Science.gov

Sample records for al-si alloy reinforced

  1. The Tribological Behavior of Plasma-Sprayed Al-Si Composite Coatings Reinforced with Nanodiamond

    NASA Astrophysics Data System (ADS)

    Bao, Mingdong; Zhang, Cheng; Lahiri, Debrupa; Agarwal, Arvind

    2012-06-01

    Al-Si composite coatings reinforced with 0 vol.%, 0.5 vol.%, and 2 vol.% nanodiamond were synthesized by plasma spraying. The effect of the addition of nanodiamond on the microstructure, hardness, and tribological performance of the composite coatings is investigated. The addition of 2 vol.% nanodiamond results in 45% improvement in the wear resistance of Al-Si coating. Al-Si coating with 0.5 vol.% nanodiamond exhibited lower coefficient of friction (0.45) with a 12% improvement in the wear resistance. Plasma-sprayed AlSi coatings with nanodiamond have excellent potential as wear-resistant coatings in automotive applications.

  2. Nucleation Effects in Thermally Managed Graphite Fiber-Reinforced Al-Cu and Al-Si Composites

    NASA Astrophysics Data System (ADS)

    Seong, H. G.; Lopez, H. F.; Gajdardziska-Josifovska, M.; Rohatgi, P. K.

    2007-11-01

    The influence of heat extraction through fiber reinforcements on the resultant solidification morphologies was investigated in cast Al-Cu and Al-Si alloy composites reinforced with graphite fibers (GRFs). For this purpose, the GRFs were externally cooled by exposing their ends to ambient air during pressure infiltration. It was found that in the Al-Cu system, heat extraction through the fiber ends promoted the development of single α-Al envelopes around the GRFs. In particular, radial growth of the α envelopes occurred with a planar solid/liquid solidification front as a result of heat extraction. Apparently, the high thermal conductivity of GRFs causes significant heat extraction to enable the development of a positive temperature gradient at the GRF/melt interface. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAD) unveiled the occurrence of (002) α-Al//(0002)GR orientation relationship at α-Al/GRF interfaces. Preferential nucleation of primary Si along the graphite surfaces of the GRF-reinforced Al-Si alloy composite was also promoted by external fiber heat extraction. However, in this case, numerous nucleation events along the fiber interfaces were common, as well as nucleation at active substrates within the constrained melt. Finally, differential thermal analysis (DTA) indicated that the onset temperatures for nucleation shift toward higher values (by 7 °C for the Al-Cu composite and 2 °C for the Al-Si composite) when compared with their corresponding matrix alloys.

  3. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-06-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  4. Tribological Behavior of Aluminum Alloy AlSi10Mg-TiB2 Composites Produced by Direct Metal Laser Sintering (DMLS)

    NASA Astrophysics Data System (ADS)

    Lorusso, Massimo; Aversa, Alberta; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa Paola; Ugues, Daniele; Pavese, Matteo

    2016-08-01

    Direct metal laser sintering (DMLS) is an additive manufacturing technique for the production of parts with complex geometry and it is especially appropriate for structural applications in aircraft and automotive industries. Aluminum-based metal matrix composites (MMCs) are promising materials for these applications because they are lightweight, ductile, and have a good strength-to-weight ratio This paper presents an investigation of microstructure, hardness, and tribological properties of AlSi10Mg alloy and AlSi10Mg alloy/TiB2 composites prepared by DMLS. MMCs were realized with two different compositions: 10% wt. of microsize TiB2, 1% wt. of nanosize TiB2. Wear tests were performed using a pin-on-disk apparatus on the prepared samples. Performances of AlSi10Mg samples manufactured by DMLS were also compared with the results obtained on AlSi10Mg alloy samples made by casting. It was found that the composites displayed a lower coefficient of friction (COF), but in the case of microsize TiB2 reinforcement the wear rate was higher than with nanosize reinforcements and aluminum alloy without reinforcement. AlSi10Mg obtained by DMLS showed a higher COF than AlSi10Mg obtained by casting, but the wear rate was higher in the latter case.

  5. Infiltration of Saffil alumina fiber with AlCu and AlSi alloys

    SciTech Connect

    Garbellini, O.; Morando, C.; Biloni, H.; Palacio, H. . Inst. de Fisica de Materiales)

    1999-06-18

    Currently there is a considerable scientific and technological interest in the composite materials, which a strong ceramic reinforcement is incorporated into a metal matrix (MMC) to tailor its properties for specific applications. Among the various techniques for fabricating MMC, the liquid metal infiltration process by means of a pressurized gas is an attractive fabrication route for near net shaped metal matrix composite and has been successfully used to fabricate Al, Mg and more recently, Ni and Ni aluminide matrix composites, which can be reinforced by SiC or Al[sub 2]O[sub 3] particles, whiskers, or short fibers. This paper describes the experimental technique used and presents an experimental investigation of the effects of the process parameters employed, such as the preform and melt temperatures, the volume fraction of fibers in the preform and the applied pressure upon the infiltration length of a chopped preform during a unidirectional infiltration aided by gas pressure casting. The experiments of the present work were conducted to provide kinetic data with a view to optimizing the selection of the process initial conditions for infiltration which have an effect on the infiltration length of the molten matrix alloy into a preform and it is a first step in investigating the correlation between the infiltration length (fluidity) of AlCuSi matrix alloys and the microstructure of the composites fabricated by pressure casting. For this purpose, this paper focuses on AlCu and AlSi matrix alloys reinforced by short-fibers [delta]-alumina SAFFIL. The experiments reported here were performed with the fibers initially at a temperature significantly below the metal melting point. This is the case of practical interest for the fabrication of many fiber-reinforced metal components.

  6. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  7. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    PubMed Central

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al7Cu4Ni, Al4Cu2Mg8Si7, Al2Cu, Al15Si2(FeMn)3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 °C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si. PMID:21977004

  8. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys.

    PubMed

    Asghar, Z; Requena, G; Boller, E

    2011-09-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al(7)Cu(4)Ni, Al(4)Cu(2)Mg(8)Si(7), Al(2)Cu, Al(15)Si(2)(FeMn)(3) and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 °C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  9. Tensile properties influencing variables in eutectic Al-Si casting alloys

    SciTech Connect

    Hafiz, M.F. . Dept. of Mechanical Engineering); Kobayashi, Toshiro . Dept. of Production Systems Engineering)

    1994-09-15

    Efforts to identify and characterize the physical properties of aluminum castings alloys are envisaged to lead to a new guideline from which the mechanical behavior of these alloys can be accurately predicted. For aluminum-silicon (Al-Si) casting alloys the tensile properties of a specific composition are observed to vary depending on the production parameters. The difference in the tensile properties appears to be mainly due to the microstructural features concomitant with the imposed production parameters. The present study aims to identify, quantitatively, the tensile properties influencing variables in high purity eutectic Al-Si casting alloy produced under a variety of solidification cooling rate with different strontium (Sr) additions, as a modifying agent. The correlation between the fracture characteristics and the microstructures has also been investigated.

  10. Hypereutectic AlSi Alloy: Gathering of 3D Microstructure Data

    NASA Astrophysics Data System (ADS)

    Schaberger-Zimmermann, E.; Mathes, M.; Zimmermann, G.

    2016-08-01

    Hypereutectic and eutectic AlSi-base alloys find frequent application in casting automotive components. The properties of this type of alloy depend significantly on their solidification microstructure, especially the size, shape, and distribution of primary and eutectic silicon. The serial sectioning technique was applied for determining the three-dimensional (3D) microstructure of an Al-18wt.%Si alloy. For clear identification of both the larger primary Si particles grown in the melt and the fine lamellar eutectic Si, a series of two-dimensional equidistant cross sections were metallographically prepared. The microstructure in these cross sections was detected and observed at high resolution using a light microscope. The images were stored in a digital library. The 3D reconstruction of primary Si particles and AlSi eutectic was achieved through the application of various software tools. This provided data about the faceted growth behavior of octahedral Si particles and feathery eutectic Si. The image stack was also imported to hierarchical data format (version 5) (HDF5) open source format, thus, enabling availability of the 3D image data to the wider community. In this way, 3D reconstructions of this kind can contribute to a greater understanding of processing/microstructure property relationships in hypereutectic AlSi alloys.

  11. Hypereutectic AlSi Alloy: Gathering of 3D Microstructure Data

    NASA Astrophysics Data System (ADS)

    Schaberger-Zimmermann, E.; Mathes, M.; Zimmermann, G.

    2016-06-01

    Hypereutectic and eutectic AlSi-base alloys find frequent application in casting automotive components. The properties of this type of alloy depend significantly on their solidification microstructure, especially the size, shape, and distribution of primary and eutectic silicon. The serial sectioning technique was applied for determining the three-dimensional (3D) microstructure of an Al-18wt.%Si alloy. For clear identification of both the larger primary Si particles grown in the melt and the fine lamellar eutectic Si, a series of two-dimensional equidistant cross sections were metallographically prepared. The microstructure in these cross sections was detected and observed at high resolution using a light microscope. The images were stored in a digital library. The 3D reconstruction of primary Si particles and AlSi eutectic was achieved through the application of various software tools. This provided data about the faceted growth behavior of octahedral Si particles and feathery eutectic Si. The image stack was also imported to hierarchical data format (version 5) (HDF5) open source format, thus, enabling availability of the 3D image data to the wider community. In this way, 3D reconstructions of this kind can contribute to a greater understanding of processing/microstructure property relationships in hypereutectic AlSi alloys.

  12. Solidification, growth mechanisms, and associated properties of Al-Si and magnesium lightweight casting alloys

    SciTech Connect

    Hosch, Timothy

    2010-01-01

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  13. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  14. The influence of Cu, Mg and Ni on the solidification and microstructure of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; StJohn, D. H.

    2016-03-01

    The influence of alloying elements (Cu, Mg, and Ni) on eutectic nucleation, eutectic grain morphology and the final microstructure of an Al-10Si commercial purity alloy in unmodified and Sr-modified conditions was investigated. It was found that the nucleation and eutectic grain growth morphologies of both the unmodified and Sr-modified Al-Si eutectic were significantly influenced by the addition of ternary alloying elements to a degree dependent on when the intermetallic phase formed during the solidification of the alloy with respect to the Al-Si eutectic. In cases where an intermetallic phase nucleated prior to the onset of the Al-Si eutectic reaction, the eutectic nucleation frequency was affected by changes to the available nuclei population. In cases where the intermetallic nucleated after the Al-Si eutectic, segregation of the ternary solutes in front of the Al-Si eutectic interface changed the nucleation and macroscopic growth dynamics. The changes in nucleation and growth dynamics of the Al-Si eutectic due to the presence of solute altered the morphology of the eutectic silicon considerably. This study has revealed a number of insights into the mechanisms of nucleation and growth of the Al-Si eutectic.

  15. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  16. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, P.D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D{sub 84} < 32 {micro}m). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 {micro}m. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 {micro}m to 104 {micro}m. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase {alpha} + DO{sub 3} structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  17. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  18. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  19. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-06-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  20. Influence of SiC reinforcement particles on the tribocorrosion behaviour of Al-SiCp FGMs in 0.05M NaCl solution

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Rocha, L. A.; Mischler, S.

    2011-05-01

    The main aim of this work was to study and understand the influence of SiC particles on the corrosion and tribocorrosion of Al-matrix composite materials. For that, Al-SiCp functionally graded composites were produced by centrifugal casting and different SiCp contents were achieved. Their mechanical properties were improved by age-hardening heat treatments. The tribocorrosion behaviour was studied in 0.05M NaCl solutions using a reciprocating motion tribometer involving an alumina ball sliding against the Al-based samples. Above critical SiC particles' content the matrix alloy surface was found to be protected against wear by SiC particles protruding from the surface. Below this threshold content, the SiC reinforcement was inefficient and the wear rate of the composite was the same as the non-reinforced alloy.

  1. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  2. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  3. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  4. Experimental study on directional solidification of Al-Si alloys under the influence of electric currents

    NASA Astrophysics Data System (ADS)

    Räbiger, D.; Zhang, Y.; Galindo, V.; Franke, S.; Willers, B.; Eckert, S.

    2016-07-01

    The application of electric currents during solidification can cause grain refinement in metallic alloys. However, the knowledge about the mechanisms underlying the decrease in grain size remains fragmentary. This study considers the solidification of Al-Si alloys under the influence of electric currents for the configuration of two parallel electrodes at the free surface. Solidification experiments were performed under the influence of both direct currents (DC) and rectangular electric current pulses (ECP). The interaction between the applied current and its own induced magnetic field causes a Lorentz force which produces an electro-vortex flow. Numerical simulations were conducted to calculate the Lorentz force, the Joule heating and the induced melt flow. The numerical predictions were confirmed by isothermal flow measurements in eutectic GaInSn. The results demonstrate that the grain refining effect observed in our experiments can be ascribed solely to the forced melt flow driven by the Lorentz force.

  5. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    NASA Astrophysics Data System (ADS)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  6. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  7. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment

    SciTech Connect

    Anantha Narayanan, L. |; Samuel, F.H.; Gruzleski, J.E.

    1995-08-01

    Conventional heat treatment techniques in Al-Si alloys to achieve optimum mechanical properties are limited to precipitation strengthening processes due to the presence of second-phase particles and spheroidization of silicon particles. The iron intermetallic compounds present in the microstructure of these alloys are reported to be stable, and they do not dissolve during conventional (equilibrium) heat treatments. The dissolution behavior of iron intermetallics on nonequilibrium heat treatment has been investigated by means of microstructure and mechanical property studies. The dissolution of iron intermetallics improves with increasing solution temperature. The addition of manganese to the alloy hinders the dissolution of iron intermetallics. Nonequilibrium heat treatment increases the strength properties of high iron alloys until a critical solution temperature is exceeded. Above this temperature, a large amount of liquid phase is formed as a result of interdendritic and grain boundary melting. The optimum solution treatment temperature for Al-6Si-3.5Cu-0.3Mg-1Fe alloys is found to be between 515 C and 520 C.

  8. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  9. Microstructure analysis of Al-Si-Cu alloys prepared by gradient solidification technique

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Seifeddine, Salem; Jarfors, Anders E. W.

    2015-03-01

    Al-Si-Cu alloys were cast with the unique gradient solidification technique to produce alloys with two cooling rates corresponding to secondary dendrite arm spacing (SDAS) of 9 and 27 μm covering the microstructural fineness of common die cast components. The microstructure was studied with optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). The alloy with higher cooling rate, lower SDAS, has a more homogeneous microstructure with well distributed network of eutectic and intermetallic phases. The results indicate the presence of Al-Fe-Si phases, Al-Cu phases and eutectic Si particles but their type, distribution and amount varies in the two alloys with different SDAS. EBSD analysis was also performed to study the crystallographic orientation relationships in the microstructure. One of the major highlights of this study is the understanding of the eutectic formation mechanism achieved by studying the orientation relationships of the aluminum in the eutectic to the surrounding primary aluminum dendrites.

  10. Role of Laser Cladding Parameters in Composite Coating (Al-SiC) on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Riquelme, Ainhoa; Escalera-Rodriguez, María Dolores; Rodrigo, Pilar; Rams, Joaquin

    2016-08-01

    The effect of the different control parameters on the laser cladding fabrication of Al/SiCp composite coatings on AA6082 aluminum alloy was analyzed. A high-power diode laser was used, and the laser control parameters were optimized to maximize the size (height and width) of the coating and the substrate-coating interface quality, as well as to minimize the melted zone depth. The Taguchi DOE method was applied using a L18 to reduce the number of experiments from 81 to only 18 experiments. Main effects, signal-noise ratio and analysis of variance were used to evaluate the effect of these parameters in the characteristics of the coating and to determine their optimum values. The influence of four control parameters was evaluated: (1) laser power, (2) scanning speed, (3) focal condition, and (4) powder feed ratio. Confirmation test with the optimal control parameters was carried out to evaluate the Taguchi method's effectivity.

  11. Anisotropic Responses of Mechanical and Thermal Processed Cast Al-Si-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Balogun, S. A.; Onoyemi, O. K.

    2015-05-01

    The effects of ambient directional rolling and heat treatments on ultimate tensile strength (UTS), hardness (HD), percent elongation (PE), and impact energy (IE) on Al-Si-Mg-Cu alloy casting with reference to inclination to rolling direction are discussed in this article. The results show that rolled and quenched (CQ) sample possess superior UTS and HD to as-cast and those of rolled and aged samples (CA). Improved IE resistance with ductility is shown by both CQ and CA samples. However, these mechanical properties are enhanced as changes in the test sample direction moved away from rolling direction for all heat-treated samples. The CQ samples displayed highest tensile strength (108 MPa) and PE (19.8%) in the 90° direction.

  12. Secondary and tertiary dendrite arm spacing relationships in directionally solidified Al-Si alloys

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    1993-01-01

    Secondary, lambda sub 2, and tertiary, lambda sub 3, dendrite arm spacings have been measured from Al-Si alloys which were directionally solidified as functions of growth velocity, V, temperature gradient, G, and composition, Co. Both lambda sub 2 and lambda sub 3 decreased as the imposed growth velocity and silicon concentrations were increased, and for each function a systematic variance in the rate was seen. Complications with measuring secondary arm spacings are shown and it was found that the tertiary arm data agree much better with coarsening theory, the implication being that lambda sub 3, when measurable, is a more representative and reliable measure of the solidification history than lambda sub 2.

  13. Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Kang, Nan; Coddet, Pierre; Liao, Hanlin; Baur, Tiphaine; Coddet, Christian

    2016-08-01

    This work investigates the microstructure and wear behavior of hypereutectic Al-Si alloys, in-situ fabricated using selective laser melting of a mixture of eutectic Al-12Si (wt.%) and pure Si powders. The first observation was that the size and morphology of the Si phase are strongly influenced by the laser power. In addition, it was also observed that a high laser power causes serious evaporation of aluminum during the remelting process. Dry sliding wear test and Vickers microhardness measurements were employed to characterize the mechanical properties of the material. The lowest wear rate of about 7.0 × 10-4 mm3 N-1 m-1 was observed for samples having the highest value of relative density (96%) and microhardness (105 Hv0.3).

  14. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  15. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  16. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    NASA Astrophysics Data System (ADS)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  17. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  18. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).

  19. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  20. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-10-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  1. Phase stability of U-Mo-Ti alloys and interdiffusion behaviors of U-Mo-Ti/Al-Si

    SciTech Connect

    Park, Jong Man; Ryu, Ho Jin; Park, Jae Soon; Oh, Seok Jin; Kim, Chang Kyu; Kim, Yeon Soo; Hofman, Gerard L.

    2008-07-15

    As a remedy for reducing reaction between U-Mo and Al in U-Mo/Al dispersion fuel, adding an alloying element such as Zr and Ti in U-Mo has been proposed at ANL. Although ANL's work showed the potential effectiveness of these elements based on thermodynamic and metallurgical analyses, the effect of a Ti addition in U-Mo remains unproven. The out-of-pile tests of U-Mo-Ti alloys, which focused on phase stability and interdiffusion behavior against Al, are meaningful to predict their efficacy during an irradiation. At the 2006 RERTR conference, we presented our work on the interdiffusion behaviors of U-Mo-Zr/Al-Si. In this paper, we will present the results for substituting U-Mo-Zr with U-Mo-Ti. Unlike U-Mo-Zr alloys, the gamma-heat-treated U-7Mo-xTi (x=1{approx}3 wt%) exhibited a metastable {gamma}-U phase, regardless of the Ti content. In these samples, however, a small amount of second-phase precipitates with a high Ti concentration was observed. The gamma phase stability of the U-Mo-Ti alloys at 500 deg C was similar to that of the U-Mo-Zr alloys. Interdiffusion test results between U-Mo-Ti alloys and Al-Si alloys will also be presented and a comparison with the previous results with U- Mo-Zr/Al-Si will also be included. (author)

  2. Microstructure Evolution of Cold-Sprayed Al-Si Alloy Coatings on γ-TiAl During Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2015-08-01

    This paper investigated the influence of heat treatment on the microstructure of Al-Si alloy coatings on γ-TiAl alloy. The coatings were prepared by cold spraying with Al-12Si and Al-20Si alloy powders as the feedstock, and then the as-sprayed coatings were subjected to heat treatment. The microstructure, chemical composition, and phase transformation of the coatings were studied by SEM, XRD, and EPMA. The diffusing behavior of Al and Si during heat treatment was investigated. The results showed that a silicon-aluminizing coating was formed through the inward diffusion of Al/Si elements into the substrate. The obtained kinetics curve of the formation of silicon-aluminizing coating at 580 °C similarly followed parabolic law.

  3. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    SciTech Connect

    Jung, Choonho

    2006-01-01

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10-3 m/sec and with a temperature gradient of 7.5 x 103 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  4. Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys

    NASA Astrophysics Data System (ADS)

    Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.

    2016-09-01

    Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.

  5. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  6. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  7. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  8. Localized Recrystallization in Cast Al-Si-Mg Alloy during Solution Heat Treatment: Dilatometric and Calorimetric Studies

    NASA Astrophysics Data System (ADS)

    Chaudhury, S. K.; Warke, V.; Shankar, S.; Apelian, D.

    2011-10-01

    During heat treatment, the work piece experiences a range of heating rates depending upon the sizes and types of furnace. When the Al-Si-Mg cast alloy is heated to the solutionizing temperature, recrystallization takes place during the ramp-up stage. The effect of heating rate on recrystallization in the A356 (Al-Si-Mg) alloy was studied using dilatometric and calorimetric methods. Recrystallization in as-cast Al-Si alloys is a localized event and is confined to the elasto-plastic zone surrounding the eutectic Si phase; there is no evidence of recrystallization in the center of the primary Al dendritic region. The size of the elasto-plastic zone is of the same order of magnitude as the Si particles, and recrystallized grains are observed in the elasto-plastic region near the Si particles. The coefficient of thermal expansion of Al is an order of magnitude greater than Si, and thermal stresses are generated due to the thermal mismatch between the Al phase and Si particles providing the driving force for recrystallization. In contrast, recrystallization in Al wrought alloy (7075) occurs uniformly throughout the matrix, stored energy due to cold work being the driving force for recrystallization in wrought alloys. The activation energy for recrystallization in as-cast A356 alloy is 127 KJ/mole. At a slow heating rate of 4.3 K/min, creep occurs during the heating stage of solution heat treatment. However, creep does not occur in samples heated at higher heating rates, namely, 520, 130, and 17.3 K/min.

  9. Effect of thermally stable Cu- and Mg-rich aluminides on the high temperature strength of an AlSi12CuMgNi alloy

    SciTech Connect

    Asghar, Z.

    2014-02-15

    The internal architecture of an AlSi12CuMgNi piston alloy, revealed by synchrotron tomography, consists of three dimensional interconnected hybrid networks of Cu-rich aluminides, Mg-rich aluminides and eutectic/primary Si embedded in an α-Al matrix. The strength at room temperature and at 300°C is studied as a function of solution treatment time at 490°C and compared with results previously reported for an AlSi12Ni alloy. The addition of 1 wt% Cu and 1 wt% Mg to AlSi12CuMgNi increases the room temperature strength by precipitation hardening while the strength at 300°C is similar for both alloys in as-cast condition. The strength of AlSi12CuMgNi decreases with solution treatment time and stabilizes at 4 h solution treatment. The effect of solution treatment time on the strength of the AlSi12CuMgNi alloy is less pronounced than for the AlSi12Ni alloy both at room temperature and at 300°C. - Highlights: • The 3D microstructure of AlSi12CuMgNi is revealed by synchrotron tomography. • An imaging analysis procedure to segment phases with similar contrasts is presented. • 1 wt% Cu and Mg results in the formation of 3D networks of rigid phases. • AlSi12CuMgNi is stronger than AlSi12Ni owing to the stability of the 3D networks.

  10. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  11. Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites

    NASA Astrophysics Data System (ADS)

    Atuanya, C. U.; Ibhadode, A. O. A.; Dagwa, I. M.

    2012-01-01

    The microstructures and properties of Al-Si-Fe alloy matrix composites reinforced with different weight fractions of breadfruit seed hull (husk) ash particles of size 500 nm were investigated. Six (6) different weight fractions of breadfruit seed hull ash particles were added to aluminium alloy matrix using a double stir-casting method. Microstructural analysis shows that with the increase of the reinforcement weight fraction, the matrix grain size decreases. The mechanical properties of the composites are improved over the matrix materials, except for the slightly decrease of the impact energy. Fracture surface examination indicates that there is a good interfacial bonding between the aluminium alloy matrix and the breadfruit seed hull ash particles and that fracture initiation does not occur at the particle-matrix interface. Hence, incorporation of breadfruit seed hull ash particles in aluminium matrix can lead to the production of low cost aluminium composites with improved hardness and strength. These composites can find applications in automotive components where light weight materials are required with good stiffness and strength.

  12. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth; Cai, Zhonghou

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  13. Superplastic-like behavior of rapid-solidification-processed hyper-eutectic Al-Si P/M alloys

    SciTech Connect

    Satoh, T.; Okimoto, K.; Nishida, S.; Matsuki, K.

    1995-09-01

    Superplastic-like behavior of both P/M Al-25Si and Al-15Si alloys prepared from centrifugally atomized powders has been investigated. The maximum elongation of P/M Al-25Si and Al-15Si alloys are 154% and 307%, respectively. Although relatively high m value, larger than m = 0.4, is obtained at an early strain stage in tensile tests of the P/M alloys, the m value reduces to 0.33 or less with increasing strain. The testing temperature showing the maximum elongation of the P/M alloys is just below the each solidus temperature of the Al-Si alloys. The elongations of the P/M alloys extruded indirectly without pre-compaction of the powder by vacuum hot pressing, are larger than those of the alloys through vacuum hot pressing. A filament-like elongated microstructure, which may be caused by grain boundary sliding, is formed on the whole surface of P/M alloy under the optimum condition of the superplastic deformation. The shapes of primary silicon phase and cavity become more spheroidization under the condition of superplastic deformation. The fracture surface is also rounded at the optimum temperature exhibited the maximum elongation.

  14. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  15. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-04-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  16. Amorphous structure and properties in laser-clad Ni-Cr-Al coating on Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; Su, J. Y.; Woo, C. H.

    1999-09-01

    A Ni-Cr-Al coating was clad by a 5 kW CO2 laser with different laser power on Al-Si alloy. Using transmission electron microscopy, a mixing microstructure containing Ni- based amorphous structures was observed in the laser clad zones. As the uniformity of chemical composition and temperature is poor in the laser cladding, the amorphous structure with some Ni3Al crystals coexisted in the cladding. According to the morphologies of Ni-based amorphous structures, the amorphous structure existed not only in the net-like boundaries surrounding the granular structure but also in the granular structure. The microhardness of the mixture amorphous structure is between HV 600 - 800, which is lower than that of crystal phases in the coating. A differential thermal analysis showed that Ni- based amorphous structure exhibits a higher initial crystallizing temperature (about 588 degree(s)C), which is slightly higher than that of the eutectic temperature of Al- Si alloy. The wear experimental results showed that some amorphous structure exist in the laser cladding can reduce the peeling of the granular phases from matrix, and improve the its wear resistance.

  17. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  18. Laser cladding of a Mg based Mg-Gd-Y-Zr alloy with Al-Si powders

    NASA Astrophysics Data System (ADS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-03-01

    In the present work, a Mg based Mg-Gd-Y-Zr alloy was subjected to laser cladding with Al-Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg2Si, Mg17Al12 and Al2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg2Si, Mg17Al12 and Al2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from -1.77 V for the untreated alloy to -1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10-5 A cm-2 to 1.64 × 10-6 A cm-2. The results show that laser cladding is an efficient method to improve surface properties of Mg-Rare earth alloys.

  19. The influence of a microgravity environment on the dendritic morphology during directional solidification of hypoeutectic Al-Si alloys

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    1993-01-01

    NASA grant NAGW-2540 provided the opportunity to evaluate and extend ongoing studies of directionally solidified Al-Si alloys. Microstructural development was further characterized in terms of solidification processing parameters; novel relationships between processing and development of dendrite trunk diameters and tertiary dendrite arm spacings were found. This has resulted in three publications (one in print, one in press, and one in review). Microstructural development under conditions of controlled acceleration during directional solidification has been investigated; this has culminated in a Master's degree and will be submitted for publication. The above work not only contributes to our understanding of solidification phenomena but also defines the processing parameters for a successful microgravity experiment while providing a data base to which mu g samples can be unequivocally compared and evaluated.

  20. Wetting behavior of Al Si Mg alloys on Si3N4/Si substrates: optimization of processing parameters

    NASA Astrophysics Data System (ADS)

    de La Peña, J. L.; Pech-Canul, M. I.

    2008-06-01

    The wetting behavior of Al Si Mg alloys on Si3N4/Si substrates has been investigated using the sessile drop technique. Based on a Taguchi experiment design, the effect of the following processing parameters on the contact angle (θ) and surface tension (σLV) was studied: processing time and temperature, atmosphere (Ar and N2), substrate surface condition (with and without a silicon wafer), as well as the Mg and Si contents in the aluminium alloy. In nitrogen, non-wetting conditions prevail during the isothermal events while in argon a remarkable non-wetting to wetting transition leads to contact angles θ as low as 11±3° and a liquid surface tension σLV of 33± 10×10-5 kJ/m2. According to the multiple analysis of variance (Manova), the optimum conditions for minimizing the values of θ and σLV are as follows: temperature of 1100 °C, processing time of 90 min, argon atmosphere, no use of a silicon wafer, and the use of the Al-18% Mg-1% Si alloy. A verification test conducted under the optimized conditions resulted in a contact angle of θ=9±3° and a surface tension of σLV=29± 9×10-5 kJ/m2, both indicative of excellent wetting.

  1. Mechanical properties of rapidly solidified Al-Si-Ni-Ce P/M alloys

    SciTech Connect

    Lee, T.H. |; Kawamura, Yoshihito; Inoue, Akihisa; Masumoto, Tsuyoshi; Cho, S.S.

    1997-02-15

    To meet current and future materials needs for structural members or engine parts in aircraft, motorcycle and automobile, it is needed to develop high-performance light weight alloys with higher room-temperature strength, higher elevated temperature strength, higher wear resistance and lower thermal expansion. Powder metallurgy (P/M) alloys with novel mechanical properties have been developed by a rapid solidification technique. The improved properties result from structural modifications such as reduction of segregation, refinement of grain size and increase in solid solubility limit. The aim of this paper is to examine the effect of adding of glass-forming elements, Ni and Ce, to a RS P/M Al-19at.%Si alloy for the development of high strength and good wear resistance aluminum alloys.

  2. Work of Adhesion in Al/SiC Composites with Alloying Element Addition

    NASA Astrophysics Data System (ADS)

    Fang, Xin; Fan, Tongxiang; Zhang, Di

    2013-11-01

    In the current work, a general methodology was proposed to demonstrate how to calculate the work of adhesion in a reactive multicomponent alloy/ceramic system. Applying this methodology, the work of adhesion of Al alloy/SiC systems and the influence of different alloying elements were predicted. Based on the thermodynamics of interfacial reaction and calculation models for component activities, the equilibrium compositions of the melts in Al alloy/SiC systems were calculated. Combining the work of adhesion models for reactive metal/ceramic systems, the work of adhesion in Al alloy/SiC systems both before and after the reaction was calculated. The results showed that the addition of most alloying elements, such as Mg, Si, and Mn, could increase the initial work of adhesion, while Fe had a slightly decreasing effect. As for the equilibrium state, the additions of Cu, Fe, Mn, Ni, Ti, and La could increase the equilibrium work of adhesion, but the additions of Mg and Zn had an opposite effect. Si was emphasized due to its suppressing effect on the interfacial reaction.

  3. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Volcanic Rock in Cryolite Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2016-06-01

    Volcanic rock found in the Longgang Volcano Group in Jilin Province of China has properties essentially similar to Apollo lunar soils and previously prepared lunar soil simulants, such as Johnson Space Center Lunar simulant and Minnesota Lunar simulant. In this study, an electrochemical method of preparation of Al-Si master alloy was investigated in 52.7 wt.%NaF-47.3 wt.%AlF3 melt adding 5 wt.% volcanic rock at 1233 K. The cathodic electrochemical process was studied by cyclic voltammetry, and the results showed that the cathodic reduction of Si(IV) is a two-step reversible diffusion-controlled reaction. Si(IV) is reduced to Si(II) by two electron transfers at -1.05 V versus platinum quasi-reference electrode in 52.7 wt.%NaF-47.3 wt.%AlF3 molten salt adding 5 wt.% volcanic rock, while the reduction peak at -1.18 V was the co-deposition of aluminum and silicon. In addition, the cathodic product obtained by galvanostatic electrolysis for 4 h was analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy and energy dispersive spectrometry. The results showed that the phase compositions of the products are Al, Si, Al5FeSi, and Al3.21Si0.47, while the components are 90.5 wt.% aluminum, 4.4 wt.% silicon, 1.9 wt.% iron, and 0.2 wt.% titanium.

  4. Effect of Scandium on Microstructure and Mechanical Properties of Cast Al-Si-Mg Alloy

    NASA Astrophysics Data System (ADS)

    Kaiser, M. S.; Basher, M. R.; Kurny, A. S. W.

    2012-07-01

    Microstructural modification and grain refinement due to addition of scandium in Al-6Si-0.3Mg alloy has been studied in this article. It is seen from the microstructure that the dendrites of the cast Al-6Si-0.3Mg alloy have been refined significantly because of addition of scandium. Increasing amount of scandium leads to a greater dendrite refinement. The age hardening effect has been studied by subjecting the alloys containing varying amounts of scandium ranging from 0.2 to 0.6 wt.% to isochronal and isothermal aging at various temperatures for different times. It is observed that addition of scandium is the most effective in suppressing the softening effect during prolonged aging treatment.

  5. Localized Corrosion Behavior of Al-Si-Mg Alloys Used for Fabrication of Aluminum Matrix Composites

    NASA Astrophysics Data System (ADS)

    Pech-Canul, M. A.; Giridharagopal, R.; Pech-Canul, M. I.; Coral-Escobar, E. E.

    2013-12-01

    The relationship between microstructure and localized corrosion behavior in neutral aerated chloride solutions was investigated with SEM/EDAX, conventional electrochemical techniques, and with scanning Kelvin probe force microscopy (SKPFM) for two custom-made alloys with Si/Mg molar ratios of 0.12 and 0.49. In this order, Al3Fe, Al3Mg2, and Mg2Si intermetallics were identified in the first alloy and Al(FeMn)Si and Mg2Si particles in the second one. Anodic polarization curves and corrosion morphology showed that the alloy with higher Si/Mg molar ratio exhibited a better corrosion performance and evidence was shown that it had a more corrosion-resistant passive film. The corrosion process for both alloys in aerated 0.1 M NaCl solutions was localized around the Fe-rich intermetallics. They acted as local cathodes and produced dissolution of the aluminum matrix surrounding such particles. Mg2Si and Al3Mg2 exhibited anodic behavior. SKPFM was successfully used to map the Volta potential distribution of main intermetallics. The localized corrosion behavior was correlated with a large Volta potential difference between the Fe-rich intermetallics and the matrix. After immersion in the chloride solution, such Volta potential difference decreased.

  6. PEO of pre-anodized Al-Si alloys: Corrosion properties and influence of sealings

    NASA Astrophysics Data System (ADS)

    Mohedano, M.; Matykina, E.; Arrabal, R.; Mingo, B.; Pardo, A.

    2015-08-01

    Voltage-controlled PEO coatings were developed on A356 aluminum alloys (gravity-cast and rheocast) with a pre-anodized layer. The influence of the alloy manufacturing process and the effect of Si-rich phase on the structure and composition of the oxide layers were evaluated using SEM, EDS and XRD. The pre-anodized oxide layer preserves the microstructure of the substrate due to the presence of secondary phases that have a different behavior relative to the matrix during anodizing. PEO coatings consisted of a mixture of α-Al2O3, γ-Al2O3 and mullite. The corrosion behavior and the effectiveness of different sealing techniques based on salts of nickel, cobalt, cerium and phosphonic acid were also studied. Post-treatments improved the hydrophobic properties of the coatings and showed a beneficial effect, significantly increasing the coating impedance and thereby reducing the susceptibility to corrosion.

  7. Effect of KrF Pulsed Excimer Laser Treatment on Surface Microstructure of Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Mahanty, S.; Gouthama

    2016-09-01

    In the present research, the Al-Si alloy surface is treated by KrF excimer pulse laser for different number of laser pulses in ambient condition at energy 4.75 J/cm2. The surface microstructural characterization was done by the optical microscope, in situ video recording during laser pulsing, SEM and TEM. The fretting wear test was undertaken to assess the tribological behavior. In situ video recording showed changes in the surface reflectivity with the number of pulses which is related to progressive changes in the surface compositional homogeneity. After ten pulses, signs of rippled structure were observed. The 15 pulse samples showed star-like morphological feature at the central region. The TEM observations showed high density of stacking faults/twins in Si after first pulse treatment. After 15 pulses, nano-crystalline Si precipitates in the size range <5 nm are seen to be homogeneously distributed. A cellular structure with the cell size <100 nm formed in the matrix. These cell boundaries were decorated with the Si nanocrystals. A positive effect in wear resistance property is observed after the 15 pulses treatment.

  8. Effects of Microstructural Features and Test Parameters on the Abrasive Wear Response of an Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Gupta, A. K.; Prasad, B. K.

    2013-07-01

    This article discusses some observations pertaining to the abrasive wear response of an Al-Si alloy as influenced by microstructural features and test parameters (applied load and traversal distance). The wear performance has also been correlated with corresponding changes in mechanical properties (hardness, UTS, and elongation) and morphology (length, diameter, and length/diameter ratio) of microconstituents like Si. Microstructural/morphological alterations in the alloy were brought about through T6 heat treatment involving solutionizing followed by artificial aging for different durations. Heat treatment brought about significant alterations in the morphology (length, diameter, and length/diameter ratio) of Si particles, as was also reflected in terms of microstructural changes. The length of the Si particles decreased while their diameter increased leading to a reduction in the aspect (length/diameter) ratio of the phase in the case of the heat-treated samples compared to the as cast alloy. Decreasing length, rising diameter, and reduction in the aspect (length/diameter) ratio indicates a higher degree of spheroidization of the phase as a result of heat treatment. Increasing aging duration caused the aspect ratio to decrease further. The study suggests increasing wear loss with a rise in the applied load and traversal distance. The heat-treated samples attained improved mechanical and reduced wear loss over the as-cast samples in general, an exception being the elongation wherein the property became comparable to that of the as-cast alloy at aging durations beyond 7 h. Also, aging for 3 h seems to be sufficient to realize the benefit of heat treatment in terms of improvement in the wear behavior and mechanical properties since it leads to the highest hardness, UTS and elongation properties. Aging durations longer than 3 h led to deterioration in the UTS and elongation properties, while hardness and wear loss attained steady-state condition. The wear

  9. Tribological Study on Plasma Electrolytic Oxidation Treatment in Al-Si Alloys for Engine Application

    NASA Astrophysics Data System (ADS)

    Eiliat, Hoda

    Automotive industry strives to reach an optimum level of fuel economy. This can be achieved by overcoming two impacting factors on fuel consumption: weight and friction force. This research contributes to reduce both. The proposed surface treatment can replace cylinder liners of hypoeutectic aluminum silicon alloy engine blocks with a thin layer of ceramic oxide composed of alpha and gamma phases of Al2O3 and mullite. The coatings are achieved in an aqueous electrolytic bath with current densities of 0.1 to 0.2 A/cm2. Coatings produced in silicate based solutions have shown good adaptability to the counter surface with an average 0.12 coefficient of friction. Coatings produced in phosphate and aluminate solution have shown signs of delamination, and excessive porosity and roughness respectively. Coatings produced under Bipolar Pulsed Direct Current mode has up to 12% higher hardness values compared to unipolar coatings. For each increment of 0.2 A/cm2 current density, there is a 30% of increase in coating growth rate. Higher pH values of the solution creates faster growth rate up to 1.5 mu/min. These coatings are 20% more susceptible to wear. Samples treated in MoS2 solution showed 22% lower average roughness values and 37% of reduction in coefficient of friction. Mild wear scars on the piston rings were detected for the optimized coatings.

  10. Microstructural refinement of Al-Si alloy upon ultrasonic nanocrystalline surface modification treatment.

    PubMed

    He, Yinsheng; Li, Kejian; Cho, In Shik; Park, In Gyu; Shin, Keesam

    2014-11-01

    In this work, an Al-7 wt.% Si alloy, which is widely used as the structural materials in the automotive and aerospace industries for their high specific strength, was subjected to ultrasonic nanocrystalline surface modification (UNSM) treatment. After UNSM treatment, the effect of UNSM on the microstructural evolution of both Al grain and the dispersed Si particles was studied by using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental results show that the ultra-fine grain (UFG, - 400 nm in size) structure is developed in the top surface layer (up to - 15 μm in depth). The coarse Si particles were refined and well dispersed in the UFG Al matrix. Cross-sectional TEM observation revealed that the grain refinement mechanism involved the formation of new grain boundaries dividing the coarse grain into UFG structure. Nanotwin and nanosize Si were formed within the original coarse Si particles. The presence of dispersed Si particles in the Al matrix accelerated the Al grain refinement process. PMID:25958593

  11. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Effect of Yttrium Addition on Glass Forming Ability of ZrCuAlSi Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Bac-Qing; Zhang, Xin-Yu; Li, Gong; Sun, Bao-Ru; Fan, Chang-Zeng; Zhan, Zai-Ji; Liu, Ri-Ping; Wang, Wen-Kui

    2009-06-01

    The effect of yttrium addition on glass formation of a ZrCuAlSi alloy is investigated. The maximum diameter 8mm of the glassy rods for (Zr46.3Cu43.3Al8.9Si1.5)100-xYx alloy with x = 2.5 is obtained by copper mould casting. Apparent enhancement of the glass formation ability is found with addition of yttrium, mainly due to the purification of the alloy melt and the suppression of formation of the primary phases by yttrium.

