Science.gov

Sample records for al2o3 atomic layer

  1. Silicon diffusion control in atomic-layer-deposited Al2O3/La2O3/Al2O3 gate stacks using an Al2O3 barrier layer.

    PubMed

    Wang, Xing; Liu, Hong-Xia; Fei, Chen-Xi; Yin, Shu-Ying; Fan, Xiao-Jiao

    2015-01-01

    In this study, the physical and electrical characteristics of Al2O3/La2O3/Al2O3/Si stack structures affected by the thickness of an Al2O3 barrier layer between Si substrate and La2O3 layer are investigated after a rapid thermal annealing (RTA) treatment. Time of flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) tests indicate that an Al2O3 barrier layer (15 atomic layer deposition (ALD) cycles, approximately 1.5 nm) plays an important role in suppressing the diffusion of silicon atoms from Si substrate into the La2O3 layer during the annealing process. As a result, some properties of La2O3 dielectric degenerated by the diffusion of Si atoms are improved. Electrical measurements (C-V, J-V) show that the thickness of Al2O3 barrier layer can affect the shift of flat band voltage (V FB) and the magnitude of gate leakage current density. PMID:25897303

  2. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study. PMID:25852428

  3. Electrowetting properties of atomic layer deposited Al2O3 decorated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-01

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al2O3 as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al2O3 films of 10nm thickness were conformally deposited over silicon nanowires. Al2O3 dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  4. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  5. Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality?

    NASA Astrophysics Data System (ADS)

    Choudhury, Devika; Rajaraman, Gopalan; Sarkar, Shaibal K.

    2016-03-01

    The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface.The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface. Electronic supplementary information (ESI) available: Additional QCM results, FTIR spectra and DFT results. See DOI: 10.1039/c5nr06974b

  6. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  7. Atomic Layer Deposition of Al2O3 on WSe2 Functionalized by Titanyl Phthalocyanine.

    PubMed

    Park, Jun Hong; Fathipour, Sara; Kwak, Iljo; Sardashti, Kasra; Ahles, Christopher F; Wolf, Steven F; Edmonds, Mary; Vishwanath, Suresh; Xing, Huili Grace; Fullerton-Shirey, Susan K; Seabaugh, Alan; Kummel, Andrew C

    2016-07-26

    To deposit an ultrathin dielectric onto WSe2, monolayer titanyl phthalocyanine (TiOPc) is deposited by molecular beam epitaxy as a seed layer for atomic layer deposition (ALD) of Al2O3 on WSe2. TiOPc molecules are arranged in a flat monolayer with 4-fold symmetry as measured by scanning tunneling microscopy. ALD pulses of trimethyl aluminum and H2O nucleate on the TiOPc, resulting in a uniform deposition of Al2O3, as confirmed by atomic force microscopy and cross-sectional transmission electron microscopy. The field-effect transistors (FETs) formed using this process have a leakage current of 0.046 pA/μm(2) at 1 V gate bias with 3.0 nm equivalent oxide thickness, which is a lower leakage current than prior reports. The n-branch of the FET yielded a subthreshold swing of 80 mV/decade. PMID:27305595

  8. Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics

    NASA Astrophysics Data System (ADS)

    Chalker, P. R.; Marshall, P. A.; Dawson, K.; Brunell, I. F.; Sutcliffe, C. J.; Potter, R. J.

    2015-01-01

    We report the photochemical atomic layer deposition of Al2O3 thin films and the use of this process to achieve area-selective film deposition. A shuttered vacuum ultraviolet (VUV) light source is used to excite molecular oxygen and trimethyl aluminum to deposit films at 60°C. In-situ QCM and post-deposition ellipsometric measurements both show that the deposition rate is saturative as a function of irradiation time. Selective area deposition was achieved by projecting the VUV light through a metalized magnesium fluoride photolithographic mask and the selectivity of deposition on the illuminated and masked regions of the substrate is a logarithmic function of the UV exposure time. The Al2O3 films exhibit dielectric constants of 8 - 10 at 1 MHz after forming gas annealing, similar to films deposited by conventional thermal ALD.

  9. Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Zhu, Chunxiang; Li, Ming-Fu; Zhang, David Wei

    2005-08-01

    Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics have been investigated to replace conventional silicon oxide and nitride for radio frequency and analog metal-insulator-metal capacitors applications. In the case of 1-nm-Al2O3, sufficiently good electrical performances are achieved, including a high dielectric constant of ˜17, a small dissipation factor of 0.018 at 100kHz, an extremely low leakage current of 7.8×10-9A/cm2 at 1MV/cm and 125°C, perfect voltage coefficients of capacitance (74ppm/V2 and 10ppm/V). The quadratic voltage coefficient of capacitance decreases with the applied frequency due to the change of relaxation time with different carrier mobility in insulator, and correlates with the dielectric composition and thickness, which is of intrinsic property owing to electric field polarization. Furthermore, the conduction mechanism of the AHA dielectrics is also discussed, indicating the Schottky emission dominated at room temperature.

  10. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications.

    PubMed

    Wang, Lai-Guo; Qian, Xu; Cao, Yan-Qiang; Cao, Zheng-Yi; Fang, Guo-Yong; Li, Ai-Dong; Wu, Di

    2015-01-01

    We have demonstrated a flexible resistive random access memory unit with trilayer structure by atomic layer deposition (ALD). The device unit is composed of Al2O3/HfO2/Al2O3-based functional stacks on TiN-coated Si substrate. The cross-sectional HRTEM image and XPS depth profile of Al2O3/HfO2/Al2O3 on TiN-coated Si confirm the existence of interfacial layers between trilayer structures of Al2O3/HfO2/Al2O3 after 600°C post-annealing. The memory units of Pt/Al2O3/HfO2/Al2O3/TiN/Si exhibit a typical bipolar, reliable, and reproducible resistive switching behavior, such as stable resistance ratio (>10) of OFF/ON states, sharp distribution of set and reset voltages, better switching endurance up to 10(3) cycles, and longer data retention at 85°C over 10 years. The possible switching mechanism of trilayer structure of Al2O3/HfO2/Al2O3 has been proposed. The trilayer structure device units of Al2O3/HfO2/Al2O3 on TiN-coated Si prepared by ALD may be a potential candidate for oxide-based resistive random access memory. PMID:25852426

  11. In situ study of atomic layer deposition Al2O3 on GaP (100)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Brennan, B.; Qin, X.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

    2013-09-01

    The interfacial chemistry of atomic layer deposition (ALD) of Al2O3 on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A "self-cleaning" effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  12. Novel silicon surface passivation by Al2O3/ZnO/Al2O3 films deposited by thermal atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Kwang-Seok; Oh, Sung-Kwen; Shin, Hong-Sik; Yun, Ho-Jin; Kim, Seong-Hyeon; Lee, Ho-Ryeong; Han, Kyu-Min; Park, Ho-Yun; Lee, Hi-Deok; Lee, Ga-Won

    2014-01-01

    In this paper, a novel Al2O3/ZnO/Al2O3 stack is proposed as the silicon passivation layer for c-Si solar cell application. Recently, the Al2O3 film has been proved to be effective for passivating the p-type c-Si surface by forming the negative fixed oxide charge. It is confirmed by this experiment that the amount of negative fixed oxide charge can be controlled by inserting a ZnO interlayer (IL), which is explained by acceptor-like defect (VZn, Oi, and OZn) formation determined by the room-temperature photoluminescence (RTPL) analysis. The effect of ZnO IL is investigated using Al2O3 bottom layers of various thicknesses by electrical and physical analyses. The effective lifetime measurement shows that the electronic recombination losses at the silicon surface are reduced effectively by optimizing the Al2O3/ZnO/Al2O3 stack.

  13. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  14. CoFe2/Al2O3/PMNPT multiferroic heterostructures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Grocke, Garrett; Yanguas-Gil, Angel; Wang, Xinjun; Gao, Yuan; Sun, Nianxiang; Howe, Brandon; Chen, Xing

    2016-05-01

    Multiferroic materials and applications allow electric bias control of magnetism or magnetic bias control of polarization, enabling fast, compact, energy-efficient devices in RF/microwave communication systems such as filters, shifters, and antennas; electronics devices such as inductors and capacitors; and other magnetic material related applications including sensors and memories. In this manuscript, we utilize atomic layer deposition technology to grow magnetic CoFe metallic thin films onto PMNPT, with a ˜110 Oe electric field induced ferromagnetic resonance field shift in the CoFe/Al2O3/PMNPT multiferroic heterostructure. Our work demonstrates an atomic layer deposition fabricated multiferroic heterostructure with significant tunability and shows that the unique thin film growth mechanism will benefit integrated multiferroic application in near future.

  15. Atomic layer controlled deposition of Al 2O 3 films using binary reaction sequence chemistry

    NASA Astrophysics Data System (ADS)

    Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S. M.

    1996-11-01

    Al 2O 3 films with precise thicknesses and high conformality were deposited using sequential surface chemical reactions. To achieve this controlled deposition, a binary reaction for Al 2O 3 chemical vapor deposition (2Al(CH 3) 3 + 3H 2O → Al 2O 3 + 6CH 4) was separated into two half-reactions: (A) AlOH ∗ + Al(CH 3) 3 → AlOAl(CH 3) 2∗ + CH 4, (B) AlCH 3∗ + H 2O → AlOH ∗ + CH 4, where the asterisks designate the surface species. Trimethylaluminum (Al(CH 3) 3) (TMA) and H 2O reactants were employed alternately in an ABAB … binary reaction sequence to deposit Al 2O 3 films on single-crystal Si(100) and porous alumina membranes with pore diameters of ˜ 220 Å. Ellipsometric measurements obtained a growth rate of 1.1 Å/AB cycle on the Si(100) substrate at the optimal reaction conditions. The Al 2O 3 films had an index of refraction of n = 1.65 that is consistent with a film density of ϱ = 3.50 g/cm 3. Atomic force microscope images revealed that the Al 2O 3 films were exceptionally flat with a surface roughness of only ±3 Å ( rms) after the deposition of ˜ 270 Å using 250 AB reaction cycles. Al 2O 3 films were also deposited inside the pores of Anodisc alumina membranes. Gas flux measurements for H 2 and N 2 were consistent with a progressive pore reduction versus number of AB reaction cycles. Porosimetry measurements also showed that the original pore diameter of ˜ 220 Å was reduced to ˜ 130 Å after 120 AB reaction cycles.

  16. Characteristics of nanocomposite ZrO2/Al2O3 films deposited by plasma-enhanced atomic layer deposition.

    PubMed

    Yun, Sun Jin; Lim, Jung Wook; Kim, Hyun-Tak

    2007-11-01

    Nanocomposite ZrO2/Al2O3 (ZAO) films were deposited on Si by plasma-enhanced atomic layer deposition and the film characteristics including interfacial oxide formation, dielectric constant (k), and electrical breakdown strength were investigated without post-annealing process. In both the mixed and nano-laminated ZAO films, the thickness of the interfacial oxide layer (T(IL)) was considerably reduced compared to ZrO2 and Al2O3 films. The T(IL) was 0.8 nm in nano-composite films prepared at a mixing ratio (ZrO2:Al2O3) of 1:1. The breakdown strength and the leakage current level were greatly improved by adding Al2O3 as little as 7.9% compared to that of ZrO2 and were enhanced more with increasing content of Al2O3. The k of ZrO2 and mixed ZAO (Al2O3 7.9%) films were 20.0 and 16.5, respectively. These results indicate that the addition of Al2O3 to ZrO2 greatly improves the electrical properties with less cost of k compared to the addition of SiO2. PMID:18047146

  17. Properties of the c-Si/Al2O3 interface of ultrathin atomic layer deposited Al2O3 layers capped by SiNx for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Schuldis, D.; Richter, A.; Benick, J.; Saint-Cast, P.; Hermle, M.; Glunz, S. W.

    2014-12-01

    This work presents a detailed study of c-Si/Al2O3 interfaces of ultrathin Al2O3 layers deposited with atomic layer deposition (ALD), and capped with SiNx layers deposited with plasma-enhanced chemical vapor deposition. A special focus was the characterization of the fixed charge density of these dielectric stacks and the interface defect density as a function of the Al2O3 layer thickness for different ALD Al2O3 deposition processes (plasma-assisted ALD and thermal ALD) and different thermal post-deposition treatments. Based on theoretical calculations with the extended Shockley-Read-Hall model for surface recombination, these interface properties were found to explain well the experimentally determined surface recombination. Thus, these interface properties provide fundamental insights into to the passivation mechanisms of these Al2O3/SiNx stacks, a stack system highly relevant, particularly for high efficiency silicon solar cells. Based on these findings, it was also possible to improve the surface passivation quality of stacks with thermal ALD Al2O3 by oxidizing the c-Si surface prior to the Al2O3 deposition.

  18. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    NASA Astrophysics Data System (ADS)

    von Gastrow, Guillaume; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-12-01

    We study the impact of ozone-based Al2O3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 1011 eV-1 cm-2, and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  19. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  20. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-06-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage (C-V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage (R-V) characteristics of variable-area photodiodes. The minority carrier lifetime, C-V characteristics, and R-V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  1. In situ atomic layer deposition half cycle study of Al2O3 growth on AlGaN

    NASA Astrophysics Data System (ADS)

    Brennan, Barry; Qin, Xiaoye; Dong, Hong; Kim, Jiyoung; Wallace, Robert M.

    2012-11-01

    The atomic layer deposition (ALD) of Al2O3 on the native oxide and hydrofluoric acid treated Al0.25Ga0.75 N surface was studied using in situ X-ray photoelectron spectroscopy (XPS), after each individual "half cycle" of the ALD process. Initially, Al2O3, Ga2O3, and N-O states were detected on both surfaces at differing concentrations. During the course of the deposition process, the N-O bonds are seen to decrease to within XPS detection limits, as well as a small decrease in the Ga2O3 concentration. The Al2O3 growth rate initially is seen to be very low, indication of low reactivity between the trimethyl-aluminum molecule and the AlGaN surface.

  2. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Langereis, E.; Keijmel, J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-06-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25-150°C, -CH3 and -OH were unveiled as dominant surface groups after the Al(CH3)3 precursor and O2 plasma half-cycles, respectively. At lower temperatures more -OH and C-related impurities were found to be incorporated in the Al2O3 film, but the impurity level could be reduced by prolonging the plasma exposure. The results demonstrate that -OH surface groups rule the surface chemistry of the Al2O3 process and likely that of plasma-assisted ALD of metal oxides from organometallic precursors in general.

  3. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  4. Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al2O3

    NASA Astrophysics Data System (ADS)

    Park, Dong-Wook; Mikael, Solomon; Chang, Tzu-Hsuan; Gong, Shaoqin; Ma, Zhenqiang

    2015-03-01

    A graphene transistor with a bottom-gate coplanar structure and an atomic layer deposition (ALD) aluminum oxide (Al2O3) gate dielectric is demonstrated. Wetting properties of ALD Al2O3 under different deposition conditions are investigated by measuring the surface contact angle. It is observed that the relatively hydrophobic surface is suitable for adhesion between graphene and ALD Al2O3. To achieve hydrophobic surface of ALD Al2O3, a methyl group (CH3)-terminated deposition method has been developed and compared with a hydroxyl group (OH)-terminated deposition. Based on this approach, bottom-gate coplanar graphene field-effect transistors are fabricated and characterized. A post-thermal annealing process improves the performance of the transistors by enhancing the contacts between the source/drain metal and graphene. The fabricated transistor shows an Ion/Ioff ratio, maximum transconductance, and field-effect mobility of 4.04, 20.1 μS at VD = 0.1 V, and 249.5 cm2/V.s, respectively.

  5. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  6. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Daicho, Akira; Saito, Tatsuya; Kurihara, Shinichiro; Hiraiwa, Atsushi; Kawarada, Hiroshi

    2014-06-01

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450 °C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al2O3 film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al2O3 deposition by ALD with H2O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500 °C by the passivation with thick Al2O3 film thicker than 38 nm deposited by ALD at 450 °C. After the annealing at 550 °C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al2O3 films formed from 200 to 400 °C by air annealing at 550 °C for 1 h. On the other hand, the patterns were no longer observed at 450 °C deposition. Thus, this 450 °C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  7. Controlled direct growth of Al2O3-doped HfO2 films on graphene by H2O-based atomic layer deposition.

    PubMed

    Zheng, Li; Cheng, Xinhong; Yu, Yuehui; Xie, Yahong; Li, Xiaolong; Wang, Zhongjian

    2015-02-01

    Graphene has been drawing worldwide attention since its discovery in 2004. In order to realize graphene-based devices, thin, uniform-coverage and pinhole-free dielectric films with high permittivity on top of graphene are required. Here we report the direct growth of Al2O3-doped HfO2 films onto graphene by H2O-based atom layer deposition (ALD). Al2O3-onto-HfO2 stacks benefited the doping of Al2O3 into HfO2 matrices more than HfO2-onto-Al2O3 stacks did due to the micro-molecular property of Al2O3 and the high chemical activity of trimethylaluminum (TMA). Al2O3 acted as a network modifier, maintained the amorphous structure of the film even to 800 °C, and made the film smooth with a root mean square (RMS) roughness of 0.8 nm, comparable to the surface of pristine graphene. The capacitance and the relative permittivity of Al2O3-onto-HfO2 stacks were up to 1.18 μF cm(-2) and 12, respectively, indicating the high quality of Al2O3-doped HfO2 films on graphene. Moreover, the growth process of Al2O3-doped HfO2 films introduced no detective defects into graphene confirmed by Raman measurements. PMID:25519447

  8. Performance and retention characteristics of nanocrystalline Si floating gate memory with an Al2O3 tunnel layer fabricated by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyuan; Wang, Wen; Yang, Huafeng; Jiang, Xiaofan; Yu, Jie; Qin, Hua; Xu, Ling; Chen, Kunji; Huang, Xinfan; Li, Wei; Xu, Jun; Feng, Duan

    2016-02-01

    The down-scaling of nanocrystal Si (nc-Si) floating gate memory must overcome the challenge of leakage current induced by the conventional ultra-thin tunnel layer. We demonstrate that an improved memory performance based on the Al/SiNx/nc-Si/Al2O3/Si structure can be achieved by adopting the Al2O3 tunnel layer fabricated by plasma-enhanced atomic layer deposition. A larger memory window of 7.9 V and better retention characteristics of 4.7 V after 105 s can be obtained compared with the devices containing a conventional SiO2 tunnel layer of equivalent thickness. The capacitance-voltage characteristic reveals that the Al2O3 tunnel layer has a smaller electron barrier height, which ensures that more electrons are injected into the nc-Si dots through the Al2O3/Si interface. The analysis of the conductance-voltage and high-resolution cross-section transmission microscopy reveals that the smaller nc-Si dots dominate in the charge injection in the nc-Si floating gate MOS device with an Al2O3 tunnel layer. With an increase of the nc-Si size, both nc-Si and the interface contribute to the charge storage capacity and retention. The introduction of the Al2O3 tunnel layer in nc-Si floating gate memory provides a method to achieve an improved performance of nc-Si floating gate memory.

  9. Silicon passivation and tunneling contact formation by atomic layer deposited Al2O3/ZnO stacks

    NASA Astrophysics Data System (ADS)

    Garcia-Alonso, D.; Smit, S.; Bordihn, S.; Kessels, W. M. M.

    2013-08-01

    The passivation of Si by Al2O3/ZnO stacks, which can serve as passivated tunneling contacts or heterojunctions in silicon photovoltaics, was investigated. It was demonstrated that stacks with Al2O3 thicknesses >3 nm lead to lower surface recombination velocities (Seff,max < 4 cm s-1) on n- and p-type Si than single-layer Al2O3 films for a wide range of ZnO thicknesses and irrespective of Al-doping of the ZnO. Stacks with an Al2O3 thickness of 1-2 nm were found to combine reasonable surface passivation (Seff,max = 100-700 cm s-1) with sufficiently high tunneling current densities (10-300 mA cm-2 at 700 mV).

  10. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer

    NASA Astrophysics Data System (ADS)

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-01

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (˜14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.

  11. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition

    PubMed Central

    2013-01-01

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD. PMID:23413804

  12. Preparation of ZnO/Al2O3 catalysts by using atomic layer deposition for plasma-assisted non-oxidative methane coupling

    NASA Astrophysics Data System (ADS)

    Jeong, Myung-Geun; Kim, Young Dok; Park, Sunyoung; Kasinathan, Palraj; Hwang, Young Kyu; Chang, Jong-San; Park, Yong-Ki

    2016-05-01

    We prepared a ZnO/mesoporous Al2O3-shell/core structure by using atomic layer deposition (ALD) of ZnO on commercially-available mesoporous Al2O3. We used various analysis techniques such as scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and surface area and pore size analyses based on nitrogen isotherm data. A 200 nm-thick slab of mesoporous Al2O3 particles was decorated by ZnO upon ALD deposition, whereas the inner part of the Al2O3 particle was free of ZnO. We evaluated the catalytic activity of the bare and the ZnO-covered Al2O3 for plasma-assisted nonoxidative coupling of methane. The catalytic behavior was shown to be sensitive to the amount of ZnO deposited. Particularly, 40-cycled ZnO/Al2O3 showed an enhanced selectivity to the olefin product with almost the same CH4 conversion as that of bare Al2O3. Preparation of the shell/core structure by using ALD can be an interesting strategy for finding highly-efficient catalysts in a plasma-assisted catalytic reaction.

  13. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    NASA Astrophysics Data System (ADS)

    Hirvikorpi, Terhi; Vähä-Nissi, Mika; Harlin, Ali; Salomäki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  14. Imaging of oxide charges and contact potential difference fluctuations in atomic layer deposited Al2O3 on Si

    NASA Astrophysics Data System (ADS)

    Sturm, J. M.; Zinine, A. I.; Wormeester, H.; Poelsema, Bene; Bankras, R. G.; Holleman, J.; Schmitz, J.

    2005-03-01

    Ultrathin 2.5nm high-k aluminum oxide (Al2O3) films on p-type silicon (001) deposited by atomic layer deposition (ALD) were investigated with noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum, using a conductive tip. Constant force gradient images revealed the presence of oxide charges and experimental observations at different tip-sample potentials were compared with calculations of the electric force gradient based on a spherical tip model. This model could be substantially improved by the incorporation of the image of the tip in the semiconductor substrate. Based on the signals of different oxide charges observed, a homogenous depth distribution of those charges was derived. Application of a potential difference between sample and tip was found to result in a net electric force depending on the contact potential difference (CPD) and effective tip-sample capacitance, which depends on the depletion or accumulation layer that is induced by the bias voltage. CPD images could be constructed from height-voltage spectra with active feedback. Apart from oxide charges large-scale (150-300nm lateral size) and small-scale (50-100nm) CPD fluctuations were observed, the latter showing a high degree of correlation with topography features. This correlation might be a result from the surface-inhibited growth mode of the investigated layers.

  15. Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride.

    PubMed

    Lee, Younghee; George, Steven M

    2015-02-24

    The atomic layer etching (ALE) of Al2O3 was demonstrated using sequential, self-limiting thermal reactions with tin(II) acetylacetonate (Sn(acac)2) and hydrogen fluoride (HF) as the reactants. The Al2O3 samples were Al2O3 atomic layer deposition (ALD) films grown using trimethylaluminum and H2O. The HF source was HF-pyridine. Al2O3 was etched linearly with atomic level precision versus number of reactant cycles. The Al2O3 ALE was monitored at temperatures from 150 to 250 °C. Quartz crystal microbalance (QCM) studies revealed that the sequential Sn(acac)2 and HF reactions were self-limiting versus reactant exposure. QCM measurements also determined that the mass change per cycle (MCPC) increased with temperature from -4.1 ng/(cm(2) cycle) at 150 °C to -18.3 ng/(cm(2) cycle) at 250 °C. These MCPC values correspond to etch rates from 0.14 Å/cycle at 150 °C to 0.61 Å/cycle at 250 °C based on the Al2O3 ALD film density of 3.0 g/cm(3). X-ray reflectivity (XRR) analysis confirmed the linear removal of Al2O3 and measured an Al2O3 ALE etch rate of 0.27 Å/cycle at 200 °C. The XRR measurements also indicated that the Al2O3 films were smoothed by Al2O3 ALE. The overall etching reaction is believed to follow the reaction Al2O3 + 6Sn(acac)2 + 6HF → 2Al(acac)3 + 6SnF(acac) + 3H2O. In the proposed reaction mechanism, the Sn(acac)2 reactant donates acac to the substrate to produce Al(acac)3. The HF reactant allows SnF(acac) and H2O to leave as reaction products. The thermal ALE of many other metal oxides using Sn(acac)2 or other metal β-diketonates, together with HF, should be possible by a similar mechanism. This thermal ALE mechanism may also be applicable to other materials such as metal nitrides, metal phosphides, metal sulfides and metal arsenides. PMID:25604976

  16. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-01

    Atomic layer deposition (ALD) of Aluminum oxide (Al2O3) is employed to optimize the back contact of thin film CdTe solar cells. Al2O3 layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al2O3 deposition, compared with the efficiency of 10.7% without Al2O3 modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al2O3 maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al2O3 modification layer features a desired low-density of interface state of 8 × 1010 cm-2 by estimation.

  17. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system

    NASA Astrophysics Data System (ADS)

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-02-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage ( V oc) and short-circuit current ( J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm2, fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  18. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system.

    PubMed

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-01-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved. PMID:25852389

  19. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere. PMID:27483916

  20. Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

    PubMed

    Wan, Zhixin; Zhang, Teng Fei; Lee, Han-Bo-Ram; Yang, Ji Hoon; Choi, Woo Chang; Han, Byungchan; Kim, Kwang Ho; Kwon, Se-Hun

    2015-12-01

    A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion. PMID:26554497

  1. First-Principles Study on the Thermal Stability of LiNiO2 Materials Coated by Amorphous Al2O3 with Atomic Layer Thickness.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2015-06-01

    Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries. PMID:25980957

  2. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    PubMed

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption. PMID:27405514

  3. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Kim, Kyunghun; Park, Seonuk; Jeong, Yong Jin; Kim, Haekyoung; Chung, Dae Sung; Kim, Se Hyun; Park, Chan Eon

    2014-05-14

    Organic electronic devices require a passivation layer that protects the active layers from moisture and oxygen because most organic materials are very sensitive to such gases. Passivation films for the encapsulation of organic electronic devices need excellent stability and mechanical properties. Although Al2O3 films obtained with plasma enhanced atomic layer deposition (PEALD) have been tested as passivation layers because of their excellent gas barrier properties, amorphous Al2O3 films are significantly corroded by water. In this study, we examined the deformation of PEALD Al2O3 films when immersed in water and attempted to fabricate a corrosion-resistant passivation film by using a PEALD-based Al2O3/TiO2 nanolamination (NL) technique. Our Al2O3/TiO2 NL films were found to exhibit excellent water anticorrosion and low gas permeation and require only low-temperature processing (<100 °C). Organic thin film transistors with excellent air-stability (52 days under high humidity (a relative humidity of 90% and a temperature of 38 °C)) were fabricated. PMID:24712401

  4. Strong electroluminescence from SiO2-Tb2O3-Al2O3 mixed layers fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Rebohle, L.; Braun, M.; Wutzler, R.; Liu, B.; Sun, J. M.; Helm, M.; Skorupa, W.

    2014-06-01

    We report on the bright green electroluminescence (EL) with power efficiencies up to 0.15% of SiO2-Tb2O3-mixed layers fabricated by atomic layer deposition and partly co-doped with Al2O3. The electrical, EL, and breakdown behavior is investigated as a function of the Tb and the Al concentration. Special attention has been paid to the beneficial role of Al2O3 co-doping which improves important device parameters. In detail, it increases the maximum EL power efficiency and EL decay time, it nearly doubles the fraction of excitable Tb3+ ions, it shifts the region of high EL power efficiencies to higher injection currents, and it reduces the EL quenching over the device lifetime by an approximate factor of two. It is assumed that the presence of Al2O3 interferes the formation of Tb clusters and related defects. Therefore, the system SiO2-Tb2O3-Al2O3 represents a promising alternative for integrated, Si-based light emitters.

  5. Properties of Ultrathin Al2O3-TiO2 Nanolaminate Films for Gate Dielectric Applications Deposited by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Garces, Nelson; Meyer, David; Nepal, Neeraj; Wheeler, Virginia; Eddy, Charles

    2012-02-01

    High permittivity dielectrics such as Al2O3, HfO2, Ta2O5, TiO2, etc., are an essential component of aggressively-scaled III-V and graphene field effect transistors (FETs) where insulators are necessary to reduce gate leakage current while maintaining high gate capacitance and charge control of the channel. Atomic layer deposition (ALD) has the capability to deposit hybrid films, or nanolaminates, of two or more dielectrics that have unique properties. Thin [Al2O3+TiO2] nanolaminates with varying TiO2 and Al2O3 content were deposited on n-Si substrates at ˜225-300 C using ALD. A nanolaminate is composed of bilayers, defined as the sum of (x)Al2O3 and (y)TiO2, where x, and y indicate the number of times a component monolayer is repeated. While the overall thickness of the dielectric was held at ˜ 17-20 nm, the relative ratio of Al2O3 to TiO2 in the bilayer stack was varied to evaluate changes in the material properties and electrical performance of the oxides. C-V and I-V measurements on various [(x)TiO2+(y)Al2O3] MOS capacitors were taken. The high-TiO2-content films show limited evidence of oxide charge trapping and relatively large dielectric constants (κ˜15), whereas the high-Al2O3-content films offer a larger optical bandgap and improved suppression of leakage current. We will discuss the properties of very thin nanolaminates and their possible use as gate oxides. Morphological, electrical, and XPS composition assessments will be presented.

  6. Preparation and characterization of thin films of MgO, Al2O3 and MgAl2O4 by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Ron; Kitai, Adrian H.

    1993-02-01

    MgO, Al2O3 and MgAl2O4 thin films were deposited on silicon substrates at various temperatures by the atomic layer deposition (ALD) method using bis(cyclopentadienyl)magnesium, triethylaluminum, and H2O and were characterized systematically. High-quality polycrystalline MgO films were deposited for a substrate temperature above 500°C, and amorphous thin films were deposited around 400°C. The deposited Al2O3 and MgAl2O4 thin films were characterized as amorphous in structure. Applicability of ALD to complex oxides is discussed.

  7. Atomic layer deposition of Al2O3 on germanium-tin (GeSn) and impact of wet chemical surface pre-treatment

    NASA Astrophysics Data System (ADS)

    Gupta, Suyog; Chen, Robert; Harris, James S.; Saraswat, Krishna C.

    2013-12-01

    GeSn is quickly emerging as a potential candidate for high performance Si-compatible transistor technology. Fabrication of high-ĸ gate stacks on GeSn with good interface properties is essential for realizing high performance field effect transistors based on this material system. We demonstrate an effective surface passivation scheme for n-Ge0.97Sn0.03 alloy using atomic layer deposition (ALD) of Al2O3. The effect of pre-ALD wet chemical surface treatment is analyzed and shown to be critical in obtaining a good quality interface between GeSn and Al2O3. Using proper surface pre-treatment, mid-gap trap density for the Al2O3/GeSn interface of the order of 1012 cm-2 has been achieved.

  8. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack

    NASA Astrophysics Data System (ADS)

    Qian, Shi-Bing; Zhang, Wen-Peng; Liu, Wen-Jun; Ding, Shi-Jin

    2015-12-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al2O3/Pt nanocrystals/Al2O3 gate stack under a maximal processing temperature of 300 oC. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gate bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at -17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at -14 V, a memory window of 2.08 V was still maintained after 103 P/E cycles, and a memory window of 1.1 V was retained after 105 s retention time.

  9. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    PubMed

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-01

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation. PMID:26243694

  10. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    PubMed Central

    Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.

    2013-01-01

    This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  11. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors. PMID:27117229

  12. Oxide Charge Engineering of Atomic Layer Deposited AlOxNy/Al2O3 Gate Dielectrics: A Path to Enhancement Mode GaN Devices.

    PubMed

    Negara, M A; Kitano, M; Long, R D; McIntyre, P C

    2016-08-17

    Nitrogen incorporation to produce negative fixed charge in Al2O3 gate insulator layers is investigated as a path to achieve enhancement mode GaN device operation. A uniform distribution of nitrogen across the resulting AlOxNy films is obtained using N2 plasma enhanced atomic layer deposition (ALD). The flat band voltage (Vfb) increases to a significantly more positive value with increasing nitrogen concentration. Insertion of a 2 nm thick Al2O3 interlayer greatly decreases the trap density of the insulator/GaN interface, and reduces the voltage hysteresis and frequency dispersion of gate capacitance compared to single-layer AlOxNy gate insulators in GaN MOSCAPs. PMID:27459343

  13. Trapped charge densities in Al2O3-based silicon surface passivation layers

    NASA Astrophysics Data System (ADS)

    Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo

    2016-06-01

    In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.

  14. Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al2O3 dielectric

    NASA Astrophysics Data System (ADS)

    Rafí, J. M.; Pellegrini, G.; Fadeyev, V.; Galloway, Z.; Sadrozinski, H. F.-W.; Christophersen, M.; Phlips, B. F.; Lynn, D.; Kierstead, J.; Hoeferkamp, M.; Gorelov, I.; Palni, P.; Wang, R.; Seidel, S.

    2016-02-01

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al2O3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al2O3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance-voltage and current-voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extracted for all non-irradiated capacitors, superior radiation hardness is obtained for MOS structures with alumina layers grown with H2O instead of O3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H2O-grown Al2O3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al2O3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O3-grown MOS structures. This can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.

