zn2+ under middle vacuum were responsible for the significant enhancement of conductivity. The follow-up Ar+ sputtering cleaning can further decrease the resistivity through removing the chemisorbed oxygen on film surface and grain boundaries, meanwhile fulfil the surface texture process, and thus improve both electrical and optical performances for applications.

  18. Mechanisms of lighting enhancement of Al nanoclusters-embedded Al-doped ZnO film in GaN-based light-emitting diodes

    SciTech Connect

    Lee, Hsin-Ying; Chou, Ying-Hung; Lee, Ching-Ting

    2010-01-15

    Aluminum (Al)-doped ZnO (AZO) films with embedded Al nanoclusters were proposed and utilized to enhance the light output power and maximum operation current of GaN-based light-emitting diodes (LEDs). The AZO films were sputtered using ZnO and Al targets in a magnetron cosputtering system. With Al dc power of 7 W and ZnO 100 W ac power, the electron concentration of 4.1x10{sup 20} cm{sup -3}, electron mobility of 16.2 cm{sup 2}/V s, and resistivity of 7.2x10{sup -4} {Omega} cm were obtained for the deposited AZO film annealed at 600 deg. C for 1 min in a N{sub 2} ambient. As verified by a high resolution transmission electron microscopy, the deposited AZO films with embedded Al nanoclusters were clearly observed. A 35% increase in light output power of the GaN-based LEDs with Al nanoclusters-embedded AZO films was realized compared with the conventional LEDs operated at 500 mA. It was verified experimentally that the various characteristics of GaN-based LEDs including the antireflection, light scattering, current spreading, and the light extraction efficiency in light emission could be significantly enhanced with the use of Al nanoclusters-embedded AZO films.

  19. The Preparation and Properties of Al-Doped ZnO Thin Films as Transparent Electrodes for Solar Cell

    NASA Astrophysics Data System (ADS)

    Ding, J. N.; Tan, C. B.; Yuan, N. Y.; Feng, X. W.; Chang, X. Y.; Ye, F.

    Transparent conductive oxides based on ZnO are promising materials for application in thin-film solar photovoltaic cells. Al-doped ZnO thin films with a large area of 1 m × 1.5 m were prepared by magnetic sputtering on glass substrate using a ceramic target (98 wt. % ZnO, 2 wt. % Al2O3) in different Ar+H2 ambient at different substrate temperature. SiO2 layer with a thickness of 20 nm was deposited as a resistant layer. To investigate the influence of H2-flow on the properties of AZO films, H2-flow rate was changed during the growth process with a fixed Ar-flow rate. The effect of the substrate temperature and the H2-flow rate on the structure, electrical and optical properties was studied. In order to enhance light scattering and absorption inside the cell, suitable surface texture is needed. The influence of wet chemical etching on surface roughness and haze of AZO were also investigated.

  20. Fabrication of Al-Doped ZnO Film with High Conductivity Induced by Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Hong, Jeongsoo; Katsumata, Ken-ichi; Matsushita, Nobuhiro

    2016-06-01

    We have fabricated Al-doped ZnO films by a spin-spray method, achieving high conductivity by Al-ion doping and photocatalytic activity of the ZnO. The surface morphology of the as-deposited films was varied by changing the Al concentration and addition of citrate ions. As-deposited Al-doped ZnO film without citrate ions showed rod array structure with increasing rod width as the Al concentration was increased. Meanwhile, Al-doped ZnO film deposited with addition of citrate ions changed to exhibit dense and continuous surface morphology with high transmittance of 85%. The lowest resistivity recorded for undoped and Al-doped ZnO film was 2.1 × 10-2 Ω cm and 5.9 × 10-3 Ω cm, after ultraviolet (UV) irradiation. The reason for the decreased resistivity is thought to be that Al-ion doping and the photocatalytic activity of ZnO contributed to improve the conductivity.

  1. Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode

    NASA Astrophysics Data System (ADS)

    Raja, M.; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Balasundrapraphu, R.; Senthil, T. S.; Agilan, S.

    2015-04-01

    ZnO and Al doped ZnO nanorods have been successfully synthesized on ITO substrate via solgel dip coating method without using any catalyst. The X-ray diffraction studies showed that the Al doped ZnO samples are of hexagonal wurtzite structure. The Al ions were successfully incorporated into the ZnO lattice. Scanning electron microscopy images reveal that the average diameter of ZnO nanorods and Al doped ZnO nanorods are ∼300 nm and ∼200 nm respectively. The energy dispersive X-ray (EDS) analysis confirmed the presence Al in the ZnO thin films. The CdS quantum dot sensitized Al doped ZnO solar cell exhibited a power conversion efficiency of 1.5%.

  2. Thermoelectric properties optimization of Al-doped ZnO thin films prepared by reactive sputtering Zn-Al alloy target

    NASA Astrophysics Data System (ADS)

    Fan, Ping; Li, Ying-zhen; Zheng, Zhuang-hao; Lin, Qing-yun; Luo, Jing-ting; Liang, Guang-xing; Zhang, Miao-qin; Chen, Min-cong

    2013-11-01

    Al-doped ZnO (AZO) has practical applications in the industry for thermoelectric generation, owing to its nontoxicity, low-cost and stability at high temperatures. In this study, AZO thin films with high quality were deposited on BK7 glass substrates at room-temperature by direct current reactive magnetron sputtering using Zn-Al alloy target. The deposited thin films were annealed at various temperatures ranging from 623 K to 823 K with a space of 50 K. It is found that the absolute value of Seebeck coefficient of AZO thin film annealed at 723 K increases stably with increasing of measuring temperature and reaches a value of ∼60 μV/K at 575 K. After that, Al-doping content was varied to further optimize the thermoelectric properties of AZO thin films. The power factor of AZO thin films with Al content of 3 wt% increased with increase of measuring temperature and the maximum power factor of 1.54 × 10-4 W m-1K-2 was obtained at 550 K with the maximum absolute values of Seebeck coefficient of 99 μV/K, which is promising for high temperature thermoelectric application.

  3. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  4. Local probe microscopic studies on Al-doped ZnO: Pseudoferroelectricity and band bending at grain boundaries

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2016-01-01

    In this paper, based on piezoforce measurements, we show the presence of opposite polarization at grains and grain boundaries of Al-doped ZnO (AZO). The polarization can be flipped by 180° in phase by switching the polarity of the applied electric field, revealing the existence of nanoscale pseudoferroelectricity in AZO grown on Pt/TiO2/SiO2/Si substrate. We also demonstrate an experimental evidence on local band bending at grain boundaries of AZO films using conductive atomic force microscopy and Kelvin probe force microscopy. The presence of an opposite polarization at grains and grain boundaries gives rise to a polarization-driven barrier formation at grain boundaries. With the help of conductive atomic force microscopy, we show that the polarization-driven barrier along with the defect-induced electrostatic potential barrier account for the measured local band bending at grain boundaries. The present study opens a new avenue to understand the charge transport in light of both polarization and electrostatic effects.

  5. Etching Characteristics of ZnO and Al-Doped ZnO in Inductively Coupled Cl2/CH4/H2/Ar and BCl3/CH4/H2/Ar Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Hack Joo; Kwon, Bong Soo; Kim, Hyun Woo; Kim, Seon Il; Yoo, Dong-Geun; Boo, Jin-Hyo; Lee, Nae-Eung

    2008-08-01

    ZnO and Al-doped ZnO (AZO) were etched in Cl2/CH4/H2/Ar (Cl2-based) and BCl3/CH4/H2/Ar (BCl3-based), inductively coupled plasmas (ICPs) and their etching characteristics were compared by varying the Cl2/(Cl2+CH4) and BCl3/(BCl3+CH4) flow ratios, top electrode power and dc self-bias voltage (Vdc). The etch rates of both ZnO and AZO layers were higher in the Cl2-based chemistry than in the BCl3-based chemistry. The AZO and ZnO etch rates were increased and decreased, respectively, with increasing Cl2 or BCl3 flow ratio. Optical emission measurements of the radical species in the plasma and surface binding states by optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS), respectively, indicated that, with increasing Cl2 or BCl3 flow ratio; the effective removal of Al in the AZO enhanced the AZO etch rate, whereas the reduced removal of Zn by the Zn(CHx)y products reduced the ZnO etch rate.

  6. Electronic structure of Al-doped ZnO transparent conductive thin films studied by x-ray absorption and emission spectroscopies

    SciTech Connect

    Huang, W. H.; Sun, S. J.; Chiou, J. W.; Chou, H.; Chan, T. S.; Lin, H.-J.; Kumar, Krishna; Guo, J.-H.

    2011-11-15

    This study used O K-, Zn L{sub 3}-, Zn K-, and Al K-edges x-ray absorption near-edge structure (XANES) and O K-edge x-ray emission spectroscopy (XES) measurements to investigate the electronic structure of transparent Al-doped ZnO (AZO) thin film conductors. The samples were prepared on glass substrates at a low temperature near 77 K by using a standard RF sputtering method. High-purity Ne (5N) was used as the sputtering gas. The crystallography of AZO thin films gradually transformed from the ZnO wurtize structure to an amorphous structure during sample deposition, which suggests the suitability to grow on flexible substrates, eliminating the severe degradation due to fragmentation by repeated bending. The O K- and Zn L{sub 3}-edges XANES spectra of AZO thin films revealed a decrease in the number of both O 2p and Zn 3d unoccupied states when the pressure of Ne was increased from 5 to 100 mTorr. In contrast, Al K-edges XANES spectra showed that the number of unoccupied states of Al 3p increased in conjunction with the pressure of Ne, indicating an electron transfer from Al to O atoms, and suggesting that Al doping increases the negative effective charge of oxygen ions. XES and XANES spectra of O 2p states at the O K-edge also revealed that Al doping not only raised the conduction-band-minimum, but also increased the valence-band-maximum and the band-gap. The results indicate that the reduction in conductivity of AZO thin films is due to the generation of ionic characters, the increase in band-gap, and the decrease in density of unoccupied states of oxygen.

  7. Formation of Al-doped ZnO thin films on glass by sol-gel process and characterization

    NASA Astrophysics Data System (ADS)

    Shahid, M. U.; Deen, K. M.; Ahmad, A.; Akram, M. A.; Aslam, M.; Akhtar, W.

    2016-02-01

    In this study, pure ZnO and Al-doped ZnO thin films were developed on glass by sol-gel process followed by drying and annealing in air at 170 and 400 °C, respectively. The surface morphology and structural characteristics were determined through scanning electron microscopy, atomic force microscopy and X-ray diffraction. The Fourier transform infrared spectroscopy validated the formation of Al-doped ZnO film on glass substrate. It was evaluated that 1 at% aluminum (Al) doping in ZnO film showed low electrical resistivity and higher charge carrier concentration due to uniformly dispersed regular shape crystallites as compared to pure ZnO and 2 at% `Al'-doped thin films.

  8. Studies on the Controlling of the Microstructural and Morphological Properties of Al Doped ZnO Thin Films Prepared by Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Gil Gang, Myeng; Shin, Seung Wook; Gurav, K. V.; Wang, YinBo; Agawane, G. L.; Lee, Jeong Yong; Moon, Jong-Ha; Hyeok Kim, Jin

    2013-10-01

    Al doped ZnO (AZO) thin films were prepared on ZnO coated glass substrates by hydrothermal synthesis technique using aqueous solutions containing zinc nitrate hexahydrate, ammonium hydroxide, and different sodium citrate concentrations at 60 °C for 6 h. The effects of different trisodium citrate concentrations on the microstructural, crystallinity, morphological, optical, and chemical properties of thin films were investigated. X-ray diffraction studies showed that the AZO thin films were grown as a polycrystalline wurtzite hexagonal phase with a c-axis preferred orientation and without an unwanted second phase regardless of trisodium citrate concentrations. The thickness and grain sizes of AZO thin films decreased with increasing trisodium citrate concentration. The microstructure of AZO thin films was changed from flat to needle shaped and the morphology was smoother with increasing trisodium citrate concentrations. The AZO thin films have a high transmittance in the visible region ranging from 75 to 85% and a sharp edge from 366 to 374 nm.

  9. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    SciTech Connect

    Barhoumi, A. Guermazi, S.; Leroy, G.; Gest, J.; Carru, J. C.; Yang, L.; Boughzala, H.; Duponchel, B.

    2014-05-28

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements. The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  10. Correlations between 1/f noise and thermal treatment of Al-doped ZnO thin films deposited by direct current sputtering

    NASA Astrophysics Data System (ADS)

    Barhoumi, A.; Leroy, G.; Yang, L.; Gest, J.; Boughzala, H.; Duponchel, B.; Guermazi, S.; Carru, J. C.

    2014-05-01

    Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures Ts. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with Ts which is in agreement with the noise measurements. The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, Rsh and [αμ]eff increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.

  11. Solution processed Al-doped ZnO nanoparticles/TiOx composite for highly efficient inverted organic solar cells.

    PubMed

    Gadisa, Abay; Hairfield, Travis; Alibabaei, Leila; Donley, Carrie L; Samulski, Edward T; Lopez, Rene

    2013-09-11

    We investigated the electrical properties of solution processed Al-doped ZnO (AZO) nanoparticles, stabilized by mixing with a TiOx complex. Thin solid films cast from the solution of AZO-TiOx (AZOTi) (Ti/Zn ∼0.4 in the bulk and ∼0.8 on its surface) is processable in inert environment, without a need for either ambient air exposure for hydrolysis or high temperature thermal annealing commonly applied to buffer layers of most metal-oxides. It was found that the electronic structure of AZOTi matches the electronic structure of several electron acceptor and donor materials used in organic electronic devices, such as solar cells. Inverted solar cells employing a bulk heterojunction film of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester, cast on an indium-tin-oxide/AZOTi electrode, and capped with a tungsten oxide/aluminum back electrode, give rise to a nearly 70% fill factor and an optimized open-circuit voltage as a result of efficient hole blocking behavior of AZOTi. The resulting electron collecting/blocking capability of this material solves crucial interfacial recombination issues commonly observed at the organic/metal-oxide interface in most inverted organic bulk heterojunction solar cells. PMID:23980825

  12. Relation between surface and bulk electronic properties of Al doped ZnO films deposited at varying substrate temperature by radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, C. C.; Patel, T. A.; Panda, E.

    2015-06-01

    In this study, a qualitative relationship between the surface and bulk electronic states for Al-doped ZnO (AZO) thin films (thickness < 260 nm) is established. To this end, AZO films were deposited on soda lime glass substrates by varying substrate temperature (Ts) from 303 K to 673 K in RF magnetron sputtering. All these AZO films are found to have grown in ZnO hexagonal wurtzite structure with strong (002) orientation of the crystallites and with an average transmittance of 84%-91% in the visible range. Room temperature scanning tunneling spectroscopy measurements reveal semiconducting behavior for the films deposited at Ts ≤ 373 K and semi-metallic behavior for those deposited at Ts > 373 K. Further, these films show two modes of electron tunneling, (a) direct tunneling at lower bias voltage and (b) FN tunneling at higher bias voltage, with transition voltage ( Vtrans ) shifting towards lower bias voltage (and thereby reducing the barrier height ( Φ)) with increasing Ts. This is attributed to additional (local) density of states near the Fermi level of these AZO films because of higher carrier concentration ( ne ) at increased Ts. Thus, qualitatively, the behavior in both the local surface electronic states and bulk state electronic properties for these deposited AZO films are found to follow similar trends with increasing Ts. The variation in local barrier heights (indicative of the local surface electronic structures) across the AZO film surface is found to be smaller for the films deposited at Ts ≤ 373 K, where semiconducting behavior is observed and wider for the semi-metallic AZO films deposited at higher Ts > 373 K, indicating a larger inhomogeneity of local surface electronic properties at higher bulk carrier concentration.

  13. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation.

    PubMed

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-12-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility (μ H) of 50.1 cm(2)/Vs with a carrier concentration (N) of 2.55 × 10(20) cm(-3). Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm(2)/Vs with an N of 2.22 × 10(20) cm(-3). PMID:27365000

  14. Polymer solar cells with efficiency >10% enabled via a facile solution-processed Al-doped ZnO electron transporting layer (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Jagadamma, Lethy K.; Al-Senani, Mohammed; Amassian, Aram

    2015-10-01

    The present work details a facile and low-temperature (125C) solution-processed Al-doped ZnO (AZO) buffer layer functioning very effectively as electron accepting/hole blocking layer for a wide range of polymer:fullerene bulk heterojunction systems, and yielding power conversion efficiency in excess of 10% (8%) on glass (plastic) substrates. We show that ammonia addition to the aqueous AZO nanoparticle solution is a critically important step toward producing compact and smooth thin films which partially retain the aluminum doping and crystalline order of the starting AZO nanocrystals. The ammonia treatment appears to reduce the native defects via nitrogen incorporation, making the AZO film a very good electron transporter and energetically matched with the fullerene acceptor. Importantly, highly efficient solar cells are achieved without the need for additional surface chemical passivation or modification, which has become an increasingly common route to improving the performance of evaporated or solution-processed ZnO ETLs in solar cells.

  15. High-Hall-Mobility Al-Doped ZnO Films Having Textured Polycrystalline Structure with a Well-Defined (0001) Orientation

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2016-06-01

    Five hundred-nanometer-thick ZnO-based textured polycrystalline films consisting of 490-nm-thick Al-doped ZnO (AZO) films deposited on 10-nm-thick Ga-doped ZnO (GZO) films exhibited a high Hall mobility ( μ H) of 50.1 cm2/Vs with a carrier concentration ( N) of 2.55 × 1020 cm-3. Firstly, the GZO films were prepared on glass substrates by ion plating with dc arc discharge, and the AZO films were then deposited on the GZO films by direct current magnetron sputtering (DC-MS). The GZO interface layers with a preferential c-axis orientation play a critical role in producing AZO films with texture development of a well-defined (0001) orientation, whereas 500-nm-thick AZO films deposited by only DC-MS showed a mixture of the c-plane and the other plane orientation, to exhibit a μ H of 38.7 cm2/Vs with an N of 2.22 × 1020 cm-3.

  16. Spatial distribution of electrical properties for Al-doped ZnO films deposited by dc magnetron sputtering using various inert gases

    SciTech Connect

    Sato, Yasushi; Ishihara, Keita; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Spatial distribution of electrical properties of Al-doped ZnO (AZO) films deposited by magnetron sputtering was investigated. To adjust the intensity of bombardment by high-energy particles, the AZO films were deposited using Ar, Kr, or Xe gas with varying plasma impedance. The spatial distribution of the electrical properties clearly depends on the sputtering gas. In the case of using Kr or Xe, the resistivity of the films in front of the target center and erosion areas was significantly enhanced, in contrast with Ar. This was attributed to an enhancement in bombardment damage due to the increased sputtering voltages required for Kr or Xe discharges. The increase in plasma impedance was due to the smaller coefficients for secondary-electron emission of the target surface by Kr or Xe impingements, which leads to the larger sputtering voltage.

  17. Large lateral photovoltaic effect observed in nano Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Wang, Hui

    2011-07-01

    Zinc oxide (ZnO), including a variety of metal-doped ZnO, as one kind of most important photoelectric materials, has been widely investigated and received enormous attention for a series of applications. In this work, we report a new finding which we call as lateral photovoltaic effect (LPE) in a nano Al-doped ZnO (ZAO) film based on ZAO/SiO2/Si homo-heterostructure. This large and stable LPE observed in ZAO is an important supplement to the existing ZnO properties. In addition, all data and analyses demonstrate ZAO film can also be a good candidate for new type position-sensitive detector (PSD) devices.

  18. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Sanden, M. C. M. van de

    2008-02-01

    In situ spectroscopic ellipsometry (SE) was applied to study the pyramidlike and pillarlike growth of Al doped ZnO (AZO) films deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition for transparent conductive oxide applications. Real time SE studies in the visible region allowed discerning between the two growth modes by addressing the time evolution of the bulk and surface roughness layer thickness. While the pillarlike mode is characterized by a constant growth rate, a slower rate in the initial stage (up to 150-200 nm film thickness), compared to the bulk, is observed for the growth of pyramidlike AZO films. The two modes differ also in terms of surface roughness development: a saturation behavior is observed for film thickness above 150-200 nm in the case of the pyramidlike films, while a slow linear increase with film thickness characterizes the pillarlike mode. By extending the SE analysis of the AZO films to the near infrared region, valuable information about the in grain properties could be extracted: excellent in grain mobility values, i.e., larger than 100 and 50 cm{sup 2}/V s, are determined for the pyramidlike and pillarlike AZO layers, respectively. The comparison between the outcome of the in situ real time SE studies and the ex situ electrical and chemical characterization highlights the limitations in the electron transport occurring in both types of films and allows one to address routes toward further improvement in AZO conductivity.

  19. Ferroelectric properties of (Pb,La)(Zr,Ti)O3 capacitors employing Al-doped ZnO top electrodes prepared by pulsed laser deposition under different oxygen pressures

    NASA Astrophysics Data System (ADS)

    Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Kondo, Kazuo; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira

    2016-06-01

    Al-doped ZnO (AZO) top electrodes were deposited under oxygen pressures from 0.02 to 20 Pa using pulsed laser deposition (PLD) to fabricate ferroelectric (Pb,La)(Zr,Ti)O3 capacitors. The oxygen pressure during PLD affected the surface morphology of the AZO top electrodes as well as the ferroelectric properties. In particular, the surface morphologies were dramatically altered by increasing oxygen pressure. We obtained desirable ferroelectric properties with the highest maximum polarization and lowest coercive voltage at around 2.0 Pa. The saturation characteristics, hydrogen degradation resistance, and fatigue resistance were almost unrelated to the oxygen pressure during PLD.

  20. Morphological properties of Al-doped ZnO nano/microstructures

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Ho; Umakoshi, Tomoyuki; Abe, Yoshio; Kawamura, Midori; Kiba, Takayuki

    2016-03-01

    We discussed the morphological properties of Al-doped zinc oxide (Al-ZnO) microrods grown on a ZnO seed layer and precipitation particles and compared them with undoped ZnO samples. The ZnO nanorods grown on a ZnO seed layer were dense and perpendicular to the surface of the substrate, i.e., fluorine-doped tin oxide (FTO). In contrast the Al-ZnO grew as larger microrods, and the rods were sparsely and obliquely arranged. Precipitation particles synthesized in the ZnO solution through homogeneous nucleation had flower-like structures assembled from the rods and individual rods with lengths of several micrometers. Al-ZnO precipitation particles consisted of rods with length of several micrometers and hexagonal nanoplates. Fourier transform infrared (FTIR) analysis results showed that the rods and precipitation particles had the good chemical properties of ZnO. Both size and morphology of the rods could be effectively controlled by adding aluminum nitrate (Al(NO3)3) as dopant in the ZnO rod solution.

  1. Development of Solution-Processed ZnO Nanorod Arrays Based Photodetectors and the Improvement of UV Photoresponse via AZO Seed Layers.

    PubMed

    Zhang, Yuzhu; Xu, Jianping; Shi, Shaobo; Gao, Yanyan; Wang, Chang; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2016-08-31

    Designing a rational structure and developing an efficient fabrication technique for bottom-up devices offer a promising opportunity for achieving high-performance devices. In this work, we studied how Al-doped ZnO (AZO) seed layer films influence the morphology and optical and electrical properties for ZnO aligned nanorod arrays (NRs) and then the performance of ZnO NRs based ultraviolet photodetectors (UV PDs) with Au/ZnO NRs Schottky junctions and p-CuSCN/n-ZnO NRs heterojunctions. The PD with AZO thin film with 0.5 at. % Al doping (named as AZO (0.5%)) exhibited more excellent photoresponse properties than that with pristine ZnO and AZO (1%) thin films. This phenomenon can be ascribed to the good light transmission of the AZO layer, increased density of the NRs, and improved crystallinity of ZnO NRs. The PDs based on CuSCN/ZnO NRs heterojunctions showed good rectification characteristics in the dark and self-powered UV photoresponse properties with excellent stability and reproducibility under low-intensity illumination conditions. A large responsivity located at 365 nm of 22.5 mA/W was achieved for the PD with AZO (0.5%) thin film without applied bias. The internal electric field originated from p-CuSCN/n-ZnO NRs heterojunctions can separate photogenerated carriers in ZnO NRs and drift toward the corresponding electrode. PMID:27500944

  2. Thickness Effect of Al-Doped ZnO Window Layer on Damp-Heat Stability of CuInGaSe2 Solar Cells

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-01-01

    We investigated the damp heat (DH) stability of CuInGaSe{sub 2} (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 {micro}m to a modest 0.50 {micro}m over an underlying 0.10-{micro}m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 {micro}m/3 {micro}m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85 C and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  3. Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint

    SciTech Connect

    Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

    2011-07-01

    We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 μm to a modest 0.50 μm over an underlying 0.10-μm intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 μm/3 μm) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

  4. Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Tabassum, Samia; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2016-07-01

    Al-doped zinc oxide (AZO) thin films have been considered as a promising alternative to tin doped indium oxide (ITO), which is currently used in various optoelectronic applications. However, the environmental stability of AZO film is not satisfactory, in that the resistivity is significantly increases in air. Here, we investigate the resistivity stability of AZO thin films prepared by sol-gel method using various annealing temperatures and durations. The degradation of resistivity property was observed for AZO films stored in ambient or damp heat environment, where the degradation rate was influenced by annealing temperature. A significant improvement of electrical stability was attained in AZO films that were prepared at high annealing temperature. The films, which showed the highest and the lowest increasing rate of resistivity, were further characterized in detail to shed light on the possible mechanisms explaining the improved stability through crystallinity, surface morphology and elemental state of the thin film.

  5. Transparent conductive Al-doped ZnO thin films grown at room temperature

    SciTech Connect

    Wang Yuping; Lu Jianguo; Bie Xun; Gong Li; Li Xiang; Song Da; Zhao Xuyang; Ye Wenyi; Ye Zhizhen

    2011-05-15

    Aluminum-doped ZnO (ZnO:Al, AZO) thin films were prepared on glass substrates by dc reactive magnetron sputtering from a Zn-Al alloy target at room temperature. The effects of the Ar-to-O{sub 2} partial pressure ratios on the structural, electrical, and optical properties of AZO films were studied in detail. AZO films grown using 100:4 to 100:8 Ar-to-O{sub 2} ratio result in acceptable quality films with c-axis orientated crystals, uniform grains, 10{sup -3} {Omega} cm resistivity, greater than 10{sup 20} cm{sup -3} electron concentration, and high transmittance, 90%, in the visible region. The lowest resistivity of 4.11x10{sup -3} {Omega} cm was obtained under the Ar-to-O{sub 2} partial pressure ratio of 100:4. A relatively strong UV emission at {approx}3.26 eV was observed in the room-temperature photoluminescence spectrum. X-ray photoelectron spectroscopy analysis confirmed that Al was introduced into ZnO and substitutes for Zn and doped the film n-type.

  6. Transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering with dc and rf powers applied in combination

    SciTech Connect

    Minami, Tadatsugu; Ohtani, Yuusuke; Miyata, Toshihiro; Kuboi, Takeshi

    2007-07-15

    A newly developed Al-doped ZnO (AZO) thin-film magnetron-sputtering deposition technique that decreases resistivity, improves resistivity distribution, and produces high-rate depositions has been demonstrated by dc magnetron-sputtering depositions that incorporate rf power (dc+rf-MS), either with or without the introduction of H{sub 2} gas into the deposition chamber. The dc+rf-MS preparations were carried out in a pure Ar or an Ar+H{sub 2} (0%-2%) gas atmosphere at a pressure of 0.4 Pa by adding a rf component (13.56 MHz) to a constant dc power of 80 W. The deposition rate in a dc+rf-MS deposition incorporating a rf power of 150 W was approximately 62 nm/min, an increase from the approximately 35 nm/min observed in dc magnetron sputtering with a dc power of 80 W. A resistivity as low as 3x10{sup -4} {omega} cm and an improved resistivity distribution could be obtained in AZO thin films deposited on substrates at a low temperature of 150 deg. C by dc+rf-MS with the introduction of hydrogen gas with a content of 1.5%. This article describes the effects of adding a rf power component (i.e., dc+rf-MS deposition) as well as introducing H{sub 2} gas into dc magnetron-sputtering preparations of transparent conducting AZO thin films.

  7. Structural and Morphological Properties of Al doped ZnO Nanoparticles

    NASA Astrophysics Data System (ADS)

    Akdağ, A.; Budak, H. F.; Yılmaz, M.; Efe, A.; Büyükaydın, M.; Can, M.; Turgut, G.; Sönmez, E.

    2016-04-01

    Zinc oxide nanoparticles have a wide area of use because of their unique properties such as catalytic, electrical, and optical properties and low cost. Since the suitable additive materials can be changed the electrical and optical properties of zinc oxide, the demand of the industrial commercial area to the zinc oxide increased. In this study, Al doped ZnO nanoparticles produced by using the methods of reduction thought having materials of the Zn(NO)3, AlCl3 and NaOH. XRD, SEM and EDS used for making analyzing of structural and dimensional of particles. The analyses show that the large amount of the Al3+ ions did nut substitute with Zn2+ successfully with the reduction method. XRD and EDS results confirm this situation.

  8. Electron transport in Al-doped ZnO nanolayers obtained by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Blagoev, B. S.; Dimitrov, D. Z.; Mehandzhiev, V. B.; Kovacheva, D.; Terziyska, P.; Pavlic, J.; Lovchinov, K.; Mateev, E.; Leclercq, J.; Sveshtarov, P.

    2016-03-01

    Al-doped ZnO thin films with different Al content were prepared by atomic layer deposition (ALD). To carry out thermal ALD, diethyl zinc (DEZ) and tri-methyl aluminium (TMA) were used as Zn and Al precursors, respectively, and water vapor as oxidant. Various numbers n of DEZ and m TMA cycles was used to obtain different [ZnO] n [Al2O3] m films, where n = 100 – 95, m = 1 – 5. The X-ray diffraction analysis showed a predominantly (100) oriented polycrystalline phase for the ZnO:Al films with a low Al content (m = 1 – 3) and an amorphous structure for pure Al2O3. In ZnO:Al with a higher Al content (m = 4 – 6) the (100) reflection disappeared and the (002) peak increased. The resistivity of the films decreased with the increase in the Al content, reaching a minimum of 3.3×10-3 Ω cm at about 1.1 % Al2O3 for the [ZnO]99[Al2O3]2 sample; for higher dopant concentrations, the resistivity increased because of the increased crystal inhomogeneity due to axis reorientation.

  9. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-01

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation. PMID:26551232

  10. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  11. Reversible Change in Electrical and Optical Properties in Epitaxially Grown Al-Doped ZnO Thin Films

    SciTech Connect

    Noh, J. H.; Jung, H. S.; Lee, J. K.; Kim, J. Y; Cho, C. M.; An, J.; Hong, K. S.

    2008-01-01

    Aluminum-doped ZnO (AZO) films were epitaxially grown on sapphire (0001) substrates using pulsed laser deposition. As-deposited AZO films had a low resistivity of 8.01 x 10{sup -4} {Omega} cm. However, after annealing at 450 C in air, the electrical resistivity of the AZO films increased to 1.97 x 10{sup -1} {Omega} cm because of a decrease in the carrier concentration. Subsequent annealing of the air-annealed AZO films in H{sub 2} recovered the electrical conductivity of the AZO films. In addition, the conductivity change was reversible upon repeated air and H{sub 2} annealing. A photoluminescence study showed that oxygen interstitial (O{sub i}) is a critical material parameter allowing for the reversible control of the electrical conducting properties of AZO films.

  12. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  13. Characteristics of Al-doped ZnO thin films prepared in Ar + H{sub 2} atmosphere and their vacuum annealing behavior

    SciTech Connect

    Zhu, Bailin; Lü, Kun; Wang, Jun; Li, Taotao; Wu, Jun; Zeng, Dawen; Xie, Changsheng

    2013-11-15

    The microstructure and electrical–optical properties of Al-doped ZnO (AZO) films have been studied as a function of H{sub 2} flux in the magnetron sputtering process at 150 °C and postannealing temperature in vacuum. As H{sub 2} flux increases in the sputtering gas, the AZO films deposited have a (002) preferred orientation rather than the mixed (100) and (002) orientations, the grain size shows a tendency to first increase then decrease, and (002) diffraction peak position is inclined to shift to higher angles first then to lower angles. The resistivity of the films first decreases then increases with H{sub 2} flux, and the lowest resistivity of 4.02 × 10{sup −4}Ω cm is obtained at a H{sub 2} flux of 10 sccm. The average transmittance in the visible region shows little dependence on H{sub 2} flux. As a whole, the AZO films with higher values of figure of merit are obtained when the H{sub 2} flux is in the range of 6–12 sccm. The AZO films deposited in Ar and Ar + H{sub 2} exhibit different annealing behaviors. For the AZO film deposited in Ar, the grain size gradually increases, the stresses are relaxed, the resistivity first decreases then increases, and the average transmittance in the visible region is unchanged initially then somewhat decreased as annealing temperature is increased. The optimum annealing temperature for improving properties of AZO films deposited in Ar is 300 °C. For the AZO films deposited in Ar + H{sub 2}, annealing does not significantly change the microstructure but increases the resistivity of the films; the average transmittance in the visible region remains unchanged initially but greatly reduced with further increase in annealing temperature. The carrier transport in the as-deposited and annealed films appears to be controlled by a mechanism of grain boundary scattering, and the value of E{sub g} increases with the increase in carrier concentration due to Burstein–Moss effect.

  14. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    SciTech Connect

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  15. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    PubMed Central

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 μm−2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells. PMID:23566567

  16. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  17. Enhanced Photoluminescence and Raman Properties of Al-Doped ZnO Nanostructures Prepared Using Thermal Chemical Vapor Deposition of Methanol Assisted with Heated Brass

    PubMed Central

    Thandavan, Tamil Many K.; Gani, Siti Meriam Abdul; San Wong, Chiow; Md. Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs. PMID:25756598

  18. Enhanced light extraction of GaN-based light-emitting diodes with periodic textured SiO2 on Al-doped ZnO transparent conductive layer

    NASA Astrophysics Data System (ADS)

    Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang

    2016-07-01

    We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).

  19. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    NASA Astrophysics Data System (ADS)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  20. Effect of substrate temperature on the structural and optical properties of ZnO and Al-doped ZnO thin films prepared by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, Xue-Yong; Li, Hong-Jian; Wang, Zhi-Jun; Xia, Hui; Xiong, Zhi-Yong; Wang, Jun-Xi; Yang, Bing-Chu

    2009-01-01

    ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al 2O 3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap ( Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.

  1. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions

    NASA Astrophysics Data System (ADS)

    Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.

  2. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions.

    PubMed

    Arca, Elisabetta; McInerney, Michael A; Shvets, Igor V

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure. PMID:26952763

  3. Al-doped ZnO aligned nanorod arrays for opto-electronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Mundle, R.; Dondapati, H.; Konda, R. B.; Bahoura, M.; Pradhan, A. K.

    2012-04-01

    We report on the growth of vertically aligned Al:ZnO nanorod arrays synthesized by the hydrothermal technique at considerably low temperature on a sputtered Al:ZnO seed layer. The morphology demonstrates that the nanorod arrays maintain remarkable alignment along the c-axis over a large area. The optoelectronic properties of nanorod arrays on Al:ZnO/p-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/p-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The optical properties of the AZO film with and without the AZO nanorod arrays were investigated. Also the effects of an intermediate layer in the AZO/P-Si heterojunction structure with and without the AZO nanorod array present were explored. All the various intermediate layers displayed photovoltaic effect behavior, especially with the AZO/SiO2/P-Si heterojunction structure, which exhibited ideal diode behavior. The optoelectronic properties of nanorod arrays on AZO/P-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/P-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The results have tremendous impact for sensor fabrication, including glucose sensor.

  4. Crystal Structure and Optical Properties of Al-Doped ZnO Large-Area Thin Films Using 1500 mm Dual Cylindrical Cathodes.