  12. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  13. High-field magnetization of heusler alloys Fe2 XY ( X = Ti, V, Cr, Mn, Fe, Co, Ni; Y = Al, Si)

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Korolev, A. V.; Belozerova, K. A.; Weber, H. W.

    2015-10-01

    The magnetization curves of ferromagnetic Heusler alloys Fe2 XY (where X = Ti, V, Cr, Mn, Fe, Co, Ni are transition 3 d elements and Y = Al, Si are the s and p elements of the third period of the Periodic Table) have been measured at T = 4.2 K in the field range H ≤ 70 kOe. It has been shown that the high-field ( H ≥ 20 kOe) magnetization is described within the Stoner model.

  14. In Situ Study of Microstructure Evolution in Solidification of Hypereutectic Al-Si Alloys with Application of Thermal Analysis and Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Sediako, Dimitry G.; Kasprzak, Wojciech

    2015-09-01

    Understanding of the kinetics of solid-phase evolution in solidification of hypereutectic aluminum alloys is a key to control their as-cast microstructure and resultant mechanical properties, and in turn, to enhance the service characteristics of actual components. This study was performed to evaluate the solidification kinetics for three P-modified hypereutectic Al-19 pct Si alloys: namely, Al-Si binary alloy and with the subsequent addition of 2.8 pct Cu and 2.8 pct Cu + 0.7 pct Mg. Metallurgical evaluation included thermodynamic calculations of the solidification process using the FactSage™ 6.2 software package, as well as experimental thermal analysis, and in situ neutron diffraction. The study revealed kinetics of solid α-Al, solid Si, Al2Cu, and Mg2Si evolution, as well as the individual effects of Cu and Mg alloying additions on the solidification path of the Al-Si system. Various techniques applied in this study resulted in some discrepancies in the results. For example, the FactSage computations, in general, resulted in 281 K to 286 K (8 °C to 13 °C) higher Al-Si eutectic temperatures than the ones recorded in the thermal analysis, which are also ~278 K (~5 °C) higher than those observed in the in situ neutron diffraction. None of the techniques can provide a definite value for the solidus temperature, as this is affected by the chosen calculation path [283 K to 303 K (10 °C to 30 °C) higher for equilibrium solidification vs non-equilibrium] for the FactSage analysis; and further complicated by evolution of secondary Al-Cu and Mg-Si phases that commenced at the end of solidification. An explanation of the discrepancies observed and complications associated with every technique applied is offered in the paper.

  15. Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network

    SciTech Connect

    Susmikanti, Mike; Sulistyo, Jos

    2014-09-30

    Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to develop code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.

  16. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  17. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  18. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    NASA Astrophysics Data System (ADS)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  19. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  20. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGES

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  1. Characterization and Formation of Rod-Shaped (Al,Si)3Ti Particles in an Al-7Si-0.35Mg-0.12Ti (Wt Pct) Alloy

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhu, Yuman; Easton, Mark A.; Rinderer, Barbara; Couper, Mal; Nie, Jian-Feng

    2015-08-01

    In this study, the rod-shaped particles in an Al-7Si-0.35Mg-0.12Ti (wt pct) casting alloy have been characterized using transmission electron microscopy. It is found that these particles invariably contain Ti, Al, and Si and that they have the structure of the equilibrium phase (Al,Si)3Ti. A near-rational orientation relationship is observed between the (Al,Si)3Ti particles and the α-Al matrix phase. For this orientation relationship, the long axes of the (Al,Si)3Ti rods are invariably parallel to the moiré planes defined by the intersection of closest-packed planes of the (Al,Si)3Ti and α-Al phases. In contrast to the (Al,Si)3Ti or Al3Ti particles form directly from the melt act as heterogeneous nucleation sites for aluminum grains and thus grain-refined Al-Si foundry alloys, the (Al,Si)3Ti particles are found to form during solution treatment at temperatures above 673 K (400 °C). Their formation occurs in the center of aluminum grains and/or dendrites which is Ti enriched due to partitioning during solidification. The low diffusivity of Ti in α-Al allows the particles to form in the Ti-enriched areas near the center of grains as the Ti concentration is not able to be homogenized during typical solution treatment times.

  2. On the Refinement Mechanism of Silicon in Al-Si-Cu-Zn Alloy with Addition of Bismuth

    NASA Astrophysics Data System (ADS)

    Farahany, Saeed; Ourdjini, Ali; Bakar, Tuty Asma Abu; Idris, Mohd Hasbullah

    2014-01-01

    Obtained results of micro and nano studies reveal that bismuth refines the silicon in which the flake silicon changed to lamellar structure with reduction in twin spacing from 160 to 75 nm. Bismuth segregates towards the inter-dendritic regions and decreases the Al-Si contact angle resulting in suppression of the silicon growth causing refinement of the eutectic structure. Increased recalescence temperature and time confirmed that the refinement effect is attributed to the growth stage.

  3. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  4. Effect of micro-structural modifier on the morphology of silicon rich secondary phase and strain hardening behavior of eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Mansoor, M.; Salam, I.; Tauqir, A.

    2016-08-01

    Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.

  5. Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang

    2011-02-01

    It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).

  6. Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data

    NASA Astrophysics Data System (ADS)

    Eiken, J.; Apel, M.

    2015-06-01

    The mechanical properties of Al-Si cast alloys are mainly controlled by the morphology of the eutectic silicon. Phase-field simulations were carried out to study the evolution of the multidimensional branched eutectic structures in 3D. Coupling to a Calphad database provided thermodynamic data for the multicomponent multiphase Al-Si-Sr-P system. A major challenge was to model the effect of the trace element Sr. Minor amounts of Sr are known to modify the silicon morphology from coarse flakes to fine coral-like fibers. However, the underlying mechanisms are still not fully understood. Two different in literature most discussed mechanisms were modelled: a) an effect of Sr on the growth kinetics of eutectic silicon and b) the formation of Al2Si2Sr on AlP particles, which consumes most potent nucleation sites and forces eutectic silicon to form with lower frequency and higher undercooling. The phase-field simulations only revealed a successful modification of the eutectic morphology when both effects acted in combination. Only in this case a clear depression of the eutectic temperature was observed. The required phase formation sequence L → fcc-(Al) → AlP → Al2Si2Sr → (Si) determines critical values for the Sr and P content.

  7. Elasto-Plastic-Creep Constitutive Equation of an Al-Si-Cu High-Pressure Die Casting Alloy for Thermal Stress Analysis

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2016-11-01

    Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.

  8. A design-centered approach in developing Al-Si-based light-weight alloys with enhanced fatigue life and strength

    NASA Astrophysics Data System (ADS)

    Fan, Jinghong; Hao, Su

    2004-01-01

    Material heterogeneities and discontinuities such as porosity, second phase particles, and other defects at meso/micro/nano scales, determine fatigue life, strength, and fracture behavior of aluminum castings. In order to achieve better performance of these alloys, a design-centered computer-aided renovative approach is proposed. Here, the term “design-centered” is used to distinguish the new approach from the traditional trial-and-error design approach by formulating a clear objective, offering a scientific foundation, and developing a computer-aided effective tool for the alloy development. A criterion for tailoring “child” microstructure, obtained by “parent” microstructure through statistical correlation, is proposed for the fatigue design at the initial stage. A dislocations pileup model has been developed. This dislocation model, combined with an optimization analysis, provides an analytical-based solution on a small scale for silicon particles and dendrite cells to enhance both fatigue performance and strength for pore-controlled castings. It can also be used to further tailor microstructures. In addition, a conceptual damage sensitivity map for fatigue life design is proposed. In this map there are critical pore sizes, above which fatigue life is controlled by pores; otherwise it is controlled by other mechanisms such as silicon particles and dendrite cells. In the latter case, the proposed criteria and the dislocation model are the foundations of a guideline in the design-centered approach to maximize both the fatigue life and strength of Al-Si-based light-weight alloy.

  9. Elasto-Plastic-Creep Constitutive Equation of an Al-Si-Cu High-Pressure Die Casting Alloy for Thermal Stress Analysis

    NASA Astrophysics Data System (ADS)

    Motoyama, Yuichi; Shiga, Hidetoshi; Sato, Takeshi; Kambe, Hiroshi; Yoshida, Makoto

    2016-08-01

    Accurate simulation of residual stress and deformation is necessary to optimize the design and lifetime of casting components. Therefore, the recovery and strain-rate dependence of the stress-strain curve have been incorporated into empirical constitutive equations to improve the thermal stress analysis accuracy. Nevertheless, these equations present several difficulties related to the determination of material constants and their physical bases. This study suggested an empirical elasto-plastic-creep constitutive equation incorporating these phenomena. To determine the material parameters used in this constitutive equation, this study investigated tensile test methods to obtain stress-strain curves that most closely resemble those during or immediately after casting for the Al-Si-Cu high-pressure die-casting alloy JIS ADC 12 (A383.0), which exhibits natural aging. Results show that solution heat treatment with subsequent cooling to the test temperature should be applied to obtain stress-strain curves used for the thermal stress analysis of high-pressure die casting process of this alloy. The yield stresses obtained using the conventional heating method were 50-64 pct higher than those of the method described above. Therefore, the conventional method is expected to overestimate the overestimation of the predicted residual stress in die castings. Evaluation of the developed equation revealed that it can represent alloy recovery and strain-rate dependence.

  10. Aging characteristics of the Al-Si-Cu-Mg cast alloy modified with transition metals Zr, V and Ti

    NASA Astrophysics Data System (ADS)

    Czerwinski, F.; Shaha, S. K.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-03-01

    The hypoeutectic Al-7Si-1Cu-0.5Mg base alloy was modified with different contents of Zr, V and Ti. The wedge-shape samples with varying solidification rates during casting were subjected to isochronal aging at temperatures up to 500 °C. Moreover, as-cast and solution treated alloys were subjected to long-term isothermal aging at 150°C. As a reference, the A380 alloy, seen as commercial standard for the automotive application target, was used. The modified alloys exerted different aging characteristics than the A380 grade with higher peak hardness and lower temperature of alloy softening. Besides, the influence of the applied solidification rates on hardness after aging was less pronounced in modified alloys than in the A380 grade. For three combinations of Zr, V and Ti tested with contents of individual elements ranging from 0.14 to 0.47%, no essential differences in aging characteristics were recorded. The results are discussed in terms of the role of chemistry and heat treatment in generating precipitates contributing to the thermal stability of Al based alloys.

  11. Effect of strontium modification on near-threshold fatigue crack growth in an Al-Si-Cu die cast alloy

    SciTech Connect

    Schaefer, M.; Fournelle, R.A.

    1996-05-01

    The effects of strontium modification on microstructure and fatigue properties in a die cast commercial aluminum-silicon alloy are demonstrated. Strontium additions of 0.010 and 0.018 wt pct drastically change the morphology of the eutectic silicon. The influence of these microstructural changes on fatigue properties is evaluated through fatigue crack growth testing. Examination of the fracture surfaces and the crack path establish distinct fatigue fracture modes for the modified and unmodified eutectic structures. Changes in fracture mode and crack path are correlated to the microstructure changes. A higher energy fracture mode and increased crack path tortuosity explain the observed improvement in fatigue properties for the modified alloys. Strontium modified alloys exhibit a 10 to 20 pct higher fatigue crack growth threshold compared to an unmodified alloy for testing at a load ratio of 0.5. No difference was observed for testing at a load ratio of 0.1.

  12. Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2016-05-01

    Uniaxial static and cyclic tests were used to assess the role of Cr, Ti, V, and Zr additions on properties of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in as-cast and T6 heat-treated conditions. The microstructure of the as-cast alloy consisted of α-Al, eutectic Si, and Cu-, Mg-, and Fe-rich phases Al2.1Cu, Al8.5Si2.4Cu, Al5.2CuMg4Si5.1, and Al14Si7.1FeMg3.3. In addition, the micro-sized Cr/Zr/Ti/V-rich phases Al10.7SiTi3.6, Al6.7Si1.2TiZr1.8, Al21.4Si3.4Ti4.7VZr1.8, Al18.5Si7.3Cr2.6V, Al7.9Si8.5Cr6.8V4.1Ti, Al6.3Si23.2FeCr9.2V1.6Ti1.3, Al92.2Si16.7Fe7.6Cr8.3V1.8, and Al8.2Si30.1Fe1.6Cr18.8V3.3Ti2.9Zr were present. During solution treatment, Cu-rich phases were completely dissolved, while the eutectic silicon, Fe-, and Cr/Zr/Ti/V-rich intermetallics experienced only partial dissolution. Micro-additions of Cr, Zr, Ti, and V positively affected the alloy strength. The modified alloy in the T6 temper during uniaxial tensile tests exhibited yield strength of 289 MPa and ultimate tensile strength of 342 MPa, being significantly higher than that for the Al-Si-Cu-Mg base. Besides, the cyclic yield stress of the modified alloy in the T6 state increased by 23 pct over that of the base alloy. The fatigue life of the modified alloy was substantially longer than that of the base alloy tested using the same parameters. The role of Cr, Ti, V, and Zr containing phases in controlling the alloy fracture during static and cyclic loading is discussed.

  13. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  14. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  15. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  16. The role of fluid flow and intermetallic phases in the formation of the primary Al-phase in AlSi alloys

    NASA Astrophysics Data System (ADS)

    Mikołajczak, P.; Ratke, L.

    2012-01-01

    In secondary AlSi alloys, the presence of small amounts of Fe causes the formation of intermetallic phases, which have a negative effect on mechanical and physical properties of castings. To understand the effect of fluid flow on the microstructure and intermetallic phases, Al-5/7/9 wt pet Si 0.2/0.5/1.0 wt pet Fe alloys have been directionally solidified under defined thermal (gradient 3 K/mm, solidification velocity 0.04 mm/s) and fluid flow (rotating magnetic field 6 mT) conditions. The primary α-Al phase and intermetallic phases were studied using light microscopy and SEM with EDX. The influence of fluid flow and intermetallic phases (β-Al5FeSi) on microstructure was characterized by changes of primary and secondary dendrite arm spacing and specific surface area of the dendrites. We observe a pronounced effect of flow on the length of the intermetallic precipitates, a macro-segregation Fe and Si and even small amounts of iron and thus intermetallics reduce possible effects of flow on microstructural parameters.

  17. Directional solidification and microstructural control of the TiAl/Ti{sub 3}Al lamellar microstructure in TiAl-Si alloys

    SciTech Connect

    Johnson, D.R.; Inui, H.; Yamaguchi, M.

    1996-06-01

    Composite microstructures were grown from TiAl-Si alloys with the gamma/alpha2 lamellar microstructure aligned parallel to the growth direction by directional solidification techniques using a seed material. Within the composition range of 40--50 at% Al, the addition of Si to TiAl shifts the primary alpha region towards a much lower Al content. At a composition of Ti-43Al-3Si, either alpha or alpha2 can be stable, from melting temperature to room temperature and the orientation of the lamellar microstructure can be controlled using a seed material. In addition to the gamma/alpha2 lamellae, large Ti{sub 5}Si{sub 3} particles which formed from the liquid, and much smaller Ti{sub 5}Si{sub 3} particles which formed from an eutectoid reaction were observed. The room temperature mechanical properties were determined by tensile and three-point bend tests. From bend specimens oriented with the notch parallel to the lamellar microstructure, the Ti-43Al-3Si alloy was found to have a greater fracture toughness than a TiAl-PST crystal of the same orientation.

  18. Fabrication of Lotus-Type Porous Al-Si Alloys Using Thermal Decomposition Method Combined with Mold Casting and Continuous Casting Techniques

    NASA Astrophysics Data System (ADS)

    Kim, Tae Bum; Jung, Taek Kyun; Kim, Yong Hwan; Kim, Taek Soo; Hyun, Soong Keun

    2013-05-01

    Porous Al-Si alloys with directional pores were fabricated using thermal decomposition methods combined with mold casting and continuous casting techniques. The melt of Al-14 mass pct Si alloy was unidirectionally solidified in argon atmospheres by the mold casting or continuous casting technique. Ca(OH)2 compound was added into the melt as a source of hydrogen which forms pores during the solidification. In order to clarify the pore formation behavior, the effects of transfer velocity, ambient argon pressure, the amount, and the morphology of Ca(OH)2 compounds on the porosity were investigated. It was found that the porosity decreases with the increasing transfer velocity (solidification velocity). The pores are formed under the argon pressure of 1 kPa, while not being formed under the pressure higher than 20 kPa. The porosity increases with the increasing amount of Ca(OH)2 when the compacted Ca(OH)2 pellets are used, while pores are not formed when Ca(OH)2 powders are used because of the rapid decomposition of Ca(OH)2.

  19. Electronic, magnetic and thermal properties of Co2CrxFe1-xX (X=Al, Si) Heusler alloys: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Guezlane, M.; Baaziz, H.; El Haj Hassan, F.; Charifi, Z.; Djaballah, Y.

    2016-09-01

    Density functional theory (DFT) based on the full-potential linearized augmented plane wave (FP-LAPW) method is used to investigate the structural, electronic, magnetic and thermal properties of Co2CrxFe1-xX (X=Al, Si) full Heusler alloys, with L21 structure. The structural properties and spin magnetic moments are investigated by the generalized gradient approximations (GGA) minimizing the total energy. For band structure calculations, GGA, the Engel-Vosko generalized gradient approximation (EVGGA) and modified Becke-Johnson (mBJ) schemes are used. Results of density of states (DOS) and band structures show that these alloys are half-metallic ferromagnets (HMFS). A regular-solution model has been used to investigate the thermodynamic stability of the compounds Co2CrxFe1-xX that indicates a phase miscibility gap. The thermal effects using the quasi-harmonic Debye model are investigated within the lattice vibrations. The temperature and pressure effects on the heat capacities, Debye temperatures and entropy are determined from the non-equilibrium Gibbs functions.

  20. Role of Si on the Diffusional Interactions between U-Mo and Al-Si Alloys at 823 K (550 degrees C)

    SciTech Connect

    E. Perez; Y.H. Sohn; D.D. Keiser, Jr.

    2013-01-01

    U-Mo dispersions in Al-alloy matrix and monolithic fuels encased in Al-alloy are under development to fulfill the requirements for research and test reactors to use low-enriched molybdenum stabilized uranium alloys fuels. Significant interaction takes place between the U-Mo fuel and Al during manufacturing and in-reactor irradiation. The interactions products are Al-rich phases with physical and thermal characteristics that adversely affect fuel performance and lead to premature failure. Detailed analysis of the interdiffusion and microstructural development of this system was carried through diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo in contact with pure Al, Al-2wt.%Si, and Al-5wt.%Si, annealed at 823K for 1, 5 and 20 hours. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed for the analysis. Diffusion couples consisting of U-Mo vs. pure Al contained UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases. The addition of Si to the Al significantly reduced the thickness of the interdiffusion zone. The interdiffusion zones developed Al and Si enriched regions, whose locations and size depended on the Si and Mo concentrations in the terminal alloys. In the couples, the (U,Mo)(Al,Si)3 phase was observed throughout interdiffusion zone, and the U6Mo4Al43 and UMo2Al20 phases were observed only where the Si concentrations were low.

  1. Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys: Phase-Field Simulation Supported by Key Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong

    2016-04-01

    We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.

  2. Experimental Investigation and Numerical Simulation During Backward Extrusion of a Semi-Solid Al-Si Hypoeutectic Alloy

    SciTech Connect

    Neag, Adriana; Favier, Veronique; Bigot, Regis; Canta, Traian; Frunza, Dan

    2007-04-07

    This work has been performed along two main directions. First of all we present the experimental results and effects obtained by backward extrusion tests on semi-solid aluminum alloy at three different forming temperatures and different holding times in isothermal conditions. The semi-solid billets were fabricated by the re-melting heat treatment method. Semi-solid extrusion tests were carried out to investigate the load-displacement curves and the deformation behaviour at different temperatures. The load level clearly decreases with increasing temperature and increasing holding time. Numerical simulations of semi-solid extrusion has been made too, using Forge 2005,. Experimental and simulated results are compared and discussed.

  3. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    SciTech Connect

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-17

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  4. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    NASA Astrophysics Data System (ADS)

    Veit, R.; Hofmann, H.; Kolleck, R.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating. In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  5. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  6. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Pan, Ye; Wu, Ji-li; Tao, Shi-wen; Chen, Yu

    2015-04-01

    The effects of La addition on the microstructure and tensile properties of B-refined and Sr-modified Al-11Si-1.5Cu-0.3Mg casting alloys were investigated. With a trace addition of La (0.05wt%-0.1wt%), the mutual poisoning effect between B and Sr can be neutralized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined α-Al grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetallics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.

  7. Structure and microhardness of Al-Si-Cu-Ni alloy after severe plastic deformation and high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Shvets, Karina; Khalikova, Gulnara; Korznikova, Elena; Trifonov, Vadim

    2015-10-01

    The effect of severe plastic deformation by high-pressure torsion (HPT) and subsequent annealing on the microstructure and microhardness of squeeze casting Al-22%Si-3%Cu-1.7%Ni alloy was investigated. HPT was performed at room temperature with 5 rotations under the pressure of 4 GPa. Annealing temperature range varied from 300 to 500°C for 5 min. HPT resulted in refinement and partial dissolution of the primary silicon and intermetallic particles in aluminum matrix and structure fragmentation that caused the microhardness increase. Subsequent annealing lead to the decomposition of the supersaturated solid solution that took place simultaneously with recovery and recrystallization of the fragmented structure. Increase of annealing temperature resulted in decrease of microhardness values.

  8. Influence of Melt Superheat, Sr Modifier, and Al-5Ti-1B Grain Refiner on Microstructural Evolution of Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Rakhmonov, Jovid; Timelli, Giulio; Bonollo, Franco

    2016-11-01

    The role of impurity elements and melt superheat on the efficiency of Sr modification, grain refinement with Al-Ti-B and the precipitation behavior of intermetallic phases in a secondary Al-7Si-3Cu-0.3Mg alloy were investigated. Metallographic and thermal analysis techniques were used to quantitatively examine the macro- and microstructural changes occurring with modifier and grain refiner additions at various pouring temperatures. The results indicate how the Sr modification and grain refinement with Al-Ti-B can be effective enough despite the presence of impurity elements in the material and the variation of pouring temperature. A slight poisonous effect of impurities, in particular, Zr and V, in the grain refinement efficiency can be eventually induced due to their action in promoting the formation of primary AlSiTi compounds. Moreover, grain refiner addition exerted a pronounced influence on the precipitation sequence of Fe-rich phases. The TiB2 particles appeared to promote the formation of Al5FeSi during solidification by acting as a favorable nucleation site.

  9. Influence of Melt Superheat, Sr Modifier, and Al-5Ti-1B Grain Refiner on Microstructural Evolution of Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Rakhmonov, Jovid; Timelli, Giulio; Bonollo, Franco

    2016-08-01

    The role of impurity elements and melt superheat on the efficiency of Sr modification, grain refinement with Al-Ti-B and the precipitation behavior of intermetallic phases in a secondary Al-7Si-3Cu-0.3Mg alloy were investigated. Metallographic and thermal analysis techniques were used to quantitatively examine the macro- and microstructural changes occurring with modifier and grain refiner additions at various pouring temperatures. The results indicate how the Sr modification and grain refinement with Al-Ti-B can be effective enough despite the presence of impurity elements in the material and the variation of pouring temperature. A slight poisonous effect of impurities, in particular, Zr and V, in the grain refinement efficiency can be eventually induced due to their action in promoting the formation of primary AlSiTi compounds. Moreover, grain refiner addition exerted a pronounced influence on the precipitation sequence of Fe-rich phases. The TiB2 particles appeared to promote the formation of Al5FeSi during solidification by acting as a favorable nucleation site.

  10. Interplay Between Melt Flow and the 3D Distribution and Morphology of Fe-Rich Phases in AlSi Alloys

    NASA Astrophysics Data System (ADS)

    Mikolajczak, Piotr; Ratke, Lorenz

    2015-03-01

    The presence of Fe aids in establishing the mechanical and physical properties of AlSi alloys and is also one of the main impurities leading to formation of β-Al5FeSi intermetallics. This study aims to understand the effect of fluid flow on the dendritic microstructure with intermetallics in Al-5/7/9 wt pct Si-0.2/0.5/1.0 wt pct Fe alloys that are directionally solidified under defined thermal and fluid flow conditions. We made extensive use of 3D X-ray tomography to obtain a better insight into the morphology and formation of the intermetallics. Three-dimensional (3-D) distribution of intermetallics presented here shows that the growth of large β-Al5FeSi due to forced flow occurs in the eutectic specimen center and together with an increase in the number density of β precipitates. The 3D reconstructions have verified the β shaped to be curved, bent with twining, branched, and to have imprints, holes, and propeller-shaped platelets. The 3D views showed that hole-shaped β arose from the lateral growth around α-Al dendrites. These views also confirmed the phenomenon of shortening of β as an effect of flow in the dendritic region, where β could be fragmented or completely remelted, and ultimately resulting in microstructures with shorter β-Al5FeSi and increases in number density. The analysis revealed an interaction between melt flow, 3D distribution, and the morphology of β-Al5FeSi. The growth of a large and complex group of β intermetallics can reduce the melt flow between dendrites and strengthen pore nucleation and eutectic colonies nucleation, leading to lower permeability of the mushy zone and increased porosity in the castings.

  11. Reconstruction and Quantitative Characterization of Multiphase, Multiscale Three-Dimensional Microstructure of a Cast Al-Si Base Alloy

    NASA Astrophysics Data System (ADS)

    Singh, H.; Gokhale, A. M.; Mao, Y.; Tewari, A.; Sachdev, A. K.

    2009-12-01

    The serial sectioning technique is well known for the reconstruction of three-dimensional (3D) microstructures of opaque materials. In recent years, techniques also have been developed for the reconstruction of high-fidelity, large-volume segments of 3D microstructures that use montage serial sections and robot-assisted automated acquisitions of montage serial sections. This article reports the reconstruction of the multiphase, multiscale 3D microstructure of a permanent mold cast unmodified Al-12 wt pct Si-1 wt pct Ni base alloy that contains eutectic Si platelets, coarse primary polyhedral Si particles, Fe-rich script intermetallic particles, and pores. These constituents are segmented, reconstructed, rendered, and characterized in three dimensions. The estimated 3D microstrucutral attributes include the distribution of eutectic platelet thickness; the mean volume, mean surface area, and mean thickness of the eutectic Si platelets; the mean volume and the mean surface area of the polyhedral primary Si particles; and the mean number of faces, edges, and corners on the polyhedral primary Si particles.

  12. Studies of waste-canister compatibility. [Waste forms: Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus SiC

    SciTech Connect

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300/sup 0/C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300/sup 0/C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800/sup 0/C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts.

  13. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  14. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  15. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  16. Effect of flask vibration time on casting integrity, Surface Penetration and Coating Inclusion in lost foam casting of Al-Si Alloy

    SciTech Connect

    Karimian, Majid; Idris, M. H.; Ourdjini, A.; Muthu, Kali

    2011-01-17

    The paper presents the result of an experimental investigation conducted on medium aluminum silicon alloy casting- LM6, using no-vacuum assisted lost foam casting process. The study is directed for establishing the relationship between the flask vibrations times developed for molded sample on the casting integrity, surface penetration and coating inclusion defects of the casting. Four different flask vibration times namely 180, 120, 90 and 60 sec. were investigated. The casting integrity was investigated in terms of fulfilling in all portions and edges. The surface penetration was measured using optical microscope whilst image analyzer was used to quantify the percentage of coating inclusion in the casting. The results show that vibration time has significant influence on the fulfilling as well as the internal integrity of the lost foam casting. It was found that the lower vibration time produced comparatively sound casing.

  17. Formation of intermetallic phases in AlSi7Fe1 alloy processed under microgravity and forced fluid flow conditions and their influence on the permeability

    NASA Astrophysics Data System (ADS)

    Steinbach, S.; Ratke, L.; Zimmermann, G.; Budenkova, O.

    2016-03-01

    Ternary Al-6.5wt.%Si-0.93wt.%Fe alloy samples were directionally solidified on-board of the International Space Station ISS in the ESA payload Materials Science Laboratory (MSL) equipped with Low Gradient Furnace (LGF) under both purely diffusive and stimulated convective conditions induced by a rotating magnetic field. Using different analysis techniques the shape and distribution of the intermetallic phase β-Al5SiFe in the dendritic microstructure was investigated, to study the influence of solidification velocity and fluid flow on the size and spatial arrangement of intermetallics. Deep etching as well as 3-dimensional computer tomography measurements characterized the size and the shape of β-Al5SiFe platelets: Diffusive growth results in a rather homogeneous distribution of intermetallic phases, whereas forced flow promotes an increase in the amount and the size of β-Al5SiFe platelets in the centre region of the samples. The β-Al5SiFe intermetallics can form not only simple platelets, but also be curved, branched, crossed, interacting with dendrites and porosity located. This leads to formation of large and complex groups of Fe-rich intermetallics, which reduce the melt flow between dendrites leading to lower permeability of the mushy zone and might significantly decrease feeding ability in castings.

  18. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  19. Analysis and optimization of process parameters in Al-SiCp laser cladding

    NASA Astrophysics Data System (ADS)

    Riquelme, Ainhoa; Rodrigo, Pilar; Escalera-Rodríguez, María Dolores; Rams, Joaquín

    2016-03-01

    The laser cladding process parameters have great effect on the clad geometry and on dilution in the single and multi-pass aluminum matrix composite reinforced with SiC particles (Al/SiCp) coatings on ZE41 magnesium alloys deposited using a high-power diode laser (HPLD). The influence of the laser power (500-700 W), scan speed (3-17 mm/s) and laser beam focal position (focus, positive and negative defocus) on the shape factor, cladding-bead geometry, cladding-bead microstructure (including the presence of pores and cracks), and hardness has been evaluated. The correlation of these process parameters and their influence on the properties and ultimately, on the feasibility of the cladding process, is demonstrated. The importance of focal position is demonstrated. The different energy distribution of the laser beam cross section in focus plane or in positive and negative defocus plane affect on the cladding-bead properties.

  20. Wettability of AlSi5Mg on Spodumene

    NASA Astrophysics Data System (ADS)

    Fankhänel, Beate; Stelter, Michael; Voigt, Claudia; Aneziris, Christos G.

    2015-02-01

    The development of new filters for the aluminum industry requires investigations on the wettability of aluminum and its alloys on novel filter materials. The requested filter effects require not only an adequate wetting but also information about the interaction between the filter material and the metal. In the present work the wettability of an AlSi5Mg alloy on spodumene (LiAl[Si2O6]) containing substrates is investigated using the sessile drop technique. These measurements were carried out at 1223 K (950 °C) under vacuum. The spodumene-based substrates showed a completely different wetting behavior compared with an alumina substrate. The contact angel reduced more quickly and leveled out at a lower value (75 ± 2 deg) than in case of a pure alumina substrate (90 ± 1 deg). The reason for this behavior is a reaction between the LiAl(Si2O6) and the alloy droplet which supported deoxidation and formed a silica-rich reaction layer at the droplet/substrate interface.

  1. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  2. Compositions and morphologies of TiAlSi intermetallics in different diffusion couples

    SciTech Connect

    Gao, Tong; Liu, Guiliang; Liu, Xiangfa

    2014-09-15

    Two kinds of diffusion couples were designed to investigate the formation of ternary TiAlSi phases in Al–Si–Ti alloys. It was found that different diffusion processes result in various compositions and morphologies of TiAlSi intermetallics. The melted Al, Si and Ti atoms in the diffusion couple leads to the formation of flake-like TiAlSi phase through liquid–liquid reaction. Besides, unidirectional diffusion of Al and Si atoms into blocky TiAl{sub 3} particles or Ti powders via a liquid–solid diffusion process also results in the formation of TiAlSi, while keeping the block-like morphology. This kind of diffusion is a gradual process, driven by the concentration gradient. The reactions in the diffusion couples are helpful to understand the compositional and morphological evolutions of TiAlSi as reported in previous work. - Highlights: • Two diffusion couples were designed to investigate the formation of TiAlSi phases. • Compositions and morphologies of TiAlSi are influenced by the diffusion process. • Liquid–liquid and liquid–solid diffusions were detected. • The corresponding mechanisms were discussed.

  3. Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools

    NASA Astrophysics Data System (ADS)

    Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.

    2016-05-01

    In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.

  4. Fabrication and Properties of Thermal Sprayed AlSi-Based Coatings from Nanocomposite Powders

    NASA Astrophysics Data System (ADS)

    Limpichaipanit, A.; Banjongprasert, C.; Jaiban, P.; Jiansirisomboon, S.

    2013-02-01

    AlSi-based nanocomposite powders (where nanoparticles were TiO2, ZrO2, and Al2O3 and the amount of reinforcement was 2.5, 5, and 10 wt.%) were made by ball milling and then thermal sprayed using low velocity oxy-fuel technique. The AlSi-based nanocomposite powders had nanosized ceramic reinforcement adhered to the surface of the powders after ball milling. The AlSi-based coatings had the typical thermal spray microstructure where lamellae, oxide layers, unmelted particles, and pores could be seen. Submicron second phase in the form of agglomerates, molten splats, or unmelted particles between AlSi lamellae could be observed as well. Hardness and porosity of the coatings increased when more ceramic second phase particles (harder than AlSi) were added. Sliding wear tests were carried out in pin-on-disk geometry. The wear tracks of AlSi and AlSi-based coatings show plastic deformation as the main material removal mechanism during the sliding wear test. The sliding wear rate of the coatings decreased as more second phase ceramic particles were added. It was due to an increase in the hardness and a decrease in the friction coefficient of the coatings.

  5. Effect of Y2O3 and TiC Reinforcement Particles on Intermetallic Formation and Hardness of Al6061 Composites via Mechanical Alloying and Sintering

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Liang; Lin, Chen-Han

    2015-08-01

    Al6061-based composites reinforced with 2 wt pctY2O3 and 2 wt pctTiC particles produced by mechanical alloying were investigated. The reinforced particles play important roles in the microstructural development and in determining the properties of the alloys. High-energy ball milling can facilitate a solid-state reaction between reinforced particles and the Al matrix, and the reaction kinetics of atomic diffusion can be accelerated enormously by subsequent sintering processing. As a result, complex intermetallic compounds and oxide particles can be formed in the alloy. In this study, the effect of reinforcement on phase formation and mechanical properties of Al6061-based composites has been examined. The results suggest that nano-Y2O3 particles can act as nucleation sites to facilitate formation of Al-Si-Y-O-based oxide particles. The addition of TiC particles can effectively refine the grain structure and encourage formation of iron-rich intermetallic compounds. Nanoindentation was used to understand the local variations in mechanical properties of the Al6061-based composites.

  6. STRESS ANNEALING INDUCED DIFFUSE SCATTERING FROM Ni3(Al,Si) PRECIPITATES

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Karapetrova, Evgenia; Zschack, P.

    2012-01-01

    Diffuse scattering caused by L12 type Ni3 (Al,Si) precipitates after stress annealing of Ni-Al-Si alloys is studied. Experimental reciprocal space maps are compared to the theoretical ones. Oscillations of diffuse scattering due to Ni3 (Al,Sc) precipitates are observed. Peculiarities of diffuse scattering in asymptotic region as compared to Huang scattering region are discussed. Coupling between the stress annealing direction and the precipitate shape is demonstrated.

  7. Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

    NASA Astrophysics Data System (ADS)

    Carvalho, O.; Buciumeanu, M.; Soares, D.; Silva, F. S.; Miranda, G.

    2015-06-01

    The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

  8. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  9. Nitride Nanoparticle Addition to Beneficially Reinforce Hybrid Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2013-02-01

    This study is aimed at understanding the function of two nitride nanoparticles regarding altering the mechanical properties of hybrid magnesium alloys in relation to nanoparticle-matrix reactivity. Nitride nanoparticles were selected for reinforcement purposes due to the affinity between magnesium and nitrogen (in parallel with the well-known magnesium-oxygen affinity). AZ91/ZK60A and AZ31/AZ91 hybrid magnesium alloys were reinforced with AlN and Si3N4 nanoparticles (respectively) using solidification processing followed by hot extrusion. Each nitride nanocomposite exhibited higher tensile strength than the corresponding monolithic hybrid alloy. However, AZ91/ZK60A/AlN exhibited slightly lower tensile ductility than AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher tensile ductility than AZ31/AZ91. The formation of high strain zones (HSZs) (from particle surfaces inclusive) during tensile deformation as a significant mechanism supporting ductility enhancement was addressed. AZ91/ZK60A/AlN exhibited lower and higher compressive strength and ductility (respectively) compared to AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Nanograin formation (recrystallization) during room temperature compressive deformation (as a toughening mechanism) in relation to nanoparticle-stimulated nucleation (NSN) ability was also discussed. The beneficial (as well as comparative) effects of the respective nitride nanoparticle on each hybrid alloy are studied in this article.

  10. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Rahimian, Mehdi; Ketabchi, Mostafa; Parvin, Nader; Yaghinali, Parisa; Carreño, Fernando

    2016-10-01

    The strengthening mechanisms in nanostructured Al/SiCp composite deformed to high strain by a novel severe plastic deformation process, accumulative press bonding (APB), were investigated. The composite exhibited yield strength of 148 MPa which was 5 and 1.5 times higher than that of raw aluminum (29 MPa) and aluminum-APB (95 MPa) alloys, respectively. A remarkable increase was also observed in the ultimate tensile strength of Al/SiCp-APB composite, 222 MPa, which was 2.5 and 1.2 times greater than the obtained values for raw aluminum (88 MPa) and aluminum-APB (180 MPa) alloys, respectively. Analytical models well described the contribution of various strengthening mechanisms. The contributions of grain boundary, strain hardening, thermal mismatch, Orowan, elastic mismatch, and load-bearing strengthening mechanisms to the overall strength of the Al/SiCp microcomposite were 64.9, 49, 6.8, 2.4, 5.4, and 1.5 MPa, respectively. Whereas Orowan strengthening mechanism was considered as the most dominating strengthening mechanism in Al/SiCp nanocomposites, it was negligible for strengthening the microcomposite. Al/SiCp nanocomposite showed good agreement with quadratic summation model; however, experimental results exhibited good accordance with arithmetic and compounding summation models in the microcomposite. While average grain size of the composite reached 380 nm, it was less than 100 nm in the vicinity of SiC particles as a result of particle-stimulated nucleation mechanism.

  11. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  12. Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwei; Huang, Jihua; Yang, Hao; Chen, Shuhai; Zhao, Xingke

    2015-06-01

    The study is concerned with developing a filler metal with low melting temperature and good processability for brazing aluminum and its alloys. For this purpose, a novel Al-Si-Ge-Zn alloy was prepared according to Al-Si-Ge and Al-Si-Zn ternary phase diagrams. The melting characteristics, microstructures, wettability, and processing property of the alloy were investigated. The results showed that the melting temperature range of the novel filler metal was 505.2-545.1 °C, and the temperature interval between the solidus and the liquidus was 39.9 °C. Compared with a common Al-Si-Ge alloy, it had smaller and better dispersed β-GeSi solid solution precipitates, and the Zn-rich phases distributed on the boundary of the β-GeSi precipitates. The novel filler metal has good processability and good wettability with Al. There was one obvious transition layer with a thin α-Al solid solution between the filler metal and base metal, which is favorable to improve the strength of brazing joint.

  13. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  14. Flutter of buckled shape memory alloy reinforced laminates

    NASA Astrophysics Data System (ADS)

    Kuo, Shih-Yao; Shiau, Le-Chung; Lai, Chin-Hsin

    2012-03-01

    The effect of shape memory alloys (SMA) on the linear and nonlinear flutter behaviors of buckled cross-ply and angle-ply laminates was investigated in the frequency and time domains using the finite element method. In particular, this study takes the first move toward examining the effect of varying the SMA fiber spacing. Von Karman large deformation assumptions and quasi-steady aerodynamic theory were employed. The flutter boundary, stability boundary, time history response, and phase plane plots of SMA reinforced cross-ply and angle-ply laminates are presented. The numerical results show that increase in the SMA fiber volume fraction and prestrain may generate more recovery stress, and increase the stiffness of the SMA reinforced laminates. Therefore, the flutter boundary and critical load of the plate may be increased significantly. All five types of panel behavior, namely flat, buckled, limit-cycle, periodic, and chaotic motion, are clearly displayed and successively identified. This study sheds light on improving the flutter boundary efficiently by increasing the SMA fiber volume fraction to reinforce the center of the plate.

  15. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Xue, Haiyang; Lv, Guoqiang; Ma, Wenhui; Chen, Daotong; Yu, Jie

    2015-07-01

    Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

  16. Internal damping due to dislocation movements induced by thermal expansion mismatch between matrix and particles in metal matrix composites. [Al/SiC

    SciTech Connect

    Girand, C.; Lormand, G.; Fougeres, R.; Vincent, A. )

    1993-05-01

    In metal matrix composites (MMCs), the mechanical 1 of the reinforcement-matrix interface is an important parameter because it governs the load transfer from matrix to particles, from which the mechanical properties of these materials are derived. Therefore, it would be useful to set out an experimental method able to characterize the interface and the adjacent matrix behaviors. Thus, a study has been undertaken by means of internal damping (I.D.) measurements, which are well known to be very sensitive for studying irreversible displacements at the atomic scale. More especially, this investigation is based on the fact that, during cooling of MMC's, stress concentrations originating from differences in coefficients of thermal expansion (C.T.E.) of matrix and particles should induce dislocation movements in the matrix surrounding the reinforcement; that is, local microplastic strains occur. Therefore, during I.D. measurements vs temperature these movements should contribute to MMCs I.D. in a process similar to those involved around first order phase transitions in solids. The aim of this paper is to present, in the case of Al/SiC particulate composites, new developments of this approach that has previously led to promising results in the case of Al-Si alloys.