  15. Gamma and proton irradiation effects and thermal stability of electrical characteristics of metal-oxide-silicon capacitors with atomic layer deposited Al2O3 dielectric

    DOE PAGESBeta

    J. M. Rafi; Lynn, D.; Pellegrini, G.; Fadeyev, V.; Galloway, Z.; Sadrozinski, H. F. -W.; Christophersen, M.; Philips, B. F.; Kierstead, J.; Hoeferkamp, M.; et al

    2015-12-11

    The radiation hardness and thermal stability of the electrical characteristics of atomic layer deposited Al2O3 layers to be used as passivation films for silicon radiation detectors with slim edges are investigated. To directly measure the interface charge and to evaluate its change with the ionizing dose, metal-oxide-silicon (MOS) capacitors implementing differently processed Al2O3 layers were fabricated on p-type silicon substrates. Qualitatively similar results are obtained for degradation of capacitance–voltage and current–voltage characteristics under gamma and proton irradiations up to equivalent doses of 30 Mrad and 21.07 Mrad, respectively. While similar negative charge densities are initially extracted for all non-irradiated capacitors,more » superior radiation hardness is obtained for MOS structures with alumina layers grown with H2O instead of O3 as oxidant precursor. Competing effects between radiation-induced positive charge trapping and hydrogen release from the H2O-grown Al2O3 layers may explain their higher radiation resistance. Finally, irradiated and non-irradiated MOS capacitors with differently processed Al2O3 layers have been subjected to thermal treatments in air at temperatures ranging between 100 °C and 200 °C and the thermal stability of their electrical characteristics has been evaluated. Partial recovery of the gamma-induced degradation has been noticed for O3-grown MOS structures. Lastly, this can be explained by a trapped holes emission process, for which an activation energy of 1.38 ± 0.15 eV has been extracted.« less

  16. Self-cleaning and surface recovery with arsine pretreatment in ex situ atomic-layer-deposition of Al2O3 on GaAs

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-Wei; Hennessy, John; Antoniadis, Dimitri; Fitzgerald, Eugene A.

    2009-08-01

    Annealing native oxide covered GaAs samples in Arsine(AsH3) prior to atomic-layer-deposition of Al2O3 with trimethyaluminum (TMA) and isopropanol (IPA) results in capacitance-voltage (C-V) characteristics of the treated samples that resemble the superior C-V characteristics of p-type GaAs grown by an in situ metal-organic chemical vapor deposition process. Both TMA and IPA show self-cleaning effect on removing the native oxide in ex situ process, little evidence of a native oxide was observed with high resolution transmission electron microscopy at the Al2O3/GaAs interface. The discrepancy in the C-V characteristics was observed in in situ p- and n-type GaAs samples.

  17. Negative charge trapping effects in Al2O3 films grown by atomic layer deposition onto thermally oxidized 4H-SiC

    NASA Astrophysics Data System (ADS)

    Schilirò, Emanuela; Lo Nigro, Raffaella; Fiorenza, Patrick; Roccaforte, Fabrizio

    2016-07-01

    This letter reports on the negative charge trapping in Al2O3 thin films grown by atomic layer deposition onto oxidized silicon carbide (4H-SiC). The films exhibited a permittivity of 8.4, a breakdown field of 9.2 MV/cm and small hysteresis under moderate bias cycles. However, severe electron trapping inside the Al2O3 film (1 × 1012 cm-2) occurs upon high positive bias stress (>10V). Capacitance-voltage measurements at different temperatures and stress conditions have been used to determine an activation energy of 0.1eV. The results provide indications on the possible nature of the trapping defects and, hence, on the strategies to improve this technology for 4H-SiC devices.

  18. Bi-layer Al2O3/ZnO atomic layer deposition for controllable conductive coatings on polypropylene nonwoven fiber mats

    NASA Astrophysics Data System (ADS)

    Sweet, William J.; Jur, Jesse S.; Parsons, Gregory N.

    2013-05-01

    Electrically conductive zinc oxide coatings are applied to polypropylene nonwoven fiber mats by atomic layer deposition (ALD) at 50-155 °C. A low temperature (50 °C) aluminum oxide ALD base layer on the polypropylene limits diffusion of diethyl zinc into the polypropylene, resulting in ZnO layers with properties similar to those on planar silicon. Effective conductivity of 63 S/cm is achieved for ZnO on Al2O3 coated polypropylene fibers, and the fibers remain conductive for months after coating. Without the Al2O3 precoating, the effective conductivity was much smaller, consistent with precursor diffusion into the polymer and sub-surface ZnO nucleation. Mechanical robustness tests showed that conductive samples bent around a 6 mm radius maintained up to 40% of the pre-bending conductivity. Linkages between electrical conductivity and mechanical performance will help inform materials choice for flexible and porous electronics including textile-based sensors and antennas.

  19. Interface Trap Density Reduction for Al2O3/GaN (0001) Interfaces by Oxidizing Surface Preparation prior to Atomic Layer Deposition.

    PubMed

    Zhernokletov, Dmitry M; Negara, Muhammad A; Long, Rathnait D; Aloni, Shaul; Nordlund, Dennis; McIntyre, Paul C

    2015-06-17

    We correlate interfacial defect state densities with the chemical composition of the Al2O3/GaN interface in metal-oxide-semiconductor (MOS) structures using synchrotron photoelectron emission spectroscopy (PES), cathodoluminescence and high-temperature capacitance-voltage measurements. The influence of the wet chemical pretreatments involving (1) HCl+HF etching or (2) NH4OH(aq) exposure prior to atomic layer deposition (ALD) of Al2O3 were investigated on n-type GaN (0001) substrates. Prior to ALD, PES analysis of the NH4OH(aq) treated surface shows a greater Ga2O3 component compared to either HCl+HF treated or as-received surfaces. The lowest surface concentration of oxygen species is detected on the acid etched surface, whereas the NH4OH treated sample reveals the lowest carbon surface concentration. Both surface pretreatments improve electrical characteristics of MOS capacitors compared to untreated samples by reducing the Al2O3/GaN interface state density. The lowest interfacial trap density at energies in the upper band gap is detected for samples pretreated with NH4OH. These results are consistent with cathodoluminescence data indicating that the NH4OH treated samples show the strongest band edge emission compared to as-received and acid etched samples. PES results indicate that the combination of reduced carbon contamination while maintaining a Ga2O3 interfacial layer by NH4OH(aq) exposure prior to ALD results in fewer interface traps after Al2O3 deposition on the GaN substrate. PMID:25988586

  20. A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Ritter, Dan; Eizenberg, Moshe

    2016-02-01

    Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

  1. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition.

    PubMed

    Zeng, Min; Peng, Xiange; Liao, Jianjun; Wang, Guizhen; Li, Yanfang; Li, Jianbao; Qin, Yong; Wilson, Joshua; Song, Aimin; Lin, Shiwei

    2016-06-29

    While TiO2 nanotube arrays cosensitized with CdS and PbS quantum dots can achieve water splitting under visible light excitation, the use of quantum dots is limited by the relatively slow interfacial hole transfer rate and low internal quantum efficiencies in the visible region. Al2O3 overcoating by atomic layer deposition (ALD) can drastically enhance the photoelectrochemical performance of the quantum dot-sensitized TiO2 nanotube arrays. 30 ALD cycles of the Al2O3 overlayer can achieve a good balance between surface coverage and charge transfer resistance. The resulting maximum photocurrent density of 5.19 mA cm(-2) under simulated solar illumination shows a 52 times improvement over the pure TiO2 nanotube arrays, and more significantly, a 60% enhancement over bare quantum dot-sensitized TiO2 nanotube arrays. The incident photon-to-current conversion efficiency can reach the record value of 83% at 350 nm and remain above 30% up to 450 nm. A systematic examination of the role of the ALD Al2O3 overlayer indicates that surface recombination passivation, catalytic improvement in interfacial charge transfer kinetics, and chemical stabilization might synergistically enhance the photoelectrochemical performance in the visible region. These results provide a physical insight into the facile surface treatment, which could be applied to develop and optimize high-performance photoelectrodes for artificial photosynthesis. PMID:27138558

  2. A Study on the Growth Behavior and Stability of Molecular Layer Deposited Alucone Films Using Diethylene Glycol and Trimethyl Aluminum Precursors, and the Enhancement of Diffusion Barrier Properties by Atomic Layer Deposited Al2O3 Capping.

    PubMed

    Choi, Dong-Won; Yoo, Mi; Lee, Hyuck Mo; Park, Jozeph; Kim, Hyun You; Park, Jin-Seong

    2016-05-18

    As a route to the production of organic-inorganic hybrid multilayers, the growth behavior of molecular layer deposited (MLD) alucone and atomic layer deposited (ALD) Al2O3 films on top of each other was examined. MLD alucone films were prepared using trimethyl aluminum and diethylene glycol precursors, the latter resulting in faster growth rates than ethylene glycol precursors. The sensitivity of individual alucone films with respect to ambient exposure was found to be related to moisture permeation and hydration reactions, of which the mechanism is studied by density functional theory calculations. Deleterious effects such as thickness reduction over time could be suppressed by applying a protective Al2O3 layer on top of alucone. A preliminary nucleation period was required in the ALD process of Al2O3 films on alucone surfaces, prior to reaching a linear regime where the thickness increases linearly with respect to the number of ALD cycles. The same behavior was observed for alucone growing on Al2O3. The protective Al2O3 films were found to effectively suppress moisture permeation, thus isolating the underlying alucone from the surrounding environment. The water vapor transmission rate was greatly reduced when an Al2O3/alucone/Al2O3 multilayer stack was formed, which suggests that proper combinations of organic/inorganic hybrid structures may provide chemically stable platforms, especially for mechanically flexible applications. PMID:27117392

  3. Arsenic decapping and half cycle reactions during atomic layer deposition of Al2O3 on In0.53Ga0.47As(001)

    NASA Astrophysics Data System (ADS)

    Shin, Byungha; Clemens, Jonathon B.; Kelly, Michael A.; Kummel, Andrew C.; McIntyre, Paul C.

    2010-06-01

    In situ x-ray photoelectron spectroscopy was performed during thermal desorption of a protective As layer and subsequent atomic layer deposition (ALD) of Al2O3 on In0.53Ga0.47As(001). H2O dosing on the As-decapped surface caused formation of As oxides and As hydroxides, which were reduced by a subsequent trimethylaluminum (TMA) pulse. However, when a TMA pulse was performed first, the In0.53Ga0.47As(001) surface did not oxidize during subsequent ALD cycles, suggesting passivation by TMA adsorption at water-reactive sites. Scanning tunneling microscopy performed on a structurally-similar InAs(001) surface after H2O dosing revealed that surface defects are created by displacement of surface As atoms during oxidation. These surface defects act as interface states, consistent with the inferior capacitance-voltage characteristics of H2O-first ALD-Al2O3 capacitors compared to TMA-first samples.

  4. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-01

    The Al2O3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H2O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D2O instead of H2O in the ALD and found that the Al2O3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH3 groups than the high-temperature film. This CH3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H2O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H2O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D2O-oxidant ALD but found that the mass density and dielectric constant of D2O-grown Al2O3 films are smaller than those of H2O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al2O3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.

  5. Thickness effect on the optical and morphological properties in Al2O3/ZnO nanolaminate thin films prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    López, J.; Martínez, J.; Abundiz, N.; Domínguez, D.; Murillo, E.; Castillón, F. F.; Machorro, R.; Farías, M. H.; Tiznado, H.

    2016-02-01

    In this work, we studied the optical and morphological properties of ultrathin nanolaminate films based on Al2O3/ZnO (AZ) bilayers stack. The films were deposited on Si (100) by means of thermal atomic layer deposition (ALD) technique. The bilayer thicknesses (ratio = 1:1) were 0.2, 1, 2, 4, 10 and 20 nm. Refractive index (n) and band gap (Eg) of each nanolaminate were studied via spectroscopic ellipsometry (SE), and spectral reflectance ultraviolet-visible spectroscopy (UV-vis). Surface morphology and roughness parameters of the nanolaminates were measured by Atomic Force Microscopy (AFM). The optical and morphological properties were shown highly dependent on the bilayer thickness. Ellipsometric data treated through the Cody-Lorentz optical model revealed that the refractive index decreases for thinner bilayers. A sharp intensity decay of refractive index and peaks at the UV region (200-400 nm) indicated increased transparency for thinner bilayers. It is also shown that the band gap is tunable. The maximum band gap value was 4.8 eV. These results reveal that ZnO combined with Al2O3 as bilayers stack can be converted into a dielectric material with enhanced band gap, opening the possibility for new optical and dielectric applications.

  6. Atomic-layer-deposited Al2O3-HfO2 laminated and sandwiched dielectrics for metal insulator metal capacitors

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Zhang, David Wei; Wang, Li-Kang

    2007-02-01

    Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited Al2O3-HfO2 laminated and sandwiched dielectrics have been fabricated and electrically compared for analog circuit applications. The experimental results indicate that the laminated dielectrics exhibit much better leakage and breakdown characteristics than the sandwiched ones while maintaining higher capacitance densities and acceptable voltage linearity. In respect of the 1 nm Al2O3 and 10 nm HfO2 laminated dielectric, the resulting capacitor offers an extremely low leakage current of 2.4 × 10-9 A cm-2 at 8 V and a breakdown electric field of ~3.3 MV cm-1 at 125 °C together with a capacitance density of ~3.1 fF µm-2 and voltage coefficients of capacitance of 100 ppm V-2 and -80 ppm V-1 at 100 kHz. The superiority of the laminated dielectrics correlates with inhibition of HfO2 crystallization, discontinuity of the grain boundary channels from the top to the bottom and changes of the dielectric electronic properties due to the bonding and polarization effects at the multi-interfaces.

  7. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-09-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  8. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    PubMed

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions. PMID:26415539

  9. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Ismagilov, Rinat R.; Smolnikova, Elena A.; Obraztsova, Ekaterina A.; Tuyakova, Feruza; Obraztsov, Alexander N.

    2016-03-01

    Atomic layer deposition (ALD) of metal oxides (MO) was used to modify the properties of nanographite (NG) films produced by direct current plasma-enhanced chemical vapor deposition technique. NG films consist of a few layers of graphene flakes (nanowalls) and nanoscrolls homogeneously distributed over a silicon substrate with a predominantly vertical orientation of graphene sheets to the substrate surface. TiO2 and Al2O3 layers, with thicknesses in the range of 50 to 250 nm, were deposited on NG films by ALD. The obtained NG-MO composite materials were characterized by scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy. It was found that ALD forms a uniform coating on graphene flakes, while on the surface of needle-like nanoscrolls it forms spherical nanoparticles. Field emission properties of the films were measured in a flat vacuum diode configuration. Analysis based on obtained current-voltage characteristics and electrostatic calculations show that emission from NG-TiO2 films is determined by the nanoscrolls protruding from the TiO2 coverage. The TiO2 layers with thicknesses of <200 nm almost do not affect the overall field emission characteristics of the films. At the same time, these layers are able to stabilize the NG films' surface and can lead to an improvement of the NG cold cathode performance in vacuum electronics.

  10. Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Dingemans, G.; Terlinden, N. M.; Verheijen, M. A.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2011-11-01

    Al2O3 synthesized by atomic layer deposition (ALD) on H-terminated Si(100) exhibits a very thin (˜1 nm) interfacial SiOx layer. At this interface, a high fixed negative charge density, Qf, is present after annealing which contributes to ultralow surface recombination velocities <2 cm/s. Here, we identify the thickness of the interfacial SiO2 layer as a key parameter determining Qf. The SiO2 thickness was controlled by intentionally growing ultrathin SiO2 interlayers (0.7-30 nm) by ALD. Optical second-harmonic generation spectroscopy revealed a marked decrease in Qf for increasing SiO2 thickness between 0 and 5 nm. This phenomenon is consistent with charge injection across the interfacial layer during annealing. For thicker SiO2 interlayers (>˜5 nm), the polarity of the effective charge density changed from negative to positive. The observed changes in Qf and the associated field-effect passivation had a significant influence on the injection-level-dependent minority carrier lifetime of Si.

  11. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  12. Effects of the interfacial layer on electrical characteristics of Al 2O 3/TiO 2/Al 2O 3 thin films for gate dielectrics

    NASA Astrophysics Data System (ADS)

    Kim, Chang Eun; Yun, Ilgu

    2012-01-01

    Effects of thermal annealing on the electrical properties of Al2O3/TiO2/Al2O3 (ATA) dielectric thin films prepared by atomic layer deposition are investigated. The structural properties and chemical states in the interfacial layer are analyzed with varying the annealing temperature. The dielectric constant and leakage current are affected by the formation of Al2O3-TiO2 composite and interfacial layer including SiOx in the interface by the annealing. The transformation of interfacial layer at the interface of the ATA/Si substrate due to the annealing is a critical point to apply ATA thin films as gate dielectric layers.

  13. Low-Loss Optical Waveguides for the Near Ultra-Violet and Visible Spectral Regions with Al2O3 Thin Films from Atomic Layer Deposition

    PubMed Central

    Aslan, Mustafa M.; Webster, Nathan A.; Byard, Courtney L.; Pereira, Marcelo B.; Hayes, Colin M.; Wiederkehr, Rodrigo S.; Mendes, Sergio B.

    2011-01-01

    In this work, we report low-loss single-mode integrated optical waveguides in the near ultra-violet and visible spectral regions with aluminum oxide (Al2O3) films using an atomic layer deposition (ALD) process. Alumina films were deposited on glass and fused silica substrates by the ALD process at substrate/chamber temperatures of 200 °C and 300 °C. Transmission spectra and waveguide measurements were performed in our alumina films with thicknesses in the range of 210 – 380 nm for the optical characterization. Those measurements allowed us to determine the optical constants (nw and kw), propagation loss, and thickness of the alumina films. The experimental results from the applied techniques show good agreement and demonstrate a low-loss optical waveguide. Our alumina thin-film waveguides is well transparent in the whole visible spectral region and also in an important region of the UV; the measured propagation loss is below 4 dB/cm down to a wavelength as short as 250 nm. The low propagation loss of these alumina guiding films, in particular in the near ultra-violet region which lacks materials with high optical performance, is extremely useful for several integrated optic applications. PMID:21359156

  14. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  15. Reduced impurities and improved electrical properties of atomic-layer-deposited HfO2 film grown at a low temperature (100 °C) by Al2O3 incorporation

    NASA Astrophysics Data System (ADS)

    Park, Tae Joo; Byun, Youngchol; Wallace, Robert M.; Kim, Jiyoung

    2016-05-01

    The HfO2 films grown by atomic layer deposition (ALD) at a low temperature (100 °C) necessarily has a large amount of residual impurities due to lack of thermal energy for stable ALD reactions such as ligand removal and oxidation, which degrades various properties. However, Al2O3 incorporation into the film significantly decreased the residual impurities despite of a low growth temperature. The decrease in C impurity is attributed to the reduced oxygen vacancies by the incorporated Al2O3 phase or the high reactivity of Al precursor. Consequently, the electronic band structure of the film, and thereby the electrical properties were improved significantly.

  16. Effects of ozone post deposition treatment on interfacial and electrical characteristics of atomic-layer-deposited Al2O3 and HfO2 films on GaSb substrates

    NASA Astrophysics Data System (ADS)

    Zhao, Lianfeng; Tan, Zhen; Wang, Jing; Xu, Jun

    2014-01-01

    Atomic-layer-deposited Al2O3 and HfO2 films on GaSb substrates were treated by in-situ ozone post deposition treatment (PDT). The effects of ozone PDT on the interfacial and electrical properties of Al2O3 and HfO2 gate dielectric films on GaSb substrates were investigated carefully. It is found that the dielectric quality and the interfacial properties of the Al2O3 and HfO2 films are improved by ozone PDT. After in-situ ozone PDT for 5 min, the Al2O3 and HfO2 films on GaSb substrates exhibit improved electrical and interfacial properties, such as reduced frequency dispersion, gate leakage current, border traps and interface traps. Interface trap density is reduced by ∼24% for the Al2O3/GaSb stacks and ∼27% for the HfO2/GaSb stacks. In-situ ozone PDT is proved to be a promising technique in improving the quality of high-k gate stacks on GaSb substrates.

  17. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon

    2016-01-14

    Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage. PMID:26661064

  18. Investigation of spatial charge distribution and electrical dipole in atomic layer deposited Al2O3 on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Han, Kai; Wang, Xiaolei; Yuan, Li; Wang, Wenwu

    2016-06-01

    Charge distribution and electrical dipole in an Al2O3/4H-SiC structure are investigated by capacitance–voltage measurement and x-ray photoelectron spectroscopy (XPS). The charge densities in Al2O3 and at the Al2O3/4H-SiC interface are negligible and  ‑6.89  ×  1011 cm‑2, respectively. Thus the small charge amount indicates the suitability of Al2O3 as a gate dielectric. The dipole at the Al2O3/4H-SiC interface is  ‑0.3 to  ‑0.91 V. The XPS manifests electron transfer from Al2O3 to 4H-SiC. The dipole formation is explained by a gap state model and the higher charge neutrality level of Al2O3 than the Fermi level of 4H-SiC, which confirms the feasibility of the gap state model on investigating band lineup at heterojunctions. The electrical dipole at the Al2O3/4H-SiC interface is critical for threshold voltage tuning. These results are helpful in engineering the SiC based gate stacks.

  19. O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Huang, Sen; Liu, Xinyu; Wei, Ke; Liu, Guoguo; Wang, Xinhua; Sun, Bing; Yang, Xuelin; Shen, Bo; Liu, Cheng; Liu, Shenghou; Hua, Mengyuan; Yang, Shu; Chen, Kevin J.

    2015-01-01

    High quality Al2O3 film grown by atomic layer deposition (ALD), with ozone (O3) as oxygen source, is demonstrated for fabrication of normally-off AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Significant suppression of Al-O-H and Al-Al bonds in ALD-Al2O3 has been realized by substituting conventional H2O source with O3. A high dielectric breakdown E-field of 8.5 MV/cm and good TDDB behavior are achieved in a gate dielectric stack consisting of 13-nm O3-Al2O3 and 2-nm H2O-Al2O3 interfacial layer on recessed GaN. By using this 15-nm gate dielectric and a high-temperature gate-recess technique, the density of positive bulk/interface charges in normally-off AlGaN/GaN MIS-HEMTs is remarkably suppressed to as low as 0.9 × 1012 cm-2, contributing to the realization of normally-off operation with a high threshold voltage of +1.6 V and a low specific ON-resistance RON,sp of 0.49 mΩ cm2.

  20. Electrical properties of GaAs metal-oxide-semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal-organic vapor deposition/atomic layer deposition hybrid system

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2015-08-01

    This paper presents a compressive study on the fabrication and optimization of GaAs metal-oxide-semiconductor (MOS) structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD), with an AlN interfacial passivation layer prepared in situ via metal-organic chemical vapor deposition (MOCVD). The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA) conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance-voltage (C-V) characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit) near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm-2 eV-1. Using a (111)A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  1. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-01

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  2. Effective passivation of In0.2Ga0.8As by HfO2 surpassing Al2O3 via in-situ atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Lin, C. A.; Liu, Y. T.; Chiang, T. H.; Lin, H. Y.; Huang, M. L.; Lin, T. D.; Pi, T. W.; Kwo, J.; Hong, M.

    2012-10-01

    High κ gate dielectrics of HfO2 and Al2O3 were deposited on molecular beam epitaxy-grown In0.2Ga0.8As pristine surface using in-situ atomic-layer-deposition (ALD) without any surface treatment or passivation layer. The ALD-HfO2/p-In0.2Ga0.8As interface showed notable reduction in the interfacial density of states (Dit), deduced from quasi-static capacitance-voltage and conductance-voltage (G-V) at room temperature and 100 °C. More significantly, the midgap peak commonly observed in the Dit(E) of ALD-oxides/In0.2Ga0.8As is now greatly diminished. The midgap Dit value decreases from ≥15 × 1012 eV-1 cm-2 for ALD-Al2O3 to ˜2-4 × 1012 eV-1 cm-2 for ALD-HfO2. Further, thermal stability at 850 °C was achieved in the HfO2/In0.2Ga0.8As, whereas C-V characteristics of Al2O3/p-In0.2Ga0.8As degraded after the high temperature annealing. From in-situ x-ray photoelectron spectra, the AsOx, which is not the oxidized state from the native oxide, but is an induced state from adsorption of trimethylaluminum and H2O, was found at the ALD-Al2O3/In0.2Ga0.8As interface, while that was not detected at the ALD-HfO2/In0.2Ga0.8As interface.

  3. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al2O3/ZrO2/SiO2 nano-stacks

    NASA Astrophysics Data System (ADS)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin

    2015-07-01

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO2 layer to the nano-stack of Al2O3/ZrO2. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to -75 ppm/V2 with increasing the thickness of SiO2 from zero to 4 nm, which is more powerful than increasing the thickness of ZrO2 in the Al2O3/ZrO2 stack. This is attributed to counteraction between the positive α for Al2O3/ZrO2 and the negative one for SiO2 in the MIM capacitors with Al2O3/ZrO2/SiO2 stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO2 obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO2, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  4. High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Chen, Hongjun; Zhang, Xiong; Zhang, Peiyuan; Liu, Jianjun; Liu, Honggang; Cui, Yiping

    2013-06-01

    GaN-based light-emitting diodes (LED) on a patterned sapphire substrate with a novel hybrid atomic layer deposition (ALD)-TiO2Al2O3 distributed Bragg reflector (DBR) and Ag mirror have been proposed and fabricated. Due to the excellent thickness uniformity of ALD for the proposed reflector, high reflectivity over 99.3% at an incident angle of 5 deg has been achieved. It was also found that the reflectivity of a backside reflector with an Ag mirror slightly depends on incident light wavelength and incident angle. Moreover, because of the good adhesion between TiO2/Al2O3 DBR and the Ag mirror, the fabrication process was simplified and reliable. With a 60 mA current injection, an enhancement of 5.2%, 8.9%, and 47.1% in light output power (LOP) at the 460 nm wavelength was realized for the proposed LED with Ag mirror and 3-pair ALD-TiO2Al2O3 DBR as compared with a LED with a traditional Ag mirror and 3-pair TiO2/SiO2 DBR, with Al mirror and 3-pair ALD-TiO2Al2O3 DBR, and without backside reflector, respectively. This result shows that the ALD-TiO/O3 DBR can be used to enhance the LOP greatly and improve adhesion between the sapphire substrate and the metallic mirror, and thus is very promising for fabricating high performance GaN-based LEDs.

  5. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    PubMed

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-01

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively. PMID:24104020

  6. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  7. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; Li, Xingcun; Chen, Qiang; Wang, Zhengduo

    2012-02-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interfacial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  8. SELF ALIGNED TIP DEINSULATION OF ATOMIC LAYER DEPOSITED AL2O3 AND PARYLENE C COATED UTAH ELECTRODE ARRAY BASED NEURAL INTERFACES

    PubMed Central

    Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-01-01

    The recently developed alumina and Parylene C bi-layer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove Parylene C, O2 reactive ion etching to remove carbon and Parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of Parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to Parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 vs 320 nC) and similar electrochemical impedance (2.5 vs 2.5 kΩ) compared to deinsulated iridium oxide with only Parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the ranges of 20 to 50 kΩ, with median of 32 KΩ and standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and Parylene C bi-layer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures. PMID:24771981

  9. Self-aligned tip deinsulation of atomic layer deposited Al2O3 and parylene C coated Utah electrode array based neural interfaces

    NASA Astrophysics Data System (ADS)

    Xie, Xianzong; Rieth, Loren; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-03-01

    The recently developed alumina and parylene C bilayer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove parylene C, O2 reactive ion etching to remove carbon and parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 versus 320 nC) and similar electrochemical impedance (2.5 versus 2.5 kΩ) compared to deinsulated iridium oxide with only parylene coating for an area of 2 × 10-4 cm2. Tip impedances were in the range of 20-50 kΩ, with a median of 32 kΩ and a standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and parylene C bilayer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures.

  10. Control of thickness and chemical properties of atomic layer deposition overcoats for stabilizing Cu/γ-Al2 O3 catalysts.

    PubMed

    O'Neill, Brandon J; Sener, Canan; Jackson, David H K; Kuech, Thomas F; Dumesic, James A

    2014-12-01

    Whereas sintering and leaching of copper nanoparticles during liquid-phase catalytic processing can be prevented by using atomic layer deposition (ALD) to overcoat the nanoparticles with AlOx , this acidic overcoat leads to reversible deactivation of the catalyst by resinification and blocking of the pores within the overcoat during hydrogenation of furfural. We demonstrate that decreasing the overcoat thickness from 45 to 5 ALD cycles is an effective method to increase the rate per gram of catalyst and to decrease the rate of deactivation for catalysts pretreated at 673 K, and a fully regenerable copper catalyst can be produced with only five ALD cycles of AlOx . Moreover, although an overcoat of MgOx does not lead to stabilization of copper nanoparticles against sintering and leaching during liquid-phase hydrogenation reactions, the AlOx overcoat can be chemically modified to decrease acidity and deactivation through the addition of MgOx , while maintaining stability of the copper nanoparticles. PMID:25257472

  11. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  12. X-ray diffraction study of the ultrathin Al2O3 layer on NiAl110.

    PubMed

    Stierle, A; Renner, F; Streitel, R; Dosch, H; Drube, W; Cowie, B C

    2004-03-12

    Ultrathin Al2O3 layers on alloys are used as templates for model catalysts, tunneling barriers in electronic devices, or corrosion-resistant layers. The complex atomic structure of well-ordered alumina overlayers on NiAl110 was solved by surface x-ray diffraction. The oxide layer is composed of a double layer of strongly distorted hexagonal oxygen ions that hosts aluminum ions on both octahedral and tetrahedral sites with equal probability. The alumina overlayer exhibits a domain structure that can be related to characteristic growth defects and is generated during the growth of a hexagonally ordered overlayer (Al2O3) on a body-centered cubic (110) substrate (NiAl). PMID:15016996

  13. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)x(Al2O3)1-x as potential gate dielectrics for GaN/AlxGa1-xN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Partida-Manzanera, T.; Roberts, J. W.; Bhat, T. N.; Zhang, Z.; Tan, H. R.; Dolmanan, S. B.; Sedghi, N.; Tripathy, S.; Potter, R. J.

    2016-01-01

    This paper describes a method to optimally combine wide band gap Al2O3 with high dielectric constant (high-κ) Ta2O5 for gate dielectric applications. (Ta2O5)x(Al2O3)1-x thin films deposited by thermal atomic layer deposition (ALD) on GaN-capped AlxGa1-xN/GaN high electron mobility transistor (HEMT) structures have been studied as a function of the Ta2O5 molar fraction. X-ray photoelectron spectroscopy shows that the bandgap of the oxide films linearly decreases from 6.5 eV for pure Al2O3 to 4.6 eV for pure Ta2O5. The dielectric constant calculated from capacitance-voltage measurements also increases linearly from 7.8 for Al2O3 up to 25.6 for Ta2O5. The effect of post-deposition annealing in N2 at 600 °C on the interfacial properties of undoped Al2O3 and Ta-doped (Ta2O5)0.12(Al2O3)0.88 films grown on GaN-HEMTs has been investigated. These conditions are analogous to the conditions used for source/drain contact formation in gate-first HEMT technology. A reduction of the Ga-O to Ga-N bond ratios at the oxide/HEMT interfaces is observed after annealing, which is attributed to a reduction of interstitial oxygen-related defects. As a result, the conduction band offsets (CBOs) of the Al2O3/GaN-HEMT and (Ta2O5)0.16(Al2O3)0.84/GaN-HEMT samples increased by ˜1.1 eV to 2.8 eV and 2.6 eV, respectively, which is advantageous for n-type HEMTs. The results demonstrate that ALD of Ta-doped Al2O3 can be used to control the properties of the gate dielectric, allowing the κ-value to be increased, while still maintaining a sufficient CBO to the GaN-HEMT structure for low leakage currents.

  14. Atomic rearrangements in amorphous Al2O3 under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Ishimaru, M.; Yasuda, H.; Nakajima, H.

    2013-02-01

    The electron-irradiation-induced crystallization of amorphous Al2O3 (a-Al2O3) was investigated by in-situ transmission electron microscopy under the wide electron-energy region of 25-300 keV. The formation of γ-Al2O3 nanocrystallites was induced by irradiating the a-Al2O3 thin film along with the formation of nanovoids in the crystalline grains regardless of the acceleration voltage. The crystallization became more pronounced with decreasing the electron energy, indicating that electronic excitation processes play a dominant role in the formation of γ-Al2O3. Radial distribution analyses suggested that a-Al2O3 transforms to γ-phase via the "excited" ("stimulated") amorphous state, in which the breaking and rearrangement of unstable short-range Al-O bonds, i.e., fivefold-coordinated Al-O (AlO5) basic units, occur.

  15. A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating fabricated by micro-arc oxidation for hip joint prosthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Zhang, Wenting; Han, Yong; Tang, Wu

    2016-01-01

    A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating was fabricated on Zr substrate by micro-arc oxidation (MAO). The structure, formation mechanism, anti-wear property and aging behavior of the coating were explored. The obtained results show that the coating is composed of Al2O3 and ZrO2; the amount and crystallinity of Al2O3 increase gradually from inner layer to the coating surface; monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) are both present in the coating, and the ratio of t-ZrO2/m-ZrO2 increases with closing to the coating surface by a "constraint" mechanism of Al2O3; the coating surface mainly consists of nanoplate-like α-Al2O3, and a small amount of nanocrystallized m- and t-ZrO2. The superimposition of α-Al2O3 growth unit on {0 0 0 1} face should be prohibited by PO43- during the MAO process, resulting in the formation of nanoplate-like α-Al2O3 on the coating surface. Compared with pure Zr, the coating shows noticeable improvement in wear-resistance. For aging behavior, although more t-ZrO2 in the coating is transformed to m-ZrO2 with increasing aging time, wear loss increases slightly. It indicates that the nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 is a potential coating for articular head replacement.

  16. Adsorption of Pd atoms on γ-Al 2O 3: a density functional study of metal-support interactions

    NASA Astrophysics Data System (ADS)

    Márquez, Antonio M.; Sanz, Javier Fernández

    2004-11-01

    The Pd/γ-Al2O3 interface at low coverage has been theoretically studied by means of periodic-supercell density functional calculations. The most stable (1 1 0) γ-Al2O3 clean surface plane has been modelled by using a six layers slab stoichiometric model of 40 atoms. A single Pd atom has been deposited on top of the surface in different positions, first freezing the surface structure and later allowing the surface to relax. The results indicate that the metal-support interaction is dominated by the strong Lewis acid properties of the tetrahedral cationic sites. It is also shown that in the octahedral cationic sites, adsorption of single Pd atoms induces a significant relaxation of the substrate. While the interaction energy with the preferred site is strong (∼3.8 eV), small differences are found for nearby sites, indicating a high mobility of Pd atoms on the surface, at least on the channels.