    PubMed

    Lee, JinJu; Ha, Jong-Yoon; Yim, Haena; Choi, Won-Kook; Choi, Ji-Won

    2015-11-01

    The large-area Al-doped ZnO thin films are successfully deposited at room temperature on polycarbonate substrate using a 1500 mm dual cylindrical cathodes sputtering system. Those thin films have smooth surfaces (RMS: 9.6 nm) and lower thicknesses deviation (Uniformity: 98.6%) despite of high RF power. The optical transmittance properties of 3.13 wt% Al doped ZnO thin films have above 85% in visible region. A dual cylindrical cathodes sputtering system can fabricate transparent electrode on flexible electronic devices at room temperature for mass production of 6th generation solar cell and display industry. PMID:26726519

  5. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    NASA Astrophysics Data System (ADS)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  6. On performance limitations and property correlations of Al-doped ZnO deposited by radio-frequency sputtering

    NASA Astrophysics Data System (ADS)

    Crovetto, Andrea; Sand Ottsen, Tobias; Stamate, Eugen; Kjær, Daniel; Schou, Jørgen; Hansen, Ole

    2016-07-01

    The electrical properties of RF-sputtered Al-doped ZnO are often spatially inhomogeneous and strongly dependent on deposition parameters. In this work, we study the mechanisms that limit the minimum resistivity achievable under different deposition regimes. In a low- and intermediate-pressure regime, we find a generalized dependence of the electrical properties, grain size, texture, and Al content on compressive stress, regardless of sputtering pressure or position on the substrate. In a high-pressure regime, a porous microstructure limits the achievable resistivity and causes it to increase over time as well. The primary cause of inhomogeneity in the electrical properties is identified as energetic particle bombardment. Inhomogeneity in oxygen content is also observed, but its effect on the electrical properties is small and limited to the carrier mobility.

  7. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    George, David; Li, Li; Jiang, Yan; Lowell, David; Mao, Michelle; Hassan, Safaa; Ding, Jun; Cui, Jingbiao; Zhang, Hualiang; Philipose, Usha; Lin, Yuankun

    2016-07-01

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  8. Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer.

    PubMed

    Kim, Jun Young; Cho, Eunae; Kim, Jaehoon; Shin, Hyeonwoo; Roh, Jeongkyun; Thambidurai, Mariyappan; Kang, Chan-mo; Song, Hyung-Jun; Kim, SeongMin; Kim, Hyeok; Lee, Changhee

    2015-09-21

    We demonstrate that nanocrystalline Al-doped zinc oxide (n-AZO) thin film used as an electron-extraction layer can significantly enhance the performance of inverted polymer solar cells based on the bulk heterojunction of poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) and [6,6]-phenyl C(71)-butyric acid methyl ester (PC(70)BM). A synergistic study with both simulation and experiment on n-AZO was carried out to offer a rational guidance for the efficiency improvement. As a result, An n-AZO film with an average grain size of 13 to 22 nm was prepared by a sol-gel spin-coating method, and a minimum resistivity of 2.1 × 10(-3) Ω·cm was obtained for an Al-doping concentration of 5.83 at.%. When an n-AZO film with a 5.83 at.% Al concentration was inserted between the ITO electrode and the active layer (PCDTBT:PC(70)BM), the power conversion efficiency increased from 3.7 to 5.6%. PMID:26406762

  9. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  10. The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method

    NASA Astrophysics Data System (ADS)

    Mkawi, E. M.; Ibrahim, K.; Ali, M. K. M.; Farrukh, M. A.; Mohamed, A. S.

    2015-11-01

    Al-doped ZnO (AZO) thin films were potentiostatically deposited on indium tin oxide substrates. The influence of the doping level of the ZnO:Al films was investigated. The results of the X-ray diffraction and scanning electron microscopy analysis revealed that the structural properties of the AZO films were found polycrystalline with a hexagonal wurtzite-type structure along the (002) plane. The grain size of the AZO films was observed as approximately 3 μm in the film doping with 4 mol% ZnO:Al concentration. The thin films also exhibited an optical transmittance as high as 90 % in the wavelength range of 100-1,000 nm. The optical band gap increased from 3.33 to 3.45 eV. Based on the Hall studies, the lowest resistivity (4.78 × 10-3 Ω cm) was observed in the film doping with 3 mol% ZnO:Al concentration. The sheet resistant, carrier concentration and Hall mobility values were found as 10.78 Ω/ square, 9.03 × 1018 cm-3 and 22.01 cm2/v s, respectively, which showed improvements in the properties of AZO thin films. The ZnO:Al thin films were used as a buffer layer in thin-film solar cells with the structure of soda-lime glass/Mo/Cu2ZnSnS4/ZnS/ZnO/Al grid. The best solar cell efficiency was 2.3 % with V OC of 0.430 V, J SC of 8.24 mA cm-2 and FF of 68.1 %.

  11. Investigations on the roles of position controlled Al layers incorporated into an Al-doped ZnO active channel during atomic layer deposition for thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Eom-Ji; Lee, Won-Ho; Yoon, Sung-Min

    2016-03-01

    We investigated the effects of the distance between incorporated Al layers on the characteristics of thin-film transistors (TFTs) using Al-doped ZnO (AZO) as the active channels. The intervals between the Al layers were controlled by designing the sequences of Al cycles during the atomic-layer deposition. Two configurations were designed as “scatter” or “focus”, in which the incorporated Al layers were dispersed to bottom and top sides or concentrated on the center region. Electrical conductivities of “scatter” and “focus” films were observed to be different. While the dispersed Al layers could work as dopants, a too-close interval between the Al layers suppressed carrier transport, even with the same incorporated Al amounts. These differences were reflected on the device characteristics. The TFT performance of the “scatter” device was better than that of the “focus” device. Consequently, adequately dispersed Al layers in the AZO channel are very important for improving device performance.

  12. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation. PMID:22966566

  13. Electrical and optical properties of Al-doped ZnO and ZnAl2O4 films prepared by atomic layer deposition

    PubMed Central

    2013-01-01

    ZnO/Al2O3 multilayers were prepared by alternating atomic layer deposition (ALD) at 150°C using diethylzinc, trimethylaluminum, and water. The growth process, crystallinity, and electrical and optical properties of the multilayers were studied with a variety of the cycle ratios of ZnO and Al2O3 sublayers. Transparent conductive Al-doped ZnO films were prepared with the minimum resistivity of 2.4 × 10−3 Ω·cm at a low Al doping concentration of 2.26%. Photoluminescence spectroscopy in conjunction with X-ray diffraction analysis revealed that the thickness of ZnO sublayers plays an important role on the priority for selective crystallization of ZnAl2O4 and ZnO phases during high-temperature annealing ZnO/Al2O3 multilayers. It was found that pure ZnAl2O4 film was synthesized by annealing the specific composite film containing alternative monocycle of ZnO and Al2O3 sublayers, which could only be deposited precisely by utilizing ALD technology. PMID:23537274

  14. Ultraviolet band-pass Schottky barrier photodetectors formed by Al-doped ZnO contacts to n-GaN

    SciTech Connect

    Sheu, J.K.; Lee, M.L.; Tun, C.J.; Lin, S.W.

    2006-01-23

    This work prepared Al-doped ZnO(AZO) films using dc sputtering to form Schottky contacts onto GaN films with low-temperature-grown GaN cap layer. Application of ultraviolet photodetector showed that spectral responsivity exhibits a narrow bandpass characteristic ranging from 345 to 375 nm. Moreover, unbiased peak responsivity was estimated to be around 0.12 A/W at 365 nm, which corresponds to a quantum efficiency of around 40%. In our study, relatively low responsivity can be explained by the marked absorption of the AZO contact layer. When the reverse biases were below 5 V, the study revealed that dark currents were well below 5x10{sup -12} A even though the samples were annealed at increased temperatures.

  15. Competition between (001) and (111) MgO thin film growth on Al-doped ZnO by oxygen plasma assisted pulsed laser deposition

    SciTech Connect

    Xiao, Bo; Yang, Qiguang; Walker, Brandon; Gonder, Casey A.; Romain, Gari C.; Mundle, Rajeh; Bahoura, Messaoud; Pradhan, A. K.

    2013-06-07

    We report on the study of epitaxial MgO thin films on (0001) Al-doped ZnO (Al: ZnO) underlayers, grown by oxygen plasma assisted pulsed laser deposition technique. A systematic investigation of the MgO thin films was performed by X-ray diffraction and atomic force microscopy, along with the current-voltage characteristics. A distinguished behavior was observed that the preferred MgO orientation changes from (111) to (001) in the films as the growth temperature increases. Two completely different in-plane epitaxial relationships were also determined from X-ray diffraction as: [110]MgO//[1120]Al: ZnO and [110]MgO//[1100]Al: ZnO for (001) MgO with 60 Degree-Sign rotated triplet domains, and [110]MgO//[1120]Al: ZnO for (111) MgO with 180 Degree-Sign rotated twin. The pronounced temperature dependence indicates a reconciliation of the nucleation driving forces among surface, interfacial, and strain energy for heteroepitaxy of cubic MgO on hexagonal Al: ZnO. The related interfacial atomic registry is considered to be important to the formation of unusual (001) MgO on hexagonal crystals. In addition, the electrical characterization revealed a dramatic reduction of the leakage current in (001) MgO thin films, whereas the small grain size of (111) MgO is identified by atomic force microscopy as a main cause of large leakage current.

  16. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering.

    PubMed

    Jun, Min-Chul; Koh, Jung-Hyuk

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  17. Effects of NIR annealing on the characteristics of al-doped ZnO thin films prepared by RF sputtering

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency. PMID:22673232

  18. Recombination luminescence and trap levels in undoped and Al-doped ZnO thin films on quartz and GaSe (0 0 0 1) substrates

    SciTech Connect

    Evtodiev, I.; Caraman, I.; Leontie, L.; Rusu, D.-I.; Dafinei, A.; Nedeff, V.; Lazar, G.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer ZnO films on GaSe create electron trapping states and PL recombination levels. Black-Right-Pointing-Pointer Zn and Al diffusion in GaSe produces low-energy widening of its PL emission. Black-Right-Pointing-Pointer ZnO:Al films on GaSe lamellas are suitable for gas-discharge lamp applications. -- Abstract: Photoluminescence spectra of ZnO and ZnO:Al (1.00, 2.00 and 5.00 at.%) films on GaSe (0 0 0 1) lamellas and amorphous quartz substrates, obtained by annealing, at 700 K, of undoped and Al-doped metal films, are investigated. For all samples, the nonequilibrium charge carriers recombine by radiative band-to-band transitions with energy of 3.27 eV, via recombination levels created by the monoionized oxygen atoms, forming the impurity band laying in the region 2.00 - 2.70 eV. Al doping induces an additional recombination level at 1.13 eV above the top of the valence band of ZnO films on GaSe substrates. As a result of thermal diffusion of Zn and Al into the GaSe interface layer from ZnO:Al/GaSe heterojunction, electron trap levels located at 0.22 eV and 0.26 eV below the conduction band edge of GaSe, as well as a deep recombination level, responsible for the luminescent emission in the region 1.10 - 1.40 eV, are created.

  19. P3HT:PCBM:pentacene inverted polymer solar cells with roughened Al-doped ZnO nanorod array and photoelectrochemical treatment

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Ying; Huang, Hung-Lin

    2014-05-01

    In this work, the P3HT:PCBM:pentacene (1:0.8:0.065 by weight) inverted polymer solar cells with roughened Aldoped ZnO (AZO) nanorod array were fabricated. The pentacene doping could modulate the hole mobility and the electron mobility in the active layer. The optimal hole-electron mobility balance ( µh/ µe=1.000) was achieved as the pentacene doping ratio of 0.065. The 100-nm-long AZO nanorod array were formed as the carrier collection layer and the carrier transportation layer of the inverted polymer solar cells using the combination techniques of the laser interference photolithography method and the wet etching process. Because the AZO nanorod array was prepared using the wet etching process, more defects were formed on the sidewall surface of the AZO nanorods. In this work, the photoelectrochemical (PEC) method was used to grow Zn(OH)2 and Al(OH)3 thin layer on the sidewall surface of the AZO nanorods, which could reduce the carrier recombination path in the inverted polymer solar cells. Compared with the P3HT:PCBM:pentacene (1:0.8:0.065) inverted polymer solar cells without PEC treatment, the short circuit current density and the power conversion efficiency of the inverted polymer solar cells with PEC treatment were increased from 14.56 mA/cm2 to 15.85 mA/cm2 and from 5.45% to 6.13%, respectively. The enhancement in the performance of the inverted polymer solar cells with PEC treatment could be attributed to that the PEC treatment could effectively passivate the defects on the surface of the AZO nonorods.

  20. Evolution of the electrical and structural properties during the growth of Al doped ZnO films by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect

    Volintiru, I.; Creatore, M.; Kniknie, B. J.; Spee, C. I. M. A.; Sanden, M. C. M. van de

    2007-08-15

    Al-doped zinc oxide (AZO) films were deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/diethylzinc/trimethylaluminum mixtures. The electrical, structural (crystallinity and morphology), and chemical properties of the deposited films were investigated using Hall, four point probe, x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), electron recoil detection (ERD), Rutherford backscattering (RBS), and time of flight secondary ion mass spectrometry (TOF-SIMS), respectively. We found that the working pressure plays an important role in controlling the sheet resistance R{sub s} and roughness development during film growth. At 1.5 mbar the AZO films are highly conductive (R{sub s}<6 {omega}/{open_square} for a film thickness above 1200 nm) and very rough (>4% of the film thickness), however, they are characterized by a large sheet resistance gradient with increasing film thickness. By decreasing the pressure from 1.5 to 0.38 mbar, the gradient is significantly reduced and the films become smoother, but the sheet resistance increases (R{sub s}{approx_equal}100 {omega}/{open_square} for a film thickness of 1000 nm). The sheet resistance gradient and the surface roughness development correlate with the grain size evolution, as determined from the AFM and SEM analyses, indicating the transition from pyramid-like at 1.5 mbar to pillar-like growth mode at 0.38 mbar. The change in plasma chemistry/growth precursors caused by the variation in pressure leads to different concentration and activation efficiency of Al dopant in the zinc oxide films. On the basis of the experimental evidence, a valid route for further improving the conductivity of the AZO film is found, i.e., increasing the grain size at the initial stage of film growth.

  1. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    SciTech Connect

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I.

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  2. Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Choi, Yong-June; Gong, Su Cheol; Johnson, David C.; Golledge, Stephen; Yeom, Geun Young; Park, Hyung-Ho

    2013-03-01

    The structural, optical, and electrical properties of Al-doped ZnO (ZnO:Al) thin films deposited by atomic layer deposition (ALD) with a modified precursor pulse sequence were investigated to evaluate the electromagnetic interference shielding effectiveness (EMI-SE). A Zn-Al-O precursor exposure sequence was used in a modified ALD procedure to result in better distribution of Al3+ ions in the ZnO matrix with the aim of reducing the formation of complete nano-laminated structures that may form in the typical alternating ZnO and Al2O3 deposition procedure. The ALD dopant concentration of the ZnO:Al films was varied by adjusting the dopant deposition intervals of the ZnO:Znsbnd Alsbnd O precursor pulse cycle ratios among 24:1, 19:1, 14:1, and 9:1. The lowest obtained resistivity and average transmittance in the visible region (380-780 nm) were 5.876 × 10-4 Ω cm (carrier concentration of 6.02 × 1020 cm-3 and Hall mobility of 17.65 cm2/V s) and 85.93% in the 131 nm thick ZnO:Al(19:1) film, respectively. The average value of the EMI-SE in the range of 30 MHz to 1.5 GHz increased from 1.1 dB for the 121 nm thick undoped ZnO film to 6.5 dB for the 131 nm thick ZnO:Al(19:1) film.

  3. Chemical shift and surface characteristics of Al-doped ZnO thin film on SiOC dielectrics.

    PubMed

    Oh, Teresa; Lee, Sang Yeol

    2013-10-01

    Aluminum doped zinc oxide (AZO) films were fabricated on SiOC/p-Si wafer and SiOC film was prepared on a p-type Si substrate with the SiC target at oxygen ambient with the gas flow rate of 5-30 sccm by a RF magnetron sputter. C-V curve of SiOC/Si wafer was measured to observe the relationship between the polarity of SiOC dielectrics and the change of capacitance depending on oxygen gas flow rate. The SiOC film could be controlled to be polar or nonpolar, and their surface energy was changed depending on the polarity. Smooth surface is essential to improve the TFT performance. AZO-TFTs used smooth SiOC film with low polarity as a gate insulator was observed to show low leakage current (IL) and low subthreshold voltage swing. It is proposed that SiOC film with high degree amorphous structure as a gate insulator between AZO and Si wafer could solve problems of the mismatched interfaces, which was originated from the electron scattering due to the grain boundary. PMID:24245229

  4. Microstructure and micromorphology of ZnO thin films: Case study on Al doping and annealing effects

    NASA Astrophysics Data System (ADS)

    Ţălu, Ştefan; Bramowicz, Miroslaw; Kulesza, Slawomir; Solaymani, Shahram; Ghaderi, Atefeh; Dejam, Laya; Elahi, Seyed Mohammad; Boochani, Arash

    2016-05-01

    The aim of this work is to investigate the three-dimensional (3-D) surface texture of Aliminium doped Zinc Oxide (AZO) thin films deposited by Radio Frequency sputtering method on the quartz substrates. Deposited samples were annealed under argon flux at three different temperatures: 400 °C, 500 °C, and 600 °C, followed by gradual cooling down to room temperature. To characterize the structure of samples X-ray diffraction (XRD) patterns and Rutherford Back Scattering (RBS) spectra were applied. The Scanning electron microscope (SEM) and the atomic force microscope (AFM) were applied to study the samples' surface morphology. Then statistical, fractal and functional surface characteristics were computed. The analysis of 3-D surface texture of AZO thin films is crucial to control the 3-D surface topography features and to correct interpretate the surface topographic parameters. It also allows understanding the relationship between 3-D the surface topography and the functional (physical, chemical and mechanical) properties of AZO thin films.

  5. In situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films

    SciTech Connect

    Tsukamoto, Naoki; Watanabe, Daisuke; Saito, Motoaki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    The origin of high energy negative ions during deposition of aluminum doped zinc oxide (AZO) films by dc magnetron sputtering of an AZO (Al{sub 2}O{sub 3}: 2.0 wt %) target was investigated by in situ analyses using the quadrupole mass spectrometer combined with the electrostatic energy analyzer. High energy negative oxygen (O{sup -}) ions which possessed the kinetic energy corresponding to the cathode sheath voltage were detected. The maximum flux of the O{sup -} ions was clearly observed at the location opposite to the erosion track area on the target. The flux of the O{sup -} ions changed hardly with increasing O{sub 2} flow ratio [O{sub 2}/(Ar+O{sub 2})] from 0% to 5%. The kinetic energy of the O{sup -} ions decreased with decreasing cathode sheath voltage from 403 to 337 V due to the enhancement of the vertical maximum magnetic field strength at the cathode surface from 0.025 to 0.100 T. The AZO films deposited with the lower O{sup -} bombardment energy showed the higher crystallinity and improved the electrical conductivity.

  6. Defect analysis by transmission electron microscopy of epitaxial Al-doped ZnO films grown on (0001) ZnO and a-sapphire by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rengachari, Mythili; Bikowski, André; Ellmer, Klaus

    2016-07-01

    Microstructural investigations by cross section Transmission Electron Microscopy have been carried out on Al-doped ZnO films epitaxially grown on (0001) ZnO and a-sapphire by RF magnetron sputtering, since it is known that crystallographic defects influence the physical properties of ZnO films. Threading dislocations and basal stacking faults were the predominant defects observed in these films, which were dependent on the type of the substrate and its orientation. The orientational relationship between the ZnO:Al film and the a-sapphire was determined to be ( 11 2 ¯ 0 )sapphire||(0001)ZnO:Al and [0001]sapphire||[ 11 2 ¯ 0 ]ZnO:Al. The density of dislocations in the heteroepitaxial film of ZnO:Al on a-sapphire was higher than that of the homoepitaxial film of ZnO:Al on undoped ZnO, due to the difference in the lattice mismatch, which also affected the crystallinity of the film.

  7. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells.

    PubMed

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-08-01

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  8. Ruthenium Doped ZnO Semiconductor: Synthesis, Characterization and Photodegradation of Azo Dye

    NASA Astrophysics Data System (ADS)

    Aranganayagam, K. R.; Senthilkumaar, S.; Ganapathi Subramaniam, N.; Kang, T. Wang

    2013-04-01

    Ruthenium doped zinc oxide was synthesized by a simple sol-gel method via ultrasonication. The samples were characterized by X-ray diffraction, high resolution scanning electron microscopy (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive spectroscopy (EDS) and UV-visible spectroscopy techniques and tested for the feasibility as a heterogeneous photocatalyst. The photocatalytic activity of Ru doped ZnO was tested using an azo dye, congo red (CR) in an aqueous solution, as a model compound. For comparison, the photocatalytic activity of pure ZnO was also performed. The parameters studied include the effect of initial CR concentration, photocatalyst weight and charge transfer phenomenon. The observed reaction mechanism was rationalized based on the elementary chemical reaction occurring in the irradiated heterogeneous reaction mixture. Total mineralization of CR was observed for both pure and Ru doped ZnO system. However, the photocatalytic activity of Ru doped ZnO was found to be higher than that of a pure ZnO.

  9. Sputtering deposition of Al-doped zinc oxide thin films using mixed powder targets

    NASA Astrophysics Data System (ADS)

    Ohshima, Tamiko; Maeda, Takashi; Tanaka, Yuki; Kawasaki, Hiroharu; Yagyu, Yoshihito; Ihara, Takeshi; Suda, Yoshiaki

    2016-01-01

    Sputtering deposition generally uses high-density bulk targets. Such a fabrication process has various problems including deterioration of the material during heating and difficulty in mixing a large number of materials in precise proportions. However, these problems can be solved by using a powder target. In this study, we prepared Al-doped ZnO (AZO) as transparent conductive thin films by radio-frequency magnetron sputtering with powder and bulk targets. Both the powder and bulk targets formed crystalline structures. The ZnO (002) peak was observed in the X-ray diffraction measurements. The mean transparency and resistivity of the films prepared with the powder target were 82% and 0.548 Ω · cm, respectively. The deposition rate with the powder target was lower than that with the bulk target.

  10. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm−2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption. PMID:23098050

  11. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Mahmood, Khalid; Swain, Bhabani Sankar; Jung, Hyun Suk

    2014-07-01

    In this paper, ZnO and Al-doped ZnO films were deposited using the electrospraying method and studied for the first time as photoanodes for efficient perovskite solar cells. Effects of substrate temperature, deposition time, applied voltage, substrate-to-nozzle distance and flow rate (droplet size) on the morphology of ZnO were studied with the help of FE-SEM images. The major factors such as the droplet size of the spray, substrate temperature and substrate-to-nozzle distance at deposition control the film morphology. Indeed, these factors determine the density of the film, its smoothness and the flow of solution over the substrate. The droplet size was controlled by the flow rate of the spray. The substrate-to-nozzle distance and flow rate will both regulate the solution amount deposited on the surface of the substrate. The most favorable conditions for a good quality ZnO thin film were a long substrate-to-nozzle distance and lower solution flow rates. In situ droplet size measurement shows that the size and dispersion of particles were narrowed. The method was shown to have a high deposition rate and efficiency relative to well-established thin film deposition techniques such as chemical and physical vapor deposition. In addition, it also allows easy control of the microstructure and stoichiometry of the deposits. The pure ZnO film produced under optimum conditions (440 nm thick) demonstrated a high power conversion efficiency (PCE) of 10.8% when used as a photoanode for perovskite solar cells, owing to its high porosity, uniform morphology and efficient electron transport. For thicker films a drastic decrease in PCE was observed due to their low porosity. We also observed that the open-circuit voltage increases from 1010 mV to 1045 mV and also the PCE increases from 10.8% to 12.0% when pure ZnO films were doped with aluminum (Al). Under atmospheric pressure, the electrospraying system produces the reasonably uniform-sized droplets of smaller size, so the films

  12. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

    PubMed Central

    2012-01-01

    We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol–gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, and Zn(CH3COO)2⋅2H2O were used. A lowest sheet resistance of 3.3 × 103 Ω/□ was obtained for the GZO thin film doped with 1.5 mol% of Ga after post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region. We have studied the structural and microstructural properties as a function of Al and Ga concentrations through X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and photoluminescence were estimated. PMID:23173885

  13. Ultrathin oxidized Ti to increase stability and smoothness of Al doped ZnO transparent conductors for high efficiency indium-free polymer solar cells

    NASA Astrophysics Data System (ADS)

    Formica, N.; Ghosh, D. S.; Martinez-Otero, A.; Chen, T. L.; Martorell, Jordi; Pruneri, V.

    2013-10-01

    We propose a transparent electrode consisting of an aluminum doped zinc oxide (AZO) layer capped with an ultrathin oxidized Ti film for indium-free bulk-heterojunction polymer solar cells (PSCs). The oxidized Ti increases the chemical, environmental, stability and the surface smoothness of AZO while still maintaining its electrical and optical properties. The application potential of the proposed transparent electrode is demonstrated in an inverted PSC, which shows an efficiency of 6.3%, very close to the value (7%) obtained in a similar structure using indium tin oxide. This efficiency is the highest reported to date for PSCs incorporating AZO electrodes.

  14. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    SciTech Connect

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata

    2015-08-07

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity of an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.

  15. High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer.

    PubMed

    Liu, Xiaohui; Li, Xiaodong; Li, Yaru; Song, Changjian; Zhu, Liping; Zhang, Wenjun; Wang, Hai-Qiao; Fang, Junfeng

    2016-09-01

    High-performance polymer solar cells incorporating a low-temperature-processed aluminum-doped zinc oxide (AZO) cathode interlayer are constructed with power conversion efficiency (PCE) of 10.42% based on PTB7-Th:PC71 BM blends (insensitive to the AZO thickness). Moreover, flexible devices on poly(ethylene terephthalate)/indium tin oxide substrates with PCE of 8.93% are also obtained, and welldistributed efficiency and good device stability are demonstrated as well. PMID:27309840

  16. Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods.

    PubMed

    Lin, Ming-Yi; Wu, Shang-Hsuan; Hsiao, Li-Jen; Budiawan, Widhya; Boopathi, Karunakara Moorthy; Tu, Wei-Chen; Chang, Yia-Chung; Chu, Chih-Wei

    2016-08-01

    The ITO-free inverted SMPV1:PC71BM solar cells with an Al doped ZnO (AZO) transparent electrodes are fabricated. The AZO thin film prepared by pulsed laser deposition (PLD) technique exhibits high transmission (>85%) and low sheet resistance (~30 Ω/sq) and the power conversion efficiency (PCE) of devices based on AZO electrode can reach around 4%. To further enhance the light harvesting of the absorption layer of solar cells, ZnO nanorods interlayer is grown on the AZO layer before the deposition the active layer. The absorption spectrums of devices under various conditions are also simulated by RCWA method to identify the optical saturation length of the ZnO nanorods. The PCE of ITO-free inverted small molecule solar cell improved with ZnO nanorods can reach 6.6%. PMID:27505758

  17. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  18. Laser prepared organic heterostuctures on glass/AZO substrates

    NASA Astrophysics Data System (ADS)

    Stanculescu, Anca; Socol, Marcela; Rasoga, Oana; Mihailescu, Ion N.; Socol, Gabriel; Preda, Nicoleta; Breazu, Carmen; Stanculescu, Florin

    2014-05-01

    This paper presents some studies about the bi-layer organic heterostructures realized with zinc phthalocyanine (ZnPc) as donor layer and 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA) as acceptor layer, on substrate of glass covered by Al doped ZnO (AZO) layer. These heterostructures have been prepared using laser techniques: pulsed laser deposition (PLD) in an atmosphere of oxygen for AZO films deposition and matrix assisted pulsed laser evaporation (MAPLE) for organic films deposition. The influence of the deposition conditions on the transmission of the organic films has been analysed. The effect of the oxygen plasma treatment, with duration of 5 min and 10 min, on the surface topography, structural and optical properties of AZO layers deposited by PLD and, as consequence, on the optical and electrical properties of the single layer (ZnPc) and bi-layer (ZnPc/NTCDA) organic heterostructure, deposited by MAPLE, was investigated.

  19. Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment

    SciTech Connect

    Yun Sining; Lim, Sangwoo

    2011-02-15

    The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency ({eta}) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), indicating a massive improvement of {eta} in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate. -- Graphical abstract: The poor adhesion between electrospun nanofibers and substrate is improved by a simple and facile seed layer (SD) treatment. The energy conversion efficiency of AZO nanofiber-based DSSCs has been greatly increased by SD-treatment of the FTO substrate. Display Omitted Research highlights: {yields} A simple and facile method (SD-treatment) has been demonstrated. {yields} The poor adhesion between electrospun nanofibers and substrate is improved by the SD-treatment. {yields} The {eta} of AZO nanofiber-based DSSCs has been greatly improved by SD-treatment of the FTO substrate.

  20. Influence of transparent conductive oxides on passivation of a-Si:H/c-Si heterojunctions as studied by atomic layer deposited Al-doped ZnO

    NASA Astrophysics Data System (ADS)

    Macco, B.; Deligiannis, D.; Smit, S.; van Swaaij, R. A. C. M. M.; Zeman, M.; Kessels, W. M. M.

    2014-12-01

    In silicon heterojunction solar cells, the main opportunities for efficiency gain lie in improvements of the front-contact layers. Therefore, the effect of transparent conductive oxides (TCOs) on the a-Si:H passivation performance has been investigated for Al-doped zinc oxide (ZnO:Al) layers made by atomic layer deposition (ALD). It is shown that the ALD process, as opposed to sputtering, does not impair the chemical passivation. However, the field-effect passivation is reduced by the ZnO:Al. The resulting decrease in low injection-level lifetime can be tuned by changing the ZnO:Al doping level (carrier density = 7 × 1019-7 × 1020 cm-3), which is explained by a change in the TCO workfunction. Additionally, it is shown that a ˜10-15 nm ALD ZnO:Al layer is sufficient to mitigate damage to the a-Si:H by subsequent sputtering, which is correlated to ALD film closure at this thickness.

  1. Effect of Post Deposition Annealing Treatments on Properties of AZO Thin Films for Schottky Diode Applications.

    PubMed

    Singh, Shaivalini; Park, Si-Hyun

    2016-01-01

    High-quality aluminum (Al) doped ZnO (AZO) thin films were deposited on silicon substrates by RF sputtering at room temperature. The deposited films were annealed from the temperatures 350 °C to 650 °C in pure nitrogen (N₂) ambient. The effects of annealing on the microstructural, optical and electrical properties of the AZO films were investigated. A detailed analysis by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe and Hall measurements was performed to study the properties of these AZO thin films. It was observed that all of the as-deposited and annealed AZO films have homogenous surfaces and hexagonal wurtzite structures with good crystalline quality. The study also suggested that there was an intermediate post annealing temperature (450 °C) at which the deposited ZnO film exhibit best surface characteristics. Pd/AZO Schottky devices were fabricated with 450 °C annealed AZO thin films and the parameters of Schottky devices were extracted from I-V characteristics. These results indicated that the Pd/AZO films were very much suitable for various optoelectronics applications particularly for metal semiconductor metal based UV detector application. PMID:27398537

  2. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  3. Photoresponse and photocapacitor properties of Au/AZO/p-Si/Al diode with AZO film prepared by pulsed laser deposition (PLD) method

    NASA Astrophysics Data System (ADS)

    Alyamani, A.; Tataroğlu, A.; El Mir, L.; Al-Ghamdi, Ahmed A.; Dahman, H.; Farooq, W. A.; Yakuphanoğlu, F.

    2016-04-01

    The electrical and photoresponse properties of Au/nanostructure AZO/p-Si/Al diode were investigated. Al-doped ZnO (AZO) thin films were deposited via pulsed laser deposition method on silicon substrate. Structural properties of the films were performed by using transmission electron microscopy and X-ray powder diffraction (XRD). The XRD patterns showed that the AZO films are polycrystalline with hexagonal wurtzite structure preferentially oriented in (002) direction. Electrical and photoresponse properties of the diode were analyzed under in a wide range of frequencies and illumination intensities. It is observed that the reverse current of the diode increases with increasing illumination intensity. This result confirms that the diode exhibits both photoconducting and photovoltaic behavior. Also, the transient photocurrent, photocapacitance and photoconductance measured as a function of time highly depend on transient illumination. In addition, the frequency dependence of capacitance and conductance is attributed to the presence of interface states.

  4. Atomic layer deposition of Al-doped ZnO films using ozone as the oxygen source: A comparison of two methods to deliver aluminum

    SciTech Connect

    Yuan Hai; Luo Bing; Yu Dan; Cheng, An-jen; Campbell, Stephen A.; Gladfelter, Wayne L.

    2012-01-15

    Aluminum-doped ZnO films were prepared by atomic layer deposition at 250 deg. C using diethylzinc (DEZ), trimethylaluminum (TMA), and ozone as the precursors. Two deposition methods were compared to assess their impact on the composition, structural, electrical, and optical properties as a function of Al concentration. The first method controlled the Al concentration by changing the relative number of Al to Zn deposition cycles; a process reported in the literature where water was used as the oxygen source. The second method involved coinjection of the DEZ and TMA during each cycle where the partial pressures of the precursors control the aluminum concentration. Depth profiles of the film composition using Auger electron spectroscopy confirmed a layered microstructure for the films prepared by the first method, whereas the second method led to a homogeneous distribution of the aluminum throughout the ZnO film. Beneath the surface layer the carbon concentrations for all of the films were below the detection limit. Comparison of their electrical and optical properties established that films deposited by coinjection of the precursors were superior.

  5. Low-temperature-fabricated ZnO, AZO, and SnO2 nanoparticle-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hong Hee; Park, Cheolmin; Choi, WonKook; Cho, Sungjae; Moon, ByungJoon; Son, Dong Ick

    2014-11-01

    The authors investigated the microstructural and the electrical properties of ZnO, AZO, and SnO2 based dye-sensitized solar cells (DSSCs) fabricated using a low-temperature-processed (200 °C) dye-sensitized ZnO, AZO, and SnO2 nanoparticle thin film and a Pt catalyst deposited on ITO/glass by RF magnetron sputtering. A hydropolymer containing PEG (poly ethylene glycol) and PEO (poly ethylene oxide) is used to make uniformly-distributed ZnO, AZO, and SnO2 nanoparticle layer which forms a nano porous ZnO, AZO, and SnO2 network after heat treatment. The layer is then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short-circuit current density ( J sc ), the open circuit potential ( V oc ), the fill factor (FF), and power conversion efficiency ( η), of the DSSC fabricated wander optimized conditions were observed to be 5.10 mA/cm2, 0.61 V, 0.46, and 1.43%, respectively.

  6. Highly transparent and reproducible nanocrystalline ZnO and AZO thin films grown by room temperature pulsed-laser deposition on flexible Zeonor plastic substrates

    NASA Astrophysics Data System (ADS)

    Inguva, Saikumar; Vijayaraghavan, Rajani K.; McGlynn, Enda; Mosnier, Jean-Paul

    2015-09-01

    Zeonor plastics are highly versatile due to exceptional optical and mechanical properties which make them the choice material in many novel applications. For potential use in flexible transparent optoelectronic applications, we have investigated Zeonor plastics as flexible substrates for the deposition of highly transparent ZnO and AZO thin films. Films were prepared by pulsed laser deposition at room temperature in oxygen ambient pressures of 75, 150 and 300 mTorr. The growth rate, surface morphology, hydrophobicity and the structural, optical and electrical properties of as-grown films with thicknesses ˜65-420 nm were recorded for the three oxygen pressures. The growth rates were found to be highly linear both as a function of film thickness and oxygen pressure, indicating high reproducibility. All the films were optically smooth, hydrophobic and nanostructured with lateral grain shapes of ˜150 nm wide. This was found compatible with the deposition of condensed nanoclusters, formed in the ablation plume, on a cold and amorphous substrate. Films were nanocrystalline (wurtzite structure), c-axis oriented, with average crystallite size ˜22 nm for ZnO and ˜16 nm for AZO. In-plane compressive stress values of 2-3 GPa for ZnO films and 0.5 GPa for AZO films were found. Films also displayed high transmission greater than 95% in some cases, in the 400-800 nm wavelength range. The low temperature photoluminescence spectra of all the ZnO and AZO films showed intense near band edge emission. A considerable spread from semi-insulating to n-type conductive was observed for the films, with resistivity ˜103 Ω cm and Hall mobility in 4-14 cm2 V-1 s-1 range, showing marked dependences on film thickness and oxygen pressure. Applications in the fields of microfluidic devices and flexible electronics for these ZnO and AZO films are suggested.

  7. Preparation and Photovoltaic Properties of Dye Sensitized Solar Cells Using ZnO Nanorods Stacking Films on AZO Substrate as Photoanode.