  17. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  18. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  19. Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Maskery, Ian; Tuck, Chris; Ashcroft, Ian; Everitt, Nicola

    2015-07-01

    Selective laser melting (SLM) of aluminium alloys faces more challenges than other ongoing alloys such as stainless steels and titanium alloys because of the material's properties. It is important to study single scan tracks if high density large parts are to be made since they are the primary building blocks. In this study, the geometrical features of AlSi10Mg tracks indicated keyhole mode melting domination. Chemical composition mapping and nanoindentation showed enhanced nano-hardness in SLM material over conventional material with no spatial variation. This is due to a homogeneous elemental distribution and fine microstructure developed by fast solidification.

  20. Fabrication and Analysis of the Wear Properties of Hot-Pressed Al-Si/SiCp + Al-Si-Cu-Mg Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Bang, Jeongil; Oak, Jeong-Jung; Park, Yong Ho

    2016-01-01

    The aim of this study was to characterize microstructures and mechanical properties of aluminum metal matrix composites (MMC's) prepared by powder metallurgy method. Consolidation of mixed powder with gas atomized Al-Si/SiCp powder and Al-14Si-2.5Cu-0.5Mg powder by hot pressing was classified according to sintering temperature and sintering time. Sintering condition was optimized using tensile properties of sintered specimens. Ultimate tensile strength of the optimized sintered specimen was 228 MPa with an elongation of 5.3% in longitudinal direction. In addition, wear properties and behaviors of the sintered aluminum-based MMC's were analyzed in accordance with vertical load and linear speed. As the linear speed and vertical load of the wear increased, change of the wear behavior occurred in order of oxidation of Al-Si matrix, formation of C-rich layer, Fe-alloying to matrix, and melting of the specimen

  1. Microstructure and Tensile Behaviour of B4C Reinforced ZA43 Alloy Composites

    NASA Astrophysics Data System (ADS)

    Adaveesh, B.; Halesh, G. M.; Nagaral, Madeva; Mohan Kumar, T. S.

    2016-09-01

    The work is carried out to investigate and study the mechanical properties of B4C reinforced ZA43 alloy metal matrix composites. In the present work ZA43 alloy is taken as the base matrix and B4C particulates as reinforcement material to prepare metal matrix composites by stir casting method. For metal matrix composites the reinforcement material was varied from 0 to 6 wt.% in steps of 3 wt.%. For each composite, the reinforcement particulates were preheated to a temperature of 300°C and dispersed into a vortex of molten ZA43 alloy. The microstructural characterization was done using scanning electron microscope. Mechanical properties like hardness, ultimate tensile strength and yield strength were evaluated as per ASTM standards. Further, scanning electron microphotographs revealed that there was uniform distribution of B4C particulates in ZA43 alloy matrix. Hardness, ultimate tensile strength and yield strength increased as wt.% of B4C increased in the base matrix.

  2. Microstructural Development in Al-Si Powder During Rapid Solidification

    SciTech Connect

    Genau, Amber Lynn

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  3. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  4. AlSi matrices for U(Mo) dispersion fuel plates

    NASA Astrophysics Data System (ADS)

    Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2013-08-01

    Several irradiation experiments of U(Mo) dispersion fuel performed with aluminum as matrix resulted in unacceptable swelling of the fuel plate due to the formation of an interaction layer between Al and U(Mo). It was found that an improvement in fuel behavior can be achieved by adding Si to the Al matrix and creating a Si rich preformed layer which delays the formation of the interaction layer. Such Al-Si matrices can be formed either by mixing silicon powder with aluminum or using an AlSi alloy. AlSi alloy powders have very different mechanical properties which complicate fuel plate fabrication. Aging experiments on AlSi alloys reveal that giving the alloy the correct heat treatment results in a homogenous dispersion of fine Si precipitates in a soft and strain free Al matrix. The diffusion of such small precipitates towards the U(Mo) particles will be more effective than the transportation of Si from the larger Si particles used in a mixture matrix. Out of pile experiments are performed to show the difference between using a mixture or an alloy for the interaction with U(Mo). It was found that the U(Mo) particles dispersed in an AlSi alloy matrix have a more uniform Si rich preformed layer after heat treatment. the thermal component of the in-pile diffusion (340 °C); the fabrication behavior (450 °C); the enhanced diffusion due to fission product recoils (550 °C). At the same time, they have been chosen at values where literature data exists for comparison [26]. Although only the true in-reactor behavior can provide final conclusions, the results of these out-of-pile tests provide some good indications on the expected relative behavior. Table 3 provides an overview of the experiment.After the thermal treatment, the pellets are removed from the capsules and cut in their longitudinal direction. One half of the pellet is embedded in epoxy resin and polished on successively finer grid finishing on cloth using 1 μm diamond paste.The samples have been investigated

  5. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  6. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, F.

    1995-11-01

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  7. Multi-Objective Optimization in Hot Machining of Al/SiCp Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jadhav, M. R.; Dabade, U. A.

    2016-02-01

    Metal Matrix Composites (MMCs) have been found to be useful in a number of engineering applications and particle reinforced MMCs have received considerable attention due to their excellent engineering properties. These materials are generally regarded as extremely difficult to machine, because of the abrasive characteristics of the reinforced particulates. These characteristics of MMCs affect the machined surface quality and integrity. This paper presents use of Taguchi Grey Relational Analyses (GRA) for optimization of Al/SiCp/10p (220 and 600 mesh) MMCs produced by stir casting. Experiments are performed using L16 orthogonal array by using hot machining technique. The objective of this study is to identify the optimum process parameters to improve the surface integrity on Al/SiCp MMCs. The machined surface integrity has been analyzed by process parameters such as speed, feed, depth of cut and preheating temperature. The significance of the process parameters on surface integrity has been evaluated quantitatively by the analysis of variance (ANOVA) method and AOM plots. The grey relational analysis shows optimum machining conditions as 0.05 mm/rev feed, 0.4 mm depth of cut and 60 °C preheating temperature to enhance surface integrity for both Al/SiCp/10p (220 and 600 mesh) MMCs except for cutting speed 50 and 25 m/min respectively.

  8. Interfacial valence electron localization and the corrosion resistance of Al-SiC nanocomposite

    PubMed Central

    Mosleh-Shirazi, Sareh; Hua, Guomin; Akhlaghi, Farshad; Yan, Xianguo; Li, Dongyang

    2015-01-01

    Microstructural inhomogeneity generally deteriorates the corrosion resistance of materials due to the galvanic effect and interfacial issues. However, the situation may change for nanostructured materials. This article reports our studies on the corrosion behavior of SiC nanoparticle-reinforced Al6061 matrix composite. It was observed that the corrosion resistance of Al6061 increased when SiC nanoparticles were added. Overall electron work function (EWF) of the Al-SiC nanocomposite increased, along with an increase in the corrosion potential. The electron localization function of the Al-SiC nanocomposite was calculated and the results revealed that valence electrons were localized in the region of SiC-Al interface, resulting in an increase in the overall work function and thus building a higher barrier to hinder electrons in the nano-composite to participate in corrosion reactions. PMID:26667968

  9. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  10. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2010-04-20

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  11. Dispersoid reinforced alloy powder and method of making

    DOEpatents

    Anderson, Iver E.; Terpstra, Robert L.

    2012-06-12

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  12. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Rieken, Joel

    2013-12-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  13. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants.

  14. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. PMID:27523992

  15. Dispersoid reinforced alloy powder and method of making

    SciTech Connect

    Anderson, Iver E; Terpstra, Robert L

    2014-10-21

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.

  16. Microsegregation during Solidification of Graphitic Fiber-Reinforced Aluminum Alloys under External Heat Sinks

    NASA Astrophysics Data System (ADS)

    Seong, H. G.; Lopez, H. F.; Rohatgi, P. K.

    2007-01-01

    Squeeze casting and melt infiltration were employed in processing continuous graphitic fiber-reinforced aluminum matrix composites. The fiber reinforcements were (1) uncoated carbon fiber (UNC-CF), (2) Ni-coated carbon fiber (NiC-CF), and (3) bare graphite fibers (GRFs), and they were externally cooled to enhance the local solidification of the matrix alloy. The solidified microstructures and their composition profiles were examined using optical microscopy, scanning electron microscopy energy-dispersive X-ray, and electron probe microanalysis wavelengh-dispersive X-ray. The resultant microstructures in the UNC-CF and NiC-CF reinforced composites exhibited significant differences from those found in the GRF-reinforced composite, in terms of solidified morphologies and compositions. It was found that coarse columnar dendrites developed in the fiber-free matrix, fine equiaxed dendrites in the chilled matrix, and columnar-like arms in the fiber-reinforced matrices. In contrast, in bare GRF-reinforced composites, two distinct regions were clearly distinguished: (1) a region consisting of coarse equiaxed dendrites in the fiber-free matrix and (2) a featureless morphology within the fiber reinforcement regions. These distinct microstructures were attributed to preferential heat extraction through the GRFs, which possess a relatively high thermal conductivity. Apparently, heat extraction through the GRFs led to the formation of single α-Al envelopes on the fiber surfaces. In addition, the extent of solute segregation found in the GRF-reinforced alloy composite was relatively small when compared with the CF-reinforced alloy composites.

  17. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys. Final report

    SciTech Connect

    Misra, A.K.

    1988-11-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  18. Microstructure and mechanical properties of titanium alloys reinforced with titanium boride

    NASA Astrophysics Data System (ADS)

    Hill, Davion M.

    Microstructure features in TiB-reinforced titanium alloys are correlated with mechanical properties. Both laser deposition and arc melting are used to fabricate test alloys where microstructure evolution with heat treatment is examined. SEM and TEM investigations of microstructure are coupled with 3D reconstruction to provide an adequate picture of phases in these alloys. Mechanical properties are then studied. Wear testing of several test alloys is presented, followed by hardness and modulus measurements of individual phases via micro- and nano-indentation as well as a novel micro-compression technique. Bulk mechanical properties are then tested in Ti-6Al-4V and Ti-555 (Ti-5Al-5V-5Mo-3Cr-1Fe) with varying amounts of boron. Image processing methods are then applied to high resolution back-scattered scanning electron microscope images to quantify microstructure features in the tensile test specimens, and these values are then correlated with mechanical properties.

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  20. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  1. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  2. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  3. Iron-base superalloys - A phase analysis of the multicomponent system (Fe-Mn-Cr-Mo-Nb-Al-Si-C)

    NASA Technical Reports Server (NTRS)

    Gupta, H.; Nowotny, H.; Lemkey, F. D.

    1988-01-01

    In the course of studies on the iron-rich multicomponent system Fe-Mn-Cr-Mo-Nb-Al-Si-C, work was concentrated on pertinent quinary and six-component combinations namely Fe-Mn-Al-Si-C, Fe-Cr-Al-Si-C and Fe-Mn-Cr-Al-Si-C which had been elaborated at 65, 72, and 80 wt pct Fe. Manganese acts as a strong stabilizer for the cementite carbide. Chromium seems to stabilize the iron aluminide Fe2Al5 which forms in a considerable amount within an alloy of nominal composition Fe(65)Mn(15)Cr(12)Al(5)Si(2)C(1) (percent by weight). Although the Mn3AlC carbide is, like Fe3AlC, a perovskite carbide, manganese does not appear to favor the formation of the perovskite carbide. Because of the relatively low sintering temperature (700 C), for al large portion of the samples equilibria conditions are not always reached.

  4. Experimental investigation of bond in concrete members reinforced with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Daghash, S. M.; Sherif, M. M.; Ozbulut, O. E.

    2015-04-01

    Conventional seismic design of reinforced concrete structures relies on yielding of steel reinforcement to dissipate energy while undergoing residual deformations. Therefore, reinforced concrete structures subjected to strong earthquakes experience large permanent displacements and are prone to severe damage or collapse. Shape memory alloys (SMAs) have gained increasing acceptance in recent years for use in structural engineering due to its attractive properties such as high corrosion resistance, excellent re-centering ability, good energy dissipation capacity, and durability. SMAs can undergo large deformations in the range of 6-8% strain and return their original undeformed position upon unloading. Due to their appealing characteristics, SMAs have been considered as an alternative to traditional steel reinforcement in concrete structures to control permanent deformations. However, the behavior of SMAs in combination with concrete has yet to be explored. In particular, the bond strength is important to ensure the composite action between concrete and SMA reinforcements. This study investigates the bond behavior between SMA bars and concrete through pull-out tests. To explore the size effect on bond strength, the tests are performed using various diameters of SMA bars. For the same diameter, the tests are also conducted with different embedment length to assess the effect of embedment length on bond properties of SMA bars. To monitor the slippage of the SMA reinforcement, an optical Digital Image Correlation method is used and the bond-slip curves are obtained.

  5. A failure mechanism in Al-SiC composites

    NASA Technical Reports Server (NTRS)

    Nutt, S. R.; Duva, J. M.

    1986-01-01

    Divecha et al. (1981) have discussed the advantages of materials obtained by adding silicon carbide whiskers to commercial aluminum alloys, taking into account also certain problems which are related to poor ductility and low fracture toughness. The present investigation has the objective to advance the understanding of the deformation at the whisker ends in reinforced aluminum composites through both observation and analysis. It is suggested that the low fracture toughness of the considered materials is the result of the rapid accumulation of damage at the whisker ends. It is pointed out that the whisker ends are sites of severe stress concentration and intense localized plastic strain. In connection with this situation, voids nucleate and grow at relatively low macroscopic stress levels. The reported studies include an examination of the deformation microstructure beneath the fracture surfaces of specimens with the aid of transmission electron microscopy.

  6. Physical and mechanical properties of LoVAR: a new lightweight particle-reinforced Fe-36Ni alloy

    NASA Astrophysics Data System (ADS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-09-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  7. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  8. Development of Carbon Fiber Reinforced Stellite Alloy Based Composites for Tribocorrosion Applications

    NASA Astrophysics Data System (ADS)

    Khoddamzadeh, Alireza

    This thesis reports the design and development of two classes of new composite materials, which are low-carbon Stellite alloy matrices, reinforced with either chopped plain carbon fiber or chopped nickel-coated carbon fiber. The focus of this research is on obviating the problems related to the presence of carbides in Stellite alloys by substituting carbides as the main strengthening agent in Stellite alloys with the aforementioned carbon fibers. Stellite 25 was selected as the matrix because of its very low carbon content (0.1 wt%) and thereby relatively carbide free microstructure. The nickel coating was intended to eliminate any chance of carbide formation due to the possible reaction between carbon fibers and the matrix alloying additions. The composite specimens were fabricated using the designed hot isostatic pressing and sintering cycles. The fabricated specimens were microstructurally analyzed in order to identify the main phases present in the specimens and also to determine the possible carbide formation from the carbon fibers. The material characterization of the specimens was achieved through density, hardness, microhardness, corrosion, wear, friction, and thermal conductivity tests. These novel materials exhibit superior properties compared to existing Stellite alloys and are expected to spawn a new generation of materials used for high temperature, severe corrosion, and wear resistant applications in various industries.

  9. Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiC[sub p] discontinuously reinforced aluminum alloy

    SciTech Connect

    Singh, P.M.; Lewandowski, J.J. . Dept. of Materials Science and Engineering)

    1993-11-01

    The effects of heat-treatment, matrix microstructure, and reinforcement size on the evolution of damage, in the form of SiC[sub p] cracking, during uniaxial tension testing of an aluminum-alloy based composite have been determined. A powder metallurgy Al-Zn-Mg-Cu alloy reinforced with 15 vol pct of either 5 or 13 [mu]m average size SiC[sub p] was heat treated to solution annealed (SA), underaged (UA), and overaged (OA) conditions. The SA treatment exhibited lower yield strength and higher ductility for both particulate sizes compared to the UA and OA conditions. The evolution of damage, in the form of SiC[sub p] fracture, was monitored quantitatively using metallography and changes in modulus on sequentially strained specimens. It is shown that the evolution of SiC[sub p] fracture is very dependent on particulate size, matrix aging condition, and the details of the matrix-reinforcement interfacial regions. SiC[sub p] fracture was exhibited by the UA and OA treatment over a range of strains, while a preference for failure near the SiC[sub p]/matrix interfaces and in the matrix was exhibited in the OA material. While the percentage of cracked SiC[sub p] at each global strain typically was equal or somewhat lower in the material reinforced with 5[mu]m average size SiC[sub p], the absolute number of cracked SiC[sub p] was always higher at each heat treatment. Damage (e.g., voids) in matrix and near the SiC[sub p]/matrix interfaces was additionally observed, although its extent was highly matrix and particle-size dependent. It was always observed that increases in stress (and strain) produced a larger amount of fractures SiC[sub p]. However, neither a global stress-based nor a global strain-based model was sufficient in converging the amount of SiC[sub p] fractured for all heat treatments and particle sizes tested.

  10. Precipitation Sequence of a SiC Particle Reinforced Al-Mg-Si Alloy Composite

    NASA Astrophysics Data System (ADS)

    Shen, Rujuan; Wang, Yihan; Guo, Baisong; Song, Min

    2016-10-01

    In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β' → B', which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.

  11. Compressive behavior of titanium alloy skin-stiffener specimens selectively reinforced with boron-aluminum composite

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.; Webster, R. C.

    1971-01-01

    A method of selectively reinforcing a conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing was successfully demonstrated in compression tests of short skin-stiffener specimens. In a comparison with all-titanium specimens, improvements in structural performance recorded for the composite-reinforced specimens exceeded 25 percent on an equivalent-weight basis over the range from room temperature to 700 K (800 F) in terms of both initial buckling and maximum strengths. Performance at room temperature was not affected by prior exposure at 588 K (600 F) for 1000 hours in air or by 400 thermal cycles between 219 K and 588 K (-65 F and 600 F). The experimental results were generally predictable from existing analytical procedures. No evidence of failure was observed in the braze between the boron-aluminum composite and the titanium alloy.

  12. Effects of interface treatment on the fatigue behaviour of shape memory alloy reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Harish, K.; Vasireddi, Ramakrishna; Benal, M. M.; Mahapatra, D. R.

    2015-04-01

    Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMAepoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

  13. Reactive spark plasma sintering (SPS) of nitride reinforced titanium alloy composites

    SciTech Connect

    Borkar, Tushar; Nag, Soumya; Ren, Yang; Tiley, Jaimie; Banerjee, Rajarshi

    2014-12-25

    Coupled in situ alloying and nitridation of titanium–vanadium alloys, has been achieved by introducing reactive nitrogen gas during the spark plasma sintering (SPS) of blended titanium and vanadium elemental powders, leading to a new class of nitride reinforced titanium alloy composites. The resulting microstructure includes precipitates of the d-TiN phase with the NaCl structure, equiaxed (or globular) precipitates of a nitrogen enriched hcp a(Ti,N) phase with a c/a ratio more than what is expected for pure hcp Ti, and fine scale plate-shaped precipitates of hcp a-Ti, distributed within a bcc b matrix. During SPS processing, the d-TiN phase appears to form at a temperature of 1400 C, while only hcp a(Ti,N) and a-Ti phases form at lower processing temperatures. Consequently, the highest microhardness is exhibited by the composite processed at 1400 C while those processed at 1300 C or below exhibit lower values. Processing at temperatures below 1300 C, resulted in an incomplete alloying of the blend of titanium and vanadium powders. These d-TiN precipitates act as heterogeneous nucleation sites for the a(Ti,N) precipitates that appear to engulf and exhibit an orientation relationship with the nitride phase at the center. Furthermore, fine scale a-Ti plates are precipitated within the nitride precipitates, presumably resulting from the retrograde solubility of nitrogen in titanium.

  14. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    PubMed Central

    Petersen, Richard C.

    2014-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10−4, and 19.3% to 77.7% at 0.1 mm, P < 10−8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential. PMID:25553057

  15. Study of multi-carbide B4C-SiC/(Al, Si) reaction infiltrated composites by SEM with EBSD

    NASA Astrophysics Data System (ADS)

    Almeida, B. A.; Ferro, M. C.; Ravanan, A.; Grave, P. M. F.; Wu, H.-Y.; Gao, M.-X.; Pan, Y.; Oliveira, F. J.; Lopes, A. B.; Vieira, J. M.

    2014-03-01

    In the definition of conceptual developments and design of new materials with singular or unique properties, characterisation takes a key role in clarifying the relationships of composition, properties and processing that define the new material. B4C has a rare combination of properties that makes it suitable for a wide range of applications in engineering: high refractoriness, thermal stability, high hardness and abrasion resistance coupled to low density. However, the low self-diffusion coefficient of B4C limits full densification by sintering. A way to overturn this constraint is by using an alloy, for example Al-Si, forming composites with B4C. Multi-carbide B4C-SiC/(Al, Si) composites were produced by the reactive melt infiltration technique at 1200 - 1350 °C with up to 1 hour of isothermal temperature holds. Pressed preforms made from C-containing B4C were spontaneously infiltrated with Al-Si alloys of composition varying from 25 to 50 wt% Si. The present study involves the characterisation of the microstructure and crystalline phases in the alloys and in the composites by X-ray diffraction and SEM/EDS with EBSD. Electron backscatter diffraction is used in detail to look for segregation and spatial distribution of Si and Al containing phases during solidification of the metallic infiltrate inside the channels of the ceramic matrix when the composite cools down to the eutectic temperature (577 °C). It complements elemental maps of the SEM/EDS. The production of a flat surface by polishing is intrinsically difficult and the problems inherent to the preparation of EBSD qualified finishing in polished samples of such type of composites are further discussed.

  16. Interaction behaviors at the interface between liquid Al-Si and solid Ti-6Al-4V in ultrasonic-assisted brazing in air.

    PubMed

    Chen, Xiaoguang; Yan, Jiuchun; Gao, Fei; Wei, Jinghui; Xu, Zhiwu; Fan, Guohua

    2013-01-01

    Power ultrasonic vibration (20 kHz, 6 μm) was applied to assist the interaction between a liquid Al-Si alloy and solid Ti-6Al-4V substrate in air. The interaction behaviors, including breakage of the oxide film on the Ti-6Al-4V surface, chemical dissolution of solid Ti-6Al-4V, and interfacial chemical reactions, were investigated. Experimental results showed that numerous 2-20 μm diameter-sized pits formed on the Ti-6Al-4V surface. Propagation of ultrasonic waves in the liquid Al-Si alloy resulted in ultrasonic cavitation. When this cavitation occurred at or near the liquid/solid interface, many complex effects were generated at the small zones during the bubble implosion, including micro-jets, hot spots, and acoustic streaming. The breakage behavior of oxide films on the solid Ti-6Al-4V substrate, excessive chemical dissolution of solid Ti-6Al-4V into liquid Al-Si, abnormal interfacial chemical reactions at the interface, and phase transformation between the intermetallic compounds could be wholly ascribed to these ultrasonic effects. An effective bond between Al-Si and Ti-6Al-4V can be produced by ultrasonic-assisted brazing in air.

  17. Analysis of interfacial debonding in shape memory alloy wire-reinforced composites

    NASA Astrophysics Data System (ADS)

    Miramini, A.; Kadkhodaei, M.; Alipour, A.; Mashayekhi, M.

    2016-01-01

    One of the common types of failure in shape memory alloy (SMA) wire-reinforced composites is interfacial debonding between the fiber and the matrix. In this paper, a three dimensional finite element model for an SMA wire-reinforced composite is developed based on cohesive zone modeling to predict interfacial debonding between the SMA wire and the surrounding matrix. The interfacial debonding is also experimentally investigated by conducting a number of pull-out tests on steel as well as Nitinol wires embedded in an epoxy matrix. To evaluate the presented method, the developed finite element analysis is employed to simulate a single wire pull-out test for ordinary (e.g. steel) wires. In order to simulate SMA wire pull-out, a 3D SMA constitutive model is implemented into the commercial finite element software ABAQUS using a user material subroutine (UMAT). An acceptable agreement is shown to exist between the theoretical results and the experimental data, indicating the efficiency of the proposed approach to model interfacial debonding in SMA wire-reinforced composites.

  18. Characterization of reinforcement distribution in cast Al-alloy/SiC{sub p} composites

    SciTech Connect

    Karnezis, P.A.; Durrant, G.; Cantor, B.

    1998-02-01

    The distribution of reinforcement in 10% SiC and 20% SiC{sub p} reinforced A356 alloy processed by gravity casting, squeeze casting, and roll casting is studied by using the mean free path, nearest neighbor distance, radial distribution function, and quadrat methods. The study is performed by using computer image analysis methods in an automated procedure to prevent operator errors, improve sample size, and minimize analysis time. From the methods used to characterize the SiC{sub p} distributions, the quadrat method and radial distribution function are found to be more effective in detecting pronounced changes in the metal-matrix composite (MMC) microstructure through appropriate parameters, whereas the mean free path is characteristic of the particular MMC system rather than process specific. Furthermore, the nearest neighbor distance is of little use in studying cast MMCs, because it is affected by local clusters of a few SiC particles commonly found in cast MMCs, thus failing to characterize the macroscopic arrangement of reinforcement. Quantitative methods present themselves as a useful tool for quality control in MMC fabrication and can be used to correlate particle distribution and properties of MMC systems.

  19. Strength of MWCNT-Reinforced 70Sn-30Bi Solder Alloys

    NASA Astrophysics Data System (ADS)

    Billah, Md Muktadir; Chen, Quanfang

    2016-01-01

    In this study, the effect of Cu-coated multi-walled carbon nanotubes (MWCNTs) on the tensile strength of 70Sn-30Bi solder alloy has been investigated. Copper was first deposited onto metal-activated MWCNTs by an electroless process and confirmed with a scanning electron microscope and energy dispersive spectroscopy. Sn-Bi alloy solder was reinforced with Cu-coated MWCNTs with additions of 0.5 wt.%, 1 wt.%, 2 wt.%, and 3 wt.%, respectively. 70Sn-30Bi solder was produced by melting pure tin and bismuth in an inert gas atmosphere. Cu-coated MWCNTs were then added into the metal matrix by cold rolling, followed by hot pressing to disperse the carbon nanotubes (CNTs) in the matrix. Tensile tests were conducted on an mechanical testing and simulation (MTS) tester. The tensile strength was found to be proportional to the addition of Cu/MWCNTs, and about 47.6% increase in tensile strength over the pure alloy has been obtained for an addition of 3 wt.% Cu/MWCNTs. The Cu coating may enhance CNT dispersion to prevent tangling.

  20. Effect of SiC reinforcement on the deformation and fracture micromechanisms of Al-Li alloys

    PubMed

    Poza; Llorca

    1999-11-01

    The effect of SiC reinforcement on the microstructure of a naturally aged 8090 Al alloy as well as on the deformation and fracture micromechanisms was investigated. To this end, the microstructural characteristics (grain and reinforcement morphology, precipitate structure) were determined in the unreinforced alloy and in the composite reinforced with 15 vol.% SiC particles. The materials were tested under monotonic tension and fully reversed cyclic deformation and then carefully analysed through scanning and transmission electron microscopy to find the dominant deformation and failure processes for each material and loading condition. It was found that the dispersion of the SiC particles restrained the formation of elongated grains during extrusion and inhibited the precipitation of Al3Li. As a result, the plastic deformation in the composite was homogeneous, while strain localization in slip bands was observed in the unreinforced alloy specimens tested in tension and in fatigue. The unreinforced alloy failed by transgranular shear along the slip bands during monotonic deformation, whereas fracture was initiated by grain boundary delamination, promoted by the stress concentrations induced by the slip bands, during cyclic deformation. The fracture of the composite was precipitated by the progressive fracture of the SiC reinforcements during monotonic and cyclic deformation.

  1. Phase-separated Al-Si thin films

    SciTech Connect

    Fukutani, Kazuhiko; Tanji, Koichi; Saito, Tatsuya; Den, Tohru

    2005-08-01

    Phase-separated Al-Si films composed of Al nanocylinders embedded in an amorphous-Si matrix have been prepared by a sputtering method. By controlling the deposition rate, substrate temperature, and film composition, the average diameter of the Al cylinders can be varied systematically from less than 5 to 13 nm with a cylinder density ranging from 10{sup 15} to in excess of 10{sup 16} cylinders m{sup -2}. A three-dimensional simulation of phase separation in binary thin films was performed using a modified Cahn-Hilliard [J. Chem. Phys. 28, 258 (1958)] equation to understand the growth mechanism. The simulation studies indicate that the surface diffusion length and film composition are important factors which determine film morphology. Experimental and simulation studies are compared and discussed.

  2. Laser shock processing of Al-SiC composite coatings

    NASA Astrophysics Data System (ADS)

    Schnick, T.; Steinhäuser, S.; Wielage, B.; Hofmann, U.; Tondu, S.; Peyre, P.; Bartnicki, E.; Pawlowski, L.

    1999-06-01

    Laser shock processing (LSP) is a technique of surface treatment (similar to shot peening) in which laser-induced mechanical shocks develop compressive stresses in the material. The stresses are of sufficient intensity to modify microstructure and properties of the coatings. In the present study, laser shocks of power density of 5 to 8 GW/cm2 power density, generated by means of a neodymium-glass laser, were used to treat Al + SiC composite coatings deposited by means of a HVOF spraying technique. The laser processed samples were metallographically prepared, and their microstructure was investigated by optical microscope and SEM. The latter was also used to investigate the surface morphology of the laser treated specimens. Finally, the microhardness and oscillating wear resistance of the coatings were tested and compared to data obtained for as-sprayed samples.

  3. Rapid Solidification: Selective Laser Melting of AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Pistorius, P. Chris; Narra, Sneha; Beuth, Jack L.

    2016-03-01

    Rapid movement of the melt pool (at a speed around 1 m/s) in selective laser melting of metal powder directly implies rapid solidification. In this work, the length scale of the as-built microstructure of parts built with the alloy AlSi10Mg was measured and compared with the well-known relationship between cell size and cooling rate. Cooling rates during solidification were estimated using the Rosenthal equation. It was found that the solidification structure is the expected cellular combination of silicon with α-aluminum. The dependence of measured cell spacing on calculated cooling rate follows the well-established relationship for aluminum alloys. The implication is that cell spacing can be manipulated by changing the heat input. Microscopy of polished sections through particles of the metal powder used to build the parts showed that the particles have a dendritic-eutectic structure; the dendrite arm spacings in metal powder particles of different diameters were measured and also agree with literature correlations, showing the expected increase in secondary dendrite arm spacing with increasing particle diameter.

  4. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  5. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  6. Aging effects on the fracture toughness of SiC whisker reinforced 2XXX aluminum alloys

    NASA Technical Reports Server (NTRS)

    Ratnaparkhi, P. L.; Rack, H. J.

    1989-01-01

    The effect of aging (at 150 C) time on the fracture toughness behavior of a 2XXX alloy (Al-3.55Cu-1.29Mg-0.01Fe-trace Mn) reinforced with 5 vol pct F-8 SiC whiskers was investigated by measuring hardness and electrical conductivity followed by fracture toughness tests on center-cracked specimens. The ageing time-hardening response plots showed that, independent of whisker orientation, the initial rapid increase in hardness was followed by a more gradual increase, with a broad hardness peak between 32 and 128 hrs of aging. Coincident with the hardness changes, the electrical conductivity initially decreased, reached a minimum, and then increased at aging times beyond 32 hrs. Examination by SEM indicated that the initial increase in hardness and decrease in conductivity was due to the GPB zone formation, while the subsequent increase in electrical conductivity and decrease in hardness (overaging) was due to S nucleation and growth.

  7. Compressive strength of titanium alloy skin-stringer panels selectively reinforced with boron-aluminum composite.

    NASA Technical Reports Server (NTRS)

    Herring, H. W.; Carri, R. L.

    1972-01-01

    Description of a method of selectively reinforcing conventional titanium airframe structure with unidirectional boron-aluminum composite attached by brazing which has been successfully demonstrated based on compression tests of short skin-stringer panels. Improvements in structural performance exceeded 25% on an equivalent weight basis over the range from room temperature to 800 F, both in terms of initial buckling and maximum strengths. Room-temperature performance was not affected by prior exposure at 600 F for 1000 hours in air, or by 400 cycles between -65 and 600 F. The experimental results were generally predictable on the basis of existing analytical procedures. No evidence of failure was observed in the braze bond between the boron-aluminum composite and the titanium alloy.

  8. Interdiffusion in Diffusion Couples: U-Mo v. Al and Al-Si

    SciTech Connect

    D. D. Keiser, Jr.; E. Perez; B. Yao; Y. H. Sohn

    2009-11-01

    Interdiffusion and microstructural development in the U-Mo-Al system was examined using solid-tosolid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, annealed at 600°C for 24 hours. The influence of Si alloying addition (up to 5 wt.%) in Al on the interdiffusion microstructural development was also examined using solid-to-solid diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo and U-12wt.%Mo vs. pure Al, Al-2wt.%Si, and Al-5wt.%Si annealed at 550°C up to 20 hours. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA) were employed to examine the development of a very fine multiphase intermetallic layer. In ternary U-Mo-Al diffusion couples annealed at 600°C for 24 hours, interdiffusion microstructure varied of finely dispersed UAl3, UAl4, U6Mo4Al43, and UMo2Al20 phases while the average composition throughout the interdiffusion zone remained constant at approximately 80 at.% Al. Interdiffusion microstructure observed by SEM/TEM analyses and diffusion paths drawn from concentration profiles determined by EPMA appear to deviate from the assumption of “local thermodynamic equilibrium,” and suggest that interdiffusion occurs via supersaturated UAl4 followed by equilibrium transformation into UAl3, U6Mo4Al43, UAl4 and UMo2Al20 phases. Similar observation was made for U-Mo vs. Al diffusion couples annealed at 550°C. The addition of Si (up to 5 wt.%) in Al significantly reduced the thickness of the intermetallic layer by changing the constituent phases of the interdiffusion zone developed in U-Mo vs. Al-Si diffusion couples. Specifically, the formation of (U,Mo)(Al,Si)3 with relatively large solubility for Mo and Si, along with UMo2Al20 phases was observed along with disappearance of U6Mo4Al43 and UAl4 phases. Simplified understanding based on U-Al, U-Si, and Mo-Si binary phase diagrams is discussed in the light of the beneficial effect of Si alloying addition.

  9. Microstructure of as-fabricated UMo/Al(Si) plates prepared with ground and atomized powder

    NASA Astrophysics Data System (ADS)

    Jungwirth, R.; Palancher, H.; Bonnin, A.; Bertrand-Drira, C.; Borca, C.; Honkimäki, V.; Jarousse, C.; Stepnik, B.; Park, S.-H.; Iltis, X.; Schmahl, W. W.; Petry, W.

    2013-07-01

    UMo-Al based fuel plates prepared with ground U8wt%Mo, ground U8wt%MoX (X = 1 wt%Pt, 1 wt%Ti, 1.5 wt%Nb or 3 wt%Nb) and atomized U7wt%Mo have been examined. The first finding is that that during the fuel plate production the metastable γ-UMo phases partly decomposed into two different γ-UMo phases, U2Mo and α'-U in ground powder or α″-U in atomized powder. Alloying small amounts of a third element to the UMo had no measurable effect on the stability of the γ-UMo phase. Second, the addition of some Si inside the Al matrix and the presence of oxide layers in ground and atomized samples is studied. In the case with at least 2 wt%Si inside the matrix a Silicon rich layer (SiRL) forms at the interface between the UMo and the Al during the fuel plate production. The SiRL forms more easily when an Al-Si alloy matrix - which is characterized by Si precipitates with a diameter ⩽1 μm - is used than when an Al-Si mixed powder matrix - which is characterized by Si particles with some μm diameter - is used. The presence of an oxide layer on the surface of the UMo particles hinders the formation of the SiRL. Addition of some Si into the Al matrix [7-11]. Application of a protective barrier at the UMo/Al interface by oxidizing the UMo powder [7,12]. Increase of the Mo content or use of UMo alloys with ternary element addition X (e.g. X = Nb, Ti, Pt) to stabilize the γ-UMo with respect to α-U or to control the UMo-Al interaction layer kinetics [9,12-24]. Use of ground UMo powder instead of atomized UMo powder [10,25] The points 1-3 are to limit the formation of the undesired UMo/Al layer. Especially the addition of Si into the matrix has been suggested [3,7,8,10,11,26,27]. It has been often mentioned that Silicon is efficient in reducing the Uranium-Aluminum diffusion kinetics since Si shows a higher chemical affinity to U than Al to U. Si suppresses the formation of brittle UAl4 which causes a huge swelling during the irradiation. Furthermore it enhances the

  10. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    SciTech Connect

    Johnson, Matthew ); Weyant, J.; Garner, S. ); Occhionero, M. )

    2010-01-07

    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.

  11. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  12. Numerical Evaluation Of Shape Memory Alloy Recentering Braces In Reinforced Concrete Buildings Subjected To Seismic Loading

    NASA Astrophysics Data System (ADS)

    Charles, Winsbert Curt

    Seismic protective techniques utilizing specialized energy dissipation devices within the lateral resisting frames have been successfully used to limit inelastic deformation in reinforced concrete buildings by increasing damping and/or altering the stiffness of these structures. However, there is a need to investigate and develop systems with self-centering capabilities; systems that are able to assist in returning a structure to its original position after an earthquake. In this project, the efficacy of a shape memory alloy (SMA) based device, as a structural recentering device is evaluated through numerical analysis using the OpenSees framework. OpenSees is a software framework for simulating the seismic response of structural and geotechnical systems. OpenSees has been developed as the computational platform for research in performance-based earthquake engineering at the Pacific Earthquake Engineering Research Center (PEER). A non-ductile reinforced concrete building, which is modelled using OpenSees and verified with available experimental data is used for the analysis in this study. The model is fitted with Tension/Compression (TC) SMA devices. The performance of the SMA recentering device is evaluated for a set of near-field and far-field ground motions. Critical performance measures of the analysis include residual displacements, interstory drift and acceleration (horizontal and vertical) for different types of ground motions. The results show that the TC device's performance is unaffected by the type of ground motion. The analysis also shows that the inclusion of the device in the lateral force resisting system of the building resulted in a 50% decrease in peak horizontal displacement, and inter-story drift elimination of residual deformations, acceleration was increased up to 110%.

  13. Dependence of dynamic magnetization and magneto-transport properties of FeAlSi films with oblique sputtering studied via spin rectification effect

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Zhong, Xiaoxi

    2014-09-15

    FeAlSi (Sendust) is known to possess excellent soft magnetic properties comparable to traditional soft magnetic alloys such as NiFe (Permalloy), while having a relatively higher resistance for lower eddy current losses. However, their dynamic magnetic and magneto-transport properties are not well-studied. Via the spin rectification effect, we electrically characterize a series of obliquely sputtered FeAlSi films at ferromagnetic resonance. The variations of the anisotropy fields and damping with oblique angle are extracted and discussed. In particular, two-magnon scattering is found to dominate the damping behavior at high oblique angles. An analysis of the results shows large anomalous Hall effect and anisotropic magneto-resistance across all samples, which decreases sharply with increasing oblique incidence.

  14. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  15. Computational design of multifunctional composites made of shape memory alloys and fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Senf, Björn; Eppler, Christoph; Bucht, André; Navarro y de Sosa, Iñaki; Kunze, Holger

    2013-04-01

    Shape memory alloys (SMA) like Nickel-Titanium possess a very high mechanical energy density in relation to conventional drives. Fiber reinforced plastics (FRP) will be increasingly applied to create lightweight structures. Combining both innovative materials will evolve synergy effects. Due to functional integration of SMA sheets into a base of FRP it is possible to realize adaptive composites for resource-efficient constructions as for instance flaps or spoilers on cars. For this purpose the interaction between SMA as an actuator and FRP as a return spring need to be designed in a suitable way. The computation of such structures is complex because of its non-linear (SMA) and anisotropic (FRP) mechanical behavior. Therefore, a structural simulation model based on the finite element method was developed by means of the software ANSYS. Based on that simulation model it is possible to determine proper geometrical parameters for a composite made of SMA and FRP to perform a certain mechanism. The material properties of SMA or FRP could also be varied to investigate their influence. For exemplary components it could be shown that the stress-strain behavior is computable.

  16. The effect of nanobioceramic reinforcement on mechanical and biological properties of Co-base alloy/hydroxyapatite nanocomposite.

    PubMed

    Bahrami, M; Fathi, M H; Ahmadian, M

    2015-03-01

    The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness.

  17. Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility

    NASA Astrophysics Data System (ADS)

    Zhu, Xian; Zhao, Yu-Guang; Wang, Hui-Yuan; Wang, Zhi-Guo; Wu, Min; Pei, Chang-hao; Chen, Chao; Jiang, Qi-Chuan

    2016-09-01

    A sandwich structure laminate composed of a ductile 2014Al inter-layer and two nanoscale SiC reinforced 2014Al (SiC/2014Al) composite outer layers was successfully fabricated through the combination of powder metallurgy and hot rolling. The ductile 2014Al inter-layer effectively improved the processability of the sandwiched laminates. Tensile test revealed that the yield strength and ultimate tensile strength of the sandwiched laminate were 287 and 470 MPa, respectively, compared with 235 and 425 MPa for monolithic 2014Al. The good performance of the sandwiched laminate results from the strong bonding between the SiC/2014Al composites layer and the ductile 2014Al layer. Thus, the sandwich structure with a composite surface and ductile core is effective for increasing the strength and toughness of composite laminates.

  18. Growth and deformation structure of gradient and layer-gradient Ti-Al-Si-Cu-N coatings

    SciTech Connect

    Ovchinnikov, Stanislav V. Pinzhin, Yurii P.; Korotaev, Alexandr D.

    2014-11-14

    The features of the growth structure and modification of gradient and layer-gradient Ti-Al-Si-Cu-N coatings in the areas of deformation and fracture during indentation and scratch testing were investigated using transmission and scanning electron microscopy methods. The influence of the concentration of alloying elements and displacement potential in the substrate on the secondary sputtering, phase composition and the level of combined torsion and bending of the crystal lattice of doped TiN were determined. It was found out that the size of the crystals in deformation location bands grows with deformation of gradient nanocrystal coatings. The article shows that layer-gradient coatings combining submicrocrystalline and nanocrystalline structures have the increased plasticity and fracture toughness due to enhanced density of interfaces and formation of the soft metal phase (Cu) in the surface layer.