  17. Role of interfacial transition layers in VO2/Al2O3 heterostructures

    SciTech Connect

    Zhou, Honghui; Chisholm, Matthew F; Yang, Tsung-Han; Pennycook, Stephen J; Narayan, Jagdish

    2011-01-01

    Epitaxial VO2 films grown by pulsed laser deposition (PLD) on c-cut sapphire substrates ((0001) Al2O3) were studied by aberration-corrected scanning transmission electron microscopy (STEM). A number of film/substrate orientation relationships were found and are discussed in the context of the semiconductor-metal transition (SMT) characteristics. A structurally and electronically modified buffer layer was revealed on the interface and was attributed to the interface free-energy minimization process of accommodating the symmetry mismatch between the substrate and the film. This interfacial transition layer is expected to affect the SMT behavior when the interfacial region is a significant fraction of the VO2 film thickness.

  18. Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber

    NASA Astrophysics Data System (ADS)

    Zhen, L.; Gong, Y. X.; Jiang, J. T.; Xu, C. Y.; Shao, W. Z.; Liu, P.; Tang, J.

    2011-04-01

    CoFe/Al2O3 composite nanoparticles were successfully prepared by hydrogen-thermally reducing cobalt aluminum ferrite. Compared with CoFe alloy nanoparticles, the permeability of CoFe/Al2O3 composite nanoparticles was remarkably enhanced and an improved impedance characteristic was achieved due to the introduction of insulated Al2O3. A multilayer absorber with CoFe/Al2O3 composite nanoparticles as the impedance matching layer and CoFe nanoflake as the dissipation layer was designed by using genetic algorithm, in which an ultrawide operation frequency bandwidth over 2.5-18 GHz was obtained. The microwave absorption performance in both normal and oblique incident case was evaluated by using electromagnetic simulator. The backward radar cross-section (RCS) was decreased at least 10 dB over a wide frequency range by covering the multilayer absorber on the surface of perfect electrical conductive plate.

  19. Enhancing the High-Voltage Cycling Performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3.

    PubMed

    Su, Yantao; Cui, Suihan; Zhuo, Zengqing; Yang, Wanli; Wang, Xinwei; Pan, Feng

    2015-11-18

    High-voltage (>4.3 V) operation of LiNi(x)Mn(y)Co(z)O2 (NMC; 0 ≤ x, y, z < 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces. PMID:26501963

  20. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    PubMed

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance. PMID:27035035

  1. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability

    PubMed Central

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun

    2015-01-01

    Silver nanostructures have been considered as promising substrates for surface-enhanced Raman scattering (SERS) with extremely high sensitivity. The applications, however, are hindered by the facts that their morphology can be easily destroyed due to the low melting points (~100 °C) and their surfaces are readily oxidized/sulfured in air, thus losing the SERS activity. It was found that wrapping Ag nanorods with an ultrathin (~1.5 nm) but dense and amorphous Al2O3 layer by low-temperature atomic layer deposition (ALD) could make the nanorods robust in morphology up to 400 °C, and passivate completely their surfaces to stabilize the SERS activity in air, without decreasing much the SERS sensitivity. This simple strategy holds great potentials to generate highly robust and stable SERS substrates for real applications. PMID:26264281

  2. High-temperature stability of c-Si surface passivation by thick PECVD Al2O3 with and without hydrogenated capping layers

    NASA Astrophysics Data System (ADS)

    Saint-Cast, Pierre; Kania, Daniel; Heller, René; Kuehnhold, Saskia; Hofmann, Marc; Rentsch, Jochen; Preu, Ralf

    2012-08-01

    We are studying the thermal stability of thick hydrogenated amorphous aluminum oxide (Al2O3) layers (20-50 nm) prepared by a high-throughput plasma-enhanced chemical-vapor-deposition (PECVD) technique for the electrical passivation of crystalline silicon surfaces. These passivation layers can be applied alone or covered by a capping layer like amorphous hydrogenated silicon nitride (SiNx) or amorphous hydrogenated silicon oxide (SiOx), also prepared by PECVD. After firing at 870 °C for approximately 3 s, the layers show blistering for Al2O3 of 30 nm or higher, independently from the capping layer. For thinner Al2O3, no blistering can be observed even using scanning electron microscope (SEM). Very long carrier lifetimes up to 900 μs was obtained in passivated p-Si (1 Ωcm) wafer after annealing and firing, without observing a strong influence of the layer thickness and the capping layer. All the layer stacks, including the stacks with SiNx capping layer, show high negative charge densities in the layer (1-4 × 1012 cm-2). Additionally, low interface defect densities (˜1011 cm-2 eV-1), which could be achieved with and without a hydrogenated capping layer, were measured even after firing. To explain these phenomena, hydrogen concentration depth profiles were measured by nuclear reaction analysis. These measurements have shown that, at the Al2O3-Si interface, hydrogen atomic concentration ranging 5-7% after annealing and 4% after firing are obtained independently from the capping hydrogen concentration. We conclude that PECVD Al2O3 layers of 20 nm or thicker can provide enough hydrogen to passivate the interface defects, even after a high temperature step. However, the layer thickness should be limited to 30 nm in order to avoid the blistering.

  3. Modulation in current density of metal/n-SiC contact by inserting Al2O3 interfacial layer

    PubMed Central

    2013-01-01

    Metal contact to SiC is not easy to modulate since the contact can be influenced by the metal, the termination of the SiC, the doping, and the fabrication process. In this work, we introduce a method by inserting a thin Al2O3 layer between metal and SiC to solve this problem simply but effectively. The Al2O3/n-SiC interface composition was obtained with X-ray photoemission spectroscopy, and the electrical properties of subsequently deposited metal contacts were characterized by current–voltage method. We can clearly demonstrate that the insertion of Al2O3 interfacial layer can modulate the current density effectively and realize the transfer between the Schottky contact and ohmic contact. PMID:23452618

  4. Admittance and subthreshold characteristics of atomic-layer-deposition Al2O3 on In0.53Ga0.47As in surface and buried channel flatband metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Paterson, G. W.; Bentley, S. J.; Holland, M. C.; Thayne, I. G.; Ahn, J.; Long, R. D.; McIntyre, P. C.; Long, A. R.

    2012-05-01

    The admittances and subthreshold characteristics of capacitors and MOSFETs on buried and surface In0.53Ga0.47As channel flatband wafers, with a dielectric of Al2O3 deposited on In0.53Ga0.47As, are reported. The admittance characteristics of both wafers indicate the presence of defect states within the oxide, in common with a number of other oxides on In0.53Ga0.47As. The two wafers studied have not been hydrogen annealed, but do show some similar features to FGA treated oxides on n+ substrates. We discuss how the possible presence of residual hydroxyl ions in as-grown Al2O3 may explain these similarities and also account for many of the changes in the properties of FGA treated n+ samples. The issues around the comparison of subthreshold swing (SS) results and the impact of transistor design parameters on the energy portion of the defect state distribution affecting efficient device switching are discussed. The interface state model is applied to low source-drain voltage SS data to extract an effective interface state density (Dit) that includes interface and oxide traps. The logarithmic gate voltage sweep rate dependence of the SS Dit is used to extract an oxide trap density (Dot) and a simple method is used to estimate the Fermi level position within the band gap, Et. The Al2O3 Dit(Et) and Dot(Et) distributions are found to be similar to each other and to the results of our analysis of Gd0.25Ga0.15O0.6/Ga2O3 and HfO2/Al2O3 on In0.53Ga0.47As, adding weight to the suggestion of there being a common defect state distribution and perhaps a common cause of defects states for a number of oxides on In0.53Ga0.47As.

  5. High-performance GaAs-based metal-oxide-semiconductor heterostructure field-effect transistors with atomic-layer-deposited Al2O3 gate oxide and in situ AlN passivation by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2014-10-01

    GaAs-based metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with Al2O3 gate oxide and in situ AlN passivation were investigated. Passivation with AlN improved the quality of the MOS interfaces, leading to good control of the gate. The devices had a sufficiently small subthreshold swing of 84 mV decade-1 in the drain current vs gate voltage curves, as well as negligible frequency dispersions and nearly zero hysteresis in the gate capacitance vs gate voltage curves. A maximum drain current of 630 mA/mm and a peak effective mobility of 6720 cm2 V-1 s-1 at a sheet carrier density of 3 × 1012 cm-2 were achieved.

  6. A novel p-type and metallic dual-functional Cu-Al2O3 ultra-thin layer as the back electrode enabling high performance of thin film solar cells.

    PubMed

    Lin, Qinxian; Su, Yantao; Zhang, Ming-Jian; Yang, Xiaoyang; Yuan, Sheng; Hu, Jiangtao; Lin, Yuan; Liang, Jun; Pan, Feng

    2016-09-14

    Increasing the open-circuit voltage (Voc) along with the fill factor (FF) is pivotal for the performance improvement of solar cells. In this work, we report the design and construction of a new structure of CdS/CdTe/Al2O3/Cu using the atomic layer deposition (ALD) method, and then we control Cu diffusion through the Al2O3 atomic layer into the CdTe layer. Surprisingly, this generates a novel p-type and metallic dual-functional Cu-Al2O3 atomic layer. Due to this dual-functional character of the Cu-Al2O3 layer, an efficiency improvement of 2% in comparison with the standard cell was observed. This novel dual-functional back contact structure could also be introduced into other thin film solar cells for their efficiency improvement. PMID:27384986

  7. Growth of Sputtered-Aluminum Oxide Thin Films on si (100) and si (111) Substrates with Al2O3 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Lim, Wei Qiang; Shanmugan, Subramani; Devarajan, Mutharasu

    2016-03-01

    Aluminum oxide (Al2O3) thin films with Al2O3 buffer layer were deposited on Si (100) and Si (111) substrates using RF magnetron sputtering of Al2O3 target in Ar atmosphere. The synthesized films were then annealed at the temperature of 400∘C, 600∘C and 800∘C in nitrogen (N2) environment for 6h. Structural properties and surface morphology are examined by using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscope (AFM). XRD analysis indicated that different orientation of Al2O3 were formed with different intensities due to increase in the annealing temperature. From FESEM cross-section analysis results, it is observed that the thickness of films were increased as the annealing temperature increased. EDX analysis shows that the concentration of aluminum and oxygen on both the Si substrates increased with the increase in annealing temperature. The surface roughness of the films were found to be decreased first when the annealing temperature is increased to 400∘C, yet the roughness increased when the annealing temperature is further increased to 800∘C.

  8. H2 dissociation on γ-Al2O3 supported Cu/Pd atoms: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Chen, Lijuan; Lv, Yongkang; Ren, Ruipeng

    2014-01-01

    The density functional theory (DFT) was applied to investigate the promotion effects of single Cu and Pd atoms deposition on γ-Al2O3 surface for the adsorption and dissociation of H2 molecule, which is of importance for many catalysis reactions. Due to its strong Lewis acidity, the tri-coordinated surface Al site was identified to be the most preferable site for both Cu and Pd location. The inner surface electrons rearrangement from O to Al of alumina was found to be a key factor to stabilize the Cu/Pd adsorption configurations, rather than the total electrons transfer between Cu/Pd and the surface. It was found that the supported Cu and Pd atoms are more active for H2 dissociation than the clean γ-Al2O3 surface. The supported Pd is more active than Cu for H2 dissociation. In addition, the metal-support interaction of the γ-Al2O3 supported Cu/Pd atoms are more favored than the metal-metal interaction of the metal clusters for the H2 dissociated adsorption.

  9. CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: First principle study

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei

    2016-08-01

    Understanding the role of metal-support interaction for the supported single-atom catalysts is very important in heterogeneous catalysis. Here, Three different CO oxidation mechanisms on Pt/γ-Al2O3 catalyst were probed by periodic density functional theory (DFT) calculations in detail, namely the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism, the reactive CO3 intermediate mechanism and the Pt-Al3+ double sites mechanism. According to the calculated results analysis, we concluded that the dominant reaction pathway at the low temperatures is the reactive O*sbnd Osbnd C*dbnd O intermediate mechanism. Our results are in very good agreement with the experimental evidence for O*sbnd Osbnd C*dbnd O coverage on Pt/γ-Al2O3 at room temperature by an in situ diffuse reflectance infrared detector.

  10. Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer

    NASA Astrophysics Data System (ADS)

    Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge

    2012-12-01

    The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.

  11. Electron Trap Energy Distribution in ALD Al2O3, LaAl4Ox, and GdyAl2-yO3 Layers on Silicon

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Badylevich, M.; Adelmann, C.; Swerts, J.; Kittl, J. A.; Afanas'ev, V. V.

    2012-12-01

    The energy distribution of electron trap density in atomic layer deposited Al2O3, LaAl4Ox and GdyAl2-yO3 insulating layers was studied by using the exhaustive photodepopulation spectroscopy. Upon filling the traps by electron tunneling from Si substrate, a broad energy distribution of trap levels in the energy range 2-4 eV is found in all studied insulators with trap densities in the range of 1012 cm-2eV-1. The incorporation of La and Gd cations reduces the trap density in aluminate layers as compared to Al2O3. Crystallization of the insulator by the post-deposition annealing is found to increase the trap density while the energy distribution remains unchanged. The similar trap spectra in the Al2O3 and La or Gd aluminate layers suggest the common nature of the traps, probably originating from imperfections in the AlOx sub-network.

  12. Oxide thickness mapping of ultrathin Al2O3 at nanometer scale with conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Olbrich, Alexander; Ebersberger, Bernd; Boit, Christian; Vancea, Johann; Hoffmann, Horst; Altmann, Hans; Gieres, Guenther; Wecker, Joachim

    2001-05-01

    In this work, we introduce conducting atomic force microscopy (C-AFM) for the quantitative electrical characterization of ultrathin Al2O3 films on a nanometer scale length. By applying a voltage between the AFM tip and the conductive Co substrate direct tunneling currents in the sub pA range are measured simultaneously to the oxide surface topography. From the microscopic I-V characteristics the local oxide thickness can be obtained with an accuracy of 0.03 nm. A conversion scheme was developed, which allows the calculation of three-dimensional maps of the local electrical oxide thickness with sub-angstrom thickness resolution and nanometer lateral resolution from the tunneling current images. Local tunneling current variations of up to three decades are correlated with the topography and local variations of the electrical oxide thickness of only a few angstroms.

  13. Effects of annealing conditions on the dielectric properties of solution-processed Al2O3 layers for indium-zinc-tin-oxide thin-film transistors.

    PubMed

    Kim, Yong-Hoon; Kim, Kwang-Ho; Park, Sung Kyu

    2013-11-01

    In this paper, the effects of annealing conditions on the dielectric properties of solution-processed aluminum oxide (Al2O3) layers for indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) have been investigated. The dielectric properties of Al2O3 layers such as leakage current density and dielectric strength were largely affected by their annealing conditions. In particular, oxygen partial pressure in rapid thermal annealing, and the temperature profile of hot plate annealing had profound effects on the dielectric properties. From a refractive index analysis, the enhanced dielectric properties of Al2O3 gate dielectrics can be attributed to higher film density depending on the annealing conditions. With the low-temperature-annealed Al2O3 gate dielectric at 350 degrees C, solution-processed IZTO TFTs with a field-effect mobility of approximately 2.2 cm2/Vs were successfully fabricated. PMID:24245333

  14. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.

    PubMed

    Hu, Zhaosheng; Liu, Zhe; Li, Lin; Quan, Baogang; Li, Yunlong; Li, Junjie; Gu, Changzhi

    2014-10-15

    Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double-layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity "hot spots" effect. A simply reproducible high-throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double-layer stacked Au nanospheres construct a three-dimensional plasmonic nanostructure with tunable nanospacing and high-density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near-field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 10(7). Both heterogeneous nanosphere group (Au/Al2O@Ag) and pyramid-shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 10(9). These wafer-scale, high density homo/hetero-metal-nanosphere arrays with tunable nanojunction between adjacent shell-isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics. PMID:24995658

  15. Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.; Chalker, P. R.; Lee, K. B.; Houston, P. A.; Cho, S. J.; Thayne, I. G.; Guiney, I.; Wallis, D.; Humphreys, C. J.

    2016-02-01

    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm-3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm-2 to -6.60 × 1012 cm-2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices.

  16. Ethanol Sensor of CdO/Al2O3/CeO2 Obtained from Ce-DOPED Layered Double Hydroxides with High Response and Selectivity

    NASA Astrophysics Data System (ADS)

    Xu, Dongmei; Guan, Meiyu; Xu, Qinghong; Guo, Ying; Wang, Yao

    2013-06-01

    In this paper, Ce-doped CdAl layered double hydroxide (LDH) was first synthesized and the derivative CdO/Al2O3/CeO2 composite oxide was prepared by calcining Ce-doped CdAl LDH. The structure, morphology and chemical state of the Ce doped CdAl LDH and CdO/Al2O3/CeO2 were also investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), solid state nuclear magnetic resonance (SSNMR), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The gas sensing properties of CdO/Al2O3/CeO2 to ethanol were further studied and compared with CdO/Al2O3 prepared from CdAl LDH, CeO2 powder as well as the calcined Ce salt. It turns out that CdO/Al2O3/CeO2 sensor shows best performance in ethanol response. Besides, CdO/Al2O3/CeO2 possesses short response/recovery time (12/72 s) as well as remarkable selectivity in ethanol sensing, which means composite oxides prepared from LDH are very promising in gas sensing application.

  17. Interfacial charge-induced polarization switching in Al2O3/Pb(Zr,Ti)O3 bi-layer

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong

    2015-12-01

    Detailed polarization switching behavior of an Al2O3/Pb(Zr,Ti)O3 (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization-voltage (P-V) results. Amorphous AO films with various thicknesses (2-10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ˜3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ˜±0.1 Cm-2 and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ˜±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  18. Deposition and characterization of binary Al 2O 3/SiO 2 coating layers on the surfaces of rutile TiO 2 and the pigmentary properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsheng; Yin, Hengbo; Wang, Aili; Ren, Min; Gu, Zhuomin; Liu, Yumin; Shen, Yutang; Yu, Longbao; Jiang, Tingshun

    2010-12-01

    Binary Al 2O 3/SiO 2-coated rutile TiO 2 composites were prepared by a liquid-phase deposition method starting from Na 2SiO 3·9H 2O and NaAlO 2. The chemical structure and morphology of binary Al 2O 3/SiO 2 coating layers were investigated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, TG-DSC, Zeta potential, powder X-ray diffraction, and transmission electron microscopy techniques. Binary Al 2O 3/SiO 2 coating layers both in amorphous phase were formed at TiO 2 surfaces. The silica coating layers were anchored at TiO 2 surfaces via Si-O-Ti bonds and the alumina coating layers were probably anchored at the SiO 2-coated TiO 2 surfaces via Al-O-Si bonds. The formation of continuous and dense binary Al 2O 3/SiO 2 coating layers depended on the pH value of reaction solution and the alumina loading. The binary Al 2O 3/SiO 2-coated TiO 2 composites had a high dispersibility in water. The whiteness and brightness of the binary Al 2O 3/SiO 2-coated TiO 2 composites were higher than those of the naked rutile TiO 2 and the SiO 2-coated TiO 2 samples. The relative light scattering index was found to depend on the composition of coating layers.

  19. Stable, Microfabricated Thin Layer Chromatography Plates without Volume Distortion on Patterned, Carbon and Al2O3-Primed Carbon Nanotube Forests

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Gupta, Vipul; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Vanfleet, Richard; Davis, Robert C.; Linford, Matthew R.

    2012-09-28

    In a recent report (Song, J.; et al., Advanced Functional Materials 2011, 21, 1132-1139) some of us described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests, which were directly infiltrated/coated with silicon by low pressure chemical vapor deposition (LPCVD) of silicon using SiH4. Following infiltration, the nanotubes were removed from the assemblies and the silicon simultaneously converted to SiO2 in a high temperature oxidation step. However, while straightforward, this process had some shortcomings, not the least of which was some distortion of the lithographically patterned features during the volume expansion that accompanied oxidation. Herein we overcome theis issue and also take substantial steps forward in the microfabrication of TLC plates by showing: (i) A new method for creating an adhesion promotion layer on CNT forests by depositing a few nanometers of carbon followed by atomic layer deposition (ALD) of Al2O3. This method for appears to be new, and X-ray photoelectron spectroscopy confirms the expected presence of oxygen after carbon deposition. ALD of Al2O3 alone and in combination with the carbon on patterned CNT forests was also explored as an adhesion promotion layer for CNT forest infiltration. (ii) Rapid, conformal deposition of an inorganic material that does not require subsequent oxidation: fast pseudo-ALD growth of SiO2 via alumina catalyzed deposition of tris(tert-butoxy)silanol onto the carbon/Al2O3-primed CNT forests. (iii) Faithful reproduction of the features in the masks used to microfabricate the TLC plates (M-TLC) this advance springs from the previous two points. (iv) A bonded (amino) phase on a CNT-templated microfabricated TLC plate. (v) Fast, highly efficient (125,000 - 225,000 N/m) separations of fluorescent dyes on M-TLC plates. (vi) Extensive characterization of our new materials by TEM, SEM, EDAX, DRIFT, and XPS. (vii) A substantially lower process temperature for the

  20. Double layer SiO2/Al2O3 high emissivity coatings on stainless steel substrates using simple spray deposition system

    NASA Astrophysics Data System (ADS)

    Mahadik, D. B.; Gujjar, Sharath; Gouda, Girish M.; Barshilia, Harish C.

    2014-04-01

    High emissivity coatings (ɛ > 0.90) are widely used in spacecraft and industrial furnaces, which have attracted a great attention recently due to energy saving applications. In this study, a simple spray coating method was used to produce double layer high emissivity coatings on stainless steel (SS) substrate by sol-gel process at room temperature. Initially, silica (SiO2), sol prepared using sol-gel process, was deposited on sandblasted SS substrate with required thickness, followed by deposition of aluminium oxide (Al2O3) layer. The gradual increase in the thickness of Al2O3 layer resulted in increase in the emittance. The optimized double layer Al2O3 (23.0 μm)/SiO2 (9.13 μm) coating on SS substrate exhibited high emittance (ɛ = 0.92-0.94) and low absorptance (α = 0.30-0.34). The high emissivity coating, when exposed to a temperature of 1000 °C in air got crystallized but retained its optical properties. For example, the heat-treated coating exhibited an emittance of 0.92 (measured at 82 °C) and absorptance of 0.42. The SiO2/Al2O3 coating, thus, provides a simple and cost effective method for the preparation of high emissivity coatings.

  1. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Chen, Z. Q.; Wang, S. J.

    2012-01-01

    NiO/Al2O3 catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al2O3 catalysts comprise two long and two short lifetime components, where the long lifetimes τ3 and τ4 correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ4 drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ4 shows a slower decrease. Variation of λ4 (1/τ4) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ4 also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al2O3. When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 1010 g mol-1s-1 and (3.43 ± 0.20) × 109 g mol-1 s-1 for NiO content below and above

  2. Highly Repeatable and Recoverable Phototransistors Based on Multifunctional Channels of Photoactive CdS, Fast Charge Transporting ZnO, and Chemically Durable Al2O3 Layers.

    PubMed

    Ahn, Cheol Hyoun; Kang, Won Jun; Kim, Ye Kyun; Yun, Myeong Gu; Cho, Hyung Koun

    2016-06-22

    Highly repeatable and recoverable phototransistors were explored using a "multifunctional channels" structure with multistacked chalcogenide and oxide semiconductors. These devices were made of (i) photoactive CdS (with a visible band gap), (ii) fast charge transporting ZnO (with a high field-effect mobility), and (iii) a protection layer of Al2O3 (with high chemical durability). The CdS TFT without the Al2O3 protection layer did not show a transfer curve due to the chemical damage that occurred on the ZnO layer during the chemical bath deposition (CBD) process used for CdS deposition. Alternatively, compared to CdS phototransistors with long recovery time and high hysteresis (ΔVth = 19.5 V), our "multi-functional channels" phototransistors showed an extremely low hysteresis loop (ΔVth = 0.5V) and superior photosensitivity with repeatable high photoresponsivity (52.9 A/W at 400 nm). These improvements are likely caused by the physical isolation of the sensing region and charge transport region by the insertion of the ultrathin Al2O3 layer. This approach successfully addresses some of the existing problems in CdS phototransistors, such as the high gate-interface trap site density and high absorption of molecular oxygen, which originate from the polycrystalline CdS. PMID:27259048

  3. The effect of the thickness of tunneling layer on the memory properties of (Cu2O)0.5(Al2O3)0.5 high-k composite charge-trapping memory devices

    NASA Astrophysics Data System (ADS)

    Liu, Jinqiu; Lu, Jianxin; Yin, Jiang; Xu, Bo; Xia, Yidong; Liu, Zhiguo

    2016-06-01

    The charge-trapping memory devices namely Pt/Al2O3/(Al2O3)0.5(Cu2O)0.5/SiO2/p-Si with 2, 3 and 4 nm SiO2 tunneling layers were fabricated by using RF magnetron sputtering and atomic layer deposition techniques. At an applied voltage of ±11 V, the memory windows in the C-V curves of the memory devices with 2, 3 and 4 nm SiO2 tunneling layers were about 4.18, 9.91 and 11.33 V, respectively. The anomaly in memory properties among the three memory devices was ascribed to the different back tunneling probabilities of trapped electrons in the charge-trapping dielectric (Al2O3)0.5(Cu2O)0.5 due to the different thicknesses of SiO2 tunneling layer.

  4. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    PubMed

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  5. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-10-01

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications. Electronic supplementary information (ESI) available: UV-Vis spectra of desorbed N719 dyes from

  6. Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers

    NASA Astrophysics Data System (ADS)

    Alekseeva, Liudmila; Nabatame, Toshihide; Chikyow, Toyohiro; Petrov, Anatolii

    2016-08-01

    Differences between the resistive switching characteristics of Al2O3/TiO2 and TiO2/Al2O3 bilayer structures, fabricated by atomic layer deposition at 200 °C and post-deposition annealing, were studied in Pt bottom electrode (Pt-BE)/insulator/Pt top electrode (Pt-TE) capacitors. The Pt-BE/Al2O3/TiO2/Pt-TE capacitor exhibits stable bipolar resistive switching with an on-resistance/off-resistance ratio of ∼102 controlled by a small voltage of ±0.8 V. The forming process occurs in two steps of breaking of the Al2O3 layer and transfer of oxygen vacancies (VO) into the TiO2 layer. The capacitor showed poor endurance, particularly in the high-resistance state under vacuum conditions. This indicates that the insulating TiO2 layer without VO is not formed near the Al2O3 layer because oxygen cannot be introduced from the exterior. On the other hand, in the Pt-BE/TiO2/Al2O3/Pt-TE capacitor, multilevel resistive switching with several applied voltage-dependent nonvolatile states is observed. The switching mechanism corresponds to the Al2O3 layer’s trapped VO concentration, which is controlled by varying the applied voltage.

  7. Characterization of the Microstructure of an AlN-Mullite-Al2O3 Ceramic Layer on WCu Composite Alloy for Microelectronic Application

    NASA Astrophysics Data System (ADS)

    Zhu, Jiandong; An, Rong; Wang, Chunqing; Zhang, Wei; Wen, Guangwu

    2015-11-01

    An AlN composite ceramic layer was designed and fabricated on WCu substrates by hydrolysis-assisted solidification and firing. First, the surface of WCu substrates were pre-coated with polycarbosilane/AlN ceramic layers by spinning; the layers were then fabricated by firing. The phase composition, microstructure, and element distribution of the ceramic layer and interfacial reaction layer were investigated by use of scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The results showed that the ceramic layers were composed of AlN, mullite, and Al2O3. There were many nanocrystalline rods on the surface of the ceramic layers. The Cr layer prevented the WCu substrate from reacting with water vapor during firing, and the Ni layer prevented diffusion of tungsten into the Cr layer. Study of the cross section of the ceramic layer fired on the Cr/Ni/WCu substrate revealed a perfect interfacial reaction layer.

  8. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  9. Role of hydrogen atoms in the photoinduced formation of stable electron centers in H-doped 12CaO•7 Al2 O3

    NASA Astrophysics Data System (ADS)

    Sushko, Peter V.; Shluger, Alexander L.; Hayashi, Katsuro; Hirano, Masahiro; Hosono, Hideo

    2006-01-01

    In this work we investigate a variety of chemical and photoinduced processes in which different hydrogenous species including H2 molecules, H- ions, and H0 atoms interact with the bulk of a complex nanoporous oxide 12CaO•7Al2O3 . Our results provide a detailed and consistent explanation of the recently observed phenomenon of photoinduced conversion of the insulating H-doped 12CaO•7Al2O3 to a conductor [K. Hayashi , Nature (London) 419, 462 (2002)]. The formation of a large and thermally stable concentration of electron centers in this process is facilitated by a large concentration (up to 1020cm-3 ) of extraframework O2- naturally present in this material and homogeneously distributed in its bulk. We show that these species are able to split H2 molecules into pairs of H+ and H- ions and convert H0 atoms into H+ and e- promoting the photoinduced conversion process. The similarity of the mechanisms described in this work to those known for low-coordinated sites at MgO surfaces indicates that the formation of electronic centers in oxides interacting with hydrogenous species could be a generic feature.

  10. Diffraction of fast H atoms during grazing scattering from an Al2O3(1 1 2¯ 0) surface

    NASA Astrophysics Data System (ADS)

    Busch, M.; Seifert, J.; Meyer, E.; Winter, H.

    2013-12-01

    H atoms with energies up to 1 keV were scattered under a grazing angle of incidence from an Al2O3(1 1 2¯ 0) surface. After preparation of the target by annealing at a temperature of 1700 °C well defined angular distributions for scattered projectiles are observed showing for scattering in the regime of axial channeling rich diffraction patterns. For scattering along the low indexed [1¯ 1 0 0] direction diffraction spots are arranged on a circle which is attributed to full coherence preserved during the collision with the surface. By an azimuthal rotation of the target surface by some degrees Laue circles of higher orders can be observed which is accompanied with a substantial enhancement of resolution for periodicity intervals of the target surface. This is demonstrated by results for the (12 × 4) phase of the Al2O3(1 1 2¯ 0) surface which indicate an overall transfer width for fast atom diffraction of several 100 Å.

  11. Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling

    NASA Astrophysics Data System (ADS)

    Kobayashi, Genki; Irii, Yuta; Matsumoto, Futoshi; Ito, Atsushi; Ohsawa, Yasuhiko; Yamamoto, Shinji; Cui, Yitao; Son, Jin-Young; Sato, Yuichi

    2016-01-01

    Controlling a cathode/electrolyte interface by modifying the surface of a cathode material with metal oxides or phosphates is a concept being explored as a possible strategy for improving the electrochemical performance of such materials. This study therefore looks at the crystal structure and chemical bonding state from bulk to surface of Al2O3-coated Li[Li0.2Ni0.18Co0.03Mn0.58]O2 and explores the influence that surface modification has on the electrochemical performance. Investigation by X-ray diffraction, hard X-ray photoelectron spectroscopy (HAXPES) and galvanostatic charge/discharge reaction reveals that the surface-modification layer is composed of Li-Al oxides and Al oxides, with a LiM1-xAlxO2 (M = transition metal) interlayer formed between the modification layer and Li[Li0.2Ni0.18Co0.03Mn0.58]O2 particles. The cycling performance of the Li-rich layered oxide is enhanced by its surface modification with Al2O3, achieving a discharge capacity of more than 310 mA h-1 and excellent cycling stability at 50 °C when combined with a more gradual Li-insertion/de-insertion process (i.e., stepwise precycling treatment).

  12. NC-AFM identification of different aluminum atoms on Al2O3/NiAl(110) surface

    NASA Astrophysics Data System (ADS)

    Stich, Ivan; Brndiar, Jan; Li, Yan Jun; Sugawara, Yasuhiro

    2015-03-01

    Ultrathin alumina film formed by oxidation of NiAl(110) is widely used as a system for technologically important oxide-supported catalysts. Using small amplitude NC-AFM we have obtained images of this system with unprecedented resolution, significantly surpassing the previous STM and NC-AFM images. In particular, we are able to resolve aluminum atoms with different coordination, such as five-, and four-fold coordinated Al atoms. Experiments are supported by extensive density functional theory modeling. Starting from the previous atomic model, we have been able to describe the gross image features such as the dark oxygen sites. We find that the system is strongly ionic with the oxygen sites strongly negatively charged and aluminum sites positively charged. Hence, the NC-AFM images can reliably be understood from electrostatic potentials. These finding also suggest an oxygen terminated apex. Resolving finer contrast features of the differently coordinated Al atoms required construction of better and more realistic approximants to the ultra-thin incommensurable alumina interface. Supported by APVV-0207-11 and VEGA (2/0007/12) projects.

  13. Electroluminescent layers based on ZnS:Cu deposited into matrices of porous anodic Al2O3

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Petukhov, D. I.; Chukavin, A. I.; Bel'tyukov, A. N.

    2016-02-01

    It is suggested to use a new nanocomposite material—nanostructures of copper-doped zinc sulfide in a matrix of porous aluminum oxide—as a light-emitting layer of electroluminescent sources of light. The material was deposited by thermal evaporation in a vacuum. The microstructure of the layers, impurity distribution in the electroluminescent-phosphor layer, and electroluminescence spectra at various copper concentrations in ZnS:Cu were studied.

  14. Fabrication and Mechanical Characterization of Al2O3/ZrO2 Layered Composites with Graded Microstructure

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hyun; Kang, Ji-Hun; Jung, Yeon-Gil; Paik, Ungyu

    2008-02-01

    Microstructure evaluation has been performed and related mechanical properties have been investigated and characterized in functionally graded materials (FGMs) using alumina and zirconia. Two kinds of FGM, one with a compositional variation from an alumina substrate to an outer layer of zirconia (AZ FGM) and an inverse one (ZA FGM), were prepared by dip-coating with substrates prepared by gel-casting. The slip composition for the coating was controlled with 10 vol.% variation. The microstructure changed from the substrate to the outer layer, showing smooth variation in hardness. The coating thickness of AZ FGM, with abnormal grain growth in the substrate, was thicker than that of ZA FGM, with grain growth inhibition, showing about 300 and about 200 μm for AZ FGM and ZA FGM, respectively. Well developed cracks with anisotropic crack propagation were observed in AZ FGM, but no cracking was observed in ZA FGM. The fracture strength of monolithic materials decreased as coating layers were applied onto the monolithic materials. Based on the results of mechanical properties and microstructure evaluation, the fracture mechanism in each FGM is proposed and discussed.

  15. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions. PMID:27033846

  16. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  17. Border trap reduction in Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, Kechao; Winter, Roy; Zhang, Liangliang; Droopad, Ravi; Eizenberg, Moshe; McIntyre, Paul C.