    PubMed

    Xu, Yang; Wang, Xina; Liu, Rong; Wang, Hao

    2016-04-01

    Three-dimensional stacking of ZnO nanorods on conducting aluminum-doped ZnO (AZO) glass were studied as efficient photoanodes of dye sensitized solar cells (DSSCs). By changing hydrothermal growth time and cycle times, the thickness of ZnO nanorods stacking films varied from 30 µm to 64 µm, and its influence on the energetic conversion efficiency of the DSSCs based on the stacking films photoanodes was investigated. The loading density of N719 on the surface of ZnO nanorods was studied to increase the efficiency of the cells. Annealing experiments showed that the AZO substrates remained good conductors until heated above 350 °C. A photoelectric conversion efficiency as high as ~2.0% together with ISC of ~9.5 mA/cm2, VOC of ~0.5 V and FF of ~41.4% was achieved for the DSSC using 50 µm-thick film stacking by ZnO nanorods as photoanode and N719 as sensitizer under illumination of AM1.5G solar light (power density of 100 mW/cm2). A charge separation and transfer mechanism was proposed for the ZnO nanorods stacking electrode-based DSSCs. PMID:27451677

  8. Role of substrate and annealing temperature on the structure of ZnO and AlxZn1-xO thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Nambala, Fred Joe; Nel, Jacqueline M.; Machatine, Augusto G. J.; Mwakikunga, Bonex W.; Njoroge, Eric G.; Maabong, Kelebogile; Das, Arran G. M.; Diale, Mmantsae

    2016-01-01

    This paper reports on the deposition of pure and 5 at% Al doped ZnO (AZO) prepared by sol-gel and applied to the substrates by spin-coating, and the role of annealing temperature on the crystallinity of these layers. It is found that both ZnO and AZO are largely amorphous when coated on glass compared to n-Si(111), as substrates. On both substrates, X-ray diffraction (XRD) shows that the crystallinity improves as annealing temperature is raised from 200 to 600 °C with better crystallinity on Si substrates. The thickness of the films on substrates was determined as 120 nm by Rutherford backscattering spectroscopy (RBS). Specular ultra-violet visible (UV-vis) gives the direct transition optical band gaps (Eg) for AZO as-deposited films are 2.60 and 3.35 eV while that of 600 °C annealed films are 3.00 and 3.60 eV. The Eg calculated from diffuse reflectance spectroscopy (DRS) UV-vis are more diverse in ZnO- and AZO-Si than the ZnO- and AZO-glass samples, although in both sets the Eg tend to converge after annealing 600 °C. The Raman spectra of samples show multiphonon processes of higher order from the AZO and substrates. It is found that residual stresses are related to E2 Raman mode.

  9. Thermal durability of AZO/Ag(Al)/AZO transparent conductive films

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yukiko; Igarashi, Kanae; Shirasaki, Shinya; Kikuchi, Akihiko

    2016-04-01

    Effects of Al doping on surface morphology, sheet resistance, optical transmission spectra, and thermal durability of a thin Ag layer and AZO/Ag/AZO dielectric/metal/dielectric (DMD) transparent conductive films (TCFs) were investigated. The 1.7 at. % Al doping suppressed the initial island growth of a thin Ag layer and the plasmon resonant absorption dip in the optical transmission spectra. The threshold thickness of percolation conductivity was reduced from 9-10 (pure Al layer) to 5-6 nm (1.7 at. % Al-doped Ag layer). Al doping in the Ag layer improved the thermal durability of AZO/Ag/AZO-DMD TCFs. The threshold temperature for Ag void formation increased from 400 °C (DMD with pure Ag layer) to 600 °C (DMD with a 10.5 at. % Al-doped Ag layer). The optimum annealing temperature increased from 300 °C (DMD with a pure Ag layer) to 500 °C (DMD with a 10.5 at. % Al-doped Ag layer). Maximum figures of merit (FOM) were 0.5 × 10-2 and 1.1 × 10-2 Ω-1 for the DMD with a pure Ag layer and that with a 10.5 at. % Al-doped Ag layer, respectively.

  10. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  11. Carrier mobility of highly transparent conductive Al-doped ZnO polycrystalline films deposited by radio-frequency, direct-current, and radio-frequency-superimposed direct-current magnetron sputtering: Grain boundary effect and scattering in the grain bulk

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Makino, Hisao; Yamamoto, Tetsuya

    2015-01-01

    The effects of using radio-frequency (RF)-superimposed direct-current (DC) magnetron sputtering deposition on the structural, electrical, and optical properties of aluminum-doped ZnO (AZO)-based highly transparent conducting oxide films have been examined. AZO films were deposited on heated non-alkaline glass substrates (200 °C) using ZnO:Al2O3 (2 wt. % Al2O3) ceramic oxide targets with the total power varied from 150 to 300 W, and at various RF to DC power ratios, AZO films deposited by a mixed approach with the RF to the total power ratio of 0.14 showed the lowest resistivity of 2.47 × 10-4 Ω cm with the highest carrier concentration of 6.88 × 1020 cm-3 and the highest Hall mobility (μH) of 36.8 cm2/Vs together with the maximum value of an average transmittance in the visible spectral range from 400 to 700 nm. From the analysis of optical data based on the simple Drude model combined with the Tauc-Lorentz model and the results of Hall effect measurements, the optical mobility (μopt) was determined. A comparison of μopt with μH clarified the effects of the mixed approach not only on the reduction of the grain boundary contribution to the carrier transport but also on retaining high carrier mobility of in-grains for the AZO films.

  12. Enhanced electrical properties and field emission characteristics of AZO/ZnO-nanowire core-shell structures.

    PubMed

    Huang, Jheng-Ming; Tsai, Shang-You; Ku, Ching-Shun; Lin, Chih-Ming; Chen, San-Yuan; Lee, Hsin-Yi

    2016-06-01

    The electrical properties and field-emission characteristics of ZnO nanowires (ZnO-NWs) fabricated using a vapor-liquid-solid method were systematically investigated. In particular, we explored the effects of Al-doped ZnO (AZO) films (thickness 4-100 nm) deposited on ZnO-NWs using an atomic layer deposition (ALD) method on the optoelectronic properties. The results show that the sheet resistance of net-like ZnO-NW structures can be significantly improved, specifically to become ∼1/1000 of the sheet resistance of the as-grown ZnO-NWs, attaining less than 10 Ω Sq(-1). The emission current density measured at the maximum field was roughly quadrupled relative to that of the as-grown ZnO-NWs. The data of the enhanced field-emission characteristics show that, with the ALD system, the AZO films of small resistance are readily coated on a structure with a high aspect ratio and the coating radius is controlled relative to the turn-on voltage and current density. The ultrathin AZO film from a one-monolayer coating process also significantly improved emission properties through modification of the effective work function at the AZO/ZnO-NW surface. PMID:27210896

  13. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature

    PubMed Central

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications. PMID:25520589

  14. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current-voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  15. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    SciTech Connect

    Placzek-Popko, E. Gwozdz, K.; Gumienny, Z.; Zielony, E.; Jacak, W.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Chang, Liann-Be

    2015-05-21

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5–10 nm, 20-30 nm, and 50–60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm{sup −1} and 561 cm{sup −1}. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20–30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  16. Si/ZnO nanorods/Ag/AZO structures as promising photovoltaic plasmonic cells

    NASA Astrophysics Data System (ADS)

    Placzek-Popko, E.; Gwozdz, K.; Gumienny, Z.; Zielony, E.; Pietruszka, R.; Witkowski, B. S.; Wachnicki, Ł.; Gieraltowska, S.; Godlewski, M.; Jacak, W.; Chang, Liann-Be

    2015-05-01

    The test structures for photovoltaic (PV) applications based on zinc oxide nanorods (NRs) that were grown using a low-temperature hydrothermal method on p-type silicon substrates (100) covered with Ag nanoparticles (NPs) were studied. The NPs of three different diameters, i.e., 5-10 nm, 20-30 nm, and 50-60 nm, were deposited using a sputtering method. The morphology and crystallinity of the structures were confirmed by scanning electron microscopy and Raman spectroscopy. It was found that the nanorods have a hexagonal wurtzite structure. An analysis of the Raman and photoluminescence spectra permitted the identification of the surface modes at 476 cm-1 and 561 cm-1. The presence of these modes is evidence of nanorods oriented along the wurtzite c-axis. The NRs with Ag NPs were covered with a ZnO:Al (AZO) layer that was grown using the low-temperature atomic layer deposition technique. The AZO layer served as a transparent ohmic contact to the ZnO nanorods. The applicability of the AZO layer for this purpose and the influence of the Ag nanoparticles on the effectiveness of light acquisition by such prepared PV cells were checked by reflectance and transmittance measurements of the AZO/glass and AZO/NPs/glass reference structures. Based on these studies, the high-energy transmittance edge was assigned to the ZnO energy gap, although it is blueshifted with respect to the bulk ZnO energy gap because of Al doping. It was also shown that the most optimal PV performance is obtained from a structure containing Ag nanoparticles with a diameter of 20-30 nm. This result is confirmed by the current-voltage measurements performed with 1-sun illumination. The structures show a plasmonic effect within the short wavelength range: the PV response for the structure with Ag nanoparticles is twice that of the structure without the nanoparticles. However, the influence of the Ag nanoparticle diameters on the plasmonic effect is ambiguous.

  17. Modification of structure and properties of AZO thin film by introducing H2 in sputtering atmosphere at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Zhu, B. L.; Li, K.; Wang, J.; Wu, J.; Zeng, D. W.; Xie, C. S.

    2013-12-01

    Al-doped ZnO (AZO) thin films were prepared on soda-lime glass at 100 °C by RF magnetron sputtering with different H2 fluxes. The influences of H2 flux on structural, electrical, and optical properties were investigated by XRD, Hall Effect measurement, and transmittance spectra. The results show that hydrogen introduction significantly modifies both structure and properties of AZO films. As H2 flux increases, the increase of unit-cell volume of the films implies that hydrogen is incorporated into ZnO lattice; the obvious decrease of crystallite size indicates that the crystallinity of the films degrades. The resistivity of the films can be continuously decreased with increasing H2 flux, accompanying with increase of both carrier concentration and Hall mobility. The main factor of increasing carrier concentration and mobility is found to be related to hydrogen incorporation and effective substitution of Zn2+ sites by Al3+. The films deposited in Ar + H2 atmosphere show improved conductive stability in air due to the passivation of inter-crystallite by hydrogen. The average transmittance in visible range of the films is hardly dependent on H2 flux. The Eg of the films increases with increasing H2 flux, and the blueshift values are close to the theoretical one according to the nonparabolic BM effect.

  18. Strong adsorption of Al-doped carbon nanotubes toward cisplatin

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guo-Qing; Lu, Xiao-Min; Ma, Juan-Juan; Zeng, Peng-Yu; He, Qin-Yu; Wang, Yin-Zhen

    2016-08-01

    The adsorption of cisplatin molecule on Al-doped CNTs is investigated using density functional theory. The obtained results indicate that Al-doped carbon nanotubes can strongly absorb cisplatin. After absorbing cisplatin, the symmetry of CNTs has some changes. We innovatively defined a parameter of symmetry variation which relates to the adsorption. By analyzing the electronic structure, it can be concluded that under the circumstance that cisplatin was absorbed by Al-doped CNTs through aluminum atom of Al-doped CNTs. In conclusion, Al-doped CNTs is a kind of potential delivery carrier with high quality for anticancer drug cisplatin.

  19. Photovoltaic characteristic of Al-doped ZnO/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Wang, Shufang; Chen, Mingjing; Zhao, Xiaohui; Chen, Jingchun; Yu, Wei; Wang, Jianglong; Fu, Guangsheng

    2010-12-01

    A heterojunction composed of n-type Al-doped ZnO and p-type Si was fabricated and its photovoltaic properties were studied at room temperature. The heterojunction exhibits an asymmetric current-voltage relation with good rectifying characteristic. Clear photovoltaic signals are observed when the heterojunction is irradiated by the laser pulses of 308, 532 and 1064 nm, and the voltage responsivity of the 308 nm irradiation is lower than that for 532 and 1064 nm irradiations. The mechanism is proposed based on the band structure of the p-n heterojunctions. The results suggest that this Al-doped ZnO/Si heterojunction has a great potential application in the wide-band photodetectors from ultraviolet to near infrared.

  20. Improvement in the Grain Growth of Plasma-Treated Nano-Sized ZnO Films and Their Characterization.

    PubMed

    Chen, Mi; Chou, Ching-Chuan; Lin, Ching-Cheng; Koo, Horng-Show

    2015-11-01

    The well-aligned ZnO nanorods were rapidly grown on an indium tin oxide (ITO)-coated glass substrate using Al-doped ZnO (AZO) thin film as seed layer by the microwave-assisted hydrothermal chemical route. The optimal growth conditions for the well-aligned ZnO nanorods were obtained by modulating H2 plasma pretreatment time for the seed layer and synthesis time for ZnO nanorods. The H2 plasma effect of the seed layer on the alignment, growth rate and crysallinity of ZnO nanods is also demonstrated. The synthesized ZnO nanorods were annealed in atmosphere of N2, O2 and H2 + N2 mixed gas to improve the related physical characteristics, the ZnO nanorods on grapheme/ITO substrate were also investigated. The results show that the alignment and growth rate of ZnO nanorods depends on the physical characteristics and roughness of the seed layer, which can be improved by H2 plasma pretreatment. The average growth rate of ZnO nanorods synthesized by microwave hydrothermal technique is about 2.2 μm/hr which significantly superior to other conventional techniques. After the appropriate N2 annealing treatment, good quality and well-aligned ZnO nanorods, which are single crystal with stacking defects and pyramid or candle shape, were obtained. A fundamental model of the effect of H2 plasma pretreatment on the surface of seed layer and the growth of ZnO nanorods using a microwave-assisted hydrothermal chemical route is also described. PMID:26726662

  1. Structure and electrical properties of Al-doped HfO₂ and ZrO₂ films grown via atomic layer deposition on Mo electrodes.

    PubMed

    Yoo, Yeon Woo; Jeon, Woojin; Lee, Woongkyu; An, Cheol Hyun; Kim, Seong Keun; Hwang, Cheol Seong

    2014-12-24

    The effects of Al doping in atomic-layer-deposited HfO2 (AHO) and ZrO2 (AZO) films on the evolutions of their crystallographic phases, grain sizes, and electric properties, such as their dielectric constants and leakage current densities, were examined for their applications in high-voltage devices. The film thickness and Al-doping concentration were varied in the ranges of 60-75 nm and 0.5-9.7%, respectively, for AHO and 55-90 nm and 1.0-10.3%, respectively, for AZO. The top and bottom electrodes were sputtered Mo films. The detailed structural and electrical property variations were examined as functions of the Al concentration and film thickness. The AHO films showed a transition from the monoclinic phase (Al concentration up to 1.4%) to the tetragonal/cubic phase (Al concentration 2.0-3.5%), and finally, to the amorphous phase (Al concentration >4.7%), whereas the AZO films remained in the tetragonal/cubic phase up to the Al concentration of 6.4%. For both the AHO and AZO films, the monoclinic and amorphous phases had dielectric constants of 20-25, and the tetragonal/cubic phases had dielectric constants of 30-35. The highest electrical performance levels for the application to the high-voltage charge storage capacitors in flat panel displays were achieved with the 4.7-9.7% Al-doped AHO films and the 2.6% Al-doped AZO films. PMID:25423483

  2. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    SciTech Connect

    Shasti, M.; Mortezaali, A. Dariani, R. S.

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Si photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.

  3. Epitaxial Integration of (100) Bi4Ti3O12 with (0001) ZnO through Long-Range Lattice Matching

    NASA Astrophysics Data System (ADS)

    Luo, Sijun; Wang, Chuanbin; Zhang, Song; Tu, Rong; Liu, Shulong; Tang, Xinfeng; Shen, Qiang; Chen, Fei; Zhang, Lianmeng

    2012-08-01

    We report on an epitaxial relationship with a long-range lattice matching between the (100) plane of Bi-layered structure Bi4Ti3O12 (BiT) and the (0001) plane of wurtzite structure ZnO: BiT(100)[001] ∥ ZnO(0001)<0110>. Epitaxial (100)-oriented Ho-doped BiT thin film with the composite of Bi3.6Ho0.4Ti3O12 (BHT) was integrated with (0001)-oriented Al-doped ZnO (AZO) layer buffered c-sapphire substrate by pulsed laser deposition. X-ray diffraction and transmission electron microscopy characterizations validated the epitaxial orientation relationship, which was BHT(100)[001] ∥ AZO(0001)<0110>. The heteroepitaxy of (100) BiT with (0001) ZnO through long-range lattice matching opens the way to the study of novel BiT/ZnO-based ferroelectric wide-band-gap semiconductor heterostructure.

  4. The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films

    SciTech Connect

    Chun, B. S.; Choi, Daniel S.; Wu, H. C.; Shvets, I. V.; Abid, M.; Chu, I. C.; Serrano-Guisan, S.

    2010-08-23

    We investigated the effect on the electronic properties of aluminum (Al)-zinc oxide (ZnO) films by modulating the radio frequency sputtering power. Our experimental results show that increasing the sputtering power increases the Al doping concentration, decreases the resistivity, and also shifts the Zn 2p and O 1s to higher binding energy states. Our local-density approximation (LDA) and LDA+U calculations show that the shift in higher binding energy and resistivity decrease are due to an enhancement of the O 2p-Zn 3d coupling and the modification of the Zn 4s-O 2p interaction in ZnO induced by Al doping.

  5. Enhancement of photoinduced electrical properties of Al-doped ZnO/BiFeO3 layered thin films prepared by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Katayama, Takeshi; Sakamoto, Wataru; Yuitoo, Isamu; Takeuchi, Teruaki; Hayashi, Koichiro; Yogo, Toshinobu

    2015-10-01

    Polycrystalline BiFeO3 and Al-doped ZnO/BiFeO3 bilayered thin films were prepared on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Their photoinduced electrical properties under blue light irradiation were characterized. The rapid on/off response of the photocurrent to light in unpoled BiFeO3 (BFO) and Al-doped ZnO/BiFeO3 (AZO/BFO) thin films was demonstrated. The AZO/BFO layered film exhibited an approximately triple-digit larger photocurrent in comparison with a BFO single-layer film. This is attributable to the photoexcited carrier generation effect at the interface between AZO (n-type) and BFO (p-type) films. Furthermore, in the AZO/BFO layered structure, the direction of the internal bias electric field caused by the space charge distribution in the unpoled BFO film is the same as that of the built-in electric field by forming a p-n junction of AZO and BFO layers. Photovoltaic properties were also improved by fabricating such a layered film. On the other hand, when the placement of BFO to AZO was reversed, the photoelectric current decreased to approximately one-tenth of that of the BFO single-layer film. In the BFO/AZO film, the internal electric field at the p-n junction between BFO and AZO is considered to have an orientation opposite to the self-bias field formed in the BFO film.

  6. DFT study of Al doped armchair SWCNTs

    NASA Astrophysics Data System (ADS)

    Dhiman, Shobhna; Rani, Anita; Kumar, Ranjan; Dharamvir, Keya

    2016-05-01

    Electronic properties of endohedrally doped armchair single-walled carbon nanotubes (SWCNTs) with a chain of six Al atoms have been studied using ab-initio density functional theory. We investigate the binding energy/atom, ionization potential, electron Affinity and Homo-Lumo gap of doped armchair SWNTs from (4,4) to (6,6) with two ends open. BE/dopant atom and ionization potential is maximum for (6, 6) doped armchair carbon nanotube; suggest that it is more stable than (4, 4) and (5, 5) doped tubes. HOMO - LUMO gap of Al doped arm chair carbon nanotubes decreases linearly with the increase in diameter of the tube. This shows that confinement induce a strong effect on electronic properties of doped tubes. These combined systems can be used for future nano electronics. The ab-initio calculations were performed with SIESTA code using generalized gradient approximation (GGA).

  7. A Back-Gated Ferroelectric Field-Effect Transistor with an Al-Doped Zinc Oxide Channel

    NASA Astrophysics Data System (ADS)

    Jia, Ze; Xu, Jian-Long; Wu, Xiao; Zhang, Ming-Ming; Liou, Juin-J.

    2015-02-01

    We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized doping concentration of 1% is applied to reduce the channel resistance of the channel layer, thus guaranteeing a large enough load capacity of the transistor. The hysteresis loops of the Pt/PZT/AZO/Ti/Pt capacitor are measured and compared with a Pt/PZT/Pt capacitor, indicating that the remnant polarization is almost 40 μC/cm2 and the polarization is saturated at 20 V. The measured capacitance-voltage properties are analyzed as a result of the electron depletion and accumulation switching operation conducted by the modulation of PZT on AZO channel resistance caused by the switchable remnant polarization of PZT. The switching properties of the AZO channel layer are also proved by the current-voltage transfer curves measured in the back-gated MOFM ferroelectric FET, which also show a drain current switching ratio up to about 100 times.

  8. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide

    SciTech Connect

    Russo, V.; Ghidelli, M.; Gondoni, P.

    2014-02-21

    In this work we present a detailed Raman scattering investigation of zinc oxide and aluminum-doped zinc oxide (AZO) films characterized by a variety of nanoscale structures and morphologies and synthesized by pulsed laser deposition under different oxygen pressure conditions. The comparison of Raman spectra for pure ZnO and AZO films with similar morphology at the nano/mesoscale allows to investigate the relation between Raman features (peak or band positions, width, relative intensity) and material properties such as local structural order, stoichiometry, and doping. Moreover Raman measurements with three different excitation lines (532, 457, and 325 nm) point out a strong correlation between vibrational and electronic properties. This observation confirms the relevance of a multi-wavelength Raman investigation to obtain a complete structural characterization of advanced doped oxide materials.

  9. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood

    2015-09-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.

  10. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells.

    PubMed

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  11. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells

    PubMed Central

    Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood

    2015-01-01

    We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142

  12. The investigation of sonocatalytic activity of Er3+:YAlO3/TiO2-ZnO composite in azo dyes degradation.

    PubMed

    Gao, Jingqun; Jiang, Renzheng; Wang, Jun; Kang, Pingli; Wang, Baoxin; Li, Ying; Li, Kai; Zhang, Xiangdong

    2011-03-01

    In this work, the emphasis was mainly placed on investigating the sonocatalytic activity of TiO(2)-ZnO mixed with Er(3+):YAlO(3), namely, Er(3+):YAlO(3)/TiO(2)-ZnO composite. It is able to utilize the sonoluminescence light to improve the sonocatalytic degradation of organic dyes. The Er(3+):YAlO(3) as up-conversion luminescence agent was synthesized by sol-gel and auto-combustion method, and then Er(3+):YAlO(3)/TiO(2)-ZnO composite as sonocatalyst were prepared by ultrasonic dispersion and liquids boil method. The prepared up-conversion luminescence agent and composites were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Acid Red B dye was selected to examine the sonocatalytic activity of Er(3+):YAlO(3)/TiO(2)-ZnO composite. The degradation reaction processes were monitored by UV-vis spectrophotometer and ion chromatogram. The influences on the activity of the Er(3+):YAlO(3)/TiO(2)-ZnO such as Ti/Zn molar ratio, heat-treated temperature and heat-treated time were studied. The results showed that the Er(3+):YAlO(3)/TiO(2)-ZnO composite exhibited a significantly high sonocatalytic activity compared with other catalysts in the degradation of Acid Red B. And the sonocatalyst with 1:1 Ti/Zn molar ratio heat-treated at 550°C for 60min showed the highest sonocatalytic activity. At last, the experiment also indicated that it has a good sonocatalytic activity to degrade other organic dyes. PMID:20980186

  13. Influence of RF power on magnetron sputtered AZO films

    SciTech Connect

    Agarwal, Mohit; Modi, Pankaj; Dusane, R. O.

    2013-02-05

    Al-doped Zinc Oxide (AZO) transparent conducting films are prepared on glass substrate by RF magnetron sputtering under different RF power with a 3 inch diameter target of 2 wt%Al{sub 2}O{sub 3} in zinc oxide. The effect of RF power on the structural, optical and electrical properties of AZO films was investigated by X-ray Diffraction (XRD), Hall measurement and UV-Visible spectrophotometry. The XRD data indicates a preferential c-axis orientation for all the films. All films exhibit high transmittance (<90%) in visible region. Films deposited at 60 W power exhibit lowest resistivity of 5.7 Multiplication-Sign 10{sup -4}{omega}cm. Such low-resistivity and high-transmittance AZO films when prepared using low RF power at room temperature could find important applications in flexible electronics.

  14. Enhanced electrical properties of AZO thin films grown on different substrates by using a facing-target sputtering system with hetero targets

    NASA Astrophysics Data System (ADS)

    Lee, ChangHyun; Bae, Kang; Jin, IkHyeon; Kim, HwaMin; Sohn, SunYoung

    2015-09-01

    Al-doped ZnO (AZO) films were deposited on glass, polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) at room temperature by using conventional rf-magneton sputtering (CMS) and a facing-target sputtering (FTS) with hetero targets of Al2O3 and ZnO. Their structural, surface morphology, electrical and optical properties were characterized by using X-ray diffractometry (XRD), atomic force microscopy (AFM), Hall-effect measurement and ultravioletvisible spectrophotometry, respectively. The films exhibit highly c-axis preferred orientation and a closely packed nanocrystalline. Structure the FTS-films deposited on plastic substrate are found to receive much less stress due to bombardment of high-energy particles compress to the CMS-films deposited on plastic substrates, during the sputtering process, which can enhance the electrical properties and crystalline quality of the FTS-films compared with those of the CMS-films. The resistivities of the FTS-films are 6.50 × 10-4 Ω·cm on glass, 7.0 × 10-4 Ω·cm on PEN and 7.4 × 10-4 Ω·cm on PET while the values for the CMS-films are 7.6 × 10-4 Ω·cm on glass, 1.20 × 10-3 Ω·cm on PEN and 1.58 × 10-3 Ω·cm on PET.

  15. Carriers-mediated ferromagnetic enhancement in Al-doped ZnMnO dilute magnetic semiconductors

    SciTech Connect

    Saleem, Murtaza; Siddiqi, Saadat A.; Atiq, Shahid; Anwar, M. Sabieh; Hussain, Irshad; Alam, Shahzad

    2011-11-15

    Nano-crystalline Zn{sub 0.95-x}Mn{sub 0.05}Al{sub x}O (x = 0, 0.05, 0.10) dilute magnetic semiconductors (DMS) were synthesized by sol-gel derived auto-combustion. X-ray diffraction (XRD) analysis shows that the samples have pure wurtzite structure typical of ZnO without the formation of secondary phases or impurity. Crystallite sizes were approximated by Scherrer formula while surface morphology and grain sizes were measured by field emission scanning electron microscopy. Incorporation of Mn and Al into the ZnO structure was confirmed by energy-dispersive X-ray analysis. Temperature dependent electrical resistivity measurements showed a decreasing trend with the doping of Al in ZnMnO, which is attributable to the enhancement of free carriers. Vibrating sample magnetometer studies confirmed the presence of ferromagnetic behavior at room temperature. The results indicate that Al doping results in significant variation in the concentration of free carriers and correspondingly the carrier-mediated magnetization and room temperature ferromagnetic behavior, showing promise for practical applications. We attribute the enhanced saturation magnetization and electrical conductivity to the exchange interaction mediated by free electrons.

  16. The electric transport properties of Al-doped ZnO/BiFeO3/ITO glass heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Chen, Changle; Luo, Bingcheng; Jin, Kexin

    2011-04-01

    BiFeO3 (BFO) and 4 wt. % Al-doped ZnO (ZAO) layers were grown on indium tin oxide (ITO) glass substrate using a pulsed laser deposition (PLD) method. I-V curves of the ZAO/BFO/ITO glass structure were investigated over the temperature range from 60 to 240 K. Analysis of the leakage current demonstrates that Poole-Frenkel emission is the dominant mechanism in our sample. The relations between resistance and temperature at positive and negative bias voltages are different, and the difference arises from the ferroelectric switching in BFO and the interfacial depletion layer between the semiconducting and the ferroelectric layers. Magnetoresistance (MR) effect is observed and the negative MR is related to the electron spin-dependent scattering and the interface resistance of the heterostructure.

  17. Microstructures and thermochromic characteristics of VO2/AZO composite films

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Li, Yi; Yuan, Wenrui; Fang, Baoying; Wang, Xiaohua; Hao, Rulong; Wu, Zhengyi; Xu, Tingting; Jiang, Wei; Chen, Peizu

    2016-05-01

    A vanadium dioxide (VO2) thin film was fabricated on a ZnO doped with Al (AZO) conductive glass by magnetron sputtering at room temperature followed by annealing under air atmosphere. The microstructures and optical properties of the thin film were studied. The results showed that the VO2/AZO composite film was poly-crystalline and the AZO layer did not change the preferred growth orientation of VO2. Compared to the VO2 film fabricated on soda-lime glass substrate through the same process and condition, the phase transition temperature of the VO2/AZO composite film was decreased by about 25 °C, thermal hysteresis width narrowed to 6 °C, the visible light transmittance was over 50%, the infrared transmittances before and after phase transition were 21% and 55%, respectively at 1500 nm.

  18. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  19. Al-doped MgB2 materials studied using electron paramagnetic resonance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bateni, Ali; Erdem, Emre; Repp, Sergej; Weber, Stefan; Somer, Mehmet

    2016-05-01

    Undoped and aluminum (Al) doped magnesium diboride (MgB2) samples were synthesized using a high-temperature solid-state synthesis method. The microscopic defect structures of Al-doped MgB2 samples were systematically investigated using X-ray powder diffraction, Raman spectroscopy, and electron paramagnetic resonance. It was found that Mg-vacancies are responsible for defect-induced peculiarities in MgB2. Above a certain level of Al doping, enhanced conductive properties of MgB2 disappear due to filling of vacancies or trapping of Al in Mg-related vacancy sites.

  20. Investigation of Al doping on Ge55Te45 for phase change memory application

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Rao, Feng; Song, Zhitang; Wu, Liangcai; Xia, Mengjiao; Liu, Bo; Feng, Songlin

    2013-06-01

    Al-doped Ge55Te45 materials are proposed for phase change memory application. Al incorporated in Ge55Te45 increases the crystallization temperature, band gap and 10-year data retention significantly. However, the crystallization speed of the Al-doped Ge55Te45 material will be lowered by excessive Al doping. The crystallization of the Al-doped Ge55Te45 film is observed to be growth-dominant, beginning with a random formation of spherical crystalline clusters. The 10-year data retention and crystallization speed of Al1Ge55Te45 are 117 °C and 5 ns, respectively, which makes the Al1Ge55Te45 a promising candidate for high speed PCM application. The 10-year data retention of 132 °C and good cyclic ability of ˜2 × 103 cycles of the Al2Ge55Te45 based PCM have shown its application potential in automotive fields.

  1. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  2. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    SciTech Connect

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-21

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness R{sub q} evolves with film thickness as a power law, R{sub q} ∼ d{sub f}{sup β}, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β{sub 1} = 0.14 and β{sub 2} = 0.64 for RT, and β{sub 1} = 0.89 and β{sub 2} = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  3. Microstructure evolution of Al-doped zinc oxide and Sn-doped indium oxide deposited by radio-frequency magnetron sputtering: A comparison

    NASA Astrophysics Data System (ADS)

    Nie, Man; Bikowski, Andre; Ellmer, Klaus

    2015-04-01

    The microstructure and morphology evolution of Al-doped zinc oxide (AZO) and Sn-doped indium oxide (ITO) thin films on borosilicate glass substrates deposited by radio-frequency magnetron sputtering at room temperature (RT) and 300 °C were investigated by X-ray diffraction and atomic force microscopy (AFM). One-dimensional power spectral density (1DPSD) functions derived from the AFM profiles, which can be used to distinguish different growth mechanisms, were used to compare the microstructure scaling behavior of the thin films. The rms roughness Rq evolves with film thickness as a power law, Rq ˜ dfβ, and different growth exponents β were found for AZO and ITO films. For AZO films, β of 1.47 and 0.56 are obtained for RT and 300 °C depositions, respectively, which are caused by the high compressive stress in the film at RT and relaxation of the stress at 300 °C. While for ITO films, β1 = 0.14 and β2 = 0.64 for RT, and β1 = 0.89 and β2 = 0.3 for 300 °C deposition are obtained, respectively, which is related to the strong competition between the surface diffusion and shadowing effect and/or grain growth. Electrical properties of both materials as a function of film thickness were also compared. By the modified Fuchs-Sondheimer model fitting of the electrical transport in both materials, different nucleation states are pointed out for both types of films.

  4. ZnO:Al Doping Level and Hydrogen Growth Ambient Effects on CIGS Solar Cell Performance: Preprint

    SciTech Connect

    Duenow, J. N.; Gessert, T. A.; Wood, D. M.; Egaas, B.; Noufi, R.; Coutts,T. J.

    2008-05-01

    Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) cells require a highly conducting and transparent electrode for optimum device performance. ZnO:Al films grown from targets containing 2.0 wt.% Al2O3 are commonly used for this purpose. Maximum carrier mobilities of these films grown at room temperature are ~20-25 cm2V-1s-1. Therefore, relatively high carrier concentrations are required to achieve the desired conductivity, which leads to free carrier absorption in the near infrared (IR). Lightly doped films (0.05 - 0.2 wt.% Al2O3), which show less IR absorption, reach mobility values greater than 50 cm2V-1s-1 when deposited in H2 partial pressure. We incorporate these lightly doped ZnO:Al layers into CIGS PV cells produced at the National Renewable Energy Laboratory (NREL). Preliminary results show quantum efficiency values of these cells rival those of a past world-record cell produced at NREL that used 2.0 wt.% Al-doped ZnO films. The highest cell efficiency obtained in this trial was 18.1%.

  5. A DFT study on SO3 capture and activation over Si- or Al-doped graphene

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Saeidi, Nasibeh; Nematollahi, Parisa

    2016-08-01

    This study reports the adsorption and favorable reaction mechanism of SO3 reduction by CO molecule over Si- or Al-doped graphene using DFT calculations. The adsorption energy of the most stable configuration of SO3 is calculated to be about -103 and -124 kcal/mol over the Si- and Al-doped graphene, respectively. The SO3 reduction over these surfaces proceeds through the following elementary steps (a) SO3 → SO2 + Oads and (b) Oads + CO → CO2. The estimated activation energy (Eact) for the dissociation of SO3 over the Si-doped graphene is about 9 kcal/mol smaller than that on the Al-doped graphene.

  6. Thermoelectric properties of Al doped Mg{sub 2}Si material

    SciTech Connect

    Kaur, Kulwinder Kumar, Ranjan; Rani, Anita

    2015-08-28

    In the present paper we have calculated thermoelectric properties of Al doped Mg{sub 2}Si material (Mg{sub 2−x}Al{sub x}Si, x=0.06) using Pseudo potential plane wave method based on DFT and Semi classical Boltzmann theory. The calculations showed n-type conduction, indicating that the electrical conduction are due to electron. The electrical conductivity increasing with increasing temperature and the negative value of Seebeck Coefficient also show that the conduction is due to electron. The thermal conductivity was increased slightly by Al doping with increasing temperature due to the much larger contribution of lattice thermal conductivity over electronic thermal conductivity.

  7. Aluminum doping studies on high field ZnO varistors

    SciTech Connect

    Kimball, K.M.; Doughty, D.H.

    1987-08-01

    We have investigated the effect of Al doping on the physical and electronic properties of high field ZnO varistors. For this study, varistors containing 98.94 m/o ZnO, 0.25 m/o CoO, 0.25 m/o MnO, 0.56 m/o Bi/sub 2/O/sub 3/ and 0 to 200 ppM Al were prepared from powders obtained from solution precipitation techniques. Because of the amphoteric nature of aluminum oxides, precise control of pH and metal concentrations was necessary to assure complete incorporation of dopants. We observed inhibition of grain growth during sintering of varistor pellets at aluminum concentrations of 50 ppM and above. The measured electrical properties show increased switching fields and increased nonlinearity coefficients for Al doping levels of 50 to 200 ppM.