  19. Spray-forming monolithic aluminum alloy and metal matrix composite strip

    SciTech Connect

    McHugh, K.M.

    1995-10-01

    Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

  20. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement

    NASA Astrophysics Data System (ADS)

    Zhu, Zongtao; Li, Yuanxing; Zhang, Mingyue; Hui, Chen

    2015-03-01

    7003-T5 Aluminum (Al) alloy plates with a thickness of 5 mm are welded by gas metal arc welding (GMAW) method in this work. In order to investigate the influence of stress concentration introduced by weld reinforcement on fatigue strength, the stress concentration factor of the butt joint is calculated. Microscopic and X-ray techniques were utilized to make sure there are no weld defects with large size in butt weld, which can induce extra stress concentration. The cyclic stress - number of cycles to failure (S-N) curves of the joints with and without the welder were obtained by fatigue testing, and the results show that the fatigue strength of 7003-T5 Al alloy butt joints with the weld reinforcement is 50 MPa, which is only 45% of the joints without the weld reinforcement. Fracture surface observation indicated that the fatigue source and propagation are dissimilar for the specimens with and without the welder due to the stress concentration at the weld root. The stress concentration with a factor of 1.7 has great effect on the fatigue strength, but little influence on the tensile strength.

  1. Mechanical Properties and High Temperature Oxidation Behavior of Ti-Al Coating Reinforced by Nitrides on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Dai, Jingjie; Yu, Huijun; Zhu, Jiyun; Weng, Fei; Chen, Chuanzhong

    2016-05-01

    Ti-Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti-6Al-4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800∘C for 1000h in static air was 5.16×10-3mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti-6Al-4V titanium alloy significantly.

  2. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    NASA Astrophysics Data System (ADS)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-03-01

    Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  3. A quantitative interpretation of DSC experiments on quenched and aged SiC{sub P} reinforced 8090 alloys

    SciTech Connect

    Starink, M.J.; Gregson, P.J.

    1995-09-15

    Differential Scanning Calorimetry (DSC) is a useful technique for the study of phase transformations and has been widely applied to study precipitation in aluminum alloys, but the results are generally interpreted qualitatively. In the present paper a quantitative interpretation of DSC heat effects occurring in 8090 alloys with and without SiC particle reinforcement is presented. Hardening of 8090 alloys (nominal composition Al-1.3wt% Cu-1wt%Mg-2.5wt%Li) is generally interpreted in terms of two precipitation sequences: (1) Li in Al-rich phase {yields} {delta}{prime} {yields} {delta}, where {delta}{prime} is a L1{sub 2} ordered phase (Al{sub 3}Li), fully coherent with the Al matrix, and {delta} is the equilibrium Al-Li phase (AlLi), which forms mainly at grain boundaries; (2) Cu,Mg in Al-rich phase {yields} GPB zones {yields} S{prime} {yields} S, where GPB zones are Cu and Mg containing Guinier-Preston zones, and S{prime} is a slightly strained semicoherent version of the incoherent S (Al{sub 2}CuMg). Since the formation enthalpies of the two variants are the same, S{prime} and S will be considered to be the same phase in this paper.

  4. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    NASA Astrophysics Data System (ADS)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  5. Synthesis and characterization of nanoscale Al-Si-O gradient membranes

    SciTech Connect

    Trouillet, V.; Troesse, H.; Bruns, M.; Nold, E.; White, R. G.

    2007-07-15

    Novel ultrathin gas-permeable Al-Si-oxide membranes have been developed by means of ion induced chemical vapor deposition in order to improve the gas analytical performance of an electronic nose. Dependent on the used precursor tailored Al/Si concentration ratios and even concentration gradients are attainable. The diversity in chemical composition and thickness across the gas sensor microarray has been proven by the combination of ellipsometry for the freshly prepared membrane and line scans derived from Auger electron spectroscopy and angle resolved x-ray photoelectron spectroscopy, respectively, for the baked membrane.

  6. Fabrication and Wear Behavior of Nanostructured Plasma-Sprayed 6061Al-SiCp Composite Coating

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Mohanty, R. M.; Sharma, V. K.; Soni, P. R.

    2014-10-01

    6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.

  7. Investigation of Wear and Corrosion Protection of AlSi20 Coatings Produced by Plasma Spraying and Laser Cladding on AZ31B

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Kopp, Nils; Warda, Thomas; Schulz, Christiane; Rolink, Gesa; Weisheit, Andreas

    2013-03-01

    Magnesium and magnesium alloys are the lightest structural materials with an approximate density of 1.7 g/cm2 (density of aluminum ~2.7 g/cm2). Due to poor corrosion and wear resistance properties, they need to be coated for usage in service conditions under corrosive and tribological loads. AlSi20 was found to be a suitable coating material to improve the wear and corrosion protection properties of magnesium alloys. Within this work, AlSi20 coatings were applied by plasma spraying, laser cladding, and a combination of both processes. First, the coatings are characterized by their microhardness and residual stresses formed within the coating during the different coating processes. Then, these coatings were investigated regarding corrosion resistance in 3.5% sodium chloride solution in a three-electrode setup to obtain electrochemical corrosion characteristics. Abrasive wear was investigated using a pin-on-disk tribometer and the abrasion rate was calculated. Resistance against shock loads was tested by applying a cyclic load at 50 Hz to investigate the resistance against impact stresses.

  8. Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles

    NASA Astrophysics Data System (ADS)

    Cui, Chaopeng; Gao, Yimin; Wei, Shizhong; Zhang, Guoshang; Zhou, Yucheng; Zhu, Xiangwei; Guo, Songliang

    2016-03-01

    The nano-sized ZrO2-reinforced Mo alloy was prepared by a hydrothermal method and a subsequent powder metallurgy process. During the hydrothermal process, the nano-sized ZrO2 particles were added into the Mo powder via the hydrothermal synthesis. The grain size of Mo powder decreases obviously with the addition of ZrO2 particles, and the fine-grain sintered structure is obtained correspondingly due to hereditation. In addition to a few of nano-sized ZrO2 particles in grain boundaries or sub-boundaries, most are dispersed in grains. The tensile strength and yield strength have been increased by 32.33 and 53.76 %.

  9. Aging effects of diamond reinforced aluminium alloys submitted to deep space real conditions. Structural, chemical and electrical degradation

    NASA Astrophysics Data System (ADS)

    Korneli, Grigorov; Bouzekova-Penkova, Anna; Datcheva, Maria; Avdeev, George; Grushin, Valerii; Klimov, Stanislav

    2016-07-01

    An aluminium alloy (Al-Cu-Zn-Mg) reinforced with ultra-dispersed diamond powder and tungsten (W), has been prepared in form of 7 cm bars and 4 mm diameter. One part of them stayed 2 years on satellite exposed to outer space, where the Sun activity and the background radiation were monitored. After satellite return both batches has been studied. Structural test, mainly micro-hardness together with detailed X-rays analyses was performed. The satellite makes a tour around the Earth each two hours, the temperature difference being circa 300oC. The micro-hardness being measured with Agilent G200 nano-indentor shows a significant drop of 25%. The XRD patterns are consistent with the previous results, states defects incorporation, and crystalline cells deterioration.

  10. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  11. Effects of porous carbon on sintered Al-Si-Mg matrix composites

    SciTech Connect

    Ejiofor, J.U.; Reddy, R.G.

    1997-12-01

    The influence of microporous particulate carbon char on the mechanical, thermal, and tribological properties of wear-resistant Al-13.5Si-2.5Mg alloy composites was studied. Large increases in surface area due to the formation of micropores in coconut shell chars were achieved by high-temperature activation under CO{sub 2} gas flow. Activated char particles at 0.02 V{sub f} were used to reinforce the alloy. The composites were fabricated via a double-compaction reaction sintering technique under vacuum at a compaction pressure of 250 MPa and sintering temperature of 600 C. At more than 35% burn-off of the carbon chars at the temperature of activation, 915 C, the total surface area remained virtually unaffected. The ultimate tensile strength and hardness decreased by 23% and 6%, respectively; with increasing surface area of the reinforcement from 123 to 821 m{sup 2} g{sup {minus}1}. The yield strength and the percentage of elongation decreased by a factor of 2 and 5, respectively. No significant change in sliding wear rate was observed but the coefficient of friction increased by 13% (0.61 to 0.69). The coefficient of linear thermal expansion was reduced by 16% (11.7 {times} 10{sup {minus}6} to 9.8 {times} 10{sup {minus}6} C{sup {minus}1}), and remained unaffected at more than 35% burn-off. Energy-dispersive spectrometry of the particles of the activated chars showed that oxides of potassium and copper coated the open surfaces. Failure at the matrix-char interface was observed, and this was attributed to localized presence of oxides at the interfaces as identified by electron probe microanalysis. Poor wetting of the oxides by magnesium at the sintering conditions resulted in formation of weak matrix-char interface bonds.

  12. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  13. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Tang, Fei

    2004-01-01

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  14. Effect of ZrO2 Nanoparticles on the Microstructure of Al-Si-Cu Filler for Low-Temperature Al Brazing Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung-Hwan; Jung, Do-Hyun; Jung, Jae-Pil

    2016-01-01

    In this study, the effect of ZrO2 nanoparticles on Al-12Si-20Cu alloy has been studied as a filler metal for aluminum brazing. The microstructural and thermal characterizations are performed using X-ray diffraction (XRD), scanning electron microscope (SEM), and differential thermal analysis (DTA). The intermetallic compound (IMC) phases are identified by the energy-dispersive spectroscopy analysis coupled with the SEM. The filler spreading test is performed according to JIS-Z-3197 standard. XRD and SEM analyses confirm the presence of Si particles, the CuAl2 ( θ) intermetallic, and the eutectic structures of Al-Si, Al-Cu, and Al-Si-Cu in the Al matrix in the monolithic and composite samples. It is observed that when the ZrO2 is added in the alloy, the CuAl2 IMCs and Si particles are found to be dispersed uniformly in the Al matrix up to 0.05 wt pct ZrO2. DTA results show that the liquidus temperature of Al-12Si-20Cu filler metal is dropped from ~806.78 K to 804.6 K (533.78 °C to 531.6 °C) with a lowering of 2 K (2 °C) in liquidus temperature, when the amount of ZrO2 is increased up to 0.05 wt pct. It is also shown that the presence of ZrO2 nanoparticles in the filler metal has no deleterious effect on wettability up to 0.05 wt pct of ZrO2. The ultimate tensile strength and elongation percentage are also found to improve with the addition of ZrO2 nanoparticles in the Al-12Si-20Cu alloy.

  15. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg

    NASA Astrophysics Data System (ADS)

    Aboulkhair, Nesma T.; Tuck, Chris; Ashcroft, Ian; Maskery, Ian; Everitt, Nicola M.

    2015-08-01

    Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si particles. Although the hardness changes according to the treatment duration, the maximum hardening effect falls short of the hardness of the as-built parts with their characteristic fine microstructure. This is due to the difference in strengthening mechanisms.

  16. Wear Resistance of Aluminum Matrix Composites Reinforced with Al2O3 Particles After Multiple Remelting

    NASA Astrophysics Data System (ADS)

    Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej

    2016-08-01

    Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.

  17. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  18. Synthesis and characterization of NaAlSi2O6 jadeite under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Fang Biao; Li, Yong; Chen, Ning; Jia, Xiao Peng; Ma, Hong An

    2014-08-01

    With Al2(SiO3)3 and Na2SiO3 ṡ 9H2O as raw materials, the NaAlSi2O6 jadeite was synthesized in the temperature range of 1000-1600°C under 5.0 GPa conditions. Amorphous glass materials are entirely converted to crystalline NaAlSi2O6 jadeite at 5.0 GPa and 1450°C. All the experimental results reveal that the properties of synthetic NaAlSi2O6 resemble the natural jadeite very much. The research indicates that we provide a new approach to synthesize NaAlSi2O6 and offer an essential guideline for jewelry, which will be helpful for deep understanding on the origin of natural jadeite and the metamorphism of magma within the Earth.

  19. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN–based devices

    DOE PAGES

    Chan, Silvia; Mishra, Umesh K.; Tahhan, Maher; Liu, Xiang; Bisi, David; Gupta, Chirag; Koksaldi, Onur; Li, Haoran; Mates, Tom; DenBaars, Steven P.; et al

    2016-01-20

    In this study, we report on the growth and electrical characterization of (Al,Si)O dielectrics grown by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, oxygen, and silane as precursors. The growth rates, refractive indices, and composition of (Al,Si)O films grown on Si(001) were determined from ellipsometry and XPS measurements. Crystallinity and electrical properties of (Al,Si)O films grown in situ on c-plane GaN were characterized using grazing incidence X-ray diffraction and capacitance–voltage with current–voltage measurements, respectively. Si concentration in the films was found to be tunable by varying the trimethylaluminum and/or oxygen precursor flows. The Si incorporation suppressed the formation of crystallinemore » domains, leading to amorphous films that resulted in reduced interfacial trap density, low gate leakage and ultra-low hysteresis in (Al,Si)O/n-GaN MOS-capacitors.« less

  20. Metalorganic chemical vapor deposition and characterization of (Al,Si)O dielectrics for GaN-based devices

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Tahhan, Maher; Liu, Xiang; Bisi, Davide; Gupta, Chirag; Koksaldi, Onur; Li, Haoran; Mates, Tom; DenBaars, Steven P.; Keller, Stacia; Mishra, Umesh K.

    2016-02-01

    In this paper, we report on the growth and electrical characterization of (Al,Si)O dielectrics grown by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, oxygen, and silane as precursors. The growth rates, refractive indices, and composition of (Al,Si)O films grown on Si(001) were determined from ellipsometry and XPS measurements. Crystallinity and electrical properties of (Al,Si)O films grown in situ on c-plane GaN were characterized using grazing incidence X-ray diffraction and capacitance-voltage with current-voltage measurements, respectively. Si concentration in the films was found to be tunable by varying the trimethylaluminum and/or oxygen precursor flows. The Si incorporation suppressed the formation of crystalline domains, leading to amorphous films that resulted in reduced interfacial trap density, low gate leakage and ultra-low hysteresis in (Al,Si)O/n-GaN MOS-capacitors.

  1. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  2. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  3. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.

    PubMed

    Li, X; Chu, C L; Liu, L; Liu, X K; Bai, J; Guo, C; Xue, F; Lin, P H; Chu, Paul K

    2015-05-01

    Biodegradable poly-lactic acid (PLA)--based composites reinforced unidirectionally with high-strength magnesium alloy wires (MAWs) are fabricated by a heat-compressing process and the mechanical properties and degradation behavior are studied experimentally and theoretically. The composites possess improved strengthening and toughening properties. The bending strength and impact strength of the composites with 40 vol% MAWs are 190 MPa and 150 kJ/m(2), respectively, although PLA has a low viscosity and an average molecular weight of 60,000 g/mol. The mechanical properties of the composites can be further improved by internal structure modification and interface strengthening and a numerical model incorporating the equivalent section method (ESM) is proposed for the bending strength. Micro arc oxidization (MAO) of the MAWs is an effective interfacial strengthening method. The composites exhibit high strength retention during degradation and the PLA in the composite shows a smaller degradation rate than pure PLA. The novel biodegradable composites have large potential in bone fracture fixation under load-bearing conditions. PMID:25725562

  4. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    NASA Astrophysics Data System (ADS)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  5. Molecular dynamics study on the nucleation of Al-Si melts on sheet substrates at the nanoscale.

    PubMed

    Liu, Sida; Zhou, Xuyan; Wu, Weikang; Zhu, Xiangzhen; Duan, Yunrui; Li, Hui; Wang, Xin

    2016-02-28

    Molecular dynamics (MD) simulations are performed to study the freezing process of Al-Si melts on heterogeneous Si substrates in detail. We highlight the inherent nanostructure of both the Si primary phase and the Al-Si binary phase. It is found for the first time that the primary Si phase displays a "pyramidal configuration" when the Al-Si melt congeals. Experimental measurements could also verify our simulation results. It can be found that the binary Al-Si phase turns into a "Si-Al-Si sandwich construction" during solidification, regardless of freezing on a single substrate or in the restricted space between substrates. This peculiar phenomenon results from the combined effects of the van der Waals potential well and the interatomic interaction between Al and Si. Furthermore, it is also able to control the thickness of the Si atomic shell of the "sandwich construction", resulting in the silicene-like unilaminar Si nanostructure. Our findings provide novel strategies to fabricate desired shaped nanostructures by means of nanocasting in Al-Si melts at the nanoscale. PMID:26612569

  6. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    PubMed Central

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  7. Molecular dynamics study on the nucleation of Al-Si melts on sheet substrates at the nanoscale.

    PubMed

    Liu, Sida; Zhou, Xuyan; Wu, Weikang; Zhu, Xiangzhen; Duan, Yunrui; Li, Hui; Wang, Xin

    2016-02-28

    Molecular dynamics (MD) simulations are performed to study the freezing process of Al-Si melts on heterogeneous Si substrates in detail. We highlight the inherent nanostructure of both the Si primary phase and the Al-Si binary phase. It is found for the first time that the primary Si phase displays a "pyramidal configuration" when the Al-Si melt congeals. Experimental measurements could also verify our simulation results. It can be found that the binary Al-Si phase turns into a "Si-Al-Si sandwich construction" during solidification, regardless of freezing on a single substrate or in the restricted space between substrates. This peculiar phenomenon results from the combined effects of the van der Waals potential well and the interatomic interaction between Al and Si. Furthermore, it is also able to control the thickness of the Si atomic shell of the "sandwich construction", resulting in the silicene-like unilaminar Si nanostructure. Our findings provide novel strategies to fabricate desired shaped nanostructures by means of nanocasting in Al-Si melts at the nanoscale.

  8. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-20

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  9. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    PubMed

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-01-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates. PMID:27095071

  10. Characterization of Hypereutectic Al-Si Powders Solidified under Far-From Equilibrium Conditions

    SciTech Connect

    Y.E. Kalay; L.S. Chumbley; I.E. Anderson; R.E. Napolitano

    2007-07-01

    The rapid solidification microstructure of gas-atomized Al-Si powders of 15, 18, 25, and 50 wt pct Si were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In order of increasing particle size, the powders exhibited microcellular Al, cellular/dendritic Al, eutectic Al, and primary Si growth morphologies. Interface velocity and undercooling were estimated from measured eutectic spacing based on the Trivedi-Magnin-Kurz (TMK) model, permitting a direct comparison with theoretical predictions of solidification morphology. Based on our observations, additional conditions for high-undercooling morphological transitions are proposed as an extension of coupled-zone predictions.

  11. Benzimidazole as corrosion inhibitor for heat treated 6061 Al- SiCp composite in acetic acid

    NASA Astrophysics Data System (ADS)

    Chacko, Melby; Nayak, Jagannath

    2015-06-01

    6061 Al-SiCpcomposite was solutionizedat 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed on to the surface of composite by mixed adsorption where chemisorption is predominant.

  12. Structure and properties of the Al/SiC composite material

    NASA Astrophysics Data System (ADS)

    Pugacheva, N. B.; Michurov, N. S.; Bykova, T. M.

    2016-06-01

    Structure has been studied and the distribution of the filler in the samples of the metal-matrix Al/SiC composite containing 50% SiC has been analyzed. The sizes and shapes of the particles of the filler have been determined; the cohesion of the metallic matrix with the filler has been investigated. The analysis of the mechanism of fracture after tensile tests at 350°C and uniaxial compression of the samples of composite at 300 and 600°C has been carried out.

  13. Effect of Cooling Rate on Phosphorus Removal During Al-Si Solvent Refining

    NASA Astrophysics Data System (ADS)

    Li, Yanlei; Ban, Boyuan; Li, Jingwei; Zhang, Taotao; Bai, Xiaolong; Chen, Jian; Dai, Songyuan

    2015-04-01

    The effect of cooling rate on phosphorus removal during Al-Si solvent refining is studied during solar grade silicon purification. It is found that the phosphorus removal rate is controlled by kinetic factors. When the cooling rate decreases, the phosphorus removal rate increases. A concept of apparent segregation coefficient of phosphorus is introduced to characterize the phosphorous removal ability. It increases with the decrease in the average solidification temperature between 910.5 K and 1050.5 K (637.5 °C and 777.5 °C).

  14. Microstructure Evolution in Nano-reinforced Ferritic Steel Processed By Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Boulnat, Xavier; Perez, Michel; Fabregue, Damien; Douillard, Thierry; Mathon, Marie-Hélène; de Carlan, Yann

    2013-11-01

    Oxide-dispersion strengthened ferritic steel was produced by high-energy attrition, leading to a complex nanostructure with deformed ferritic grains. After mechanical alloying, the powder was then consolidated by spark plasma sintering (SPS) using various thermo-mechanical treatments. Hot isostatic pressing (HIP) was also performed on the same powder for comparison. Above 1123 K (850 °C), SPS consolidation-induced heterogeneous microstructure composed of ultra-fine-grained regions surrounded by larger grains. Spatial distribution of the stored energy was measured in the bimodal microstructure using the Kernel average misorientation. In contrary to large recrystallized grains, ultra-fine grains are still substructured with low-angle grain boundaries. The precipitation kinetics of the nano-oxides during consolidation was determined by small-angle neutron scattering. Precipitation mainly occurred during the heating stage, leading to a high density of nanoclusters that are of prime importance for the mechanical properties. Other coarser titanium-enriched oxides were also detected. The multiscale characterization allowed us to understand and model the evolution of the complex microstructure. An analytical evaluation of the contributing mechanisms explains the appearance of the complex grain structure and its thermal stability during further heat treatments. Inhomogeneous distribution of plastic deformation in the powder is the major cause of heterogeneous recrystallization and further grain growth during hot consolidation. Then, the thermal stability of coherent nano-oxides is responsible for effective grain boundary pinning in recovered regions where the driving pressure for recrystallization is lowered. This scenario is confirmed in both SPSed and HIPed materials.

  15. Microstructure and wear properties of WC particle reinforced composite coating on Ti6Al4V alloy produced by the plasma transferred arc method

    NASA Astrophysics Data System (ADS)

    Çelik, Osman Nuri

    2013-06-01

    The microstructure and wear properties of a WC particle reinforced composite coating produced by the plasma transferred arc (PTA) method on Ti6Al4V alloy were investigated in this study. PTA processing was carried out using argon as the plasma gas at arc current values of 70 A, 80 A and 90 A. Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) were used to characterize the microstructure of the composite layer formed on the surface of a Ti6Al4V substrate. The results indicate that the WC, TiC and W2C carbide phases formed in the composite layers produced by PTA on the surface of the Ti6Al4V alloy. The distributions and volume fractions of these phases were found to vary with the arc current values. Wear tests were performed under dry sliding conditions using a linear ball-on-disc geometry. The microhardness and wear resistances of all of the composite layers produced by the PTA process were enhanced relative to those of the Ti6Al4V substrate. The homogeneity and volume fractions of the carbide phases in the composite layers were responsible for the improvement in the wear resistance of the alloy. The wear test results indicate that the alloy modified at 70 A shows better wear resistance than the alloys modified at 80 A and 90 A.

  16. Friction and Wear of Monolithic and Fiber Reinforced Silicon-Ceramics Sliding Against IN-718 Alloy at 25 to 800 C in Atmospheric Air at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1988-01-01

    The friction and wear of monolithic and fiber reinforced Si-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C was measured. The monolithic materials tested were silicon carbide (SiC), fused silica (SiO2), syalon, silicon nitride (Si3N4) with W and Mg additives, and Si3N4 with Y2O3 additive. At 25 C fused silica had the lowest friction while Si3N4 (W,Mg type) had the lowest wear. At 800 C syalon had the lowest friction while Si3N4 (W,Mg type) and syalon had the lowest wear. The SiC/IN-718 couple had the lowest total wear at 25 C. At 800 C the fused silica/IN-718 couple exhibited the least total wear. SiC fiber reinforced reaction bonded silicon nitride (RBSN) composite material with a porosity of 32 percent and a fiber content of 23 vol percent had a lower coefficient of friction and wear when sliding parallel to the fiber direction than in the perpendicular at 25 C. The coefficient of friction for the carbon fiber reinforced borosilicate composite was 0.18 at 25 C. This is the lowest of all the couples tested. Wear of this material was about two decades smaller than that of the monolithic fused silica. This illustrates the large improvement in tribological properties which can be achieved in ceramic materials by fiber reinforcement. At higher temperatures the oxidation products formed on the IN-718 alloy are transferred to the ceramic by sliding action and forms a thin, solid lubricant layer which decreases friction and wear for both the monolithic and fiber reinforced composites.

  17. Thermal fatigue resistance of discontinuously reinforced cast aluminum-matrix composites

    NASA Astrophysics Data System (ADS)

    Sobczak, J.; Sobczak, N.; Darlak, P.; Slawinski, Z.; Asthana, R.; Rohatgi, P.

    2002-12-01

    The thermal fatigue resistance of AlSi alloys and discontinuously reinforced Al-matrix composites containing graphite, silicon carbide, and fly ash particulates, and short alumina (Saffil) fibers was characterized by measuring the total length of microcracks on gravity-cast and squeeze-cast test specimens as a function of number of thermal cycles (1000-5000 cycles, 270 K amplitude). In each thermal cycle, the test specimens were heated and stabilized in air at 375 °C, water quenched, and air stabilized. In all specimens, the total crack length on a specified region increased with increasing number of thermal cycles. Whereas among monolithic alloys, squeeze-cast Al-12SiCuNiMg alloy exhibited better resistance to thermal cracking than Al-25Si and Al-20SiNi alloys, among the composites, squeeze-cast Al-alumina and Al-fly ash composites exhibited the best thermal fatigue resistance. The theoretical estimates of the thermal fatigue resistance of these composites are consistent with the experimental observations.

  18. Lamellar Spacing Selection in Al-Si Eutectic System: a Theoretical Investigation

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is well known that irregular eutectics such as Al-Si and Fe-C exhibit larger lamellar spacings and undercoolings compared to the predictions made by the Jackson and Hunt (JH) theory. In this paper, we reexamine the JH theory and relax some of the assumptions used in that treatment. The modified theoretical model has enhanced capabilities to predict the lamellar spacing in both regular and irregular eutectics. For the Al-Si system in particular we identified two different spacing selection mechanisms:a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. Application of a Mullin and Sekerka type stability analysis for eutectics will also be presented and the results compared to the modified JH model. It will be shown that the both theoretical approaches are in good agreement with each other and also with the published experimental measurements.

  19. Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans.

    PubMed

    Escalera-Lozano, R; Gutiérrez, C A; Pech-Canul, M A; Pech-Canul, M I

    2008-01-01

    The use of recycling aluminum from beverage containers and rice-hull ash (RHA) offers to be an attractive alternative for the economic production of Al/SiCp composites. However, corrosion phenomena in the composites represent technological barriers yet to be resolved before they can be exploited to their full potential. A simple methodology involving characterization by XRD, SEM, EDX, FTIR and ICP was designed in order to investigate the causes of the rapid degradation in a humid environment of Al/SiCp composites produced with RHA and aluminum cans. Results reveal that the use of RHA was beneficial to avoid degradation through the formation and subsequent hydration of the Al4C3 phase. However with condensed moisture acting as an electrolyte, localized corrosion took place with aggressive damage manifested by the disintegration of the composite into a powdery mixture. The relevant corrosion mechanism was mainly attributed to microgalvanic coupling between the Mg2Si intermetallic compound and the matrix (although other phases such as SiC, Si, MgAl2O4 could also work as microcathodes). PMID:17320370

  20. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  1. Weld bead reinforcement removal: A method of improving the strength and ductility of peaked welds in 2219-T87 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1979-01-01

    The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.

  2. In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: microstructure, tribological and in-vitro biocompatibility.

    PubMed

    Das, Mitun; Bhattacharya, Kaushik; Dittrick, Stanley A; Mandal, Chitra; Balla, Vamsi Krishna; Sampath Kumar, T S; Bandyopadhyay, Amit; Manna, Indranil

    2014-01-01

    Wear resistant TiB-TiN reinforced Ti6Al4V alloy composite coatings were deposited on Ti substrate using laser based additive manufacturing technology. Ti6Al4V alloy powder premixed with 5wt% and 15wt% of boron nitride (BN) powder was used to synthesize TiB-TiN reinforcements in situ during laser deposition. Influences of laser power, scanning speed and concentration of BN on the microstructure, mechanical, in vitro tribological and biological properties of the coatings were investigated. Microstructural analysis of the composite coatings showed that the high temperature generated due to laser interaction with Ti6Al4V alloy and BN results in situ formation of TiB and TiN phases. With increasing BN concentration, from 5wt% to 15wt%, the Young's modulus of the composite coatings, measured by nanoindentation, increased from 170±5GPa to 204±14GPa. In vitro tribological tests showed significant increase in the wear resistance with increasing BN concentration. Under identical test conditions TiB-TiN composite coatings with 15wt% BN exhibited an order of magnitude less wear rate than CoCrMo alloy-a common material for articulating surfaces of orthopedic implants. Average top surface hardness of the composite coatings increased from 543±21HV to 877±75HV with increase in the BN concentration. In vitro biocompatibility and flow cytometry study showed that these composite coatings were non-toxic, exhibit similar cell-materials interactions and biocompatibility as that of commercially pure titanium (CP-Ti) samples. In summary, excellent in vitro wear resistance, high stiffness and suitable biocompatibility make these composite coatings as a potential material for load-bearing articulating surfaces towards orthopaedic implants.

  3. Oxidation and microstructure evolution of Al-Si coated Ni3Al based single crystal superalloy with high Mo content

    NASA Astrophysics Data System (ADS)

    Tu, Xiaolu; Peng, Hui; Zheng, Lei; Qi, Wenyan; He, Jian; Guo, Hongbo; Gong, Shengkai

    2015-01-01

    A Si modified aluminide (Al-Si) coating was prepared on a Ni3Al based single crystal superalloy with high Mo content by high-activity pack cementation. Cyclic oxidation test at 1150 °C was carried out and the microstructure evolution of the coating was investigated. The results show that the oxidation resistance of the substrate was greatly increased by applying an Al-Si coating. During oxidation, outward diffusion of Mo was effectively blocked due to its high affinity with Si. Besides, a layered structure was formed as a result of the elements inter-diffusion. An obvious degradation of the Al-Si coating was observed after 100 h oxidation. Possible mechanisms related to the oxidation and elements inter-diffusion behaviours were also discussed.

  4. Coating Layer Characterization of Laser Deposited AlSi Coating over Laser Weld Bead

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Van Gelder, Aldo

    Corrosion protection of steel components is an important topic in automotive industry. Laser beam welding makes a narrow weld bead, thus minimizing the damage to the original coating on the steel material. However, the weld bead loses its original coating and is vulnerable to corrosive attack. It was demonstrated in this study that laser beam generated AlSi coating is an effective way to apply a protective coating on the weld bead. Coatings with different thickness and topography have been deposited under different laser power and processing speed. The microstructure of the as-deposited coating and its evolution after heat treatment has been studied. EDS was employed to analyze the distribution of chemical compositions of the laser generated coatings. Several metallic compounds of Al and iron have been identified. It was found that the type of metallic compounds can be influenced by the laser processing parameters.

  5. Atomic structure of the (Al,Si)CuFe cubic approximant phase.

    PubMed

    Puyraimond, Frédéric; Quiquandon, Marianne; Gratias, Denis; Tillard, Monique; Belin, Claude; Quivy, Annick; Calvayrac, Yvonne

    2002-07-01

    The structure of the alpha-(Al,Si)CuFe approximant phase is determined by a single-crystal X-ray diffraction study and compared to the ideal structure obtained by the perpendicular shear method of the parent icosahedral phase. It is shown that the local environments (typical atomic clusters) of the two phases are similar and expand significantly farther than the size of the unit cell of the approximant. The orbit Al(2) issuing from the theoretical icosahedral model corresponding to the inner dodecahedron of the Mackay-type cluster is not found in the approximant and is replaced by a partially occupied inner icosahedron with an unusually large Debye-Waller factor.

  6. Neutron absorption of Al-Si-Mg-B4C composite

    NASA Astrophysics Data System (ADS)

    Abdullah, Yusof; Ibrahim, Anis Syukriah; Daud, Abdul Razak; Yusof, Mohd Reusmaazran

    2016-01-01

    Al-Si-Mg-B4C composites containing 2-8 wt% of B4C were prepared by stir casting technique. Homogenization treatment was carried out at temperatures of 540°C for 4 houra and followed by ageing at 180°C for 2 houra. Microstructure and phase identification were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. Neutron absorption study was investigated using neutron source Am/Be241. The result indicated that higher B4C content improved the neutron absorption property. Meanwhile homogeneity of the composite was increased by ageing processes. This composite is potential to be used as neutron shielding material especially for nuclear reactor application.

  7. Self-Separation of Sublimation-Grown AlN with AlSiN Buffer Layer

    NASA Astrophysics Data System (ADS)

    Nishino, Katsushi; Nakauchi, Jun; Hayashi, Kotaro; Tsukihara, Masashi

    2013-08-01

    AlN was grown by a sublimation method on 6H-SiC. We found the grown AlN layer is easily separated from the substrate when Si powder is added to the AlN source powder. The formation of AlSiN layer with the Si content of 15% at the AlN/6H-SiC interface was confirmed by energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). This AlSiN layer causes the separation of AlN.

  8. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  9. [Research on the mechanical properties of bone scaffold reinforced by magnesium alloy/bioceramics composite with stereolithography double channels].

    PubMed

    Li, Changhai; Lian, Qin; Zhuang, Pei; Wang, Junzhong; Li, Dichen

    2015-02-01

    Focusing on the poor mechanical strength of porous bioceramics bone scaffold, and taking into account of the good mechanical properties of biodegradable magnesium alloy, we proposed a novel method to fabricate magnesium alloy/bioceramics composite bone scaffold with stereolithography double channels. Firstly, a scaffold structure without mutually connected double channels was designed. Then, an optimized bioceramics scaffold was fabricated according to stereolithography and gel-casing. Molten AZ31 magnesium alloy was perfused into the secondary channel of scaffold by low-pressure casting, and magnesium alloy/bioceramics composite bone scaffold was obtained when magnesium alloy was solidified. The compression test showed that the strength of bioceramics scaffold with only one channel and without magnesium alloy was (9.76 ± 0.64) MPa, while the strength of magnesium alloy/bioceramics composite scaffold with double channels was (17.25 ± 0.88) MPa. It can be concluded that the magnesium alloy/bioceramics composite is obviously able to improve the scaffold strength.

  10. Crystal structure and luminescence of Sr 0.99Eu 0.01AlSiN 3

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiromu; Yamane, Hisanori; Kijima, Naoto

    2008-08-01

    Strontium europium aluminum silicon nitride, Sr 0.99Eu 0.01AlSiN 3, was synthesized by heating a mixture of binary nitrides at 2173 K and a N 2 gas pressure of 190 MPa. Single crystals of Sr 0.99Eu 0.01AlSiN 3 approximately 30 μm were obtained. The structure was confirmed to be an isotypic structure of CaAlSiN 3 in the orthorhombic space group Cmc2 1, analyzed by single-crystal X-ray diffraction. The lattice parameters are a=9.843(3), b=5.7603(16), c=5.177(2) Å, cell volume=293.53(17) Å 3. It shows an orange-red photoluminescence by 5 d→4 f transition of Eu 2+ at around 610 nm under excitation ranging from ultraviolet to 525 nm. The photoluminescence intensity, temperature characteristics, and oxidative stability were comparable or superior to those of CaAlSiN 3:Eu 2+ phosphor.

  11. EBSD characterization of high-temperature phase transformations in an Al-Si coating on Cr-Mo steel

    SciTech Connect

    Cheng, Wei-Jen Wang, Chaur-Jeng

    2012-02-15

    5Cr-0.5Mo steel was coated by hot-dipping in a molten bath containing Al-10 wt.% Si. The phase transformation in the aluminide layer during diffusion at 750 Degree-Sign C in static air was analyzed by electron backscatter diffraction. The results show the aluminide layer of the as-coated specimen consisted of an outer Al-Si topcoat, a middle layer formed of scattered {tau}{sub 5(C)}-Al{sub 7}(Fe,Cr){sub 2}Si particles and minor plate-shaped {tau}{sub 4}-Al{sub 4}FeSi{sub 2} and {tau}{sub 6}-Al{sub 4}FeSi phases in the Al-Si matrix and an inner continuous {tau}{sub 5(H)}-Al{sub 7}Fe{sub 2}Si layer, respectively from the coating surface to the steel substrate. The formation of FeAl{sub 3} and Fe{sub 2}Al{sub 5} with {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates can be observed with increasing exposure time at 750 Degree-Sign C. After 5 h of exposure, the Al-Si topcoat has been consumed, and the aluminide layer consisted of Fe{sub 2}Al{sub 5} and a few {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} precipitates. The FeAl phase not only formed at the interface between Fe{sub 2}Al{sub 5} and the steel substrate, but also transformed from {tau}{sub 1}-(Al,Si){sub 5}Fe{sub 3} after diffusion for 10 h. With prolonged exposure, the aluminide layer comprised only FeAl{sub 2} and FeAl. - Highlights: Black-Right-Pointing-Pointer EBSD can differentiate phases in aluminide layer with similar chemical compositions. Black-Right-Pointing-Pointer Mapping and EBSPs functions in EBSD provide a reliable phase identification. Black-Right-Pointing-Pointer A phase transformation in the aluminide layer has been described in detail. Black-Right-Pointing-Pointer 5 Fe-Al-Si and 4 Fe-Al intermetallic phases are performed during the diffusion. Black-Right-Pointing-Pointer Cubic {tau}{sub 5(C)}-Al{sub 7} (Fe,Cr){sub 2}Si and hexagonal {tau}{sub 5(H)}-Al{sub 7}(Fe,Cr){sub 2}Si are identified.

  12. Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8)

    PubMed Central

    Mookherjee, Mainak; Mainprice, David; Maheshwari, Ketan; Heinonen, Olle; Patel, Dhenu; Hariharan, Anant

    2016-01-01

    Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equation of state with  = 687.4 Å3,  = 51.7 GPa, and  = 4.7. The shear modulus and its pressure derivative are  = 33.7 GPa, and  = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy  = 42.8%, and  = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. This could partially account for the Mohorovicic discontinuity in thickened continental crustal regions. PMID:27734903

  13. Monodisperse Aluminosilicate Spheres with Tunable Al/Si Ratio and Hierarchical Macro-Meso-Microporous Structure.

    PubMed

    Sheng, Yuan; Zeng, Hua Chun

    2015-06-24

    While tremendous success has been seen in the development of ordered mesoporous silica by soft-templated methods, synthesis of hierarchical structures with controllable multiscale pore networks has remained a challenging topic. On the other hand, introduction of heteroatoms as an effective method of chemically functionalizing silica leads to difficulties in morphological control of the product, and multistep synthesis has been necessary for functionalized silica particles with hierarchical pore structure and uniform size. The present work demonstrates that the conflict between morphological control and heteroatom incorporation can be resolved in a CTAB-stabilized toluene-water-ethanol microemulsion system. For the first time, monodisperse macro-meso-microporous aluminosilicate spheres (MASS) are synthesized in one step at room temperature. Simultaneous tuning of Al/Si ratio (0-0.35) and the hierarchical pore structure is realized by Hofmeister anion effects of the Al source itself, [Al(OH)4](-), which change the geometry of CTAB micelles and giant vesicles. The Al is incorporated purely in a tetrahedrally coordinated status, and preliminary results from catalytic experiments show improved acidity of MASS as a catalyst support.

  14. High temperature stability limit of phase egg, AlSiO3(OH)

    NASA Astrophysics Data System (ADS)

    Ono, Shigeaki

    The stability relations of phase egg, AlSiO3(OH), have been investigated at pressures from 7 to 20GPa, and temperatures from 900 to 1700°C in a multi-anvil apparatus. At the lower pressures phase egg breaks down according to the univariant reaction, phase egg=stishovite+topaz-OH, which extends from 1100°C at 11GPa to 1400°C at 13GPa where it terminates at an invariant point involving corundum. At pressures above the invariant point, the stability of phase egg is limited by the breakdown reaction, phase egg=stishovite+corundum+fluid, which extends from the invariant point to 1700°C at 20GPa. Stishovite crystallized in the Al2O3-SiO2-H2O system contains Al2O3, and the amount of Al2O3 increases with increasing temperature. It is inferred that the Al2O3 content is controlled by the charge-balanced substitution of Si4+ by Al3+ and H+. Aluminum-bearing stishovite coexisting with an H2O-rich fluid may contain a certain amount of water. Therefore, phase egg and stishovite in a subducting slab could transport some H2O into the deep Earth.

  15. Thermodynamic stability of radiogenic Ba in CsAlSi2O6 pollucite

    NASA Astrophysics Data System (ADS)

    Jaffe, John; van Ginhoven, Renée; Jiang, Weilin

    2013-03-01

    Pollucite, a zeolite-like nanoporous aluminosilicate structure with nominal composition CsAlSi2O6, has been suggested as a nuclear waste storage form for fission-product radioactive isotopes of cesium, especially 137Cs. One factor affecting the long-term stability of this waste form is the valence change associated with the beta decay that converts Cs into barium. We have used first-principles density functional total energy calculations to evaluate the thermodynamic stability of pollucite with Ba replacing Cs at regular lattice sites with respect to the precipitation of Ba, Cs or their oxides. We included small clusters of substitutional BaCs as well as localized complexes of BaCs with compensating electron donor defects, specifically Cs vacancies and interstitial oxygen. We conclude that Cs-Ba pollucite is thermodynamically stable against precipitation of Cs or its oxide, but that partial precipitation of Ba or BaO may be thermodynamically favored under some conditions. Even this change may be kinetically limited, however. Fuel Cycle Research and Development, U.S. Department of Energy Waste Form Campaign

  16. Reduced interaction layer growth of U-Mo dispersion in Al-Si

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong; Hofman, G. L.