    2015-11-01

    The effect of Al2O3 atomic layer deposition (ALD) temperature on the border trap density (Nbt) of Al2O3/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces Nbt. The reduction of Nbt coincides with increased hydrogen incorporation in low temperature ALD-grown Al2O3 films during post-gate metal forming gas annealing. It is also found that large-dose (˜6000 L) exposure of the In0.53Ga0.47As (100) surface to TMA immediately after thermal desorption of a protective As2 capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al2O3/InGaAs samples made at low ALD temperatures.

  18. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  19. Nonlinear convective analysis of a rotating Oldroyd-B nanofluid layer under thermal non-equilibrium utilizing Al2O3-EG colloidal suspension

    NASA Astrophysics Data System (ADS)

    Agarwal, Shilpi; Rana, Puneet

    2016-04-01

    In this paper, we examine a layer of Oldroyd-B nanofluid for linear and nonlinear regimes under local thermal non-equilibrium conditions for the classical Rayleigh-Bénard problem. The free-free boundary condition has been implemented with the flux for nanoparticle concentration being zero at edges. The Oberbeck-Boussinesq approximation holds good and for the rotational effect Coriolis term is included in the momentum equation. A two-temperature model explains the effect of local thermal non-equilibrium among the particle and fluid phases. The criteria for onset of stationary convection has been derived as a function of the non-dimensionalized parameters involved including the Taylor number. The assumed boundary conditions negate the possibility of overstability due to the absence of opposing forces responsible for it. The thermal Nusselt number has been obtained utilizing a weak nonlinear theory in terms of various pertinent parameters in the steady and transient mode, and has been depicted graphically. The main findings signify that the rotation has a stabilizing effect on the system. The stress relaxation parameter λ_1 inhibits whereas the strain retardation parameter λ_2 exhibits heat transfer utilizing Al2O3 nanofluids.

  20. Specific heat capacity of nanoporous Al2O3

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Feng, Yan-Hui; Zhang, Xin-Xin; Li, Jing; Wang, Ge

    2013-09-01

    Based on Lindemann's criterion, a specific heat capacity model for nanoporous material was proposed by defining the surface-atom layer, to take the surface atoms and the volume atoms separately into account. The height of the surface-atom layer was determined from the experiment, and results show that only the first layer atoms on the surface should be separately considered for nanoporous Al2O3. The shape factor of the pore was also introduced in the model with values between 2 (for cylindrical pore) and 3 (for spherical pore) to characterize the morphology of the pore. It turns out experimentally that the specific heat capacity of the analyzed nanoporous Al2O3 is much larger than that of the bulk, which can be interpreted as due to the fact that the surface atom plays a more important role than the volume one. And the smaller the radius and/or the larger the porosity, which lead to a larger surface-volume ratio, the larger the specific heat capacity becomes. The nanoporous material could be a better heat storage medium than the corresponding bulk with a much lighter weight, smaller volume but higher heat storage capacity.

  1. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric

    NASA Astrophysics Data System (ADS)

    Shuyan, Zhu; Jingping, Xu; Lisheng, Wang; Yuan, Huang; Wing Man, Tang

    2015-03-01

    GaAs metal-oxide-semiconductor (MOS) capacitors with HfTiO as the gate dielectric and Al2O3 or ZnO as the interface passivation layer (IPL) are fabricated. X-ray photoelectron spectroscopy reveals that the Al2O3 IPL is more effective in suppressing the formation of native oxides and As diffusion than the ZnO IPL. Consequently, experimental results show that the device with Al2O3 IPL exhibits better interfacial and electrical properties than the device with ZnO IPL: lower interface-state density (7.2 × 1012 eV-1 cm-2), lower leakage current density (3.60 × 10-7 A/cm2 at Vg = 1 V) and good C-V behavior. Project supported by the National Natural Science Foundation of China (Nos. 61176100, 61274112).

  2. Development of a ``Built-in'' Scanning Near Field Microscope Head for an Atomic Force Microscope System and Stress Mapping of an Al2O3/ZrO2 Eutectic Composite

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tatsuo; Fukura, Satoshi; Nakai, Munenori; Sugiyama, Kazumasa; Kokawa, Ryohei; Kagi, Hiroyuki

    2006-07-01

    We constructed a scanning near-field optical microscope (SNOM) on a commercially available atomic force microscopy (AFM) apparatus (SPM-9500J2; Shimadzu Corp.) to measure the stress distribution in ceramic composite materials. Features of our SNOM system are: (1) a compact SNOM head substituted for the original AFM head; (2) a wide scanning range (125 × 125 μm2) inherited from the original scanner; (3) use of conventional shear-force regulation; (4) an optical system for the illumination-collection (I-C) mode; (5) excitation by a 488 nm line of an Ar-ion laser, and (6) light detection by photon counting or a polychromator equipped with an electronically cooled charge coupled device (CCD). This SNOM system was used to measure the surface structure and stress distribution of an Al2O3/ZrO2 eutectic composite. We simultaneously measured topographic images and fluorescence spectra of an Al2O3/ZrO2 eutectic composite. We estimated its peak intensity, peak position, and peak width from the fluorescence spectrum during scanning, which respectively correspond to the abundance of Al2O3, stress in the grain, and the anisotropy of that stress. Mapping images showed that the stress and its anisotropy were weaker in the center of the Al2O3 grain than its boundary between Al2O3 and ZrO2. That observation suggests that Al2O3 underwent intense anisotropic stress induced by volume expansion in the phase transition of ZrO2 from the cubic phase to the monoclinic phase during preparation.

  3. Low-Cost Al2O3 Coating Layer As a Preformed SEI on Natural Graphite Powder To Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries.

    PubMed

    Feng, Tianyu; Xu, Youlong; Zhang, Zhengwei; Du, Xianfeng; Sun, Xiaofei; Xiong, Lilong; Rodriguez, Raul; Holze, Rudolf

    2016-03-01

    Coulombic efficiency especially in the first cycle, cycling stability, and high-rate performance are crucial factors for commercial Li-ion batteries (LIBs). To improve them, in this work, Al2O3-coated natural graphite powder was obtained through a low-cost and facile sol-gel method. Based on a comparison of various coated amounts, 0.5 mol % Al(NO3)3 (vs mole of graphite) could bring about a smooth Al2O3 coating layer with proper thickness, which could act as a preformed solid electrolyte interface (SEI) to reduce the regeneration of SEI and lithium-ions consumption during subsequent cycling. Furthermore, we examined the advantages of Al2O3 coating by relating energy levels in LIBs using density functional theory calculations. Owing to its proper bandgap and lithium-ion conduction ability, the coating layer performs the same function as a SEI does, preventing an electron from getting to the outer electrode surface and allowing lithium-ion transport. Therefore, as a preformed SEI, the Al2O3 coating layer reduces extra cathode consumption observed in commercial LIBs. PMID:26913475

  4. Interfacial reactions and oxidation behavior of Al 2O 3 and Al 2O 3/Al coatings on an orthorhombic Ti 2AlNb alloy

    NASA Astrophysics Data System (ADS)

    Li, H. Q.; Wang, Q. M.; Gong, J.; Sun, C.

    2011-02-01

    The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.

  5. Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al2O 3/HfO 2 tunnel oxide.

    PubMed

    El-Atab, Nazek; Turgut, Berk Berkan; Okyay, Ali K; Nayfeh, Munir; Nayfeh, Ammar

    2015-12-01

    In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets with Al2O3/HfO2 tunnel oxide allow for larger memory windows at the same operating voltages, enhanced retention, and endurance characteristics. The measurements are further confirmed by plotting the energy band diagram of the structures, calculating the quantum tunneling probabilities, and analyzing the charge transport mechanism. Also, the required program time of the memory with ultra-thin asymmetric Al2O3/HfO2 tunnel oxide with graphene nanoplatelets storage layer is calculated under Fowler-Nordheim tunneling regime and found to be 4.1 ns making it the fastest fully programmed MOS memory due to the observed pure electrons storage in the graphene nanoplatelets. With Si nanoparticles, however, the program time is larger due to the mixed charge storage. The results confirm that band-engineering of both tunnel oxide and charge trapping layer is required to enhance the current non-volatile memory characteristics. PMID:26055483

  6. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices. PMID:26618751

  7. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.

    PubMed

    Ostadhossein, Alireza; Kim, Sung-Yup; Cubuk, Ekin D; Qi, Yue; van Duin, Adri C T

    2016-04-01

    Atomically deposited layers of SiO2 and Al2O3 have been recognized as promising coating materials to buffer the volumetric expansion and capacity retention upon the chemo-mechanical cycling of the nanostructured silicon- (Si-) based electrodes. Furthermore, silica (SiO2) is known as a promising candidate for the anode of next-generation lithium ion batteries (LIBs) due to its superior specific charge capacity and low discharge potential similar to Si anodes. In order to describe Li-transport in mixed silica/alumina/silicon systems we developed a ReaxFF potential for Li-Si-O-Al interactions. Using this potential, a series of hybrid grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations were carried out to probe the lithiation behavior of silica structures. The Li transport through both crystalline and amorphous silica was evaluated using the newly optimized force field. The anisotropic diffusivity of Li in crystalline silica cases is demonstrated. The ReaxFF diffusion study also verifies the transferability of the new force field from crystalline to amorphous phases. Our simulation results indicates the capability of the developed force field to examine the energetics and kinetics of lithiation as well as Li transportation within the crystalline/amorphous silica and alumina phases and provide a fundamental understanding on the lithiation reactions involved in the Si electrodes covered by silica/alumina coating layers. PMID:26978039

  8. Electrical and structural characterizations of crystallized Al2O3/GaN interfaces formed by in situ metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jackson, C. M.; Wu, F.; Mazumder, B.; Yeluri, R.; Kim, J.; Keller, S.; Arehart, A. R.; Ringel, S. A.; Speck, J. S.; Mishra, U. K.

    2016-01-01

    Al2O3 films were grown in situ by metalorganic chemical vapor deposition at 900 °C on GaN of both Ga- and N-face polarities. High-resolution transmission electron microscopy revealed that the Al2O3 films were crystalline and primarily γ-phase. The Al2O3/Ga-GaN and Al2O3/N-GaN interfaces were both atomically sharp, and the latter further exhibited a biatomic step feature. The corresponding current-voltage (J-V) characteristics were measured on a metal-Al2O3-semiconductor capacitor (MOSCAP) structure. The leakage current was very high when the Al2O3 thickness was comparable with the size of the crystalline defects, but was suppressed to the order of 1 × 10-8 A/cm2 with larger Al2O3 thicknesses. The interface states densities (Dit) were measured on the same MOSCAPs by using combined ultraviolet (UV)-assisted capacitance-voltage (C-V), constant capacitance deep level transient spectroscopy (CC-DLTS), and constant capacitance deep level optical spectroscopy (CC-DLOS) techniques. The average Dit measured by CC-DLTS and CC-DLOS were 6.6 × 1012 and 8.8 × 1012 cm-2 eV-1 for Al2O3/Ga-GaN and 8.6 × 1012 and 8.6 × 1012 cm-2 eV-1 for Al2O3/N-GaN, respectively. The possible origins of the positive (negative) polarization compensation charges in Al2O3/Ga-GaN (Al2O3/N-GaN), including the filling of interface states and the existence of structure defects and impurities in the Al2O3 layer, were discussed in accordance with the experimental results and relevant studies in the literature.

  9. Leakage Current Mechanism of InN-Based Metal-Insulator-Semiconductor Structures with Al2O3 as Dielectric Layers.

    PubMed

    Wang, X; Zhang, G Z; Xu, Y; Gan, X W; Chen, C; Wang, Z; Wang, Y; Wang, J L; Wang, T; Wu, H; Liu, C

    2016-12-01

    InN-based metal-insulator-semiconductor (MIS) structures were prepared with Al2O3 as the gate oxides. Surface morphologies of InN films are improved with increasing Mg doping concentrations. At high frequencies, the measured capacitance densities deviate from the real ones with turning frequencies inversely proportional to series resistances. An ultralow leakage current density of 1.35 × 10(-9) A/cm(2) at 1 V is obtained. Fowler-Nordheim tunneling is the main mechanism of the leakage current at high fields, while Schottky emission dominates at low fields. Capacitance densities shift with different biases, indicating that the InN-based MIS structures can serve as potential candidates for MIS field-effect transistors. PMID:26759357

  10. Leakage Current Mechanism of InN-Based Metal-Insulator-Semiconductor Structures with Al2O3 as Dielectric Layers

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhang, G. Z.; Xu, Y.; Gan, X. W.; Chen, C.; Wang, Z.; Wang, Y.; Wang, J. L.; Wang, T.; Wu, H.; Liu, C.

    2016-01-01

    InN-based metal-insulator-semiconductor (MIS) structures were prepared with Al2O3 as the gate oxides. Surface morphologies of InN films are improved with increasing Mg doping concentrations. At high frequencies, the measured capacitance densities deviate from the real ones with turning frequencies inversely proportional to series resistances. An ultralow leakage current density of 1.35 × 10-9 A/cm2 at 1 V is obtained. Fowler-Nordheim tunneling is the main mechanism of the leakage current at high fields, while Schottky emission dominates at low fields. Capacitance densities shift with different biases, indicating that the InN-based MIS structures can serve as potential candidates for MIS field-effect transistors.

  11. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    PubMed

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions. PMID:21341654

  12. Nanopore patterning using Al2O3 hard masks on SOI substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Goryll, Michael

    2015-07-01

    Aluminum oxide Al2O3, deposited using amorphous atomic layer deposition (ALD), is a very promising material to be utilized as a hard mask for nano-patterning. We used an aluminum oxide hard mask on a silicon-on-insulator (SOI) substrate to implement a sub-100 nm nanopore process. The transfer of nanoscale patterns via dry etching of the Al2O3 thin film was investigated by comparing etch profiles, etch rates, and selectivity of Al2O3 over PMMA resist, using different gas chemistries such as Cl2, Ar, Ar/BCl3 mixtures, and BCl3 plasma. A selectivity of 1:4 was observed using an inductively coupled plasma reactive ion etching (ICP-RIE) tool with BCl3 plasma, and the sub-100 nm nanopore patterns were anisotropically transferred to the alumina layer from a 250 nm PMMA layer. The dense and inert Al2O3 hard mask showed exceptional etch selectivity to Si and SiO2, which allowed the subsequent transfer of the nanopore patterns into the 340 nm-thick Si device layer and made it possible to attempt etching the 1 μm-thick buried oxide (BOX) layer. Using chlorine chemistry, nanopores patterned in the Si device layer showed excellent anisotropy while preserving the original pattern dimensions. The process demonstrated is ideally suited for patterning high aspect ratio nanofluidic structures.

  13. Atomically Abrupt Liquid-Oxide Interface Stabilized by Self-Regulated Interfacial Defects: The Case of Al/Al2O3 Interfaces

    SciTech Connect

    Kang, J.; Zhu, J. Y.; Curtis, C.; Blake, D.; Glatzmaier, G.; Kim, Y. H.; Wei, S. H.

    2012-06-01

    The atomic and electronic structures of the liquid Al/(0001) {alpha}-Al{sub 2}O{sub 3} interfaces are investigated by first-principles molecular dynamics simulations. Surprisingly, the formed liquid-solid interface is always atomically abrupt and is characterized by a transitional Al layer that contains a fixed concentration of Al vacancies ({approx}10 at.%). We find that the self-regulation of the defect density in the metal layer is due to the fact that the formation energy of the Al vacancies is readjusted in a way that opposes changes in the defect density. The negative-feedback effect stabilizes the defected transitional layer and maintains the atomic abruptness at the interface. The proposed mechanism is generally applicable to other liquid-metal/metal-oxide systems, and thus of significant importance in understanding the interface structures at high temperature.

  14. Rapid fabrication of Al2O3 encapsulations for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Ali, Junaid; Mehdi, Syed Murtuza; Choi, Kyung-Hyun; An, Young Jin

    2015-10-01

    Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al2O3 encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al2O3 encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (Ra) of 9.66 nm have been effectively covered by Al2O3 encapsulation having Ra of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al2O3 films. Electrical current-voltage (I-V) measurements confirmed that the Al2O3 encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al2O3 encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one week. The performance of encapsulated device had been promising after being subjected to bending test for 100 cycles and the variations in its stability were of minor concern confirming the mechanical robustness and flexibility of the devices.

  15. Control of Interfacial Properties of Al2O3/Ge Gate Stack Structure Using Radical Nitridation Technique

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Kyogoku, Shinya; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Takeuchi, Shotaro; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-10-01

    We have investigated the control of the interfacial properties of Al2O3/Ge gate stack structures by the radical nitridation technique. In the Al2O3/Ge structures formed by the atomic layer deposition method, the interface state density increases with the deposition temperature due to the decrease in the thickness of the Ge oxide interlayer. On the other hand, the hysteresis width of the capacitance-voltage (C-V) characteristics decreases with increasing deposition temperature, which indicates a decrease in the oxide trap density near the interface. We also investigated the control of the interfacial structure by the radical nitridation of Al2O3/Ge to form an interfacial structure after the deposition of a high-k dielectric layer. The results of X-ray photoelectron spectroscopy reveal that an Al2O3/Ge3N4/GeO2/Ge stack structure is formed after the radical nitridation owing to the minimal oxygen diffusion into the Al2O3/Ge interface. Furthermore, the interfacial mixing is suppressed after radical nitridation at less than 300 °C. As a result, we can decrease the interface state density of the Al2O3/Ge sample after the radical nitridation by more than one order of magnitude compared with that without radical nitridation.

  16. Erbium-ion implantation into various crystallographic cuts of Al2O3

    NASA Astrophysics Data System (ADS)

    Nekvindova, P.; Mackova, A.; Malinsky, P.; Cajzl, J.; Svecova, B.; Oswald, J.; Wilhelm, R. A.

    2015-12-01

    This paper reports on the importance of crystallographic cuts with a different orientation on the luminescent properties and structural changes of Al2O3 implanted with Er+ ions at 190 keV and with a fluence of 1.0 × 1016 cm-2. Post-implantation annealing at 1000 °C in oxygen atmosphere was also done. The chemical compositions and erbium concentration-depth profiles of implanted layers were studied by Rutherford Backscattering Spectrometry (RBS) and compared to SRIM simulations. The same value of the maximum erbium concentration (up to 2 at.%) was observed at a depth of about 40 nm for all crystallographic cuts. The structural properties of the prepared layers were characterised by RBS/channelling. The relative amount of disordered atoms of 70-80% was observed in the prepared implanted layers and discussed for various cuts. It has been found that erbium is positioned randomly in the Al2O3 crystalline matrix, and no preferential positions appeared even after the annealing procedure. Erbium luminescence properties were measured in the wavelength range of 1440-1650 nm for all samples. As-implanted Al2O3 samples had a significant luminescence band at 1530 nm. The best luminescence was repeatedly observed in the <0 0 0 1> cut of Al2O3. The annealing procedure significantly improved the luminescent properties.

  17. MIM capacitors with various Al2O3 thicknesses for GaAs RFIC application

    NASA Astrophysics Data System (ADS)

    Jiahui, Zhou; Hudong, Chang; Honggang, Liu; Guiming, Liu; Wenjun, Xu; Qi, Li; Simin, Li; Zhiyi, He; Haiou, Li

    2015-05-01

    The impact of various thicknesses of Al2O3 metal—insulator—metal (MIM) capacitors on direct current and radio frequency (RF) characteristics is investigated. For 20 nm Al2O3, the fabricated capacitor exhibits a high capacitance density of 3850 pF/mm2 and acceptable voltage coefficients of capacitance of 681 ppm/V2 at 1 MHz. An outstanding VCC-α of 74 ppm/V2 at 1 MHz, resonance frequency of 8.2 GHz and Q factor of 41 at 2 GHz are obtained by 100 nm Al2O3 MIM capacitors. High-performance MIM capacitors using GaAs process and atomic layer deposition Al2O3 could be very promising candidates for GaAs RFIC applications. Project supported by the National Natural Science Foundation of China (Nos. 61274077, 61474031), the Guangxi Natural Science Foundation (No. 2013GXNSFGA019003), the Guangxi Department of Education Project (No. 201202ZD041), the Guilin City Technology Bureau (Nos. 20120104-8, 20130107-4), the China Postdoctoral Science Foundation Funded Project (Nos. 2012M521127, 2013T60566), the National Basic Research Program of China (Nos. 2011CBA00605, 2010CB327501), the Innovation Project of GUET Graduate Education (Nos. GDYCSZ201448, GDYCSZ201449), the State Key Laboratory of Electronic Thin Films and Integrated Devices, UESTC (No. KFJJ201205), and the Guilin City Science and Technology Development Project (Nos. 20130107-4, 20120104-8).

  18. Understanding the Role of NH4F and Al2O3 Surface Co-modification on Lithium-Excess Layered Oxide Li1.2Ni0.2Mn0.6O2

    SciTech Connect

    Liu, Haodong; Qian, Danna; Verde, Michael G; Zhang, Minghao; Baggetto, Loic; An, Ke; Chen, Yan; Carroll, Kyler J; Lau, Derek; Chi, Miaofang; Veith, Gabriel M; Meng, Ying Shirley

    2015-01-01

    In this work we prepared Li1.2Ni0.2Mn0.6O2 (LNMO) using a hydroxide co-precipitation method and investigated the effect of co-modification with NH4F and Al2O3. After surface co-modification, the first cycle Coulombic efficiency of Li1.2Ni0.2Mn0.6O2 improved from 82.7% to 87.5%, and the reversible discharge capacity improved from 253 to 287 mAh g 1 at C/20. Moreover, the rate capability also increased significantly. A combination of neutron diffraction (ND), high-resolution transmission electron microscopy (HRTEM), aberration-corrected scanning transmission electron microscopy (a-STEM)/electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS) revealed the changes of surface structure and chemistry after NH4F and Al2O3 surface co-modification while the bulk properties showed relatively no changes. These complex changes on the material s surface include the formation of an amorphous Al2O3 coating, the transformation of layered material to a spinel-like phase on the surface, the formation of nanoislands of active material, and the partial chemical reduction of surface Mn4+. Such enhanced discharge capacity of the modified material can be primarily assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material facilitated with preactivated Mn3+ on the surface, and stabilization of the Ni-redox pair. These insights will provide guidance for the surface modification in high-voltage-cathode battery materials of the future.

  19. Understanding the Role of NH4F and Al2O3 Surface Co-modification on Lithium-Excess Layered Oxide Li1.2Ni0.2Mn0.6O2

    DOE PAGESBeta

    Liu, Haodong; Qian, Danna; Verde, Michael G; Zhang, Minghao; Baggetto, Loic; An, Ke; Chen, Yan; Carroll, Kyler J; Lau, Derek; Chi, Miaofang; et al

    2015-01-01

    In this work we prepared Li1.2Ni0.2Mn0.6O2 (LNMO) using a hydroxide co-precipitation method and investigated the effect of co-modification with NH4F and Al2O3. After surface co-modification, the first cycle Coulombic efficiency of Li1.2Ni0.2Mn0.6O2 improved from 82.7% to 87.5%, and the reversible discharge capacity improved from 253 to 287 mAh g 1 at C/20. Moreover, the rate capability also increased significantly. A combination of neutron diffraction (ND), high-resolution transmission electron microscopy (HRTEM), aberration-corrected scanning transmission electron microscopy (a-STEM)/electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS) revealed the changes of surface structure and chemistry after NH4F and Al2O3 surface co-modification whilemore » the bulk properties showed relatively no changes. These complex changes on the material s surface include the formation of an amorphous Al2O3 coating, the transformation of layered material to a spinel-like phase on the surface, the formation of nanoislands of active material, and the partial chemical reduction of surface Mn4+. Such enhanced discharge capacity of the modified material can be primarily assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material facilitated with preactivated Mn3+ on the surface, and stabilization of the Ni-redox pair. These insights will provide guidance for the surface modification in high-voltage-cathode battery materials of the future.« less

  20. One-pot Solvothermal Synthesis of Well-ordered Layered Sodium Aluminoalcoholate Complex: A Useful Precursor for the Preparation of Porous Al2O3 Particles†

    PubMed Central

    Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; McKay, Ian; Müller, Peter; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    One-pot solvothermal synthesis of a robust tetranuclear sodium hexakis(glycolato)tris(methanolato)aluminate complex Na3[Al4(OCH3)3(OCH2CH2O)6] via a modified yet rigorous base-catalyzed transesterification mechanism is presented here. Single crystal X-ray diffraction (SCXRD) studies indicate that this unique Al complex contains three penta-coordinate Al3+ ions, each bound to two bidentate ethylene glycolate chelators and one monodentate methanolate ligand. The remaining fourth Al3+ ion is octahedrally coordinated to one oxygen atom from each of the six surrounding glycolate chelators, effectively stitching the three penta-coordinate Al moieties together into a novel tetranuclear Al complex. This aluminate complex is periodically self-assembled into well-ordered layers normal to the [110] axis with the intra-/inter-layer bindings involving extensive ionic bonds from the three charge-counterbalancing Na+ cations rather than the more typical hydrogen bonding interactions as a result of the fewer free hydroxyl groups present in its structure. It can also serve as a valuable precursor toward the facile synthesis of high-surface-area alumina powders using a very efficient rapid pyrolysis technique. PMID:24817826

  1. One-pot solvothermal synthesis of a well-ordered layered sodium aluminoalcoholate complex: a useful precursor for the preparation of porous Al2O3 particles

    SciTech Connect

    Li, XS; Michaelis, VK; Ong, TC; Smith, SJ; McKay, I; Muller, P; Griffin, RG; Wang, EN

    2014-01-01

    One-pot solvothermal synthesis of a robust tetranuclear sodium hexakis(glycolato)tris(methanolato)aluminate complex Na-3[Al-4(OCH3)(3)(OCH2CH2O)(6)] via a modified yet rigorous base-catalyzed transesterification mechanism is presented here. Single crystal X-ray diffraction (SCXRD) studies indicate that this unique Al complex contains three pentacoordinate Al3+ ions, each bound to two bidentate ethylene glycolate chelators and one monodentate methanolate ligand. The remaining fourth Al3+ ion is octahedrally coordinated to one oxygen atom from each of the six surrounding glycolate chelators, effectively stitching the three pentacoordinate Al moieties together into a novel tetranuclear Al complex. This aluminate complex is periodically self-assembled into well-ordered layers normal to the [110] axis with the intra-/inter-layer bonding involving extensive ionic bonds from the three charge-counterbalancing Na+ cations rather than the more typical hydrogen bonding interactions as a result of fewer free hydroxyl groups present in its structure. It can also serve as a valuable precursor toward the facile synthesis of high-surface-area alumina powders using a very efficient rapid pyrolysis technique.

  2. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    PubMed

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter. PMID:25537523

  3. Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface

    NASA Astrophysics Data System (ADS)

    Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.

    2015-10-01

    Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  4. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Park, Sang-Hee Ko; Jung, Soon-Won; Cho, Doo-Hee; Byun, Chun-Won; Kang, Seung-Youl; Hwang, Chi-Sun; Yu, Byoung-Gon

    2009-12-01

    Poly(vinylidene fluoride trifluoroethylene) and ZnO were employed for nonvolatile memory thin film transistors as ferroelectric gate insulator and oxide semiconducting channel layers, respectively. It was proposed that the thickness of the ZnO layer be carefully controlled for realizing the lower programming voltage, because the serially connected capacitor by the formation of a fully depleted ZnO channel had a critical effect on the off programming voltage. The fabricated memory transistor with Al/P(VDF-TrFE) (80 nm)/Al2O3 (4 nm)/ZnO (5 nm) exhibits encouraging behaviour such as a memory window of 3.8 V at the gate voltage of -10 to 12 V, and 107 on/off ratio, and a gate leakage current of 10-11 A.

  5. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  6. From atomic structure to excess entropy: a neutron diffraction and density functional theory study of CaO-Al2O3-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Liu, Maoyuan; Jacob, Aurélie; Schmetterer, Clemens; Masset, Patrick J.; Hennet, Louis; Fischer, Henry E.; Kozaily, Jad; Jahn, Sandro; Gray-Weale, Angus

    2016-04-01

    Calcium aluminosilicate \\text{CaO}-\\text{A}{{\\text{l}}2}{{\\text{O}}3}-\\text{Si}{{\\text{O}}2} (CAS) melts with compositions {{≤ft(\\text{CaO}-\\text{Si}{{\\text{O}}2}\\right)}x}{{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}1-x} for x  <  0.5 and {{≤ft(\\text{A}{{\\text{l}}2}{{\\text{O}}3}\\right)}x}{{≤ft(\\text{Si}{{\\text{O}}2}\\right)}1-x} for x≥slant 0.5 are studied using neutron diffraction with aerodynamic levitation and density functional theory molecular dynamics modelling. Simulated structure factors are found to be in good agreement with experimental structure factors. Local atomic structures from simulations reveal the role of calcium cations as a network modifier, and aluminium cations as a non-tetrahedral network former. Distributions of tetrahedral order show that an increasing concentration of the network former Al increases entropy, while an increasing concentration of the network modifier Ca decreases entropy. This trend is opposite to the conventional understanding that increasing amounts of network former should increase order in the network liquid, and so decrease entropy. The two-body correlation entropy S 2 is found to not correlate with the excess entropy values obtained from thermochemical databases, while entropies including higher-order correlations such as tetrahedral order, O-M-O or M-O-M bond angles and Q N environments show a clear linear correlation between computed entropy and database excess entropy. The possible relationship between atomic structures and excess entropy is discussed.

  7. Energy-band diagram configuration of Al2O3/oxygen-terminated p-diamond metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Maréchal, A.; Aoukar, M.; Vallée, C.; Rivière, C.; Eon, D.; Pernot, J.; Gheeraert, E.

    2015-10-01

    Diamond metal-oxide-semiconductor capacitors were prepared using atomic layer deposition at 250 °C of Al2O3 on oxygen-terminated boron doped (001) diamond. Their electrical properties were investigated in terms of capacitance and current versus voltage measurements. Performing X-ray photoelectron spectroscopy based on the measured core level energies and valence band maxima, the interfacial energy band diagram configuration of the Al2O3/O-diamond is established. The band diagram alignment is concluded to be of type I with valence band offset Δ E v of 1.34 ± 0.2 eV and conduction band offset Δ E c of 0.56 ± 0.2 eV considering an Al2O3 energy band gap of 7.4 eV. The agreement with electrical measurement and the ability to perform a MOS transistor are discussed.

  8. Domain epitaxy in TiO2/ -Al2O3 thin film heterostructures with Ti2O3 transient layer

    SciTech Connect

    Bayati, M R; Molaei, R; Narayan, Jagdish; Zhou, Honghui; Pennycook, Stephen J

    2012-01-01

    Rutile TiO2 films were grown epitaxially on -alumina (sapphire(0001)) substrates and characterized by x-ray diffraction and scanning transmission electron microscopy. It was revealed that the rutile film initially grows pseudomorphically on sapphire as Ti2O3 and, after a few monolayers, it grows tetragonally on the Ti2O3/sapphire platform. Formation of the Ti2O3 transient layer was attributed to the symmetry mismatch between tetragonal structure of TiO2 and hexagonal structure of alumina. The separation between the [10](101) misfit dislocations was dictated by Ti2O3 and was determined to be 9.7 which is consistent with 4/3 and 3/2 alternating domains across the film/substrate interface.

  9. Tensile Behavior of Al2o3/feal + B and Al2o3/fecraly Composites

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Eldridge, J. I.; Aiken, B. J. M.

    1995-01-01

    The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal Al2O3 fibers. The interfacial shear strengths were low for Al203/FeAl + B and moderate to high for Al203/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the Al203 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.

  10. Properties of slow traps of ALD Al2O3/GeOx/Ge nMOSFETs with plasma post oxidation

    NASA Astrophysics Data System (ADS)

    Ke, M.; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S.

    2016-07-01

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (Dit) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al2O3/GeOx/n-Ge and HfO2/Al2O3/GeOx/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al2O3 and HfO2/Al2O3 combined with plasma post oxidation. It is found that the slow traps can locate in the GeOx interfacial layer, not in the ALD Al2O3 layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al2O3/GeOx/Ge gate stacks, with changing the thickness of GeOx, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeOx, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeOx.

  11. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  12. Growth of highly oriented γ- and α-Al2O3 thin films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Babu, R. Venkatesh; Shin, K. S.; Song, J. I.

    2014-03-01

    Highly oriented aluminum oxide (Al2O3) thin films were grown on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) single crystal substrates at an optimized oxygen partial pressure of 3.5×10-3 mbar and 700 °C by pulsed laser deposition. The films were characterized by X-ray diffraction and atomic force microscopy. The X-ray diffraction studies indicated the highly oriented growth of γ-Al2O3 (400) ǁ SrTiO3 (100), α-Al2O3 (024) ǁ α-Al2O3 (11¯02), α-Al2O3 (006) ǁ α-Al2O3 (0001) and α-Al2O3 (006) ǁ MgO (100). Formation of nanostructures with dense and smooth surface morphology was observed using atomic force microscopy. The root mean square surface roughness of the films were 0.2 nm, 0.5 nm, 0.7 nm and 0.3 nm on SrTiO3 (100), α-Al2O3 (11¯02), α-Al2O3 (0001) and MgO (100) substrates, respectively.

  13. Space-charge-controlled field emission model of current conduction through Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  14. Head-up display using an inclined Al2O3 column array.

    PubMed

    Cho, Wen-Hao; Lee, Chao-Te; Kei, Chi-Chung; Liao, Bo-Huei; Chiang, Donyau; Lee, Cheng-Chung

    2014-02-01

    An orderly inclined Al2O3 column array was fabricated by atomic layer deposition and sequential electron beam evaporation using a hollow nanosphere template. The transmittance spectra at various angles of incidence were obtained through the use of a Perkin-Elmer Lambda 900 UV/VIS/NIR spectrometer. The inclined column array could display the image information through a scattering mechanism and was transparent at high viewing angles along the deposition plane. This characteristic of the inclined column array gives it potential for applications in head-up displays in the automotive industry. PMID:24514203

  15. Dependence of electrostatic potential distribution of Al2O3/Ge structure on Al2O3 thickness

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Wenwu; Zhao, Chao; Zhang, Jing

    2016-09-01

    Electrostatic potential distribution of Al2O3/Ge structure is investigated vs. Al2O3 thickness by X-ray photoelectron spectroscopy (XPS). The electrostatic potential distribution is found to be Al2O3 thickness dependent. This interesting phenomenon is attributed to the appearance of gap states on Al2O3 surface (GSAl2O3) and its higher charge neutrality level (CNL) compared with the CNL of gap states at Al2O3/Ge interface (GSAl2O3/Ge), leading to electron transfer from GSAl2O3 to GSAl2O3/Ge. In the case of thicker Al2O3, fewer electrons transfer from GSAl2O3 to GSAl2O3/Ge, resulting in a larger potential drop across Al2O3 and XPS results.