  8. Characteristics of AZO electrode with high transmittance in near infrared range.

    PubMed

    Lee, Young-Jun; Kim, Joo-Hyung; Park, Jae-Cheol; Kim, Young-Ho; Jung, Dongsoo; Kim, Tae-Won

    2014-12-01

    We studied Al2O3-doped ZnO (AZO) thin film as a transparent conducting layer for photovoltaic cell operated in wide range of solar spectrum. Effects of substrate temperature on the optical, structural, and electrical properties of thin AZO film were investigated. AZO films were deposited on glass substrates by RF magnetron sputtering system using a 2 wt.% Al2O3 doped target at different temperature conditions. The grown AZO films at low deposition temperatures ranged from 100 degrees C to 300 degrees C show relatively low resistivity, while the samples deposited at 400 degrees C or room temperature are with higher resistivity of -8 x 10(-4) Ω x cm. The measurement by atomic force microscopy reveals that all AZO films possess very smooth surface morphologies with RMS values below 1 nm regardless of substrate temperature. Optical transmittance of the AZO films increases from 81% to 95% as the substrate temperature increases. The AZO films deposited at 200 degrees C condition shows the optimum value of figure-of-merit of 43.7 x 10(-3) Ω(-1), showing the resistivity of 3.4 x 10(-4) Ω x cm and the transmittance of 94%. Additionally, it is noted that the transmittance of the films at near infrared wavelength of 1250 nm exceeds 90%, demonstrating the feasibility as a transparent electrode for thin film solar cell with narrow band gap. PMID:25971052

  9. Al-doped graphene as a new nanostructure adsorbent for some halomethane compounds: DFT calculations

    NASA Astrophysics Data System (ADS)

    Rad, Ali Shokuhi

    2016-03-01

    We have studied the electronic structure and property of pristine as well as Al-doped graphene sheets towards adsorption of some halomethane compounds (trichloromethane, dichloromethane, and difluoromethane) using density functional theory (DFhsT) calculations. The adsorption energies have been calculated for each adsorbed-adsorbent system. Based on our results, compared to pristine graphene, the Al-doped graphene causes significant adsorption energy, higher charge transferring, and smaller bond distances to halomethane compounds. Our calculated adsorption energies of trichloromethane, dichloromethane, and difluoromethane on Al-doped graphene were - 54.1, - 68.3, and - 123.2 kJ mol- 1, respectively, which are categorized in the chemisorption region while the adsorption of these molecules on pristine graphene release insignificant energies which correspond to very weak adsorption on it. Furthermore, we used charge transfer analysis to search the amount of electron allocation. Orbital analysis including the density of states (DOS) was done to find the possible orbital hybridization between adsorbates and two graphene sheets. These results imply the suitability of Al-doped graphene as a good adsorbent/sensor for halomethane compounds.

  10. 40 CFR 721.9538 - Lithium salt of sulfophenyl azo phenyl azo disulfostilbene (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium salt of sulfophenyl azo phenyl... Significant New Uses for Specific Chemical Substances § 721.9538 Lithium salt of sulfophenyl azo phenyl azo... substance identified generically as lithium salt of sulfophenyl azo phenyl azo disulfostilbene (PMN...

  11. 40 CFR 721.9538 - Lithium salt of sulfophenyl azo phenyl azo disulfostilbene (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium salt of sulfophenyl azo phenyl... Significant New Uses for Specific Chemical Substances § 721.9538 Lithium salt of sulfophenyl azo phenyl azo... substance identified generically as lithium salt of sulfophenyl azo phenyl azo disulfostilbene (PMN...

  12. 40 CFR 721.9538 - Lithium salt of sulfophenyl azo phenyl azo disulfostilbene (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium salt of sulfophenyl azo phenyl... Significant New Uses for Specific Chemical Substances § 721.9538 Lithium salt of sulfophenyl azo phenyl azo... substance identified generically as lithium salt of sulfophenyl azo phenyl azo disulfostilbene (PMN...

  13. 40 CFR 721.9538 - Lithium salt of sulfophenyl azo phenyl azo disulfostilbene (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium salt of sulfophenyl azo phenyl... Significant New Uses for Specific Chemical Substances § 721.9538 Lithium salt of sulfophenyl azo phenyl azo... substance identified generically as lithium salt of sulfophenyl azo phenyl azo disulfostilbene (PMN...

  14. 40 CFR 721.9538 - Lithium salt of sulfophenyl azo phenyl azo disulfostilbene (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium salt of sulfophenyl azo phenyl... Significant New Uses for Specific Chemical Substances § 721.9538 Lithium salt of sulfophenyl azo phenyl azo... substance identified generically as lithium salt of sulfophenyl azo phenyl azo disulfostilbene (PMN...

  15. 40 CFR 721.10488 - Cuprate, [[[[[[[ (sulfonaphthalenyl)]azo]-(substitutedphenyl)]azo]-(substitutedsulfonaphthalenyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cuprate, azo]-(substitutedphenyl)]azo]-(substitutedsulfonaphthalenyl)] azo] - substituted phenyl - substituted heteromonocycle], sodium salts (generic). 721.10488... Substances § 721.10488 Cuprate, azo]-(substitutedphenyl)]azo]-(substitutedsulfonaphthalenyl)]...

  16. 40 CFR 721.10488 - Cuprate, [[[[[[[ (sulfonaphthalenyl)]azo]- (substitutedphenyl)]azo...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cuprate, azo]- (substitutedphenyl)]azo]- (substitutedsulfonaphthalenyl)] azo]- substituted phenyl- substituted heteromonocycle], sodium salts (generic). 721.10488... Substances § 721.10488 Cuprate, azo]- (substitutedphenyl)]azo]- (substitutedsulfonaphthalenyl)]...

  17. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  18. Low resistivity Al-doped ZnS grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Yasuda, T.; Hara, K.; Kukimoto, H.

    1986-09-01

    Low resistivity Al-doped ZnS layers have been grown by low pressure MOVPE using an adduct of diethylzinc-diethylsulfide (DEZn-DES) and H 2S as source materials and triethylaluminum (TEAl) as a dopant. The lowest resistivity achieved in this study is 3 × 10 -2 Ω cm for layers grown at a temperature of 350°C and at a TEAl transport rate ratio of {[TEAl]}/{[DEZn-DES]} = 4 × 10 -3.

  19. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    SciTech Connect

    Vijayaprasath, G.; Murugan, R.; Ravi, G. E-mail: gravicrc@gmail.com; Hayakawa, Y.

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption of ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.

  20. Engineering the switching dynamics of TiOx-based RRAM with Al doping

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Khiat, Ali; Cortese, Simone; Serb, Alexantrou; Carta, Daniela; Prodromakis, Themistoklis

    2016-07-01

    Titanium oxide (TiOx) has attracted a lot of attention as an active material for resistive random access memory (RRAM), due to its versatility and variety of possible crystal phases. Although existing RRAM materials have demonstrated impressive characteristics, like ultra-fast switching and high cycling endurance, this technology still encounters challenges like low yields, large variability of switching characteristics, and ultimately device failure. Electroforming has been often considered responsible for introducing irreversible damage to devices, with high switching voltages contributing to device degradation. In this paper, we have employed Al doping for tuning the resistive switching characteristics of titanium oxide RRAM. The resistive switching threshold voltages of undoped and Al-doped TiOx thin films were first assessed by conductive atomic force microscopy. The thin films were then transferred in RRAM devices and tested with voltage pulse sweeping, demonstrating that the Al-doped devices could on average form at lower potentials compared to the undoped ones and could support both analog and binary switching at potentials as low as 0.9 V. This work demonstrates a potential pathway for implementing low-power RRAM systems.

  1. A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shakerzadeh, Ehsan; Noorizadeh, Siamak

    2014-03-01

    Interaction of cis-platin and neda-platin, two conventional platinum-based anticancer drugs, with pristine [8,8] and Al-doped [8,0] boron nitride nanotubes (BNNTs) are investigated using the density functional theory (DFT) method. The obtained results indicate that cis-platin and neda-platin weakly interact with pristine zig zag or armchair BNNTs with a little dependency on the adsorbing positions; while both cis-platin and neda-platin are preferentially adsorbed onto the Al atom of the Al-doped BNNT with considerable adsorption energies. Therefore the Al-doped-BNNT might be an efficient carrier for delivery of these drugs in nanomedicine domain. The electronic structures of the stable configurations are also investigated through both DOS and PDOS spectra. The obtained results introduce the Al-doped-BNNT as an efficient carrier for delivery of cis-platin and neda-platin in nanomedicine domain.

  2. Modulating TiO2 photocatalyst by Al doping: Density functional theory approach

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Gong, Yin Yan; Niu, Leng Yuan; Liu, Xin Juan

    2016-06-01

    In this work, systematic study of the thermal stability, crystal structure and electronic properties of Al doped TiO2 were studied by the first principles calculations. The results showed that Al atoms preferentially occupying the interstitial site under Ti-rich condition, but substituting the Ti atom under O-rich condition. In contrast to pure TiO2, the values of VBM and CBM are reduced for Al substituting Ti doped mode, but increased for Al interstitial atom doped mode. Thus, we can modulate the preparation condition and dosage concentration for preparing the optimal photocatalyst.

  3. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    SciTech Connect

    Santos, Desireé M. de los Navas, Javier Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  4. Study of properties of (Mg, Al)-codoped ZnO with GGA and mBJ approximations

    NASA Astrophysics Data System (ADS)

    Khuili, Mohamed; Fazouan, Nejma; El Makarim, Hassna Abou; Atmani, El Houssine

    2016-08-01

    The physical properties of the codoped ZnO system Zn 1 - x - yMgxAly O were studied using a Gaussian and plane waves basis set method implemented in CP2K code, combined to the modified Becke-Johnson potential approximation implemented in the Wien2k code. We have found that the magnesium doped ZnO enhances the optical properties and induces a blue shift in the optical band gap, but reduces its electrical properties. The incorporation of a low Mg concentration in Al doped ZnO achieves a good electrical conductivity and high transmittance. These results make this material a suitable candidate for electronic transparent devices.

  5. Structural and nonlinear optical behavior of Ag-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tan, Ming-Yue; Yao, Cheng-Bao; Yan, Xiao-Yan; Li, Jin; Qu, Shu-Yang; Hu, Jun-Yan; Sun, Wen-Jun; Li, Qiang-Hua; Yang, Shou-Bin

    2016-01-01

    We present the structural and nonlinear optical behavior of Ag-doped ZnO (AZO) films prepared by magnetron sputtering. The structural of AZO films are systematically investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The results show that AZO films can still retain a wurtzite structure, although the c-axis as preferred orientation is decreased by Ag doping. As the amounts of the Ag dopant were increased, the crystallinity as well as the absorptivity and optical band gap were increased. Moreover, the nonlinear optical characterized of the AZO films was studied using Z-scan technique. These samples show self-defocusing nonlinearity and good nonlinear absorption behavior which increases with increasing Ag volume fraction. AZO is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

  6. Room temperature ferromagnetic properties of Al-doped bis(8-hydroxyquinoline)cobalt (Coq2) molecules

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Wei, Fangfang; Yuan, Huimin; Xie, Wanfeng; Pang, Zhiyong; Zhang, Xijian

    2015-08-01

    Room temperature ferromagnetic properties were obtained in an originally paramagnetic molecule bis(8-hydroxyquinoline)cobalt (Coq2) by doping a nonmagnetic element aluminum. The Al-doped Coq2 films with the thicknesses of about 200 nm were prepared on Si substrates by co-evaporating pure Coq2 powders (99%) and Al wires (99%) simultaneously at a base pressure of 1.9×10-4 Pa. The magnetic properties of the films were measured at different temperatures by using a Quantum Design superconducting quantum interference device (SQUID). The obtained maximum coercive field is about 250 Oe at 300 K. The electronic structures of Al-doped Coq2 were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) analysis. The FTIR and XPS spectra indicate that the doped Al atoms prefer to interact with N and O atoms in Coq2 molecules. XAFS analysis shows that the Coq2 molecule does not decompose during the co-evaporating process. The ferromagnetism of the film is attributed to the interactions between Al and N p states in lowest unoccupied molecular orbitals (LUMO).

  7. THz Transmittance and Electrical Properties Tuning across IMT in Vanadium Dioxide Films by Al Doping.

    PubMed

    Wu, Xuefei; Wu, Zhiming; Ji, Chunhui; Zhang, Huafu; Su, Yuanjie; Huang, Zehua; Gou, Jun; Wei, Xiongbang; Wang, Jun; Jiang, Yadong

    2016-05-11

    Due to the insulator-metal transition (IMT) performance covering the full terahertz (THz) band, VO2 films were extensively investigated as an excellent candidate for modulating, switching, and memory devices. However, some remarkable absorption peaks owing to the infrared-active phonon modes suppressed the films' modulation ability and restricted the films' application in high THz frequency. Here we prepared Al-doped VO2 films on (111) directional silicon substrate, which rapidly counteracted the absorption peak and exhibited widely modulating properties. Al dopants introduced into the films brought a significant shift to high frequency in Raman spectra. The result was attributed to the effect of modifying VO2 crystal, leading the V-O bond to be strained more intensively, contracting the distance of the V-V dimers. All the Raman results indicated an oxidation effect by Al doping. However, the XPS results showed a valence reduction of the vanadium element, which was caused by the valence difference between V and Al atoms. In addition to the surface morphology characterization, the IMT properties of the shrinkage of hysteresis width and resistance variations in both electrical and THz optical aspects have been systemically analyzed. An additional difference is that the temperature of the optical transition behaves lower than the electrical transition observed, which resulted from the mechanism of transition propagation and boundary barriers. PMID:27096418

  8. Geometry, electronic properties, and thermodynamics of pure and Al-doped Li clusters

    NASA Astrophysics Data System (ADS)

    Lee, Mal-Soon; Gowtham, S.; He, Haiying; Lau, Kah-Chun; Pan, Lin; Kanhere, D. G.

    2006-12-01

    The first-principles density functional molecular dynamics simulations have been carried out to investigate the geometric, the electronic, and the finite temperature properties of pure Li clusters ( Li10 , Li12 ) and Al-doped Li clusters ( Li10Al , Li10Al2 ). We find that the addition of two Al impurities in Li10 results in a substantial structural change, while the addition of one Al impurity causes a rearrangement of atoms. Introduction of Al impurities in Li10 establishes a polar bond between Li and nearby Al atom(s), leading to a multicentered bonding, which weakens the Li-Li metallic bonds in the system. These weakened Li-Li bonds lead to a premelting feature to occur at lower temperatures in Al-doped clusters. In Li10Al2 , Al atoms also form a weak covalent bond, resulting in their dimerlike behavior. This causes Al atoms not to “melt” until 800K , in contrast to the Li atoms which show a complete diffusive behavior above 400K . Thus, although one Al impurity in Li10 cluster does not change its melting characteristics significantly, two impurities results in “surface melting” of Li atoms whose motions are confined around an Al dimer.

  9. Raman study of the Verwey transition in magnetite at high-pressure and low-temperature: Effect of Al doping

    NASA Astrophysics Data System (ADS)

    Gasparov, L.; Shirshikova, Z.; Pekarek, T. M.; Blackburn, J.; Struzhkin, V.; Gavriliuk, A.; Rueckamp, R.; Berger, H.

    2012-08-01

    We employed Raman spectroscopy to investigate how the hydrostatic pressure affects the temperature of the Verwey transition in pure (Fe3O4) and Al-doped (Fe2.8Al0.2O4) magnetite. In both samples, pressure suppresses the transition. The Al-doped sample displays no transition above 8 GPa. We do not observe such discontinuity in a pure magnetite, which suggests that the discontinuity is doping driven. Our Clausius-Clapeyron formula based analysis of the pressure-transition temperature dependence is in excellent agreement with our data in pure magnetite. The Al doping leads to a smaller entropy change and larger volume expansion consistent with partial charge ordering at the transition.

  10. Study of the wettability of ZnO nanofilms

    NASA Astrophysics Data System (ADS)

    Subedi, Deepak Prasad; Madhup, Dinesh Kumar; Sharma, Ashish; Joshi, Ujjwal Man; Huczko, Andrzej

    2012-04-01

    Al-doped and un-doped ZnO thin films deposited on quartz substrates by the nebulized spray pyrolysis method were studied to investigate the wettability of the surface. The main objective of the present study was to investigate the wettability of ZnO thin film by changing the concentration of Al doping. Microstructure and water contact angles of the films were measured by scanning electron microscopy (SEM) and using a contact angle goniometer. SEM studies revealed that the grain size within the film increases with the doping concentration. The contact angles were studied to see the effect of aluminum doping on the hydrophilicity of the film. ZnO films were found to be hydrophobic in nature. A good correlation was observed between the SEM micrographs and contact angle results. The nature of the film was found to change from being hydrophobic to hydrophilic after the treatment in low-pressure DC glow discharge plasma, which, however, was reversible with the storage time.

  11. Electrochemical Synthesis of ZnO Nanorods/Nanotubes/Nanopencils on Transparent Aluminium-Doped Zinc Oxide Thin Films for Photocatalytic Applications.

    PubMed

    Le, Thi Ngoc Tu; Pham, Tan Thi; Ngo, Quang Minh; Vu, Thi Hanh Thu

    2015-09-01

    We report an electrochemical synthesis of homogeneous and well-aligned ZnO nanorods (NRs) on transparent conducting aluminium-doped zinc oxide (AZO) thin films as electrodes. The selected ZnO NRs was then chemically corroded in HCl and KCl aqueous solutions to form nanopencils (NPs), and nanotubes (NTs), respectively. A DC magnetron sputtering was employed to fabricate AZO thin films at various thicknesses. The obtained AZO thin films have a c-direction orientation, transmittance above 80% in visible region, and sheet resistance approximately 40 Ω/sq. They are considered to be relevant as electrodes and seeding layers for electrochemical. The ZnO NRs are directly grown on the AZOs without a need of catalysts or additional seeding layers at temperature as low as 85 degrees C. Their shapes are strongly associated with the AZO thickness that provides a valuable way to control the diameter of ZnO NRs grown atop. With the addition of HCI and KCl aqueous solutions, ZnO NRs were modified their shape to NPs and NTs with the reaction time, respectively. All the ZnO NRs, NPs, and NTs are preferred to grow along c-direction that indicates a lattice matching between AZO thin films and ZnO nanostructrures. Photoluminescence spectra and XRD patterns show that they have good crystallinities. A great photocatalytic activity of ZnO nanostructures promises potential application in environmental treatment and protection. The ZnO NTs exhibits a higher photocatalysis than others possibly due to the oxygen vacancies on the surface and the polarizability of Zn2+ and O2-. PMID:26716213

  12. Simulation, Fabrication, and Characterization of Al-Doped ZnO-Based Ultraviolet Photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini

    2016-01-01

    This paper reports a simulation and experimental study of aluminum-doped zinc oxide (AZO)-based metal-semiconductor-metal (MSM) photodetectors. High-quality AZO thin films were deposited on p-type Si substrates by radiofrequency (RF) sputtering method. Interdigitated palladium metal electrodes were designed over AZO/Si samples by lithographic technique. I- V detector characteristics were investigated in dark as well as illuminated condition, using an ultraviolet (UV) source with wavelength of 0.372 μm and power of 2.8 × 10-6 W. Four different MSM devices with the same width and finger spacing of 5 μm, 10 μm, 20 μm, and 50 μm were fabricated, and the effect of finger spacing on the MSM detector I- V characteristics was investigated. It was found that the photocurrent increased by more than two orders of magnitude with UV light illumination. Simulation of these MSM devices was also carried out by using SENTAURUS TCAD software. The variation of the resistance with the electrode spacing for the MSM devices was examined by both experiment and simulation. The simulated and experimental results were compared and found to be in good agreement with each other. In both conditions (dark as well as under UV illumination), the resistance increased as the spacing between the electrodes was increased. These simulation studies will be useful for designing high-performance optoelectronic devices.

  13. Magnetic susceptibility of Alq 3 powder, pure and Al-doped 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Burke, Franklyn; Abid, Mohamed; Stamenov, Plamen; Coey, J. M. D.

    2010-05-01

    Single-crystal nanowires several microns long and 100-200 nm in diameter were grown by physical vapour deposition from mixed Alq 3/γ-Al 2O 3 powder. The crystals are orthorhombic Al-doped 8-hydroxyquinoline. The molar susceptibility is -3×10 -9 at room temperature, and it shows a Curie-law upturn below about 50 K. The approach to saturation at low temperature indicates a density of S={1}/{2} defects 4×10 -4 per formula unit. Pure 8-hydroxyquinoline and aluminium (Alq 3) behave similarly. Pressed pellets exhibit much increased paramagnetic susceptibility due to iron ions scavanged from the steel die. Subsequent melting of these samples produces a ferromagnetic signal of order 0.01 A m 2 kg -1, which is attributed to metallic iron nanoclusters in the organic material.

  14. Electron irradiation response on Ge and Al-doped SiO 2 optical fibres

    NASA Astrophysics Data System (ADS)

    Yaakob, N. H.; Wagiran, H.; Hossain, I.; Ramli, A. T.; Bradley, D. A.; Hashim, S.; Ali, H.

    2011-05-01

    This paper describes the thermoluminescence response, sensitivity, stability and reproducibility of SiO 2 optical fibres with various electron energies and doses. The TL materials that comprise Al- and Ge-doped silica fibres were used in this experiment. The TL results are compared with those of the commercially available TLD-100. The doped SiO 2 optical fibres and TLD-100 are placed in a solid phantom and irradiated with 6, 9 and 12 MeV electron beams at doses ranging from 0.2 to 4.0 Gy using the LINAC at Hospital Sultan Ismail, Johor Bahru, Malaysia. It was found that the commercially available Al- and Ge-doped optical fibres have a linear dose-TL signal relationship. The intensity of TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre.

  15. 40 CFR 721.5930 - Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic name). 721.5930 Section 721... Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic... identified generically as phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo...

  16. 40 CFR 721.5930 - Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic name). 721.5930 Section 721... Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic... identified generically as phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo...

  17. 40 CFR 721.5930 - Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic name). 721.5930 Section 721... Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic... identified generically as phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo...

  18. 40 CFR 721.5930 - Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic name). 721.5930 Section 721... Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic... identified generically as phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo...

  19. 40 CFR 721.5930 - Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic name). 721.5930 Section 721... Phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo(substituted phenyl)azo, sodium salt (generic... identified generically as phenylenebis[imino (chlorotriazinyl)imino(substituted naphthyl)azo...

  20. Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film

    NASA Astrophysics Data System (ADS)

    Gencer Imer, Arife

    2016-04-01

    Nanostructured aluminium (Al) doped cadmium oxide (CdO) films with highly electrical conductivity and optical transparency have been deposited for the first time on soda-lime glass substrates preheated at 250 °C by ultrasonic spray coating technique. The aluminium dopant content in the CdO film was changed from 0 to 5 at%. The influencing of Al doping on the structural, morphological, electrical and optical properties of the CdO nanostructured films has been investigated. Atomic force microscopy study showed the grain size of the films is an order of nanometers, and it decreases with increase in Al dopant content. All the films having cubic structure with a lattice parameter 4.69 Å were determined via X ray diffraction analysis. The optical band gap value of the films, obtained by optical absorption, was found to increase with Al doping. Electrical studies exhibited mobility, carrier concentration and resistivity of the film strongly dependent on the doping content. It has been evaluated that optical band gap, and grain size of the nanostructured CdO film could be modified by Al doping.

  1. Chrystal structure properties of Al-doped Li4Ti5O12 synthesized by solid state reaction method

    NASA Astrophysics Data System (ADS)

    Sandi, Dianisa Khoirum; Priyono, Slamet; Suryana, Risa

    2016-02-01

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li4Ti5O12 as anode in lithium ion battery. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. LiOH.H2O, TiO2, and Al2O3 were raw materials. These materials were milled for 15 h, calcined at temperature of 750oC and sintered at temperature of 800oC. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. X-ray diffraction was employed to determine the structure of Li4Ti5O12. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li4Ti5O12 has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li4Ti5O12 while at x=0.050 the phase changes to the LiTiAlO4. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li4Ti5O12 phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li4Ti5O12 phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode.

  2. Synthesis and characterization of Sb-doped ZnO microspheres by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Nagasaki, Fumiaki; Shimogaki, Tetsuya; Tanaka, Toshinobu; Ikebuchi, Tatsuya; Ueyama, Takeshi; Fujiwara, Yuki; Higashihata, Mitsuhiro; Nakamura, Daisuke; Okada, Tatsuo

    2016-08-01

    We succeeded in synthesizing antimony (Sb)-doped zinc oxide (ZnO) microspheres by ablating a sintered ZnO target containing Sb in air. The structural properties of the microspheres were investigated by Raman scattering studies. The Zn–Sb related local vibrational mode (LVM) was detected around 238 cm‑1. Room-temperature photoluminescence (PL) properties of the microspheres were investigated under cw and pulsed laser excitations, and ultraviolet (UV) emission and whispering-gallery-mode (WGM) lasing were observed from the microspheres. Furthermore, a p–n heterojunction was formed between a single Sb-doped ZnO microsphere and an n-Al-doped ZnO thin film, and a good rectifying property with a turn-on voltage of approximately 1.8 V was observed in the current–voltage (I–V) characteristics across the junction.

  3. Dopant source choice for formation of p-type ZnO: Li acceptor

    NASA Astrophysics Data System (ADS)

    Zeng, Y. J.; Ye, Z. Z.; Xu, W. Z.; Li, D. Y.; Lu, J. G.; Zhu, L. P.; Zhao, B. H.

    2006-02-01

    Li-doped, p-type ZnO thin films have been realized via dc reactive magnetron sputtering. An optimized result with a resistivity of 16.4Ωcm, Hall mobility of 2.65cm2/Vs, and hole concentration of 1.44×1017cm-3 was achieved, and electrically stable over a month. Hall-effect measurements supported by secondary ion mass spectroscopy indicated that the substrate temperature played a key role in optimizing the p-type conduction of Li-doped ZnO thin films. Furthermore, ZnO-based p-n homojunction was fabricated by deposition of a Li-doped p-type ZnO layer on an Al-doped n-type ZnO layer.

  4. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  5. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  6. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  7. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  8. 40 CFR 721.10107 - Naphthalenedisulfonic acid, [amino-hydroxy-[(substituted)azo-sulfo-naphthaleneyl]azo]-hydroxy...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphthalenedisulfonic acid, azo... Significant New Uses for Specific Chemical Substances § 721.10107 Naphthalenedisulfonic acid, azo]-hydroxy... chemical substance identified generically as naphthalenedisulfonic acid, azo]-hydroxy- , metal salt (PMN...

  9. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  10. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  11. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  12. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted...

  13. Surface Al doping of 4H-SiC via low temperature annealing

    NASA Astrophysics Data System (ADS)

    Park, Junbo; Kim, Ki-hwan; Park, Young-rak; Kim, Minki; Lee, Hyungseok; Jun, Chi-Hoon; Koo, Sangmo; Ko, Sang Choon

    2016-07-01

    We present a method of forming shallow p-doping on a 4H-SiC surface by depositing a thin Al layer (d = 5 nm) and then thermally annealing it at 1000 °C for 10 min. A secondary ion mass spectrometry analysis of the annealed Al/SiC sample reveals an Al concentration in excess of 1017 cm-3 up to a depth of d ≤ 250 nm. I-V measurements and CV characterizations of Ti-SiC Schottky barrier diodes (SBDs) fabricated on a n-type SiC epi-wafer indicate that the shallow Al doping increases the built-in potential of the junction and the barrier height by Δ V b i = 0.51 eV and Δ ϕ B = 0.26 eV , respectively. Assuming a rectangular doping profile, calculations of the built-in voltage shift and the Schottky barrier height indicate that partial dopant activation (activation ratio ˜2%) can induce the observed barrier height shift. The shallow doping method was then used to fabricate junction terminations in SBDs which increased the breakdown voltage and reduced the reverse leakage current. Technology CAD simulations of the SBD with and without doping verify that a reduction of peak electric field can explain the improvement of the breakdown voltage.

  14. Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Battiston, S.; Fiameni, S.; Saleemi, M.; Boldrini, S.; Famengo, A.; Agresti, F.; Stingaciu, M.; Toprak, M. S.; Fabrizio, M.; Barison, S.

    2013-07-01

    Magnesium silicide (Mg2Si)-based alloys are promising candidates for thermoelectric (TE) energy conversion for the middle to high range of temperature. These materials are very attractive for TE research because of the abundance of their constituent elements in the Earth's crust. Mg2Si could replace lead-based TE materials, due to its low cost, nontoxicity, and low density. In this work, the role of aluminum doping (Mg2Si:Al = 1: x for x = 0.005, 0.01, 0.02, and 0.04 molar ratio) in dense Mg2Si materials was investigated. The synthesis process was performed by planetary milling under inert atmosphere starting from commercial Mg2Si pieces and Al powder. After ball milling, the samples were sintered by means of spark plasma sintering to density >95%. The morphology, composition, and crystal structure of the samples were characterized by field-emission scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction analyses. Moreover, Seebeck coefficient analyses, as well as electrical and thermal conductivity measurements were performed for all samples up to 600°C. The resultant estimated ZT values are comparable to those reported in the literature for these materials. In particular, the maximum ZT achieved was 0.50 for the x = 0.01 Al-doped sample at 600°C.

  15. Observation of multiband effects in the microwave complex conductivity of pure and Al-doped MgB 2 samples

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Lamura, G.; Palenzona, A.; Putti, M.; Andreone, A.

    2004-08-01

    There is presently a general agreement that the simple inter-metallic compound MgB 2 is a conventional, phonon mediated, superconductor, and that the anomalies in its behaviour can be consistently explained by the existence of two different gaps. We present a study of the complex conductivity as a function of temperature in pure and Al-doped MgB 2 pellets by using a dielectrically loaded resonant cavity at 19 GHz.

  16. Origin of leakage paths driven by electric fields in Al-doped TiO2 films.

    PubMed

    Park, Gyeong-Su; Park, Seong Yong; Heo, Sung; Kwon, Ohseong; Cho, Kyuho; Han, Kwan-Young; Kang, Sung Jin; Yoon, Aram; Kim, Miyoung

    2014-12-23

    The growth of leakage current paths in Al-doped TiO2 (ATO) films is observed by in situ TEM under negative bias stress. Through systematic HAADF-STEM, STEM-EDS, and STEM-EELS studies, it is confirmed that the electric field-induced growth of the Ru-doped TiO2 phase is the main reason for the ATO film's negative leakage. PMID:25366700

  17. Spin-polarized transport current in n-type codoped ZnO thin films measured by Andreev spectroscopy.

    SciTech Connect

    Yates, K. A.; Behan, A. J.; Neal, J. R.; Score, D. S.; Blythe, H. J.; Gehring, G. A.; Heald, S. M.; Branford, W. R.; Cohen, L. F.; Imperial Coll.; Univ. of Sheffield

    2009-12-01

    We use point-contact Andreev-reflection measurements to determine the spin polarization of the transport current in pulse laser deposited thin films of ZnO with 1% Al and with and without 2% Mn. Only films with Mn are ferromagnetic and show spin polarization of the transport current of up to 55 {+-} 0.5% at 4.2 K, in sharp contrast to measurements of the nonmagnetic films without Mn where the polarization is consistent with zero. Our results imply strongly that ferromagnetism in these Al-doped ZnO films requires the presence of Mn.

  18. Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping

    NASA Astrophysics Data System (ADS)

    Gasparov, Lev; Shirshikova, Z.; Pekarek, T. M.; Blackburn, J.; Struzhkin, V.; Gavriliuk, A.; Rueckamp, R.; Berger, H.

    2012-02-01

    We report high-pressure low-temperature Raman measurements of the Verwey transition in pure and Al --doped magnetite (Fe3O4) Al-doped magnetite Fe2.8Al0.2O4 (TV=116.5K) displays a nearly linear decrease of the transition temperature with an increase of pressure yielding dP/dTV=-0.096±0.013 GPa/K. In contrast pure magnetite displays a significantly steeper slope of the PT equilibrium line with dP/dTV = -0.18±0.013 GPa/K. Contrary to earlier high pressure resistivity reports we do not observe quantum critical point behavior at 8 GPa in the pure magnetite. Our data indicates that Al doping leads to a smaller entropy change and larger volume expansion at the transition. The trends displayed by the data are consistent with the mean field model of the transition that assumes charge ordering in magnetite.

  19. Optical and electrical characterization of aluminium doped ZnO layers

    NASA Astrophysics Data System (ADS)

    Major, C.; Nemeth, A.; Radnoczi, G.; Czigany, Zs.; Fried, M.; Labadi, Z.; Barsony, I.

    2009-08-01

    Al doped ZnO (ZAO) thin films (with Al-doping levels 2 at.%) were deposited at different deposition parameters on silicon substrate by reactive magnetron sputtering for solar cell contacts, and samples were investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and spectroscopic ellipsometry (SE). Specific resistances were measured by the well known 4-pin method. Well visible columnar structure and in most cases voided other regions were observed at the grain boundaries by TEM. EELS measurements were carried out to characterize the grain boundaries, and the results show spacing voids between columnar grains at samples with high specific resistance, while no spacing voids were observed at highly conductive samples. SE measurements were evaluated by using the analytical expression suggested by Yoshikawa and Adachi [H. Yoshikawa, S. Adachi, Japanese Journal of Applied Physics 36 (1997) 6237], and the results show correlation between specific resistance and band gap energy and direct exciton strength parameter.

  20. Investigation of correlation between the microstructure and electrical properties of sol-gel derived ZnO based thin films

    NASA Astrophysics Data System (ADS)

    Zhu, M. W.; Gong, J.; Sun, C.; Xia, J. H.; Jiang, X.

    2008-10-01

    Pure ZnO and aluminum doped ZnO films (ZAO) were prepared by sol-gel method and the effect of Al doping on the microstructure and electrical properties of the films was investigated. The results showed that the transformation from granular to columnar structure could be observed in pure ZnO films with the increase in heating time while in aluminum doped films little structural changes occurred even after a prolonged heating time. Additionally, measurements of electrical properties showed that both microstructural evolution and doping could significantly improve the conductivity of the films, which could be assigned to an increase both in Hall mobility and carrier concentration. The relationship between microstructure and the electrical properties of the films was discussed, and various scattering mechanisms were proposed for sol-gel derived ZnO and ZAO films as a function of the carrier concentration.

  1. Thermally Diffused Al:ZnO Thin Films for Broadband Transparent Conductor.

    PubMed

    Tong, Chong; Yun, Juhyung; Chen, Yen-Jen; Ji, Dengxin; Gan, Qiaoqiang; Anderson, Wayne A

    2016-02-17

    Here, we report an approach to realize highly transparent low resistance Al-doped ZnO (AZO) films for broadband transparent conductors. Thin Al films are deposited on ZnO surfaces, followed by thermal diffusion processes, introducing the Al doping into ZnO thin films. By utilizing the interdiffusion of Al, Zn, and O, the chemical state of Al on the surfaces can be converted to a fully oxidized state, resulting in a low sheet resistance of 6.2 Ω/sq and an excellent transparency (i.e., 96.5% at 550 nm and higher than 85% up to 2500 nm), which is superior compared with some previously reported values for indium tin oxide, solution processed AZO, and many transparent conducting materials using novel nanostructures. Such AZO films are also applied as transparent conducting layers for AZO/Si heterojunction solar cells, demonstrating their applications in optoelectronic devices. PMID:26807664

  2. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... significant new uses subject to reporting. (1) The chemical substances identified generically as...

  3. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  4. Al-doping influence on crystal growth of Ni-Al alloy: Experimental testing of a theoretical model

    NASA Astrophysics Data System (ADS)

    Rong, Xi-Ming; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    Recently, a condensing potential model was developed to evaluate the crystallization ability of bulk materials [Ye X X, Ming C, Hu Y C and Ning X J 2009 J. Chem. Phys. 130 164711 and Peng K, Ming C, Ye X X, Zhang W X, Zhuang J and Ning X J 2011 Chem. Phys. Lett. 501 330], showing that the best temperature for single crystal growth is about 0.6Tm, where Tm is the melting temperature, and for Ni-Al alloy, more than 6 wt% of Al-doping will badly reduce the crystallization ability. In order to verify these predictions, we fabricated Ni-Al films with different concentrations of Al on Si substrates at room temperature by pulsed laser deposition, and post-annealed the films at 833, 933, 1033 (˜ 0.6Tm), 1133, and 1233 K in vacuum furnace, respectively. The x-ray diffraction spectra show that annealing at 0.6Tm is indeed best for larger crystal grain formation, and the film crystallization ability remarkably declines with more than 6-wt% Al doping. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20130071110018) and the National Natural Science Foundation of China (Grant No. 11274073).

  5. Crystal Structure and Photocatalytic Activity of Al-Doped TiO2 Nanofibers for Methylene Blue Dye Degradation.

    PubMed

    Lee, Deuk Yong; Lee, Myung-Hyun; Kim, Bae-Yeon; Cho, Nam-Ihn

    2016-05-01

    Al-TiO2 nanofibers were prepared using a sol-gel derived electrospinning by varying the Al/Ti molar ratio from 0 to 0.73 to investigate the effect of Al doping on the crystal structure and the photocatalytic activity of Al-TiO2 for methylene blue (MB) degradation. XRD results indicated that as the Al/Ti molar ratio rose, crystal structure of Al-TiO2 was changed from anatase/rutile (undoped), anatase (0.07-0.18), to amorphous phase (0.38-0.73), which was confirmed by XPS and Raman analysis. The degradation kinetic constant increased from 7.3 x 10(-4) min(-1) to 4.5 x 10(-3) min(-1) with the increase of Al/Ti molar ratios from 0 to 0.38, but decreased to 3.4 x 10(-3) min(-1) when the Al/Ti molar ratio reached 0.73. The Al-TiO2 catalyst doped with 0.38 Al/Ti molar ratio demonstrated the best MB degradation. Experimental results indicated that the Al doping in Al-TiO2 was mainly attributed to the crystal structure of TiO2 and the photocatalytic degradation of MB. PMID:27483928

  6. Pressure-induced phase transition and electrical properties of thermoelectric Al-doped Mg{sub 2}Si

    SciTech Connect

    Zhao, Jianbao; Tse, John S.; Liu, Zhenxian; Gordon, Robert A.; Takarabe, Kenichi; Reid, Joel

    2015-10-14

    A recent study has shown the thermoelectric performance of Al-doped Mg{sub 2}Si materials can be significantly enhanced at moderate pressure. To understand the cause of this phenomenon, we have performed in situ angle dispersive X-ray diffraction and infrared reflectivity measurements up to 17 GPa at room temperature. Contrary to previous experiment, using helium as a pressure transmission medium, no structural transformation was observed in pure Mg{sub 2}Si. In contrast, a phase transition from cubic anti-fluorite (Fm-3m) to orthorhombic anti-cotunnite (Pnma) was observed in the Al-doped sample at 10 GPa. Infrared reflectivity measurements show the electrical conductivity increases with pressure and is further enhanced after the phase transition. The electron density of states at the Fermi level computed form density functional calculations predict a maximum thermoelectric power factor at 1.9 GPa, which is in good agreement with the experimental observation.