    2012-11-01

    Development of high U-density U-Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U-Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to ˜50% burnup of initial 19.75% U-235 enrichment at ˜200 °C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U-Mo/Al-Si dispersion samples with a Si addition in the range 0-8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL-matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  17. Mechanically reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite substrates for low-cost coated conductors

    NASA Astrophysics Data System (ADS)

    Suo, Hongli; Genoud, Jean-Yves; Caracino, Paola; Spreafico, Sergio; Schindl, Michael; Walker, Eric; Flükiger, René

    2002-08-01

    New, reinforced {1 1 0} <1 1 0> textured Ag/Ni-alloys composite ribbons were developed as possible substrates for coated conductors without any buffer layer. The texture quality and tensile strength were investigated. A new technique to bond the Ag and Ni or alloy layers through a Cu foil was presented. The Ag/Ni-alloys composite ribbons were fabricated by choosing proper sintering processing to bond the different layers followed by cold rolling and recrystallization. A thin Cu foil was intercalated between the initial Ag and Ni or alloy pieces to get a tough bond. A unique and stable {1 1 0} <1 1 0> annealing texture was obtained in 300 μm thick Ag/Ni composite ribbon after annealing. X-ray ODF analysis and EBSD measurements in the top Ag layer showed distribution of misorientation angles around 10-15°. A {1 1 0} <1 1 0> texture was also found in ribbons as thin as 50 μm, which cannot be obtained with pure Ag ribbons. A pronounced reduction of Ag amount was obtained in 60 μm thick Ag/NiCrV ribbons, with a textured Ag top layer being as thin as 7 μm. The amount of Ag was decreased by 75% compared to pure Ag ribbons of the same thickness. A strong enhancement of the mechanical properties was observed. The yield strength σ0.2 at 77 K was 220 MPa for Ag/NiCrV ribbons, i.e. considerably higher than the 30 MPa for pure Ag ribbons.

  18. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  19. Crystallization of LiAlSiO4 Glass in Hydrothermal Environments at Gigapascal Pressures-Dense Hydrous Aluminosilicates.

    PubMed

    Spektor, Kristina; Fischer, Andreas; Häussermann, Ulrich

    2016-08-15

    High-pressure hydrothermal environments can drastically reduce the kinetic constraints of phase transitions and afford high-pressure modifications of oxides at comparatively low temperatures. Under certain circumstances such environments allow access to kinetically favored phases, including hydrous ones with water incorporated as hydroxyl. We studied the crystallization of glass in the presence of a large excess of water in the pressure range of 0.25-10 GPa and at temperatures from 200 to 600 °C. The p and T quenched samples were analyzed by powder X-ray diffraction, scanning electron microscopy, and IR spectroscopy. At pressures of 0.25-2 GPa metastable zeolite Li-ABW and stable α-eucryptite are obtained at low and high temperatures, respectively, with crystal structures based on tetrahedrally coordinated Al and Si atoms. At 5 GPa a new, hydrous phase of LiAlSiO4, LiAlSiO3(OH)2 = LiAlSiO4·H2O, is produced. Its crystal structure was characterized from single-crystal X-ray diffraction data (space group P21/c, a = 9.547(3) Å, b = 14.461(5) Å, c = 5.062(2) Å, β = 104.36(1)°). The monoclinic structure resembles that of α-spodumene (LiAlSi2O6) and constitutes alternating layers of chains of corner-condensed SiO4 tetrahedra and chains of edge-sharing AlO6 octahedra. OH groups are part of the octahedral Al coordination and extend into channels provided within the SiO4 tetrahedron chain layers. At 10 GPa another hydrous phase of LiAlSiO4 with presently unknown structure is produced. The formation of hydrous forms of LiAlSiO4 shows the potential of hydrothermal environments at gigapascal pressures for creating truly new materials. In this particular case it indicates the possibility of generally accessing pyroxene-type aluminosilicates with crystallographic amounts of hydroxyl incorporated. This could also have implications to geosciences by representing a mechanism of water storage and transport in the depths of the Earth. PMID:27482770

  20. Crystallization of LiAlSiO4 Glass in Hydrothermal Environments at Gigapascal Pressures-Dense Hydrous Aluminosilicates.

    PubMed

    Spektor, Kristina; Fischer, Andreas; Häussermann, Ulrich

    2016-08-15

    High-pressure hydrothermal environments can drastically reduce the kinetic constraints of phase transitions and afford high-pressure modifications of oxides at comparatively low temperatures. Under certain circumstances such environments allow access to kinetically favored phases, including hydrous ones with water incorporated as hydroxyl. We studied the crystallization of glass in the presence of a large excess of water in the pressure range of 0.25-10 GPa and at temperatures from 200 to 600 °C. The p and T quenched samples were analyzed by powder X-ray diffraction, scanning electron microscopy, and IR spectroscopy. At pressures of 0.25-2 GPa metastable zeolite Li-ABW and stable α-eucryptite are obtained at low and high temperatures, respectively, with crystal structures based on tetrahedrally coordinated Al and Si atoms. At 5 GPa a new, hydrous phase of LiAlSiO4, LiAlSiO3(OH)2 = LiAlSiO4·H2O, is produced. Its crystal structure was characterized from single-crystal X-ray diffraction data (space group P21/c, a = 9.547(3) Å, b = 14.461(5) Å, c = 5.062(2) Å, β = 104.36(1)°). The monoclinic structure resembles that of α-spodumene (LiAlSi2O6) and constitutes alternating layers of chains of corner-condensed SiO4 tetrahedra and chains of edge-sharing AlO6 octahedra. OH groups are part of the octahedral Al coordination and extend into channels provided within the SiO4 tetrahedron chain layers. At 10 GPa another hydrous phase of LiAlSiO4 with presently unknown structure is produced. The formation of hydrous forms of LiAlSiO4 shows the potential of hydrothermal environments at gigapascal pressures for creating truly new materials. In this particular case it indicates the possibility of generally accessing pyroxene-type aluminosilicates with crystallographic amounts of hydroxyl incorporated. This could also have implications to geosciences by representing a mechanism of water storage and transport in the depths of the Earth.

  1. Swelling of U(Mo)-Al(Si) dispersion fuel under irradiation - Non-destructive analyses of the LEONIDAS E-FUTURE plates

    NASA Astrophysics Data System (ADS)

    Van den Berghe, S.; Parthoens, Y.; Charollais, F.; Kim, Y. S.; Leenaers, A.; Koonen, E.; Kuzminov, V.; Lemoine, P.; Jarousse, C.; Guyon, H.; Wachs, D.; Keiser, D., Jr.; Robinson, A.; Stevens, J.; Hofman, G.

    2012-11-01

    In the framework of the elimination of High-Enriched Uranium (HEU) from the civil circuit, the search for an appropriate fuel to replace the high-enriched research reactor fuel in those reactors that currently still require it for their operation has led to the development of a U-7 wt.%Mo alloy based dispersion fuel with an Al-Si matrix. The European LEONIDAS program, joining SCK•CEN, ILL, CEA and AREVA-CERCA, is aimed at the qualification of such a fuel for the use in high power conditions. The first experiment of the program, designated E-FUTURE, was performed to select the appropriate matrix Si concentration and fuel plate post-production heat treatment parameters for further qualification. It consisted of the irradiation of four distinct (4% and 6% Si, 3 different heat treatments) full size, flat fuel plates in the BR2 reactor. The irradiation conditions were relatively severe: 470 W/cm2 peak BOL power, with a ˜70% 235U peak burnup.

  2. Effects of Austempering Temperature on Strength, Ductility and Toughness of Low-C High-Al/Si Carbide-Free Bainitic Steel

    NASA Astrophysics Data System (ADS)

    Meng, Jiangying; Feng, Ying; Zhou, Qian; Zhao, Leijie; Zhang, Fucheng; Qian, Lihe

    2015-08-01

    The microstructure and the mechanical properties of a low-carbon Al/Si-alloyed carbide-free bainitic steel austempered at temperatures between 300 and 350 °C have been investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray diffraction analysis, and mechanical property tests. The results show that an excellent combination of tensile strength, ductility, and impact toughness is obtained at the austempering temperature of 320 °C—but neither at the lowest temperature of 300 °C nor at the highest temperature of 350 °C. These results are correlated with the features of the constituent phases of the microstructure, especially the amount and size of retained austenite, which are largely dependent on the austempering temperature. The observations are also due to the inconsistent effects of strain-induced martensitic transformation on strength, ductility, and toughness. The results of the present study suggest that an optimized isothermal temperature may also exist for any other bainitic steel, at which, if austempering treatment is carried out, an improved combination of tensile and impact properties can be obtained.

  3. Wear Behavior of Aluminum Alloy 6061-Based Composites Reinforced with SiC, Al2O3, and Red Mud: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Singla, Yogesh Kumar; Chhibber, Rahul; Bansal, Hitesh; Kalra, Anil

    2015-09-01

    Metal-matrix composites are widely used in shipping, aerospace, automotive, and nuclear applications. Research attempts have been made in the past to reduce the cost of processing of composites, decrease the weight of the composites, and increase the desired performance characteristics. In this research article, an attempt has been made in using red mud obtained as an industrial waste during the production of aluminum from bauxite ore. This article discusses the novel findings of the experimental study on the dry sliding wear behavior of aluminum alloy 6061-based composites reinforced individually with red mud, SiC, and Al2O3. The microstructural characterization of the composites provides the further insight into the structure—wear behavior of the processed composites.

  4. Structure and thermal cycling stability of a hafnium monocarbide reinforced directionally solidified cobalt-base eutectic alloy

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.

    1975-01-01

    A nominal composition of Co-15Cr-2ONi-10.5 Hf-0.7 C (NASA-HAFCO-11) was directionally solidified at 0.8 cm/hr growth rate to produce aligned HfC in a cobalt matrix alloy. The aligned HfC fibers were present as rod and plate types. The diameter of the aligned fibers was about 1 micron, with volume fraction in the range of 11 to 15 percent. The growth direction of the fibers was parallel to the 100. The NASA-HAFCO-11 alloy was subjected to thermal cycling between 425 deg and 1100 C, using a 2.5 minute cycle. No microstructural degradation of the HfC fibers in the alloy was observed after 2500 cycles.

  5. Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods

    NASA Astrophysics Data System (ADS)

    Mayer, Carl Randolph

    Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.

  6. Spark plasma sintering of Al-Si-Cu-Fe quasi-crystalline powder

    NASA Astrophysics Data System (ADS)

    Fleury, E.; Lee, J. H.; Kim, S. H.; Kim, W. T.; Kim, J. S.; Kim, D. H.

    2003-03-01

    This article presents the results of a study on the microstructure and mechanical properties of Al-Si-Cu-Fe specimens produced by the spark plasma sintering (SPS) technique. The microstructure of the starting powder and bulk specimens was analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The formation of the icosahedral and decagonal quasi-crystalline phases in the as-gas-atomized powders is described for the first time. It is then shown that these metastable phases transformed into the 1/1 cubicapproximant phase upon heating at about 600°C. Second, the effects of SPS process parameters such as the temperature and time have been investigated. Owing to the generation of a spark discharge neighboring powder particles, dense cylindrical samples were obtained after a short sintering time of 30 minutes at the temperature of 650°C. The highest values of the Vickers microhardness, about 8.9 GPa, were obtained when the powders were sintered in the temperature range of 600°C to 650°C for a holding time of 30 minutes, while the fracture toughness was found to be inversely proportional to the sintering temperature. However, at the sintering temperature of 650°C, the fracture toughness increased from about 1.40 to 1.52 MPa √m as the holding time increased from 10 to 60 minutes. As compared to cast specimens, the enhanced mechanical properties are explained by the refined microstructure resulting from the low temperature and short sintering time applied during SPS processing

  7. Development and Characterization of Carbon Nanotubes (CNTs) and Silicon Carbide (SiC) Reinforced Al-based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Gujba, Kachalla Abdullahi

    increase in internal strains were observed as milling progressed with increase in wt.% reinforcement due to the severe plastic deformation. Al/SiC and Al/CNTs were successfully consolidated by the SPS at sintering temperatures of 400, 450 and 500°C with SiC at 5, 12 and 20wt% and 0.5wt%CNT milled for 20hrs and 3 hrs respectively. It was obtained that sintering temperature of 500°C was the most suitable as the densification achieved for SiC reinforced sample was above 98% and 100% for unreinforced sample. The hardness increased with increasing SiC content from 0, 5 to 12 wt% i.e 68, 82, 85 respectively. At 20%wt of SiC a slight decrease in the hardness was observed i.e. 70 which might be attributed to high wt.% SiC, a similar trend was observed for the other alloy studied. For CNT reinforced samples, the hardness and densification increased significantly and 100% densification was obtained at 500ºC, a hardness value from 68 to 82 was achieved from 0 to 0.5wt%CNT with a similar trend to the other alloy of interest. Conclusively, sintering of both alloys at 500ºC and above is the most suitable, the use of SiCp and CNTs as reinforcements improved the hardness, 12wt% SiC showed better hardness values than 20wt% SiC at all three temperatures and the Al alloy containing higher Si in its alloying elements showed better hardness values using the same reinforcement and sintering parameters.

  8. Improved optical storage properties of NaAlSiO4: Tb3+ induced by Bi3+

    NASA Astrophysics Data System (ADS)

    Zhou, Junhe; Yu, Xue; Wang, Ting; Zhou, Dacheng; Qiu, Jianbei

    2016-07-01

    NaAlSiO4: Tb3+, Bi3+ phosphor was synthesized with green long persistent luminescence (LPL) and photo-stimulated luminescence (PSL) observed. The influence of metal ion Bi3+ on the optical storage properties of NaAlSiO4: Tb3+ was investigated in detail. The emitter Tb3+ introduced two kinds of traps located at 350 K (TA) and 440 K (TB) in the thermoluminescence (TL) glow curve. Bi3+ as a codopant ion introduced a new trap peaking at 390 K (TC), which contributed to the improved LPL properties. Besides, owing to the existence of deep and stable trap TB, green PSL can still be observed after 72 h since the excitation was stopped. Accordingly, the mechanism of LPL and PSL process was discussed briefly.

  9. Effects of heat treatment on stress corrosion cracking of a discontinuously reinforced aluminum (DRA) 7XXX alloy during slow strain rate testing

    SciTech Connect

    Singh, P.M.; Lewandowski, J.J.

    1995-11-01

    Discontinuously reinforced aluminum (DRA) alloys are being developed as candidate materials for the automotive and aerospace industry. Although the corrosion and stress corrosion cracking (SCC) susceptibility of aluminum alloys have been extensively studied, comparatively little is known about the corrosion and SCC behavior of DRA materials. The intent of the present work was to study the effects of changes in microstructure/heat treatment on the crack nucleation mechanisms in DRAs and their monolithic atrices on the overall slow strain rate SCC performance in a 3.5% NaCl solution (pH = 3.0). For a given heat treatment, MB78 DRA materials show more susceptibility to stress corrosion cracking than the equivalent monolithic material. For the MB78 composite, the UAII material exhibited the maximum susceptibility to SCC. Both the UAI and UAII material were more susceptible to SCC than the OA material. MB78 DRA and monolithic specimens which have been shown to have a continuous ({eta} and {eta}{prime}) layer along the grain boundaries also showed higher susceptibility to stress corrosion cracking. Significantly more crack coalescence to form larger cracks was observed for the DRA specimens tested in the NaCl solution compared to the DRA specimens tested in dry-air. Monolithic specimens (OA as well as UA) did not exhibit visible micro-cracks or significant crack coalescence on the surfaces.

  10. Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Rogez, J.; Hemingway, B.S.; Courtial, P.; Tequi, C.

    1990-01-01

    The thermodynamic properties of carnegieite and NaAlSiO4 glass and liquid have been investigated through Cp determinations from 10 to 1800 K and solution-calorimetry measurements. The relative entropies S298-S0 of carnegieite and NaAlSiO4 glass are 118.7 and 124.8 J/mol K, respectively. The low-high carnegieite transition has been observed at 966 K with an enthalpy of transition of 8.1??0.3 kJ/mol, and the enthalpy of fusion of carnegieite at the congruent melting point of 1799 K is 21.7??3 kJ/mol. These results are consistent with the reported temperature of the nepheline-carnegieite transition and available thermodynamic data for nepheline. The entropy of quenched NaAlSiO4 glass at 0 K is 9.7??2 J/mol K and indicates considerable ordering among AlO4 and SiO4 tetrahedra. In the liquid state, progressive, temperature-induced Si, Al disordering could account for the high configurational heat capacity. Finally, the differences between the entropies and heat capacities of nepheline and carnegieite do not seem to conform to current polyhedral modeling of these properties ?? 1990 Springer-Verlag.

  11. Recycling of Al-Si die casting scraps for solar Si feedstock

    NASA Astrophysics Data System (ADS)

    Seo, Kum-Hee; Jeon, Je-Beom; Youn, Ji-Won; Kim, Suk Jun; Kim, Ki-Young

    2016-05-01

    Recycling of aluminum die-casting scraps for solar-grade silicon (SOG-Si) feedstock was performed successfully. 3 N purity Si was extracted from A383 die-casting scrap by using the combined process of solvent refining and an advanced centrifugal separation technique. The efficiency of separating Si from scrap alloys depended on both impurity level of scraps and the starting temperature of centrifugation. Impurities in melt and processing temperature governed the microstructure of the primary Si. The purity of Si extracted from the scrap melt was 99.963%, which was comparable to that of Si extracted from a commercial Al-30 wt% Si alloy, 99.980%. The initial purity of the scrap was 2.2% lower than that of the commercial alloy. This result confirmed that die-casting scrap is a potential source of high-purity Si for solar cells.

  12. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    NASA Astrophysics Data System (ADS)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  13. Industrial Application of Ultrasonic Vibrations to Improve the Structure of Al-Si Hypereutectic Alloys: Potential and Limitations

    NASA Astrophysics Data System (ADS)

    Komarov, Segrey; Ishiwata, Yasuo; Mikhailov, Ivan

    2015-07-01

    This work presents the results of research conducted by the authors over the past years in Nippon Light Metal Co., ltd. In the first stage, highly durable ceramic sonotrodes were designed and manufactured to introduce ultrasonic vibrations into molten metal in a launder or in a hot top during DC casting. It was shown that ultrasound can greatly refine the crystals of primary silicon in 75 to 178-mm billets, if vibration amplitude exceeds 40 μm (p-p). The structure uniformity was insufficient in launder treatment and fairly good in hot-top treatment. Care must be taken in controlling the passage of melt through the cavitation zone in order to fully exploit the refining potential of ultrasonic vibrations. The results suggest that if the treatment conditions are controlled properly, up to 20 kg/min of molten metal can be effectively treated using a 2-kW ultrasonic installation equipped with one ceramic sonotrode of 40 to 60 mm in diameter.

  14. Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation

    SciTech Connect

    Jain, Vivek Kumar Jain, Vishal Lakshmi, N. Venugopalan, K.

    2014-04-24

    Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.

  15. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    SciTech Connect

    Konovalov, Sergey Alsaraeva, Krestina Gromov, Victor Semina, Olga; Ivanov, Yurii

    2015-10-27

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  16. Hydrogenation properties of Li{sub x}Sr{sub 1−x}AlSi studied by quantum-chemical methods (0≤x≤1) and in-situ neutron powder diffraction (x=1)

    SciTech Connect

    Kunkel, Nathalie; Reichert, Christian; Springborg, Michael; Wallacher, Dirk; Kohlmann, Holger

    2015-01-15

    In-situ neutron powder diffraction studies of the Half-Heusler phase LiAlSi under high deuterium pressures and first principle calculations of solid solutions of Li{sub x}Sr{sub 1−x}AlSi and their hydrides Li{sub x}Sr{sub 1−x}AlSiH were carried out. In contrast to an earlier study, there is no experimental evidence for hydrogen (deuterium) uptake up to gas pressures of 15 MPa and temperatures of 550 °C. Instead a slow decomposition reaction according to LiAlSi+1/2H{sub 2}=LiH+Al+Si was found by in-situ neutron powder diffraction. Theoretical calculations by DFT methods on hypothetical solid solutions of Li{sub x}Sr{sub 1−x}AlSi show the LiAlSi type to be the energetically most stable structure for 0.7AlSi type structure for lower values of x. Hydrides Li{sub x}Sr{sub 1−x}AlSiH favor the SrAlSiH type for all values of x instead of the structure proposed earlier with hydrogen occupying tetrahedral voids in a LiAlSi structure. As an alternative for a cubic structure for LiAlSiH, we suggest the existence of LiAlSiH in the trigonal SrAlSiH type structure and it might be a candidate worthwhile to be considered for preparative work. - Graphical abstract: In-situ neutron powder diffraction of LiAlSi under high D{sub 2} pressure. - Highlights: • In-situ neutron powder diffraction of LiAlSi under high D{sub 2} pressure was carried out. • LiAlSi decomposes according to LiAlSi + ½ H{sub 2} = LiH + Al + Si. • Mixed crystals Li{sub x}Sr{sub 1-x}AlSi and LixSr{sub 1-x}AlSiH were studied theoretically.

  17. A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Simonelli, Marco; Tuck, Chris; Aboulkhair, Nesma T.; Maskery, Ian; Ashcroft, Ian; Wildman, Ricky D.; Hague, Richard

    2015-09-01

    The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology relies on the comprehension of the events that take place during the melting and solidification of the powder bed. This study was designed to understand the generation of the laser spatter that is commonly observed during SLM and the potential effects that the spatter has on the processing of 316L stainless steel, Al-Si10-Mg, and Ti-6Al-4V. With the exception of Ti-6Al-4V, the characterization of the laser spatter revealed the presence of surface oxides enriched in the most volatile alloying elements of the materials. The study will discuss the implication of this finding on the material quality of the built parts.

  18. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  19. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  20. Ionic conductivity in single-crystal LiAlSi2O6: influence of structure on lithium mobility

    NASA Astrophysics Data System (ADS)

    Welsch, A.-M.; Murawski, D.; Prekajski, M.; Vulic, P.; Kremenovic, A.

    2015-05-01

    With the increased interest in application of Li aluminosilicate materials as solid electrolytes, this study focuses on investigating the influence of structure on conductivity properties in single-crystal LiAlSi2O6 which is characterized by three crystal polymorphs where only structural arrangements differ while the amount of mobile carriers is identical. Two single-crystal polymorphic phases produced at ambient pressure are with tetragonal P41212 symmetry and hexagonal P6222 symmetry, also referred to as β- and γ-spodumene in the older literature. For this study, flux-grown hexagonal spodumene single-crystals were measured for conductivity parallel to the crystallographic c-axis and the results were compared with previously published results for tetragonal spodumene, both as single-crystal and polycrystalline aggregate, monoclinic spodumene ( α-spodumene) and LiAlSi2O6 glass. The activation energy E a of 79.69 ± 0.38 kJ/mol for hexagonal phase is very similar to the other crystalline polymorphs with the same orientation. However, the σ DC in hexagonal spodumene was determined to be higher than other crystalline phases and about 1.5 orders of magnitude lower than the conductivity in glass LiAlSi2O6 phase. Additionally, the densities of atomic packing were compared between phases, and the differences in the openness of the structures indicate that the more dominant effect on the Li mobility lies with the actual spatial arrangement of Li sites and the Si/Al sublattice.

  1. A planar Al-Si Schottky barrier metal–oxide–semiconductor field effect transistor operated at cryogenic temperatures

    SciTech Connect

    Purches, W. E.; Rossi, A.; Zhao, R.; Kafanov, S.; Duty, T. L.; Dzurak, A. S.; Rogge, S.; Tettamanzi, G. C.

    2015-08-10

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  2. Structure, tribological and electrochemical properties of low friction TiAlSiCN/MoSeC coatings

    NASA Astrophysics Data System (ADS)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Shtansky, D. V.

    2015-02-01

    The present paper is focused on the development of hard tribological coatings with low friction coefficient (CoF) in different environments (humid air, distilled water) and at elevated temperatures. TiAlSiCN/MoSeC coatings were deposited by magnetron sputtering of four-segment targets consisting of quarter circle TiAlSiCN segments, obtained by self-propagating high-temperature synthesis, and one or two cold pressed segments made of MoSe2 and C powders in a ratio 1:1 wt%. The structure and phase composition of coatings were investigated by means of X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The coatings were characterized in terms of their hardness, elastic modulus, and elastic recovery. The tribological properties of coatings were investigated first at room temperature against Al2O3 and WC-Co balls, after which studied in distilled water and during continuous heating in air in the temperature range of 25-400 °C against Al2O3 counterpart material. To evaluate their electrochemical characteristics, the coatings were tested in 1 N H2SO4 solution. The obtained results show that the coating hardness depends on the amount of MoSeC additives and decreased from 40 to 28 (one MoSeC segment) and 12 GPa (two MoSeC segments). Doping with MoSeC resulted in a significant reduction of CoF values measured in humid air (RH 60 ± 5%) from 0.8-0.9 to 0.05 and an increase of wear resistance by one or two orders of magnitude depending on counterpart material. This was attributed to the presence of MoSe2 and free carbon-based phases in the tribological contact. The TiAlSiCN/MoSeC coating with a maximal amount of MoSeC also demonstrated superior tribological characteristics in distilled water (CoF ∼ 0.1) and at moderate temperatures up to 300 °C (CoF < 0.1). The electrochemical tests showed that, in general, doping with MoSeC did not negatively affect the coating electrochemical behavior. On the contrary, the Mo

  3. A planar Al-Si Schottky barrier metal-oxide-semiconductor field effect transistor operated at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Purches, W. E.; Rossi, A.; Zhao, R.; Kafanov, S.; Duty, T. L.; Dzurak, A. S.; Rogge, S.; Tettamanzi, G. C.

    2015-08-01

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  4. Analysis of thermal residual stress in a thick-walled ring of Duralcan-base Al-SiC functionally graded material

    SciTech Connect

    Fukui, Yasuyoshi; Watanabe, Yoshimi

    1996-12-01

    A ring-cutting test and an elastic theory were applied to evaluate the macroscopic residual stress in a thick-walled ring made of Al-SiC functionally graded material (FGM). The FGM ring specimens, with outer diameter 90 mm, radial thickness approximately 8.4 to 10 mm, and width 30 mm, were fabricated by the centrifugal casting method from an ingot of Duralcan F3D.20S of Al-20 vol pct SiC master composite. Because of a difference in centrifugal forces of SiC particles and of molten aluminum alloy, the rings had a graded composition of SiC particles in the radial direction. The volume fractions of SiC particles in each ring specimen varied in the range of 0 to 43 vol pct from the inner to the outer surface of the ring, depending on the applied mold spin speed. A ring diametral compression test was performed to validate an analytical formula based on the curved beam theory that can account for the graded properties of the material. Excellent agreement between the theory that can account for the graded properties of the material. Excellent agreement between the theory and the experiment was found. The residual stress was found to be generated by a cooling of {Delta}T = 140 K, which was from half the melting point corresponding stress-free condition to the ambient temperature. The hoop residual stresses in the FGM ring varied in the range of {minus}50 to +35 MPa and from tension at the inner surface to compression at the outer space because of the graded composition. With an increase in wall thickness and/or composition gradation, the residual stresses were found to increase.

  5. New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Brundu, A.; Cappelletti, P.; Cerri, G.; de'Gennaro, B.; Farina, M.; Fumagalli, P.; Guaschino, L.; Lotti, P.; Mercurio, M.

    2016-10-01

    A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high- T X-ray powder diffraction, the combined P- T effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the "availability test" ("AVA test") protocol. A series of additional investigations were performed by WDS-electron microprobe analysis in order to describe the P- T-induced modification of the material texture, and to chemically characterize the starting material and the run products. The "AVA tests" of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to- Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., d P/d T > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, P- T phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as

  6. New insights on pressure, temperature, and chemical stability of CsAlSi5O12, a potential host for nuclear waste

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Brundu, A.; Cappelletti, P.; Cerri, G.; de'Gennaro, B.; Farina, M.; Fumagalli, P.; Guaschino, L.; Lotti, P.; Mercurio, M.

    2016-06-01

    A Cs-bearing polyphase aggregate with composition (in wt%): 76(1)CsAlSi5O12 + 7(1)CsAlSi2O6 + 17(1)amorphous, was obtained from a clinoptilolite-rich epiclastic rock after a beneficiation process of the starting material (aimed to increase the fraction of zeolite to 90 wt%), cation exchange and then thermal treatment. CsAlSi5O12 is an open-framework compound with CAS topology; CsAlSi2O6 is a pollucite-like material with ANA topology. The thermal stability of this polyphase material was investigated by in situ high-T X-ray powder diffraction, the combined P-T effects by a series of runs with a single-stage piston cylinder apparatus, and its chemical stability following the "availability test" ("AVA test") protocol. A series of additional investigations were performed by WDS-electron microprobe analysis in order to describe the P-T-induced modification of the material texture, and to chemically characterize the starting material and the run products. The "AVA tests" of the polyphase aggregate show an extremely modest release of Cs+: 0.05 mg/g. In response to applied temperature and at room P, CsAlSi5O12 experiences an unquenchable and displacive Ama2-to-Amam phase transition at about 770 K, and the Amam polymorph is stable in its crystalline form up to 1600 K; a crystalline-to-amorphous phase transition occurs between 1600 and 1650 K. In response to the applied P = 0.5 GPa, the crystalline-to-amorphous transition of CsAlSi5O12 occurs between 1670 and 1770 K. This leads to a positive Clapeyron slope (i.e., dP/dT > 0) of the crystalline-to-amorphous transition. When the polyphase aggregate is subjected at P = 0.5 GPa and T > 1770 K, CsAlSi5O12 melts and only CsAlSi2O6 (pollucite-like; dominant) and Cs-rich glass (subordinate) are observed in the quenched sample. Based on its thermo-elastic behavior, P-T phase stability fields, and Cs+ retention capacity, CsAlSi5O12 is a possible candidate for use in the immobilization of radioactive isotopes of Cs, or as potential

  7. Non-destructive characterisation of polymers and Al-alloys by polychromatic cone-beam phase contrast tomography

    SciTech Connect

    Kastner, Johann; Plank, Bernhard; Requena, Guillermo

    2012-02-15

    X-ray computed tomography (XCT) has become a very important tool for the non-destructive characterisation of materials. Continuous improvements in the quality and performance of X-ray tubes and detectors have led to cone-beam XCT systems that can now achieve spatial resolutions down to 1 {mu}m and even below. Since not only the amplitude but also the phase of an X-ray beam is altered while passing through an object, phase contrast effects can occur even for polychromatic sources when the spatial coherence due to a small focal spot size is high enough. This can lead to significant improvements over conventional attenuation-based X-ray computed tomography. Phase contrast can increase by edge enhancement the visibility of small structures and of features which are only slightly different in attenuation. We report on the possibilities of polychromatic cone-beam phase contrast tomography for non-destructive characterisation of materials. A carbon fibre-reinforced polymer and the Al-alloys AlMg5Si7 and AlSi18 were investigated with high resolution cone-beam X-ray computed tomography with a polychromatic tube source. Under certain conditions strong phase contrast resulting in an upward and downward overshooting of the grey values across edges was observed. The phase effects are much stronger for the polymer than for the Al-alloys. The influence on the phase contrast of the parameters, including source-detector distance, focal spot size and tube acceleration voltage is presented. Maximum phase contrast was observed for a maximum distance between the source and the detector, for a low voltage and a minimum focal spot size at the X-ray source. The detectability of the different phases is improved by the edge enhancement and the resulting improvement of sharpness. Thus, a better segmentation of the carbon fibres in the fibre-reinforced polymer and of the Mg{sub 2}Si-phase in the AlMg5Si7-alloy is achieved. Primary and eutectic Si cannot be detected by attenuation-based X

  8. Resistive switching characteristics of Al/Si3N4/p-Si MIS-based resistive switching memory devices

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Dong; Yun, Min Ju; Kim, Sungho

    2016-08-01

    In this study, we proposed and demonstrated a self-rectifying property of a silicon nitride (Si3N4)-based resistive random access memory (RRAM) device by employing p-type silicon ( p-Si) as the bottom electrode. The RRAM devices consisting of Al/Si3N4/ p-Si are fabricated by using a low-pressure chemical-vapor deposition and exhibited an intrinsic diode property with non-linear current-voltage ( I-V) behavior. In addition, compared to the conventional metal/insulator/metal (MIM) structure of Al/Si3N4/Ti RRAM cells, the operating current over the entire bias region for the proposed metal/insulator/semiconductor (MIS) cells is dramatically lower because the introduced p-Si bottom electrode efficiently suppresses the current in both the low- and the high resistance states. Then, the results mean that when p-Si is employed as a bottom electrode, the Si3N4-based RRAM cells can be applied to selector-free RRAM cells.

  9. Preparation of CNT/AlSi10Mg composite powders by high-energy ball milling and their physical properties

    NASA Astrophysics Data System (ADS)

    Wang, Lin-zhi; Liu, Ying; Wei, Wen-hou; An, Xu-guang; Zhang, Tao; Pu, Ya-yun

    2016-03-01

    This study investigated the effects of carbon nanotube (CNT) concentration on the micro-morphologies and laser absorption properties of CNT/AlSi10Mg composite powders produced by high-energy ball milling. A scanning electron microscope, X-ray diffractometer, laser particle size analyzer, high-temperature synchronous thermal analyzer, and UV/VIS/NIR spectrophotometer were used for the analysis of micrographs, phases, granulometric parameters, thermal properties, and laser absorption properties of the composite powders, respectively. The results showed that the powders gradually changed from flake- to granule-like morphology and the average particle size sharply decreased with increases in milling rotational speed and milling time. Moreover, a uniform dispersion of CNTs in AlSi10Mg powders was achieved only for a CNT content of 1.5wt%. Laser absorption values of the composite powders were also observed to gradually increase with the increase of CNT concentration, and different spectra displayed characteristic absorption peaks at a wavelength of approximately 826 nm.

  10. Chemical character of the partially flooded Smythii Basin based on Al/Si orbital X-ray data

    NASA Technical Reports Server (NTRS)

    Andre, C. G.; Adler, I.; Clark, P. E.; Weidner, J. R.; Wolfe, R. W.; Philpotts, J. A.

    1977-01-01

    Orbital X-ray fluorescence data indicate that continuous mare-basalt flooding is confined to the northeastern quadrant of the Smythii Basin. Al/Si values for soils in the unflooded northwestern section of the Smythii Basin closely approximate those for the adjacent terra to the west. Terra soils east of Mare Smythii, however, are unusually aluminous compared to terra soils west of the basin. This pronounced contrast between Al/Si values for terra soils to the east and west of Smythii as well as the minimal difference in values between the northwestern section of the basin and adjacent terra to the west are most likely due to a chemically homogeneous layer of ejecta from a large impact event west of Mare Smythii, such as that which formed the Crisium Basin. An alternate hypothesis is that the unflooded section of the basin is predominantly original basin floor material, indicating that the impact forming the 4km deep Smythii Basin did not penetrate into a horizon chemically different from the terra west of Smythii. The chemical contrast between the terra east and west of Smythii, then, would be ascribed to lateral heterogeneity within the lunar crust

  11. Self-diffusion of lithium in LiAlSi2O6 glasses studied using mass spectrometry.

    PubMed

    Welsch, A-M; Behrens, H; Horn, I; Ross, S; Heitjans, P

    2012-01-12

    In order to improve our understanding of the transport mechanisms of lithium in glasses, we have performed diffusion and ionic conductivity studies on spodumene composition (LiAlSi(2)O(6)) glasses. In diffusion couple experiments pairs of chemically identical glasses with different lithium isotopy (natural Li vs pure (7)Li) were processed at temperatures between 482 and 732 K. Profiles of lithium isotopes were measured after the diffusion runs innovatively applying femtosecond UV laser ablation combined with inductively coupled plasma mass spectrometry (LA ICP-MS). Self-diffusion coefficients of lithium in the glasses were determined by fitting the isotope profiles. During some of the diffusion experiments the electrical conductivity of the samples was intermittently measured by impedance spectrometry. Combining ionic conductivity and self-diffusivity yields a temperature-independent correlation factor of ~0.50, indicating that motions of Li ions are strongly correlated in this type of glasses. Lithium self-diffusivity in LiAlSi(2)O(6) glass was found to be very similar to that in lithium silicate glasses although Raman spectroscopy demonstrates structural differences between these glasses; that is, the aluminosilicate is completely polymerized while the lithium silicate glasses contain large fractions of nonbridging oxygen.

  12. Wear Behavior of Al-SiC Metal Matrix Composite under various Corrosive Environments

    NASA Astrophysics Data System (ADS)

    Pradhan, Smrutiranjan; Barman, Tapan Kumar; Sahoo, Prasanta; Sutradhar, Goutam

    2016-09-01

    This paper investigates the wear behavior under corrosive environments of LM6 based metal matrix composite reinforced with 5 wt% SiC prepared through the stir casting method. The experiments are carried out in a pin-on-disk tribotester varying five levels of normal load and sliding speed. The duration of each experiment is fixed for 30 minutes. Three environments viz. dry, deionised and dilute acid environments are considered to carry out the tribological tests. The composite exhibits slightly good wear resistance under low load and speed condition but weight loss increases as these parameters increases in all three environments. Maximum weight loss occurs in case of acid environment as it is more corrosive than dry and deionised environment. The wear surface of the composite is examined through the scanning electron microscopic (SEM) and energy dispersive x-ray analysis (EDX).

  13. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  14. X-ray Microtomography Analysis of the Aluminum Alloy Composite Reinforced by SiC After Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Wójcicka, Anna; Mroczka, Krzysztof; Kurtyka, Paweł; Binkowski, Marcin; Wróbel, Zygmunt

    2014-09-01

    Despite many years of using friction stir processing (FSP), there are many unexplained aspects concerning the processes which appear during FSP: determining the direction of flow and mixing of the materials and the degree of mixing and microstructure fragmentation in specific areas. This paper presents the impact of FSP on the micro- and macrostructure of the composite with hypo-eutectic Si matrix reinforced by SiC particles. The analysis of the structure of the processed area in FSP in the relation to the microstructure of the base material has been made using x-ray microtomography. The results of these studies have been juxtaposed with studies using microscopic methods (light microscopy and SEM). The microtomography images revealed an additional separation on the advancing side and the weld nugget, where on the basis of a 3D reconstruction a layer microstructure on the direction of linear movement of the tool has been demonstrated. The analyses have revealed a limited flow of the material above the weld nugget. The main advantages of the research method applied were the possibility to show the invisible or barely visible elements of the microstructure using standard test methods and the ability to analyze the microstructure changes uninterruptedly in different directions in the volume of the material.

  15. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    DOE PAGES

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues formore » investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.« less

  16. Three-dimensional multiscale modeling of dendritic spacing selection during Al-Si directional solidification

    SciTech Connect

    Tourret, Damien; Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Gibbs, John W.; Karma, Alain

    2015-05-27

    We present a three-dimensional extension of the multiscale dendritic needle network (DNN) model. This approach enables quantitative simulations of the unsteady dynamics of complex hierarchical networks in spatially extended dendritic arrays. We apply the model to directional solidification of Al-9.8 wt.%Si alloy and directly compare the model predictions with measurements from experiments with in situ x-ray imaging. The focus is on the dynamical selection of primary spacings over a range of growth velocities, and the influence of sample geometry on the selection of spacings. Simulation results show good agreement with experiments. The computationally efficient DNN model opens new avenues for investigating the dynamics of large dendritic arrays at scales relevant to solidification experiments and processes.

  17. Sr effect on the microstructure and tensile properties of A357 aluminum alloy and Al{sub 2}O{sub 3}/SiC-A357 cast composites

    SciTech Connect

    Razaghian, A.; Emamy, M.; Najimi, A.A.; Ebrahimi, S.H. Seyed

    2009-11-15

    The effect of strontium as a modifier on the microstructures and tensile properties of two castable particulate metal matrix composites has been studied. The particulate metal matrix composites had similar matrix alloy (A357) but different reinforcing fine particles (silicon carbide and alumina). Results showed that the addition of 0.03% strontium makes a modest improvement to the yield strength, ultimate tensile strength and elongation percentage values, and the scatter of these properties, but makes a significant improvement to minimum strength and elongation results. Microstructural examinations by scanning electron microscope and energy dispersive spectroscopy analysis of metal matrix composites showed segregation of strontium on both the silicon carbide and alumina particles. Further results showed that the addition of higher strontium levels contributes to the over-modification of the eutectic silicon and promotes the formation of an Al-Si-Sr intermetallic compound on the particle/matrix interface.

  18. Correlation between microstructure evolution and high temperature properties of TiAlSiN hard coatings with different Si and Al content

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Xie, Zhiwen; Gong, Feng; Luo, Zhuangzhu; Yang, Zhi

    2014-09-01

    TiAlSiN coatings with different Si and Al content are synthesized by multi-plasma immersion ion implantation and deposition (MPIIID). The microstructure, oxidation resistance and wear resistance of as-deposited coatings are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), nano-indentation, thermo gravimetric analysis (TGA) and friction tests. Studies show that TiAlSiN coating has nc-TiAlN/a-Si3N4 structure. The grain size of nc-TiAlN decreases gradually and the volume fraction of the interfacial a-Si3N4 increases with the increased Si level. The obvious reduction in grain size together with the increase in interfacial a-Si3N4 eventually leads to the superior oxidation resistance of TiAlSiN coating. In addition, TiAlSiN coating with low Si and Al content exhibits poor oxidation stability and thermal stability, which results in its unsatisfied wear resistance at 800 ̊C. However, TiAlSiN coating with higher Si and Al content possesses better oxidation stability and thermal stability, and this coating shows excellent wear resistance both at RT and 800 ̊C. The correlation between microstructure evolution and oxidation resistance and wear resistance of as-deposited coatings are systematically discussed.