  16. Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction.

    PubMed

    Tuominen, Marjukka; Yasir, Muhammad; Lång, Jouko; Dahl, Johnny; Kuzmin, Mikhail; Mäkelä, Jaakko; Punkkinen, Marko; Laukkanen, Pekka; Kokko, Kalevi; Schulte, Karina; Punkkinen, Risto; Korpijärvi, Ville-Markus; Polojärvi, Ville; Guina, Mircea

    2015-03-14

    Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al2O3/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al2O3, decreases band-gap defect density at the Al2O3/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al2O3/GaAs interfaces shows that the high oxidation state of Ga (Ga2O3 type) decreases, and the corresponding In2O3 type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation. PMID:25686555

  17. Nanocomposite YCrO3/Al2O3: characterization of the core-shell, magnetic properties, and enhancement of dielectric properties.

    PubMed

    Durán, A; Tiznado, H; Romo-Herrera, J M; Domínguez, D; Escudero, R; Siqueiros, J M

    2014-05-19

    Multifuncionality in polycrystalline multiferroic ceramics can be improved using an advanced synthesis process. In this work, core-shell design is being proposed to enhance the transport properties of biferroic YCrO3. The atomic layer deposition (ALD) thin-film growth technique was used for the YCrO3/Al2O3 (Y@Al) nanocomposite fabrication. A continuous, amorphous, and uniform Al2O3 shell, a few nanometers thick, was obtained and characterized by X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The transport properties of biferroic YCrO3 coated with 50, 500, and 1000 ALD cycles of insulating Al2O3 were investigated using magnetization and AC conductivity measurements. It is observed that the values of the magnetic coercive field and the magnetization are affected by the amorphous and partially crystallized Al2O3 shell. Additionally, the Y@Al nanocomposite experiments show a notorious decreasing in the loss tangent and the electrical conductivity. Accordingly, hysteresis loops in the polarization versus electric energy data confirm the decrease of the leakage current as a consequence of the Al2O3 shell acting as a barrier layer. The results shown here confirm that the core-shell architecture is a promising alternative for improvement of the magnetic and ferroelectric properties in bulk multiferroics. PMID:24811873

  18. Passivation of Al2O3 / TiO2 on monocrystalline Si with relatively low reflectance

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Ti; Huang, Yu-Shiang; Liu, C. W.

    2016-06-01

    Al2O3/TiO2 stack layers deposited by the plasma-enhanced atomic layer deposition enhance photoluminescence intensity by reducing effective surface recombination velocities on both n-type and p-type monocrystalline Si. The field effect of negative oxide charges in the dielectrics is responsible for the low effective surface recombination velocity. The dependence of the effective surface recombination velocity on the photoluminescence intensity is investigated by the 2D numerical simulation. The bilayer stacks without texture also reduce the AM1.5-weighted front side reflectance to 11.8%. The field-effect passivation of Al2O3/TiO2 films is further improved by a forming gas annealing due to the additional increase of the negative oxide charge density.

  19. Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion.

    PubMed

    Jung, Sung Chul; Kim, Hyung-Jin; Choi, Jang Wook; Han, Young-Kyu

    2014-11-12

    Surface coating of active materials has been one of the most effective strategies to mitigate undesirable side reactions and thereby improve the overall battery performance. In this direction, aluminum oxide (Al2O3) is one of the most widely adopted coating materials due to its easy synthesis and low material cost. Nevertheless, the effect of Al2O3 coating on carrier ion diffusion has been investigated mainly for Li ion batteries, and the corresponding understanding for emerging Na ion batteries is currently missing. Using ab initio molecular dynamics calculations, herein, we first find that, unlike lithiation, sodiation of Al2O3 is thermodynamically unfavorable. Nonetheless, there can still exist a threshold in the Na ion content in Al2O3 before further diffusion into the adjacent active material, delivering a new insight that both thermodynamics and kinetics should be taken into account to describe ionic diffusion in any material media. Furthermore, Na ion diffusivity in NaxAl2O3 turns out to be much higher than Li ion diffusivity in LixAl2O3, a result opposite to the conventional stereotype based on the atomic radius consideration. While hopping between the O-rich trapping sites via an Na-O bond breaking/making process is identified as the main Na ion diffusion mechanism, the weaker Na-O bond strength than the Li-O counterpart turns out to be the origin of the superior diffusivity of Na ions. PMID:25286155

  20. Activation energy of negative fixed charges in thermal ALD Al2O3

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-01

    A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.

  1. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.

    PubMed

    Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun

    2016-05-01

    In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels. PMID:27483762

  2. Effects of HCl treatment and predeposition vacuum annealing on Al2O3/GaSb/GaAs metal-oxide-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Yasuda, Tetsuji; Maeda, Tatsuro

    2015-02-01

    The effects of HCl treatment and predeposition vacuum annealing (VA) on n-type GaSb/GaAs metal-oxide-semiconductor (MOS) structures with the atomic layer deposition (ALD) of Al2O3 dielectrics are studied. We obtained MOS structures with good Fermi level modulation by HCl treatment prior to the deposition of Al2O3. From X-ray photoelectron spectroscopy (XPS) analysis, we found that the Ga2O3 content increases during the Al2O3 deposition, whereas the amounts of Sb components are reduced. The excess growth of Ga2O3 is inhibited by the reductions in the amounts of Sb components by the HCl treatment. Further reductions in the amounts of Sb components are observed following predeposition VA, indicating a lower density of states (Dit). However, the frequency dispersion in the capacitance-voltage (C-V) characteristics increases with predeposition VA at higher temperatures.

  3. Characterization of ultrafast microstructuring of alumina (Al2O3)

    NASA Astrophysics Data System (ADS)

    Perrie, Walter; Rushton, Anne; Gill, Matthew; Fox, Peter; O'Neill, William

    2005-03-01

    Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth ~ 1.1 Jcm-2 and at low fluence ~ 3 Jcm-2, independent of machined depth, there appears to remain a ~ 2μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ~ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ~ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.

  4. Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3

    NASA Astrophysics Data System (ADS)

    Hoex, B.; Schmidt, J.; Bock, R.; Altermatt, P. P.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2007-09-01

    From lifetime measurements, including a direct experimental comparison with thermal SiO2, a-Si :H, and as-deposited a-SiNx:H, it is demonstrated that Al2O3 provides an excellent level of surface passivation on highly B-doped c-Si with doping concentrations around 1019cm-3. The Al2O3 films, synthesized by plasma-assisted atomic layer deposition and with a high fixed negative charge density, limit the emitter saturation current density of B-diffused p +-emitters to ˜10 and ˜30fA/cm2 on >100 and 54Ω/sq sheet resistance p+-emitters, respectively. These results demonstrate that highly doped p-type Si surfaces can be passivated as effectively as highly doped n-type surfaces.

  5. Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films.

    PubMed

    Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun

    2015-12-01

    Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare

  6. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

    PubMed Central

    Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    Summary The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300–1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm. PMID:24367740

  7. Electronic properties and reactivity of simulated Fe3+ and Cr3+ substituted α-Al2O3 (0001) surface

    PubMed Central

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-01-01

    Metal oxide based minerals naturally contain transition metal impurities isomorphically substituted into the structure that can alter the structural and electronic properties as well as the reactivity of these metal oxides. Natural α-Al2O3 (corundum) can contain up to 9.17% (w/w) Fe2O3 and 1.81% (w/w) of Cr2O3. Here we report on changes in the structural and electronic properties of undoped and doped α-Al2O3 (0001) surfaces using periodic density functional theory (DFT) methods with spin unrestricted B3LYP functional and a local atomic basis set. Both structural and electronic properties are altered upon doping. Implications for doping effects on photochemical processes are discussed. As metal oxides are major components of the environment, including atmospheric mineral aerosol, DFT was also used to study the effect of transition metal impurities on gas/surface interactions of a model acidic atmospheric gas molecule, carbon monoxide (CO). The theoretical results indicated that the presence of Fe3+ and Cr3+ impurities substituted on the outer layer of natural corundum surfaces reduces the propensity toward CO adsorption relative to the undoped surface. However, CO-surface interactions resemble that of bulk α-Al2O3 when the impurity is substituted below the first surface layer. The presence and location of the mineral dopant was found to significantly alter the structural and electronic properties and gas/surface interactions studied here. PMID:23411748

  8. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    PubMed

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm. PMID:24367740

  9. Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Wang, Cheng-Bing; Guo, Zhi-Ming; Geng, Qing-Fen; Theiss, Wolfgang; Liu, Gang

    2016-08-01

    Traditional metal-dielectric composite coating has found important application in spectrally selective solar absorbers. However, fine metal particles can easily diffuse, congregate, or be oxidized at high temperature, which causes deterioration in the optical properties. In this work, we report a new spectrally selective solar absorber coating, composed of low Al2O3 ceramic volume fraction (Al2O3(L)-WC) layer, high Al2O3 ceramic volume fraction (Al2O3(H)-WC layer) and Al2O3 antireflection layer. The features of our work are: 1) compared with the metal-dielectric composites concept, Al2O3-WC nanocomposite ceramic successfully achieves the all-ceramic concept, which exhibits a high solar absorptance of 0.94 and a low thermal emittance of 0.08, 2) Al2O3 and WC act as filler material and host material, respectively, which are different from traditional concept, 3) Al2O3-WC nanocomposite ceramic solar absorber coating exhibits good thermal stability at 600 °C. In addition, the solar absorber coating is successfully modelled by a commercial optical simulation programme, the result of which agrees with the experimental results.

  10. Physical characterization of thin ALD-Al 2O 3 films

    NASA Astrophysics Data System (ADS)

    Jakschik, Stefan; Schroeder, Uwe; Hecht, Thomas; Krueger, Dietmar; Dollinger, Guenther; Bergmaier, Andreas; Luhmann, Claudia; Bartha, Johann W.

    2003-04-01

    Aluminum oxide was deposited using atomic layer deposition on either a silicon oxide or a silicon nitride interface. Water vapor or ozone were used as oxidation precursors. The structural properties of these films were investigated by time-of-flight secondary-ion-mass-spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and elastic recoil detection (ERD). Special attention was given to contamination issues of the film and the interface, bonding conditions and temperature influence on diffusion. The results suggest that the silicon most likely diffused along grain boundaries of polycrystalline Al 2O 3. Carbon and hydrogen were located at the interface and furthermore hydrogen diffused out of the film to some extent due to anneal. Carbon content in the layer was reduced when using O 3 as an oxidant. The formation of metallic aluminum clusters was not observed for any of the investigated process conditions.

  11. Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Oh, S.-J.

    2004-05-01

    We investigated a depth profile of the chemical states of an Al2O3/Si interface using nondestructive photon energy-dependent high-resolution x-ray photoelectron spectroscopy (HRXPS). The Si 2p binding energy, attributed to the oxide interfacial layer (OIL), was found to shift from 102.1 eV to 102.9 eV as the OIL region closer to Al2O3 layer was sampled, while the Al 2p binding energy remains the same. This fact strongly suggests that the chemical state of the interfacial layer is not Al silicate as previously believed. We instead propose from the HRXPS of Al 2p and Si 2p depth-profile studies that the chemical states of the Al2O3/Si interface mainly consist of SiO2 and Si2O3.

  12. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  13. Impact of graphene–graphite films on electrical properties of Al2O3 metal–insulator–semiconductor structure

    NASA Astrophysics Data System (ADS)

    Choi, Kyeong-Keun; Kee, Jong; Park, Chan-Gyung; Kim, Deok-kee

    2016-08-01

    The diffusion barrier property of directly grown graphene–graphite films between Al2O3 films and Si substrates was evaluated using metal–insulator–semiconductor (MIS) structures. The roughness, morphology, sheet resistance, Raman spectrum, chemical composition, and breakdown field strength of the films were investigated after rapid thermal annealing. About 2.5-nm-thick graphene–graphite films effectively blocked the formation of the interfacial layer between Al2O3 films and Si, which was confirmed by the decreased breakdown field strength of graphene–graphite film structures. After annealing at 975 °C for 90 s, the increase in the mean breakdown field strength of the structure with the ∼2.5-nm-thick graphene–graphite film was about 91% (from 8.7 to 16.6 MV/cm), while that without the graphene–graphite film was about 187% (from 11.2 to 32.1 MV/cm). Si atom diffusion into Al2O3 films was reduced by applying the carbon-based diffusion barrier.

  14. Sulfur passivation for the formation of Si-terminated Al2O3/SiGe(0 0 1) interfaces

    NASA Astrophysics Data System (ADS)

    Sardashti, Kasra; Hu, Kai-Ting; Tang, Kechao; Park, Sangwook; Kim, Hyonwoong; Madisetti, Shailesh; McIntyre, Paul; Oktyabrsky, Serge; Siddiqui, Shariq; Sahu, Bhagawan; Yoshida, Noami; Kachian, Jessica; Kummel, Andrew

    2016-03-01

    Sulfur passivation is used to electrically and chemically passivate the silicon-germanium (SiGe) surfaces before and during the atomic layer deposition (ALD) of aluminum oxide (Al2O3). The electrical properties of the interfaces were examined by variable frequency capacitance-voltage (C-V) spectroscopy. Interface compositions were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). The sulfur adsorbs to a large fraction of surface sites on the SiGe(0 0 1) surface, protecting the surface from deleterious surface reactions during processing. Sulfur passivation (a) improved the air stability of the cleaned surfaces prior to ALD, (b) increased the stability of the surface during high-temperature deposition, and (c) increased the Al2O3 ALD nucleation density on SiGe, thereby lowering the leakage current. S passivation suppressed formation of Gesbnd O bonds at the interface, leaving the majority of the Al2O3-SiGe interface terminated with direct Sisbnd Osbnd Al bonding.

  15. Characterization of Al2O3 in High-Strength Mo Alloy Sheets by High-Resolution Transmission Electron Microscopy.

    PubMed

    Zhou, Yucheng; Gao, Yimin; Wei, Shizhong; Hu, Yajie

    2016-02-01

    A novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43-85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\\left[ {2\\bar{2}1} \\right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed. PMID:26914997

  16. Microstructure and dielectric properties of (Ba 0.6Sr 0.4)TiO 3 thin films grown on super smooth glazed-Al 2O 3 ceramics substrate

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Yang, Chuanren; Zheng, Shanxue; Zhang, Jihua; Zhang, Qiaozhen; Lei, Guanhuan; Lou, Feizhi; Yang, Lijun

    2011-12-01

    Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.

  17. Crack-resistant Al2O3-SiO2 glasses.

    PubMed

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  18. Crack-resistant Al2O3–SiO2 glasses

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  19. Crack-resistant Al2O3–SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  20. Distinctive electrical properties in sandwich-structured Al2O3/low density polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min

    2016-02-01

    The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.

  1. Acid-base properties of the surface of the α-Al2O3 suspension

    NASA Astrophysics Data System (ADS)

    Ryazanov, M. A.; Dudkin, B. N.

    2009-12-01

    The distribution of the acid-base centers on the surface of α-Al2O3 suspension particles was studied by potentiometric titration, and the corresponding p K spectra were constructed. It was inferred that the double electric layer created by the supporting electrolyte substantially affected the screening of the acid-base centers on the particle surface of the suspension.

  2. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  3. Catalytic Methane Decomposition over Fe-Al2 O3.

    PubMed

    Zhou, Lu; Enakonda, Linga Reddy; Saih, Youssef; Loptain, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-06-01

    The presence of a Fe-FeAl2 O4 structure over an Fe-Al2 O3 catalysts is demonstrated to be vital for the catalytic methane decomposition (CMD) activity. After H2 reduction at 750 °C, Fe-Al2 O3 prepared by means of a fusion method, containing 86.5 wt % FeAl2 O4 and 13.5 wt % Fe(0) , showed a stable CMD activity at 750 °C for as long as 10 h. PMID:27159367

  4. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang; Liu, Xuehua; Zhang, Jinping; Zhang, Yi; Fang, Qi; Ren, Zhong; Bai, Yu

    2015-12-01

    We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device's leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10-9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  5. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  6. InP MOS capacitor and E-mode n-channel FET with ALD Al2O3-based high- k dielectric

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Feng; Yeh, Min-Yen; Chong, Kwok-Keung; Hsu, Chun-Fa; Lee, Ming-Kwei

    2016-07-01

    The electrical characteristics of atomic-layer-deposited Al2O3/TiO2/Al2O3 on (NH4)2S-treated InP MOS capacitor and related MOSFET were studied. The electrical characteristics were improved from the reduction of native oxides and sulfur passivation on InP by (NH4)2S treatment. The high bandgap Al2O3 on TiO2 can reduce the thermionic emission, and the Al2O3 under TiO2 improves the interface-state density by self-cleaning. The high dielectric constant TiO2 is used to lower the equivalent oxide thickness. The leakage currents can reach 2.3 × 10-8 and 2.2 × 10-7 A/cm2 at ±2 MV/cm, respectively. The lowest interface-state density is 4.6 × 1011 cm-2 eV-1 with a low-frequency dispersion of 15 %. The fabricated enhancement-mode n-channel sulfur-treated InP MOSFET exhibits good electrical characteristics with a maximum transconductance of 146 mS/mm and effective mobility of 1760 cm2/V s. The subthreshold swing and threshold voltage are 117 mV/decade and 0.44 V, respectively.

  7. Nature of MgO and Al2O3 Dissolution in Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Webler, Bryan A.; Pistorius, P. Chris; Fruehan, Richard J.

    2015-12-01

    The nature of MgO and Al2O3 dissolution in metallurgical slags may affect production cost, efficiency, and product quality. However, the rate-limiting dissolution mechanism, chemical reaction or boundary layer diffusion, is not well understood. In the present report, the dissolution mechanism of MgO and Al2O3 in metallurgical slag was evaluated based on available literature data. The mass balance between the dissolving particle and the flux equation through the boundary layer was applied to predict the dissolution curve. The influence of fluid flow was taken into account to calculate the mass transfer rate at the oxide/slag interface. It was found that the rate-limiting step of MgO and Al2O3 dissolution is the same: mass transfer through the boundary layer. Depending on the slag composition and experimental temperature, the effective diffusion coefficient for MgO and Al2O3 dissolution falls in the range of 10-12 to 10-9 m2/s.

  8. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  9. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  10. Effect of thermal annealing on the structure of ZnSe/Al2O3 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. A.; Krylov, P. N.; Kostenkov, N. V.; Zakirova, R. M.; Fedotova, I. V.

    2016-04-01

    The ZnSe/Al2O3 nanocomposite films synthesized by laser evaporation followed by heat treatment are studied. X-ray diffraction and electron-microscopic investigations of the as-deposited films demonstrate the presence of ZnSe crystallites in an Al2O3 amorphous matrix. Annealing changes the structures of ZnSe and Al2O3, increases the ZnSe crystallite size, and causes the appearance of the ZnSeO4 phase. The presence of aluminum oxide layers decreases the phase transformation temperature of zinc selenide.

  11. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  12. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate. PMID:26369207

  13. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE PAGESBeta

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Meyer, III, Harry M.

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  14. Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3

    NASA Astrophysics Data System (ADS)

    Cao, Yu-Chao; Zhao, Lei; Luo, Jin; Wang, Ke; Zhang, Bo-Ping; Yokota, Hiroki; Ito, Yoshiyasu; Li, Jing-Feng

    2016-03-01

    The plasma etching behavior of Y2O3 coating was investigated and compared with that of Al2O3 coating under various conditions, including chemical etching, mixing etching and physical etching. The etching rate of Al2O3 coating declined with decreasing CF4 content under mixing etching, while that of Y2O3 coating first increased and then decreased. In addition, the Y2O3 coating demonstrated higher erosion-resistance than Al2O3 coating after exposing to fluorocarbon plasma. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formations of YF3 and AlF3 on the Y2O3 and Al2O3 coatings, respectively, which acted as the protective layer to prevent the surface from further erosion with fluorocarbon plasma. It was revealed that the etching behavior of Y2O3 depended not only on the surface fluorination but also on the removal of fluoride layer. To analyze the effect of porosity, Y2O3 bulk samples with high density were prepared by spark plasma sintering, and they demonstrated higher erosion-resistances compared with Y2O3 coating.

  15. Transport mechanisms of leakage current in Al2O3/InAlAs MOS capacitors

    NASA Astrophysics Data System (ADS)

    Jin, Chengji; Lu, Hongliang; Zhang, Yimen; Zhang, Yuming; Guan, He; Wu, Lifan; Lu, Bin; Liu, Chen

    2016-09-01

    An Al2O3 layer is inserted between the InAlAs layer and the metal gate in InAs/AlSb HEMTs to suppress the leakage current. The transport mechanisms of leakage current in Al2O3/InAlAs metal-oxide-semiconductor (MOS) capacitors at both positive and negative biases at different temperatures ranging from 10 °C to 70 °C are investigated. For positive bias, the leakage current is dominated by Schottky emission. Based on the fitted straight lines, the relative dielectric constant of Al2O3 and the barrier height between Al2O3 and InAlAs are extracted. However, for negative bias, the leakage current is dominated by Frenkel-Poole (F-P) emission and the depth of the trap energy level from the conduction band (ϕt) is extracted. Furthermore, authors explain the reason why the dominating mechanisms at positive and negative biases are different.

  16. Nanoclusters of MoO3-x embedded in an Al2O3 matrix engineered for customizable mesoscale resistivity and high dielectric strength

    NASA Astrophysics Data System (ADS)

    Tong, William M.; Brodie, Alan D.; Mane, Anil U.; Sun, Fuge; Kidwingira, Françoise; McCord, Mark A.; Bevis, Christopher F.; Elam, Jeffrey W.

    2013-06-01

    We have synthesized a material consisting of conducting metal oxide (MoO3-x) nanoclusters embedded in a high-dielectric-strength insulator (Al2O3) matrix. The resistivity of this material can be customized by varying the concentration of the MoO3-x nanoclusters. The Al2O3 protects the MoO3-x from stoichiometry change, thus conserving the number of carriers and maintaining a high dielectric strength. This composite material is grown by atomic layer deposition, a thin film deposition technique suitable for coating 3D structures. We applied these atomic layer deposition composite films to our 3D electron-optical micro electrical mechanical systems devices and greatly improved their performance.

  17. Control of MgO·Al2O3 Spinel Inclusions during Protective Gas Electroslag Remelting of Die Steel

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Chen, Xi-Chun; Guo, Han-Jie; Zhu, Zi-Jiang; Sun, Xiao-Lin

    2013-04-01

    The effect of calcium treatment and/or aluminum-based deoxidant addition on the oxygen control and modification of MgO·Al2O3 spinel inclusions during protective gas electroslag remelting (P-ESR) of H13 die steel with low oxygen content was experimentally studied. It is found that all the inclusions in the consumable electrode are MgO·Al2O3 spinels, besides a few MgO·Al2O3 spinels surrounded by an outer (Ti,V)N or MnS layer. After P-ESR refining combined with proper calcium treatment, all the original MgO·Al2O3 spinels in the electrode (except for the original MgO·Al2O3 spinels having been removed in the P-ESR process) were modified to mainly CaO-MgO-Al2O3 and some CaO-Al2O3 inclusions, both of which have a low melting point and homogeneous compositions. In the case of only Al-based deoxidant addition, all the oxide inclusions remaining in ESR ingots are MgO·Al2O3 spinels. The operation of Al-based deoxidant addition and/or calcium treatment during P-ESR of electrode steel containing low oxygen content is invalid to further reduce the oxygen content and oxide inclusions amount compared with remelting only under protective gas atmosphere. All the original sulfide inclusions were removed after the P-ESR process. Most of the inclusions in ESR ingots are about 2 μm in size. The mechanisms of non-metallic inclusions evolution and modification of MgO·Al2O3 spinels by calcium treatment during the P-ESR process were proposed.

  18. Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Peng, Yuandong; Nie, Junwu; Zhang, Wenjun; Ma, Jian; Bao, Chongxi; Cao, Yang

    2016-02-01

    We investigated the effect of the addition of Al2O3 nanoparticles on the permeability and core loss of Fe soft magnetic composites coated with silicone. Fourier transform infra-red spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis revealed that the surface layer of the powder particles consisted of a thin insulating Al2O3 layer with uniform surface coverage. The permeability and core loss of the composite with the Al2O3 addition annealed at 650 °C were excellent. The results indicated that the Al2O3 nanoparticle addition increases the permeability stablility with changing frequency and decreases the core loss over a wide range of frequencies.

  19. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices

    NASA Astrophysics Data System (ADS)

    Canto, Bárbara; Gouvea, Cristol P.; Archanjo, Bráulio S.; Schmidt, João E.; Baptista, Daniel L.

    2015-09-01

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm.

  20. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices

    PubMed Central

    Canto, Bárbara; Gouvea, Cristol P.; Archanjo, Bráulio S.; Schmidt, João E.; Baptista, Daniel L.

    2015-01-01

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm. PMID:26395513

  1. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices.

    PubMed

    Canto, Bárbara; Gouvea, Cristol P; Archanjo, Bráulio S; Schmidt, João E; Baptista, Daniel L

    2015-01-01

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm. PMID:26395513

  2. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  3. Instability investigation of In0.7Ga0.3As quantum-well MOSFETs with Al2O3 and Al2O3/HfO2

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Kim, Do-Kywn; Lim, Sung-Kyu; Hwang, Hae-Chul; Son, Seung Woo; Park, Jung Ho; Park, Won-Sang; Kim, Jin Su; Shin, Chan-Soo; Park, Won-Kyu; Lee, Jung Hee; Kim, Taewoo; Kim, Dae-Hyun

    2016-07-01

    We present an instability investigation of In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect-transistors (MOSFETs) on InP substrate with Al2O3 and Al2O3/HfO2 gate stacks. The device with bi-layer Al2O3/HfO2 gate stack exhibits larger shift in threshold-voltage (ΔVT) under a constant-voltage-stress condition (CVS), than one with single Al2O3 gate stack. At cryogenic temperature, the device with bi-layer Al2O3/HfO2 gate stack also induces worse hysteresis behavior than one with single Al2O3 gate stack. These are mainly attributed to more traps inside the HfO2 material, yielding a charge build-up inside the HfO2 gate dielectric. This strongly calls for a follow-up process to minimize those traps within the high-k dielectric layer and eventually to improve the reliability of InGaAs MOSFETs with HfO2-based high-k gate dielectric.

  4. Spectrum and phase mapping across the epitaxial γ-Al2O3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Lu, Sirong; Kormondy, Kristy J.; Ngo, Thong Q.; Aoki, Toshihiro; Posadas, Agham; Ekerdt, John G.; Demkov, Alexander A.; McCartney, Martha R.; Smith, David J.

    2016-02-01

    Epitaxial heterostructures of γ - Al 2 O 3 / SrTiO 3 , grown by atomic layer deposition (ALD) and molecular beam epitaxy, have been characterized by advanced electron microscopy techniques, including aberration-corrected negative-Cs imaging, electron-energy-loss near-edge fine-structure analysis, and off-axis electron holography. Analysis of two-dimensional spectrum maps from samples that previously showed highly conductive interfacial layers revealed partial reduction of the Ti oxidation state in the SrTiO3 layer from Ti4+ to Ti3+, which was confined to within ˜1-2 unit cells of the interface. Electron holography of an ALD-grown sample revealed a phase profile within the SrTiO3 layer that rose sharply over a distance of about 1 nm moving away from the interface. Taken together, these results suggest a strong connection between reduction of oxidation state, which could be caused by oxygen vacancies and the quasi-two-dimensional electron gas present at the γ - Al 2 O 3 / SrTiO 3 interface.

  5. High temperature oxidation of ZrO2/Al2O3 thin films deposited on steel.

    PubMed

    Lee, Jae Chun; Kim, Sun Kyu; Van Trung, Trinh; Lee, Dong Bok

    2013-11-01

    Thin ZrO2/Al2O3 films that consisted of alternating monoclinic ZrO2 nanolayers and amorphous Al2O3 nanolayers were deposited on a tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system, and then oxidized at 600-900 degrees C in air for up to 50 h. The ZrO2/Al2O3 films effectively suppressed the oxidation of the substrate up to 800 degrees C by acting as a barrier layer against the outward diffusion of the substrate elements and inward diffusion of oxygen. However, rapid oxidation occurred at 900 degrees C due mainly to the increased diffusion and subsequent oxidation of steel as well as the crystallization of amorphous Al2O3. PMID:24245292

  6. Observation of nanoscale adhesion, friction and wear between ALD Al2O3 coated silicon MEMS sidewalls.

    PubMed

    Buja, Federico; Fiorentino, Giuseppe; Kokorian, Jaap; Spengen, W Merlijn van

    2015-01-26

    We report a novel investigation of the tribological properties of aluminum oxide (Al2O3) when it is used as protective coating on the sidewalls of microelectromechanical systems (MEMS). By using an in-house built optical displacement measurement system, we were able to measure the on-chip displacements with an unprecedented resolution of 2 nm. This corresponds to 2 nN and 9 nN force resolution, respectively, depending on whether an adhesion or a friction sensor MEMS device was used for the measurement. Al2O3 was deposited on the vertical etched sidewalls using atomic layer deposition (ALD). All tests were carried out in ambient conditions. The same tests carried out on uncoated polysilicon devices were not reproducible due to stiction, which sometimes prevented the interacting surfaces from moving once contact was made. The higher adhesion of silicon was also found to hinder the mobility of the slider. In the ALD-coated devices, we observed increasing adhesion after 50000 repeated contacts. We attribute this increase to the accumulation of aluminum hydroxide debris produced by the reaction with moisture in the environment. We also investigated the long-term effect of friction on the coated silicon sidewalls. The dissipated energy decreases, with a minimum lateral force occurring around the 1000th cycle. After 1000 cycles, the lateral displacement decreases, suggesting an additional lateral dragging force caused by the interaction between a mixture of aluminum hydroxides and water. However, the small overall amount of debris produced during the friction test indicates the outstanding characteristic of Al2O3 as a protective coating for MEMS that use contacting or sliding interfaces. PMID:26024412

  7. Observation of nanoscale adhesion, friction and wear between ALD Al2O3 coated silicon MEMS sidewalls

    NASA Astrophysics Data System (ADS)

    Buja, Federico; Fiorentino, Giuseppe; Kokorian, Jaap; Merlijn van Spengen, W.

    2015-06-01

    We report a novel investigation of the tribological properties of aluminum oxide (Al2O3) when it is used as protective coating on the sidewalls of microelectromechanical systems (MEMS). By using an in-house built optical displacement measurement system, we were able to measure the on-chip displacements with an unprecedented resolution of 2 nm. This corresponds to 2 nN and 9 nN force resolution, respectively, depending on whether an adhesion or a friction sensor MEMS device was used for the measurement. Al2O3 was deposited on the vertical etched sidewalls using atomic layer deposition (ALD). All tests were carried out in ambient conditions. The same tests carried out on uncoated polysilicon devices were not reproducible due to stiction, which sometimes prevented the interacting surfaces from moving once contact was made. The higher adhesion of silicon was also found to hinder the mobility of the slider. In the ALD-coated devices, we observed increasing adhesion after 50000 repeated contacts. We attribute this increase to the accumulation of aluminum hydroxide debris produced by the reaction with moisture in the environment. We also investigated the long-term effect of friction on the coated silicon sidewalls. The dissipated energy decreases, with a minimum lateral force occurring around the 1000th cycle. After 1000 cycles, the lateral displacement decreases, suggesting an additional lateral dragging force caused by the interaction between a mixture of aluminum hydroxides and water. However, the small overall amount of debris produced during the friction test indicates the outstanding characteristic of Al2O3 as a protective coating for MEMS that use contacting or sliding interfaces.

  8. Characteristics of Al2O3 gate dielectrics partially fluorinated by a low energy fluorine beam

    NASA Astrophysics Data System (ADS)

    Kim, Sung Woo; Park, Byoung Jae; Kang, Se Koo; Kong, Bo Hyun; Cho, Hyung Koun; Yeom, Geun Young; Heo, Sungho; Hwang, Hyunsang

    2008-11-01

    The partial fluorination of Al2O3 gate dielectrics was examined by exposing an oxide-nitride-aluminum oxide (ONA) stack to a low energy fluorine beam, and its effect on the properties of the ONA was investigated. Exposing ONA to about 10 eV fluorine beam resulted in a 5-nm-thick AlOxFy layer on the ONA by replacing some Al-O to Al-F. The electrical properties such as leakage current and memory window characteristics were improved after fluorination of the ONA, possibly due to the improved charge trapping characteristics through the formation of an AlOxFy layer on the Al2O3 without changing the blocking layer thickness.

  9. Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study

    NASA Astrophysics Data System (ADS)

    Fei, Wang; Wen-Sheng, Lai; Ru-Song, Li; Bin, He; Su-Fen, Li

    2016-06-01

    Interactions between vacancies and Σ3 prismatic screw-rotation grain boundary in α-Al2O3 are investigated by the first principles projector-augmented wave method. It turns out that the vacancy formation energy decreases with reducing the distance between vacancy and grain boundary (GB) plane and reaches the minimum on the GB plane (at the atomic layer next to the GB) for an O (Al) vacancy. The O vacancy located on the GB plane can attract other vacancies nearby to form an O–O di-vacancy while the Al vacancy cannot. Moreover, the O–O di-vacancy can further attract other O vacancies to form a zigzag O vacancy chain on the GB plane, which may have an influence on the diffusion behavior of small atoms such as H and He along the GB plane of α-Al2O3. Project supported by the National Key Basic Research and Technology Program, China (Grant No. 2010CB731601) and the National Natural Science Foundation of China (Grant No. 50871057).

  10. Different behavior of lithium interaction with SiO2 and Al2 O3

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Ban, Chunmei; Kappes, Branden B.; Xu, Qiang; Engtrakul, Chaiwat; Ciobanu, Cristian V.; Dillon, Anne C.