  7. Effect of Al Doping on Performance of CuGaO2 p-Type Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ursu, D.; Vaszilcsin, N.; Bănica, R.; Miclau, M.

    2016-01-01

    The p-type semiconductor Cu(I)-based delafossite transparent conducting oxides are good candidates to be used as hole collectors in dye-sensitized solar cells. The Al-doped CuGaO2 has been synthesized by hydrothermal method and its properties have been investigated as cathode elements in ruthenium dye N719-sensitized solar cells. The photocurrent density ( J sc) and the open-circuit voltage ( V oc) for 5% Al-doped CuGaO2 microparticles using N719 dye were approximately two times higher than undoped CuGaO2 microparticles. The integration of aluminum dopants in the delafossite structure improves the photovoltaic performance of CuGaO2 thin films, due to the excellent optical transparency of CuGaO2 in the visible range as well as the improved electrical conductivity caused by the apparition of the intrinsic acceptor defect associate (Al Cu •• 2O i ″ )″ with tetrahedrally coordinated Al on the Cu-site.

  8. Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films.

    PubMed

    Jeon, Woojin; Rha, Sang Ho; Lee, Woongkyu; Yoo, Yeon Woo; An, Cheol Hyun; Jung, Kwang Hwan; Kim, Seong Keun; Hwang, Cheol Seong

    2014-05-28

    The role of Al dopant in rutile-phased TiO2 films in the evaluation of the mechanism of leakage current reduction in Al-doped TiO2 (ATO) was studied in detail. The leakage current of the ATO film was strongly affected by the Al concentration at the interface between the ATO film and the RuO2 electrode. The conduction band offset of the interface increased with the increase in the Al dopant concentration in the rutile TiO2, which reduced the leakage current in the voltage region pertinent to the next-generation dynamic random access memory application. However, the Al doping in the anatase TiO2 did not notably increase the conduction band offset even with a higher Al concentration. The detailed analyses of the leakage conduction mechanism based on the quantum mechanical transfer-matrix method showed that Schottky emission and Fowler-Nordheim tunneling was the dominant leakage conduction mechanism in the lower and higher voltage regions, respectively. The chemical analyses using X-ray photoelectron spectroscopy corroborated the electrical test results. PMID:24749990

  9. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures.

    PubMed

    Pietruszka, Rafal; Witkowski, Bartlomiej Slawomir; Luka, Grzegorz; Wachnicki, Lukasz; Gieraltowska, Sylwia; Kopalko, Krzysztof; Zielony, Eunika; Bieganski, Piotr; Placzek-Popko, Ewa; Godlewski, Marek

    2014-01-01

    Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. PMID:24605282

  10. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  11. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  12. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject...

  13. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject...

  14. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject...

  15. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject...

  16. 40 CFR 721.5917 - Phenyl azo dye (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenyl azo dye (generic). 721.5917... Substances § 721.5917 Phenyl azo dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a phenyl azo dye (PMN P-02-17) is subject...

  17. 40 CFR 721.10460 - Azo nickel complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo nickel complex (generic). 721... Substances § 721.10460 Azo nickel complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as azo nickel complex (PMN...

  18. 40 CFR 721.10460 - Azo nickel complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo nickel complex (generic). 721... Substances § 721.10460 Azo nickel complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as azo nickel complex (PMN...

  19. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  20. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  1. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  2. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  3. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  4. 40 CFR 721.8780 - Substituted pyridine azo substituted phenyl.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted pyridine azo substituted... Specific Chemical Substances § 721.8780 Substituted pyridine azo substituted phenyl. (a) Chemical substance... substituted pyridine azo substituted phenyl (PMNs P-96-767 and P-96-773) are subject to reporting under...

  5. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  6. 40 CFR 721.757 - Polyoxyalkylene substituted aromatic azo colorant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... azo colorant. 721.757 Section 721.757 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.757 Polyoxyalkylene substituted aromatic azo colorant. (a) Chemical... as polyoxyalkylene substituted aromatic azo colorant (PMN P-92-1131) is subject to reporting...

  7. Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates

    NASA Astrophysics Data System (ADS)

    Brochen, Stéphane; Lafossas, Matthieu; Robin, Ivan-Christophe; Ferret, Pierre; Gemain, Frédérique; Pernot, Julien; Feuillet, Guy

    2014-03-01

    ZnO epilayers usually exhibit high n-type residual doping which is one of the reasons behind the difficulties to dope this material p-type. In this work, we aimed at determining the nature of the involved impurities and their potential role as dopant in ZnO thin films grown by metalorganic vapor phase epitaxy (MOVPE) on sapphire and ZnO substrates. In both cases, secondary ion mass spectroscopy (SIMS) measurements give evidence for a strong diffusion of impurities from the substrate to the epilayer, especially for silicon and aluminum. In the case of samples grown on sapphire substrates, aluminum follows Fick's diffusion law on a wide growth temperature range (800-1000°C). Thus, the saturation solubility and the diffusion coefficient of aluminum in ZnO single crystals have been determined. Furthermore, the comparison between SIMS impurity and effective dopant concentrations determined by capacitance-voltage measurements highlights, on one hand a substitutional mechanism for aluminum diffusion, and on the other hand that silicon acts as a donor in ZnO and not as an amphoteric impurity. In addition, photoluminescence spectra exhibit excitonic recombinations at the same energy for aluminum and silicon, indicating that silicon behaves as an hydrogenic donor in ZnO. Based on these experimental observations, ZnO thin films with a controlled n-type doping in the 1016-1019cm-3 range have been carried out. These results show that MOVPE growth is fully compatible with the achievement of highly Al-doped n-type thin films, but also with the growth of materials with low residual doping, which is a crucial parameter to address ZnO p-type doping issues.

  8. Silicon passivation and tunneling contact formation by atomic layer deposited Al2O3/ZnO stacks

    NASA Astrophysics Data System (ADS)

    Garcia-Alonso, D.; Smit, S.; Bordihn, S.; Kessels, W. M. M.

    2013-08-01

    The passivation of Si by Al2O3/ZnO stacks, which can serve as passivated tunneling contacts or heterojunctions in silicon photovoltaics, was investigated. It was demonstrated that stacks with Al2O3 thicknesses >3 nm lead to lower surface recombination velocities (Seff,max < 4 cm s-1) on n- and p-type Si than single-layer Al2O3 films for a wide range of ZnO thicknesses and irrespective of Al-doping of the ZnO. Stacks with an Al2O3 thickness of 1-2 nm were found to combine reasonable surface passivation (Seff,max = 100-700 cm s-1) with sufficiently high tunneling current densities (10-300 mA cm-2 at 700 mV).

  9. Pulsed-laser deposition of inclined ZnO, of GaPO4 and of novel composite thin films

    NASA Astrophysics Data System (ADS)

    Pedarnig, J. D.; Peruzzi, M.; Vrejoiu, I.; Matei, D. G.; Dinescu, M.; Bäuerle, D.

    2005-07-01

    Pulsed-laser deposition of different novel thin film materials is reported. Pure ZnO, Al-doped and Li-doped ZnO thin films and double-layers with inclined crystal orientation and very strong texture were achieved. The inclined ZnO heterostructures consisted of pure and doped layers of strongly different electrical resistivity. Polycrystalline GaPO4 thin films were grown by F2-laser ablation of ceramic GaPO4. Layers of a novel composite material were produced from BaTiO3/polytetrafluoroethylene mixed targets. The composite films revealed a giant dielectric permittivity, ɛr’≤ 15000, and a strong dependence of permittivity on the thickness of the layers.

  10. 40 CFR 721.9577 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl] azo]-4...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... Substances § 721.9577 Chromate(3-), bis -3- azo]-4-hydroxy-2-naphthalene sulfonato (3-)]-,- azo]-4-hydroxy-7... significant new uses subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  11. 40 CFR 721.9577 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl] azo]-4...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... Substances § 721.9577 Chromate(3-), bis -3- azo]-4-hydroxy-2-naphthalene sulfonato (3-)]-,- azo]-4-hydroxy-7... significant new uses subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  12. 40 CFR 721.9577 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl] azo]-4...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... Substances § 721.9577 Chromate(3-), bis -3- azo]-4-hydroxy-2-naphthalene sulfonato (3-)]-,- azo]-4-hydroxy-7... significant new uses subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  13. 40 CFR 721.9577 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl] azo]-4...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... Substances § 721.9577 Chromate(3-), bis -3- azo]-4-hydroxy-2-naphthalene sulfonato (3-)]-,- azo]-4-hydroxy-7... significant new uses subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  14. 40 CFR 721.9577 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl] azo]-4...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... Substances § 721.9577 Chromate(3-), bis -3- azo]-4-hydroxy-2-naphthalene sulfonato (3-)]-,- azo]-4-hydroxy-7... significant new uses subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  15. Schottky barrier effect on the electrical properties of Fe3O4/ZnO and Fe3O4/Nb : SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Kiwon; Kim, D. H.; Dho, Joonghoe

    2011-09-01

    The current-voltage (I-V) characteristics of Fe3O4/Nb-doped SrTiO3(Nb : STO) and Fe3O4/ZnO junctions prepared by pulsed laser deposition were investigated as a function of temperature. The rectifying behaviour was more distinctive in Fe3O4/Nb : STO than in the Fe3O4/ZnO. Contrary to Fe3O4/Nb : STO, remarkably, the current flow in Fe3O4/ZnO was slightly larger for negative bias voltages than for positive bias voltages. The threshold voltage in Fe3O4/Nb : STO dramatically shifted to a higher voltage by decreasing the temperature, and hysteresis behaviour with a cyclic voltage sweep appeared below 120 K. Upon cooling, the rectifying behaviour in Fe3O4/ZnO gradually disappeared within the measurement range. The observed difference between Fe3O4/Nb : STO and Fe3O4/ZnO could be explained by the shape and height of the Schottky barrier which was determined by the relative magnitude of the work functions of the two contact materials. The formation of the Schottky barrier presumably resulted from an upward shift of the interface band in Fe3O4/Nb : STO, while a little downward shift of the interface band occurred in Fe3O4/ZnO. In addition, Al-doping into ZnO induced a complete disappearance of the Schottky barrier in the Fe3O4/Al-doped ZnO junction.

  16. Hopping conduction range of heavily Al-doped 4H-SiC thick epilayers grown by CVD

    NASA Astrophysics Data System (ADS)

    Ji, Shiyang; Eto, Kazuma; Yoshida, Sadafumi; Kojima, Kazutoshi; Ishida, Yuuki; Saito, Shingo; Tsuchida, Hidekazu; Okumura, Hajime

    2015-12-01

    To outline the hopping conduction range, the electrical characteristics of CVD-grown heavily Al-doped 4H-SiC thick epilayers (2.0 × 1019-4.0 × 1020 cm-3) were investigated in a wide temperature regime (20-900 K). It is found that, below 100 K, hopping conduction dominates the carrier transport for all epilayers, and the corresponding hopping conduction activation energy shows a maximum of ˜30 meV at around 1.1 × 1020 cm-3. With increasing doping level, the temperature dependence of resistivity evolves and finally obeys the ˜1/T1/4 law in the entire temperature regime, which gives direct evidence of variable-range hopping conduction.

  17. Al-doped MgZnO/p-AlGaN heterojunction and their application in ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Hsueh, Kuang-Po; Cheng, Po-Wei; Lin, Wen-Yen; Chiu, Hsien-Chin; Sheu, Jinn-Kong; Yeh, Yu-Hsiang

    2015-01-01

    In this study, n-type Al-doped MgxZn1-xO (AMZO) films were deposited onto p-Al0.08Ga0.92N by using radiofrequency magnetron sputtering followed by annealing at 800°C in nitrogen ambient for 60 s. The film was highly transparent and had transmittances exceeding 95% in the visible region and a sharp absorption edge visible in the ultraviolet region. A high leakage current was obtained in the current-voltage (I-V) characteristics of the GMZO/AlGaN n-p junction diode. The AMZO/AlGaN photodetector based on the AMZO film exhibited a dark current of 1.56 μA at Vbias = -3V. The peak responsivity of the photodetector was approximately 200 nm and a cutoff wavelength was observed at approximately 250 nm.

  18. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  19. Ultrasonic spray pyrolysis growth of ZnO and ZnO:Al nanostructured films: Application to photocatalysis

    SciTech Connect

    Kenanakis, G.; Katsarakis, N.

    2014-12-15

    Highlights: • Al–ZnO thin films and nanostructures were obtained by ultrasonic spray pyrolysis. • The texture and morphology of the samples depend on the deposition parameters. • The photocatalytic degradation of stearic acid was studied upon UV-A irradiation. - Abstract: Pure and Al-doped ZnO (Al = 1, 3, 5%) nanostructured thin films were grown at 400 °C on glass substrates by ultrasonic spray pyrolysis, a simple, environmental-friendly and inexpensive method, using aqueous solutions as precursors. The structural and morphological characteristics of the samples depend drastically on deposition parameters; ZnO nanostructured films, nanopetals and nanorods were systematically obtained by simply varying the precursor solution and/or the spraying time. Transmittance measurements have shown that all samples are transparent in the visible wavelength region. Finally, the photocatalytic properties of the samples were investigated against the degradation of stearic acid under UV-A light illumination (365 nm); both pure and Al-doped ZnO nanostructured thin films show good photocatalytic activity regarding the degradation of stearic acid, due to their good crystallinity and large surface area.

  20. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  1. Enzymatic reduction of azo and indigoid compounds.

    PubMed

    Pricelius, S; Held, C; Murkovic, M; Bozic, M; Kokol, V; Cavaco-Paulo, A; Guebitz, G M

    2007-11-01

    A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40 degrees C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N approximately 1 approximately ,N approximately 1 approximately -dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H(2)O(2)) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy. PMID:17891390

  2. Growth and physiology of Clostridium perfringens wild-type and ΔazoC knockout: an azo dye exposure study.

    PubMed

    Morrison, Jessica M; John, Gilbert H

    2016-02-01

    Clostridium perfringens, a strictly anaerobic micro-organism and inhabitant of the human intestine, has been shown to produce the azoreductase enzyme AzoC, an NAD(P)H-dependent flavin oxidoreductase. This enzyme reduces azo dyes to aromatic amines, which are carcinogenic in nature. A significant amount of work has been completed that focuses on the activity of this enzyme; however, few studies have been completed that focus on the physiology of azo dye reduction. Dye reduction studies coupled with C. perfringens growth studies in the presence of ten different azo dyes and in media of varying complexities were completed to compare the growth rates and dye-reducing activity of C. perfringens WT cells, a C. perfringens ΔazoC knockout, and Bifidobacterium infantis, a non-azoreductase-producing control bacterium. The presence of azo dyes significantly increased the generation time of C. perfringens in rich medium, an effect that was not seen in minimal medium. In addition, azo dye reduction studies with the ΔazoC knockout suggested the presence of additional functional azoreductases in this medically important bacterium. Overall, this study addresses a major gap in the literature by providing the first look, to our knowledge, at the complex physiology of C. perfringens upon azo dye exposure and the effect that both azo dyes and the azoreductase enzyme have on growth. PMID:26566621

  3. Significant enhancement of thermoelectric properties and metallization of Al-doped Mg{sub 2}Si under pressure

    SciTech Connect

    Morozova, Natalia V.; Korobeinikov, Igor V.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com; Takarabe, Ken-ichi; Mori, Yoshihisa; Nakamura, Shigeyuki

    2014-06-07

    We report results of investigations of electronic transport properties and lattice dynamics of Al-doped magnesium silicide (Mg{sub 2}Si) thermoelectrics at ambient and high pressures to and beyond 15 GPa. High-quality samples of Mg{sub 2}Si doped with 1 at. % of Al were prepared by spark plasma sintering technique. The samples were extensively examined at ambient pressure conditions by X-ray diffraction studies, Raman spectroscopy, electrical resistivity, magnetoresistance, Hall effect, thermoelectric power (Seebeck effect), and thermal conductivity. A Kondo-like feature in the electrical resistivity curves at low temperatures indicates a possible magnetism in the samples. The absolute values of the thermopower and electrical resistivity, and Raman spectra intensity of Mg{sub 2}Si:Al dramatically diminished upon room-temperature compression. The calculated thermoelectric power factor of Mg{sub 2}Si:Al raised with pressure to 2–3 GPa peaking in the maximum the values as high as about 8 × 10{sup −3} W/(K{sup 2}m) and then gradually decreased with further compression. Raman spectroscopy studies indicated the crossovers near ∼5–7 and ∼11–12 GPa that are likely related to phase transitions. The data gathered suggest that Mg{sub 2}Si:Al is metallized under moderate pressures between ∼5 and 12 GPa.

  4. Electron-mediated ferromagnetic behavior in CoO/ZnO multilayers.

    PubMed

    Lee, H-J; Bordel, C; Karel, J; Cooke, David W; Charilaou, M; Hellman, F

    2013-02-22

    CoO/Al-doped ZnO (AZO) multilayers exhibit ferromagnetism up to ~300 K. The magnetic behavior oscillates with odd vs even number of Co layers in the insulating antiferromagnetic CoO and (separately) with the thickness of the AZO layers and vanishes if AZO is replaced by intrinsic ZnO. Magnetization is due to uncompensated (111) ferromagnetic planes of insulating CoO for odd numbers of atomic planes per layer that are coupled together via RKKY exchange mediated by electron carriers in the nonmagnetic AZO layers. The period of the oscillation with AZO thickness qualitatively matches the Fermi wave vector calculated from the carrier concentration measured by ordinary Hall effect. Magnetic polarization of the AZO carriers is confirmed via an anomalous Hall effect that is proportional to the magnetization. PMID:23473197

  5. Degradation of azo dyes by environmental microorganisms and helminths

    SciTech Connect

    Kingthom Chung; Stevens, S.E. Jr. . Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  6. The anisotropic nanomovement of azo-polymers.

    PubMed

    Ishitobi, H; Tanabe, M; Sekkat, Z; Kawata, S

    2007-01-22

    Nanoscale polymer movement is induced by a tightly focused laser beam in an azo-polymer film just at the diffraction limit of light. The deformation pattern that is produced by photoisomerization of the azo dye is strongly dependent on the incident laser polarization and the longitudinal focus position of the laser beam along the optical axis. The anisotropic photo-fluidity of the polymer film and the optical gradient force played important roles in the light induced polymer movement. We also explored the limits of the size of the photo-induced deformation, and we found that the deformation depends on the laser intensity and the exposure time. The smallest deformation size achieved was 200 nm in full width of half maximum; a value which is nearly equal to the size of the diffraction limited laser spot. PMID:19532288

  7. Acceptor Type Vacancy Complexes In As-Grown ZnO

    SciTech Connect

    Zubiaga, A.; Tuomisto, F.; Zuniga-Perez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap ({approx}3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, Li{sub Zn} and Na{sub Zn} acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  8. The feasibility of Sn, In, or Al doped ZnSb thin film as candidates for phase change material

    NASA Astrophysics Data System (ADS)

    Chen, Yimin; Shen, Xiang; Wang, Guoxiang; Xu, Tiefeng; Wang, Rongping; Dai, Shixun; Nie, Qiuhua

    2016-07-01

    The potentials of Sn, In, or Al doped ZnSb thin film as candidates for phase change materials have been studied in this paper. It was found that the Zn-Sb bonds were broken by the addition of the dopants and homopolar Zn-Zn bonds and other heteropolar bonds, such as Sn-Sb, In-Sb, and Al-Sb, were subsequently formed. The existence of homopolar Sn-Sn and In-In bonds in Zn50Sb36Sn14 and Zn41Sb36In23 films, but no any Al-Al bonds in Zn35Sb30Al35 film, was confirmed. All these three amorphous films crystallize with the appearance of crystalline rhombohedral Sb phase, and Zn35Sb30Al35 film even exhibits a second crystallization process where the crystalline AlSb phase is separated out. The Zn35Sb30Al35 film exhibits a reversible phase change behavior with a larger Ea (˜4.7 eV), higher Tc (˜245 °C), better 10-yr data retention (˜182 °C), less incubation time (20 ns at 70 mW), and faster complete crystallization speed (45 ns at 70 mW). Moreover, Zn35Sb30Al35 film shows the smaller root-mean-square (1.654 nm) and less change of the thickness between amorphous and crystalline state (7.5%), which are in favor of improving the reliability of phase change memory.

  9. An Interdisciplinary Experiment: Azo-Dye Metabolism by "Staphylococcus Aureus"

    ERIC Educational Resources Information Center

    Brocklesby, Kayleigh; Smith, Robert; Sharp, Duncan

    2012-01-01

    An interdisciplinary and engaging practical is detailed which offers great versatility in the study of a qualitative and quantitative metabolism of azo-dyes by "Staphylococcus aureus". This practical has broad scope for adaptation in the number and depth of variables to allow a focused practical experiment or small research project. Azo-dyes are…

  10. Modification of azo dyes by lactic acid bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of microorganisms capable of utilizing azo dyes have been an area of significant interest due to their role in the treatment of waste water derived from the textile industry. The ability of L. casei LA1133 and L. paracasei LA0471 to modify the azo dye tartrazine was recently document...

  11. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal...

  12. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  13. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  14. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new...

  15. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new...

  16. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new...

  17. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  18. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.9717 - Azo monochloro triazine reactive dye.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Azo monochloro triazine reactive dye... Substances § 721.9717 Azo monochloro triazine reactive dye. (a) Chemical substance and significant new uses... reactive dye (PMN P-96-238) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.4594 - Substituted azo metal complex dye.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses... dye (PMN P-94-499) is subject to reporting under this section for the significant new uses...

  1. Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Dai, Xinyi; Zhou, Aijun; Xu, Jin; Yang, Bin; Wang, Liping; Li, Jingze

    2015-12-01

    A conductive Al2O3-doped ZnO (AZO) layer is coated directly on the LiCoO2 (LCO) porous composite electrode by magnetron sputtering of an AZO target, offering more efficient electron transfer and a stabilized interface layer. Up to 90% of the initial capacity of the AZO-coated electrode can be retained (173 mAh g-1) after 150 cycles between 3.0 and 4.5 V vs. Li/Li+. Meanwhile, the rate performance is remarkably improved showing a reversible capacity of 112 mAh g-1 at 12 C. The formation of amorphous solid electrolyte interface (SEI) observed on the uncoated LCO electrode is effectively impeded on the AZO-coated one. Acting as an intermediate barrier, the AZO layer can prevent chemical dissolution of the active materials by forming a thin passivation layer on the electrode surface containing some metal fluorides which are chemically inactive and ionically conductive. The positive role of the AZO coating is still effective under a more severe condition tested with an upper cut-off potential of 4.7 V.

  2. Photofabrication of surface relief gratings using post functionalized azo polymers

    SciTech Connect

    Tripathy, S.K.; Kumar, J.; Kim, D.Y.; Jiang, X.; Wang, X.; Li, L.; Sukwattanasinitt, M.; Sandman, D.J.

    1998-07-01

    A series of azobenzene funtionalized polymers has been synthesized by post polymerization azo coupling reaction. Photo-fabrication of surface relief gratings were studied on the polymer films. Epoxy based azo polymers were prepared by post azo coupling reaction to form polymers containing donor-acceptor type azo chromophores. The azo chromophores were designed to contain ionizable groups to impart self-assembling and photoprocessing capabilities to the polymers. The polymers containing 4-(4-(carboxylic acid)phenylazo)aniline chromophores can be directly photofabricated to form surface relief gratings with large surface modulations. Charge interactions had a strong influence on the details of the writing process. A new soluble polydiacetylene, post-functionalized with azobenzene groups was also prepared. Large amplitude surface gratings could be fabricated on this polydiacetylene film as well.

  3. Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties

    SciTech Connect

    Wu, Changle; Shen, Li; Yu, Huaguang; Huang, Qingli; Zhang, Yong Cai

    2011-07-15

    Graphical abstract: Sn-doped ZnO nanorods have been fabricated by a hydrothermal route. Photocatalytic activity of the Sn-doped ZnO samples increases gradually with an increase of the Sn content. Highlights: {yields} Sn-doped ZnO nanorods were fabricated by a hydrothermal route. {yields} Solid-state NMR result confirms Sn{sup 4+} was incorporated into the lattice of ZnO. {yields} The visible luminescence intensity increased with increase in Sn concentration. {yields} Photocatalytic activity of Sn-doped ZnO increases with increasing Sn content. -- Abstract: Sn-doped ZnO nanorods were fabricated by a hydrothermal route, and characterized by X-ray diffraction, field emission scanning electron microscope, UV-vis spectroscopy, Raman spectra, solid-state nuclear magnetic resonance (NMR) spectra, and room temperature photoluminescence spectroscopy. Solid-state NMR result confirms that Sn{sup 4+} was successfully incorporated into the crystal lattice of ZnO. Room temperature photoluminescence showed that all the as-synthesized products exhibited a weak UV emission (380 nm) and a strong visible emission (540 nm), but the intensities of the latter emission increased with increase in Sn concentration. The improvement of visible emission at 540 nm in the Sn-doped ZnO samples was suggested to be a result of the lattice defects increased by doping of Sn in zinc oxide. In addition, the photocatalytic studies indicated that Sn-doped ZnO nanorods are a kind of promising photocatalyst in remediation of water polluted by some chemically stable azo dyes.

  4. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    SciTech Connect

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the deposited AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.

  5. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGESBeta

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  6. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). 721.10108 Section 721... Naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). (a... generically as naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted...

  7. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). 721.10108 Section 721... Naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). (a... generically as naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted...

  8. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). 721.10108 Section 721... Naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). (a... generically as naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted...

  9. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). 721.10108 Section 721... Naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). (a... generically as naphthalenedisulfonic acid, hydrozy- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted...

  10. Universal dark quencher based on "clicked" spectrally distinct azo dyes.

    PubMed

    Chevalier, Arnaud; Hardouin, Julie; Renard, Pierre-Yves; Romieu, Anthony

    2013-12-01

    The first synthesis of an heterotrifunctional molecular scaffold derived from the popular DABCYL azo dye quencher has been achieved. The sequential derviatization of this trivalent azobenzene derivative with two other nonfluorescent azo dyes (Black Hole Quencher BHQ-1 and BHQ-3) and through effective reactions from the "bioconjugation chemistry" repertoire has led to an universal dark quencher (UDQ). This "clicked" poly azo dye is able to turn off an array of fluorophores covering the UV/NIR (300-750 nm) spectral range. PMID:24215300

  11. Multiwavelength spectrophotometric determination of acidity constants of some azo dyes.

    PubMed

    Shamsipur, Mojtaba; Maddah, Bozorgmehr; Hemmateenejad, Bahram; Rouhani, Shohreh; Haghbeen, Kamaladin; Alizadeh, Kamal

    2008-06-01

    A multiwavelength spectrophotometric titration method was applied to study the acidity constants of some azo dyes in water. The UV-vis absorption spectra of azo dye solutions were recorded in the course of their pH-metric titration with a standard base solution. The protolytic equilibrium constants, spectral profiles, concentration diagrams and also the number of components have been calculated. The quantitative effects of the substituents on the acidity of the studied azo dyes were investigated by the linear free energy relationship (LFER) using Hammet sigma constant (sigma) and field and resonance effects of Kamlet and Taft (f and Re, respectively). PMID:17719268

  12. Multiwavelength spectrophotometric determination of acidity constants of some azo dyes

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Maddah, Bozorgmehr; Hemmateenejad, Bahram; Rouhani, Shohreh; Haghbeen, Kamaladin; Alizadeh, Kamal

    2008-06-01

    A multiwavelength spectrophotometric titration method was applied to study the acidity constants of some azo dyes in water. The UV-vis absorption spectra of azo dye solutions were recorded in the course of their pH-metric titration with a standard base solution. The protolytic equilibrium constants, spectral profiles, concentration diagrams and also the number of components have been calculated. The quantitative effects of the substituents on the acidity of the studied azo dyes were investigated by the linear free energy relationship (LFER) using Hammet sigma constant ( σ) and field and resonance effects of Kamlet and Taft ( f and ℜ, respectively).

  13. Enhanced anaerobic fermentation with azo dye as electron acceptor: simultaneous acceleration of organics decomposition and azo decolorization.

    PubMed

    Li, Yang; Zhang, Yaobin; Quan, Xie; Zhang, Jingxin; Chen, Shuo; Afzal, Shahzad

    2014-10-01

    Accumulation of hydrogen during anaerobic processes usually results in low decomposition of volatile organic acids (VFAs). On the other hand, hydrogen is a good electron donor for dye reduction, which would help the acetogenic conversion in keeping low hydrogen concentration. The main objective of the study was to accelerate VFA composition through using azo dye as electron acceptor. The results indicated that the azo dye serving as an electron acceptor could avoid H2 accumulation and accelerate anaerobic digestion of VFAs. After adding the azo dye, propionate decreased from 2400.0 to 689.5mg/L and acetate production increased from 180.0 to 519.5mg/L. It meant that the conversion of propionate into acetate was enhanced. Fluorescence in situ hybridization analysis showed that the abundance of propionate-utilizing acetogens with the presence of azo dye was greater than that in a reference without azo dye. The experiments via using glucose as the substrate further demonstrated that the VFA decomposition and the chemical oxygen demand (COD) removal increased by 319.7mg/L and 23.3% respectively after adding the azo dye. Therefore, adding moderate azo dye might be a way to recover anaerobic system from deterioration due to the accumulation of H2 or VFAs. PMID:25288539

  14. Oxide Solar Cells Fabricated Using Zinc Oxide and Plasma-Oxidized Cuprous Oxide

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Ming; Wu, Ya-Ting; Jou, Shyankay

    2012-12-01

    Oxide heterojunction solar cells composed of an n-type Al-doped ZnO (AZO) thin film on the surfaces of p-type Cu2O films were fabricated. The Cu2O films of about 0.34 to 1.67 µm thickness were grown by partial oxidation of a Cu sheet using microwave plasma. The AZO film of 400 nm thickness was deposited by magnetron sputtering. Energy conversion efficiencies of 0.12 to 0.30% were obtained in AZO/Cu2O cells under AM1.5 solar illumination.

  15. Synthesis and magnetic properties of Al doped Zn0.995Mn0.005O powers

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yu, Zhou; Long, Xue; Lin, Pengtin; Cheng, Xingwang; Liu, Ying; Cao, Chuanbao; Zhang, Hongwei; Wu, Guangheng; Yu, Richeng

    2009-06-01

    Chemical method was employed to synthesize Mn and Al codoped ZnO, namely, Zn0.995-xMn0.005AlxO with the nominal composition of x =0, 0.005, and 0.02. Structural, optical, and magnetic properties of the produced samples were studied. The results indicated that introduce Al as additional dopants induces in an enhancement of the ferromagnetism in Zn0.995Mn0.005O. The enhanced ferromagnetism (FM) in (Mn,Al) codoped sample can be understood in view of that introducing of Al could promote spinodal decomposition and lead to Mn rich regions. The Mn rich regions could be responsibility for the observed enhancement of FM at room temperature.

  16. REMOVAL OF AZO DYES BY THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The Water Engineering Research Laboratory, Office of Research & Development, U.S. Environmental Protection Agency (EPA) is conducting research designed to develop techniques for predicting the fate of azo dyes in typical wastewater treatment systems which are treating wastewater ...

  17. Thermoluminescence of Ge- and Al-Doped SiO2 Optical Fibers Subjected to 0.2-4.0 Gy External Photon Radiotherapeutic Dose

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Wagiran, H.; Yaakob, N. H.

    2013-09-01

    In this work, we studied the thermoluminescence response of Ge- and Al-doped optical fibers, its linearity, energy dependence, and sensitivity. The Ge-doped optical fibers demonstrate useful TL properties and represent an excellent candidate for use in TL dosimetry of ionizing radiation. The TL response increases monotonically over a wide photon dose range, from 0.2 Gy to 4.0 Gy. The TL results for these fibers have been compared with similar TL data for phosphor TLD-100. Commercially available Al- and Ge-doped optical fibers have both been found to yield a linear dose-TL signal relationship, although the Al-doped fiber provides only 5 % of the sensitivity of the Ge-doped fibers. The TL characteristics of Ge-doped optical fiber, plus its small size (125 μm diameter), high flexibility, ease of handling, and low cost compared with other TL materials, make this commercial optical fiber a very promising TL material for use in medicine, industry, reactor operation, and a variety of other areas.

  18. Photoinduced mass transport in azo compounds

    NASA Astrophysics Data System (ADS)

    Klismeta, K.; Teteris, J.; Aleksejeva, J.

    2013-12-01

    The photoinduced changes of optical properties in azobenzene containing compound thin films were studied under influence of polarized and non-polarized 532 nm laser light. Under influence of light azo compounds experience trans-cis isomerisation process, that can be observed in the absorbance spectrum of the sample. If the light is linearly polarized, molecules align perpendicularly to the electric field vector and as a result photoinduced dichroism and birefringence is obtained. If a known lateral polarization modulation of the light beam is present, mass transport of the azobenzene containing compound occurs. By measuring the surface relief with a profilometer the direction of mass transport can be determined. The studies of this work show that direct holographic recording of surface relief gratings can be used in optoelectronics, telecommunications and data storage.

  19. The impact of oxygen incorporation during intrinsic ZnO sputtering on the performance of Cu(In,Ga)Se{sub 2} thin film solar cells

    SciTech Connect

    Lee, Kkotnim; Ok, Eun-A; Park, Jong-Keuk; Kim, Won Mok; Baik, Young-Joon; Jeong, Jeung-hyun; Kim, Donghwan

    2014-08-25

    We investigated the impact of incorporating 2% oxygen during intrinsic ZnO sputtering on the efficiency of Cu(In,Ga)Se{sub 2} solar cells. The added oxygen not only reduced the optical absorption loss of the Al-doped ZnO overlaying layer but also improved the electronic properties of the underlying CdS/Cu(In,Ga)Se{sub 2} by increasing carrier density, lowering defect level, and increasing diffusion length, eventually enhancing J{sub SC}, V{sub OC}, and fill factor. It was found that the Na doping concentration was significantly increased around the CdS/Cu(In,Ga)Se{sub 2} junction due to the plasma-activated oxygen. The improved electronic properties are better explained by the increased Na concentration than simply the oxygen-related defect passivation.

  20. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  1. Photobleaching effect in azo-dye containing epoxy resin films: the potentiality of carbon nanotubes as azo-dye dispensers

    NASA Astrophysics Data System (ADS)

    Díaz Costanzo, Guadalupe; Goyanes, Silvia; Ledesma, Silvia

    2015-04-01

    Azo-dye molecules may suffer from bleaching under certain illumination conditions. When this photoinduced process occurs, it generates an irreversible effect that is characterized by the loss of absorption of the dye molecule. Moreover, the well-known isomerization of azodye molecules does not occur anymore. In this work it is shown how the addition of a small amount of multi-walled carbon nanotubes (MWCNTs) helps to decrease the bleaching effect in a photosensitive guest-host azo-polymer film. Two different systems were fabricated using an epoxy resin as polymer matrix. An azo-dye, Disperse Orange 3, was used as photosensitive material in both systems and MWCNTs were added into one of them. The optical response of the polymeric systems was studied considering the degree of photoinduced birefringence. Photobleaching of the azo-dye was observed in all cases however, the effect is lower for the composite material containing 0.2 wt % MWCNTs. The weak interaction between MWCNTs and dye molecules is less favorable when the material is heated. The optical behavior of the heated composite material suggests that carbon nanotubes can be potentially used as azo dye dispensers. The results are interpreted in terms of the non-covalent interaction between azo-dye molecules and MWCNTs.