  19. Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Wang, Linzhi; Tan, Sheng

    2016-07-01

    Selective laser melting (SLM)-fabricated AlSi10Mg parts were heat-treated under vacuum to eliminate the residual stress. Microstructure evolutions and tensile properties of the SLM-fabricated parts before and after vacuum annealing treatment were studied. The results show that the crystalline structure of SLM-fabricated AlSi10Mg part was not modified after the vacuum annealing treatment. Additionally, the grain refinement had occurred after the vacuum annealing treatment. Moreover, with increasing of the vacuum annealing time, the second phase increased and transformed to spheroidization and coarsening. The SLM-produced parts after vacuum annealing at 300∘C for 2 h had the maximum ultimate tensile strength (UTS), yield strength (YS) and elongation, while the elastic modulus decreased significantly. In addition, the tensile residual stress was found in the as-fabricated AlSi10Mg samples by the microindentation method.

  20. Global Mg/Si and Al/Si Distributions on the Lunar Surface Derived from Chang'E-2 X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Dong, Wu-Dong; Zhang, Xiao-Ping; Zhu, Meng-Hua; Xu, Ao-Ao; Tang, Ze-Sheng

    2016-01-01

    The technique of X-ray fluorescence remote sensing plays a significant role in research related to the chemical compositions of the Moon. Here we describe the data analysis method for China's Chang'E-2 X-ray spectrometer in detail and present the preliminary results about the first global Mg/Si and Al/Si maps of the lunar surface. Our results show that the distributions of Mg/Si and Al/Si correlate well with terrains on the Moon. The higher Mg/Si ratio corresponds to the mare regions while the lower value corresponds to the highland terrains. The map of the Al/Si ratio shows a reversed distribution compared with the map of the Mg/Si ratio.

  1. Using Atom-Probe Tomography to Understand Zn O ∶Al /SiO 2/Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Jaramillo, R.; Youssef, Amanda; Akey, Austin; Schoofs, Frank; Ramanathan, Shriram; Buonassisi, Tonio

    2016-09-01

    We use electronic transport and atom-probe tomography to study Zn O ∶Al /SiO 2/Si Schottky diodes on lightly doped n - and p -type Si. We vary the carrier concentration in the ZnO ∶Al films by 2 orders of magnitude, but the Schottky barrier height remains nearly constant. Atom-probe tomography shows that Al segregates to the interface, so that the ZnO ∶Al at the junction is likely to be metallic even when the bulk of the ZnO ∶Al film is semiconducting. We hypothesize that the observed Fermi-level pinning is connected to the insulator-metal transition in doped ZnO. This implies that tuning the band alignment at oxide/Si interfaces may be achieved by controlling the transition between localized and extended states in the oxide, thereby changing the orbital hybridization across the interface.

  2. Annealing tests of in-pile irradiated oxide coated U-Mo/Al-Si dispersed nuclear fuel

    NASA Astrophysics Data System (ADS)

    Zweifel, T.; Valot, Ch.; Pontillon, Y.; Lamontagne, J.; Vermersch, A.; Barrallier, L.; Blay, T.; Petry, W.; Palancher, H.

    2014-09-01

    U-Mo/Al based nuclear fuels have been worldwide considered as a promising high density fuel for the conversion of high flux research reactors from highly enriched uranium to lower enrichment. In this paper, we present the annealing test up to 1800 °C of in-pile irradiated U-Mo/Al-Si fuel plate samples. More than 70% of the fission gases (FGs) are released during two major FG release peaks around 500 °C and 670 °C. Additional characterisations of the samples by XRD, EPMA and SEM suggest that up to 500 °C FGs are released from IDL/matrix interfaces. The second peak at 670 °C representing the main release of FGs originates from the interaction between U-Mo and matrix in the vicinity of the cladding.

  3. Tuning electronic and magnetic properties of blue phosphorene by doping Al, Si, As and Sb atom: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Hao, Yitong; Ren, Qingqiang; Zhao, Yiming; Du, Yanhui; Tang, Wencheng

    2016-09-01

    Using density functional theory computations, we systematically investigated the structural, electronic and magnetic properties of Al, Si, As and Sb doped blue phosphorene. The electronic properties of blue phosphorene can be effectively turned by substitutional doping. Especially, Al and Sb lead to an indirect-to-direct-gap transition. The interaction between the impurity and P atoms should be responsible for the transition. In addition, blue phosphorene can exhibit dilute magnetic semiconductor property with doping of Si impurity. The magnetic moment in Si-substituted blue phosphorene predominantly originates from the hybridization of Si-s pz and P-pz orbitals. These results provide many useful applications of blue phosphorene in electronics, optoelectronics and spintronics.

  4. Influence of SiC surface polarity on the wettability and reactivity in an Al/SiC system

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Wang, Yi; Ren, Lihua; Li, Shixin; Liu, Yuhua; Jiang, Qichuan

    2015-11-01

    The wetting of (0 0 0 1) 6H-SiC single crystals by molten Al was investigated using a dispensed sessile drop method in a high vacuum at 973-1173 K. The wettability and reactivity in this system are sensitive to the surface polarity of SiC. The interfacial reaction on the Si-terminated surface is rapid. The formation of a continuous Al4C3 product layer at the interface leads to an equilibrium contact angle of 56 ± 1° at 1173 K. In comparison, the interfacial reaction on the C-terminated surface is sluggish. The interface is only partially covered by discrete Al4C3 platelets even after dwelling at 1173 K for 2 h. The final wettability, however, is much better (θF = 41 ± 1°) than that of the Si-terminated surface which was covered by a dense Al4C3 layer, suggesting that the formation of Al4C3 should not always contribute to the wetting in the Al/SiC system. A plausible explanation is that the clean (i.e., deoxidized) C-terminated surface should be well wetted by molten Al in nature, owing to the strong chemical interactions between liquid Al and the surface atoms of the C-terminated SiC. It is likely that the presence of the oxide film at the surface of the molten Al drop or the SiC substrate and the rapid formation of Al4C3, which prevent the establishment of a real Al/SiC interface, conceal the intrinsic wettability of this system.

  5. Lunar Resources Using Moderate Spectral Resolution Visible and Near-infrared Spectroscopy: Al/si and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Fischer, Erich M.; Pieters, Carle M.; Head, James W.

    1992-01-01

    Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.

  6. Temperature-dependent structural study of microporous CsAlSi{sub 5}O{sub 12}

    SciTech Connect

    Fisch, Martin; Armbruster, Thomas Kolesov, Boris

    2008-03-15

    CsAlSi{sub 5}O{sub 12} crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs{sub 0.85}Al{sub 0.85}Si{sub 5.15}O{sub 12} composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 deg. C up to 700 deg. C, show a significant decrease in expansion above 500 deg. C. At 500 deg. C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO{sub 4} rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 deg. C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between -270 and 300 deg. C and unpolarized spectra between room temperature and 1000 deg. C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition. - Graphical abstract: Temperature-dependent structural evolution of microporous CsAlSi{sub 5}O{sub 12} has been investigated by single-crystal and powder X-ray diffraction, as well as Raman spectroscopy. Results yielded a phase transition of order-disorder type.

  7. The properties and application of scandium-reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Ahmad, Zaki

    2003-02-01

    Scandium-reinforced aluminum alloys represent a new generation of high-performance alloys that display numerousadvantages over high-strength aluminum alloys. Scandium-reinforced alloys are much stronger than other high-strength alloys, exhibit significant grain refinement, strengthen welds, and eliminate hot cracking in welds. These alloys also exhibit a good resistance to corrosion as shown by recent studies. A review of their mechanical, microstructural, and corrosion characteristics shows that scandium-reinforced alloys can be usefully employed in aerospace, sports, transportation, and process industries. The information on scandium-reinforced alloys is scanty; very little has been published on the mechanical, microstructural, and corrosion behavior of these alloys. The following fills this gap.

  8. Marangoni motion during melting of a hypermonotectic alloy: Numerical simulations for the D2 experiment IHF04

    NASA Astrophysics Data System (ADS)

    Ratke, L.; Diefenbach, S.; Prinz, B.; Ahlborn, H.; Feuerbacher, Berndt

    1992-08-01

    The scientific objectives, experimental procedure, numerical simulation, and expected results of the D2 experiment IHF-04, in which the Marangoni transport of Bi droplets in an Al-Si melt will be investigated by directional melting of sandwich like samples of Al-Si-Bi alloys, are addressed. The sandwich like samples consist of periodically arranged cylinders of an Al-Si alloy in which 5 wt percent Bi are distributed as droplets and cylinders of an Al-Si-Bi alloy of exact monotectic composition and being thus free of Bi droplets at the processing temperature. Ahead of the melting front there exists a temperature gradient which leads to a motion of the droplets within the Al-Si matrix melt. Bi droplets move from the cylinder with hypermonotectic composition into the droplets free one as soon as the melting front moves into it in a controlled way. At the end of an experiment a large number of droplets will be located within the molten zone. From the spatial arrangement of the droplets and a comparison with computer simulations of the whole process, conclusions are drawn concerning the Marangoni motion of Bi droplets. The investigations are relevant for the improvement of terrestrial industrial casting processes of bearing alloys.

  9. Crystal Growth, Structure, and Physical Properties of LnCu[subscript 2](Al,Si)[subscript 5] (Ln = La and Ce)

    SciTech Connect

    Phelan, W. Adam; Kangas, Michael J.; Drake, Brenton L.; Zhao, Liang L.; Wang, Jiakui K.; DiTusa, J.F.; Morosan, Emilia; Chan, Julia Y.

    2012-03-15

    LnCu{sub 2}(Al,Si){sub 5} (Ln = La and Ce) were synthesized and characterized. These compounds adopt the SrAu{sub 2}Ga{sub 5} structure type and crystallize in the tetragonal space group P4/mmm with unit cell dimensions of a {approx} 4.2 {angstrom} and c {approx} 7.9 {angstrom}. Herein, we report the structure as obtained from single crystal X-ray diffraction. Additionally, we report the magnetic susceptibility, magnetization, resistivity, and specific heat capacity data obtained for polycrystalline samples of LnCu{sub 2}(Al,Si){sub 5} (Ln = La and Ce).

  10. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  11. Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography

    SciTech Connect

    Silva, Flávio de Andrade; Williams, Jason J.; Müller, Bernd R.; Hentschel, Manfred P.; Portella, Pedro D.; Chawla, Nikhilesh

    2011-11-15

    Microstructural aspects of composites such as reinforcement particle size, shape, and distribution play important roles in deformation behavior. In addition, Fe-rich inclusions and porosity also influence the behavior of these composites, particularly under fatigue loading. Three-dimensional (3-D) visualization of porosity and Fe-rich inclusions in three dimensions is critical to a thorough understanding of fatigue resistance of metal matrix composites (MMCs), because cracks often initiate at these defects. In this article, we have used X-ray synchrotron tomography to visualize and quantify the morphology and size distribution of pores and Fe-rich inclusions in a SiC particle-reinforced 2080 Al alloy composite. The 3-D data sets were also used to predict and understand the influence of defects on the deformation behavior by 3-D finite element modeling.

  12. EBSD Study of the Influence of a High Magnetic Field on the Microstructure and Orientation of the Al-Si Eutectic During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-06-01

    The effect of a high magnetic field on the morphology of the Al-Si eutectic was investigated using EBSD technology. The results revealed that the application of the magnetic field modified the morphology of the Al-Si eutectic significantly. Indeed, the magnetic field destroyed the coupled growth of the Al-Si eutectic and caused the formation of the divorced α-Al and Si dendrites at low growth speeds (≤1 μm/s). The magnetic field was also found to refine the eutectic grains and reduce the eutectic spacing at the initial growth stage. Moreover, the magnetic field caused the occurrence of the columnar-to-equiaxed transition of the α-Al phase in the Al-Si eutectic. The abovementioned effects were enhanced as the magnetic field increased. This result should be attributed to the magnetic field restraining the interdiffusion of Si and Al atoms in liquid ahead of the liquid/solid interface and the thermoelectric magnetic force acting on the eutectic lamellae under the magnetic field.

  13. Li3AlSiO5: the first aluminosilicate as a potential deep-ultraviolet nonlinear optical crystal with the quaternary diamond-like structure.

    PubMed

    Chen, Xinglong; Zhang, Fangfang; Liu, Lili; Lei, Bing-Hua; Dong, Xiaoyu; Yang, Zhihua; Li, Hongyi; Pan, Shilie

    2016-02-14

    Deep-ultraviolet (deep-UV) nonlinear optical (NLO) crystals play a crucial role in modern laser frequency conversion technology. Traditionally, the exploration of deep-UV NLO crystals is mainly focused on borates, while, the use of phosphates recently opened up a novel and promising non-boron pathway for designing new deep-UV NLO crystals. Extending this pathway to aluminosilicates led to the discovery of Li3AlSiO5, the first NLO crystal in this system. It crystallizes in the polar space group Pna21 (no. 33) with a quaternary diamond-like structure composed of LiO4, AlO4 and SiO4 tetrahedral groups. The compound exhibits a deep-UV cut-off edge below 190 nm and is phase matchable with moderate powder second harmonic generation (SHG) intensity (0.8KH2PO4). The band gap calculated using PBE0 is 7.29 eV, indicating that the cut-off edge of the Li3AlSiO5 crystal can be down to 170 nm. In addition, the compound is nonhygroscopic and thermally stable up to ∼1472 K. These results suggest that Li3AlSiO5 is a potential deep-UV NLO crystal. First-principles studies were performed to elucidate the structure-property relationship of Li3AlSiO5. PMID:26788988

  14. Internally consistent thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl

    NASA Astrophysics Data System (ADS)

    Miron, George D.; Wagner, Thomas; Kulik, Dmitrii A.; Heinrich, Christoph A.

    2016-08-01

    A large amount of critically evaluated experimental data on mineral solubility, covering the entire Na-K-Al-Si-O-H-Cl system over wide ranges in temperature and pressure, was used to simultaneously refine the standard state Gibbs energies of aqueous ions and complexes in the framework of the revised Helgeson-Kirkham-Flowers equation of state. The thermodynamic properties of the solubility-controlling minerals were adopted from the internally consistent dataset of Holland and Powell (2002; Thermocalc dataset ds55). The global optimization of Gibbs energies of aqueous species, performed with the GEMSFITS code (Miron et al., 2015), was set up in such a way that the association equilibria for ion pairs and complexes, independently derived from conductance and potentiometric data, are always maintained. This was achieved by introducing reaction constraints into the parameter optimization that adjust Gibbs energies of complexes by their respective Gibbs energy effects of reaction, whenever the Gibbs energies of reactant species (ions) are changed. The optimized thermodynamic dataset is reported with confidence intervals for all parameters evaluated by Monte Carlo trial calculations. The new thermodynamic dataset is shown to reproduce all available fluid-mineral phase equilibria and mineral solubility data with good accuracy and precision over wide ranges in temperature (25-800 °C), pressure (1 bar to 5 kbar) and composition (salt concentrations up to 5 molal). The global data optimization process adopted in this study can be readily repeated any time when extensions to new chemical elements and species are needed, when new experimental data become available, or when a different aqueous activity model or equation of state should be used. This work serves as a proof of concept that our optimization strategy is feasible and successful in generating a thermodynamic dataset reproducing all fluid-mineral and aqueous speciation equilibria in the Na-K-Al-Si-O-H-Cl system within

  15. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    PubMed

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  16. The stability of sodalite in the system NaAlSiO sub 4 -NaCl

    SciTech Connect

    Sharp, Z.D. ); Helffrich, G.R. ); Bohlen, S.R. ); Essene, E.J. )

    1989-08-01

    The reaction sodalite = {beta}-nepheline + NaCl (s) was reversed in solid-medium apparatus and the reaction sodalite = carnegieite + NaCl (l) was reversed at 1 bar (1,649-1,652 K). The experimental reversals between 923 K and 973 K can be fit with a dP/dT of {minus}11 bar/K, suggesting that the excess entropy for sodalite is present only above 923 K. A phase diagram for the NaAlSiO{sub 4}-NaCl system that is consistent with the measured thermochemical data and the experiments between 973 and 1,650 K can be generated if the 61.7 J/mol{center dot}K entropy contribution is included in the S{sup 0}{sub 298} of sodalite. This entropy contribution must be removed below 973 K for the experiments to fit with calculations. Previously unreported thermodynamic data estimated in this study are {Delta}G{sup 0}{sub 298} for sodalite ({minus}12,697 kJ/mol) and carnegieite (NaAlSiO{sub 4}) ({minus}1,958 kJ/mol), S{sup 0}{sub 298} of carnegieite (129.6 J/mol{center dot}K) and compressibility of NaCl{sub liquid} (V{sup P}{sub 298} (cm{sup 3}) = 31.6{center dot}(1 - 24.7{center dot}10{sup {minus}3}{center dot}P + 800{center dot}10{sup {minus}6}{center dot}P{sup 2}))(T in K; P in kbar). Sodalite is a high-temperature, low-pressure phase, stable well above the solidus in sodic silica-undersaturated magmas enriched in NaCl, and its presence constrains NaCl activities in magmas. Estimates of minimum NaCl (l) activities in the Mont St-Hilaire sodalite syenites are 0.05 at 1,073 K and 0.13 at 1,273 K. Density calculations are consistent with the field observations that sodalite phenocrysts will float in a nepheline syenite liquid. This explains the enrichment of sodalite in the upper levels of the sodalite syenites at Mont St.Hilaire and elsewhere.

  17. Pressure-Induced Amorphization and Phase Transformations in LiAlSiO4 β-eucryptite

    NASA Astrophysics Data System (ADS)

    Zelinskas, M. V.; Zhang, J.

    2002-12-01

    It has been well-established that β-eucryptite (LiAlSiO4), a structural derivative of β-quartz (SiO2), exhibits negative thermal expansion along the c axis and near-zero volume thermal expansion over a wide temperature range of 300-1400 K. This behavior makes this compound a good candidate for testing model predications of a connection between negative thermal expansion and pressure-induced amorphizaation. Such a connection, as already demonstrated in compounds such as ice, silicon, and ZrW2O8, may help extend our understanding of the underlying mechanisms. In this study, β-eucryptite has been investigated under static compression up to 25 GPa using in-situ x-ray diffraction and quenching techniques. High-pressure x-ray diffraction patterns revealed that β-eucryptite underwent progressive amorphization at pressures above 3 GPa and became complete amorphous at 19 GPa. Quench experiments showed that, at pressures of 7.5, 14, and 17 GPa, the original crystalline phase was retained after pressure release. A complete amorphous phase, however, was recovered in the experiment conducted at 25 GPa. The observed amorphization at relatively low pressures extends previous model predictions for tetrahedrally bonded networks, which are restricted to compounds exhibiting negative volume thermal expansion. In addition, β-eucryptite does not appear to have structural memory when it becomes complete amorphous. For comparison, there seems to exist some non-deformable units within the partially amorphous β-eucryptite samples that allow the reversion back to the ordered state. β-eucryptite has also been studied at high pressure and temperature. At 1173 K and 11 GPa, β-eucryptite was decomposed to a mixture of spodumene (LiAlSi2O6) and LiAlO2. At 14-16 GPa and 1273 K, the two phases were recombined into a single phase with a spinel structure. At 22 GPa and 1673 K, we observed a mixture of oxides, MgO, Al2O3, and a new phase of Li2O. These observations suggest that the pressure

  18. Stability and Electronic Structures of Al-, Si- and Au-incorporated Divacancy Graphenes: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Kim, Na-Young; Lee, Eui-Sup; Kim, Yong-Hyun

    2013-03-01

    C, N, and O decorated divacancy pores in graphene have been reported as well. Especially, the N4 divacancy pore can strongly bind with the divalent 3d transition metals (TMs) because of the large enough pore size and the strong p-d hybridization. Recently, the Si- and Au-incorporated divacancy pore have been also proposed, but understanding of the stability or electronic properties is largerly lacking. In this work, we invesgated the stability and electronic structure of Al-, Si- and Au-incoporated divacancy graphenes decorated with reactangular CmNn, NnOl, and OlCm, based on first-principles density-functional theory (DFT) calculations. We found that the Al-CN3, Si-C2N2, and Au-CN3 are most stable configurations for each cations because the unpaired electrons of edge atoms of divacancy pore could be completely passivated. The binding energies are also higher than cohessive energies due to the strong p-p or p-d hybridization. Because of the strong hybridizaition, the restoration of π-network of graphene or small band-gap opening near the fermi-level are also observed.

  19. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    SciTech Connect

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.; Balart, S.N.; Gribaudo, L.M.

    2008-07-15

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)

  20. The Effects of Individual Metal Contents on Isochrones for C, N, O, Na, Mg, Al, Si, and Fe

    NASA Astrophysics Data System (ADS)

    Beom, Minje; Na, Chongsam; Ferguson, Jason W.; Kim, Y.-C.

    2016-08-01

    The individual characteristics of C, N, O, Na, Mg, Al, Si, and Fe on isochrones have been investigated in this study. Stellar models have been constructed for various mixtures in which the content of each element is changed up to the extreme value reported in recent studies, and the changes in isochrone shape have been analyzed for the various mixtures. To express the abundance variation of different elements with a single parameter, we have focused on the relative changes in the total number of metal ions. A review of the shape changes revealed that Na, Mg, and Al work the same way in stellar models, similar to the well-known fact that C, N, and O have the same reactions in the stellar interior. In addition, it was found that in high-metallicity conditions the influence of Si and Fe on the red giant branch becomes smaller than that of Na, Mg, and Al closer to the tip. Furthermore, the influence of Fe on the main sequence is larger than that of Na, Mg, Al, and even Si.

  1. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect

    Sahli, M. L.; Necib, B.

    2011-05-04

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  3. Gaussian distribution of inhomogeneous barrier height in Al/SiO2/p-Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yıldız, D. E.; Altındal, Ş.; Kanbur, H.

    2008-06-01

    The forward and reverse bias current-voltage (I-V) characteristics of Al/SiO2/p-Si (metal-insulator-semiconductor) type Schottky diodes (SDs) were measured in the temperature range of 200-400 K. Evaluation of the experimental I-V data reveals a decrease in ΦB0 and Rs but an increase in n, with a decrease in temperature. To explain this behavior of ΦB0 with temperature, we have reported a modification which included n and the tunneling parameter αχ1/2δ in the expression of reverse saturation current I0. Thus, a corrected effective barrier height ΦB eff(I -V) vs T has a negative temperature coefficient (α ≈-5×10-4 eV/K), and it is in good agreement with α=-4.73×10-4 eV/K of Si band gap. Such behavior of Rs estimated from Cheung's method could be expected for semiconductors in the temperature region, where there is no carrier freezing out, which is non-negligible at low temperatures. Also, there is a linear correlation between ΦB0(I -V) and n due to the inhomogeneities of the barrier heights (BHs). The conventional activation energy (Ea) plot exhibits nonlinearity below 320 K with the linear portion corresponding to Ea of 0.275 eV. An A∗ value of 1.45×10-5 A cm-2 K-2,which is much lower than the known value of 32 A cm-2 K-2 for p-type Si, is determined from the intercept at the ordinate of this experimental plot. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution (GD) of BHs due to BH inhomogeneities that prevail at the interface. We attempted to draw a ΦB0 vs q /2kT plot to obtain evidence of a GD of the BHs, and the values of Φ¯B0=1.136 eV and σ0=0.159 V for the mean BH and standard deviation at zero bias have been obtained from this plot. Therefore, the modified ln (I0/T2)-q2σ02/2k2T2 vs q /kT plot gives Φ¯B0 and A∗ values of 1.138 eV and 37.23 A cm-2 K-2, respectively, without using the temperature coefficient of the BH. This A∗ value of 37.23 A cm-2 K-2 is very close to the theoretical

  4. Corrosion behavior of TiN, TiAlN, TiAlSiN-coated 316L stainless steel in simulated proton exchange membrane fuel cell environment

    NASA Astrophysics Data System (ADS)

    Nam, Nguyen Dang; Vaka, Mahesh; Tran Hung, Nguyen

    2014-12-01

    To gain high hardness, good thermal stability and corrosion resistance, multicomponent TiAlSiN coating has been developed using different deposition methods. In this study, the influence of Al and Si on the electrochemical properties of TiN-coated 316L stainless steel as bipolar plate (BP) materials has been investigated in simulated proton exchange membrane fuel cell environment. The deposited TiN, TiAlN and TiAlSiN possess high hardness of 23.9, 31.7, 35.0 GPa, respectively. The coating performance of the TiN coating is enhanced by Al and Si addition due to lower corrosion current density and higher Rcoating and Rct values. This result could be attributed to the formation of crystalline-refined TiN(200), which improves the surface roughness, surface resistance, corrosion performance, and decreased passive current density.

  5. Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K

    NASA Astrophysics Data System (ADS)

    Zhou, Youmo; Irifune, Tetsuo; Ohfuji, Hiroaki; Shinmei, Toru; Du, Wei

    2016-08-01

    Lingunite (hollandite with Na contents of 80-85 mol%) discovered in the shock veins of strongly shocked meteorites is an important signature of shock metamorphism. To seek the stability region of lingunite, phase relations in the system KAlSi3O8-NaAlSi3O8 have been investigated by multi-anvil experiments at pressures of 20-23 GPa and temperatures of 1873 and 2273 K. Phase assemblages of hollandite + jadeite + stishovite, hollandite + calcium ferrite-type NaAlSiO4 + stishovite and hollandite single phase have been recovered, depending on the pressure-temperature conditions and the compositions of starting materials. Both pressure and temperature have large effects on the solubility of Na in hollandite, and hollandite with 79 mol% Na, similar to the natural lingunite in terms of Na content, has been firstly synthesized at 22 GPa and 2273 K. The stability region of K0.2Na0.8AlSi3O8 hollandite is comparable to the typical pressure-temperature conditions of the shock veins of strongly shocked meteorites (20-25 GPa and 2273-2500 K).

  6. A new color correlation method applied to XRF Al/Si ratios and other lunar remote sensing data. [X Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Eliason, E.

    1978-01-01

    Orbital X-ray fluorescence Al/Si intensity ratios, corrected for variations in solar activity, are correlated with normal albedo, elevation measurements from laser altimetry data, and gamma ray data in the 2.75-8.60 MeV range. Each of these data sets is placed into a digital array consisting of 1/4 deg latitude by 1/4 deg longitude pixels. Information relative to the correlation of Al/Si ratios with each of the other data sets is presented in the following forms: (1) histograms are given for each data set to show the frequency distribution within the areas of common coverage; (2) density plots are produced from the plot of a two-dimensional array consisting of the Al/Si ratio vs the other parameter value for each pixel; and (3) color correlation maps are produced by placing the two-dimensional array into a 3 x 3 matrix consisting of nine equal subarrays containing an equal number of data points.

  7. Surface engineering of aluminum alloys for automotive engine applications

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Dahotre, Narendra B.; Dahotre, Narendra B.

    2004-01-01

    The modification and refinement of surface and subsurface microstructure in Al-Si-based cast alloys via laser-induced rapid solidification can create a natural topography suitable for engine applications. The differential wear of the soft aluminum phase, hard silicon, and CuAl in the cell, along with the divorced eutectic nanostructure in the intercellular region, is expected to produce and replenish microfluidic channels and pits for efficient oil retention, spreading, and lubrication.

  8. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Langan, T. J.; Pickens, J. R.

    1991-01-01

    Weldalite 049, an Al-base Cu-Li-Mg-Ag-Zr alloy, achieves 700 MPa tensile strengths in the near-peak-aged temper in virtue of the nucleation of a T(1)-type platelike strengthening precipitate. Attention is presently given to the possibility that the alloy's modulus could be further increased through the addition of high-modulus TiB2 particles, using the 'XD' process, due to TiB2's good wettability with liquid Al. An 8-percent modulus increase is obtained with 4 vol pct TiB2.

  9. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  10. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.

    PubMed

    Uli, Norjaidi; Kuppuswamy, R; Amran, Mohd Firdaus Che

    2011-05-20

    A brief survey to assess the sensitivity and efficacy of some common etching reagents for revealing obliterated engraved marks on Al-Si alloy surfaces is presented. Experimental observations have recommended use of alternate swabbing of 10% NaOH and 10% HNO(3) on the obliterated surfaces for obtaining the desired results. The NaOH etchant responsible for bringing back the original marks resulted in the deposition of some dark coating that has masked the recovered marks. The coating had been well removed by dissolving it in HNO(3) containing 10-20% acid. However, the above etching procedure was not effective on aluminium (99% purity) and Al-Zn-Mg-Cu alloy surfaces. Also the two reagents (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH suggested earlier for high strength Al-Zn-Mg-Cu alloys [23] were quite ineffective on Al-Si alloys. Thus different aluminium alloys needed different etching treatments for successfully restoring the obliterated marks. Al-Si alloys used in casting find wide applications especially in the manufacture of engine blocks of motor vehicles. Hence, the results presented in this paper are of much relevance in serial number restoration problems involving this alloy.

  11. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Wachs, D. M.; Ryu, H. J.; Park, J. M.; Yang, J. H.

    2012-08-01

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the γ-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  12. Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating

    NASA Astrophysics Data System (ADS)

    Shi, J.; Muders, C. M.; Kumar, A.; Jiang, X.; Pei, Z. L.; Gong, J.; Sun, C.

    2012-10-01

    In this study, nanocomposite Ti-Al-Si-Cu-N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H3/E2, friction coefficient, adhesive strength and wear rate of the Ti-Al-Si-Cu-N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti-Al-Si-Cu-N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H3/E2 first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H3/E2 of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive strength. The wear rate decreased with an increase in hardness, with the highest hardness corresponding to a wear rate around 1.3 × 10-5 mm3/(N m) of the film with 6 at.% Si content. The correlations between hardness and tribological properties for the films were also examined. The essence of above phenomena was attributed to the variations of microstructure and morphologies in the films induced by the increasing silicon content.

  13. A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases

    NASA Astrophysics Data System (ADS)

    Fasshauer, Detlef W.; Chatterjee, Niranjan D.; Cemic, Ladislav

    Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All Cp measurements have been executed by DSC in the temperature range 133-823K. The data for T>=223K have been fitted to the function Cp(T)=a+cT -2+dT -0.5+fT -3, the fit parameters being The thermal expansion data (up to 525°C) have been fitted to the function V0(T)=V0(T) [1+v1 (T-T0)+v2 (T-T0)2], with T0=298.15K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way.

  14. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  15. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yuan, Pengpeng; Gu, Dongdong

    2015-01-01

    Simulation of temperature evolution and thermal behaviour of the molten pool during selective laser melting (SLM) of TiC/AlSi10Mg nanocomposites was performed, using a finite volume method. Some important physical phenomena, such as a transition from powder to solid, nonlinearities produced by temperature-dependent material properties and fluid flow, were taken into account in the calculation. The effects of Marangoni convection and SLM processing parameters, such as laser power and scan speed, on temperature evolution behaviour, molten pool dimensions and liquid lifetime were thoroughly investigated. The simulation results showed that Marangoni convection played a crucial role in intensifying the convective heat transfer and changing the molten pool geometry. The temperature of laser-powder interaction zone, the molten pool dimensions and liquid lifetime increased with increasing laser power or decreasing scan speed. The maximum temperature gradient within the molten pool increased significantly with increasing the applied laser power, but increased slightly as a higher scan speed was applied. The experimental study on the interlayer bonding and densification behaviour and the surface morphologies and balling effect of the SLM-processed TiC/AlSi10Mg nanocomposites parts was performed. The experimental results validated the thermal behaviour and underlying physical mechanism of the molten pool obtained in the simulations.

  16. X-ray tomographic imaging of Al/SiC p functionally graded composites fabricated by centrifugal casting

    NASA Astrophysics Data System (ADS)

    Velhinho, A.; Sequeira, P. D.; Martins, Rui; Vignoles, G.; Braz Fernandes, F.; Botas, J. D.; Rocha, L. A.

    2003-01-01

    The present work refers to an X-ray microtomography experiment aiming at the elucidation of some aspects regarding particle distribution in SiC-particle-reinforced functionally graded aluminium composites. Precursor composites were produced by rheocasting. These were then molten and centrifugally cast to obtain the functionally graded composites. From these, cylindrical samples, around 1 mm in diameter, were extracted, which were then irradiated with a X-ray beam produced at the European Synchrotron Radiation Facility. The 3-D images were obtained in edge-detection mode. A segmentation procedure has been adapted in order to separate the pores and SiC particles from the Al matrix. Preliminary results on the particle and pore distributions are presented.

  17. Formation of deoxidization products in iron ingot by the addition of Al, Si, and/or Mn (M-5)

    NASA Technical Reports Server (NTRS)

    Fukazawa, Akira

    1993-01-01

    The objective of this work is to examine the morphology, composition, and distribution of deoxidation products in iron and iron-10 percent Ni alloy ingots. The deoxidation agents Si, Mn, Al, and their mixtures are selected to investigate the formation mechanism of the deoxidation products and to compare the differences of oxide formation among these agents in microgravity. After the experiment in space, the tested specimens are going to be analyzed by the use of the latest physical and/or chemical analytical equipment, and the information obtained will be a great help for the comprehension of the formation of oxide inclusion in steel for practical purposes, and also for the study of the solidification mechanism theory in the theoretical field.

  18. Effect of Li level, artificial aging, and TiB2 reinforcement on the fracture toughness of Weldalite (tm) 049-type alloys

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Plane strain fracture toughness (K sub IC) was evaluated for Weldalite (tm) 049 with and without TiB2 reinforcement. For the nonreinforced variant, changes in toughness were measured for various aging conditions and lithium levels. Toughness testing was carried out on fatigue precracked compact tension (CT) specimens at 24 C, as per ASTM standard E-399. Toughness was measured as a function of aging time at 160 C for the two Weldalite 049(1.3) heats. The composition of these heats differed only in that 0.03 wt pct. Ti was added to one as an additional grain refiner. Both heats showed a decrease in toughness with increasing aging time, although toughness values for one were significantly higher than for the other. This greater toughness may be due to a subtle change in the grain size resulting for the presence of Ti or, alternatively, to differences in texture or substructure formed during extrusion.

  19. Compared production behavior of borax and unborax premixed SiC reinforcement Al7Si-Mg-TiB alloys composites with semi-solid stir casting method

    NASA Astrophysics Data System (ADS)

    Haryono, M. B.; Sulardjaka, Nugroho, Sri

    2016-04-01

    The present study was aimed to investigate the effect of borax additive on physical and mechanical properties of Al7Si-Mg-TiB with the reinforcement of silicon carbide. In this case, the different weight percentage from the reinforcement of SiC (10, 15, and 20% wt), and the borax additive (ratio 1:4) were homogenously added into the matrix by employing the semi-solid stir casting method at the temperature of 590°C. Al7Si-Mg-TiB melted in an electric resistance furnace at 800°C for 25 minutes and the holding time of 5 minutes; SiC was stirred with borax inside the chamber and heated at the temperature of 250°C for 25 minutes. Then, it melted by lowing the temperature into 590°C. The SiC-borax mixture was added into the electric resistance furnace, and automatically stirred by the stirrer at a constant speed (500 rpm for 3 minutes) in the composite A17Si-Mg-TiB. It melted when heated at 750°C for 17minutes,then, casting was performed on the prepared mould. The characterizations of Al7Si-Mg-TiB-SiC/borax were porosity, hardness, and microstructure on the Al7Si-Mg-TiB-SiC/ borax. The porosity of AMC tended to increase along with the increaseof the wt% SiC (1.4%-3.6%); however, borax additive underwent a decrease in porosity (0.14%-1.3%). Further, hardness tended to improve along with the increase of wt% SiC. The unboraxmixture had 79,6 HRB up to 94 HRB. Whereas, the borax additive mixture had 105,8 HRB up to 121 HRB.

  20. Fabrication of TiC-Reinforced Composites by Vacuum Arc Melting: TiC Mode of Reprecipitation in Different Molten Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Arni, Z.; Tsirka, K.; Evangelou, A.; Lekatou, A.; Dracopoulos, V.

    2016-08-01

    TiC crystals were developed and grown through a melt dissolution and reprecipitation mechanism, in different alloy matrices (pure Fe, 316L, Fe-22 at.%Al, Ni-25at.%Al, and pure Co) through the use of Vacuum Arc Melting (VAM) process. The TiC surfaces exhibit a characteristic faceted mode of growth which is explained in terms of classic nucleation and crystal growth theories and is related with the well-known Jackson factor of crystal growth. Different morphologies of the finally solidified TiC grains are observed (dendritic, radially grown, isolated blocky crystals, particle clusters), the establishment of which may be most likely related with solidification progress, cooling rate, and melt compositional considerations. An initial, rough and qualitative phase identification shows a variety of compounds, and the attempts to define specific phase crystallographic-orientational relationships led to rather random results.

  1. Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Wang, Linzhi; Tan, Sheng

    2016-07-01

    Selective laser melting (SLM)-fabricated AlSi10Mg parts were heat-treated under vacuum to eliminate the residual stress. Microstructure evolutions and tensile properties of the SLM-fabricated parts before and after vacuum annealing treatment were studied. The results show that the crystalline structure of SLM-fabricated AlSi10Mg part was not modified after the vacuum annealing treatment. Additionally, the grain refinement had occurred after the vacuum annealing treatment. Moreover, with increasing of the vacuum annealing time, the second phase increased and transformed to spheroidization and coarsening. The SLM-produced parts after vacuum annealing at 300∘C for 2 h had the maximum ultimate tensile strength (UTS), yield strength (YS) and elongation, while the elastic modulus decreased significantly. In addition, the tensile residual stress was found in the as-fabricated AlSi10Mg samples by the microindentation method.

  2. First principles study of band line up at defective metal-oxide interface: oxygen point defects at Al/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Tea, Eric; Huang, Jianqiu; Hin, Celine

    2016-03-01

    The dielectric breakdown at metal-oxide interfaces is a critical electronic device failure mechanism. Electronic tunneling through dielectric layers is a well-accepted explanation for this phenomenon. Theoretical band alignment studies, providing information about tunneling, have already been conducted in the literature for metal-oxide interfaces. However, most of the time materials were assumed defect free. Oxygen vacancies being very common in oxides, their effect on band lineup is of prime importance in understanding electron tunneling in realistic materials and devices. This work explores the effect of oxygen vacancy and oxygen di-vacancy at the Al/SiO2 interface on the band line up within Density Functional Theory using PBE0 hybrid exchange and correlation functional. It is found that the presence of defects at the interface, and their charge state, strongly alters the band line up.

  3. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  4. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning

    NASA Astrophysics Data System (ADS)

    Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.

    2015-09-01

    Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method). Statistical analysis reveals a significant dependence of DAl/Siplg/amp on pressure, temperature, Al fraction in amphibole T1-site, XAlT1, and albite fraction in plagioclase, XAb, leading to the barometric expression:

  5. MAX phase - Alumina composites via elemental and exchange reactions in the Tin+1ACn systems (A=Al, Si, Ga, Ge, In and Sn)

    NASA Astrophysics Data System (ADS)

    Cuskelly, Dylan; Richards, Erin; Kisi, Erich

    2016-05-01

    Extension of the aluminothermal exchange reaction synthesis of Mn+1AXn phases to systems where the element 'A' is not the reducing agent was investigated in systems TiO2-A-Al-C for A=Al, Si, Ga, Ge, In and Sn as well as Cr2O3-Ga-Al-C. MAX phase-Al2O3 composites were made in all systems except those with A=Ga or In. The effectiveness of conversion to MAX phases was generally in the range 63-96% without optimisation of starting ratios. Optimisation in the Ti-Si-C system gave a MAX phase component with >98% Ti3SiC2.

  6. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    NASA Astrophysics Data System (ADS)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  7. New yellow-emitting nitride phosphor SrAlSi4N7:Ce3+ and important role of excessive AlN in material synthesis.

    PubMed

    Zhang, Liangliang; Zhang, Jiahua; Zhang, Xia; Hao, Zhendong; Zhao, Haifeng; Luo, Yongshi

    2013-12-26

    Synthesis and luminescent properties of Ce(3+)-doped SrAlSi4N7 yellow-emitting phosphor are reported. In comparison with YAG: Ce(3+), the phosphor exhibits smaller thermal quenching and a broader emission band centering at 555 nm with a bandwidth as large as 115 nm, being suitable for fabricating high color rendering white LED. It is observed in material synthesis that intense luminescence can be achieved only in case of excessive AlN in the raw materials. The role of the excessive AlN is studied. The mechanism for existence of edge-sharing [AlN4] tetrahedral, which is unreasonable according to the aluminum avoidance principle, is discussed in detail.

  8. Photoluminescence of CaAlSiN3:Eu2+-based fine red-emitting phosphors synthesized by carbothermal reduction and nitridation method

    NASA Astrophysics Data System (ADS)

    Li, Shuxing; Peng, Xia; Liu, Xuejian; Huang, Zhengren

    2014-12-01

    In this research, we have presented the synthesis and characterization of the various Ca1-xEuxAl0.76Si1.18N3 (x = 0.01 ∼ 0.1) red-emitting phosphors, which were successfully prepared by carbothermal reduction and nitridation (CTRN) method without the strict needs of high pressure. Here, raw materials were CaCO3, AlN, Si3N4, Eu2O3, and C. In particular, C was considered as efficient and robust reducing agent. The influences of reaction temperature, holding time, C content, and Eu2+ concentration were investigated in the crystal phase compositions and photoluminescence properties of the as-prepared phosphors. Importantly, CaAlSiN3:Eu2+-based red phosphors with interesting properties were obtained with reaction temperature at 1600 °C for 4 h by atmospheric N2-10%H2 pressure, and the C/O ratio of 1.5:1, respectively. The emission peak positions of as-prepared phosphors were red-shifted from 607 nm to 654 nm with Eu2+ concentration from 1 mol% to 10 mol%. Meanwhile the highest luminescence intensity was achieved with 2 mol% of Eu2+ concentration, which showed high external quantum efficiency up to 71%. Combining the phosphor blend of green-emitting β-sialon:Eu2+, yellow-emitting Ca-α-sialon:Eu2+, and red-emitting Ca0.98Eu0.02Al0.76Si1.18N3 with a blue LED (light emitting diodes), warm white LED can be generated, yielding the color rendering index (Ra) of 93 at correlated color temperature (CCT) of 3295 K. These results indicate that CaAlSiN3:Eu2+-based red-emitting phosphors prepared by facile CTRN are highly promising candidates for warm white LEDs.