    2014-03-01

    Lithiation of SiO2 and lithium intercalation in Al2O3 is studied both theoretically and experimentally. Lithium interacts with these two types of oxides in distinctly different behaviors. Reversible insertion/extraction of lithium in SiO2 up to a Li density of 2/3 Li per Si are demonstrated experimentally. Density-functional-theory (DFT) calculation shows that neither free interstitial Li atoms (no reduction) nor formation of a local Li2O cluster plus a Si-Si bond (full reduction) is energetically favorable. However, two Li atoms can effectively break a Si-O bond and be stabilized between the Si and O atoms. Such a defect, representing a state of partial reduction of SiO2, is energetically favorable. DFT simulation shows that intercalation of SiO2 at high Li density through partial reduction results in crystalline compounds LixSiO2 (x <2/3) with tunable band-gaps in the range of 2-3.4 eV. In sharp contrast, Al2O3 is very stable against lithiation through any form of reduction. However, good conductivity of Li ions is shown in porous Al2O3. Work funded by the U.S. DOE under Subcontract No. DE-AC36-08GO28308 through the Office of EERE, the Office of the Vehicle Technologies Program, and by NSF through Award Nos. OCI-1048586 and CMMI-0846858.

  11. Characterization of interface defects in ALD Al2O3/p-GaSb MOS capacitors using admittance measurements in range from kHz to GHz

    NASA Astrophysics Data System (ADS)

    Gu, Siyuan; Min, Jie; Taur, Yuan; Asbeck, Peter M.

    2016-04-01

    Atomic layer deposited (ALD) Al2O3/p-type GaSb Metal-Oxide-Semiconductor (MOS) capacitors are studied with capacitance-voltage (C-V) and conductance-voltage (G-V) measurements using AC signal frequencies covering the range from kHz to GHz. The potential and limitations of the measurements at GHz frequencies for oxide and interface defect characterization are described. The effect of bulk oxide traps in communication with the GaSb valence band via hole tunneling is highlighted. Modeling indicates that the C-V and G-V frequency dispersions observed in the accumulation, flat-band and depletion regions of the Al2O3/p-GaSb MOS capacitors are due to combined contributions of bulk-oxide traps and interface traps.

  12. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    PubMed Central

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  13. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure.

    PubMed

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Kim, Keum Do; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization - voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  14. Temperature dependence of microstructure and strain evolution in strained ZnO films on Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Kim, In-Woo; Lee, Kyu-Mann

    2008-09-01

    We have studied the temperature dependence of the growth mode and microstructure evolution in highly mismatched sputter-grown ZnO/Al2O3(0001) heteroepitaxial films. The growth mode was studied by real-time synchrotron x-ray scattering. We find that the growth mode changes from a two-dimensional (2D) layer to a 3D island in the early growth stage with temperature (300-600 °C), in sharp contrast to the reported transition from three dimensions to two dimensions in metal-organic vapor phase epitaxy. At around 400 °C intermediate 2D platelets nucleate in the early stage, which act as nucleation cores of 3D islands and transform to a misaligned state during further growth. Meanwhile, at high temperature (above 500 °C), the spinel structure of ZnAl2O4 grows in the early stage, and it undergoes a transition to wurtzite-ZnO (w-ZnO) with thickness. The spinel formation is presumably driven by high temperature and large incident energy of impacting atoms during sputtering. The results of the strain evolution as functions of temperature and thickness during growth suggest that the surface diffusion is a major factor determining the microstructural properties in the strained ZnO/Al2O3(0001) heteroepitaxy.

  15. Effect of sulfur removal on Al2O3 scale adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1991-01-01

    The effect of removing sulfur impurity on the adhesion of Al2O3 scale to NiCrAl was investigated in four experiments. It was found that removing sulfur to concentration less than 1 ppm per weight is sufficient to produce a very significant degree of alpha-Al2O3 scale adhesion to undoped NiCrAl alloys. Results of experiments show that repeated oxidation, and polishing after each oxidation cycle, of pure NiCrAl alloy lowered sulfur content from 10 to 2 ppm by weight (presumably by removing the segregated interfacial layer after each cycle); thinner samples became adherent after fewer oxidation-polishing cycles because of more limited supply of sulfur. It was found that spalling in subsequent cyclic oxidation tests was a direct function of the initial sulfur content. The transition between the adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  16. Scaling and carrier transport behavior of buried-channel In0.7Ga0.3As MOSFETs with Al2O3 insulator

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Kim, Dae-Hyun

    2015-09-01

    In this paper, we investigate the scaling and carrier transport behavior of sub-100 nm In0.7Ga0.3As buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with Al2O3 as gate dielectric. The device combines a 3-nm Al2O3 layer grown by atomic-layer-deposition (ALD) and a 13-nm In0.52Al0.48As insulator grown by molecular-beam-epitaxy (MBE). Our long channel device with Lg = 200 nm exhibits excellent subthreshold characteristics, such as subthreshold-swing (S) of 68 mV/decade at VDS = 0.5 V, indicating a very good interface quality between Al2O3 and In0.52Al0.48As. In addition, a short-channel device with Lg = 60 nm maintains electrostatic integrity of the device, such as subthreshold-swing (S) = 90 mV/decade and drain-induced-barrier-lowering (DIBL) = 100 mV/V at VDS = 0.5 V. We show well-behaved electrostatic scaling behavior that follows a modified FD-SOI MOSFET model. Our experimental and theoretical research suggest that further device optimization in the form of a self-aligned contact structure and aggressive EOT scaling would lead to high-performance III-V MOSFETs for multiple types of applications.

  17. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    NASA Astrophysics Data System (ADS)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  18. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    NASA Astrophysics Data System (ADS)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-06-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  19. Mesostructured forms of gamma-Al(2)O(3).

    PubMed

    Zhang, Zhaorong; Hicks, Randall W; Pauly, Thomas R; Pinnavaia, Thomas J

    2002-02-27

    gamma-Al2O3 is one of the most extensively utilized metal oxides in heterogeneous catalysis. Conventional forms of this oxide typically exhibit a surface area and pore volume less than 250 m2/g and 0.5 cm3/g, respectively. Previous efforts to prepare mesostructured forms of alumina resulted only in structurally unstable derivatives with amorphous framework walls. The present work reports mesostructured aluminas with walls made of gamma-Al2O3, denoted MSU-gamma. These materials are structurally stable and provide surface areas and pore volumes up to 370 m2/g and 1.5 cm3/g, respectively. The key to obtaining these structures is the formation of a mesostructured surfactant/boehmite precursor, denoted MSU-S/B, assembled through the hydrolysis of an aluminum cation, oligomer, or molecule in the presence of a nonionic surfactant. Mesostructured, gamma-aluminas offer the possibility of improving the catalytic efficiency of many heterogeneous catalytic processes, such as petroleum refining, petrochemical processing, and automobile exhaust control. PMID:11853430

  20. Al2O3-based nanofluids: a review

    PubMed Central

    2011-01-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%. PMID:21762528

  1. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    PubMed

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst. PMID:22121705

  2. First principles investigation of helium physisorption on an α-Al2O3(0001) surface.

    PubMed

    Zhang, Guikai; Xiang, Xin; Yang, Feilong; Liu, Lang; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-06-21

    The interaction of helium with an α-Al2O3(0001) surface was studied by density functional theory (DFT), with consideration of the effects of He-coverage, surface defects, He-coadsorption and van der Waals interaction, respectively. Adsorption energies of helium atoms are very small as expected for a physisorbed state, varying from -20 to -5 meV, which is attributed to the small overlap between Al 3sp, O 2sp and He 1s states. A correlation is obtained for the adsorption energies and the He to nearest-neighbor Al atom distances on a clean (0001) surface. The He atom prefers to bound atop the Al site of the fourth atomic layer (Al4 hollow site), and the favorable site around an O-vacancy is atop the site of the O vacancy with less stability. The competition between O-He attraction and Al-He repulsion makes the He stable sites. As He-coverage on the surface increases, He atoms tend to form clusters, and coadsorption configuration is not solely determined by the most stable site but also by the He-He distance. The two co-adsorbed He atoms absorb on hollow sites Al4 and Al3, with a He-He distance of 2.767 Å. The OBS dispersion corrected DFT energies are 2.2-4.4 times larger than the non-corrected DFT values and He-surface distances are smaller. Finally, implications on H/He interaction within α-Al2O3 as a tritium permeation barrier are discussed. PMID:27226211

  3. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    PubMed

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. PMID:27061428

  4. Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hudait, M. K.; Zhu, Y.; Maurya, D.; Priya, S.; Patra, P. K.; Ma, A. W. K.; Aphale, A.; Macwan, I.

    2013-04-01

    Structural and band alignment properties of atomic layer Al2O3 oxide film deposited on crystallographically oriented epitaxial Ge grown in-situ on (100), (110), and (111)A GaAs substrates using two separate molecular beam epitaxy chambers were investigated using cross-sectional transmission microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). High-resolution triple axis x-ray measurement demonstrated pseudomorphic and high-quality Ge epitaxial layer on crystallographically oriented GaAs substrates. The cross-sectional TEM exhibited a sharp interface between the Ge epilayer and each orientation of the GaAs substrate as well as the Al2O3 film and the Ge epilayer. The extracted valence band offset, ΔEv, values of Al2O3 relative to (100), (110), and (111) Ge orientations using XPS measurement were 3.17 eV, 3.34 eV, and 3.10 eV, respectively. Using XPS data, variations in ΔEv related to the crystallographic orientation were ΔEV(110)Ge>ΔEV(100)Ge≥ΔEV(111)Ge and the conduction band offset, ΔEc, related to the crystallographic orientation was ΔEc(111)Ge>ΔEc(110)Ge>ΔEc(100)Ge using the measured ΔEv, bandgap of Al2O3 in each orientation, and well-known Ge bandgap of 0.67 eV. These band offset parameters are important for future application of Ge-based p- and n-channel metal-oxide field-effect transistor design.

  5. Visible-light-driven photocatalysts Ag/AgCl dispersed on mesoporous Al2O3 with enhanced photocatalytic performance.

    PubMed

    Feng, Zhouzhou; Yu, Jiajie; Sun, Dongping; Wang, Tianhe

    2016-10-15

    In this paper, Ag/AgCl and Ag/AgCl/Al2O3 photocatalysts were synthesized via a precipitation reaction between NaCl and CH3COOAg or Ag(NH3)2NO3, wherein Ag/AgCl was immobilized into mesoporous Al2O3 medium. The Ag/AgCl-based nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and so on. The photocatalysts displayed excellent photocatalytic activity for the degradations of methyl orange (MO) and methylene blue (MB) pollutants under visible light irradiation. The Ag/AgCl(CH3COOAg)/Al2O3 sample exhibited the best photocatalytic performance, degrading 99% MO after 9min of irradiation, which was 1.1 times, 1.22 times and 1.65 times higher than that of Ag/AgCl(Ag(NH3)2NO3)/Al2O3, Ag/AgCl(CH3COOAg) and Ag/AgCl(Ag(NH3)2NO3) photocatalyst, respectively. Meanwhile, Ag/AgCl(CH3COOAg)/Al2O3 also showed excellent capability of MB degradation. Compared to the data reported for Ag/AgCl/TiO2, the Ag/AgCl/Al2O3 prepared in this work exhibited a good performance for the degradation of methyl orange (MO). The results suggest that the dispersion of Ag/AgCl on mesoporous Al2O3 strongly affected their photocatalytic activities. O2(-), OH radicals and Cl(0) atoms are main active species during photocatalysis. PMID:27442145

  6. Paramagnetic Spins on -Al2O3 with Varied Surface Termination

    NASA Astrophysics Data System (ADS)

    Ray, Keith; Lee, Donghwa; Adelstein, Nicole; Dubois, Jonathan; Lordi, Vincenzo

    Superconducting qubits (SQs) are promising building blocks for a quantum computer, however, coherence in SQs is reduced by unintended coupling to magnetic noise sources. The microscopic origins of the magnetic noise have not been satisfactorily characterized. Building on previous computational studies of magnetic spins induced by molecules adsorbed on bare Al terminated Al2O3, we present a density functional theory investigation of magnetic noise associated with other Al2O3 surfaces likely to be encountered in experiment. We calculate the exchange interaction between native defects and adsorbed molecules, as well as the magnetic states energy splitting and anisotropy, on fully hydroxylated Al2O3, with and without a water over-layer. We also present simulated x-ray adsorption and x-ray magnetic circular dichroism spectra of these systems with the aim of aiding experimental surface characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  7. XAFS analysis for quantification of the gallium coordinations in Al2O3-supported Ga2O3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Akatsuka, M.; Yoshida, T.; Yamamoto, N.; Yamamoto, M.; Ogawa, S.; Yagi, S.

    2016-05-01

    Ga2O3 loaded Al2O3 samples (Ga2O3/Al2O3) were prepared to change coordination structures around Ga atoms. Ga K-edge XANES spectra of the Ga2O3/Al2O3 samples showed two peaks assigned to Ga atoms having tetrahedral coordination structure (Ga(t)) and octahedral one (Ga(o)). Curve-fitting analysis of XANES spectra was carried out with a set of pseudo- Voight and arctangent functions, and the fractions of Ga(t) and Ga(o) were quantitatively estimated from the ratio of the peak areas. EXAFS curve-fitting analysis also evaluated the fractions of Ga(t) and Ga(o) and they were in good agreement with those obtained by XANES analysis. It was revealed that the fraction of Ga(t) increased with the decrease in the loading amount of Ga2O3 due to the interaction of Ga species with Al2O3. The fractions of Ga(t) and Ga(o) might relate to the photocatalytic activity for CO2 reduction with H2O over the Ga2O3/Al2O3 samples.

  8. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  9. High density Al2O3/TaN-based metal insulator metal capacitors in application to radio frequency integrated circuits

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Huang, Yu-Jian; Huang, Yue; Pan, Shao-Hui; Zhang, Wei; Wang, Li-Kang

    2007-09-01

    Metal-insulator-metal (MIM) capacitors with atomic-layer-deposited Al2O3 dielectric and reactively sputtered TaN electrodes in application to radio frequency integrated circuits have been characterized electrically. The capacitors exhibit a high density of about 6.05 fF/μm2, a small leakage current of 4.8×10-8 A/cm2 at 3V, a high breakdown electric field of 8.61MV/cm as well as acceptable voltage coefficients of capacitance (VCCs) of 795 ppm/V2 and 268ppm/V at 1 MHz. The observed properties should be attributed to high-quality Al2O3 film and chemically stable TaN electrodes. Further, a logarithmically linear relationship between quadratic VCC and frequency is observed due to the change of relaxation time with carrier mobility in the dielectric. The conduction mechanism in the high field ranges is dominated by the Poole-Frenkel emission, and the leakage current in the low field ranges is likely to be associated with trap-assisted tunnelling. Meanwhile, the Al2O3 dielectric presents charge trapping under low voltage stresses, and defect generation under high voltage stresses, and it has a hard-breakdown performance.

  10. Corrosion behaviour of sintered NdFeB coated with Al/Al 2O 3 multilayers by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mao, Shoudong; Yang, Hengxiu; Huang, Feng; Xie, Tingting; Song, Zhenlun

    2011-02-01

    Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.

  11. Photostimulated exoelectron emission in single crystals of anion-defective -Al2O3 exposed to electrons

    NASA Astrophysics Data System (ADS)

    Slesarev, A. I.; Kortov, V. S.

    2005-01-01

    In this study methods of exoemission analysis were used to examine main regular features of light and thermally stimulated processes in the near-surface layer of -Al2O3 crystals excited by electron radiation. The examination by methods of exoelectron spectroscopy showed that if the density of excitations in near-surface layers of -Al2O3 crystals is large, which is the case with pulsed high-current electron beams, an interactive interaction of trapping centers may show itself in the kinetics of the temperature relaxation of PSEE.

  12. Assimilation Behavior of Calcium Ferrite and Calcium Diferrite with Sintered Al2O3 and MgO

    NASA Astrophysics Data System (ADS)

    Long, Hongming; Wu, Xuejian; Chun, Tiejun; Di, Zhanxia; Yu, Bin

    2016-06-01

    In this study, the assimilation behaviors between calcium ferrite (CF), calcium diferrite (CF2) and sintered Al2O3, and MgO were explored by an improved sessile drop technique, and the interfacial microstructure was discussed. The results indicated that the apparent contact angles of CF slag on Al2O3 and MgO substrate were 15.7 and 5.5 deg, and the apparent contact angles of CF2 slag on Al2O3 and MgO substrate were 17.9 and 7.2 deg, respectively. Namely, CF and CF2 slag were wetting well with Al2O3 and MgO substrate. The dissolution of Al2O3 substrate into the CF and CF2 slag was found to be the driving force of the wetting process. For the CF-MgO and CF2-MgO substrate systems, CaO contrarily distributed with MgO after wetting. For the CF-MgO system, after wetting, the slag was composed of CF and C2F, and most of the Fe2O3 permeated into substrate and formed two permeating layers.

  13. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  14. Trap States in Al2O3 InAlN/GaN Metal-Oxide-Semiconductor Structures by Frequency-Dependent Conductance Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhao, Sheng-Lei; Xue, Jun-Shuai; Zhang, Kai; Ma, Xiao-Hua; Zhang, Jin-Cheng; Hao, Yue

    2014-03-01

    We present a detailed analysis of the trap states in atomic layer deposition Al2O3/InAlN/GaN high electron mobility transistors grown by pulsed metal organic chemical vapor deposition. Trap densities, trap energies and time constants are determined by frequency-dependent conductance measurements. A high trap density of up to 1.6 × 1014 cm-2eV-1 is observed, which may be due to the lack of the cap layer causing the vulnerability to the subsequent high temperature annealing process.

  15. Comparative study of gamma ray shielding and some properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems

    NASA Astrophysics Data System (ADS)

    Singh, K. J.; Kaur, Sandeep; Kaundal, R. S.

    2014-03-01

    Gamma-ray shielding properties have been estimated in terms of mass attenuation coefficient, half value layer and mean free path values, whereas, structural studies have been performed in terms of density, optical band gap, glass transition temperature and longitudinal ultrasonic velocity parameters. X-ray diffraction, UV-visible, DSC and ultrasonic techniques have been used to explore the structural properties of PbO-SiO2-Al2O3 and Bi2O3-SiO2-Al2O3 glass systems.

  16. PEDOT gate electrodes with PVP/Al2O3 dielectrics for stable high-performance organic TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Young Kyu; Maniruzzaman, Md.; Lee, Chiyoung; Lee, Mi Jung; Lee, Eun-Gu; Lee, Jaegab

    2013-11-01

    A poly(3,4-ethylenedioxythiophene) (PEDOT) gate electrode on a polyestersulfone (PES) substrate was used to fabricate inverted staggered pentacene organic thin film transistors (OTFTs). The PEDOT gate formed on the PES substrate exhibited semi-transparency, high conductivity, and excellent adhesion to the substrate. Prior to the deposition of poly-4-vinyl phenol (PVP) dielectrics, a thin Al2O3 layer (12 nm) was coated onto a PEDOT electrode, providing an effective barrier against inter-diffusion between the PVP dielectrics and the underlying PEDOT gate electrode, and against moisture penetration through the PES substrate. This led to stable high-performance OTFTs consisting of a PEDOT gate electrode and PVP/Al2O3 dielectrics. The combined PVP/Al2O3 dielectrics with PEDOT gate electrodes were successfully implemented in flexible organic TFTs that exhibit excellent compatibility with flexible electronics.

  17. HfO2/Al2O3 multilayer for RRAM arrays: a technique to improve tail-bit retention.

    PubMed

    Huang, Xueyao; Wu, Huaqiang; Bin Gao; Sekar, Deepak C; Dai, Lingjun; Kellam, Mark; Bronner, Gary; Deng, Ning; Qian, He

    2016-09-30

    In this work, the HfO2/Al2O3 multilayer structure is applied for RRAM arrays. Compared to HfO2 RRAM, the data retention failure of tail bits is suppressed significantly, especially for the high resistance state (HRS). The retention of tail bits is studied in detail by temperature simulation and crystallization analysis. We attribute the improvement of tail-bit retention to the decreased oxygen ion diffusivity caused by the Al2O3 layer. Furthermore, the HfO2/Al2O3 multilayer structure exhibits higher crystallization temperature, thus leading to fewer grain boundaries around the filament during the operations. With fewer grain boundaries, oxygen ion diffusion is suppressed, leading to fewer tail bits and better retention. PMID:27537613

  18. Porous α-Al2O3 thermal barrier coatings with dispersed Pt particles prepared by cathode plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Peng; He, Ye-dong; Deng, Shun-jie; Zhang, Jin

    2016-01-01

    Porous α-Al2O3 thermal barrier coatings (TBCs) containing dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED). The influence of the Pt particles on the microstructure of the coatings and the CPED process were studied. The prepared coatings were mainly composed of α-Al2O3. The average thickness of the coatings was approximately 100 μm. Such single-layer TBCs exhibited not only excellent high-temperature cyclic oxidation and spallation resistance, but also good thermal insulation properties. Porous α-Al2O3 TBCs inhibit further oxidation of alloy substrates because of their extremely low oxygen diffusion rate, provide good thermal insulation because of their porous structure, and exhibit excellent mechanical properties because of the toughening effect of the Pt particles and because of stress relaxation induced by deformation of the porous structure.

  19. One-nanometer-precision control of Al(2)O(3) nanoshells through a solution-based synthesis route.

    PubMed

    Zhang, Wei; Chi, Zi-Xiang; Mao, Wen-Xin; Lv, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2014-11-17

    Forming uniform metal oxide nanocoatings is a well-known challenge in the construction of core-shell type nanomaterials. Herein, by using buffer solution as a specific reaction medium, we demonstrate the possibility to grow thin nanoshells of metal oxides, typically Al2 O3 , on different kinds of core materials, forming a uniform surface-coating layer with thicknesses achieving one nanometer precision. The application of this methodology for the surface modification of LiCoO2 shows that a thin nanoshell of Al2 O3 can be readily tuned on the surface for an optimized battery performance. PMID:25336171

  20. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.

    PubMed

    Venkatesan, Bala Murali; Polans, James; Comer, Jeffrey; Sridhar, Supriya; Wendell, David; Aksimentiev, Aleksei; Bashir, Rashid

    2011-08-01

    Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al(2)O(3) nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al(2)O(3) solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al(2)O(3) exhibit higher diffusivity than those formed on TiO(2) and SiO(2) substrates, attributed to the presence of a thick hydration layer on Al(2)O(3), a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al(2)O(3) surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al(2)O(3) nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology. PMID:21487665

  1. The growth of Al2O3/YAG:Ce melt growth composite by the vertical Bridgman technique using an a-axis Al2O3 seed

    NASA Astrophysics Data System (ADS)

    Yoshimura, Masafumi; Sakata, Shin-ichi; Yamada, Seiya; Taishi, Toshinori; Hoshikawa, Keigo

    2015-10-01

    Al2O3/Y3Al5O12 (YAG):Ce melt growth composites (MGCs) were grown by the vertical Bridgman (VB) method using an a-axis [112¯0] Al2O3 seed, and the crystallographic orientations and optical properties of the grown MGCs were investigated. It was found that a crack-free MGC ingot could be grown from the Al2O3 seed. In the MGC grown using the Al2O3 seed, the position of the seeding interface was almost the same to the initial position of the top of the seed. By means of electron backscatter diffraction (EBSD) analysis, it was found that the crystallographic orientation of the Al2O3 phase in the grown MGC corresponded to the a-axis Al2O3 seed, while YAG phases with several different orientations were observed. The light-conversion properties of the MGCs grown using an a axis Al2O3 seed for application to white light emitting diodes (LEDs) were quite similar to those grown using an MGC seed. It was also found that it was possible to grow larger diameter, 2-in., Ce-doped MGC ingots with similar crystallographic properties with the VB method using a small Al2O3 seed.

  2. Unraveling the Origin of Structural Disorder in High Temperature Transition Al2O3: Structure of θ-Al2O3

    SciTech Connect

    Kovarik, Libor; Bowden, Mark E.; Shi, Dachuan; Washton, Nancy M.; Anderson, Amity; Hu, Jian Z.; Lee, Jaekyoung; Szanyi, Janos; Kwak, Ja Hun; Peden, Charles HF

    2015-09-22

    The crystallography of transition Al2O3 has been extensively studied in the past due to the advantageous properties of the oxide in catalytic and a range of other technological applications. However, existing crystallographic models are insufficient to describe the structure of many important Al2O3 polymorphs due to their highly disordered nature. In this work, we investigate structure and disorder in high-temperature treated transition Al2O3, and provide a structural description for θ-Al2O3 by using a suite of complementary imaging, spectroscopy and quantum calculation techniques. Contrary to current understanding, our high-resolution imaging shows that θ-Al2O3 is a disordered composite phase of at least two different end members. By correlating imaging and spectroscopy results with DFT calculations, we propose a model that describes θ-Al2O3 as a disordered intergrowth of two crystallographic variants at the unit cell level. One variant is based on β-Ga2O3, and the other on a monoclinic phase that is closely-related to δ-Al2O3. The overall findings and interpretations afford new insight into the origin of poor crystallinity in transition Al2O3, and also provide new perspectives on structural complexity that can emerge from intergrowth of closely related structural polymorphs.

  3. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y.

    2013-08-01

    In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO3 films with thin Al2O3 buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO3/ALD-Al2O3/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO3/ALD-Al2O3 structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO3 is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO3/ALD-Al2O3/H-diamond MOS diode is smaller than 10-8 A cm-2 at gate bias from -4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from -3.6 ± 0.1 to -5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are -7.5 mA mm-1 and 2.3 ± 0.1 mS mm-1, respectively. The enhancement mode SD-LaAlO3/ALD-Al2O3/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

  4. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeon, Hyunkyu; Yeon, Daeyong; Lee, Taejoo; Park, Joonam; Ryou, Myung-Hyun; Lee, Yong Min

    2016-05-01

    To develop an environmentally friendly and cost-effective water-based inorganic coating process for hydrophobic, polyolefin-based microporous separators, the effect of surfactants in an aqueous inorganic coating solution comprising alumina (Al2O3) on polyethylene (PE)-based microporous separators is investigated. By using a selected surfactant, i.e., disodium laureth sulfosuccinate (DLSS), the aqueous Al2O3 coating solution maintained a dispersed state over time and facilitated the formation of a uniform Al2O3 coating layer on PE separator surfaces. Due to the hydrophilic nature of the Al2O3 coating layers, the as-prepared, ceramic-coated PE separators had better wetting properties, greater electrolyte uptake, and larger ionic conductivities compared to those of the bare PE separators. Furthermore, half cells (LiMn2O4/Li metal) containing Al2O3-coated PE separators showed improved capacity retention over several cycles (93.6% retention after 400 cycles for Al2O3 coated PE separators, compared to 89.2% for bare PE separators operated at C/2) and rate capability compared to those containing bare PE separators. Moreover, because the Al2O3-coated layers are more thermally stable, the coated separators had improved dimensional stability at high temperatures (140 °C).

  5. Adherent Al2O3 scales formed on undoped NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    Changes in the spalling behavior of Al2O3 scales formed on an undoped NiCrAl alloy are described. Two samples of Ni-15Cr-13Al (wt pct), one a control and the other sanded, were subjected to 25 oxidation cycles. It is observed that adherent scales formed on the sanded sample; however, the control sample had speckled, spalled scales. The data reveal that the adherent scales are caused by repeated removal of surface layers after each oxidation cycle. It is determined that interfacial segregation of sulfur influences spallation and sulfur removal increases bonding. The effect of moisture on scale adhesions is investigated.

  6. The thermodynamic properties of hydrated -Al2O3 nanoparticles

    SciTech Connect

    Spencer, Elinor; Huang, Baiyu; Parker, Stewart F.; Kolesnikov, Alexander I; Ross, Dr. Nancy; Woodfield, Brian

    2013-01-01

    In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated -Al2O3 ( -alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (Cp) data presented herein provide further critical insights into the much-debated chemical composition of -alumina nanoparticles. Furthermore, the isochoric heat capacity (Cv) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four -alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated -alumina nanoparticles.

  7. The structure of the alpha-Al2O3(0001) surface from low-energyelectron diffraction: Al termination and evidence for large thermalvibrations

    SciTech Connect

    Soares, E.A.; Van Hove, M.A.; Walters, C.F.; McCarty, K.F.

    2000-05-05

    We have determined the surface structure of alpha-Al2O3(0001) using dynamical low-energy electron diffraction (LEED). Sapphire surfaces were prepared in three different ways, and the diffraction results were analyzed using an exhaustive search of possible models. For all sample processing conditions, the clearly favored structure has a single Al layer termination and a large first interlayer contraction. In addition, we find that the surface atoms have unusually large vibrational amplitudes at room temperature, suggestive of an anharmonic vibrational mode.

  8. Tailoring the Valence Band Offset of Al2O3 on Epitaxial GaAs(1-y)Sb(y) with Tunable Antimony Composition.

    PubMed

    Liu, Jheng-Sin; Clavel, Michael; Hudait, Mantu K

    2015-12-30

    Mixed-anion, GaAs1-ySby metamorphic materials with tunable antimony (Sb) compositions extending from 0 to 100%, grown by solid source molecular beam epitaxy (MBE), were used to investigate the evolution of interfacial chemistry under different passivation conditions. X-ray photoelectron spectroscopy (XPS) was used to determine the change in chemical state progression as a function of surface preclean and passivation, as well as the valence band offsets, conduction band offsets, energy band parameters, and bandgap of atomic layer deposited Al2O3 on GaAs1-ySby for the first time, which is further corroborated by X-ray analysis and cross-sectional transmission electron microscopy. Detailed XPS analysis revealed that the near midpoint composition, GaAs0.45Sb0.55, passivation scheme exhibits a GaAs-like surface, and that precleaning by HCl and (NH4)2S passivation are mandatory to remove native oxides from the surface of GaAsSb. The valence band offsets, ΔEv, were determined from the difference in the core level to the valence band maximum binding energy of GaAs1-ySby. A valence band offset of >2 eV for all Sb compositions was found, indicating the potential of utilizing Al2O3 on GaAs1-ySby (0 ≤ y ≤ 1) for p-type metal-oxide-semiconductor (MOS) applications. Moreover, Al2O3 showed conduction band offset of ∼2 eV on GaAs1-ySby (0 ≤ y ≤ 1), suggesting Al2O3 dielectric can also be used for n-type MOS applications. The surface passivation of GaAs0.45Sb0.55 materials and the detailed band alignment analysis of Al2O3 high-κ dielectrics on tunable Sb composition, GaAs1-ySby materials, provides a pathway to utilize GaAsSb materials in future microelectronic and optoelectronic applications. PMID:26642121

  9. Superior high-temperature oxidation resistance of a novel (Al2O3-Y2O3)/Pt laminated coating

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxu; He, Yedong; Wang, Deren; Zhang, Jin

    2012-03-01

    A 7-layer (Al2O3-Y2O3)/Pt laminated coating was successfully prepared on a Ni-based superalloy by magnetron sputtering methods. It is observed that the as-prepared coating has dense and refined brittle/ductile laminated nanostructure. Cyclic oxidation tests were adopted to investigate the oxidation and spallation resistance of this novel laminated coating. The results revealed that the 7-layer (Al2O3-Y2O3)/Pt laminated coating can significantly improve the high-temperature oxidation resistance and spallation resistance of the Ni-based superalloy. In such laminated coating, the multi-sealed (Al2O3-Y2O3) and Pt layers can effectively suppress the inward diffusion of oxygen to an extremely low level, providing super oxidation resistance at 1200 °C for 1000 h. In addition, the excellent high-temperature mechanical properties of the (Al2O3-Y2O3)/Pt laminated coating are mainly induced by the increased thermal expansion coefficient and the brittle/ductile laminated composite structure by means of energy release mechanisms.

  10. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids have been observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. It was postulated that the voids resulted from an excess number of oxygen vacancies near the oxide-metal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidations of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al,Cr)2O3 and Ni(Al,Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationships between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  11. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  12. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1981-01-01

    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.

  13. Duplex Al2O3/DLC Coating on 15SiCp/2024 Aluminum Matrix Composite Using Combined Microarc Oxidation and Filtered Cathodic Vacuum Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xue, Wenbin; Tian, Hua; Du, Jiancheng; Hua, Ming; Zhang, Xu; Li, Yongliang

    2012-08-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and SRV ball-on-disk friction tester. It is found that the duplex Al2O3/DLC coating had good adhesion and a low friction coefficient of less than 0.07. As compared to a single Al2O3 or DLC coating, the duplex Al2O3/DLC coating on aluminum matrix composite exhibited a better wear resistance against ZrO2 ball under dry sliding, because the Al2O3 coating as an intermediate layer improved load support for the top DLC coating on 15SiCp/2024 composite substrate, meanwhile the top DLC coating displayed low friction coefficient.

  14. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  15. Enhanced fibroblast cell adhesion on Al/Al2O3 nanowires

    NASA Astrophysics Data System (ADS)

    Aktas, O. C.; Sander, M.; Miró, M. M.; Lee, J.; Akkan, C. K.; Smail, H.; Ott, A.; Veith, M.

    2011-02-01

    Biological cells stick together via transmembrane proteins, which are linked to receptor molecules of the extracellular matrix (ECM). This specific biochemical adhesion plays a leading role in many cellular processes, among them cell differentiation, morphogenesis, and wound healing. Various medical applications require endogen cells to bind to an exogene substrate as in the case of an implant. Coatings with proteins that naturally belong to the ECM are known to enhance the cell adhesion. However, the choice of inorganic materials, which promote cell adhesion, is limited. Here, we report on a new engineered surface composed of Al/Al2O3 bi-phasic nanowires (NWs), which promotes the adhesion of fibroblast cells. Fibroblasts grow well on this inorganic layer and keep proliferating. Using the cell monolayer rheology (CMR) technique, we show that the adhesion of fibroblasts on Al/Al2O3 NWs is comparable to fibronectin coated surfaces. To our knowledge, this is one of the strongest cell adhesions on an inorganic surface, which has been reported on so far, since it compares to bio-organic layers such as fibronectin.