  2. Ga and Al doped zinc oxide thin films for transparent conducting oxide applications: Structure-property correlations

    NASA Astrophysics Data System (ADS)

    Temizer, Namik K.; Nori, Sudhakar; Narayan, Jagdish

    2014-01-01

    We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110 μΩ-cm) values. The films grown in an ambient oxygen partial pressure (PO2) of 5 × 10-2 Torr and at growth temperatures from room temperature to 600 °C show semiconducting behavior, whereas samples grown at a PO2 of 1 × 10-3 Torr show metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The measured optical and transport properties were found to be a strong function of growth conditions implying that the drastic changes are brought about essentially by native point defects. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical, and magnetic properties and such changes in physical properties are controlled predominantly by the defect content.

  3. ZnO thin films and nanostructures for emerging optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Teherani, F. H.; Sandana, V. E.; Razeghi, M.

    2010-02-01

    ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO.

  4. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films. PMID:22869517

  5. Electrochemical performance of Al-doped LiMn 2O 4 prepared by different methods in solid-state reaction

    NASA Astrophysics Data System (ADS)

    Kakuda, Teruaki; Uematsu, Kazuyoshi; Toda, Kenji; Sato, Mineo

    Al-doped LiMn 2O 4 cathode materials synthesized by a newly developed wet-milling method and a dry process method using a conventional solid-state reaction were evaluated physicochemically and electrochemically. In the wet-milling method, a precursor was made from the raw materials atomized by a wet milling. A good cyclic performance was obtained for the LiMn 2O 4 samples prepared by the wet-milling method, achieved up to 99% of retention of capacity at 50 °C at the 30th cycle. The precursor obtained by the wet-milling method was well homogenous and highly reactive due to their finely ground particles, giving good crystallinity to LiMn 2O 4 products.

  6. Influence of the gas flow of Argon and the distance between substrate and plasma on properties of Al-doped zinc oxide films

    NASA Astrophysics Data System (ADS)

    Jiang, Y. J.; Zhang, D. X.; Cai, H. K.; Tao, K.; Xue, Y.; Sui, Y. P.; Wang, L. S.; Zhao, J. F.; Wang, J.

    2009-03-01

    Al-doped ZnO(ZAO) films were deposited by DC magnetron sputtering using facing zinc oxide targets at room temperature and in argon atmosphere. The effects of the gas flow of Argon and the distance between substrate and plasma on the properties of the ZAO thin films were characterized by several techniques. By optimizing the craft of preparation, the electrical resistivity as low as 3.3×10-4 Ω·cm and the optical transmittance over 80% in the visible range were obtained for these thin ZAO films. Therefore, the ZAO thin films were suitable for the window layers of n-i-p thin film solar cells or transparent conductive films.

  7. Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Okuda, Takafumi; Miyazawa, Tetsuya; Tsuchida, Hidekazu; Kimoto, Tsunenobu; Suda, Jun

    2014-08-01

    We investigated the enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epilayers (NA ≃ 2 × 1014 cm-3) by postgrowth processing. A carrier lifetime of 2.8 µs in an as-grown epilayer is increased to 5.1 µs by carbon vacancy elimination, i.e., thermal oxidation at 1400 °C for 48 h. It reaches 10 µs by subsequent hydrogen annealing at 1000 °C for 10 min. The carrier lifetime in the as-grown epilayer is also increased to 4.0 µs by only hydrogen annealing. These results suggest that, in addition to carbon vacancy, there is another lifetime killer in p-type SiC, which cannot be eliminated by thermal oxidation but can be passivated by hydrogen annealing.

  8. Improvement of Carrier Lifetimes in Highly Al-Doped p-Type 4H-SiC Epitaxial Layers by Hydrogen Passivation

    NASA Astrophysics Data System (ADS)

    Okuda, Takafumi; Kimoto, Tsunenobu; Suda, Jun

    2013-12-01

    Carrier lifetimes in a highly Al-doped p-type epilayer (NA = 1×1018 cm-3) are investigated by differential microwave photoconductance decay (µ-PCD) measurements. A carrier lifetime of 310 ns in the as-grown p-type epilayer decreases to 90 ns by thermal treatment in Ar, O2, or N2 atmospheres (>700 °C), and recovers to 300 ns by H2 annealing (>750 °C). Hydrogen is detected at a concentration of (2-3)×1015 cm-3 in the H2-annealed epilayer. These results suggest that a lifetime killer exists in the p-type epilayer, limiting the carrier lifetime to 90 ns and is passivated by hydrogen annealing, resulting in the improved carrier lifetime of 300 ns.

  9. Highly efficient Yb-free Er-La-Al doped ultra-low NA large mode area single-trench fiber laser.

    PubMed

    Jain, D; Alam, S; Jung, Y; Barua, P; Velazquez, M N; Sahu, J K

    2015-11-01

    We demonstrate a 60µm core diameter Yb free Er-La-Al doped single-trench fiber having a 0.038 ultra-low-NA, fabricated using conventional MCVD process in conjunction with solution doping technique. Numerical simulations predict an effective single mode operation with effective area varying from 1,820µm(2) to 1,960µm(2) (taking bend-induced modal distortion into account) for different thicknesses of trenches and resonant rings at a constant bend radius of 25cm. Moreover, all solid structure favors easy cleaving and splicing. Experimental measurements demonstrate a robust effective single mode operation. Furthermore, with a 4%-4% laser cavity, this fiber shows a record efficiency of 46% with respect to the absorbed pump power. PMID:26561099

  10. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is...

  11. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is...

  12. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is...

  13. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is...

  14. 40 CFR 721.2097 - Azo chromium complex dyestuff preparation (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Azo chromium complex dyestuff... New Uses for Specific Chemical Substances § 721.2097 Azo chromium complex dyestuff preparation... substance identified generically as an azo chromium complex dyestuff preparation (PMN P-95-240) is...

  15. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under...

  16. 40 CFR 721.10633 - Aromatic sulfonic acid amino azo dye salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic sulfonic acid amino azo dye... Specific Chemical Substances § 721.10633 Aromatic sulfonic acid amino azo dye salts (generic). (a) Chemical... as aromatic sulfonic acid amino azo dye salts (PMN P-12-276) is subject to reporting under...

  17. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  18. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  19. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  20. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  1. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  2. 40 CFR 721.10399 - Benzoic acid azo-substituted pyridine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid azo-substituted pyridine... Specific Chemical Substances § 721.10399 Benzoic acid azo-substituted pyridine (generic). (a) Chemical... as benzoic acid azo-substituted pyridine (PMN P-10-501) is subject to reporting under this...

  3. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  4. 40 CFR 721.10399 - Benzoic acid azo-substituted pyridine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid azo-substituted pyridine... Specific Chemical Substances § 721.10399 Benzoic acid azo-substituted pyridine (generic). (a) Chemical... as benzoic acid azo-substituted pyridine (PMN P-10-501) is subject to reporting under this...

  5. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... as substituted phenyl azo substituted phenyl esters (PMNs P-95-655, P-95-782 and P-95-871)...

  6. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted phenyl azo substituted... Significant New Uses for Specific Chemical Substances § 721.3063 Substituted phenyl azo substituted phenyl... chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  7. 40 CFR 721.10399 - Benzoic acid azo-substituted pyridine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid azo-substituted pyridine... Specific Chemical Substances § 721.10399 Benzoic acid azo-substituted pyridine (generic). (a) Chemical... as benzoic acid azo-substituted pyridine (PMN P-10-501) is subject to reporting under this...

  8. Detection of azo dyes and aromatic amines in women undergarment.

    PubMed

    Nguyen, Thao; Saleh, Mahmoud A

    2016-07-28

    Women are exposed to several chemical additives including azo dyes that exist in textile materials, which are a potential health hazard for consumers. Our objective was to analyze suspected carcinogenic azo dyes and their degradation aromatic amines in women underwear panties using a fast and simple method for quantification. Here, we evaluated 120 different samples of women underwear for their potential release of aromatic amines to the skin. Seventy-four samples yielded low level mixtures of aromatic amines; however eighteen samples were found to produce greater than 200 mg/kg (ppm) of aromatic amines. Azo dyes in these 18 samples were extracted from the fabrics and analyzed by reverse phase thin layer chromatography in tandem with atmospheric pressure chemical ionization mass spectrometry. Eleven azo dyes were identified based on their mass spectral data and the chemical structure of the aromatic amine produced from these samples. We demonstrate that planar chromatography and mass spectrometry can be really helpful in confirming the identity of the azo dyes, offering highly relevant molecular information of the responsible compounds in the fabrics. With the growing concern about the consumer goods, analysis of aromatic amines in garments has become a highly important issue. PMID:27149414

  9. Biological waste-water treatment of azo dyes

    SciTech Connect

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A.

    1988-05-01

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances evaluates existing chemicals under Section 4 of the Toxic Substances Control Act (TSCA) and Premanufacture Notification (PMN) submissions under Section 5 of TSCA. Azo dyes constitute a significant portion of these PMN submissions and specific azo dyes have recently been added to the priority list for considerations in the development of test rules under Section 4. Azo dyes are of concern because some of the dyes, dye precurors, and/or their degradation products such as aromatic amines (which are also dye precurors) have been shown to be, or are suspected to be, carcinogenic. The fate of azo dyes in biological waste-water treatment systems was studied to aid in the review of PMN submissions and to assist in the possible development of test rules. Results from extensive pilot-scale activated-sludge process testing for 18 azo dyes are presented. Results from fate studies of C.I. Disperse Blue 79 in aerobic and anaerobic waste-water treatment will also be presented.

  10. Sol-gel synthesis of ZnO transparent conductive films: The role of pH

    NASA Astrophysics Data System (ADS)

    Addonizio, Maria Luisa; Aronne, Antonio; Daliento, Santolo; Tari, Orlando; Fanelli, Esther; Pernice, Pasquale

    2014-06-01

    The sol-gel synthesis of undoped and B- or Al-doped ZnO thin films were critically examined with particular reference to the influence of the pH of the reaction medium on some of their specific characteristics, such as thickness, morphology, doping level and optical properties, in view of their application in the photovoltaic field. Using triethanolamine (TEA) as chelating agent, a range of basic pH from 7.66 to 8.76 was explored starting from a very concentrated zinc acetate dehydrate (ZAD) solution in ethanol, [Zn2+] = 1.0 M, and keeping the ZAD/TEA = 1. A more basic environment gives more porous films whose thickness and crystallinity are higher than those achieved at lower pH. It was found that the morphology, as well as the sheet resistance (Rs) of films, depends on both pH and doping. Increasing the pH the Rs decreases for both undoped and doped films. At a certain pH undoped films exhibit a granular microstructure and lower Rs than B- or Al-doped films which exhibit a finer texture, characterized by a lower porosity. Optical properties strongly depend on the pH as well. Increasing the pH, a noticeable blue shift effect was observed, that was attributed mainly to structural changes and to a lesser extent to the Burnstein-Moss effect.

  11. Optical modeling of plasma-deposited ZnO films: Electron scattering at different length scales

    SciTech Connect

    Knoops, Harm C. M. Loo, Bas W. H. van de; Smit, Sjoerd; Ponomarev, Mikhail V.; Weber, Jan-Willem; Sharma, Kashish; Kessels, Wilhelmus M. M.; Creatore, Mariadriana

    2015-03-15

    In this work, an optical modeling study on electron scattering mechanisms in plasma-deposited ZnO layers is presented. Because various applications of ZnO films pose a limit on the electron carrier density due to its effect on the film transmittance, higher electron mobility values are generally preferred instead. Hence, insights into the electron scattering contributions affecting the carrier mobility are required. In optical models, the Drude oscillator is adopted to represent the free-electron contribution and the obtained optical mobility can be then correlated with the macroscopic material properties. However, the influence of scattering phenomena on the optical mobility depends on the considered range of photon energy. For example, the grain-boundary scattering is generally not probed by means of optical measurements and the ionized-impurity scattering contribution decreases toward higher photon energies. To understand this frequency dependence and quantify contributions from different scattering phenomena to the mobility, several case studies were analyzed in this work by means of spectroscopic ellipsometry and Fourier transform infrared (IR) spectroscopy. The obtained electrical parameters were compared to the results inferred by Hall measurements. For intrinsic ZnO (i-ZnO), the in-grain mobility was obtained by fitting reflection data with a normal Drude model in the IR range. For Al-doped ZnO (Al:ZnO), besides a normal Drude fit in the IR range, an Extended Drude fit in the UV-vis range could be used to obtain the in-grain mobility. Scattering mechanisms for a thickness series of Al:ZnO films were discerned using the more intuitive parameter “scattering frequency” instead of the parameter “mobility”. The interaction distance concept was introduced to give a physical interpretation to the frequency dependence of the scattering frequency. This physical interpretation furthermore allows the prediction of which Drude models can be used in a specific

  12. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  13. AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Gentle, A. R.; Yambem, S. D.; Burn, P. L.; Meredith, P.; Smith, G. B.

    2016-06-01

    Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissive material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.

  14. Effect of molecular structure and packing density of an azo self-assembled monolayer on liquid crystal alignment.

    PubMed

    Vengatesan, M R; Lee, Seung-Ho; Son, Jong-Ho; Lim, Jeong-Ku; Song, Jang Kun

    2013-10-01

    We studied the alignment of liquid crystals (LCs) on a photo-switchable azo-containing self-assembled monolayer (azo-SAM) with different packing densities and molecular structures. The packing density of the azo-SAM substrates was varied by changing the dipping time of the substrate in azosilane monomers solution (2mM in toluene). The thickness of the monolayer on the silicon substrate increased as the dipping time was increased. The relative surface packing density on the glass substrates was estimated from the surface energies of the azo-SAM. The photo-induced dynamics of liquid crystal alignment on the azo-SAM significantly varied according to the packing density of the azo-SAM and the structure of the azo-SAM molecules. The azo-SAM from long octyloxy chain-terminated azosilane (azo-S1) possessed stable homeotropic alignment even after photobuffing, while the azo-SAM from short methyl group-terminated azosilane monomer (azo-S2) showed photo-switchable homeotropic and planar alignments. However, when the packing density was increased to an excessive degree, even the azo-SAM from azo-S2 exhibited stable homeotropic alignment regardless of photobuffing. PMID:23871311

  15. Photoinduced translational molecular mobility in solid nanostructured azo dye films

    SciTech Connect

    Ezhov, A A; Kozenkov, V M; Magnitskii, Sergey A; Nagorskii, Nikolay M; Panov, Vladimir I

    2011-11-30

    A new mechanism controlling the molecular motion in thin azo-containing films during a photoinduced change in the surface nanorelief is found. It is shown experimentally that exposure of a solid AD-1 azo dye, deposited on a glass substrate, to incoherent linearly polarised light leads to formation of nanostructures with a characteristic size of 200 nm, which are similar to droplets of melt of this dye on the same substrate. It is shown that photoinduced mass transport in a solid AD-1 azo dye film can be explained by the mobility of molecules related to their trans-cis-photoisomerisation, which leads to film softening with subsequent formation of spherical protrusions under surface tension forces.

  16. Metal complex modified azo polymers for multilevel organic memories

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Chen, Hong-Xia; Zhou, Feng; Li, Hua; Dong, Huilong; Li, You-Yong; Hu, Zhi-Jun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-04-01

    Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage.Multilevel organic memories have attracted considerable interest due to their high capacity of data storage. Despite advances, the search for multilevel memory materials still remains a formidable challenge. Herein, we present a rational design and synthesis of a class of polymers containing an azobenzene-pyridine group (PAzo-py) and its derivatives, for multilevel organic memory storage. In this design, a metal complex (M(Phen)Cl2, M = Cu, Pd) is employed to modify the HOMO-LUMO energy levels of azo polymers, thereby converting the memory state from binary to ternary. More importantly, this approach enables modulating the energy levels of azo polymers by varying the coordination metal ions. This makes the achievement of high performance multilevel memories possible. The ability to tune the bandgap energy of azo polymers provides new exciting opportunities to develop new materials for high-density data storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00871a

  17. Use of highly absorptive azo dyes in photoresist coatings

    NASA Astrophysics Data System (ADS)

    Lu, Ping-Hung; Ding, Shuji; Hannigan, T. T.; Eberly, D. E.; Kokinda, Elaine; Dixit, Sunit S.; Mehtsun, Salem; Corso, Anthony J.; Khanna, Dinesh N.

    1997-07-01

    We recently synthesized and studied a number of highly absorptive diketo azo dyes. These materials, existed in the hydrazo tautomeric forms, showed high extinction coefficients, typically (epsilon) approximately equals 25,000 - 39,000 at 365 nm. They also exhibited good solubility in common resist casting solvents such as propylene glycol monoethyl acetate (PGMEA) and ethyl lactate. The thermostability of the materials was investigated. The impact of these diketo azo dyes on i-line resist performance in terms of swing reduction, reflective notching control and lithographic performance is discussed.

  18. Non-classical azoreductase secretion in Clostridium perfringens in response to sulfonated azo dye exposure.

    PubMed

    Morrison, Jessica M; John, Gilbert H

    2015-08-01

    Clostridium perfringens, a strictly anaerobic microorganism and inhabitant of the human intestine, has been shown to produce an azoreductase enzyme (AzoC), an NADH-dependent flavin oxidoreductase. This enzyme reduces azo dyes into aromatic amines, which can be carcinogenic. A significant amount of work has been completed on the activity of AzoC. Despite this, much is still unknown, including whether azoreduction of these dyes occurs intracellularly or extracellulary. A physiological study of C. perfringens involving the effect of azo dye exposure was completed to answer this question. Through exposure studies, azo dyes were found to cause cytoplasmic protein release, including AzoC, from C. perfringens in dividing and non-dividing cells. Sulfonation (negative charge) of azo dyes proved to be the key to facilitating protein release of AzoC and was found to be azo-dye-concentration-dependent. Additionally, AzoC was found to localize to the Gram-positive periplasmic region. Using a ΔazoC knockout mutant, the presence of additional azoreductases in C. perfringens was suggested. These results support the notion that the azoreduction of these dyes may occur extracellularly for the commensal C. perfringens in the intestine. PMID:25881497

  19. The design of Cu-doped ZnO thermoelectric module (simulation study)

    NASA Astrophysics Data System (ADS)

    Hadi, Syamsul; Suratwan, Agus; Kurniawan, Agus; Budiana, Eko Prasetya; Suyitno

    2016-03-01

    The p-type semiconductor of Cu-doped ZnO-based thermoelectric material has already been synthesized and studied as an energy harvester. The next challenge is manufacturing the thermoelectric module in the development of thermoelectric as an eco-friendly material in the future. This research aims to investigate the effect of thermoelectric geometric design on the electrical output power and voltage and to recommend the most appropriate thermoelectric geometric design. The design of thermoelectric generator (TEG) includes the determinations of dimension (width, length, and height), number of modules, and semiconductor materials. The simulation used the coupled-field analysis of ANSYS APDL 14.5 in the steady state condition. The p- and n- type thermoelectric material used Cu-doped ZnO and Al-doped ZnO, respectively. The width of element and the number of thermoelectric module were varied to obtain a thermoelectric design, which produces the largest current, power, and voltage. The result of research shows that the t hermoelectric generator with the element widths of 0.94 mm, 1.125 mm, 1.05 mm, and 1.2 mm generates the largest power output and voltage, namely: 0.32 W and 0.89 V, 0.38 W and 0.98 V, 0.45 W and 1.06 V, and 0.52 W and 1.13 V, respectively.

  20. Competing Forces in the Self-Assembly of Coupled ZnO Nanopyramids.

    PubMed

    Javon, Elsa; Gaceur, Meriem; Dachraoui, Walid; Margeat, Olivier; Ackermann, Jörg; Saba, Maria Ilenia; Delugas, Pietro; Mattoni, Alessandro; Bals, Sara; Van Tendeloo, Gustaaf

    2015-04-28

    Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligand-ligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as core-core interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids. PMID:25761847

  1. Temperature-dependent photoinduced third-harmonic-generation variation in azo-homopolymer and azo-doped polymer thin films

    NASA Astrophysics Data System (ADS)

    Hsu, Chia-Chen; Lin, Jian-Hung; Huang, Tzer-Hsiang; Harada, Kenji

    2003-04-01

    The temperature effect on the variation of photoinduced third-harmonic generation (THG) of an azo-polyurethane homopolymer and an azo guest-host polymer is studied at several different temperatures. At higher temperatures, both angular hole burning and molecule angular redistribution motions weaken, due to the decreases of cis-to-trans thermal relaxation time and the cis population and the increase of orientational diffusion coefficient. Smaller photoinduced THG variation is observed in both samples at higher temperatures. Results from the THG recovery experiment show that polyurethane homopolymer thin films pumped at a high temperature have the best photoinduced THG variation stability after turning off the pump beam.

  2. Transparent CH3NH3SnCl3/Al-ZnO p-n heterojunction diode

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Ansari, Mohd. Zubair; Khare, Neeraj

    2016-05-01

    A p-type Organic inorganic tin chloride (CH3NH3SnCl3) perovskite thin film has been synthesized by solution method. An n-type 1% Al doped ZnO (AZO) film has been deposited on FTO substrate by ultrasonic assisted chemical vapor deposition technique. A transparent CH3NH3SnCl3/AZO p-n heterojunction diode has been fabricated by spin coating technique. CH3NH3SnCl3/AZO p-n heterojunction shows 75% transparency in the visible region. I-V characteristic of CH3NH3SnCl3/AZO p-n heterojunction shows rectifying behavior of the diode. The diode parameters calculated as ideality factor η=2.754 and barrier height V= 0.76 eV. The result demonstrates the potentiality of CH3NH3SnCl3/AZO p-n heterojunction for transparent electronics.

  3. Detoxification of azo dyes by bacterial oxidoreductase enzymes.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Mahmood, Tariq; Crowley, David E

    2016-08-01

    Azo dyes and their intermediate degradation products are common contaminants of soil and groundwater in developing countries where textile and leather dye products are produced. The toxicity of azo dyes is primarily associated with their molecular structure, substitution groups and reactivity. To avoid contamination of natural resources and to minimize risk to human health, this wastewater requires treatment in an environmentally safe manner. This manuscript critically reviews biological treatment systems and the role of bacterial reductive and oxidative enzymes/processes in the bioremediation of dye-polluted wastewaters. Many studies have shown that a variety of culturable bacteria have efficient enzymatic systems that can carry out complete mineralization of dye chemicals and their metabolites (aromatic compounds) over a wide range of environmental conditions. Complete mineralization of azo dyes generally involves a two-step process requiring initial anaerobic treatment for decolorization, followed by an oxidative process that results in degradation of the toxic intermediates that are formed during the first step. Molecular studies have revealed that the first reductive process can be carried out by two classes of enzymes involving flavin-dependent and flavin-free azoreductases under anaerobic or low oxygen conditions. The second step that is carried out by oxidative enzymes that primarily involves broad specificity peroxidases, laccases and tyrosinases. This review focuses, in particular, on the characterization of these enzymes with respect to their enzyme kinetics and the environmental conditions that are necessary for bioreactor systems to treat azo dyes contained in wastewater. PMID:25665634

  4. Toxicity assessment and microbial degradation of azo dyes.

    PubMed

    Puvaneswari, N; Muthukrishnan, J; Gunasekaran, P

    2006-08-01

    Toxic effluents containing azo dyes are discharged from various industries and they adversely affect water resources, soil fertility, aquatic organisms and ecosystem integrity. They pose toxicity (lethal effect, genotoxicity, mutagenicity and carcinogenicity) to aquatic organisms (fish, algae, bacteria, etc.) as well as animals. They are not readily degradable under natural conditions and are typically not removed from waste water by conventional waste water treatment systems. Benzidine based dyes have long been recognized as a human urinary bladder carcinogen and tumorigenic in a variety of laboratory animals. Several microorganisms have been found to decolourize, transform and even to completely mineralize azo dyes. A mixed culture of two Pseudomonas strains efficiently degraded mixture of 3-chlorobenzoate (3-CBA) and phenol/cresols. Azoreductases of different microorganisms are useful for the development of biodegradation systems as they catalyze reductive cleavage of azo groups (-N=N-) under mild conditions. In this review, toxic impacts of dyeing factory effluents on plants, fishes, and environment, and plausible bioremediation strategies for removal of azo dyes have been discussed. PMID:16924831

  5. Metabolism of azo dyes: implication for detoxication and activation.

    PubMed

    Levine, W G

    1991-01-01

    Azo dyes are consumed and otherwise utilized in varying quantities in many parts of the world. Such widely used chemicals are of great concern with regard to their potential toxicity and carcinogenic properties. Their metabolism has been studied extensively and is significant for detoxication and metabolic activation. Both oxidative and reductive pathways are involved in these processes. The majority of azo dyes undergo reduction catalyzed by enzymes of the intestinal microorganisms and/or hepatic enzymes including microsomal and soluble enzymes. The selectivity of substrate and enzyme may to a large extent be determined by the oxygen sensitivity of reduction since a normal liver is mainly aerobic in all areas, whereas the microorganisms of the lower bowel exist in an anaerobic environment. However, it should be pointed out that the pO2 of centrilobular cells within the liver is only a fraction that of air, where pO2 = 150 torr. Therefore, an azo dye reduction experiment performed aerobically may not be an accurate predictor of reductive metabolism in all areas of the liver. Many of the azo dyes in common use today have highly charged substituents such as sulfonate. These resist enzymic attack and for the most part are poorly absorbed from the intestinal tract, providing poor access to the liver, the major site of the mixed-function oxidase system. Lipophilic dyes, such as DAB, which are often carcinogenic, readily access oxidative enzymes and are activated by both mixed-function oxidase and conjugating systems. Reduction of the carcinogenic dyes usually leads to loss of carcinogenic activity. By contrast, most of the highly charged water-soluble dyes become mutagenic only after reduction. Even then, most of the fully reduced amines required oxidative metabolic activation. An outstanding example is the potent human bladder carcinogen benzidine, which derives from the reduction of several azo dyes. Many problems regarding mutagenic and carcinogenic activation remain

  6. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    PubMed

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer. PMID:19420563

  7. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    SciTech Connect

    Akazawa, Housei Fukuda, Hiroshi

    2015-05-15

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  8. 2H and 27Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite

    PubMed Central

    2015-01-01

    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in order to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin–echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. Predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases. PMID:26321790

  9. Fabricating Hexagonal Al-Doped LiCoO2 Nanomeshes Based on Crystal-Mismatch Strategy for Ultrafast Lithium Storage.

    PubMed

    Xu, Hai-Tao; Zhang, Huijuan; Liu, Li; Feng, Yangyang; Wang, Yu

    2015-09-23

    In the designed synthesis, low crystal-mismatch strategy has been applied in the synthesis of ion-doped LiCoO2 materials, and a good success of single crystal property has been achieved between the precursor and the final sample for the first time. The hexagonal LiCo0.8Al0.26O2 (LCAO) nanomesh possesses several advantages in morphology and crystal structure, including mesoporous structure, single crystal, atomic even distribution, high exposing surface area as (100) or their equivalent planes, and shortened Li ions diffusion distance. All the merits are beneficial to the application in Li-ion batteries (LIBs) cathode, for example, accelerating Li ions diffusion rate, improving the Li ions shuttle between the LCAO nanomesh and electrolyte, and reducing the Li ions capacitive behavior during Li intercalation. Hence, our research adopts Al-contained precursor with morphology of hexagonal nanoplates to fabricate designed Al-doped LiCoO2 nanomeshes and greatly improves the cathode performance in LIBs. PMID:26333181

  10. Surface Morphology and Optical Reflection of Thermally Evaporated Thin Film Al-Doped Silicon on Plastic Substrates for Solar Cells Applications

    NASA Astrophysics Data System (ADS)

    Pakhuruddin, Mohd Zamir; Ibrahim, Kamarulazizi; Mohammed Ali, Mohammed Khaleel; Aziz, Azlan Abdul

    2011-05-01

    In this paper, authors have investigated the surface morphology and optical reflection of thermally evaporated thin film silicon (Si) on plastic substrates (polyethylene terephthalate, PET) at different aluminium (Al) composition (denoted by Al/Si ratio) for applications in solar cells. Results show that the thermally evaporated p-type Si possesses fairly smooth surfaces as characterised by atomic force microscopy (AFM) images. The films exhibit low surface roughness root mean square (RMS) of 9-12 nm as Al/Si ratio increases from 0.08 to 0.4. Intrinsic Si thin film shows roughness RMS of 9.2 nm, indicates that surface roughness is independent of Al composition within the thin film. Al/Si 0.08 gives the lowest reflectivity of around 10% (averaged in the visible region). Increase in the surface reflectivity is evident as the Al/Si ratio increases due to an increase in the number of Al crystallites distributed within the film. Overall, this experiment reveals the natural morphology of low roughness RMS (hence poor light-trapping) from thermal evaporation method due to its directional deposition nature. An extra step of surface texturing would be needed to enhance the light trapping properties of the absorber layer (p-type Si). Optimization of the Al doping level is vital in order to maintain minimum reflection losses in the device.

  11. 40 CFR 721.9576 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl]azo]-4...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9576 Chromate(3-), bis -3- azo]-4... subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  12. 40 CFR 721.9576 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl]azo]-4...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9576 Chromate(3-), bis -3- azo]-4... subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  13. 40 CFR 721.2095 - Chromate(3-), bis 2-[[substituted-3-[(5-sulfo-1-naphthalenyl)azo] phenyl]azo]substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Chromate(3-), bis 2- phenyl]azo... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2095 Chromate(3-), bis 2- phenyl]azo... reporting. (1) The chemical substance identified generically as chromate(3-), bis 2-...

  14. 40 CFR 721.2095 - Chromate(3-), bis 2-[[substituted-3-[(5-sulfo-1-naphthalenyl)azo] phenyl]azo]substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Chromate(3-), bis 2- phenyl]azo... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2095 Chromate(3-), bis 2- phenyl]azo... reporting. (1) The chemical substance identified generically as chromate(3-), bis 2-...

  15. 40 CFR 721.9576 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl]azo]-4...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9576 Chromate(3-), bis -3- azo]-4... subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  16. 40 CFR 721.2095 - Chromate(3-), bis 2-[[substituted-3-[(5-sulfo-1-naphthalenyl)azo] phenyl]azo]substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chromate(3-), bis 2- phenyl]azo... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2095 Chromate(3-), bis 2- phenyl]azo... reporting. (1) The chemical substance identified generically as chromate(3-), bis 2-...

  17. 40 CFR 721.9576 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl]azo]-4...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9576 Chromate(3-), bis -3- azo]-4... subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  18. 40 CFR 721.9576 - Chromate(3-), bis[7-[(aminohydroxyphenyl)azo]-3-[[5-(aminosulfonyl)-2-hydroxyphenyl]azo]-4...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Chromate(3-), bis -3- azo]-4-hydroxy-2... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9576 Chromate(3-), bis -3- azo]-4... subject to reporting. (1) The chemical substance identified as chromate(3-), bis -3-...

  19. 40 CFR 721.2095 - Chromate(3-), bis 2-[[substituted-3-[(5-sulfo-1-naphthalenyl)azo] phenyl]azo]substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chromate(3-), bis 2- phenyl]azo... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2095 Chromate(3-), bis 2- phenyl]azo... reporting. (1) The chemical substance identified generically as chromate(3-), bis 2-...

  20. 40 CFR 721.2095 - Chromate(3-), bis 2-[[substituted-3-[(5-sulfo-1-naphthalenyl)azo] phenyl]azo]substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chromate(3-), bis 2- phenyl]azo... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2095 Chromate(3-), bis 2- phenyl]azo... reporting. (1) The chemical substance identified generically as chromate(3-), bis 2-...

  1. An Evaluation of Zinc Oxide Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Wang, Jun

    Zinc oxide (ZnO) is attractive for photovoltaic applications due to its conductivity when doped with aluminum and transparency to the visible range of sunlight, i.e. minimized optical and electrical loss. Zinc oxide can form a stable n-n isotype heterojunction with silicon, which is comparable with conventional p-n junctions. The performance of such a junction heavily relies on the Fermi energy tuning of ZnO by Al doping. As an n-type dopant to ZnO, Al greatly improves the conductivity of ZnO. Moreover, Al-doped ZnO (AZO) is relatively abundant and cheap compared to other transparent conductive oxides (TCO), so that potentially the cost of electricity generation ($/KW) can be decreased. In order to boost the poor open circuit voltages resulted from the structures such as ITO/n-Si and AZO/n-Si, a thin 40 nm AZO film was introduced in our design as a buffer layer between the emitter and base. Our goal is to discover what Al content in the buffer layer achieves the optimum performance. Aluminum doped ZnO films were grown by a co-sputtering method which was a combination of RF sputtered ZnO with a fixed power of 300 W and DC sputtered Al with varied powers of 15-40 W. The Al content in AZO increases with increasing power used in Al sputtering. In this research, two types of heterojunction solar cells, ITO/AZO/n-Si and AZO/AZO/n-Si, were fabricated, analyzed and compared. The middle layer of AZO is the buffer layer which has varied Al doping and plays a key role in improving open circuit voltage. For the structure AZO/AZO/n-Si, the top emitter AZO layer has a fixed Al doping of 6.12 wt% at which AZO demonstrates the highest conductivity. With Al doping of the buffer AZO layer ranging from 0-7 wt.%, 6.34 wt.% of Al doping yields the best performance for both types of solar cell structures. At its best performance, ITO/AZO/n-Si demonstrates an open circuit voltage (Voc) of 0.42 V, a short circuit current density (J sc) of 26.0 mA/cm2, and a conversion efficiency of 5

  2. Real space pseudopotential calculations for size trends in Ga- and Al-doped zinc oxide nanocrystals with wurtzite and zincblende structures

    SciTech Connect

    Bobbitt, N. Scott; Kim, Minjung; Sai, Na; Marom, Noa; Chelikowsky, James R.

    2014-09-07

    Zinc oxide is often used as a popular inexpensive transparent conducting oxide. Here, we employ density functional theory and local density approximation to examine the effects of quantum confinement in doped nanocrystals of this material. Specifically, we examine the addition of Ga and Al dopants to ZnO nanocrystals on the order of 1.0 nm. We find that the inclusion of these dopants is energetically less favorable in smaller particles and that the electron binding energy, which is associated with the dopant activation, decreases with the nanocrystal size. We find that the introduction of impurities does not alter significantly the Kohn-Sham eigenspectrum for small nanocrystals of ZnO. The added electron occupies the lowest existing state, i.e., no new bound state is introduced in the gap. We verify this assertion with hybrid functional calculations.

  3. Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate

    NASA Astrophysics Data System (ADS)

    Yin, Tiantian; Chen, Nan; Zhang, Yingying; Cai, Xiaoyan; Wang, Yude

    2014-10-01

    Rod-like ZnO with the different morphologies were grown on polycrystalline Zn substrate by a simple hydrothermal process in a NaOH or NH4OH solution at the hydrothermal temperature range from 80 to 150 °C for different reaction time. Variations preparation in the different alkali solution concentration, hydrothermal temperature, and reaction times were explored to shed light on the morphology of the rod-like nanostructures. The thorough structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction, and X-ray photoelectron spectrum (XPS) were employed to examine the morphology and the microstructure of the final products. It was found that alkali solution concentration, hydrothermal temperature and time have important influence on the morphology of the rod-like nanostructures. The dye removal efficiency of ZnO nanorods was explored by the decoloration of azo dye Congo red (CR). In order to obtain the optimum removal conditions of Congo red, the performance of removing CR with various initial concentrations by ZnO nanorods on Zn substrates with different morphologies was tested under various ambient conditions (visible light illumination and darkness). All prepared samples showed an excellent dye removal efficiency for organic pollutants CR from wastewater, making them promising candidates for the wastewater treatment.

  4. Liquid-Crystal Photoalignment by Super Thin Azo Dye Layer

    NASA Astrophysics Data System (ADS)

    Li, Xihua; Kozenkov, Vladimir M.; Yeung, Fion Sze-Yan; Xu, Peizhi; Chigrinov, Vladimir G.; Kwok, Hoi-Sing

    2006-01-01

    A novel liquid crystal (LC) photoalignment method, based on a super thin azo dye molecular layer is proposed. The basic idea of this method is to form a very neat textile knitwear and uniform alignment by azo dye layer without spin coating and rubbing processes. The thickness of the alignment layer is smaller than 3 nm, which is much thinner than traditional PI alignment film. In addition to the advantages of a conventional photoalignment method, the use of super thin layer simplifies the alignment procedure, making possible a high electrooptical performance, good photo-tolerance and thermal stability, better adhesion on indium tin oxide (ITO) surface and compatibility with roll-to-roll process.

  5. Biosorption of Azo dyes by spent Rhizopus arrhizus biomass

    NASA Astrophysics Data System (ADS)

    Salvi, Neeta A.; Chattopadhyay, S.