  9. Weldability aspects in the design and fabrication of aluminium structures subjected to fatigue loads. Part 2: Weldability of aluminium alloys using advanced MIG and TIG techniques. Effect of the weld bead geometrical factors on the fatigue behavior of the welded joint

    NASA Astrophysics Data System (ADS)

    Nevasmaa, Pekka; Peltonen, Jorma; Kuitunen, Risto; Rahka, Klaus

    1993-05-01

    The project explored experimentally the weldability of high-strength aluminum alloys and suitable welding techniques. Part 2 of the report will examine welding procedures suitable for high-strength 5xxx (AlMg) and 6xxx (AlSiMg) series aluminum alloys using advanced MIG and TIG techniques and evaluate the weldability of these alloys, as well as the importance of the shape of the weld bead for fatigue strength of the welded joint.

  10. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  11. Friction and wear of oxide-ceramic sliding against IN-718 nickel base alloy at 25 to 800 C in atmospheric air

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Deadmore, Daniel L.

    1989-01-01

    The friction and wear of oxide-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C were measured. The oxide materials tested were mullite (3Al2O3.2SiO2); lithium aluminum silicate (LiAlSi(x)O(y)); polycrystalline monolithic alpha alumina (alpha-Al2O3); single crystal alpha-Al2O3 (sapphire); zirconia (ZrO2); and silicon carbide (SiC) whisker-reinforced Al2O3 composites. At 25 C the mullite and zirconia had the lowest friction and the polycrystalline monolithic alumina had the lowest wear. At 800 C the Al2O3-8 vol/percent SiC whisker composite had the lowest friction and the Al2O3-25 vol/percent SiC composite had the lowest wear. The friction of the Al2O3-SiC whisker composites increased with increased whisker content while the wear decreased. In general, the wear-resistance of the ceramics improve with their hardness.

  12. Solidification, growth mechanisms, and associated properties of aluminum-silicon and magnesium lightweight casting alloys

    NASA Astrophysics Data System (ADS)

    Hosch, Timothy Al

    Continually rising energy prices have inspired increased interest in weight reduction in the automotive and aerospace industries, opening the door for the widespread use and development of lightweight structural materials. Chief among these materials are cast Al-Si and magnesium-based alloys. Utilization of Al-Si alloys depends on obtaining a modified fibrous microstructure in lieu of the intrinsic flake structure, a process which is incompletely understood. The local solidification conditions, mechanisms, and tensile properties associated with the flake to fiber growth mode transition in Al-Si eutectic alloys are investigated here using bridgman type gradient-zone directional solidification. Resulting microstructures are examined through quantitative image analysis of two-dimensional sections and observation of deep-etched sections showing three-dimensional microstructural features. The transition was found to occur in two stages: an initial stage dominated by in-plane plate breakup and rod formation within the plane of the plate, and a second stage where the onset of out-of-plane silicon rod growth leads to the formation of an irregular fibrous structure. Several microstructural parameters were investigated in an attempt to quantify this transition, and it was found that the particle aspect ratio is effective in objectively identifying the onset and completion velocity of the flake to fiber transition. The appearance of intricate out-of-plane silicon instability formations was investigated by adapting a perturbed-interface stability analysis to the Al-Si system. Measurements of silicon equilibrium shape particles provided an estimate of the anisotropy of the solid Si/liquid Al-Si system and incorporation of this silicon anisotropy into the model was found to improve prediction of the instability length scale. Magnesium alloys share many of the benefits of Al-Si alloys, with the added benefit of a 1/3 lower density and increased machinability. Magnesium castings

  13. Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 Al matrix composite

    SciTech Connect

    Mandal, Durbadal; Viswanathan, Srinath

    2013-11-15

    The microstructure and interface between metal matrix and ceramic reinforcement of a composite play an important role in improving its properties. In the present investigation, the interface and intermetallic compound present in the samples were characterized to understand structural stability at an elevated temperature. Aluminum based 2124 alloy with 10 wt.% silicon carbide (SiC) particle reinforced composite was prepared through vortex method and the solid ingot was deformed by hot rolling for better particle distribution. Heat treatment of the composite was carried out at 575 °C with varying holding time from 1 to 48 h followed by water quenching. In this study, the microstructure and interface of the SiC particle reinforced Al based composites have been studied using optical microscopy, scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS), electron probe micro-analyzer (EPMA) associated with wavelength dispersive spectroscopy (WDS) and transmission electron microscopy (TEM) to identify the precipitate and intermetallic phases that are formed during heat treatment. The SiC particles are uniformly distributed in the aluminum matrix. The microstructure analyses of Al–SiC composite after heat treatment reveal that a wide range of dispersed phases are formed at grain boundary and surrounding the SiC particles. The energy dispersive X-ray spectroscopy and wavelength dispersive spectroscopy analyses confirm that finely dispersed phases are CuAl{sub 2} and CuMgAl{sub 2} intermetallic and large spherical phases are Fe{sub 2}SiAl{sub 8} or Al{sub 15}(Fe,Mn){sub 3}Si. It is also observed that a continuous layer enriched with Cu and Mg of thickness 50–80 nm is formed at the interface in between Al and SiC particles. EDS analysis also confirms that Cu and Mg are segregated at the interface of the composite while no carbide is identified at the interface. - Highlights: • The composite was successfully heat treated at 575°C for 1

  14. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    SciTech Connect

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-15

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, α-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a major phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering

  15. Formation of spherical primary silicon crystals during semi-solid processing of hypereutectic Al-15.5wt%Si alloy

    SciTech Connect

    Lee, J.I.; Lee, H.I.; Kim, M.I.

    1995-06-15

    Semi-solid state processing is considered as an attractive processing technique because of it offers several potential advantages such as energy saving for forming, reduction of microsegregation and porosity, especially for near net shape manufacturing of components. This technique is frequently applied to make sound casting products of hypoeutectic Al-Si alloys. On the other hand, hypereutectic Al-Si alloys have limited applications because of their inherent problems associated with poor machinability and mechanical properties, although the commercial potential for their outstanding resistance to wear and corrosion, higher hardness and low coefficient of thermal expansion is well recognized. To exploit the full potential of hypereutectic Al-Si alloys, semi-solid processing is utilized in an attempt to improve the mechanical properties through the spheroidization of primary Si crystals. The purpose of the present work is to provide the experimental evidence of the fragmentation of primary Si crystals in hypereutectic Al-15.5wt%Si alloy during semi-solid processing. Microstructural evolution during the isothermal shearing above the eutectic temperature of this alloy as a function of processing time is also reported.

  16. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  17. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Yuan, Pengpeng

    2015-12-01

    In this study, a three-dimensional transient computational fluid dynamics model was established to investigate the influence of reinforcement weight fraction on thermal evolution behavior and fluid dynamics during selective laser melting (SLM) additive manufacturing of TiC/AlSi10Mg nanocomposites. The powder-to-solid transition and nonlinear variation of thermal physical properties of as-used materials were considered in the numerical model, using the Gaussian distributed volumetric heat source. The simulation results showed that the increase of operating temperature and the resultant formation of larger melt pool were caused by the increase of weight fraction of reinforcement. The Marangoni convection was intensified using a larger reinforcement content, accelerating the coupled motion of fluid and solid particles. The circular flows appeared when the TiC content reached 5.0 wt. % and the larger-sized circular flows were present as the reinforcement content increased to 7.5 wt. %. The experimental study on surface morphologies and microstructures on the polished sections of SLM-processed TiC/AlSi10Mg nanocomposite parts was performed. A considerably dense and smooth surface free of any balling effect and pore formation was obtained when the reinforcement content was optimized at 5.0 wt. %, due to the sufficient liquid formation and moderate Marangoni flow. Novel ring-structured reinforcing particulates were tailored because of the combined action of the attractive effect of centripetal force and repulsive force, which was consistent with the simulation results.

  18. Vibrational spectroscopic study of the copper silicate mineral ajoite (K,Na)Cu7AlSi9O24(OH)6·3H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei

    2012-06-01

    Ajoite (K,Na)Cu7AlSi9O24(OH)6·3H2O is a mineral named after the Ajo district of Arizona. Raman and infrared spectroscopy were used to characterise the molecular structure of ajoite. The structure of the mineral shows disorder which is reflected in the difficulty of obtaining quality Raman spectra. The Raman spectrum is characterised by a broad spectral profile with a band at 1048 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Strong bands at 962, 1015 and 1139 cm-1 are assigned to the ν3 SiO4 antisymmetric stretching vibrations. Multiple ν4 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple AlO and CuO stretching bands are observed. Raman spectroscopy and confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the ajoite structure. Based upon the infrared spectra, water is involved in the ajoite structure, probably as zeolitic water.

  19. Evolution of the Spectral Emissivity and Phase Transformations of the Al-Si Coating on Usibor® 1500P Steel During Austenitization

    NASA Astrophysics Data System (ADS)

    Shi, Cangji; Daun, Kyle J.; Wells, Mary A.

    2016-08-01

    Usibor® 1500P coupons are austenitized in a Gleeble 3500 thermomechanical simulator using a two-step heating procedure in an argon atmosphere. Variations in spectral emissivity are measured in-situ using a near infrared spectrometer and ex situ with a Fourier transform infrared reflectometer. Microstructural evolution and surface roughness are investigated using optical microscopy, FE-scanning electron microscopy, and a surface profilometer. A series of phase transformations of Al-Fe-Si intermetallic phases at the coating/steel substrate interface cause the surface phase and surface roughness to change, which in turn influences the spectral emissivity. At the beginning of the first heating step, the coupons have very low spectral emissivity, due to the molten Al-Si coating. Spectral emissivity increases significantly with increasing soak time from 5 to 12 minutes, associated with the surface phase transformation of the coating into Al7Fe2Si intermetallic phase and an increase in surface roughness. Through the second step heating at 1173 K (900 °C), the spectral emissivity shows a gradually decreasing trend with increasing soak time, caused by the surface phase transformation from Al5Fe2 into AlFe intermetallic phase with a decrease in surface roughness.

  20. Ion hopping in crystalline and glassy spodumene LiAl Si2 O6 : 7Li spin-lattice relaxation and 7Li echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, F.; Rier, C.; Böhmer, R.; Franke, W.; Heitjans, P.

    2005-09-01

    Nuclear magnetic resonance spectroscopy was used to study polycrystalline β -spodumene (β-LiAlSi2O6) as well as glassy specimens with the same chemical composition. Li7 spin-lattice relaxation measurements were carried out in a broad temperature range and for several Larmor frequencies. In addition to a pronounced rate maximum at high temperatures, stemming from the long-range Li motion in these aluminosilicates, we found a weak maximum in the crystalline modification near 120K . The latter result confirms the existence of a local double-well structure in which the Li ions reside. The ionic motion was also monitored by solid- and stimulated-echo spectra as well as by the decay of the Jeener-Broekaert echo. Under conditions which are discussed in detail, the latter is a direct measure of the hopping correlation function. For the glass this function was found to decay faster and more stretched than that of the crystal at a given temperature. Furthermore, the relevant barriers against the high-temperature long-range Li motion are larger in the crystal as compared to the glass.

  1. The use of CCD area detectors in charge-density research. Application to a mineral compound: the alpha-spodumene LiAl(SiO3)2.

    PubMed

    Kuntzinger; Dahaoui; Ghermani; Lecomte; Howard

    1999-12-01

    X-ray diffraction data sets collected on both Nonius and Siemens (Bruker) goniometers equipped with charge-coupled device (CCD) area detectors have been tested for the electron-density determination of the aluminosilicate mineral compound alpha-spodumene LiAl(SiO(3))(2), aluminium lithium silicon oxide. Data collection strategies, reflection intensity peak integration methods and experimental error estimates are different for the two instruments. Therefore, the consistency and quality of the two types of CCD measurements have been carefully compared to each other and to high-resolution data collected on a conventional CAD-4 point-detector diffractometer. Multipole density model refinements were carried out against the CCD data and the statistical factors analysed in terms of experimental weighting schemes based on the standard uncertainties of the diffraction intensities derived by the Nonius and Siemens software programs. Consistent experimental electron-density features in the Si-O-Si and Si-O-Al bridges were found from both CCD data sets. The net atomic charges obtained from the kappa refinements against each CCD data set are also in good agreement and quite comparable with the results of the conventional CAD-4 experiment.

  2. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  3. NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.

  4. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Third interim technical report, Phase C for the period 1980 July 1-1980 September 30

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    Pilot reactor VSR-3 operation in the third quarter was directed to tapping molten alloy product. Modifications to the hearth region included a tapping furnace to maintain taphole temperature, a graphite ring filter to separate carbides from matal and an alumina liner to eliminate carbiding from reaction of alloy with the graphite hearth walls. Tapping was not successful, however, due to high alloy viscosity from a large concentration of carbides. Three runs were made on the pilot crystallizer to determine the effects of alloy composition, cooling rate, tamping rate, remelt temperature and rate on eutectic Al-Si yield.

  5. The investigation on the stratification phenomenon of aluminum rear alloyed layer in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xi, Xi; Chen, Xiaojing; Zhang, Song; Shi, Zhengrong; Li, Guohua

    2015-06-01

    A stratification phenomenon of aluminum rear alloyed layer was found in the study of aluminum rear emitter N-type solar cells. It is related to the composition of the paste. The outer aluminum alloyed layer can be called as aluminum doped emitter, and it gives the contribution to the junction formation. The inner layer is only the Al/Si mixed layer. The aluminum atoms in this layer are not bonded with silicon atoms. This inner layer will ruin the quality of the rear junction. The shunt resistance, reverse current density and the junction electric leakage value are getting worse when the thickness of the inner layer increases. The thickness of the inner Al/Si mixed layer increases with the increasing of firing temperature, while the depth of the aluminum doped emitter almost does not change. From the analyses, the inner Al/Si mixed layer is redundant and deleterious. Only a single deep aluminum doped rear emitter is needed for N-type solar cells. The highest power conversion efficiency of 19.93% for aluminum rear emitter N-type cells without the stratification phenomenon has been obtained.

  6. Alignment of the TiAl/Ti{sub 3}Al lamellar microstructure in TiAl alloys by growth from a seed material

    SciTech Connect

    Johnson, D.R.; Masuda, Y.; Inui, H.; Yamaguchi, M.

    1997-06-01

    By using an appropriately oriented seed from the TiAl-Si system, the TiAl/Ti{sub 3}Al lamellar microstructure was aligned parallel to the growth direction in a number of directionally solidified TiAl-based alloys. The seed composition was kept constant at Ti-43Al-3Si (at.%) and the composition of the master ingots was varied for alloys in the TiAl-Si, TiAl-Nb-Si, and Ti-Al systems. The lamellar microstructure could be aligned for alloys containing up to approximately 47 at.% (Al + Si) in each of these systems. For the composition of seed material, Ti-43Al-3Si, where alpha is the primary solidification phase, the original orientation of the lamellar microstructure was maintained after heating to and cooling from the single-phase alpha region making seeding of the alpha phase possible. When this silicon containing seed was used, the nucleation of the primary beta phase in master alloys of Ti-(47 {minus} x)Al-xSi(x = 0 to 1 at.%) could be suppressed resulting in the nucleation and growth of only the alpha phase with an orientation determined by the seed crystal. After steady state conditions were reached, single PST crystals with an aligned lamellar microstructure could be grown at growth rates as high as 40 mm/h.

  7. Reinforced structural plastics

    NASA Technical Reports Server (NTRS)

    Lubowitz, H. R.; Kendrick, W. P.; Jones, J. F.; Thorpe, R. S.; Burns, E. A. (Inventor)

    1972-01-01

    Reinforced polyimide structures are described. Reinforcing materials are impregnated with a suspension of polyimide prepolymer and bonded together by heat and pressure to form a cured, hard-reinforced, polyimide structure.

  8. Heat capacity measurements for cryolite (Na3AlF6) and reactions in the system NaFeAlSiOF

    USGS Publications Warehouse

    Anovitz, Lawrence M.; Hemingway, B.S.; Westrum, E.F.; Metz, G.W.; Essene, E.J.

    1987-01-01

    The heat capacity of cryolite (Na3AlF6) has been measured from 7 to 1000 K by low-temperature adiabatic and high-temperature differential scanning calorimetry. Low-temperature data were obtained on material from the same hand specimen in the calorimetric laboratories of the University of Michigan and U.S. Geological Survey. The results obtained are in good agreement, and yield average values for the entropy of cryolite of: S0298 = 238.5 J/mol KS0T-S0298 = 145.114 ln T+ 193.009*10-3T- 10.366* 105 T2- 872.89 J/mol K (273-836.5 K)??STrans = 9.9J/mol KS0T-S0298 =198.414 ln T+73.203* 10-3T-63.814* 105 T2-1113.11 J/mol K (836.5-1153 K) with the transition temperature between ??- and ??-cryolite taken at 836.5 K. These data have been combined with data in the literature to calculate phase equilibria for the system NaFeAlSiOF. The resultant phase diagrams allow constraints to be placed on the fO2, fF2, aSiO2 and T conditions of formation for assemblages in alkalic rocks. A sample application suggests that log fO2 is approximately -19.2, log fF2 is -31.9 to -33.2, and aSiO2 is -1.06 at assumed P T conditions of 1000 K, 1 bar for the villiaumite-bearing Ilimaussaq intrusion in southwestern Greenland. ?? 1987.

  9. K -shell ionization cross sections of Al, Si, S, Ca, and Zn for oxygen ions in the energy range 1. 1--8 MeV

    SciTech Connect

    Geretschlaeger, M. ); Smit, Z. ); Steinbauer, E. )

    1992-03-01

    {ital K}-shell ionization cross sections induced by 1.1--8-MeV oxygen ions in Al, Si, S, Ca, and Zn were measured using different target thicknesses. The cross sections for vanishingly thin and for charge-equilibrium targets were obtained by extrapolation. The experimental results are compared to the perturbed stationary-state approximation with energy-loss, Coulomb, and relativistic corrections (ECPSSR) cross sections (Brandt and Lapicki, Phys. Rev. A 23, 1717 (1981)), to the modification of the ECPSSR theory (MECPSSR) (Benka, Geretschlaeger, and Paul, J. Phys. (Paris) Colloq. Suppl. 12, C9-251 (1987)), to the theory for direct Coulomb ionization of the 1{ital s}{sigma} molecular orbital (Montenegro and Sigaud, J. Phys. B 18, 299 (1985)), and to several semiclassical approximation codes using either the united atom binding procedure or the variational approach of Andersen {ital et} {ital al}. (Nucl. Instrum. Methods 192, 79 (1982)). The cross sections were also compared to the statistical molecular-orbital theory of inner-shell ionization for (nearly) symmetric atomic collisions (Mittelman and Wilets, Phys. Rev. 154, 12 (1967)). For fast collisions ({xi}{similar to}1), the ionization cross sections are well reproduced by theories for direct Coulomb ionization. For slower collisions ({xi}{lt}1), the experimental cross sections are systematically higher than the direct-ionization values, but they agree satisfactorily with the summed cross sections for direct Coulomb ionization and for molecular-orbital ionization. Best agreement (within a factor of 2) was found for the sums of MECPSSR and statistical cross sections.

  10. Reinforced Carbon Nanotubes.

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  11. Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics

    NASA Astrophysics Data System (ADS)

    Hong, Won Sik; Oh, Chulmin; Kim, Mi-Song; Lee, Young Woo; Kim, Hui Joong; Hong, Sung Jae; Moon, Jeong Tak

    2016-08-01

    To suppress the bonding strength degradation of solder joints in automotive electronics, we proposed a mid-temperature quaternary Pb-free Sn-0.5Cu solder alloy with minor Pd, Al, Si and Ge alloying elements. We manufactured powders and solder pastes of Sn-0.5Cu-(0.01,0.03)Al-0.005Si-(0.006-0.007)Ge alloys (T m = 230°C), and vehicle electronic control units used for a flame-retardant-4 printed circuit board with an organic solderability preservative finish were assembled by a reflow soldering process. To investigate the degradation properties of solder joints used in engine compartments, thermal cycling tests were conducted from -40°C to 125°C (10 min dwell) for 1500 cycles. We also measured the shear strength of the solder joints in various components and observed the microstructural evolution of the solder joints. Based on these results, intermetallic compound (IMC) growth at the solder joints was suppressed by minor Pd, Al and Si additions to the Sn-0.5Cu alloy. After 1500 thermal cycles, IMC layers thicknesses for 100 parts per million (ppm) and 300 ppm Al alloy additions were 6.7 μm and 10 μm, compared to the as-reflowed bonding thicknesses of 6 μm and 7 μm, respectively. Furthermore, shear strength degradation rates for 100 ppm and 300 ppm Al(Si) alloy additions were at least 19.5%-26.2%. The cause of the improvement in thermal cycling reliability was analyzed using the (Al,Cu)-Sn, Si-Sn and Al-Sn phases dispersed around the Cu6Sn5 intermetallic at the solder matrix and bonding interfaces. From these results, we propose the possibility of a mid-temperature Sn-0.5Cu(Pd)-Al(Si)-Ge Pb-free solder for automotive engine compartment electronics.

  12. The Reinforcement Hierarchy

    ERIC Educational Resources Information Center

    Forness, Steven R.

    1973-01-01

    Reinforcement hierarchy implies movement along a continuum from top to bottom, from primitive levels of reinforcement to more sophisticated levels. Unless it is immediately obvious that a child cannot function without the use of lower-order reinforcers, we should approach him as though he responds to topmost reinforcers until he demonstrates…

  13. Constraints on Titanite Acitvity in the System CaTiSiO4O-CaAlSiO4F: Implications for Thermobarometry in Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Tropper, P.; Manning, C. E.; Essene, E. J.

    2006-12-01

    Titanite is a common accessory mineral that could be used reliably in phase equilibrium calculations, if activity-composition relations in Al-F titanites were known. Troitzsch and Ellis (2001, CMP, 142, 543) and Tropper et al. (2002, JPet., 43, 1787) gave non-ideal mixing models along the join CaTiSiO4O- CaAlSiO4F. Tropper et al. (2002) derived a negative interaction parameter W, whereas Troitzsch and Ellis (2001) derived a regular model with both positive and negative W, but favored positive values. These differences strongly influence calculated CaTiSiO4O activity (attn). Although more experiments are needed, our result that γttn<1 at high T indicates a large degree of non-ideal behavior, even at >900°C, which in turn will affect thermobarometry. Comparing available activity models shows that at these T, attn is substantially underestimated by the fully ionic model used by Manning and Bohlen (1991, CMP, 109, 1), in which attn = XCaXTiXSi(XO)5. This model assumes independent mixing of Al for Ti and random mixing of F and O on all O sites. However, F substitutes only in one O site (O1; Oberti et al., 1991, EJM, 3, 777). A fully ionic model should therefore be recast as attn = XCaXTiXSiXO, where XO indicates the mole fraction of O on the (O1) site. The substitution of F on the O1 site is coupled with Al, so it is called the ideal coupled model. Unlike the regular model, the prefered ionic model departs strongly from ideality at ≤600°C, consistent with independent constraints. However, experimentally determined attn is approximated by an ideal molecular model (XTi) at ≥900°C, so this model is recommended for thermobarometry in high- T metamorphic rocks until more data are available. Recalculation of the P recorded by the three eclogites from Manning and Bohlen (1991) using the different activity models discussed here yields differences that may be as high as 2.0 GPa.

  14. Micro-Structures of Hard Coatings Deposited on Titanium Alloys by Laser Alloying Technique

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, Huijun; Chen, Chuanzhong; Wang, Diangang; Weng, Fei

    2013-02-01

    This work is based on micro-structural performance of the Ti-B4C-C laser alloying coatings on Ti-6Al-4V titanium alloy. The test results indicated that laser alloying of the Ti-B4C-C pre-placed powders on the Ti-6Al-4V alloy substrate can form the ceramics reinforced hard alloying coatings, which increased the micro-hardness and wear resistance of substrate. The test result also indicated that the TiB phase was produced in alloying coating, which corresponded to its (101) crystal plane. In addition, yttria has a refining effect on micro-structures of the laser alloying coating, and its refinement mechanism was analyzed. This research provided essential experimental and theoretical basis to promote the applications of the laser alloying technique in manufacturing and repairing of the aerospace parts.

  15. Interdiffusion and Reaction between Zr and Al Alloys from 425 degrees to 625 degrees C

    SciTech Connect

    J. Dickson; L. Zhou; A. Ewh; M. Fu; D. D. Keiser, Jr.; Y. H. Sohn; A. Paz y Puente

    2014-06-01

    Zirconium has recently garnered attention for use as a diffusion barrier between U–Mo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425 degrees to 625 degrees C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 degrees C. In diffusion couples with the binary Al–Si alloys at 560 degrees C, a significant variation in the development of the phase constituents was observed including the thick t1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both T1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 degrees C, with increasing Si content in the Al–Si alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.4–0.8 wt.% Si was most rapid.

  16. Processes for fabricating composite reinforced material

    SciTech Connect

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  17. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  18. Reinforcement, Expectancy, and Learning

    ERIC Educational Resources Information Center

    Bolles, Robert

    1972-01-01

    Surveys some of the difficulties currently confronting the reinforcement concept and cosiders some alternatives to reinforcement as the fundamental basis of learning. Two specific alternatives considered are: an incentive motivation approach and a cognitive approach. (Author)

  19. Reinforcement of Learning

    ERIC Educational Resources Information Center

    Jones, Peter

    1977-01-01

    A company trainer shows some ways of scheduling reinforcement of learning for trainees: continuous reinforcement, fixed ratio, variable ratio, fixed interval, and variable interval. As there are problems with all methods, he suggests trying combinations of various types of reinforcement. (MF)

  20. A New Class of Engineering Materials: Particle-Stabilized Metallic Emulsions and Monotectic Alloys

    NASA Astrophysics Data System (ADS)

    Budai, István; Kaptay, George

    2009-07-01

    Al-matrix particulate composites are melted and mixed with immiscible metals to form their small droplets in liquid aluminum. It is shown that, in the Al-Si/SiC/Bi system, the Bi droplets are stabilized by the SiC particles in the liquid Al matrix. Upon solidification, homogeneous distribution of solidified Bi droplets is obtained in the Al matrix at the bottom part of the ingot. Thus, a new class of engineering materials (particle-stabilized monotectic alloys) is obtained.

  1. General level of reinforcement.

    PubMed

    Cautela, J R

    1984-06-01

    A concept of General Level of Reinforcement (GLR) is introduced. This concept is defined as the number, quality and duration of reinforcements per unit time. The assumptions of this theory are discussed. A crucial assumption is that the theory is related to psychological and physiological well-being. Ways to measure general level of reinforcement are described, and clinical implications presented. Methods to increase the level of reinforcement, such as covert reinforcement and the Self-Control Triad, are specified. Finally, suggestions for research are provided.

  2. Thermal Stability of the Dynamic Magnetic Properties of FeSiAl-Al2O3 and FeSiAl-SiO2 Films Grown by Gradient-Composition Sputtering Technique

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Phuoc, Nguyen N.; Soh, Wee Tee; Ong, C. K.; Peng, Long; Li, Lezhong

    2016-08-01

    We carry out a systematic investigation of the dynamic magnetic properties of FeSiAl-Al2O3 and FeSiAl-SiO2 thin films prepared by gradient-composition deposition technique with respect to temperature in the range of 300 K to 420 K. It was found that the magnetic anisotropy field (H K) and ferromagnetic resonance frequency (f FMR) are increased with increasing deposition angle (β) due to the enhancement of stress (σ) when concentrations of Al and O or Si and O are increased. The thermal stability of FeSiAl-Al2O3 films show a very interesting behavior with the magnetic anisotropy increasing with temperature when the deposition angle is increased. In contrast, when the deposition angle is lower, the usual trend of decreasing magnetic anisotropy with increasing temperature is observed. Moreover, the temperature-dependent behaviors of the dynamic permeability and effective Gilbert damping coefficient (α eff) for FeSiAl-Al2O3 and FeSiAl-SiO2 films at different deposition angles are discussed in detail.

  3. Electron density distribution and Madelung potential in alpha-spodumene, LiAl(SiO3)2, from two-wavelength high-resolution X-ray diffraction data.

    PubMed

    Kuntzinger; Ghermani

    1999-06-01

    The electron density distribution in alpha-spodumene, LiAl(SiO(3))(2), was derived from high-resolution X-ray diffraction experiments. The results obtained from both Mo Kalpha- and Ag Kalpha-wavelength data sets are reported. The features of the Si-O and Al-O bonds are related to the geometrical parameters of the Si-O-Al and Si-O-Si bridges on the one hand and to the O.Li(+) interaction on the other. Kappa refinements against the two data sets yielded almost the same net charges for the Si (+1.8 e) and O (-1.0 e) atoms in spodumene. However, the Al net charge obtained from the Ag Kalpha data (+1.9 e) is larger than the net charge derived from the Mo Kalpha data (+1.5 e). This difference correlates with a more contracted Al valence shell revealed by the shorter X-ray wavelength (kappa = 1.4 for the Ag Kalpha data set). The derived net charges were used to calculate the Madelung potential at the spodumene atomic sites. The electrostatic energy for the chemical formula LiAl(SiO(3))(2) was -8.60 e(2) Å(-1) (-123.84 eV) from the net charges derived from the Ag Kalpha data and -6.97 e(2) Å(-1) (-100.37 eV) from the net charges derived from the Mo Kalpha data.

  4. Superelastic SMA-FRP composite reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-02-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA-FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA-FRP composites are studied experimentally and analytically. Tests of SMA-FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA-FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA-FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA-FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement.

  5. NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST). Progress report, 1 January 1995-30 June 1995

    SciTech Connect

    Starke, E.A. Jr.; Gangloff, R.P.; Herakovich, C.T.; Scully, J.R.; Shiflet, G.J.; Stoner, G.E.; Wert, J.A.

    1995-07-01

    The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the= performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.

  6. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Except for doubler plates and knuckle pads, no reinforcement may cover any circumferential joint. (c... from the applicable formula: I/C = 0.00027WL, for MS, HSLA and SS; or I/C = 0.000467WL, for aluminum alloys; Where: I/C = Section modulus in inches 3 W = Tank width, or diameter, inches L = Spacing of...

  7. 49 CFR 178.345-7 - Circumferential reinforcements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Except for doubler plates and knuckle pads, no reinforcement may cover any circumferential joint. (c... from the applicable formula: I/C = 0.00027WL, for MS, HSLA and SS; or I/C = 0.000467WL, for aluminum alloys; Where: I/C = Section modulus in inches 3 W = Tank width, or diameter, inches L = Spacing of...

  8. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  9. Kr ion irradiation study of the depleted-uranium alloys

    NASA Astrophysics Data System (ADS)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.

    2010-12-01

    Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  10. Habituation of reinforcer effectiveness

    PubMed Central

    Lloyd, David R.; Medina, Douglas J.; Hawk, Larry W.; Fosco, Whitney D.; Richards, Jerry B.

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect “accelerated-HRE.” Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior. PMID:24409128

  11. Mechanically Alloyed High Entropy Composite

    NASA Astrophysics Data System (ADS)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  12. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  13. Analysis of the Fe-Ce-O-C- M phase diagrams ( M = Ca, Mg, Al, Si) by constructing a component-solubility surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, G. G.; Makrovets, L. A.; Smirnov, L. A.; Dresvyankina, L. E.

    2016-06-01

    Analysis of the ternary phase diagrams of Ce2O3- and CeO2-containing oxide systems allowed us to find the oxide compounds that form during steel deoxidizing with cerium and with cerium together with aluminum, calcium, magnesium, or silicon. The temperature dependences of the equilibrium constants of formation of Ce2O3 oxides and Ce2O3 · Al2O3, Ce2O3 · 11Al2O3, Ce2O3 · 2SiO2, 7Ce2O3 · 9SiO2 and Ce2O3 · SiO2 compounds are found. Surfaces for the component solubility in metallic melts Fe-Al-Ce-O-C, Fe- Ca-Ce-O-C, Fe-Mg-Ce-O-C, and Fe-Si-Ce-O-C are constructed. Nonmetallic inclusions that form in the course of experimental melts of St20 steel after its deoxidizing with silicocalcium and rare-earth metal (REM)-containing master alloys in a ladle furnace after degassing are studied. Phase inhomogeneity of the inclusions is found. As a rule, they consist of phases classified into the following three groups: oxide-sulfide, sulfide-oxide, and multiphase oxide-sulfide melt. Calcium aluminates are found to be components of complex sulfide-oxide noncorrosive inclusions.

  14. Swelling of U(Mo)–Al(Si) dispersion fuel under irradiation – Non-destructive analyses of the LEONIDAS E-FUTURE plates

    SciTech Connect

    S. Van den Berghe; Y. Parthoens; F. Charollais; Y. S. Kim; A. Leenaers; E. Koonen; V. Kuzminov; P. Lemoine; C. Jarousse; H. Guyon; D. Wachs; D. Keiser, Jr.; A. Robinson; J. Stevens; G. Hofman

    2012-11-01

    In the framework of the elimination of High-Enriched Uranium (HEU) from the civil circuit, the search for an appropriate fuel to replace the high-enriched research reactor fuel in those reactors that currently still require it for their operation has led to the development of a U–7 wt.%Mo alloy based dispersion fuel with an Al–Si matrix. The European LEONIDAS program, joining SCK-CEN, ILL, CEA and AREVA-CERCA, is aimed at the qualification of such a fuel for the use in high power conditions. The first experiment of the program, designated E-FUTURE, was performed to select the appropriate matrix Si concentration and fuel plate post-production heat treatment parameters for further qualification. It consisted of the irradiation of four distinct (4% and 6% Si, 3 different heat treatments) full size, flat fuel plates in the BR2 reactor. The irradiation conditions were relatively severe: 470 W/cm2 peak BOL power, with an approximate 70% 235U peak burnup.

  15. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  16. Interdiffusion between Zr Diffusion Barrier and U-Mo Alloy

    SciTech Connect

    K. Huang; Y. Park; Y. H. Sohn

    2012-12-01

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo vs. Zr diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion, and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo vs. Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point and thermal conductivity are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR.

  17. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P)

    SciTech Connect

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-03-15

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta{sub 2}AlC. The bulk moduli of both Ta{sub 2}AC and Zr{sub 2}AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion.

  18. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  19. Luminescence properties of blue La1-xCexAl(Si6-zAlz)(N10-zOz) (z˜1) oxynitride phosphors and their application in white light-emitting diode

    NASA Astrophysics Data System (ADS)

    Takahashi, Kohsei; Hirosaki, Naoto; Xie, Rong-Jun; Harada, Masamichi; Yoshimura, Ken-ichi; Tomomura, Yoshitaka

    2007-08-01

    This letter reports blue oxynitride phosphors of La1-xCexAl(Si6-zAlz)(N10-zOz) (z˜1) (termed JEM crystal phase) and their application for the white light-emitting diodes (LEDs). The JEM phosphor can be excited by 405nm light efficiently, and its spectrum can be tuned widely by changing the Ce concentration. The emission spectrum of this phosphor is as wide as 110nm in full width at half maximum, which is convenient to solid state lighting. The preparation of white LED was attempted by using a 405nm InGaN chip and oxynitride phosphors in this work. High color rendering index >95 was achieved in white LED with various correlated color temperatures, indicating the suitability of the JEM phosphor in solid-state lightings.

  20. Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2](+) (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Weiske, Thomas; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-06-29

    The reactivity of the homo- and heteronuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2](•+). In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2](•+), which cleaves the C-H bond heterolytically to form an Al-CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s-p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3(-)) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C-H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates. PMID:27241233

  1. Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2](+) (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Weiske, Thomas; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-06-29

    The reactivity of the homo- and heteronuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2](•+). In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2](•+), which cleaves the C-H bond heterolytically to form an Al-CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s-p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3(-)) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C-H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates.

  2. Quaternary aluminum silicides grown in Al flux: RE5Mn4Al(23-x)Si(x) (RE = Ho, Er, Yb) and Er44Mn55(AlSi)237.

    PubMed

    Calta, Nicholas P; Kanatzidis, Mercouri G

    2013-09-01

    Four novel intermetallic silicides, RE5Mn4Al(23-x)Si(x) (x = 7.9(9), RE = Ho, Er, Yb) and Er44Mn55(AlSi)237, have been prepared by reaction in aluminum flux. Three RE5Mn4Al(23-x)Si(x) compounds crystallize in the tetragonal space group P4/mmm with the relatively rare Gd5Mg5Fe4Al(18-x)Si(x) structure type. Refinement of single-crystal X-ray diffraction data yielded unit cell parameters of a = 11.3834(9)-11.4171(10) Å and c = 4.0297(2)-4.0575(4) Å with volumes ranging from 522.41(5) to 528.90(8) Å(3). Structure refinements on single-crystal diffraction data show that Er44Mn55(AlSi)237 adopts a new cubic structure type in the space group Pm3n with a very large unit cell edge of a = 21.815(3) Å. This new structure is best understood when viewed as two sets of nested polyhedra centered on a main group atom and a manganese atom. These polyhedral clusters describe the majority of the atomic positions in the structure and form a perovskite-type network. We also report the electrical and magnetic properties of the title compounds. All compounds except the Ho analogue behave as normal paramagnetic metals without any observed magnetic transitions above 5 K and exhibit antiferromagnetic correlations deduced from the value of their Curie constants. Ho5Mn4Al(23-x)Si(x) exhibits a ferromagnetic transition at 20 K and an additional metamagnetic transition at 10 K, suggesting independent ordering temperatures for two distinct magnetic sublattices. PMID:23931551

  3. Phase Structure and Site Preference Behavior of Ternary Alloying Additions to PdTi and PtTi Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    The phasc structure and concentration dependence of the lattice parameter and energy of formation of ternary Pd-'I-X and Pt-Ti-X alloys for a large number of ternary alloying additions X (X = Na, Mg, Al, Si, Sc. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, Hf, Ta, W, Re, Os, Ir) are investigated with an atomistic modeling approach. In addition, a detailed description of the site preference behavior of such additions showing that the elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice is provided.

  4. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  5. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  6. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  7. Reinforced plastics durability

    SciTech Connect

    Pritchard, G.

    1999-01-01

    Written especially for first-time users of reinforced plastics. The book offers substantial introductory information with key concepts. Chapters examine the long-term threats to the integrity of reinforced plastics: outdoor weathering, solvent/water attack, high temperatures, and repetitive stress.

  8. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  9. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  10. "Reinforcement" in behavior theory.

    PubMed

    Schoenfeld, W N

    1978-01-01

    In its Pavlovian context, "reinforcement" was actually a descriptive term for the functional relation between an unconditional and a conditional stimulus. When it was adopted into operant conditioning, "reinforcement" became the central concept and the key operation, but with new qualifications, new referents, and new expectations. Some behavior theorists believed that "reinforcers" comprise a special and limited class of stimuli or events, and they speculated about what the essential "nature of reinforcement" might be. It is now known that any stimulus can serve a reinforcing function, with due recognition of such parameters as subject species characteristics, stimulus intensity, sensory modality, and schedule of application. This paper comments on these developments from the standpoint of reflex behavior theory.

  11. "Reinforcement" in behavior theory.

    PubMed

    Schoenfeld, W N

    1995-01-01

    In its Pavlovian context, "reinforcement" was actually a descriptive term for the functional relation between an unconditional and a conditional stimulus. When it was adopted into operant conditioning, "reinforcement" became the central concept and the key operation, but with new qualifications, new referents, and new expectations. Some behavior theorists believed that "reinforcers" comprise a special and limited class of stimuli or events, and they speculated about what the essential "nature of reinforcement" might be. It is now known that any stimulus can serve a reinforcing function, with due recognition of such parameters as subject species characteristics, stimulus intensity, sensory modality, and schedule of application. This paper comments on these developments from the stand-point of reflex behavior theory.

  12. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  13. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Structure and properties of aluminum-silicon alloys hardened locally by concentrated energy sources

    NASA Astrophysics Data System (ADS)

    Voronin, S. V.; Gureev, D. M.; Zolotarevskiĭ, A. V.

    1990-06-01

    An investigation was made of some characteristics of the formation of the structure of Al-Si alloys containing 10%, 12% and 20 % Si, and also of the commercial alloy V124 under conditions of surface fusion by laser-arc and laser sources. It was established that as a result of local fusion there was a change in the silicon deposition morphology, the α solid solution became oversaturated, and the eutectic point was shifted toward high silicon concentrations. It was found that the hardened layer retained its high hardness when treated at temperatures up to 250 °C. The commercial alloy V124 was used as an example to show that an alloyed layer with a controlled silicon concentration can be obtained on the surface by using a laser-arc or laser source.

  15. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  16. Electron-ion plasma modification of Al-based alloys

    NASA Astrophysics Data System (ADS)

    Ivanov, Yurii; Rygina, Mariya; Petrikova, Elizaveta; Krysina, Olga; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina

    2016-01-01

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN-AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film-substrate system were estimated by numerical simulation in a wide range of electron energy densities (5-30 J/cm2) and pulse durations (50-200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young's modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu-Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN-AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ˜14 GPa.

  17. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  18. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  19. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  20. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  1. Choice and conditioned reinforcement.

    PubMed

    Fantino, E; Freed, D; Preston, R A; Williams, W A

    1991-03-01

    A potential weakness of one formulation of delay-reduction theory is its failure to include a term for rate of conditioned reinforcement, that is, the rate at which the terminal-link stimuli occur in concurrent-chains schedules. The present studies assessed whether or not rate of conditioned reinforcement has an independent effect upon choice. Pigeons responded on either modified concurrent-chains schedules or on comparable concurrent-tandem schedules. The initial link was shortened on only one of two concurrent-chains schedules and on only one of two corresponding concurrent-tandem schedules. This manipulation increased rate of conditioned reinforcement sharply in the chain but not in the tandem schedule. According to a formulation of delay-reduction theory, when the outcomes chosen (the terminal links) are equal, as in Experiment 1, choice should depend only on rate of primary reinforcement; thus, choice should be equivalent for the tandem and chain schedules despite a large difference in rate of conditioned reinforcement. When the outcomes chosen are unequal, however, as in Experiment 2, choice should depend upon both rate of primary reinforcement and relative signaled delay reduction; thus, larger preferences should occur in the chain than in the tandem schedules. These predictions were confirmed, suggesting that increasing the rate of conditioned reinforcement on concurrent-chains schedules may have no independent effect on choice.