  16. Towards advanced structural analysis of iron oxide clusters on the surface of γ-Al2O3 using EXAFS

    NASA Astrophysics Data System (ADS)

    Boubnov, Alexey; Roppertz, Andreas; Kundrat, Matthew D.; Mangold, Stefan; Reznik, Boris; Jacob, Christoph R.; Kureti, Sven; Grunwaldt, Jan-Dierk

    2016-11-01

    Iron oxide centres are structurally investigated in 0.1% Fe/γ-Al2O3, which is known as highly active catalyst, for instance in the oxidation of CO. The sample was characterised by using X-ray absorption spectroscopy (XAS) in terms of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), Mössbauer spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). These analyses evidenced high dispersion of the iron oxide entities without significant presence of bulk-like aggregates associated with the low Fe content of the catalyst. A library of structural models of Al2O3-supported surface Fe was created as input for EXAFS fitting. Additionally, several model structures of Fe substituting Al ions in bulk γ-Al2O3 were created with optimised geometry based on density-functional theory (DFT) calculations. From EXAFS refinement of the best 8 out of 24 models, it was found that the trivalent Fe ions are coordinated by 4-5 oxygen atoms and are located on octahedral lattice sites of the exposed surfaces of γ-Al2O3. These iron oxide species exist mainly as a mixture of monomeric and binuclear species and due to the low concentration represent suitable model systems as alternative to single crystal systems for structure-function relationships.

  17. Phase progression of γ-Al2O3 nanoparticles synthesized in a solvent-deficient environment.

    PubMed

    Smith, Stacey J; Amin, Samrat; Woodfield, Brian F; Boerio-Goates, Juliana; Campbell, Branton J

    2013-04-15

    Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst-supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/microstrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 °C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to γ-Al2O3 at an extraordinarily low temperature (below 300 °C), but this γ-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 °C. The healing of these defects accounts for many of the most interesting and widely reported properties of the γ-phase. PMID:23557087

  18. Surface micromorphology of dental composites [CE-TZP]-[Al2O3] with Ca(+2) modifier.

    PubMed

    Berezina, Sofia; Il'icheva, Alla Alexandrovna; Podzorova, Lyudmila Ivanovna; Ţălu, Ştefan

    2015-09-01

    The objective of this study was to characterize the three-dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t-ZrO2) with addition of Ca(+2) for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM-images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non-modified ceramic sample was characterized by the rather big (1-2 μm) grains of α-Al2O3 phase with a habit close to hexagonal drowned in solid solution of t-ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α-Al2O3-grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca(+2) modifier but the most regular one is of the non-modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. PMID:26190812

  19. Structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Lidbaum, Hans; Raanaei, Hossein; Papaioannou, Evangelos Th.; Leifer, Klaus; Hjörvarsson, Björgvin

    2010-02-01

    The structural and magnetic properties of Co68Fe24Zr8/Al2O3 multilayers grown by using magnetron sputtering were investigated with X-ray reflectivity, transmission electron microscopy and magneto-optical Kerr effect. The Co68Fe24Zr8 form amorphous islands when the nominal thickness of the Co68Fe24Zr8 layers is 10 Å, exhibiting an isotropic superparamagnetic behavior. Continuous layers with mostly a nano-crystalline structure are instead formed when the nominal thickness of the Co68Fe24Zr8 layers is increased to 20 Å. The continuous layers exhibit random, in-plane, magnetic anisotropy resulting from the growth process. However, induced uniaxial anisotropy is obtained when growing the sample in the presence of an applied magnetic field, regardless of the combination of amorphous and nano-crystalline material.

  20. Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes

    PubMed Central

    Venkatesan, Bala Murali; Estrada, David; Banerjee, Shouvik; Jin, Xiaozhong; Dorgan, Vincent E.; Bae, Myung-Ho; Aluru, Narayana R.; Pop, Eric; Bashir, Rashid

    2012-01-01

    We report the development of a multilayered graphene-Al2O3 nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al2O3 nanolaminate membranes are formed by sequentially depositing layers of graphene and Al2O3 with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al2O3) and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene based structures, including nanoribbons and nanogaps, for single molecule DNA sequencing and medical diagnostic applications. PMID:22165962

  1. High-κ Al2O3 material in low temperature wafer-level bonding for 3D integration application

    NASA Astrophysics Data System (ADS)

    Fan, J.; Tu, L. C.; Tan, C. S.

    2014-03-01

    This work systematically investigated a high-κ Al2O3 material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al2O3 layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO2), a higher interfacial adhesion energy (˜11.93 J/m2) and a lower helium leak rate (˜6.84 × 10-10 atm.cm3/sec) were detected for samples bonded using Al2O3. More importantly, due to the excellent thermal conductivity performance of Al2O3, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  2. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes.

    PubMed

    Venkatesan, Bala Murali; Estrada, David; Banerjee, Shouvik; Jin, Xiaozhong; Dorgan, Vincent E; Bae, Myung-Ho; Aluru, Narayana R; Pop, Eric; Bashir, Rashid

    2012-01-24

    We report the development of a multilayered graphene-Al(2)O(3) nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al(2)O(3) nanolaminate membranes are formed by sequentially depositing layers of graphene and Al(2)O(3), with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al(2)O(3)), and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA-coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene-based structures, including nanoribbons and nanogaps, for single-molecule DNA sequencing and medical diagnostic applications. PMID:22165962

  3. Infrared Spectroscopic Study of ClCN Adsorption on Clean and Triethylenediamine-Precovered y-Al2O3

    SciTech Connect

    Kim, S.; Sorescu, D.C.; Yates, J., Jr.

    2007-12-13

    The effect of triethylenediamine (TEDA) (also named 1,4-diazabicyclo [2.2.2]octane, DABCO) on the adsorption of ClCN on a y-Al2O3 absorbent has been investigated. Both Fourier transform infrared (FTIR) and theoretical studies indicate that no direct interaction between amine groups of TEDA and ClCN molecules takes place. Instead, we found that TEDA competes with ClCN for active surface sites on y-Al2O3. In addition, the adsorption behavior of cyanogen chloride (ClCN) on a clean y-Al2O3 surface has been studied. The sequence of the thermally activated processes of diffusion, adsorption, desorption, and decomposition of ClCN molecules on the clean y-Al2O3 surface following icelike ClCN layer formation at lower temperature was observed. One of the decomposition products, Al-NCO, was assigned by using an Al-18OH labeled surface for reaction with ClCN. In addition, Al-CN and Al2-OCN species were also detected upon ClCN decomposition. Good correlation of the calculated vibrational frequencies for the adsorbed species with experimental data is found.

  4. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  5. Fabrication of Al2O3-W Functionally Graded Materials by Slipcasting Method

    NASA Astrophysics Data System (ADS)

    Katayama, Tomoyuki; Sukenaga, Sohei; Saito, Noritaka; Kagata, Hajime; Nakashima, Kunihiko

    2011-10-01

    We have successfully fabricated a functionally graded material (FGM) from tungsten and alumina powders by a slip-casting method. This FGM has applications as a sealing and conducting component for high-intensity discharge lamps (HiDLs) that have a translucent alumina envelope. Two types of W powder, with different oxidizing properties, were used as the raw powders for the Al2O3-W FGM. "Oxidized W" was prepared by heat-treatment at 200 °C for 180 min in air. Alumina and each of the W powders were mixed in ultrapure water by ultrasonic stirring. The slurry was then cast into a cylindrical acrylic mold, which had a base of porous alumina, under controlled pressure. The green compacts were subsequently dried, and then sintered using a vacuum furnace at 1600 °C for a fixed time. The microstructures of the FGMs were observed by scanning electron microscopy (SEM) of the polished section. The Al2O3-W FGM with the "oxidized W" powder resulted in a microscopic compositional gradient. However, the FGM with "as-received W" showed no compositional gradient. This result was mainly attributed to the difference between the ζ-potentials of the W powders with the different oxidizing conditions; basically "oxidized W" powder tends to disperse because of the larger ζ-potential of the oxide layer coated on the W powder core.

  6. The evolution and growth of Al2O3 scales on beta-NiAl. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Doychak, J. K.

    1986-01-01

    The formation and growth of Al2O3 scales on (beta)-NiAl were studied using electron microscopy and other analytical techniques to gain an understanding of the oxidation properties of (beta)-NiAl and of alumina-forming alloys, in general. The transient and mature stages of oxidation were studied as well as the transformation stage during which the oxide scale transforms from metastable Al2O3 phases to the thermodynamically stable alpha-Al2O3 phase. The transient oxidation stages were studied at 800 deg C and for short times at 1100C. At 800C, the scales consist predominantly of delta-Al2O3 which forms by cation vacancy ordering in the defective spinel lattice of gamma-Al2O3. At 1100C, a fast-growth morphology of theta-Al2O3 forms as a surface layer over delta-Al2O3. For both oxidation temperatures, the scales are often epitaxially oriented with respect to the metal. The transient scales grow by outward cation diffusion as evidenced by surface growth morphologies. The transformation to alpha-Al2O3 occurs within 1 hour at 1100C by a nucleation and radial growth process. The large volume decrease associated with the transformation results in a highly strained alpha-Al2O3 microstructure. A change in scale growth mechanism from outward cation to inward anion diffusion allows transient surface morphologies to be smoothed by surface diffusion. The mature stage of oxidation involves the growth of an alpha-Al2O3 scale having the lacey morphology formed as a result of the gamma yields alpha transformation. Growth of the scale occurs by counterdiffusion along grain boundaries resulting in ridges formed by impingement of alpha-Al2O3 nuclei during the transformation stage. Also scale growth occurs by inward oxygen diffusion through healed cracks; the cracks result from transformation stresses. The measured growth rates of scales having the lacey morphology are an order of magnitude less than fine-grained alpha-Al2O3 scales. Metal orientations were found to have a large effect on

  7. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions.

    PubMed

    Gao, Zhe; Dong, Mei; Wang, Guizhen; Sheng, Pei; Wu, Zhiwei; Yang, Huimin; Zhang, Bin; Wang, Guofu; Wang, Jianguo; Qin, Yong

    2015-07-27

    To design highly efficient catalysts, new concepts for optimizing the metal-support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni-based nanocatalyst. The Ni nanoparticles are not only confined in Al2 O3 nanotubes, but also embedded in the cavities of Al2 O3 interior wall. The cavities create more Ni-Al2 O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni-based catalyst supported on the outer surface of Al2 O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD-assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions. PMID:26150352

  8. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  9. Surface phonon polariton characteristics of In(0.04)Al(0.06)Ga(0.90)N/AlN/Al(2)O(3) heterostructure.

    PubMed

    Ng, S S; Lee, S C; Bakhori, S K Mohd; Hassan, Z; Abu Hassan, H; Yakovlev, V A; Novikova, N N; Vinogradov, E A

    2010-05-10

    Surface phonon polariton (SPP) characteristics of In(0.04)Al(0.06)Ga(0.90)N/AlN/Al(2)O(3) heterostructure are investigated by means of p-polarized infrared (IR) attenuated total reflection spectroscopy. Two absorption dips corresponding to In(0.04)Al(0.06)Ga(0.90)N SPP modes are observed. In addition, two prominent dips and one relatively weak and broad dip corresponding to the Al(2)O(3) SPP mode, In(0.04)Al(0.06)Ga(0.90)N/Al(2)O(3) interface mode, and Al(2)O(3) bulk polariton mode, respectively, are clearly seen. No surface mode feature originating from the AlN layer is observed because it is too thin. Overall, the observations are in good agreement with the theoretical predictions. PMID:20588890

  10. Comparative Study of CuO Species on CuO/Al2O3, CuO/CeO2-Al2O3 and CuO/La2O-Al2O3 Catalysts for CO Oxidation

    NASA Astrophysics Data System (ADS)

    Jin, Ling-yun; He, Mai; Lu, Ji-qing; Luo, Meng-fei; Fang, Ping; Xie, Yun-long

    2007-10-01

    CuO/Al2O3, CuO/CeO2-Al2O3, and CuO/La2O3-Al2O3 (denoted as Cu/Al, Cu/CeAl, and Cu/LaAl) catalysts were prepared by an impregnation method. CuO species and CuO/Al2O3 thermal solid-solid interaction were characterized by in situ XRD, Raman spectroscopy and H2-TPR techniques. For the Cu/Al catalyst, a CuAl2O4 phase exists between the CuO and Al2O3 layer and the CuO phase exists on the surface in both highly dispersed and bulk forms. For the Cu/CeAl catalyst, there is highly dispersed and bulk CuO on the surface, but most of the CuO has transferred into the internal layer of CeO2 as bulk CuO and CuAl2O4. For the Cu/LaAl catalyst, only bulk CuO is present on the surface of the catalyst and no CuAl2O4 is formed. The catalytic activity order for CO oxidation is Cu/CeAl>Cu/Al>Cu/LaAl. The highly dispersed CuO on the catalyst surface may be the active phase for CO oxidation. The results show that the addition of CeO2 not only promotes both the transference of CuO and the formation of CuAl2O4 but also favors the CO oxidation due to the association of highly dispersed CuO with CeO2, while La2O3 hinders the transference of CuO and the formation of CuAl2O4.

  11. Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3 interface

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Bayer, Thorsten J. M.; Yanagi, Hiroshi; Kiazadeh, Asal; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-04-01

    The reduction of a Cu2O layer on copper by exposure to TMA during the atomic layer deposition of Al2O3 has recently been reported. (Gharachorlou et al 2015 ACS Appl. Mater. Interfaces 7 16428-16439). The study presented here analyzes a similar process, leading to the reduction of a homogeneous Cu2O thin film, which allows for additional observations. Angle-resolved in situ x-ray photoelectron spectroscopy confirms the localization of metallic copper at the interface. The evaluation of binding energy shifts reveals the formation of a Cu2O/Cu Schottky barrier, which gives rise to Fermi level pinning in Cu2O. An initial enhancement of the ALD growth per cycle (GPC) is only observed for bulk Cu2O samples and is thus related to lattice oxygen, originating from regions lying deeper than just the first few layers of the surface. The oxygen out-take from the substrate is limited to the first few cycles, which is found to be due to a saturated copper reduction, rather than the oxygen diffusion barrier of Al2O3.

  12. Tri-gate InGaAs-OI junctionless FETs with PE-ALD Al2O3 gate dielectric and H2/Ar anneal

    NASA Astrophysics Data System (ADS)

    Djara, Vladimir; Czornomaz, Lukas; Deshpande, Veeresh; Daix, Nicolas; Uccelli, Emanuele; Caimi, Daniele; Sousa, Marilyne; Fompeyrine, Jean

    2016-01-01

    We present a tri-gate In0.53Ga0.47As-on-insulator (InGaAs-OI) junctionless field-effect transistor (JLFET) architecture. The fabricated devices feature a 20-nm-thick n-In0.53Ga0.47As channel doped to 1018/cm3 obtained by metal organic chemical vapor phase deposition and direct wafer bonding along with a 3.5-nm-thick Al2O3 gate dielectric deposited by plasma-enhanced atomic layer deposition (PE-ALD). The PE-ALD Al2O3 presents a bandgap of 7.0 eV, a k-value of 8.1 and a breakdown field of 8-10.5 MV/cm. A post-fabrication H2/Ar anneal applied to the PE-ALD Al2O3/In0.53Ga0.47As-OI gate stack yielded a low density of interface traps (Dit) of 7 × 1011/cm2 eV at Ec - E = -0.1 eV along with lower border trap density values than recently reported PE-ALD bi-layer Al2O3/HfO2 and thermal ALD HfO2 gate stacks deposited on In0.53Ga0.47As. The H2/Ar anneal also improved the subthreshold performance of the tri-gate InGaAs-OI JLFETs. After H2/Ar anneal, the long-channel (10 μm) device featured a threshold voltage (VT) of 0.25 V, a subthreshold swing (SS) of 88 mV/dec and a drain-induced barrier lowering (DIBL) of 65 mV/V, while the short-channel (160 nm) device exhibited a VT of 0.1 V, a SS of 127 mV/dec and a DIBL of 218 mV/V. Overall, the tri-gate InGaAs-OI JLFETs showed the best compromise in terms of VT, SS and DIBL compared to the other III-V JLFET architectures reported to date. However, a 15× increase in access resistance was observed after H2/Ar anneal, significantly degrading the maximum drain current of the tri-gate InGaAs-OI JLFETs.

  13. Nucleation of ordered Fe islands on Al 2O 3/Ni 3Al(1 1 1)

    NASA Astrophysics Data System (ADS)

    Lehnert, A.; Krupski, A.; Degen, S.; Franke, K.; Decker, R.; Rusponi, S.; Kralj, M.; Becker, C.; Brune, H.; Wandelt, K.

    2006-05-01

    Scanning tunneling microscopy (STM) has been used to investigate the nucleation and stability of iron clusters on the Al 2O 3/Ni 3Al(1 1 1) surface as a function of coverage and annealing temperature. We show that atomic beam deposition of iron leads to hexagonally ordered cluster arrangements with a distance of 24 Å between the clusters evidencing the template effect of the alumina film. The shape of the iron clusters is two-dimensional (2D) at deposition temperatures from 130 K to 160 K and three-dimensional (3D) at 300 K. However, the 2D iron clusters grown between 130 K and 160 K are stable up to 350 K.

  14. Abnormal positive bias stress instability of In-Ga-Zn-O thin-film transistors with low-temperature Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Hong; Yu, Ming-Jiue; Lin, Ruei-Ping; Hsu, Chih-Pin; Hou, Tuo-Hung

    2016-01-01

    Low-temperature atomic layer deposition (ALD) was employed to deposit Al2O3 as a gate dielectric in amorphous In-Ga-Zn-O thin-film transistors fabricated at temperatures below 120 °C. The devices exhibited a negligible threshold voltage shift (ΔVT) during negative bias stress, but a more pronounced ΔVT under positive bias stress with a characteristic turnaround behavior from a positive ΔVT to a negative ΔVT. This abnormal positive bias instability is explained using a two-process model, including both electron trapping and hydrogen release and migration. Electron trapping induces the initial positive ΔVT, which can be fitted using the stretched exponential function. The breakage of residual AlO-H bonds in low-temperature ALD Al2O3 is triggered by the energetic channel electrons. The hydrogen atoms then diffuse toward the In-Ga-Zn-O channel and induce the negative ΔVT through electron doping with power-law time dependence. A rapid partial recovery of the negative ΔVT after stress is also observed during relaxation.

  15. Injection Seeding of Ti:Al2O3 in an unstable resonator theory and experiment

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Wang, L. G.; Barnes, N. P.; Edwards, W. C.; Cheng, W. A.; Hess, R. V.; Lockard, G. E.; Ponsardin, P. L.

    1991-01-01

    Injection Seeding of a Ti:Al2O3 unstable resonator using both a pulsed single-mode Ti:Al2O3 laser and a continuous wave laser diode has been characterized. Results are compared with a theory which calculates injection seeding as function of seed and resonator alignment, beam profiles, and power.

  16. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGESBeta

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  17. Carbon-riveted Pt catalyst supported on nanocapsule MWCNTs-Al2O3 with ultrahigh stability for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng-Zhi; Wang, Zhen-Bo; Qu, Wei-Li; Rivera, Harry; Gu, Da-Ming; Yin, Ge-Ping

    2012-11-01

    Pt catalyst supported on nanocapsule MWCNTs-Al2O3 (multi-walled carbon nanotubes, MWCNTs) catalyst has been prepared by microwave-assisted polyol process (MAPP). The results of electrochemical measurements show that the nanocapsule Pt/MWCNTs-Al2O3 catalyst has higher activity due to more uniform dispersion and smaller size of Pt nanoparticles, and higher stability ascribed to the stronger metal-support interaction (SMSI) between Pt nanoparticles and nanocapsule support than in Pt/MWCNTs. Furthermore, the carbon-riveted nanocapsule Pt/MWCNTs-Al2O3 catalyst has been designed and synthesized on the basis of in situ carbonization of glucose. The physical characteristics such as X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) have indicated that α-Al2O3 indeed entered into the inside of the MWCNTs and formed a nanocapsule support of MWCNTs with α-Al2O3 as stuffing. The accelerated potential cycling tests (APCT) show that carbon-riveted nanocapsule Pt/MWCNTs-Al2O3 possesses 10 times the stability of Pt/C and has 4.5 times the life-span of carbon-riveted Pt/TiO2-C reported in our previous work. The significantly enhanced stability for carbon-riveted nanocapsule Pt/MWCNTs-Al2O3 catalyst is attributed to the reasons as follows: the inherently excellent mechanical resistance and stability of α-Al2O3 and MWCNTs in acidic and oxidative environments; SMSI between Pt nanoparticles and the nanocapsule support; the anchoring effect of the carbon layers formed during the carbon-riveting process (CRP); the increase of Pt(0) composition during CRP.

  18. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    PubMed

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust. PMID:25428439

  19. Sinterability, mechanical, and electrical properties of Al2O3/8YSZ nanocomposites prepared by ultrasonic spray pyrolysis.

    PubMed

    Yang, Jae-Kyo; Shim, Kwang-Bo; Kim, Hee-Taik; Choa, Yong-Ho

    2006-11-01

    Al2O3 nanoparticles added the YSZ for improving the mechanical property and the ionic conductivity. Al2O3/YSZ nanocomposites were prepared by ultrasonic spray pyrolysis and PECS process. The relative density of the Al2O3/YSZ nanocomposites was fully densified at a sintering temperature of 1100 degrees C. The grain size for 5 vol.% Al2O3/YSZ was less than 100 nm. The fracture toughness and total ionic conductivity of Al2O3/YSZ nanocomposites were improved compared with Al2O3/YSZ nanocomposites by conventional process, due to homogeneous dispersion and uniform particle size of added Al2O3. PMID:17252776

  20. Influence of Al2O3 sol concentration on the microstructure and mechanical properties of Cu-Al2O3 composite coatings

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tang, Ying; Gao, Wei

    2015-03-01

    Copper (Cu) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu, sol-enhanced Cu-Al2O3 nanocomposite coatings were electroplated by adding a transparent Al oxide (Al2O3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al2O3 sol concentration. The results show that the Al2O3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by 20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu-Al2O3 composite coatings. The wear resistance was also improved by 84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.

  1. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  2. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  3. Microstructure and Electron Energy-Loss Spectroscopy Analysis of Interface Between Cu Substrate and Al2O3 Film Formed by Aerosol Deposition Method

    NASA Astrophysics Data System (ADS)

    Naoe, Kazuaki; Nishiki, Masashi; Sato, Keishi

    2014-12-01

    Aerosol deposition method is a technique to form dense films by impacting solid particles on a substrate at room temperature. To clarify the bonding mechanism between AD films and substrates, TEM observation and electron energy-loss spectroscopy (EELS) analysis of the interface between Al2O3 AD films and Cu substrates were conducted. The Al2O3 film was directly adhered to the Cu substrate without any void or crack. The film was composed of randomly oriented α-Al2O3 crystal grains of about 10-20 nm large. At the Al2O3/Cu interface, the lattice fringes of the film were recognized, and no interfacial layer with nanometer-order thickness could be found. EELS spectra near O- K edge obtained at the interface had the pre-peak feature at around 528 eV. According to previously reported experiments and theoretical calculations, this suggests interactions between Cu and O in Al2O3 at the interface. It is inferred that not only the anchoring effect but also the ionic bonding and covalent bonding that originates from the Cu-O interactions contribute to the bonding between Al2O3 AD films and Cu substrates.

  4. Thermal Properties in the MgAl2O4-Al2O3 System

    SciTech Connect

    Wilkerson, Dr. Kelley R.; Smith, Jeffrey D; Hemrick, James Gordon

    2013-01-01

    Compositional effects on the thermal diffusivity in the MgAl2O4-Al2O3 system were studied. The lowest thermal diffusivity, 0.0258 +/-5% cm/s, was measured between 79.8 and 83.9 wt% Al2O3 quenched from various temperatures between 1500 and 1700C. All of the chemistries in this range extend past the solvus, but still form a singe super-saturated spinel solid solution, regardless of quenching tempeature. A super-saturated metastable solid solution region was observed at 1500, 1600, and 1700C extending to 83.9, 85.2, and 87.1 wt% Al2O3, respectively. Beyond 83.9% Al2O3 a significant increase in thermal diffusivity, 11.7%, was observed and its attributed to precipiation of Al2O3 through spinodal decomposition.

  5. Effects of Al2O3 phase and Cl component on dehydrogenation of propane

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liu, Changcheng; Ma, Aizeng; Rong, Junfeng; Da, Zhijian; Zheng, Aiguo; Qin, Ling

    2016-04-01

    The effects of two Al2O3 phases, γ- and θ-Al2O3, and Cl component on the performances of Pt-Al2O3 catalysts in the dehydrogenation of propane were investigated in this work. The catalysts were systematically characterized by various techniques, such as scanning transmission electron microscopy (STEM), temperature-programmed desorption with ammonia as probe molecules (NH3-TPD) and temperature-programmed oxidation (TPO). The characterizations and catalytic results show that: (i) the pore structures and acid properties of the two Al2O3 phases can change the quantity, location and property of the carbon deposition, (ii) the existence of Cl plays a significant role on the agglomeration of Pt particles and carbon deposition, which further influence the catalytic performances of Pt-Al2O3 catalysts with different support phases for propane dehydrogenation.

  6. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al₂O₃ spacer layer.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-22

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices. PMID:26963868

  7. Ellipsometric study of Al2O3/Ag/Si and SiO2/Ag/quartz ashed in an oxygen plasma. [protective coatings to prevent degradation of materials in low earth orbits

    NASA Technical Reports Server (NTRS)

    De, Bhola N.; Woollam, John A.

    1989-01-01

    The growth of silver oxide (proposed as a potentially useful protective coating for space environment) on a silver mirror coated with an Al2O3 or a SiO2 protective layer was investigated using the monolayer-sensitive variable angle of incidence spectroscopic ellipsometry technique. The samples were exposed to a pure oxygen plasma in a plasma asher, and the silver oxide growth was monitored as a function of the exposure time. It was found that atomic oxygen in the asher penetrated through the SiO2 or Al2O3 coatings to convert the silver underneath to silver oxide, and that the quantity of the silver oxide formed was proportional to the ashing time. The band gap of silver oxide was determined to be 1.3 eV. A schematic diagram of the variable angle of incidence spectroscopic ellipsometer is included.

  8. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.

    2016-05-01

    The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.

  9. The electronic and optical properties of Al2O3, MO, and MAl2O4 (M = Zn, Mg).

    PubMed

    Zhang, Fang-Ying; Zeng, Z; You, J Q

    2010-08-01

    The electronic properties and the imaginary parts of the dielectric function for nanosized ZnAl2O4 and MgAl2O4 are studied compared with those of B4-ZnO, B1-MgO and alpha-Al2O3 using a first-principles pesudopotential plane-wave method. The results show that both the electronic structures and the optical spectra of ZnAl2O4 and MgAl2O4 are different from those of ZnO, MgO and Al2O3 due to the atomic rearrangement, which agrees with the experimental data. The insight mechanism is also discussed. PMID:21125922

  10. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  11. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition.

    PubMed

    Wang, Zi-Yi; Zhang, Rong-Jun; Lu, Hong-Liang; Chen, Xin; Sun, Yan; Zhang, Yun; Wei, Yan-Feng; Xu, Ji-Ping; Wang, Song-You; Zheng, Yu-Xiang; Chen, Liang-Yao

    2015-01-01

    The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing. PMID:25852343

  12. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Yi; Zhang, Rong-Jun; Lu, Hong-Liang; Chen, Xin; Sun, Yan; Zhang, Yun; Wei, Yan-Feng; Xu, Ji-Ping; Wang, Song-You; Zheng, Yu-Xiang; Chen, Liang-Yao

    2015-02-01

    The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing.

  13. A 13C NMR study of the adsorbed states of CO on Rh dispersed on Al2O3

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Yates, J. T.; Vaughan, R. W.

    1980-07-01

    The results of nuclear magnetic resonance (NMR) spectroscopy have been analyzed with respect to previous infrared studies of CO adsorbed on Rh dispersed on Al2O3 to quantify the site distribution and to describe the adsorbed state. The 13C NMR spectra account for all the 13CO adsorbed on a 2.2% Rh on Al2O3 substrate. Although the spectra from the different adsorbed states of CO overlap, the line shapes may be separated into two components based on differences in the 13C spin-lattice relaxation times. These two components have been assigned to the 13CO dicarbonyl formed on single Rh atoms and to 13CO adsorbed on Rh rafts. The component attributed to the CO adsorbed on the raft sites is further separated into linear and bridged CO state contributions based on chemical shift information, yielding a quantitative distribution of the three adsorbed states of CO on Rh. The 13CO distribution is used to estimate the molar integrated intensities of the infrared spectrum of 13CO on Rh at high coverage and to determine the degree of dispersion of Rh on the Al2O3. The 13C NMR line shapes of CO adsorbed on Rh are different from the powder pattern of Rh2Cl2(CO)4. It is suggested that the line shape of the dicarbonyl surface species is narrowed to a Lorentzian curve by reorientation at the site and the line shape of CO on the Rh rafts is modulated by exchange between sites on a single raft. The 13C relaxation time distribution provides further evidence for the existence of isolated Rh atoms on the Al2O3 surface.

  14. Helium stability and its interaction with H in α-Al2O3: a first-principles study.

    PubMed

    Zhang, Guikai; Xiang, Xin; Yang, Feilong; Peng, Xuexing; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-01-21

    Little is known about hydrogen interaction with helium, an extrinsic defect, present in α-Al2O3 TPBs due to tritium decay and (n, a) reaction. Using density functional theory (DFT), the stability, structure and diffusion of He-related complexes at the different positions (VAl(3-), V, Oi(2-) and octahedral interstitial sites (OISs)) in α-Al2O3, as well as the interactions with H, are determined under H2-rich conditions. A He atom favors occupation of Al vacancies, the centers of OISs or forms a dumbbell around Al vacancies, forming Hei, HeAl(3-), Hei-HeAl(3-), [V-Hei](0) and [Oi(2-)-He](2-) complexes, among of which HeAl(3-) forms most readily. VAl(3-) can attract He to form small stable He-HeAl(3-) clusters, whereas only a He atom is trapped by an OIS, V and Oi(2-). Hei is more likely to diffuse into VAl(3-) and V than diffuse along the c-axis from one OIS to another. Hi(+) trapping into HeAl(3-) and [V-Hei](0) is thermodynamically and kinetically feasible, whereas dissociation of [Hei-H(+)](+) is more feasible. Forms of H-He complex defects in α-Al2O3 are Hei, Hi(+), [Hei-H(+)](+), [HeAl(3-)-H(+)](2-) and [HO(+)-Hei](+). HeAl(3-) and [V-Hei](0) present will increase the activation energy of H migration in α-Al2O3, which is favored for low H transport of TPBs. PMID:26674752

  15. Epitaxial growth of (111)-oriented ZrxTi1-xN thin films on c-plane Al2O3 substrates

    NASA Astrophysics Data System (ADS)

    Li, Ruiteng; Gandhi, Jateen S.; Pillai, Rajeev; Forrest, Rebecca; Starikov, David; Bensaoula, Abdelhak

    2014-10-01

    A systematic study is presented on the effects of process parameters of S-gun configured DC magnetron sputtered ZrN thin films on c-plane Al2O3 substrates. Using a quartz crystal microbalance the deposition rate of ZrN is investigated as a function of Ar and N2 flow rates, target power, chamber pressure and gas injection position in the chamber. Selected growth conditions for ZrN show the interrelation of growth parameters on film orientation and crystallinity. (111) oriented ZrN thin films exhibit X-ray diffraction rocking curve FWHM as low as 0.36°. Additionally, (111) oriented ternary ZrxTi1-xN thin films (0≤x≤1) are also deposited on c-plane Al2O3 substrates. High resolution X-ray diffraction characterization shows that ZrxTi1-xN (x=0, 0.64, 0.80, 0.93, 1) layers exhibit rocking curve FWHM values of 0.0045-0.006° for the (111) reflection, indicating highly crystalline thin films. Atomic force microscopy characterizations show ZrxTi1-xN thin films with a surface roughness between 1.2 nm and 2.9 nm.

  16. Growth-Rate Induced Epitaxial Orientation of CeO2 on Al2O3(0001)

    SciTech Connect

    Kuchibhatla, Satyanarayana V N T; Nachimuthu, Ponnusamy; Gao, Fei; Jiang, Weilin; Shutthanandan, V.; Engelhard, Mark H.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2009-05-19

    High-quality ceria (CeO2) films were grown on sapphire (Al2O3) (0001) substrates using oxygen plasma-assisted molecular beam epitaxy. The epitaxial orientation of the ceria films has been found to be (100) and (111) at low (< 8 Å/min) and higher growth rates (up to ~30 Å/min), respectively. Evidence shows that CeO2 (100) film grows as three-dimensional islands, while CeO2 (111) proceeds with layered growth. Three in-plane domains at 30° to each other are observed in the CeO2 (100), which is attributed to the close match of the oxygen sub-lattices in the film and substrate that has a three-fold symmetry. Molecular dynamic simulations have further confirmed that the CeO2 film retains (100) orientation on the Al2O3 (0001) substrate.

  17. Structural and Superconducting Properties of (Al2O3) y /CuTl-1223 Composites

    NASA Astrophysics Data System (ADS)

    Jabbar, Abdul; Qasim, Irfan; Waqee-ur-Rehman, M.; Zaman, Munawar; Nadeem, K.; Mumtaz, M.

    2015-01-01

    The effects of nano-Alumina (Al2O3) particles inclusion on the structural and superconducting transport properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ (CuTl-1223) matrix were explored in detail. Different concentrations (i.e. y = 0-1.5 wt.%) of Al2O3 nanoparticles were added to a CuTl-1223 matrix to obtain the desired (Al2O3) y /CuTl-1223 nano-superconducting composites. No significant change was observed in the crystal structure and stoichiometry of the host CuTl-1223 superconducting phase after the addition of Al2O3 nanoparticles. This indicates the occupancy of these nanoparticles at the inter-granular spaces. The superconductivity was suppressed with increasing Al2O3 nanoparticles contents in the CuTl-1223 matrix. The suppression of superconducting properties is most probably due to a pair-breaking mechanism caused by the reflection/scattering of carriers across the insulating nano-Al2O3 particles present at the grain boundaries. The non-monotonic variation of the superconducting properties may be due to inhomogeneous distribution of Al2O3 nanoparticles at the grain boundaries.

  18. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  19. Fabrication and mechanical properties of Al2O3/SiC/ZrO2 functionally graded material by electrophoretic deposition.