    2016-05-01

    In the present study, spent Rhizopus arrhizus biomass was used for the removal of six azo dyes from aqueous solutions. The dye removal capacity of the biomass was evaluated by conducting batch tests as a function of contact time, biomass dosage, pH and initial dye concentrations. The pseudo-second-order kinetic model fitted well with the experimental data with correlation coefficients greater than 0.999, suggesting that chemisorptions might be the rate limiting step. The equilibrium sorption data showed good fit to the Langmuir isotherm model. Among the six dyes tested, the maximum monolayer adsorption capacity for fast red A and metanil yellow was found to be 108.8 and 128.5 mg/g, respectively. These encouraging results suggest that dead Rhizopus arrhizus biomass could be a potential biomaterial for the removal of azo dyes from aqueous dye solution.

  6. Relaxation phenomena in optically activated azo-materials

    NASA Astrophysics Data System (ADS)

    Prasuhn, Kai; Draude, Ansgar; Franke, Hilmar; Lessard, Roger A.

    2004-10-01

    The photo-isomerisation of azo-compounds is used to record reversible holographic volume phase gratings in films of guest-host polymers. In situ recording of the diffraction efficiency has been performed for different azo-dyes in the non-polar Poly-methylmethacrylate (PMMA) and the polar Poly-α-methyl-styrene (PαMS) as a matrix. Within an exposure energy of 100 mJ/cm2 a pronounced maximum is observed for s-polarised light. With the light pattern still on this is then reduced to a lower level. In case of the polar matrix, this process can be identified as an interaction of the dye molecules with the polymer matrix.

  7. Catalyzed degradation of azo dyes under ambient conditions.

    PubMed

    Wu, Jin-Ming; Wen, Wei

    2010-12-01

    Phase-pure layered perovskite La(4)Ni(3)O(10) powders were synthesized by a solution combustion approach. It is found that, in the presence of the La(4)Ni(3)O(10) powders, aqueous azo dyes can be degraded catalytically and efficiently under ambient conditions. Neither light nor additional reagents are needed in the catalytic reaction. The dye degradation procedure can be accelerated markedly by magnetic stirring. A systemic series of chemical and electrochemical experiments suggested that the dye degradation proceeds through electron transfers from the dye molecules to the catalyst and then to electron acceptors such as dissolved oxygen. The present catalytic degradation requires no additional reagents or external energy input, which hence provides a potentially low-cost alternative for the remediation of azo-dye effluents. PMID:21049925

  8. Irradiation treatment of azo dye containing wastewater: An overview

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2008-03-01

    The radiation-induced decolouration and degradation of aqueous solutions of azo dyes and their model compounds (anilines, phenols, triazines) are reviewed together with practical applications and the experimental methods (pulse radiolysis, steady-state gamma radiolysis, as well as end-product analysis) used for studying the reactions. The proposed mechanisms and the rate coefficients for the reactions of rad OH, e aq- and rad H water radiolysis intermediates with the dye molecules and with model compounds are summarized.

  9. Metabolism of azo dyes by human skin microbiota.

    PubMed

    Stingley, Robin L; Zou, Wen; Heinze, Thomas M; Chen, Huizhong; Cerniglia, Carl E

    2010-01-01

    Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74-100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes

  10. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    PubMed

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-01

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability. PMID:26859158

  11. The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during dye degradation

    NASA Astrophysics Data System (ADS)

    Yin, L. N.; Li, Y.; Wang, J.; Kong, Y. M.; Zhai, Y.; Wang, B. X.; Li, K.; Zhang, X. D.

    2012-12-01

    The Er3+:Y3Al5O12, an upconversion luminescence agent, which is able to transform the visible light to ultraviolet light, was synthesized by nitrate-citric acid method. And then, a novel photocatalyst, Er3+:Y3Al5O12/ZnO composites, was prepared by ultrasonic dispersing and liquid boil method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the structural morphology and surface properties of the Er3+:Y3Al5O12/ZnO. Azo Fuchsine dye was selected as target organic pollutant to inspect the photocatalytic activity of Er3+:Y3Al5O12/ZnO. The key parameters affecting the photocatalytic activity of Er3+:Y3Al5O12/ZnO, such as Er3+:Y3Al5O12 content, heat-treatment temperature and heat-treatment time, were studied. In addition, the effects of dye initial concentration, Er3+:Y3Al5O12/ZnO amount and solar light irradiation time were also reviewed, as well as the photocatalytic activity in degradation of other organic dyes were compared. It was found that the photocatalytic activity of Er3+:Y3Al5O12/ZnO was much superior to pure ZnO under the same conditions. Thus, the Er3+:Y3Al5O12/ZnO is a useful photocatalyst for the wastewater treatment because it can efficiently utilize solar light by converting visible light into ultraviolet light.

  12. The Hydractinia echinata test-system. III: Structure-toxicity relationship study of some azo-, azo-anilide, and diazonium salt derivatives.

    PubMed

    Chicu, Sergiu Adrian; Munteanu, Melania; Cîtu, Ioana; Soica, Codruta; Dehelean, Cristina; Trandafirescu, Cristina; Funar-Timofei, Simona; Ionescu, Daniela; Simu, Georgeta Maria

    2014-01-01

    Structure-toxicity relationships for a series of 75 azo and azo-anilide dyes and five diazonium salts were developed using Hydractinia echinata (H. echinata) as model species. In addition, based on these relationships, predictions for 58 other azo-dyes were made. The experimental results showed that the measured effectiveness Mlog(1/MRC50) does not depend on the number of azo groups or the ones corresponding to metobolites, but it is influenced by the number of anilide groups, as well as by the substituents' positions within molecules. The conformational analysis pointed out the intramolecular hydrogen bonds, especially the simple tautomerization of quinoidic (STOH) or aminoidic (STNH2) type. The effectiveness is strongly influenced by the "push-pull" electronic effect, specific to two hydroxy or amino groups separated by an azo moiety (double alternate tautomery, (DAT), to the -COOH or -SO3H groups which are located in ortho or para position with respect to the azo group. The levels of the lipophylic/hydrophilic, electronic and steric equilibriums, pointed out by the Mlog(1/MRC50) values, enabled the calculation of their average values Clog(1/MRC50) ("Köln model"), characteristic to one derivative class (class isotoxicity). The azo group reduction and the hydrolysis of the amido/peptidic group are two concurrent enzymatic reactions, which occur with different reaction rates and mechanisms. The products of the partial biodegradation are aromatic amines. No additive or synergic effects are noticed among them. PMID:25006787

  13. Electrical and hydrogen-sensing characteristics of field effect transistors based on nanorods of ZnO and WO2.72.

    PubMed

    Rout, Chandra Sekhar; Kulkarni, G U; Rao, C N R

    2009-09-01

    Top-gated field effect transistors (FETs) using Au-gap (5 microm) electrodes on glass substrate and SiO2/Si as gate have been fabricated with undoped and doped nanorods of ZnO as well as with WO2.72 nanorods as active semiconductor elements. The I-V characteristics at different gate voltages show that the nanorods are n-type semiconductors and the derived transfer characteristics show that the FET devices function in the depletion mode. Al-doping (3 at%) enhances the carrier mobility of ZnO nanorods to 128.6 cm2/V x s as against to 0.009 cm2/V x s estimated in the case of the undoped nanorods. Doping with Cd and Mg (3 at%) as well as N (approximately 1 at%) similarly increases the mobility although to a smaller extent. The Cd-doped ZnO nanorods exhibit the high sensitivity (defined as the ratio of the resistance in air to that in the hydrogen) (20) for 1000 ppm of hydrogen. Application of gate voltage decreases the recovery times of the nanorod sensors. FETs based on WO2.72 nanorods also show the depletion mode type characteristics and a carrier mobility of 8.38 cm2/V x s is obtained. The WO2.72 based FETs exhibit good sensitivity (approximately 10) for 1000 ppm hydrogen. PMID:19928282

  14. Effect of Al and Fe doping in ZnO on magnetic and magneto-transport properties

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Deepika; Tripathi, Malvika; Vaibhav, Pratyush; Kumar, Aman; Kumar, Ritesh; Choudhary, R. J.; Phase, D. M.

    2016-12-01

    The structural, magnetic and magneto-transport of undoped ZnO, Zn0.97Al0.03O, Zn0.95Fe0.05O and Zn0.92Al0.03Fe0.05O thin films grown on Si(100) substrate using pulsed laser deposition were investigated. The single phase nature of the films is confirmed by X-ray diffraction and Raman spectroscopy measurements. The possibility of Fe metal cluster in Fe doped/co-doped films is ruled out by Fe 2p core level photoelectron spectra. From O 1s core level spectra it is observed that oxygen vacancy is present in all the films. The undoped ZnO film shows magnetic ordering below ∼175 K, whereas Fe doped/codoped samples show magnetic ordering even at 300 K. The Al doped sample reveals paramagnetic behavior. The magneto-transport measurements suggest that the mobile carriers undergo exchange interaction with local magnetic moments.

  15. Ellipsometry characterization of polycrystalline ZnO layers with the modeling of carrier concentration gradient: Effects of grain boundary, humidity, and surface texture

    SciTech Connect

    Sago, Keisuke; Fujiwara, Hiroyuki; Kuramochi, Hideto; Iigusa, Hitoshi; Utsumi, Kentaro

    2014-04-07

    Spectroscopic ellipsometry (SE) has been applied to study the effects of grain boundary, humidity, and surface texture on the carrier transport properties of Al-doped ZnO layers fabricated by dc and rf magnetron sputtering. In the SE analysis, the variation in the free carrier absorption toward the growth direction, induced by the ZnO grain growth on foreign substrates, has been modeled explicitly by adopting a multilayer model in which the optical carrier concentration (N{sub opt}) varies continuously with a constant optical mobility (μ{sub opt}). The effect of the grain boundary has been studied by comparing μ{sub opt} with Hall mobility (μ{sub Hall}). The change in μ{sub Hall}/μ{sub opt} indicates a sharp structural transition of the ZnO polycrystalline layer at a thickness of d ∼ 500 nm, which correlates very well with the structure confirmed by transmission electron microscopy. In particular, below the transition thickness, the formation of the high density grain boundary leads to the reduction in the μ{sub Hall}/μ{sub opt} ratio as well as N{sub opt}. As a result, we find that the thickness dependence of the carrier transport properties is almost completely governed by the grain boundary formation. On the other hand, when the ZnO layer is exposed to wet air at 85 °C, μ{sub Hall} reduces drastically with a minor variation of μ{sub opt} due to the enhanced grain boundary scattering. We have also characterized textured ZnO:Al layers prepared by HCl wet etching by SE. The analysis revealed that the near-surface carrier concentration increases slightly after the etching. We demonstrate that the SE technique can be applied to distinguish various rough textured structures (size ∼ 1 μm) of the ZnO layers prepared by the HCl etching.

  16. Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation

    NASA Astrophysics Data System (ADS)

    Miyata, Toshihiro; Minamino, Youhei; Ida, Satoshi; Minami, Tadatsugu

    2004-07-01

    A vacuum arc plasma evaporation (VAPE) method using both oxide fragments and gas sources as the source materials is demonstrated to be very effective for the preparation of multicomponent oxide thin films. Highly transparent and conductive Al-doped ZnO (AZO) thin films were prepared by the VAPE method using a ZnO fragment target and a gas source Al dopant, aluminum acethylacetonate (Al(C5H7O2)3) contained in a stainless steel vessel. The Al content in the AZO films was altered by controlling the partial pressure (or flow rate) of the Al dopant gas. High deposition rates as well as uniform distributions of resistivity and thickness on the substrate surface were obtained on large area glass substrates. A low resistivity on the order of 10-4 Ω cm and an average transmittance above 80% in the visible range were obtained in AZO thin films deposited on glass substrates. .

  17. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  18. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  19. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  20. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  1. 40 CFR 721.984 - Amino-hydroxy sulfonaphthylazo-disubstituted phenyl azo benzene carboxylate salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-disubstituted phenyl azo benzene carboxylate salt (generic). 721.984 Section 721.984 Protection of Environment...-disubstituted phenyl azo benzene carboxylate salt (generic). (a) Chemical substance and significant new uses...-disubstituted phenyl azo benzene carboxylate salt (PMN P-00-0351) is subject to reporting under this section...

  2. 40 CFR 721.10239 - Trivalent chromium complexes of a substituted beta-naphthol amine azo dye (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted beta-naphthol amine azo dye (generic). 721.10239 Section 721.10239 Protection of Environment... a substituted beta-naphthol amine azo dye (generic). (a) Chemical substance and significant new uses... a substituted beta-naphthol amine azo dye (PMNs P-09-152 and P-09-153) are subject to...

  3. 40 CFR 721.10239 - Trivalent chromium complexes of a substituted beta-naphthol amine azo dye (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted beta-naphthol amine azo dye (generic). 721.10239 Section 721.10239 Protection of Environment... a substituted beta-naphthol amine azo dye (generic). (a) Chemical substance and significant new uses... a substituted beta-naphthol amine azo dye (PMNs P-09-152 and P-09-153) are subject to...

  4. 40 CFR 721.10239 - Trivalent chromium complexes of a substituted beta-naphthol amine azo dye (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted beta-naphthol amine azo dye (generic). 721.10239 Section 721.10239 Protection of Environment... a substituted beta-naphthol amine azo dye (generic). (a) Chemical substance and significant new uses... a substituted beta-naphthol amine azo dye (PMNs P-09-152 and P-09-153) are subject to...

  5. 40 CFR 721.4098 - Substituted heteroaromatic-2[[4-(dimethylamino) phenyl]azo]-3-methyl-, salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted heteroaromatic-2 azo]-3... New Uses for Specific Chemical Substances § 721.4098 Substituted heteroaromatic-2 azo]-3-methyl... substances identified generically as substituted heteroaromatic-2 azo]-3-methyl-, salts (PMNs P-97-582 and...

  6. 40 CFR 721.5276 - 2-Naphthalenol, heptyl-1-[[(4-phenylazo)phenyl]azo]-, ar′,ar″-Me derivs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Naphthalenol, heptyl-1- azo]-, arâ²... Specific Chemical Substances § 721.5276 2-Naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs. (a) Chemical...-naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs (PMN P-95-538) is subject to reporting under this section...

  7. 40 CFR 721.5276 - 2-Naphthalenol, heptyl-1-[[(4-phenylazo)phenyl]azo]-, ar′,ar″-Me derivs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Naphthalenol, heptyl-1- azo]-, arâ²... Specific Chemical Substances § 721.5276 2-Naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs. (a) Chemical...-naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs (PMN P-95-538) is subject to reporting under this section...

  8. 40 CFR 721.5276 - 2-Naphthalenol, heptyl-1-[[(4-phenylazo)phenyl]azo]-, ar′,ar″-Me derivs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Naphthalenol, heptyl-1- azo]-, arâ²... Specific Chemical Substances § 721.5276 2-Naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs. (a) Chemical...-naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs (PMN P-95-538) is subject to reporting under this section...

  9. 40 CFR 721.4098 - Substituted heteroaromatic-2[[4-(dimethylamino) phenyl]azo]-3-methyl-, salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted heteroaromatic-2 azo]-3... New Uses for Specific Chemical Substances § 721.4098 Substituted heteroaromatic-2 azo]-3-methyl... substances identified generically as substituted heteroaromatic-2 azo]-3-methyl-, salts (PMNs P-97-582 and...

  10. 40 CFR 721.5276 - 2-Naphthalenol, heptyl-1-[[(4-phenylazo)phenyl]azo]-, ar′,ar″-Me derivs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Naphthalenol, heptyl-1- azo]-, arâ²... Specific Chemical Substances § 721.5276 2-Naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs. (a) Chemical...-naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs (PMN P-95-538) is subject to reporting under this section...

  11. 40 CFR 721.4098 - Substituted heteroaromatic-2[[4-(dimethylamino) phenyl]azo]-3-methyl-, salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted heteroaromatic-2 azo]-3... New Uses for Specific Chemical Substances § 721.4098 Substituted heteroaromatic-2 azo]-3-methyl... substances identified generically as substituted heteroaromatic-2 azo]-3-methyl-, salts (PMNs P-97-582 and...

  12. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  13. 40 CFR 721.5276 - 2-Naphthalenol, heptyl-1-[[(4-phenylazo)phenyl]azo]-, ar′,ar″-Me derivs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Naphthalenol, heptyl-1- azo]-, arâ²... Specific Chemical Substances § 721.5276 2-Naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs. (a) Chemical...-naphthalenol, heptyl-1- azo]-, ar′,ar″-Me derivs (PMN P-95-538) is subject to reporting under this section...

  14. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  15. 40 CFR 721.8673 - [(Disubstituted phenyl)]azo dihydro hydroxy alkyl oxo alkyl-substituted-pyridines (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false azo dihydro hydroxy alkyl oxo alkyl... Significant New Uses for Specific Chemical Substances § 721.8673 azo dihydro hydroxy alkyl oxo alkyl...) The chemical substances identified generically as azo dihydro hydroxy alkyl oxo...

  16. 40 CFR 721.4098 - Substituted heteroaromatic-2[[4-(dimethylamino) phenyl]azo]-3-methyl-, salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted heteroaromatic-2 azo]-3... New Uses for Specific Chemical Substances § 721.4098 Substituted heteroaromatic-2 azo]-3-methyl... substances identified generically as substituted heteroaromatic-2 azo]-3-methyl-, salts (PMNs P-97-582 and...

  17. 40 CFR 721.4098 - Substituted heteroaromatic-2[[4-(dimethylamino) phenyl]azo]-3-methyl-, salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted heteroaromatic-2 azo]-3... New Uses for Specific Chemical Substances § 721.4098 Substituted heteroaromatic-2 azo]-3-methyl... substances identified generically as substituted heteroaromatic-2 azo]-3-methyl-, salts (PMNs P-97-582 and...

  18. Effects of precursor concentration on the properties of ZnO nanowires grown on (1-102) r-plane sapphire substrates by hydrothermal synthesis.

    PubMed

    Mun, D-H; Bak, S J; Ha, J-S; Lee, H-J; Lee, J K; Lee, S H; Moon, Y B

    2014-08-01

    In this study, we grew ZnO nanowires hydrothermally on (1-102) r-plane sapphire substrates in an aqueous solution which contained zinc nitrate hexahydrate and hexamethylenetetramine (HMT) at 90 °C. First, the AZO seed layer of 80 nm thickness was deposited on the r-plane sapphire substrate by a radio frequency magnetron sputter. After that, we grew the ZnO nanowires on the seed layer by changing the precursor concentration of the aqueous solution from 0.025 M to 0.01 M. When the molar concentration of the precursor was changed, the diameter, length, density and number of ZnO nanowires also changed significantly: diameter, length and density increased with increasing molar concentration but the number of ZnO nanowires decreased. The ZnO nanowires grown at the higher molar concentration tended to grow along with the c-axis direction, as revealed by atomic force microscope and X-ray diffraction peaks. Furthermore, the PL spectra measured at room-temperature revealed a UV emission of 380 nm which can be attributed to the radiative recombination of free and bound excitons (Near Band edge Emission). The NBE emission was also increased with increasing molar concentration. PMID:25936038

  19. THE MUTAGENICITY OF METALLIZED AND UNMETALLIZED AZO AND FORMAZAN DYES IN THE SALMONELLA MUTAGENICITY ASSAY

    EPA Science Inventory

    The mutagenicity of metallized and unmetallized azo and formazan dyes in the Salmonella mutagenicity
    Laura. C. Edwards', Harold S. Freeman'*, and Larry D. Claxton2

    Abstract
    In previous papers, the synthesis and chemical properties of iron complexed azo and formazan d...

  20. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  1. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  2. 40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... azo compound (generic). 721.9597 Section 721.9597 Protection of Environment ENVIRONMENTAL PROTECTION... compound (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094)...

  3. 40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... azo compound (generic). 721.9597 Section 721.9597 Protection of Environment ENVIRONMENTAL PROTECTION... compound (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094)...

  4. 40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... azo compound (generic). 721.9597 Section 721.9597 Protection of Environment ENVIRONMENTAL PROTECTION... compound (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094)...

  5. 40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... azo compound (generic). 721.9597 Section 721.9597 Protection of Environment ENVIRONMENTAL PROTECTION... compound (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094)...

  6. 40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... azo compound (generic). 721.9597 Section 721.9597 Protection of Environment ENVIRONMENTAL PROTECTION... compound (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094)...

  7. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  8. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  9. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  10. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  11. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  12. 40 CFR 721.9545 - Substituted phenyl azo substituted sulfocarbopolycle, sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfocarbopolycle, sodium salt. 721.9545 Section 721.9545 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.9545 Substituted phenyl azo substituted sulfocarbopolycle, sodium salt... identified generically as a substituted phenyl azo substituted sulfocarbopolycle, sodium salt (PMN...

  13. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  14. 40 CFR 721.1555 - Substituted phenyl azo substituted benzenediazonium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... benzenediazonium salt. 721.1555 Section 721.1555 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1555 Substituted phenyl azo substituted benzenediazonium salt. (a... generically as a substituted phenyl azo substituted benzenediazonium salt (PMN P-92-652) is subject...

  15. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  16. REDUCTION OF AZO DYES WITH ZERO-VALENT IRON. (R827117)

    EPA Science Inventory

    The reduction of azo dyes by zero-valent iron metal (Fe0) at pH 7.0 in 10 mM HEPES buffer was studied in aqueous, anaerobic batch systems. Orange II was reduced by cleavage of the azo linkage, as evidenced by the production of sulfanilic acid (a substituted ani...

  17. Comprehensive review and compilation of treatment for azo dyes using microbial fuel cells.

    PubMed

    Murali, V; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Hamidin, Nasrul

    2013-03-01

    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye. PMID:23581242

  18. Anaerobic/aerobic treatment of selected azo dyes in wastewater

    SciTech Connect

    Seshadri, S.; Bishop, P.L. . Dept. of Civil and Environmental Engineering); Agha, A.M. . Faculty of Civil Engineering)

    1994-01-01

    Azo dyes represent the largest class of dyes in use today. Current environmental concern with these dyes revolves around the potential carcinogenic health risk presented by these dyes or their intermediate biodegradation products when exposed to microflora in the human digestive tract. These dyes may build up in the environment, since many wastewater treatment plants allow these dyes to pass through the system virtually untreated. The initial step in the degradation of these dyes is the cleavage of the Azo bond. This cleavage is often impossible under aerobic conditions, but has been readily demonstrated under anaerobic conditions. The focus of the study was to determine the feasibility of using an anaerobic fluidized-bed reactor to accomplish this cleavage. The effects of typical process variables such as hydraulic retention time (HRT), influent dye concentration levels, and degree of bed fluidization on removal efficiencies were also studied. The four dyes selected for this study were Acid-Orange 7, Acid-Orange 8, Acid-Orange 10, and Acid-Red 14. The effectiveness of using a bench-scale-activated sludge reactor as a sequenced second stage was also examined. Results indicate that nearly complete cleavage of the Azo bond is easily accomplished for each of the four dyes under hydraulic retention times of either 12 or 24 h. Initial results indicate, though, that aromatic amine by-products remain. The sequenced second stage was able to remove the remaining Chemical Oxygen Demand (COD) load to acceptable levels. Work is presently underway to determine the face of the anaerobic by-products in the aerobic second stage.

  19. Defects in ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Jokela, S. J.

    2009-10-01

    Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Zn vacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

  20. A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jian, Y. C.; Jiang, J. H.

    2008-02-01

    This paper studies the wet etching behavior of AZO (ZnO:Al) transparent conducting film with tetramethylammonium hydroxide (TMAH). The optimum optoelectronic film is prepared first using designated RF power, film thickness and controlled annealing heat treatment parameters. The AZO film is then etched using TMAH etchant and AZ4620 photoresist with controlled etchant concentration and temperature to examine the etching process effect on the AZO film optoelectronic properties. The experimental results show TMAH:H 2O = 2.38:97.62 under 45 °C at the average etch rate of 22 nm/min as the preferred parameters. The activation energy drops as the TMAH concentration rises, while the etch rate increases along with the increase in TMAH concentration and temperature. After lithography, etching and photoresist removal, the conductivity of AZO film dramatically drops from 2.4 × 10 -3 Ω cm to 3.0 × 10 -3 Ω cm, while its transmittance decreases from 89% to 83%. This is due to the poor chemical stability of AZO film against AZ4620 photoresist, leading to an increase in surface roughness. In the photoresist postbaking process, carbon atoms diffused within the AZO film produce poor crystallinity. The slight decreases in zinc and aluminum in the thin film causes a carrier concentration change, which affect the AZO film optoelectronic properties.

  1. Azo dye biodecolorization enhanced by Echinodontium taxodii cultured with lignin.

    PubMed

    Han, Yuling; Shi, Lili; Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

    2014-01-01

    Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase-aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

  2. Abatement of Azo Dye from Wastewater Using Bimetal-Chitosan

    PubMed Central

    Asgari, Ghorban; Farjadfard, Sima

    2013-01-01

    We introduce a new adsorbent, bimetallic chitosan particle (BCP) that is successfully synthesized and applied to remove the orange II dye from wastewater. The effects of pH, BCP quantity, and contact time are initially verified on the basis of the percentage of orange II removed from the wastewater. Experimental data reveal that the Cu/Mg bimetal and chitosan have a synergistic effect on the adsorption process of the adsorbate, where the dye adsorption by Cu/Mg bimetal, chitosan alone, and bimetal-chitosan is 10, 49, and 99.5%, respectively. The time required for the complete decolorization of orange II by 1 mg/L of BCP is 10 min. The Langmuir model is the best fit for the experimental data, which attains a maximum adsorption capacity of 384.6 mg/g. The consideration of the kinetic behavior indicates that the adsorption of orange II onto the BCP fits best with the pseudo-second-order and Elovich models. Further, the simulated azo dye wastewater can be effectively treated using a relatively low quantity of the adsorbent, 1 mg/L, within a short reaction time of 20 min. Overall, the use of BCP can be considered a promising method for eliminating the azo dye from wastewater effectively. PMID:24348163

  3. Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin

    PubMed Central

    Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

    2014-01-01

    Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

  4. Inverted organic light-emitting diodes using different transparent conductive oxide films as a cathode

    NASA Astrophysics Data System (ADS)

    Takada, Makoto; Kobayashi, Takashi; Nagase, Takashi; Naito, Hiroyoshi

    2016-03-01

    We report on poly(dioctylfluorene-alt-benzothiadiazole) (F8BT) based inverted organic light-emitting diodes (iOLEDs) using commercially available transparent conductive oxide (TCO) films as a cathode, indium tin oxide (ITO), Ga doped ZnO (GZO), and Al doped ZnO (AZO). The ITO, GZO, and AZO glasses work as an electron-injecting layer (EIL) and cathode. The device configuration that we prepared is ITO, GZO, or AZO/F8BT/MoO3/Au. The device characteristics of these iOLEDs are almost comparable to those of conventional iOLEDs with ZnO films prepared by spray pyrolysis as an EIL, indicating that the electron injection properties of ITO, GZO, or AZO as a cathode are similar to those of ZnO layer in conventional iOLEDs. These results demonstrate the low-cost fabrication of iOLEDs utilizing commercially available TCO glasses as a cathode without deposition of ZnO layers on ITO glass.

  5. Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The effects of Na, Mg and Al doping on the structure, electronic property, defect property and Li ions migration of LiVPO4F were investigated by the first-principles method. Calculations show that the processes of forming Li0.875Na0.125VPO4F, α- and β-LiMg0.375V0.75PO4F, α- and β-LiAl0.125V0.875PO4F are all feasible. Na, Mg and Al doping significantly improve the electrical conductivity of LiVPO4F and simultaneously maintain their structural stability attributing to the reduction of band gaps through variations of V-3d spin up orbitals. Li vacancy defects of LiVPO4F are not ignorable, and vacancy defects with a lower activation energy for Li atom are far more likely to occur than Frenkel defects for Li and vacancy defects for other atoms. For pristine LiVPO4F, path D along [0.012 0 . 17 ̅ 0.572] direction is found to have the lowest activation energy of 0.418 eV, suggesting that anisotropic nature of Li ion conduction and LiVPO4F is a one-dimensional (1D)-ion conductor. The corresponding diffusion coefficient was estimated to be 2.82×10-9 cm2/s, which is in good agreement with those experimental values.

  6. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    SciTech Connect

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-15

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder. As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm{sup 2}), yielding a ∼10{sup 6}× current change under 200 g/cm{sup 2}. This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics.

  7. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  8. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.

    PubMed

    Choi, Eun Chang; Cha, Ji-Hyun; Jung, Duk-Young; Hong, Byungyou

    2016-05-01

    The CuIn(x)Ga(1-x)Se2 (CIGS) using the solution-based fabrication method is attractive for thin film solar cells because of its possibilities for large-area and low-cost production. ZnO films between transparent conductive oxide (TCO) and the CdS films can improve the performances of CIGS thin-film solar cells. In this study, we investigated the characteristics of ZnO film between TCO and CIGS layers in a solar cell (AZO/ZnO/CdS/CIGS/Mo), which were deposited at various thicknesses to investigate the role of the films in CIGS solar cells. It was confirmed that the conversion efficiency of a CIGS solar cell depends on the ZnO film. For a ZnO film thickness of 80 nm, the highest power conversion efficiency that a solar cell achieved was J(sc) of 18.73 mA/cm2. PMID:27483877

  9. Current enhancement of aluminum doped ZnO/n-Si isotype heterojunction solar cells by embedding silver nanoparticles.

    PubMed

    Yun, Juhyung; Kim, Joondong; Kojori, Hossein Shokri; Kim, Sung Jim; Tong, Chong; Anderson, Wayne A

    2013-08-01

    To improve Plasmonic energy harvesting, the Al doped ZnO (AZO) and Si heterojunction was studied for plasmonic photovoltaic applications. Silver nanoparticles (Ag NPs) were embedded in AZO, resulting in direct energy absoption from Ag NPs, positioned close to the junction. This structure has a benefit of avoiding highly doped lossy layers of conventional solar cell structures. Al doped ZnO (AZO) was deposited on n-Si substrate by dual beam sputtering method to fabricate AZO/Si heterojunction solar cells. AZO provides a transparent current spreading effect and rectifying junction with n type silicon (Si). Silver nanoparticles (Ag NPs) were embedded in AZO film (240-270 nm thick) with a sandwich-like structure. The position of Ag NPs in the AZO film was controlled to be located at 10, 20 and 40 nm distance from the Si absorber layer. Fabricated solar cells show improved performance in terms of the short circuit current (J(sc)) and the quantum efficiency (QE). Finite difference time domain (FDTD) simulations were carried out to investigate the QE enhancement and optimize photocurrent gain under an AM1.5G solar spectrum. In calculation, absorption enhancement is maximized when Ag NPs are located close to the Si layer in the range of 10-40 nm. Experimentally, 20 nm distance of Ag NPs from the Si showed the best performance with 0.36 V of open circuit voltage (V(oc)), 28.3 mA/cm2 of J(sc) and 5.91% of coversion efficiency. The QE showed 15% of enhancement around lambda = 435 nm and 5-10% of enhancement within lambda = 600-1000 nm. PMID:23882792

  10. Detoxification of azo dyes in the context of environmental processes.

    PubMed

    Rawat, Deepak; Mishra, Vandana; Sharma, Radhey Shyam

    2016-07-01

    Azo dyes account for >70% of the global industrial demand (∼9 million tons). Owing to their genotoxic/carcinogenic potential, the annual disposal of ∼4,500,000 tons of dyes and/or degraded products is an environmental and socio-economic concern. In comparison to physico-chemical methods, microbe-mediated dye degradation is considered to be low-input, cost-effective and environmentally-safe. However, under different environmental conditions, interactions of chemically diverse dyes with metabolically diverse microbes produce metabolites of varying toxicity. In addition, majority of studies on microbial dye-degradation focus on decolorization with least attention towards detoxification. Therefore, the environmental significance of microbial dye detoxification research of past >3 decades is critically evaluated with reference to dye structure and the possible influence of microbial interactions in different environments. In the absence of ecosystem-based studies, the results of laboratory-based studies on dye degradation, metabolite production and their genotoxic impact on model organisms are used to predict the possible fate and consequences of azo dyes/metabolites in the environment. In such studies, the predominance of fewer numbers of toxicological assays that too at lower levels of biological organization (molecular/cellular/organismic) suggests its limited ecological significance. Based on critical evaluation of these studies the recommendations on inclusion of multilevel approach (assessment at multiple levels of biological organization), multispecies microcosm approach and native species approach in conjunction with identification of dye metabolites have been made for future studies. Such studies will bridge the gap between the fundamental knowledge on dye-microbe-environment interactions and its application to combat dye-induced environmental toxicity. Thus an environmental perspective on dye toxicity in the background of dye structure and effects of

  11. Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles

    NASA Astrophysics Data System (ADS)

    Miniewicz, A.; Tomkowicz, M.; Karpinski, P.; Sznitko, L.; Mossety-Leszczak, B.; Dutkiewicz, M.

    2015-07-01

    Hybrid inorganic-organic nanoparticles based on cubic siloxane cage (RSiO3/2)8, known as polyhedral oligosilsesquioxane (POSS), have been functionalized by eight groups of azo-benzene mesogens and dispersed in poly(methyl methacrylate) PMMA matrix. Presence of azo-benzene units adds an important light-driven functionality to the system due to their photoisomerization resulting in refractive index and/or absorption changes of the whole system. The polymer films containing various concentrations of azo-POSS nanoparticles show remarkable changes of surface morphology being either transparent (at low POSS concentration) or highly scattering (at high POSS concentration) for visible light. Surface structures were examined by optical microscopy as well as by atomic force microscopy (AFM). Results of photoinduced alignment are discussed in the framework of light-induced modification of the aliphatic chains containing azo-benzene photoisomerizing moieties and self-organization process.

  12. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  13. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  14. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  15. Properties and construction of azo-dye reagents for inorganic photometric analysis.

    PubMed

    Pilipenko, A T; Savransky, L I

    1978-08-01

    An approach to constructing new organic reagents (based on azo dyes) for photometric analysis is described. Its essence is the detailed consideration of the electronic structure of the chromophore nuclei of the dyes in the ground and excited states. Knowing the nature of the electron transition, it is possible to construct the organic reagents with optimal properties. The electronic structure of the azo dyes has been analysed in a pi-approximation by an MO LCAO SCF method. PMID:18962298

  16. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  17. Influence of various thickness metallic interlayers on opto-electric and mechanical properties of AZO thin films on PET substrates

    NASA Astrophysics Data System (ADS)

    Chang, R. C.; Li, T. C.; Lin, C. W.

    2012-02-01

    Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.

  18. Structural, electrical and optical properties of Al-Ti codoped ZnO (ZATO) thin films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jiang, Minhong; Liu, Xinyu

    2008-12-01

    Al-Ti codoped ZnO (ZATO) thin films were grown on glass substrates at room temperature by radio frequency (RF) magnetron sputtering technique and annealed under vacuum (˜10 -1 Pa) at 400 °C for 3 h. The X-ray diffraction (XRD) patterns show that Al-doped ZnO (ZAO) and ZATO thin films are highly textured along the c-axis and perpendicular to the surface of the substrate. After annealing in a vacuum condition at 400 °C for 3 h, the lowest resistivity of 7.96 and 8.7 × 10 -4 Ω cm are observed for ZATO and ZAO films, respectively. But after annealing in air, the resistivity of ZATO and ZAO is higher than 10 5 Ω cm. In the visible region, the ZAO films show the average transmittance of the order of 90%, while ZATO films were of the order of 75%, which illustrates that the additional Ti doping reduces the optical properties. The optical band gap was found to be 3.46 eV for ZAO film and it increases to 3.53 eV for ZATO films.

  19. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  20. Second-order nonlinear optical Langmuir-Blodgett films based on a series of azo rare-earth coordination compounds

    SciTech Connect

    Gao, L.H.; Wang, K.Z.; Huang, C.H.

    1995-06-01

    A series of novel azo dyes composed of a lanthanide complex anion and an azo cation, in which strongly electron-donating (dihexadecylamino)phenyl and electron-accepting pyridinium groups are separated by an azo group, was designed as second-order nonlinear optical Langmuir-Blodgett (LB) film materials. The compounds are of good film-forming properties. The values of second-order molecular hyperpolarizability {beta} were determined to be (1.20-3.03) x 10{sup {minus}27} esu, comparable to the largest value known for azo LB materials. The compounds studied may be attactive in the application in future optical devices. 13 refs., 5 figs., 1 tab.