  2. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  3. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  4. Covert Reinforcement: A Partial Replication.

    ERIC Educational Resources Information Center

    Ripstra, Constance C.; And Others

    A partial replication of an investigation of the effect of covert reinforcement on a perceptual estimation task is described. The study was extended to include an extinction phase. There were five treatment groups: covert reinforcement, neutral scene reinforcement, noncontingent covert reinforcement, and two control groups. Each subject estimated…

  5. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  6. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  7. Preference pulses without reinforcers.

    PubMed

    McLean, Anthony P; Grace, Randolph C; Pitts, Raymond C; Hughes, Christine E

    2014-05-01

    Preference pulses are thought to represent strong, short-term effects of reinforcers on preference in concurrent schedules. However, the general shape of preference pulses is substantially determined by the distributions of responses-per-visit (visit lengths) for the two choice alternatives. In several series of simulations, we varied the means and standard deviations of distributions describing visits to two concurrently available response alternatives, arranged "reinforcers" according to concurrent variable-interval schedules, and found a range of different preference pulses. Because characteristics of these distributions describe global aspects of behavior, and the simulations assumed no local effects of reinforcement, these preference pulses derive from the visit structure alone. This strongly questions whether preference pulses should continue to be interpreted as representing local effects of reinforcement. We suggest an alternative approach whereby local effects are assessed by subtracting the artifactual part, which derives from visit structure, from the observed preference pulses. This yields "residual" preference pulses. We illustrate this method in application to published data from mixed dependent concurrent schedules, revealing evidence that the delivery of reinforcers had modest lengthening effects on the duration of the current visit, a conclusion that is quantitatively consistent with early research on short-term effects of reinforcement.

  8. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  9. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  10. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  11. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  12. Every reinforcer counts: reinforcer magnitude and local preference.

    PubMed Central

    Davison, Michael; Baum, William M

    2003-01-01

    Six pigeons were trained on concurrent variable-interval schedules. Sessions consisted of seven components, each lasting 10 reinforcers, with the conditions of reinforcement differing between components. The component sequence was randomly selected without replacement. In Experiment 1, the concurrent-schedule reinforcer ratios in components were all equal to 1.0, but across components reinforcer-magnitude ratios varied from 1:7 through 7:1. Three different overall reinforcer rates were arranged across conditions. In Experiment 2, the reinforcer-rate ratios varied across components from 27:1 to 1:27, and the reinforcer-magnitude ratios for each alternative were changed across conditions from 1:7 to 7:1. The results of Experiment 1 replicated the results for changing reinforcer-rate ratios across components reported by Davison and Baum (2000, 2002): Sensitivity to reinforcer-magnitude ratios increased with increasing numbers of reinforcers in components. Sensitivity to magnitude ratio, however, fell short of sensitivity to reinforcer-rate ratio. The degree of carryover from component to component depended on the reinforcer rate. Larger reinforcers produced larger and longer postreinforcer preference pulses than did smaller reinforcers. Similar results were found in Experiment 2, except that sensitivity to reinforcer magnitude was considerably higher and was greater for magnitudes that differed more from one another. Visit durations following reinforcers measured either as number of responses emitted or time spent responding before a changeover were longer following larger than following smaller reinforcers, and were longer following sequences of same reinforcers than following other sequences. The results add to the growing body of research that informs model building at local levels. PMID:13677611

  13. Microstructure and mechanical behavior of 6061Al reinforced with silicon nitride particles, processed by powder metallurgy

    SciTech Connect

    Amigo, V.; Ortiz, J.L.; Salvador, M.D.

    2000-01-31

    A critical step in the processing of Metal Matrix Composites (MMCs) reinforced with ceramic particles is the insertion of these particles into the metal matrix alloy. This greatly influences the strength of the composite since it is controlled by the metal-particle interfacial bond strength. Because of the difficulty in wetting ceramic particles with molten metal, the Powder Metallurgy or PM route was developed. Powder Extrusion consolidates the composite to over 98% dense, and can be carried out below the Solidus Temperature of the alloy. The most important aspect of the microstructure is the distribution of the reinforcing particles, and this depends on the processing and fabrication routes involved, as well as the relative size of the matrix and reinforcing particles. Extrusion can homogenize the structure to some extent, but minimizing reinforcement inhomogeneity during initial processing is important to achieve optimum properties.

  14. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  15. Nanoparticle-Induced Superior Hot Tearing Resistance of A206 Alloy

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Cho, Woo-hyun; Konishi, Hiromi; Kou, Sindo; Li, Xiaochun

    2013-04-01

    Al- Cu alloys (such as A206) offer high strength and high fracture toughness at both room and elevated temperatures. However, their widespread applications are limited because of their high susceptibility to hot tearing. This article presents a nanotechnology approach to enhance hot-tearing resistance for A206. Specifically, γ-Al2O3 nanoparticles were used, and their effects on the hot-tearing resistance of the as-cast Al-4.5Cu alloy (A206) were investigated. While it is well known that grain refinement can improve the hot-tearing resistance of cast Al alloys, the current study demonstrated that nanoparticles can be much more effective in the case of A206. The hot-tearing susceptibilities (HTSs) of A206 alloy and its Al2O3 nanocomposite were evaluated by constrained rod casting (CRC) with a steel mold. Monolithic A206 and M206 (the Ti-free version of A206) alloys with the B contents of 20, 40, and 300 ppm from an Al-5Ti-1B master alloy addition were also cast under the same conditions for comparison. The results showed that with an addition of 1 wt pct γ-Al2O3 nanoparticles, the extent of hot tearing in A206 alloys was markedly reduced to nearly that of A356, an Al-Si alloy highly resistant to hot tearing. As compared with grain-refined A206 or M206, the hot-tearing resistance of the nanocomposites was significantly better, even though the grain size was not reduced as much. Microstructural analysis suggested that γ-Al2O3 nanoparticles modified the solidification microstructure of the eutectic of θ-Al2Cu and α-Al, as well as refined primary grains, resulting in the enhancement of the hot-tearing resistance of A206 to a level similar to that of A356 alloy.

  16. Analysis of the electron density features of small boron clusters and the effects of doping with C, P, Al, Si, and Zn: Magic B7P and B8Si clusters

    NASA Astrophysics Data System (ADS)

    Saha, P.; Rahane, A. B.; Kumar, V.; Sukumar, N.

    2016-05-01

    Boron atomic clusters show several interesting and unusual size-dependent features due to the small covalent radius, electron deficiency, and higher coordination number of boron as compared to carbon. These include aromaticity and a diverse array of structures such as quasi-planar, ring or tubular shaped, and fullerene-like. In the present work, we have analyzed features of the computed electron density distributions of small boron clusters having up to 11 boron atoms, and investigated the effect of doping with C, P, Al, Si, and Zn atoms on their structural and physical properties, in order to understand the bonding characteristics and discern trends in bonding and stability. We find that in general there are covalent bonds as well as delocalized charge distribution in these clusters. We associate the strong stability of some of these planar/quasiplanar disc-type clusters with the electronic shell closing with effectively twelve delocalized valence electrons using a disc-shaped jellium model. {{{{B}}}9}-, B10, B7P, and B8Si, in particular, are found to be exceptional with very large gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and these are suggested to be magic clusters.

  17. Carbon in silicate liquids: the systems NaAlSi3O8-CO2, CaAl2Si2O8-CO2, and KAlSi3O8-CO2

    NASA Astrophysics Data System (ADS)

    Boettcher, Art; Luth, Robert W.; White, Bradford S.

    1987-11-01

    To further our knowledge of the effects of volatile components on phase relationships in aluminosilicate systems, we determined the vapor saturated solidi of albite, anorthite, and sanidine in the presence of CO2 vapor. The depression of the temperature of the solidus of albite by CO2 decreases from ˜30° C at 10 kbar, to ˜10° C at 20 kbar, to about 0 at 25 kbar, suggesting that the solubility of CO2 in NaAlSi3O8 liquid in equilibrium with solid albite decreases with increasing pressure and temperature. In contrast, CO2 lowers the temperature of the solidus of anorthite by ˜30° C at 14 kbar, and by ˜70dg C at 25 kbar. This contrasting behavior of albite and anorthite is also reflected in the behavior of melting in the absence of volatile components. Whereas albite melts congruently to a liquid of NaAl-Si3O8 composition to pressures of ˜35 kbar, anorthite melts congruently to only about 10 kbar and, at higher pressures, incongruently to corundum plus a liquid that is enriched in SiO2 and CaO and depleted in Al2O3 relative to CaAl2Si2O8. The tendency toward incongruent melting with increasing pressure in albite and anorthite produces an increase in the activity of SiO2 component in the liquid (a_{SiO_2 }^l ). We predict that this increases the ratio of molecular CO2/CO{3/2-}in these liquids, but the experimental results from other workers are mutually contradictory. Because of the positive dP/dT of the albite solidus and the negative dP/dT of the anorthite solidus, we propose that a negative temperature derivative of the solubility of molecular CO2 in plagioclase liquids may partly explain the decrease in solubility of carbon with increasing pressure in near-solidus NaAlSi3O8 liquids, which is in contrast to that in CaAl2Si2O8 liquid. Also, reaction of CO2 with NaAlSi3O8 liquid to form CO{3/2-}that is complexed with Na+ must be accompanied by a change in Al3+ from network-former to network-modifier, as Na+ is no longer abailable to charge-balance Al3+ in a

  18. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au

    NASA Astrophysics Data System (ADS)

    Michel, R.; Bodemann, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H.-J.; Klug, B.; Krins, A.; Leya, I.; Lüpke, M.; Neumann, S.; Reinhardt, H.; Schnatz-Büttgen, M.; Herpers, U.; Schiekel, Th.; Sudbrock, F.; Holmqvist, B.; Condé, H.; Malmborg, P.; Suter, M.; Dittrich-Hannen, B.; Kubik, P.-W.; Synal, H.-A.; Filges, D.

    1997-07-01

    Cross sections for residual nuclide production by p-induced reactions were measured from thresholds up to 2.6 GeV using accelerators at CERN/Geneve, IPN/Orsay, KFA/Jülich, LANL/Los Alamos, LNS/Saclay, PSI/Villigen, TSL/Uppsala, LUC/Louvain La Neuve. The target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au were investigated. Residual nuclides were measured by X- and γ-spectrometry and by Accelerator Mass Spectrometry (AMS). The measured cross sections were corrected for interfering secondary particles in experiments with primary proton energies above 200 MeV. Our consistent database covers presently ca 550 nuclear reactions and contains nearly 15000 individual cross sections of which about 10000 are reported here for the first time. They provide a basis for model calculations of the production of cosmogenic nuclides in extraterrestrial matter by solar and galactic cosmic ray protons. They are of importance for many other applications in which medium energy nuclear reactions have to be considered ranging from astrophysics over space and environmental sciences to accelerator technology and accelerator-based nuclear waste transmutation and energy amplification. The experimental data are compared with theoretical ones based on calculations using an INC/E model in form of the HETC/KFA2 code and on the hybrid model of preequilibrium reactions in form of the AREL code.>

  19. Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/c <-> P21/c phase transition in spodumene (LiAlSi2O6)

    NASA Astrophysics Data System (ADS)

    Sondergeld, Peter; Li, Baosheng; Schreuer, Jürgen; Carpenter, Michael A.

    2006-07-01

    A Landau free energy expansion in one order parameter has been developed to describe the first-order C2/c ↔ P21/c phase transition at high pressures in spodumene (LiAlSi2O6). The complete set of elastic constants required for this model was determined at ambient conditions by resonant ultrasound spectroscopy. Other coefficients in the 246 expansion were calibrated using lattice parameter data from the literature, which had been collected by following the transition in a diamond anvil cell. The complete calibration leads to predictions of significant, abrupt changes in elastic constants at the transition point, 3.19 GPa, which have then been tested against ultrasonic data obtained in situ at high pressures in a uniaxial split cylinder apparatus. Velocities of compressional waves in three mutually perpendicular directions through single crystals of spodumene were measured and used to extract elastic constant data. The transition, indeed, causes large, abrupt changes of single-crystal elastic constants with increasing pressure. Steep increases in attenuation were also observed in the vicinity of the transition point for two directions and over a broader pressure interval in the third direction. The Landau expansion reproduces the general form of the elastic anomalies, even though it does not do as well for spontaneous strain variations. If this type of transition occurred in mantle pyroxenes (or in any other mantle phase), it would be expected to leave a distinctive signature in seismic velocity profiles of the Earth's interior.

  20. Use of spray techniques to synthesize particulate-reinforced metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Srivatsan, T. S.; Lavernia, E. J.

    1992-11-01

    Spray processing of particulate-reinforced MMCs combines microstructural refinement and compositional modifications with in situ processing and even near-net-shape manufacturing. Representative spray-processing methods encompass spray-atomization and -deposition, low-pressure plasma deposition, modified gas welding, and high velocity oxyfuel thermal spraying. Because they involve the mixing of matrix and reinforcement under nonequilibrium conditions, these processes allow the modification and enhancement of existing alloy systems' properties, as well as to develop novel alloy compositions; this approach precludes the extreme thermal excursions associated with conventional casting, and their concomitant macrosegregation.

  1. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  2. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    NASA Astrophysics Data System (ADS)

    Zafar, Adeel; Andrawes, Bassem

    2012-02-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA-FRP composite, which is sought in this research as reinforcing bars. SMA-FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA-FRP and glass-FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA-FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones.

  3. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-08-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  4. Effect of La2O3 Nanoparticles on the Brazeability, Microstructure, and Mechanical Properties of Al-11Si-20Cu Alloy

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Roh, Myung Hwan; Jung, Jae Pil

    2016-06-01

    The Al-11Si-20Cu brazing alloy and its ex situ composite with the content ranging from 0.01 to 0.05 wt.% of La2O3 are produced by electromagnetic induction-cum-casting route. The brazeability of the alloy and composite samples are tested using the spreading technique according to JIS Z-3197 standard. The mechanical properties such as filler microhardness, tensile shear strength, and elongation of the brazed joints are evaluated in the as-brazed condition. It is reported that incorporation of an optimal amount of 0.05 wt.% of hard La2O3 nanoparticles in the Al-Si-Cu matrix inhibits the growth of the large CuAl2 intermetallic compounds (IMCs) and Si particles. As a consequence, the composite filler brazeability, microhardness, joint tensile shear strength, and elongation are improved significantly compared to those of monolithic Al-11Si-20Cu alloy.

  5. Reinforcement pathology and obesity.

    PubMed

    Carr, Katelyn A; Daniel, Tinuke Oluyomi; Lin, Henry; Epstein, Leonard H

    2011-09-01

    Obesity is, in part, a result of positive energy balance or energy intake exceeding physiological needs. Excess energy intake is determined by a series of food choices over time. These choices involve both motivational and executive function processes. Problems arise when there is excessive motivation to eat and low impulse control, a situation we have termed reinforcement pathology. Motivational and executive function processes have also been implicated in the development of drug dependence and addiction. In this review we discuss the application of reinforcement pathology to obesity, and implications of this approach for obesity treatment. PMID:21999693

  6. History of reinforced plastics

    SciTech Connect

    Milewski, J.V.; Rosato, D.V.

    1981-01-01

    This history of reinforced plastics is told by combining the individual histories of each reinforcement and the way in which they added to and changed the direction and rate of growth of the industry. The early history is based on all resins, fillers, and fibers found in nature. Then came the Baekeland revolution with the first synthetic resin which lasted about 25 years, at which time synthetic fiber glass and polyester resin dramatically changed the industry. Now, for the 1980s, the high modulus fibers developed 10 to 20 years ago are reshaping the industry. 32 figures.

  7. Reinforcement pathology and obesity.

    PubMed

    Carr, Katelyn A; Daniel, Tinuke Oluyomi; Lin, Henry; Epstein, Leonard H

    2011-09-01

    Obesity is, in part, a result of positive energy balance or energy intake exceeding physiological needs. Excess energy intake is determined by a series of food choices over time. These choices involve both motivational and executive function processes. Problems arise when there is excessive motivation to eat and low impulse control, a situation we have termed reinforcement pathology. Motivational and executive function processes have also been implicated in the development of drug dependence and addiction. In this review we discuss the application of reinforcement pathology to obesity, and implications of this approach for obesity treatment.

  8. Evaluating the influence of postsession reinforcement on choice of reinforcers.

    PubMed

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions. PMID:17970264

  9. Evaluating The Influence of Postsession Reinforcement on Choice of Reinforcers

    PubMed Central

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions. PMID:17970264

  10. Evaluating the influence of postsession reinforcement on choice of reinforcers.

    PubMed

    Kodak, Tiffany; Lerman, Dorothea C; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic findings indicate that this is an important factor to consider (Hursh, 1978; Zeiler, 1999). In this bridge investigation, we evaluated the influence of postsession reinforcement on choice of two food items when task responding was reinforced on progressive-ratio schedules. Participants were 3 children who had been diagnosed with developmental disabilities. Results indicated that response allocation shifted from one food item to the other food item under thinner schedules of reinforcement when no postsession reinforcement was provided. These findings suggest that the efficacy of instructional programs or treatments for problem behavior may be improved by restricting reinforcers outside treatment sessions.

  11. Evaluating the Influence of Postsession Reinforcement on Choice of Reinforcers

    ERIC Educational Resources Information Center

    Kodak, Tiffany; Lerman, Dorothea C.; Call, Nathan

    2007-01-01

    Factors that influence reinforcer choice have been examined in a number of applied studies (e.g., Neef, Mace, Shea, & Shade, 1992; Shore, Iwata, DeLeon, Kahng, & Smith, 1997; Tustin, 1994). However, no applied studies have evaluated the effects of postsession reinforcement on choice between concurrently available reinforcers, even though basic…

  12. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  13. Turbomachine blade reinforcement

    DOEpatents

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  14. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  15. Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline (NaAlSiO 4)-malinkoite (NaBSiO 4) join

    NASA Astrophysics Data System (ADS)

    Pierce, E. M.; Reed, L. R.; Shaw, W. J.; McGrail, B. P.; Icenhower, J. P.; Windisch, C. F.; Cordova, E. A.; Broady, J.

    2010-05-01

    The dissolution kinetics of five glasses along the NaAlSiO 4-NaBSiO 4 join were used to evaluate how the structural variations associated with boron-aluminum substitution affect the rate of dissolution. The composition of each glass varied inversely in mol% of Al 2O 3 (5-25 mol%) and B 2O 3 (20-0 mol%) with Na 2O (25 mol%) and SiO 2 (50 mol%) making up the remaining amount, in every case Na/(Al + B) = 1.0. Single-pass flow-through experiments (SPFT) were conducted under dilute conditions as a function of solution pH (from 7.0 to 12.0) and temperature (from 23 to 90 °C). Analysis of unreacted glass samples by 27Al and 29Si MAS-NMR suggests Al (˜98% [4]Al) and Si-atoms (˜100% [4]Si) occupy a tetrahedral coordination whereas, B-atoms occupy both tetrahedral ( [4]B) and trigonal ( [3]B) coordination. The distribution of [3]B fractionated between [3]B(ring) and [3]B(non-ring) moieties, with the [3]B(ring)/ [3]B(non-ring) ratio increases with an increase in the B/Al ratio. The MAS-NMR results also indicated an increase in the fraction of [4]B with an increase in the B/Al ratio. The 27Al peak maxima shift to lesser values with an increase in the B/Al ratio which suggests mixing between the [4]Al and [3]B sites, assuming avoidance between tetrahedral trivalent cations ( [4]Al-O- [4]B avoidance). Unlike the 27Al and 11B spectra, the 29Si spectra illustrate a subtle shift to more negative chemical shift (chemical shift range between -88 and -84 ppm) and increases in the spectral widths as the B/Al ratio increases. Raman spectroscopy of unreacted glass samples was also used to cross-check the results collected from MAS-NMR and suggested that NeB4 (the glass sample with the highest B content) may consist of B-Na enriched and Al-Si enriched micro-domains, which affected the measured dissolution rates. Results from SPFT experiments suggest a forward rate of reaction and pH power-law coefficients, η, that are independent of B/Al under these neutral to alkaline test conditions

  16. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  17. Reinforcing aspects of androgens.

    PubMed

    Wood, Ruth I

    2004-11-15

    Are androgens reinforcing? Androgenic-anabolic steroids (AAS) are drugs of abuse. They are taken in large quantities by athletes and others to increase performance, often with negative long-term health consequences. As a result, in 1991, testosterone was declared a controlled substance. Recently, Brower [K.J. Brower, Anabolic steroid abuse and dependence. Curr. Psychiatry Rep. 4 (2002) 377-387.] proposed a two-stage model of AAS dependence. Users initiate steroid use for their anabolic effects on muscle growth. With continued exposure, dependence on the psychoactive effects of AAS develops. However, it is difficult in humans to separate direct psychoactive effects of AAS from the user's psychological dependence on the anabolic effects of AAS. Thus, studies in laboratory animals are useful to explore androgen reinforcement. Testosterone induces a conditioned place preference in rats and mice, and is voluntarily consumed through oral, intravenous, and intracerebroventricular self-administration in hamsters. Active, gonad-intact male and female hamsters will deliver 1 microg/microl testosterone into the lateral ventricles. Indeed, some individuals self-administer testosterone intracerebroventricularly to the point of death. Male rats develop a conditioned place preference to testosterone injections into the nucleus accumbens, an effect blocked by dopamine receptor antagonists. These data suggest that androgen reinforcement is mediated by the brain. Moreover, testosterone appears to act through the mesolimbic dopamine system, a common substrate for drugs of abuse. Nonetheless, androgen reinforcement is not comparable to that of cocaine or heroin. Instead, testosterone resembles other mild reinforcers, such as caffeine, nicotine, or benzodiazepines. The potential for androgen addiction remains to be determined.

  18. Matching and Conditioned Reinforcement Rate

    ERIC Educational Resources Information Center

    Shahan, Timothy A.; Podlesnik, Christopher A.; Jimenez-Gomez, Corina

    2006-01-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative…

  19. Developmental Reinforcement and Special Education.

    ERIC Educational Resources Information Center

    Garris, Raymond P.

    The author uses a developmental model (1) to describe the developmental reinforcement process as it occurs in a child's life, using a hierarchical concept, and (2) to discuss some educational consequences of a reinforcement deficit. The developmental reinforcement process is composed of a hierarchy of four levels. Development takes place in…

  20. Classroom Management and Negative Reinforcement.

    ERIC Educational Resources Information Center

    Tauber, Robert T.

    Of the four simple consequences for behavior, none is more misunderstood than negative reinforcement. A Negative Reinforcement Quiz administered to 233 student teachers from two universities revealed that the vast majority of respondents mistakenly viewed negative reinforcement as a synonym for punishment, and believe that negative reinforcement…

  1. A new discontinuously reinforced aluminum MMC: Al+AlB{sub 2} flakes

    SciTech Connect

    HALL,AARON C.; ECONOMY,J.

    2000-06-08

    Development of a novel metal matrix composite based on the Al-B alloy system has been undertaken. Preparation of this discontinuously reinforced material is based on the precipitation of high aspect ratio AlB{sub 2} from an Al-B alloy. This paper describes a number of efforts forced on preparing high volume fractions (> 30 v%) of AlB{sub 2} in aluminum. New insights into the behavior of the Al-B alloys system allowed this effort to be successful.

  2. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    PubMed Central

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement. PMID:18595284

  3. New alloys to conserve critical elements. [replacing chromium in steels

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  4. Conditioned Reinforcement and Response Strength

    PubMed Central

    Shahan, Timothy A

    2010-01-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in parameters of conditioned reinforcement appear not to affect response strength as measured by resistance to change, long-standing assertions that conditioned reinforcers do not strengthen behavior in a reinforcement-like fashion are considered. A signposts or means-to-an-end account is explored and appears to provide a plausible alternative interpretation of the effects of stimuli associated with primary reinforcers. Related suggestions that primary reinforcers also might not have their effects via a strengthening process are explored and found to be worthy of serious consideration. PMID:20885815

  5. Conditioned reinforcement and response strength.

    PubMed

    Shahan, Timothy A

    2010-03-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in parameters of conditioned reinforcement appear not to affect response strength as measured by resistance to change, long-standing assertions that conditioned reinforcers do not strengthen behavior in a reinforcement-like fashion are considered. A signposts or means-to-an-end account is explored and appears to provide a plausible alternative interpretation of the effects of stimuli associated with primary reinforcers. Related suggestions that primary reinforcers also might not have their effects via a strengthening process are explored and found to be worthy of serious consideration.

  6. Conditioned reinforcement and response strength.

    PubMed

    Shahan, Timothy A

    2010-03-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in parameters of conditioned reinforcement appear not to affect response strength as measured by resistance to change, long-standing assertions that conditioned reinforcers do not strengthen behavior in a reinforcement-like fashion are considered. A signposts or means-to-an-end account is explored and appears to provide a plausible alternative interpretation of the effects of stimuli associated with primary reinforcers. Related suggestions that primary reinforcers also might not have their effects via a strengthening process are explored and found to be worthy of serious consideration. PMID:20885815

  7. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  8. Robust reinforcement learning.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2005-02-01

    This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.

  9. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  10. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  11. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  12. High temperature embrittlement caused by traces of calcium or strontium in an Al-5.5 mol% Mg alloy

    SciTech Connect

    Horikawa, Keitaro; Kuramoto, Shigeru; Kanno, Motohiro

    1998-09-04

    Al-5--10mol%Mg alloys are now being developed for automotive parts since they have good formability. However, an alloy containing magnesium of more than 5mol% has poor hot rolling characteristics. It has been reported that an Al-5.5mol%Mg alloy shows high temperature embrittlement (HTE) based on intergranular fracture at around 300 C depending on strain rate. This embrittlement is considered to be closely related to the unfavorable hot rolling characteristics of the Al-Mg alloy. One of the present authors reported recently that this embrittlement is caused by a trace amount of sodium of only of only 0.6mass ppm (0.7mol ppm) in a coarse-grained Al-5.5mol%Mg alloy produced using high purity ingots. Although numerous studies have been made on the effect of sodium, little is known about the effect of alkali and alkaline-earth elements other than sodium. However, unusual impurities may inevitably creep in the recycling process in future. For example, it is reported that the Al-Mg alloy is contaminated by calcium through the ceramic tube filter using during melting and casting, and strontium is used commercially as an additional element in Al-Si alloys. Hence, aluminum alloys made using recycled stock may be contaminated at least by calcium and strontium. The purpose of this study is to determine the effect of traces of calcium or strontium on hot ductility of an Al-5.5mol%Mg alloy.

  13. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  14. Reinforcement magnitude and responding during treatment with differential reinforcement.

    PubMed Central

    Lerman, Dorothea C; Kelley, Michael E; Vorndran, Christina M; Kuhn, Stephanie A C; LaRue, Robert H

    2002-01-01

    Basic findings indicate that the amount or magnitude of reinforcement can influence free-operant responding prior to and during extinction. In this study, the relation between reinforcement magnitude and adaptive behavior was evaluated with 3 children as part of treatment with differential reinforcement. In the first experiment, a communicative response was shaped and maintained by the same reinforcer that was found to maintain problem behavior. Two reinforcement magnitudes (20-s or 60-s access to toys or escape from demands) were compared and found to be associated with similar levels of resistance to extinction. The relation between reinforcement magnitude and response maintenance was further evaluated in the second experiment by exposing the communicative response to 20-s or 300-s access to toys or escape. Results for 2 participants suggested that this factor may alter the duration of postreinforcement pauses. PMID:11936544

  15. Reinforcement magnitude and responding during treatment with differential reinforcement.

    PubMed

    Lerman, Dorothea C; Kelley, Michael E; Vorndran, Christina M; Kuhn, Stephanie A C; LaRue, Robert H

    2002-01-01

    Basic findings indicate that the amount or magnitude of reinforcement can influence free-operant responding prior to and during extinction. In this study, the relation between reinforcement magnitude and adaptive behavior was evaluated with 3 children as part of treatment with differential reinforcement. In the first experiment, a communicative response was shaped and maintained by the same reinforcer that was found to maintain problem behavior. Two reinforcement magnitudes (20-s or 60-s access to toys or escape from demands) were compared and found to be associated with similar levels of resistance to extinction. The relation between reinforcement magnitude and response maintenance was further evaluated in the second experiment by exposing the communicative response to 20-s or 300-s access to toys or escape. Results for 2 participants suggested that this factor may alter the duration of postreinforcement pauses.

  16. Precipitation reactions in 8090 SiC-particulate reinforced MMC. Technical report

    SciTech Connect

    Hunt, E.; Pitcher, P.D.; Gregson, P.J.

    1990-04-01

    There is currently much interest in SiC particulate reinforcement of aluminium-lithium based alloys such as 8090 (Al-Li-Cu-Mg) to provide a lightweight, high stiffness and isotropic metal matrix composite (MMC). The composite materials may be heat-treated to develop an optimum balance of mechanical properties. 8090/SiC MMCs produced via spray deposition are reported to exhibit similar aging kinetics to those of the matrix alloy, but similar materials produced via solid state powder processing and incorporating a higher volume fraction of particulate reinforcement have been shown to exhibit a more rapid aging response than the unreinforced 8090 matrix. The present research set out to investigate the microstructural changes during age hardening of SiC particulate reinforced 8090 in order to provide a better understanding of the aging kinetics and thereby complement the efforts towards property optimization. (JS)

  17. The ammonium ion in a silicate under compression: infrared spectroscopy and powder X-ray diffraction of NH4AlSi3O8—buddingtonite to 30 GPa

    NASA Astrophysics Data System (ADS)

    E. Vennari, Cara; O'Bannon, Earl F.; Williams, Quentin

    2016-10-01

    The behavior of the ammoniated feldspar buddingtonite, NH4AlSi3O8, has been studied using infrared (IR) spectroscopy up to ~30 GPa and using synchrotron powder X-ray diffraction to 10 GPa at room temperature. We examine the bonding of the ammonium ion under pressure and in particular whether hydrogen bonding is enhanced by compaction, as well as probe how the ammonium ion affects the elasticity and behavior of the aluminosilicate framework at pressure. Powder diffraction data yield a bulk modulus of 49 GPa for a pressure derivative of 4, implying that the ammonium ion substitution may induce a modest softening of the feldspar lattice relative to the potassium ion. Under compression, the N-H vibrations are remarkably insensitive to pressure throughout the pressure range of these experiments. However, the vibrations of the aluminosilicate framework of buddingtonite undergo changes in their slope at ~13 GPa, implying that a change in compressional mechanism occurs near this pressure, but the vibrational modes of the ammonium molecule show little response to this change. These results show that (1) there is little, if any, enhancement of hydrogen bonding between the ammonium ion and the oxygen ions of the silica and aluminum tetrahedral framework under pressure, as manifested by the slight (and mostly positive) shifts in the N-H stretching vibrations of the ammonium ion; (2) ordering of the ammonium ion is not observed under compression, as no changes in peak width or in the general appearance of the spectra are observed under compression; and (3) structural changes induced by pressure in the aluminosilicate framework do not produce significant changes in the bonding of the ammonium ion. Hence, it appears that the ammonium ion interacts minimally with its surrounding lattice, even at high pressures: Its behavior is compatible with it being, aside from Coulombic attraction to the oxygen-dominated matrix, a largely non-interactive guest molecule within the silicate

  18. The high-pressure C2/ c P21/ c phase transition along the LiAlSi2O6 LiGaSi2O6 solid solution

    NASA Astrophysics Data System (ADS)

    Nestola, Fabrizio; Ballaran, Tiziana Boffa; Ohashi, Haruo

    2008-09-01

    Two synthetic single-crystals with composition Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6 and space group C2/ c at room conditions have been studied under pressure by means of X-ray diffraction using a diamond anvil cell. The unit-cell parameters were determined at 12 and 10 different pressures up to P = 8.849 and P = 7.320 GPa for Li(Al0.53Ga0.47)Si2O6 and LiGaSi2O6, respectively. The sample with mixed composition shows a C2/c to P21/ c phase transformation between 1.814 and 2.156 GPa, first-order in character. The transition is characterised by a large and discontinuous decrease in the unit-cell volume and by the appearance of the b-type reflections ( h + k = odd) typical of the primitive symmetry. The Ga end-member shows the same C2/c to P21/ c transformation at a pressure between 0.0001 and 0.39 GPa. The low-pressure value at which the transition occurred did not allow collecting any data in the C2/ c pressure stability field except that on room pressure. Our results compared with those relative to spodumene (LiAlSi2O6, Arlt and Angel 2000a) indicate that the substitution of Al for Ga at the M1 site of Li-clinopyroxenes strongly affects the transition pressure causing a decrease from 3.17 GPa (spodumene) to less than 0.39 GPa (LiGaSi2O6) and decreases the volume discontinuity at the transition. As already found for other compounds, the C2 /c low-pressure phases are more rigid than the P21 /c high-pressure ones. Moreover, the increase of the M1 cation radius causes a decrease in the bulk modulus K T0. The axial compressibility among the Li-bearing clinopyroxenes indicates that the c axis is the most rigid for the C2 /c phases while it becomes the most compressible for the P21 /c phases.

  19. Prospects for Ductility and Toughness Enhancement of Nial by Ductile Phase Reinforcement

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Ritzert, F. J.; Misra, A.; Gibala, R.

    1991-01-01

    The use of NiAl as a structural material has been hindered by the fact that this ordered intermetallic does not exhibit significant tensile ductility or toughness at room temperature. A critical review of the operative flow and fracture mechanisms in monolithic NiAl has thus established the need for ductile phase toughening in this order system. Progress in ductile phase reinforced intermetallic systems in general and specifically NiAl-based materials has been reviewed. In addition, further clarification of the primary mechanisms involved in the flow and fracture of ductile phase reinforced alloys has evolved from ongoing investigations of several model NiAl-based materials. The mechanical behavior of these model directionally-solidified alloys (Ni-30Al and Ni-30Fe-20Al) are discussed. Finally, the prospects for developing a ductile phase toughened NiAl-based alloy and the shortcomings presently inherent in these systems are analyzed.

  20. Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Pakkanen, Jukka; Calignano, Flaviana; Trevisan, Francesco; Lorusso, Massimo; Ambrosio, Elisa Paola; Manfredi, Diego; Fino, Paolo

    2016-08-01

    Interest in additive manufacturing (AM) has gained considerable impetus over the past decade. One of the driving factors for AM success is the ability to create unique designs with intrinsic characteristics as, e.g., internal channels used for hydraulic components, cooling channels, and heat exchangers. However, a couple of the main problems in internal channels manufactured by AM technologies are the high surface roughness obtained and the distortion of the channel shape. There is still much to understand in these design aspects. In this study, a cylindrical geometry for internal channels to be built with different angles with respect to the building plane in AlSi10Mg and Ti6Al4V alloys by selective laser melting was considered. The internal surfaces of the channels produced in both materials were analyzed by means of a surface roughness tester and by optical and electron microscopy to evaluate the effects of the material and design choices.

  1. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  2. The nature of sexual reinforcement.

    PubMed Central

    Crawford, L L; Holloway, K S; Domjan, M

    1993-01-01

    Sexual reinforcers are not part of a regulatory system involved in the maintenance of critical metabolic processes, they differ for males and females, they differ as a function of species and mating system, and they show ontogenetic and seasonal changes related to endocrine conditions. Exposure to a member of the opposite sex without copulation can be sufficient for sexual reinforcement. However, copulatory access is a stronger reinforcer, and copulatory opportunity can serve to enhance the reinforcing efficacy of stimulus features of a sexual partner. Conversely, under certain conditions, noncopulatory exposure serves to decrease reinforcer efficacy. Many common learning phenomena such as acquisition, extinction, discrimination learning, second-order conditioning, and latent inhibition have been demonstrated in sexual conditioning. These observations extend the generality of findings obtained with more conventional reinforcers, but the mechanisms of these effects and their gender and species specificity remain to be explored. PMID:8354970

  3. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  4. [Reinforcement learning by striatum].

    PubMed

    Kunisato, Yoshihiko; Okada, Go; Okamoto, Yasumasa

    2009-04-01

    Recently, computational models of reinforcement learning have been applied for the analysis of neuroimaging data. It has been clarified that the striatum plays a key role in decision making. We review the reinforcement learning theory and the biological structures such as the brain and signals such as neuromodulators associated with reinforcement learning. We also investigated the function of the striatum and the neurotransmitter serotonin in reward prediction. We first studied the brain mechanisms for reward prediction at different time scales. Our experiment on the striatum showed that the ventroanterior regions are involved in predicting immediate rewards and the dorsoposterior regions are involved in predicting future rewards. Further, we investigated whether serotonin regulates both the reward selection and the striatum function are specialized reward prediction at different time scales. To this end, we regulated the dietary intake of tryptophan, a precursor of serotonin. Our experiment showed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this activity was stronger at high serotonin levels. Further, a higher proportion of small reward choices, together with a higher rate of discounting of delayed rewards is observed in the low-serotonin condition than in the control and high-serotonin conditions. Further examinations are required in future to assess the relation between the disturbance of reward prediction caused by low serotonin and mental disorders related to serotonin such as depression.

  5. Fiber reinforced superalloys

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Signorelli, Robert A.; Caulfield, Thomas; Tien, John K.

    1987-01-01

    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.

  6. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  7. [The systems process of reinforcement].

    PubMed

    Sudakov, K V

    1996-01-01

    The process of reinforcement is considered in the context of the general theory of functional systems as an important part of behavioural act organization closely interacting with the dominant motivation. It is shown that reinforcement substantially changes the activities of separate neurons in different brain structures involved in dominant motivation. After a preliminary reinforcement under the influence of corresponding motivation the ribosomal apparatus of neurons begins to synthesize special molecular engrams of the action acceptor. The sensory mechanisms of reinforcement and, especially, the role of emotions are considered in details in the paper.

  8. Quantum reinforcement learning.

    PubMed

    Dong, Daoyi; Chen, Chunlin; Li, Hanxiong; Tarn, Tzyh-Jong

    2008-10-01

    The key approaches for machine learning, particularly learning in unknown probabilistic environments, are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of a value-updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state, and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is updated in parallel according to rewards. Some related characteristics of QRL such as convergence, optimality, and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speedup learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given, and the results demonstrate the effectiveness and superiority of the QRL algorithm for some complex problems. This paper is also an effective exploration on the application of quantum computation to artificial intelligence.

  9. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  10. Quantum reinforcement learning.

    PubMed

    Dong, Daoyi; Chen, Chunlin; Li, Hanxiong; Tarn, Tzyh-Jong

    2008-10-01

    The key approaches for machine learning, particularly learning in unknown probabilistic environments, are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of a value-updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state, and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is updated in parallel according to rewards. Some related characteristics of QRL such as convergence, optimality, and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speedup learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given, and the results demonstrate the effectiveness and superiority of the QRL algorithm for some complex problems. This paper is also an effective exploration on the application of quantum computation to artificial intelligence. PMID:18784007

  11. Understanding the interdiffusion behavior and determining the long term stability of tungsten fiber reinforced niobium-base matrix composite systems

    NASA Technical Reports Server (NTRS)

    Tien, John K.

    1990-01-01

    The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.

  12. BEHAVIORAL MECHANISMS UNDERLYING NICOTINE REINFORCEMENT

    PubMed Central

    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  13. Carbon fibre reinforced plastic applied to prosthetics and orthotics.

    PubMed

    Nelham, R L

    1981-10-01

    This paper describes the work carried out at the Rehabilitation Engineering Unit, Chailey Heritage Hospital, in applying carbon fibre reinforced plastic CFRP to prosthetics and orthotics. The prosthetic application relates to the construction of the Chailey Harness which was used to mount externally powered, upper limb prostheses to the torso of limb deficient children damaged by the drug Thalidomide. The application to orthotics was limited to Hip-Knee-Ankle-Orthoses (HKAO) as worn by severely handicapped children with spina bifida and led to the development of a shapable CFRP/aluminium alloy hybrid composite bar. The construction of the composite, its properties and the assembly and performance of the first orthoses are described. Some of the practical problems experienced with the use of carbon fibre reinforced plastic are identified.

  14. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Dreshfield, R. L.

    1992-01-01

    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.

  15. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  17. Stochastic Reinforcement Benefits Skill Acquisition

    ERIC Educational Resources Information Center

    Dayan, Eran; Averbeck, Bruno B.; Richmond, Barry J.; Cohen, Leonardo G.

    2014-01-01

    Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and rewarding outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic…

  18. Conditioned Reinforcement and Response Strength

    ERIC Educational Resources Information Center

    Shahan, Timothy A.

    2010-01-01

    Stimuli associated with primary reinforcers appear themselves to acquire the capacity to strengthen behavior. This paper reviews research on the strengthening effects of conditioned reinforcers within the context of contemporary quantitative choice theories and behavioral momentum theory. Based partially on the finding that variations in…

  19. Positive reinforcement in clinical teaching.

    PubMed

    Gallagher, L M

    1992-01-01

    Contrary to the idea that nursing students are intrinsically motivated, findings in research studies show that students repeatedly report the significance of positive feedback to them. Delivery of positive reinforcement by clinical instructors can be developed so that the reinforcement is more meaningful to students and more effective in promoting or maintaining desired student behaviors.

  20. Diagnosis And Prescription: Reinforcement Module.

    ERIC Educational Resources Information Center

    Fair, George W.

    This learning module has been designed to aid the teacher trainee in identifying ways in which he influences student behavior in the classroom and also explores means of selecting more meaningful reinforcers and their application. Terminal objectives of the module are the ability to (1) define the terms "reinforcement,""positive…