  1. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    SciTech Connect

    Valenti, Ilaria; Valeri, Sergio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  2. Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction

    SciTech Connect

    Lee, Kai-Hsuan; Chen, Chia-Hao; Chang, Ping-Chuan; Chen, Tse-Pu; Chang, Sheng-Po; Chang, Shoou-Jinn; Department of Physics, National Tsing Hua University, Kuang-Fu Rd. 101, 30013 Hsinchu, Taiwan

    2013-02-18

    Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

  3. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  4. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  5. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  6. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  7. 40 CFR 721.5281 - 2-Naphthalenesulfonic acid, 3-[[4-[(2,4-dimethyl-6-sulfophenyl)azo]-2-methoxy-5-methylphenyl]azo...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Naphthalenesulfonic acid, 3- -2-methoxy-5-methylphenyl]azo]-4-hydroxy-7-(phenylamino)-, sodium salt, compd. With 2,2â²,2â³-nitrilotris (9CI). 721.5281 Section 721.5281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT...

  8. Preparation of 1,1'-dinitro-3,3'-azo-1,2,4-triazole. [1,1'-dinitro-3,3'-azo-1,2,4-triazole

    DOEpatents

    Lee, K.Y.

    1985-03-05

    A new high density composition of matter, 1,1'-dinitro-3,3'-azo-1,2,4-triazole, has been synthesized using inexpensive, commonly available compounds. This compound has been found to be an explosive, and its use as a propellant is anticipated. 1 fig., 1 tab.

  9. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium

    SciTech Connect

    Sivagamasundari, A.; Chandrasekar, S.; Pugaze, R.; Kannan, R.; Rajagopan, S.

    2014-03-07

    Thermal ionization induced metallic to semiconductor (MST) transition occurring at 460 K for Zn{sub 0.97}Al{sub 0.03}O, 463 K for Zn{sub 0.94}Al{sub 0.03}Li{sub 0.03}O, and 503 K for Zn{sub 0.91}Al{sub 0.03}Li{sub 0.03}Mn{sub 0.03}O has been found in the sol-gel synthesized (using hexamethylenetetramine), trivalent doped (Al, Mn) ZnO codoped with lithium. Increase in the thermally ionized carrier concentration due to Al doping is responsible for near band edge (NBE) peak shift causing Fermi level to move into conduction band making it metallic consistent with resistivity results. Free carrier (thermally activated) neutralization with ionized donor is responsible for semiconducting nature, which is supported from the free carrier screening produced energy shift in the NBE of photoluminescence peak. Furthermore, independently band gap shrinkage is also obtained from UV-Visible studies confirming localization induced MST. An anti-correlation is found between defect density (DLE) and room temperature ferromagnetism (RTFM) indicating intrinsic defects are not directly responsible for RTFM.

  10. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    SciTech Connect

    Yang, W. F.; Liu, Z. G.; Wu, Z. Y.; Hong, M. H.; Wang, C. F.; Lee, Alex Y. S.; Gong, H.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated with conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.

  11. On the properties of aluminium doped zinc oxide thin films deposited on plastic substrates from ceramic targets

    NASA Astrophysics Data System (ADS)

    Girtan, M.; Vlad, A.; Mallet, R.; Bodea, M. A.; Pedarnig, J. D.; Stanculescu, A.; Mardare, D.; Leontie, L.; Antohe, S.

    2013-06-01

    We report on the deposition of Al doped ZnO (AZO) thin films on unheated polyethylene terephthalate (PET) substrates by pulsed laser deposition technique using a UV excimer laser and Al2O3:ZnO ceramic targets (1.5 and 2 wt% Al2O3). The deposited AZO films have been investigated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and optical spectrophotometry. Films present excellent optical and electrical properties (transmission in the visible range T > 85%; resistivity at room temperature ρ = 1.3 × 10-3 Ω cm) as electrodes for plastic solar cells. A good correlation was found between deposition conditions (laser fluence) and structural, morphological, optical and electrical properties.

  12. Laboratory studies of electrochemical treatment of industrial azo dye effluent.

    PubMed

    Vaghela, Sanjay S; Jethva, Ashok D; Mehta, Bhavesh B; Dave, Sunil P; Adimurthy, Subbarayappa; Ramachandraiah, Gadde

    2005-04-15

    Removal of color and reduction of chemical oxygen demand (COD) in an industrial azo dye effluent containing chiefly reactive dyes were investigated under single-pass conditions at a dimensionally stable anode (DSA) in a thin electrochemical flow reactor at different current densities, flow rates, and dilutions. With 50% diluted effluent, decolorization was achieved up to 85-99% at 10-40 mA/ cm2 at 5 mL/min flow rate and 50-88% at 30-40 mA/ cm2 at high (10-15 mL/min) flow rates. The COD reduction was maximum (81%) at 39.9 mA/cm2 or above when solution-electrode contact time (Ct) was as high as 21.7 s/cm2 and decreased as Ct declined at a given current density. Cyclic voltammetric studies suggesting an indirect oxidation of dye molecules over the anode surface were carried out at a glassy carbon electrode. The effect of pH on decolorization and COD reduction was determined. An electrochemical mechanism mediated by OCl- operating in the decolorization and COD reduction processes was suggested. The effluent was further treated with NaOCI. The oxidized products from the treated effluents were isolated and confirmed to be free from chlorine-substituted products by IR spectroscopy. From the apparent pseudo-first-order rate data, the second-order rate coefficients were evaluated to be 2.9 M(-1) s(-1) at 5 mL/ min, 76.2 M(-1) s(-1) at 10 mL/min, and 156.1 M(-1) s(-1) at 15 mL/ min for color removal, and 1.19 M(-1) s(-1) at 5 mL/min, 1.79 M(-1) s(-1) at 10 mL/min, and 3.57 M(-1) s(-1) at 15 mL/min for COD reduction. Field studies were also carried out with a pilot-scale cell at the source of effluent generation of different plants corresponding to the industry. Decolorization was achieved to about 94-99% with azo dye effluents at 0.7-1.0 L/min flow costing around Indian Rupees 0.02-0.04 per liter, and to about 54-75% in other related effluents at 0.3-1.0 L/min flow under single-pass conditions. PMID:15884385

  13. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium

    PubMed Central

    Lalnunhlimi, Sylvine; Krishnaswamy, Veenagayathri

    2016-01-01

    Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100–300 mg/L). The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment. PMID:26887225

  14. Synthesis of azo-conjugated metalladithiolenes and their photo- and proton-responsive isomerization reactions.

    PubMed

    Nihei, Masayuki; Kurihara, Masato; Mizutani, Jun; Nishihara, Hiroshi

    2003-03-12

    A versatile synthetic method of azo-conjugated metalladithiolenes was developed, and new complexes with various central metals and substituent groups were synthesized. Molecular structures of the azo-conjugated metalladithiolenes of Ni(II), Pd(II), and Pt(II) with diphenylphosphinoethane as a co-ligand were determined by X-ray crystallography. While the energy of the reversible trans-to-cis photoisomerization is considerably lower than that of azobenzene, the thermal stability of the cis form is much higher than that of the organic azobenzene derivatives showing similar low-energy trans-to-cis photoisomerization. A novel proton response of the azo group occurs, and the combination of photoisomerization and protonation leads to a novel proton-catalyzed cis-to-trans isomerization, the rate of which correlates with the redox potential of the metalladithiolene moiety. The study including other azo-conjugated metalladithiolenes has indicated that the protonation is a common feature for the azo-conjugated metalladithiolenes, but trans-to-cis photoisomerization is strongly dependent on the electronic structure of the trans form or a steric effect in the cis form. PMID:12617664

  15. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.

    PubMed

    Gavazza, Sávia; Guzman, Juan J L; Angenent, Largus T

    2015-04-01

    Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion. PMID:25750156

  16. 40 CFR 721.10108 - Naphthalenedisulfonic acid, hydrozy-[[[(hydroxyl-disulfo-naphthaleneyl)azo]-alkyl(C=1-5...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...- -alkyl(C=1-5)-(sulfoalkoxy)cyclic]azo]-substituted azo-, metal salt (generic). 721.10108 Section 721.10108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  17. SonoFenton degradation of an azo dye, Direct Red.

    PubMed

    Harichandran, G; Prasad, S

    2016-03-01

    The degradation of a reactive azo dye, Direct Red 81 (DR81), by Fenton process and in conjunction with sonolysis (SonoFenton) was studied. The synergistic effect of Fenton process and sonolysis enhanced the degradation of Direct Red 81 in aqueous solutions and the reaction followed the mechanism of hydroxyl radical (HO) oxidation. The influence of the initial substrate concentration, pH and catalyst loading on the rate of decolorisation were studied. The dye decolorisation followed apparent first order kinetics. The optimum conditions for decolorisation were pH=3.0, [Fe(2+)]=0.2 g/l, [H2O2]=5.1×10(-3) mol/l and ultrasonic frequency=120 kHz, 60 W. These conditions yielded 99% decolorisation of DR81 within 75 min. The sonolytic degradation products of DR81 were identified using Electrospray Ionization-Mass Spectrometry (ESI-MS). The presence of CO3(2-), HCO3(-), Cl(-), NO3(-), and SO4(2-) ions in the dye solution did not have a considerable effect on the decolorisation efficiency. This study demonstrates that Fenton and SonoFenton methods can effectively decolorize DR81 dye in waste water. The dye concentration used in this study is higher compared to earlier studies illustrating the effective mineralization by the SonoFenton process. The mechanism of dye degradation is also proposed. PMID:26584996

  18. Azo dye decolorization by Shewanella aquimarina under saline conditions.

    PubMed

    Meng, Xianming; Liu, Guangfei; Zhou, Jiti; Shiang Fu, Q; Wang, Guanghui

    2012-06-01

    Decolorization of azo dyes under saline conditions was studied with Shewanella aquimarina, which demonstrated good growth at up to 7% NaCl. No inhibition on acid red 27 (AR27) decolorization was caused by 1-3% NaCl. Additionally, 14.5% AR27 (0.2mM) could still be removed in 12h in the presence of 10% NaCl. The relationship between specific decolorization rate and AR27 concentration followed Michaelis-Menten kinetics (K(m)=0.34 mM, V(max)=6.44 μmol mg cell(-1) h(-1)). Lactate and formate were efficient electron donors for AR27 decolorization. The initial decolorization rate was in direct proportion to biomass concentration (0.18-0.72 g l(-1)). Compared to NaCl, slighter inhibitive effects were found with Na(2)SO(4) whereas more severe inhibition was caused by NaNO(3). Lower NaCl concentration stimulated azoreductase, laccase and NADH-DCIP reductase activities of cell extracts. AR27 decolorization products were found to be aromatic amines, which were less phytotoxic than the untreated dye. PMID:22449986

  19. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  20. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders

    PubMed Central

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Perepezko, John H.

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses. PMID:22639726

  1. Induced birefringence and dichroism in azo polymers. Comparison between amorphous and liquid crystalline polymers

    SciTech Connect

    Natansohn, A.; Brown, D.; Rochon, P.

    1993-12-31

    Macroscopic order can be induced in amorphous high-Tg azo polymers (usually containing electron-donor - electron-acceptor substituted azobenzene moieties) by exposure to polarized light. The phenomenon is based on a series of trans-cis-trans isomerization cycles and the induced birefringence is typically of 2x10{sup {minus}2}. The ordered domains can be returned to randomness ({open_quotes}erased{close_quotes}) using circularly polarized light. This paper will present a comparison between amorphous and liquid crystalline azo polymers. The most significant difference between these two types of polymers is that any other type of concert with the azo moiety. Consequently the dichroism and birefringence induced in the liquid crystalline polymers can be one order of magnitude higher than in the amorphous polymers. At the same time, however, the time required to achieve saturation also increases by at least one order of magnitude.

  2. Methods for the analysis of azo dyes employed in food industry--A review.

    PubMed

    Yamjala, Karthik; Nainar, Meyyanathan Subramania; Ramisetti, Nageswara Rao

    2016-02-01

    A wide variety of azo dyes are generally added for coloring food products not only to make them visually aesthetic but also to reinstate the original appearance lost during the production process. However, many countries in the world have banned the use of most of the azo dyes in food and their usage is highly regulated by domestic and export food supplies. The regulatory authorities and food analysts adopt highly sensitive and selective analytical methods for monitoring as well as assuring the quality and safety of food products. The present manuscript presents a comprehensive review of various analytical techniques used in the analysis of azo dyes employed in food industries of different parts of the world. A brief description on the use of different extraction methods such as liquid-liquid, solid phase and membrane extraction has also been presented. PMID:26304415

  3. Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals.

    PubMed

    Kundu, Sudarshan; Kang, Shin-Woong

    2013-12-16

    We report concurring phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals. The transitions are induced by photo-stimulation and stable against light and thermal treatments. Photochromic trans- to cis-isomerization of azo-dye induces an augmented dipole moment and strong dipole-dipole interaction of the cis-isomers, resulting in the formation of nano-sized dye-aggregates. Consequent phase separation of the aggregates of a chiral azo-dye induces phase transition from a chiral to nonchiral nematic phase. In addition, the deposition of dye-aggregates at the surfaces brings about anchoring transition of LC molecules. The stability and irreversibility of the transition, together with no need of pretreatments for LC alignment, provide fascinating opportunity for liquid crystal device applications. PMID:24514707

  4. Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions

    PubMed Central

    Zille, Andrea; Górnacka, Barbara; Rehorek, Astrid; Cavaco-Paulo, Artur

    2005-01-01

    Trametes villosa laccase was used for direct azo dye degradation, and the reaction products that accumulated after 72 h of incubation were analyzed. Liquid chromatography-mass spectrometry (LC-MS) analysis showed the formation of phenolic compounds during the dye oxidation process as well as a large amount of polymerized products that retain azo group integrity. The amino-phenol reactions were also investigated by 13C-nuclear magnetic resonance and LC-MS analysis, and the polymerization character of laccase was shown. This study highlights the fact that laccases polymerize the reaction products obtained during long-term batch decolorization processes with azo dyes. These polymerized products provide unacceptable color levels in effluents, limiting the application of laccases as bioremediation agents. PMID:16269701

  5. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.

    PubMed

    Cardenas-Robles, Arely; Martinez, Eduardo; Rendon-Alcantar, Idelfonso; Frontana, Carlos; Gonzalez-Gutierrez, Linda

    2013-01-01

    A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour. PMID:23128299

  6. Porous Azo-Bridged Porphyrin-Phthalocyanine Network with High Iodine Capture Capability.

    PubMed

    Li, Hui; Ding, Xuesong; Han, Bao-Hang

    2016-08-01

    We report a highly efficient iodine adsorbent achieved by rational design of a porous azo-bridged porphyrin-phthalocyanine network (AzoPPN), which was synthesized by a catalyst-free coupling reaction between free-base 5,10,15,20-tetrakis(4-nitrophenyl)-porphyrin and nickel tetraaminophthlocyanine. AzoPPN has a permanent porous structure and plenty of porphyrin and phthalocyanine units in the skeleton as effective sorption sites. It displays excellent adsorption of iodine vapor up to 290 wt. % and also shows remarkable capability as adsorbent for iodine in solution. This strategy of combining physisorption with chemisorption in one adsorbent will pave the way for the development of new materials for iodine capture. PMID:27412919

  7. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media.

    PubMed

    Silva, Alessandra C; Pic, Jean Stephane; Sant'Anna, Geraldo L; Dezotti, Marcia

    2009-09-30

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L(-1), NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation. PMID:19443113

  8. Synthesis and anion recognition studies of novel bis (4-hydroxycoumarin) methane azo dyes

    NASA Astrophysics Data System (ADS)

    Panitsiri, Amorn; Tongkhan, Sukanya; Radchatawedchakoon, Widchaya; Sakee, Uthai

    2016-03-01

    Four new bis (4-hydroxycoumarin) methane azo dyes were synthesized by the condensation of 4-hydroxycoumarin with four different azo salicylaldehydes and their structures were characterized by FT-IR, 1H NMR, 13C NMR, HRMS. Anion binding ability in dimethyl sulfoxide (DMSO) solutions with tetrabutylammonium (TBA) salts (F-, Cl-, Br-, I-, AcO- and H2PO4-) was investigated by the naked eye, as well as UV-visible spectroscopy. The sensor shows selective recognition towards fluoride and acetate. The binding affinity of the sensors with fluoride and acetate was calculated using UV-visible spectroscopic technique.

  9. Optical manipulation of the nematic director field around microspheres covered with an azo-dendrimer monolayer.

    PubMed

    Hirankittiwong, Pemika; Chattham, Nattaporn; Limtrakul, Jumras; Haba, Osamu; Yonetake, Koichiro; Eremin, Alexey; Stannarius, Ralf; Takezoe, Hideo

    2014-08-25

    We report here the optical manipulation of the director and topological defect structures of nematic liquid crystals around a silica microparticle with azobenzene-containing dendrimers (azo-dendrimers) on its surface. We successfully demonstrate the successive switching processes from hedgehog, to boojum, and further to Saturn ring configurations by ultraviolet (UV) light irradiation and termination. The switching time between these defect structures depends on the UV light intensity and attains about 50 ms. Since the pretreatment of microparticles is not necessary and the surface modification is spontaneously performed just by dissolving the azo-dendrimers in liquid crystals, this dendrimer supplies us with a variety of possible applications. PMID:25321218

  10. Influence of peripheral substituents on the optical properties of heterocyclic azo dyes

    NASA Astrophysics Data System (ADS)

    Derkowska-Zielinska, B.; Skowronski, L.; Kozlowski, T.; Smokal, V.; Kysil, A.; Biitseva, A.; Krupka, O.

    2015-11-01

    Optical properties, such as the real and imaginary parts of the dielectric function and the optical energy band gap, of new heterocyclic azo dyes thin films were investigated using spectroscopic ellipsometry combined with transmittance measurements. The topography of studied compounds was also examined by atomic force microscopy. It was found that the optical properties of the azo dyes materials strongly depend on the type of substitution in the azobenzene moiety, namely leads to a change in the value of refractive index, as well as bathochromic shifts of the absorption structure.

  11. Photoreversible optical data recording in films of amorphous azo dye-containing polymers

    SciTech Connect

    Simonov, A N; Uraev, D V; Shibaev, Valerii P; Kostromin, S G

    2002-02-28

    The photoreversible properties of films of amorphous azo-containing polymers (AAPs) are studied theoretically and experimentally. The control of the sign of a photoinduced addition {Delta}n{sup ind} to the refractive index of the polymer by changing polarisation of the incident light is demonstrated. A theoretical model of photoinduced processes in AAP films is proposed, which takes into account the orientation diffusion of trans-isomers of azo dyes, and simplified analytic approaches describing the photoorientation dynamics in AAPs are considered. The theoretical results are in good agreement with our experimental data. (laser applications and other topics in quantum electronics)

  12. Spontaneous photoinduced patterning of azo-dye polymer films: the facts

    SciTech Connect

    Hubert, Christophe

    2007-08-15

    We describe the spontaneous photoinduced patterning of azo-dye polymer films. We have observed that the illumination of an azo-dye polymer film by a uniform single laser beam with normal incidence leads to a self-structurization process that results in the formation of well-ordered submicrometer-sized structures whose organization depends on the light polarization direction. A modulation depth as high as 100 nm can be achieved. The influence of several experimental parameters on the structure formation is studied. Results are discussed and confronted to different models and phenomena already investigated in the literature. A physical origin to this peculiar photopatterning process is proposed.

  13. Dielectric characteristic of photoinduced isomerization in azo-dye doped polymeric matrices

    SciTech Connect

    Luo Duanbin; Deng Li

    2006-05-01

    The dielectric permittivities and losses of poly(methyl methacrylate) doped with different concentrations of azo dye are investigated under the irradiation of 532 nm light for the first time. The dielectric permittivities increase with the concentration of chromophores increasing, and the dielectric relaxation is mainly influenced by the doped azo-dye chromophores. Given the dye concentration, the dielectric permittivities depend on the pump power of 532 nm light. With the increase of pumping light power, the low frequency dielectric losses increase while the high frequency dielectric losses decrease. The results are explained based on the photoinduced isomerization of chromophores and the interaction between the chromophores and polymer matrices.

  14. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  15. The preparation of AZO films with RF sputtering

    NASA Astrophysics Data System (ADS)

    Yu, Zhinong; Xu, Jin; Xue, We; Li, Xia; Li, Jinwei

    2008-03-01

    ZnO:Al is a kind of N type semiconductor material with low resistance and high transmittance in the visible region. Using ZnO mixed with Al IIO 3 (2 wt %) as target, ZAO thin films were deposited on glass substrate by RF magnetron sputtering. Orthogonal experiments were used to analyze the effects of main factors (oxygen flux, argon pressure, substrate temperature, RF power) on the properties (transmittance, resistance) of the film. The results showed that the optimal parameters in the room temperature are: the partial pressure of argon without oxygen is 0.1 Pa, RF power is 400w. After vacuum annealing at 220°C, the deposited film exhibits visible transmittance of above 82% and minimum sheet resistance in 3.36 × 10 -3 Ω • cm.

  16. Comparative theoretical studies of energetic azo s-triazines.

    PubMed

    Wang, Fang; Du, Hong-chen; Zhang, Jian-ying; Gong, Xue-dong

    2011-10-27

    In this work, the properties of the synthesized high-nitrogen compounds 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (TAAT) and 4,4',6,6'-tetra(azido)hydrazo-1,3,5-triazine (TAHT), and a set of designed bridged triazines with similar bridges were studied theoretically to facilitate further developments for the molecules of interests. The gas-phase heats of formation were predicted based on the isodesmic reactions by using the DFT-B3LYP/AUG-cc-PVDZ method. The estimates of the condensed-phase heats of formation and heats of sublimation were estimated in the framework of the Politzer approach. Calculation results show that the method gives a good estimation for enthalpies, in comparison with available experimental data for TAAT and TAHT. The crystal density has been computed using molecular packing calculations. The calculated detonation velocities and detonation pressures indicate that -NF(2), -NO(2), -N═N-, and -N═N(O)- groups are effective structural units for improving the detonation performance of the bridged triazines. The synthesized TAAT and TAHT are not preferred energetic materials due to their inferior detonation performance. The p→π conjugation effect between the triazine rings and bridges makes the molecule stable as a whole. The electrostatic behavior of the bridged triazines is characterized by an anomalous surface potential imbalance when incorporating the strongly electron-withdrawing -NF(2) and -NO(2) groups into the molecule. An analysis of the bond dissociation energies shows that all these derivatives have good thermal stability over RDX and HMX, and the -NH-NH- bridge is more helpful for improving the stability than -N═N(O)- and -N═N- bridges. Considering the detonation performance and thermal stability, three bridged triazines may be considered as the potential candidates of high-energy density materials (HEDMs). PMID:21910431

  17. Photocatalytic Degradation of Azo Dyes using Doped Titania Fibers

    NASA Astrophysics Data System (ADS)

    Shanmugasundaram, Prasad

    Photo-catalytic degradation using semiconductor particle as dispersion in aqueous medium has been gaining increased attention over the past several years. Their versatility in application makes them unique along with their easy processing techniques and low cost. Titania semiconductor is one of the most important members of this family. It has been widely used for various applications ranging from environmental to bio-medical. Titanium dioxide has gained importance as an effective photo-catalyst because of its advantages over other semiconductor oxides which include high photo-stability, inexpensive, reusable property, chemical and biological inertness, high reactivity, non-toxicity, corrosion resistance, operation at ambient temperatures and its ability to treat trace level pollutants. Its use as a photocatalyst is primarily because of its band gap of 3.0-3.3 eV which can be effectively activated under ultraviolet radiation (wavelength lambda < 400 nm), which leads to electron jump from valence to conduction band. This project aims at developing electrospun titania fibers doped with copper in order to study and demonstrate photocatalytic activity in the visible light spectrum, resulting in quick formation of holes which are ready to react with water to form -OH radicals. A comparative study of pure titania and copper doped titania for degradation of azo dyes were carried out. SEM, EDAX, XRD were carried out to thoroughly understand the structure of the fibers. The photocatalytic activity measurements for different dyes were noted using Uv-Vis method. The fibers when fully developed will be disposable photocatalytic materials for degrading dyes, Organic pollutants and for bio-medical applications when exposed to visible light.

  18. Degradation of sulphonated azo dye Red HE7B by Bacillus sp. and elucidation of degradative pathways.

    PubMed

    Thakur, Jyoti Kumar; Paul, Sangeeta; Dureja, Prem; Annapurna, K; Padaria, Jasdeep C; Gopal, Madhuban

    2014-08-01

    Bacteria capable of degrading the sulfonated azo dye Red HE7B were isolated from textile mill effluent contaminated soil. The most efficient isolate was identified as Bacillus sp. Azo1 and the isolate could successfully decolorize up to 89% of the dye. The decolorized cultural extract analyzed by HPLC confirmed degradation. Enzymatic analysis showed twofold and fourfold increase in the activity of azoreductase and laccase enzymes, respectively, indicating involvement of both reductive and oxidative enzymes in biodegradation of Red HE7B. Degraded products which were identified by GC/MS analysis included various metabolites like 8-nitroso 1-naphthol, 2-diazonium naphthalene. Mono azo dye intermediate was initially generated from the parent molecule. This mono azo dye was further degraded by the organism, into additional products, depending on the site of cleavage of R-N=N-R molecule. Based on the degradation products identified, three different pathways have been proposed. The mechanism of degradation in two of these pathways is different from that of the previously reported pathway for azo dye degradation. This is the first report of a microbial isolate following multiple pathways for azo dye degradation. Azo dye Red HE7B was observed to be phytotoxic, leading to decrease in root development, shoot length and seedling fresh weight. However, after biotreatment the resulting degradation products were non-phytotoxic. PMID:24682261

  19. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    PubMed

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-01

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling. PMID:27299505

  20. Investigation of the azo-hydrazone tautomeric equilibrium in an azo dye involving the naphthalene moiety by UV-vis spectroscopy and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Ünal, Arslan; Eren, Bilge; Eren, Erdal

    2013-10-01

    Photophysical properties of the azo-hydrazone tautomerism of Eriochrome Blue Black B (1-(1-hydroxy-2-naphthylazo)-2-naphthol-4-sulphonic acid) in DMF, MeCN and water were investigated using UV-visible spectroscopy and quantum chemical calculations. The optimized molecular structure parameters, relative energies, mole fractions, electronic absorption spectra and HOMO-LUMO energies for possible stable tautomeric forms of EBB were theoretically calculated by using hybrid density functional theory, (B3LYP) methods with 6-31G(d) basis set level and polarizable continuum model (PCM) for solvation effect. The effects of varying pH-, dye concentration-, solvent-, temperature-, and time-dependences on the UV-vis spectra of Eriochrome Blue Black B were also investigated experimentally. The calculations showed that the dye exhibited acid-base, azo-hydrazone and aggregate equilibria in DMF solution, while the most probably preferred form in MeCN solution was azo form. Thermodynamic parameters of dimerization reaction in DMF solution proved that entropy was the driving force of this reaction.

  1. DEVELOPING AZO AND FORMAZAN DYES BASED ON ENVIRONMENTAL CONSIDERATIONS: SALMONELLA MUTAGENICITY

    EPA Science Inventory

    Abstract
    In previous papers, the synthesis and chemical properties of iron-complexed azo and formazan dyes were reported. In this regard, it was shown that in certain cases iron could be substituted for the traditionally used metals, chromium and cobalt, without having an adve...

  2. COLLISIONAL ACTIVATION MASS SPECTRA OF M-. IONS OF AZO DYES CONTAINING 2-NAPHTHOL

    EPA Science Inventory

    Collisionally activated decomposition mass spectra of M- ions of azo dyes are presented. he compounds are of general structure Ar(l)-N=N-Ar(2), where Ar(l) is substituted phenyl and Ar(2) is 2-naphthol. Characteristic fragment ions observed include m/z 157, which corresponds to t...

  3. Light-Driven Reversible Alignment Switching of Liquid Crystals Enabled by Azo Thiol Grafted Gold Nanoparticles.

    PubMed

    Xue, Chenming; Xiang, Jie; Nemati, Hossein; Bisoyi, Hari Krishna; Gutierrez-Cuevas, Karla; Wang, Ling; Gao, Min; Zhou, Shuang; Yang, Deng-ke; Lavrentovich, Oleg D; Urbas, Augustine; Li, Quan

    2015-06-22

    Stimuli-directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo-TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the trans-cis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated. PMID:26097118

  4. INFLUENCE OF EXPERIMENTAL CONDITIONS ON THE LIQUID SECONDARY ION MASS SPECTRA OF SULFONATED AZO DYES

    EPA Science Inventory

    Two monosulfonated and eight disulfonated azo dyes of varying relative molecular mass were examined by liquid secondary ion mass spectrometry (LSIMS). he effects of matrix, concentration, primary beam energy, and mode of operation were addressed in order to optimize sample ioniza...

  5. STRUCTURAL CHARACTERIZATION OF SULFONATED AZO DYES USING LIQUID SECONDARY ION MASS SPECTROMETRY/TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    Eight monosulfonated and disulfonated azo dyes were analyzed using liquid secondary ion mass spectrometry/tandem mass spectrometry, in the negative ion mode, under low-energy conditions (110-150 eV). any structurally characteristic fragment ions were obtained, several of which ha...

  6. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions

    PubMed Central

    Ali, Naeem; Hameed, Abdul; Ahmed, Safia

    2010-01-01

    The present study is vital to the understanding of bioremediation of structurally different azo dyes by some unusual Brown-rot fungi. Bioremoval of each dye (20 mg l-1) was tested in two different culture media under static and shaking conditions by taking inocula from different fungi. Fungal strains showed varying dyes removal abilities, though considerable high in case of Acid Red (AR) 151(di-azo) as compared to Orange (Or) II (mono-azo). With an exception of Aspergillus tereus SA3, all the fungal isolates showed higher removal of dyes in SDB. Under static condition, the maximum decolorizing fungal strains were; Aspergillus flavus SA2 (67%) and Alternaria spp. SA4 (57%) in AR 151, while Penicillium spp. (34 and 33 %) in Orange II, in SDB and STE, respectively. Bioremoval of dyes was considerably increased when experiments were shifted from static to shaking mode. It was specifically increased (%) in; AR 151 (255) with Penicillium spp., Or II with A. flavus SA2 (112) and Alternaria spp. (111). The primary mechanism of dyes removal proved to be fungal biosorption. However, reduction of dyes (onto fungal) with formation of their products (α. naphthol, sulphalinic acid and aniline) furthermore revealed that dyes (specifically azo) were actually biodegraded. PMID:24031570

  7. SORPTION AND TOXICITY OF AZO AND TRIPHENYLMETHANE DYES TO AQUATIC MICROBIAL POPULATIONS

    EPA Science Inventory

    Toxicity and sorption of five azo and triphenylmethane dyes to freshwater microbiota were determined to assessment, in part, the risks that these dyes may pose to the aquatic environment. The toxicities of Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Green 4 and Tropaeol...

  8. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  9. KINETIC STUDIES OF THE REDUCTION OF AROMATIC AZO COMPOUNDS IN ANAEROBIC SEDIMENT/WATER SYSTEMS

    EPA Science Inventory

    The reductive transformation of azobenzene and selected derivatives was investigated in anaerobic sediment/water systems. The azo compounds exhibited pseudo-first-order disappearance kinetics through at least three half-lives. The reduction kinetics of these compounds was studied...

  10. Synthesis of 1,1'-dinitro-3,3'-azo-1,2,4-triazole

    SciTech Connect

    Lee, K.Y.

    1985-04-01

    A novel compound has been prepared and is a candidate for high-energy propellant applications. The 1,1'-dinitro-3,3'-azo-1,2,4-triazole (N-DNAT) has a density of 1.77 g/cm/sup 3/ and can be prepared from inexpensive starting materials.

  11. Optical properties of Azo Dye (1-Phenylazo-2-Naphthol) thin films

    NASA Astrophysics Data System (ADS)

    Aziz, M. S.; El-Mallah, H. M.; Mansour, A. N.

    2009-11-01

    Thin Films of Azo Dye (1-Phenylazo-2-Naphthol) have been prepared by thermal evaporation technique onto quartz substrates held at about 300 K during the deposition process with different thicknesses range 625-880 nm. X-ray diffraction and the differential thermal analysis showed that the Azo Dye sample is crystalline nature and thermal stable in temperature range from room temperature to 100 circC. The optical constants (the refractive index n, the absorption index k and the absorption coefficient α) were calculated for Azo Dye (1-Phenylazo-2-Naphthol) thin films by using spectrophotometer measurements of the transmittance and reflectance at normal incidence in the spectral range 400-2200 nm. The obtained values of both n and k were found to be independent of the film thicknesses. The refractive index has anomalous behavior in the wavelength range 400-1000 nm besides a high energy transition at 2.385 eV. The optical parameters (the dispersion energy Ed, the oscillation energy Eo, the room temperature optical dielectric constant \\varepsilonl, the lattice dielectric constant \\varepsilonL, the high frequency dielectric constant \\varepsilon∞ and the ratio of carrier concentration to the effective mass N/mast) were calculated. The allowed optical transition responsible for optical absorption was found to be direct transition with optical energy gap of 1.5 eV for Azo Dye sample. The band tail obeys Urbach's empirical relation. in here

  12. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenyl esters (generic name). 721.3063 Section 721.3063 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  13. 40 CFR 721.3063 - Substituted phenyl azo substituted phenyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenyl esters (generic name). 721.3063 Section 721.3063 Protection of Environment ENVIRONMENTAL... esters (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as substituted phenyl azo substituted phenyl esters (PMNs...

  14. TREATABILITY OF WATER SOLUBLE AZO DYES BY THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Office of Toxic Substances (OTS) evaluates submissions to the Premanufacture Notification process under section 5 of the Toxic Substances Control Act. Azo dyes constitute a significant portion of these submissions. OTS is concerned...

  15. ENVIRONMENTAL APPLICATIONS OF THERMOSPRAY LCMS: QUALITATIVE ANALYSIS OF SULFONATED AZO DYES

    EPA Science Inventory

    Thermospray mass spectra (TSMS) has been used to obtain mass spectra of several di- and tetra- sulfonated azo dyes. Commercial dye preparations were dissolved in various mobile phases and injected into the TSMS system. Mobile phases investigated included pure water and varying co...

  16. EFFECT OF LINDANE ON INTESTINAL NITROREDUCTASE, AZO REDUCTASE, B-GLUCURONIDASE, DECHLORINASE AND DEHYDROCHLORINASE ACTIVITY

    EPA Science Inventory

    The effect of daily p.o. injections of 20 mg/kg lindane on nitroreductase, azo reductase, B-glucuronidase, dechlorinase and dehydrochlorinase enzyme activity in the rat intestinal tract vas investigated after 2 weeks and 5 weeks of treatment. Antibiotics were administered to half...

  17. A spectral approach to determine location and orientation of azo dyes within surfactant aggregates

    NASA Astrophysics Data System (ADS)

    Karukstis, Kerry K.; Litz, Jonathan P.; Garber, Matthew B.; Angell, Laura M.; Korir, George K.

    2010-04-01

    The UV-vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (C nTAB) surfactants with n = 10-16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.

  18. Preparation of 1,1'-dinitro-3,3'-azo-1,2,4-triazole

    DOEpatents

    Lee, Kien-Yin

    1986-01-01

    A new high density composition of matter, 1,1'-dinitro-3,3'-azo-1,2,4-triazole, has been synthesized using inexpensive, commonly available compounds. This compound has been found to be an explosive, and its use as a propellant is anticipated.

  19. An electronic spectral study of the coupled effect on the tautomeric equilibria of some α-hydroxy azo compounds

    NASA Astrophysics Data System (ADS)

    Ahmed, Z. A.; Arta, F. M.; Abd Alla, M. A.; Abd El-Monem, M. E.; Metwally, S. A.

    1989-01-01

    The spectral behaviour of six a-hydroxy azo compounds has been investigated in solution. The bands appearing in the u.v. and visible regions are assigned to possible electronic transitions. Azo compounds containing pyrazolone and acetyl or ester moieties are found to exist mainly in the hydrazo form in solution, while those containing the naphthol moiety exist in the azo-hydrazone tautomeric equilibrium. The solvatochromic behaviour of the compounds is investigated by studying their spectra in organic solvents of different polarities. The acidity constants are determined from the spectra of the compounds in aqueous ethanolic solutions of varying pH values.

  20. Optical orientation of azo dye molecules in a thin solid film upon nonlinear excitation by femtosecond laser pulses

    SciTech Connect

    Yongseok, Jung; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M

    2006-11-30

    The orientation of molecules in an amorphous pure azo dye film upon nonlinear excitation is detected for the first time. The simultaneous increase and decrease in the film transmission by a factor of 2.5 for orthogonal polarisations of probe radiation indicated the appearance of orientation order in the film caused by the reorientation of azo dye molecules. Due to a high photostability of the AD-1 azo dye demonstrated in single-photon experiments and a high efficiency of nonlinear orientation obtained in experiments with femtosecond pulses, this dye can be widely used in three-dimensional nanophotonic devices such as photonic crystals, optical computers, and optical memory. (letters)