    PubMed

    Askari, E; Mehrali, M; Metselaar, I H S C; Kadri, N A; Rahman, Md M

    2012-08-01

    This study describes the synthesis of Al(2)O(3)/SiC/ZrO(2) functionally graded material (FGM) in bio-implants (artificial joints) by electrophoretic deposition (EPD). A suitable suspension that was based on 2-butanone was applied for the EPD of Al(2)O(3)/SiC/ZrO(2), and a pressureless sintering process was applied as a presintering. Hot isostatic pressing (HIP) was used to densify the deposit, with beneficial mechanical properties after 2 h at 1800 °C in Ar atmosphere. The maximum hardness in the outer layer (90 vol.% Al(2)O(3)+10 vol.% SiC) and maximum fracture toughness in the core layer (75 vol.% Al(2)O(3)+10 vol.% SiC + 15 vol.% ZrO(2)) composite were 20.8±0.3 GPa and 8±0.1 MPa m(1/2), respectively. The results, when compared with results from Al(2)O(3)/ZrO(2) FGM, showed that SiC increased the compressive stresses in the outer layers, while the inner layers were under a residual tensile stress. PMID:22732480

  20. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described. PMID:25746277

  1. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  2. Thermoluminescence studies of γ-irradiated Al2O3:Ce3+ phosphor

    NASA Astrophysics Data System (ADS)

    Reddy, S. Satyanarayana; Nagabhushana, K. R.; Singh, Fouran

    2016-07-01

    Pure and Ce3+ doped Al2O3 phosphors were synthesized by solution combustion method. The synthesized samples were characterized by X-ray diffraction (XRD) and its shows α-phase of Al2O3. Crystallite size was estimated by Williamson-Hall (W-H) method and found to be 49, 59 and 84 nm for pure, 0.1 mol% and 1 mol% Ce3+ doped Al2O3 respectively. Trace elemental analysis of undoped Al2O3 shows impurities viz. Fe, Cr, Mn, Mg, Ti, etc. Photoluminescence (PL) spectra of Al2O3:Ce3+ shows emission at 367 nm and excitation peak at 273 nm, which are corresponding to 5D → 4F and 4F → 5D transitions respectively. PL intensity decreases with concentration up to 0.4 mol%, beyond this mol% PL intensity increases with doping concentration up to 2 mol%. Thermoluminescence (TL) studies of γ-rayed pure and Ce3+ doped Al2O3 have been studied. Two well resolved TL glow peaks at 457.5 K and 622 K were observed in pure Al2O3. Additional glow peak at 566 K was observed in Al2O3:Ce3+. Maximum TL intensity was observed for Al2O3:Ce3+ (0.1 mol%) beyond this TL intensity decreases with increasing Ce3+ concentration. Computerized glow curve deconvolution (CGCD) method was used to resolve the multiple peaks and to calculate TL kinetic parameters. Thermoluminescence emission (TLE) spectra of pure Al2O3 glow peaks (457.5 K and 622 K) shows sharp emission at 694 nm and two small humps at 672 nm and 709 nm. The sharp peak at 696 nm corresponds to Cr3+ impurity of 2Eg → 4A2g transition of R lines and 713 nm hump is undoubtedly belongs to Cr3+ emission of near neighbor pairs. The emission at 672 nm is characteristic of Mn4+ impurity ions of 2E → 4A2 transition. TLE of Al2O3:Ce3+ (0.1 mol%) shows additional broad emission at 412 nm corresponds to F-centers. Linearity is observed in the dose range 20-500 Gy in Al2O3:Ce3+ (1 mol%).

  3. Synthesis and optical studies of chemically synthesized PPy/Al2O3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Bahadur, Indra; Mishra, Sheo K.; Tripathi, Akhilesh; Shukla, R. K.

    2016-05-01

    In the present work, we have synthesised pure and 2wt% Al2O3 doped PPy by the chemical oxidation method. XRD patterns of 2wt% Al2O3 doped PPy shows several broad peaks while pure PPy shows only one single peak indicating poor crystalline phase of PPy. FTIR spectra confirm the formation of PPy and also suggest that doping of Al2O3 in PPy does not affect its structure. PL shows several emission peaks for both samples located at ˜365 nm with two shoulders at ˜473 nm and ˜533 nm. The further synthesis and properties study is under investigation.

  4. Electroforming and Ohmic contacts in Al-Al2O3-Ag diodes

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2012-03-01

    Electroforming of metal-insulator-metal (MIM) diodes is a non-destructive dielectric breakdown process that changes the diode from its initial high resistance state (HRS) to a low resistance state (LRS). After electroforming, resistance switching memories (RSMs) use voltages to switch from HRS to LRS and back. Many MIM combinations are proposed for use in RSMs. In many cases conduction in the LRS is nearly temperature independent at low temperatures; an Ohmic contact with a barrier to electron injection of ˜0 eV results from electroforming. Electroforming of Al-Al2O3-Ag diodes with amorphous anodic Al2O3 thicknesses between 12 and 41 nm has been studied. Two anodizing electrolytes have been used; 0.1 M ammonium pentaborate (bor-H2O) and a solution of 0.1 M of ammonium pentaborate per liter of ethylene glycol (bor-gly). Polarization of Al2O3 and negative charge in Al2O3 are much larger when Al2O3 is formed in bor-H2O solution than when Al is anodized in bor-gly solution. Electroforming of Al-Al2O3-Ag diodes results in an Ohmic contact at the Al-Al2O3 interface, voltage-controlled negative resistance (VCNR) in the current-voltage (I-V) characteristics, electroluminescence (EL), and electron emission into vacuum (EM) from filamentary conducting channels. Two distinct modes of electroforming occur for Al-Al2O3-Ag diodes. α-forming occurs for 2.5 V ≲ VS ≲ 5 V, where VS is the applied voltage. It is characterized by an abrupt current jump with the simultaneous appearance of EL and EM. β-forming occurs for VS ≳ 7 V. I-V curves, EL, and EM develop gradually and are smaller than for α-forming. Electroforming occurs more readily for diodes with Al2O3 formed in bor-H2O that have greater defect densities. Fully developed I-V curves have similar VCNR, EL, and EM after α-forming or β-forming. A model is proposed in which excited states of F-centers, oxygen vacancies in amorphous anodic Al2O3, form defect conduction bands. Electroforming that results in an Ohmic

  5. Al2O3 Scale Development on Iron Aluminides

    SciTech Connect

    Zhang, Xiao-Feng; Thaidigsmann, Katja; Ager, Joel; Hou, Peggy Y.

    2005-11-10

    The structure and phase of the Al{sub 2}O{sub 3} scale that forms on an Fe{sub 3}Al-based alloy (Fe-28Al-5Cr) (at %) was investigated by transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). Oxidation was performed at 900 C and 1000 C for up to 190 min. TEM revealed that single-layer scales were formed after short oxidation times. Electron diffraction was used to show that the scales are composed of nanoscale crystallites of the {theta}, {gamma}, and {alpha} phases of alumina. Band-like structure was observed extending along three 120{sup o}-separated directions within the surface plane. Textured {theta} and {gamma} grains were the main components of the bands, while mixed {alpha} and transient phases were found between the bands. Extended oxidation produced a double-layered scale structure, with a continuous {alpha} layer at the scale/alloy interface, and a {gamma}/{theta} layer at the gas surface. The mechanism for the formation of Al{sub 2}O{sub 3} scales on iron aluminide alloys is discussed and compared to that for nickel aluminide alloys.

  6. Superconductivity in Al/Al2O3 interface

    NASA Astrophysics Data System (ADS)

    Palnichenko, A. V.; Vyaselev, O. M.; Mazilkin, A. A.; Khasanov, S. S.

    2016-06-01

    Metastable superconductivity at Tc ≈ 65 K has been observed in Al foil subjected to special oxidation process, according to the ac magnetic susceptibility and electrical resistance measurements. Comparison of the ac susceptibility and the dc magnetization measurements infers that the superconductivity arises within the interfacial granular layer formed during the oxidation process between metallic aluminum and its oxide.

  7. Consideration of the formation mechanism of an Al2O3-HfO2 eutectic film on a SiC substrate

    NASA Astrophysics Data System (ADS)

    Seya, Kyosuke; Ueno, Shunkichi; Nishimura, Toshiyuki; Jang, Byung-Koog

    2016-01-01

    An Al2O3-HfO2 eutectic EBC film was prepared on a SiC substrate by using the electric furnace heating and the optical zone melting methods. All of Al2O3 phase disappeared during the heating step at a temperature below the melting point, and all of the HfO2 phase reacted with the carbon and boron, which are included in SiC bulk as sintering agents, during the heating step at a temperature below the melting point. The thermal decomposition of the SiC phase, the reduction reaction of Al2O3 phase, the vaporization of the Al2O3 component, the reduction reaction of HfO2 and the formation of the HfC phase occurred at a temperature below the melting point. However, a highly dense HfC phase was formed on the SiC substrate. A rapid heating process becomes possible by using the optical zone melting method. A solidified film that was composed of a highly dense HfC layer as the intermediate layer and the Al2O3-HfO2 eutectic structure layer as the top coat was obtained by using the optical zone melting method.

  8. Hybrid composite membranes based on polyethylene separator and Al2O3 nanoparticles for lithium-ion batteries.

    PubMed

    Shin, Won-Kyung; Lee, Yoon-Sung; Kim, Dong-Won

    2013-05-01

    A hybrid composite membrane is prepared by coating nano-sized Al2O3 powder (13 and 50 nm) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VdF-co-HFP)) binder on both sides of polyethylene separator. The composite membrane shows better thermal stability and improved wettability for organic liquid electrolyte than polyethylene separator, due to the presence of heat-resistant Al2O3 particles with high-surface area in the coating layer. By using the composite membrane, the lithium-ion cells composed of carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode are assembled and their cycling performances are evaluated. The cells assembled with the composite membranes are proven to have better capacity retention than the cell prepared with polyethylene separator, due to the enhanced ability to retain the electrolyte solution in the cell. The cell assembled with the composite membrane containing 13 nm-sized Al2O3 particles has an initial discharge capacity of 173.2 mA h g(-1) with good capacity retention. PMID:23858932

  9. Role of B2O3 on the Viscosity and Structure in the CaO-Al2O3-Na2O-Based System

    NASA Astrophysics Data System (ADS)

    Kim, Gi Hyun; Sohn, Il

    2013-10-01

    The effect of B2O3 on the viscosity and structure in the calcium-aluminate melt flux system containing Na2O was studied. An increase in the B2O3 content at fixed CaO/Al2O3 ratio lowered the viscosity. Higher CaO/Al2O3 ratio at fixed B2O3 content also decreased the viscosity. The alumino-borate structures were confirmed through Fourier transformed infrared (FTIR) and Raman spectroscopy and consisted of [AlO4]-tetrahedral structural units, [BO3]-triangular structural units, and [BO4]-tetrahedral structural units, which could be correlated to the viscosity. At fixed CaO/Al2O3 ratio, B2O3 additions decreased the [AlO4]-tetrahedral structural units and transformed the 3-D network structures such as pentaborate and tetraborate into 2-D network structures of boroxol and boroxyl rings by breaking the bridged oxygen atoms (O0) to produce non-bridged oxygen atoms (O-) leading to a decrease in the molten flux viscosity. At fixed B2O3 contents and higher CaO/Al2O3 ratio, 3-D complex network structures become 3-D simple and 2-D isolated network structures, resulting in lower viscosities. The apparent activation energy for viscous flow varied from 132 to 249 kJ/mol according to the composition of B2O3 and CaO/Al2O3 ratio.

  10. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  11. Ultra-sensitive film sensor based on Al2O3-Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen.

    PubMed

    Li, Jianbo; Sun, Weiyan; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Sun, Yuanling; Ding, Chaofan; Luo, Chuannan

    2016-08-01

    An electrochemical sensor of acetaminophen based on poly(diallyldimethylammonium chloride) (PDDA)-functionalized reduced graphene-loaded Al2O3-Au nanoparticles coated onto glassy carbon electrode (Al2O3-Au/PDDA/reduced graphene oxide (rGO)/glass carbon electrode (GCE)) were prepared by layer self-assembly technique. The as-prepared electrode-modified materials were characterized by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The electrocatalytic performances of Al2O3-Au/PDDA/rGO-modified glassy carbon electrode toward the acetaminophen were investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrodes of graphene oxide (GO)/GCE, PDDA/rGO/GCE, and Al2O3-Au/PDDA/rGO/GCE were constructed for comparison and learning the catalytic mechanism. The research showed Al2O3-Au/PDDA/rGO/GCE having good electrochemical performance, attributing to the synergetic effect that comes from the special nanocomposite structure and physicochemical properties of Al2O3-Au nanoparticles and graphene. A low detection limit of 6 nM (S/N = 3) and a wide linear detection range from 0.02 to 200 μM (R (2) = 0.9970) was obtained. The preparation of sensor was successfully applied for the detection of acetaminophen in commercial pharmaceutical pills. Graphical abstract Schematic diagram of synthesis of Al2O3-Au/PDDA/rGO/GCE. PMID:27255103

  12. First-principles elastic constants of α- and θ-Al2O3

    NASA Astrophysics Data System (ADS)

    Shang, Shunli; Wang, Yi; Liu, Zi-Kui

    2007-03-01

    Using an efficient strain-stress method, the first-principles elastic constants cij's of α-Al2O3 and θ-Al2O3 have been predicted within the local density approximation and the generalized gradient approximation. It is indicated that more accurate calculations of cij's can be accomplished by the local density approximation. The predicted cij's of θ-Al2O3 provide helpful guidance for future measurements, especially the predicted negative c15. The present results make the stress estimation in thermally grown oxides containing of α- and θ-Al2O3 possible, which in turn provide helpful insights for preventing the failure of thermal barrier coatings on components in gas-turbine engines.

  13. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Kopp, Nils; Warda, Thomas

    2012-12-01

    Carbon fibre reinforced carbon (CFC) materials are increasingly applied as sample carriers in modern furnaces. Only their tendency to react with different metals at high temperatures by C-diffusion is a disadvantage, which can be solved by application of diffusion barriers. Within this study the feasibility of plasma sprayed Al2O3 coatings as diffusion barrier was studied. Al2O3 coatings were prepared by air plasma spraying (APS). The coatings were investigated in terms of their microstructure, bonding to CFC substrates and thermal stability. The results showed that Al2O3 could be well deposited onto CFC substrates. The coatings had a good bonding and thermal shock behavior at 1060°C. At higher temperature of 1270°C, crack network formed within the coating, showing that the plasma sprayed Al2O3 coatings are limited regarding to their application temperatures as diffusion barrier on CFC components.

  14. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  15. Fabrication of Al2O3/glass/Cf Composite Substrate with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Liu, G. S.; Ouyang, X. Q.; Wang, Y. D.; Zhang, D.

    2016-02-01

    In this paper, carbon fiber with high thermal conductivity was introduced into the alumina-based composites. To avoid oriented alignment of carbon fibers (Cf) and carbothermal reactions during the sintering process, the Al2O3/glass/Cf substrate was hot-pressed under a segmental-pressure procedure at 1123 K. Experimental results show that carbon fibers randomly distribute and form a bridging structure in the matrix. The three-dimensional network of Cf in Al2O3/glass/Cf substrate brings excellent heat conducting performance due to the heat conduction by electrons. The thermal conductivity of Al2O3/30%glass/30%Cf is as high as 28.98 W mK-1, which is 4.56 times larger than that of Al2O3/30%glass.

  16. An ex situ study of the adsorption of calcium phosphate from solution onto TiO2(110) and Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Walczak, M. S.; Hussain, H.; Acres, M. J.; Muryn, C. A.; Thomas, A. G.; Silikas, N.; Lindsay, R.

    2016-04-01

    Ex situ atomic force microscopy and x-ray photoelectron spectroscopy are employed to characterise the adsorption of calcium phosphate from an aqueous solution of CaCl2.H2O and KH2PO4 onto rutile-TiO2(110) and α-Al2O3(0001). Prior to immersion, the substrates underwent wet chemical preparation to produce well-defined surfaces. Calcium phosphate adsorption is observed on both rutile-TiO2(110) and α-Al2O3(0001), with atomic force microscopy images indicating island-type growth. In contrast to other studies on less well-defined TiO2 and Al2O3 substrates, the induction period for calcium phosphate nucleation appears to be comparable on these two surfaces.

  17. Determination of transmission factors for beta radiation using Al 2O 3:C commercial OSL dosimeters

    NASA Astrophysics Data System (ADS)

    Pinto, T. N. O.; Caldas, L. V. E.

    2010-07-01

    In recent years, the optically stimulated luminescence (OSL) technique has been used in personal dosimetry, and aluminum oxide (Al 2O 3:C) has become a very useful material for this technique. The objective of this work was the determination of the transmission factors for beta radiation using Al 2O 3:C commercial dosimeters and the OSL method. The obtained results were similar to the transmission factors reported in the beta source calibration certificates.

  18. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-01

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  19. Influence of annealing temperature on the phase transformation of Al2O3

    NASA Astrophysics Data System (ADS)

    Mahat, Annie Maria; Mastuli, Mohd Sufri; Kamarulzaman, Norlida

    2016-02-01

    In the present study, Al2O3 powders were prepared via a self-propagating combustion method using citric acid as a combustion agent. Effects of annealing temperature on the phase transformation of the prepared powders were studied on samples annealed at 800 °C and 1000 °C. The Al2O3 samples were characterized using X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and N2 adsorption-desorption measurements. The XRD results showed that pure η-phase and pure α-phase of Al2O3 were obtained at 800 °C and 1000 °C, respectively. Their crystallite sizes are totally different as can be seen clearly from the FESEM micrographs. The η-Al2O3 sample annealed at low temperature has crystallite size smaller than 10 nm compared to the α-Al2O3 sample annealed at higher temperature which has crystallites from few microns to hundreds microns in size. From the BET (Brunauer-Emmett-Teller) method, the specific surface area for both samples are 59.4 m2g-1 and 3.1 m2g-1, respectively. It is proposed that the annealing temperature less pronounced for the morphology, but, it is significant for the phase transitions as well as the size and the specific surface area of the Al2O3 samples.

  20. Reactive Plasma Spraying of Fine Al2O3/AlN Feedstock Powder

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2013-12-01

    Reactive plasma spraying (RPS) is a promising technology for in situ formation of aluminum nitride (AlN) coatings. Recently, AlN-based coatings were fabricated by RPS of alumina (Al2O3) powder in N2/H2 thermal plasma. This study investigated the feasibility of RPS of a fine Al2O3/AlN mixture and the influence of the plasma gases (N2, H2) on the nitriding conversion, and coating microstructure and properties. Thick AlN/Al2O3 coatings with high nitride content were successfully fabricated. The coatings consist of h-AlN, c-AlN, Al5O6N, γ-Al2O3, and a small amount of α-Al2O3. Use of fine particles enhanced the nitriding conversion and the melting tendency by increasing the surface area. Furthermore, the AlN additive improved the AlN content in the coatings. Increasing the N2 gas flow rate improved the nitride content and complete crystal growth to the h-AlN phase, and enhanced the coating thickness. On the other hand, though the H2 gas is required for plasma nitriding of the Al2O3 particles, increasing its flow rate decreased the nitride content and the coating thickness. Remarkable influence of the plasma gases on the coating composition, microstructure, and properties was observed during RPS of the fine particles.

  1. N-TiO2/gamma-Al2O3 granules: preparation, characterization and photocatalytic activity for the degradation of 2,4-dichlorophenol.

    PubMed

    Huang, Donggen; Xie, Wenfa; Tu, Zhibin; Zhang, Feng; Quan, Shuiqing; Liu, Lei

    2013-01-01

    Nitrogen doping TiO2 and gamma-Al2O3 composite oxide granules (N-TiO2/gamma-Al2O3) were prepared by co-precipitation/oil-drop/calcination in gaseous NH3 process using titanium sulphate and aluminum nitrate as raw materials. After calcination at 550 degrees C in NH3 atmosphere, the composite granules showed anatase TiO2 and gamma-Al2O3 phases with the granularity of 0.5-1.0 mm. The anatase crystallite size of composite granules was range from 3.5-25 nm calculated from XRD result. The UV-Vis spectra and N 1s XPS spectra indicated that N atoms were incorporated into the TiO2 crystal lattice. The product granules could be used as a photocatalyst in moving bed reactor, and was demonstrated a higher visible-light photocatalytic activity for 2,4-dichlorophenol degradation compared with commercial P25 TiO2. When the mole ratio of TiO2 to Al2O3 equal to 1.0 showed the highest catalytic activity, the degradation percentage of 2,4-chlorophenol could be up to 92.5%, under 60 W fluorescent light irradiation for 9 hours. The high visible-light photocatalytic activity might be a synergetic effect of nitrogen doping and the form of binary metal oxide of TiO2 and gamma-Al2O3. PMID:23646725

  2. Direct Dehydrogenation of n-Butane Over Pt/Sn/Zn-K/Al2O3 Catalyst: Effect of Hydrogen in the Feed.

    PubMed

    Lee, Jong Kwon; Seo, Hyun; Kim, Jeong Kwon; Seo, Hanuk; Cho, Hye-Ran; Lee, Jinsuk; Chang, Hosik; Song, In Kyu

    2016-05-01

    Al2O3 was prepared by a sol-gel method for use as a support. Pt/Sn/Zn-K/Al2O3 catalyst was then prepared by a sequential impregnation method, and it was applied to the direct dehydrogenation of n-butane to n-butenes and 1,3-butadiene. Physicochemical properties of Pt/Sn/Zn-K/Al2O3 catalyst were examined by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, inductively coupled plasma atomic emission spectroscopy (ICP-AES), temperature-programmed reduction (TPR), CO chemisorption, and temperature-programmed oxidation (TPO) measurements. In order to improve the catalyst stability, the effect of hydrogen in the feed on the catalytic performance in the direct dehydrogenation of n-butane was studied. The catalyst stability and reusability in the direct dehydrogenation of n-butane was also investigated. Experimental results revealed that the addition of hydrogen in the feed decreased conversion of n-butane and yield for total dehydrogenation products but improved the stability of the catalyst. The catalytic activity and stability of regenerated Pt/Sn/Zn-K/Al2O3 catalyst in the presence of hydrogen slightly decreased compared to those of fresh Pt/Sn/Zn-K/Al2O3 catalyst due to the slight sintering of platinum particles. PMID:27483794

  3. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack. PMID:27620192

  4. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming Fesbnd Crsbnd Al ferritic steel

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-08-01

    To evaluate the capability of Fesbnd Crsbnd Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fesbnd Crsbnd Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fesbnd Crsbnd Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al2O3 was detected in the oxide film by XPS, and HRTEM showed that Al2O3 in the α phase was found. The formation of α-Al2O3 layer at a relatively low temperature may result from the formation of Cr2O3 nuclei.

  5. Electrical properties and interfacial issues of high-k/Si MIS capacitors characterized by the thickness of Al2O3 interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Liu, Hongxia; Fei, Chenxi; Zhao, Lu; Chen, Shupeng; Wang, Shulong

    2016-06-01

    A thin Al2O3 interlayer deposited between La2O3 layer and Si substrate was used to scavenge the interfacial layer (IL) by blocking the out-diffusion of substrate Si. Some advantages and disadvantages of this method were discussed in detail. Evident IL reduction corroborated by the transmission electron microscopy results suggested the feasibility of this method in IL scavenging. Significant improvements in oxygen vacancy and leakage current characteristics were achieved as the thickness of Al2O3 interlayer increase. Meanwhile, some disadvantages such as the degradations in interface trap and oxide trapped charge characteristics were also observed.

  6. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2 O3 catalysts induced by strong metal-support interactions.

    PubMed

    Lunkenbein, Thomas; Schumann, Julia; Behrens, Malte; Schlögl, Robert; Willinger, Marc G

    2015-04-01

    In industrially relevant Cu/ZnO/Al2 O3 catalysts for methanol synthesis, the strong metal support interaction between Cu and ZnO is known to play a key role. Here we report a detailed chemical transmission electron microscopy study on the nanostructural consequences of the strong metal support interaction in an activated high-performance catalyst. For the first time, clear evidence for the formation of metastable "graphite-like" ZnO layers during reductive activation is provided. The description of this metastable layer might contribute to the understanding of synergistic effects between the components of the Cu/ZnO/Al2 O3 catalysts. PMID:25683230

  7. DFT study of the adsorption properties of single Pt, Pd, Ag, In and Sn on the γ-Al2O3 (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei

    2016-07-01

    GGA/PW91 exchange-correlation functional within periodic density functional theory (DFT) has been used to investigate the adsorption properties of different metal atoms (Pt, Pd, Ag, Sn and In) on the O-terminated and Al-terminated γ-Al2O3 (1 1 0) surface. The predicted adsorption energies follow the order Sn > In > Ag > Pd > Pt. It is found that O-bridge position is the most favorable site for single Pt, Pd, Ag, Sn and In adsorption on the O-terminated γ-Al2O3 (1 1 0) surface. It is found that the most favorable site on the Al-terminated γ-Al2O3 (1 1 0) surface is O-top position.

  8. Superconducting MgB2 thin films grown by pulsed laser deposition on Al2O3(0001) and MgO(100) substrates

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Dai, S. Y.; Zhou, Y. L.; Chen, Z. H.; Cui, D. F.; Xu, J. D.; He, M.; Lu, H. B.; Yang, G. Z.; Fu, G. S.; Han, L.

    2001-11-01

    Superconducting MgB2 thin films were fabricated on Al2O3(0001) and MgO(100) substrates by a two-step method. Boron thin films were deposited by pulsed laser deposition followed by an ex-situ annealing process. Resistance measurements of the deposited MgB2 films show a Tc of 38.6 K for MgB2/Al2O3 and 38.1 K for MgB2/MgO. Atomic force microscopy, scanning electron microscopy and x-ray diffraction were used to study the properties of the films. The results indicate that the MgB2/Al2O3 films consist of well-crystallized grains with a highly c-axis-oriented structure while the MgB2/MgO films have a dense uniform appearance with an unfixed orientation.

  9. The chemisorption of H2O, HCOOH and CH3COOH on thin amorphous films of Al2O3

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Weinberg, W. H.; Mosesman, M.

    1974-01-01

    Investigation of the irreversible chemisorption of water, formic acid and acetic acid on a thin amorphous aluminum oxide film, using inelastic tunneling spectroscopy. All of the tunnel junctions employed were Al-Al2O3-Pb junctions with the adsorbate on the Al2O3 surface between the Al2O3 and the Pb electrode. The results obtained include the finding that all Al2O3 surfaces prepared by oxidation of Al have free CH groups present on them.

  10. Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy

    NASA Astrophysics Data System (ADS)

    Sarraf, M.; Zalnezhad, E.; Bushroa, A. R.; Hamouda, A. M. S.; Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A. R.

    2014-12-01

    In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.

  11. Dissolutive Wetting and Spreading Phenomena Between Al2O3 Substrate and CaO-Al2O3 Liquid Slags

    NASA Astrophysics Data System (ADS)

    Kim, Seonjin; Lee, Kyuyong; Chung, Yongsug

    2016-04-01

    The wetting and spreading behavior are influenced by the dissolution reaction. The wetting and spreading behavior between CaO-Al2O3 slag and Al2O3 substrate were investigated using the dispensed drop technique and a high speed camera (1000 frame/s) at 1823 K (1550 °C) using saturated slag and non-saturated slag on Al2O3. The contact angle of the saturated slag and the non-saturated slag was not substantially different. The apparent height of the spreading droplet for the non-saturated slag was lower than that of the saturated slag due to the formation of a crater generated by the dissolution reaction. A spherical cap model is associated with crater formation was suggested by analyzing the spread droplet and a quenched sample. The spreading rate of the non-saturated slag was faster than that of the saturated slag due to convection. For the saturated slag, the experimental values are in good agreement with the De Gennes's theoretical model. (Non-reactive viscous model) In contrast, the non-saturated slag curve shifts the experimental curve to correspond with the saturated slag curve.

  12. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  13. Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 Suspension Plasma Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bannier, E.; Vicent, M.; Rayón, E.; Benavente, R.; Salvador, M. D.; Sánchez, E.

    2014-10-01

    Alumina-titania coatings are widely used in industry for wear, abrasion or corrosion protection components. Such layers are commonly deposited by atmospheric plasma spraying (APS) using powder as feedstock. In this study, both Al2O3 and Al2O3-13 wt% TiO2 coatings were deposited on austenitic stainless steel coupons by suspension plasma spraying (SPS). Two commercial suspensions of nanosized Al2O3 and TiO2 particles were used as starting materials. The coatings microstructure and phase composition were fully characterised using FEG-SEM and XRD techniques. Nanoindentation technique was used to determine the coatings hardness and elastic modulus properties. Results have shown that the addition of titania to alumina SPS coatings causes different crystalline phases and a higher powder melting rate is reached. The higher melted material achieved, when titania is added leads to higher hardness and elastic modulus when the same spraying parameters are used.

  14. Effect of surface roughness on the development of protective Al 2O 3 on Fe-10Al (at.%) alloys containing 0-10 at.% Cr

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Hou, P. Y.; Gesmundo, F.; Niu, Y.

    2006-11-01

    The effect of alloy surface roughness, achieved by different degrees of surface polishing, on the development of protective alumina layer on Fe-10 at.% Al alloys containing 0, 5, and 10 at.% Cr was investigated during oxidation at 1000 °C in 0.1 MPa oxygen. For alloys that are not strong Al 2O 3 formers (Fe-10Al and Fe-5Cr-10Al), the rougher surfaces increased Fe incorporation into the overall surface layer. On the Fe-10Al, more iron oxides were formed in a uniform layer of mixed aluminum- and iron-oxides since the layer was thicker. On the Fe-5Cr-10Al, more iron-rich nodules developed on an otherwise thin Al 2O 3 surface layer. These nodules nucleated preferentially along surface scratch marks but not on alloy grain boundaries. For the strong Al 2O 3-forming Fe-10Cr-10Al alloy, protective alumina surface layers were observed regardless of the surface roughness. These results indicate that the formation of a protective Al 2O 3 layer on Fe-Cr-Al surfaces is not dictated by Al diffusion to the surface. More cold-worked surfaces caused an enhanced Fe diffusion, hence produced more Fe-rich oxides during the early stage of oxidation.

  15. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  16. Ferromagnetic resonance experiments in an obliquely deposited FeCo-Al2O3 film system

    NASA Astrophysics Data System (ADS)

    Lesnik, N. A.; Oates, C. J.; Smith, G. M.; Riedi, P. C.; Kakazei, G. N.; Kravets, A. F.; Wigen, P. E.

    2003-11-01

    Granular cermet films (Fe50Co50)x-(Al2O3)1-x fabricated using the electron-beam coevaporation technique at oblique incidence of FeCo and alumina atom fluxes have been found to exhibit both oblique and in-plane uniaxial magnetic anisotropy. This anisotropy first appears just below the percolation threshold due to a magnetic coupling of particles taking place at a certain stage of their growth and coalescence. The FeCo content x varied from 0.07 to 0.49. A simple model of the film microstructure is presented based on the results of magnetization measurements and ferromagnetic resonance at intermediate (9.4 GHz) and high (94 GHz) frequencies. At 94 GHz the concentration dependence of the effective anisotropy field follows the solid solution law, since then the magnetic field is sufficient to magnetize the films close to saturation. The 9.4 GHz data points deviate from the solid solution line below the percolation threshold due to both modification of the resonance fields by intergranular interactions in nonsaturated films and the reduction of the average magnetization of granules, comparing to the saturation magnetization, at room temperature. Different mechanisms of line broadening observed at frequencies used in experiments are also discussed.

  17. Epitaxial growth of (1 1 1)-oriented spinel CoCr2O4/Al2O3 heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoran; Choudhury, D.; Cao, Yanwei; Middey, S.; Kareev, M.; Meyers, D.; Kim, J.-W.; Ryan, P.; Chakhalian, J.

    2015-02-01

    High quality (1 1 1)-oriented CoCr2O4/Al2O3 heterostructures were synthesized on the sapphire (0 0 0 1) single crystal substrates by pulsed laser deposition. The structural properties are demonstrated by in-situ reflection high energy electron diffraction, atomic force microscopy, X-ray reflectivity, and X-ray diffraction. X-ray photoemission spectroscopy confirms that the films possess the proper chemical stoichiometry. This work offers a pathway to fabricating spinel type artificial quasi-two-dimensional frustrated lattices by means of geometrical engineering.

  18. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  19. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    SciTech Connect

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Szanyi, Janos

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoretical DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.

  20. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  1. Photochemistry of the α-Al2O3-PETN interface

    DOE PAGESBeta

    Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; Rashkeev, Sergey N.; Kuklja, Maija M.

    2016-02-29

    Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a wide band gap aluminum oxide (α-Al2O3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surfacePETN transitions. We predict the low energy α-Al2O3 F0-centerPETN transition, producing the excited triplet state, and α-Al2O3 F-0-centerPETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN atmore » the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less

  2. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    PubMed

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites. PMID:27251994

  3. Interface considerations in Al2O3/NiAl composite

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    The fiber-matrix interface requirements in an Al2O3/NiAl composite were examined from theoretical considerations. Several factors that influence the interface bonding requirements were analyzed. These include: (1) residual stresses due to fiber-matrix coefficient of thermal expansion (CTE) mismatch; (2) matrix cracking stress at room temperature; (3) fracture toughness at room temperature; (4) load transfer from the matrix to the fiber and ultimate tensile strength at the use temperature; and (5) creep resistance at high temperature. A relatively weak fiber-matrix bond, with an interfacial shear strength of approximately 15-20 MPa, might be sufficient for attaining the desired mechanical properties in the fiber direction at the use temperature. A weak fiber-matrix bond is also beneficial for increasing the fracture toughness of the composite at room temperature. In contrast, a strong fiber-matrix bond is required to withstand some of the residual stresses resulting from the fiber-matrix CTE mismatch, which are not likely to be reduced significantly by interface coatings. A relatively strong bond is also beneficial in increasing the matrix cracking stress at room temperature. Various interface coating options to accommodate the conflicting bonding requirements were reviewed. One viable coating option is to incorporate a thick, ductile interface layer well bonded to both the fiber and the matrix.

  4. In situ Formed α-Al2O3 Nanocrystals Repaired the Preexisting Microcracks in Plasma-Sprayed Al2O3 Coating via Stress-Induced Phase Transformation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Feng, Jingwei; Rong, Jian; Liu, Chenguang; Tao, Shunyan; Ding, Chuanxian

    2016-02-01

    In the present study, the phase composition and generation mechanism of the nanocrystals located in the microcracks of plasma-sprayed Al2O3 coating were reevaluated. The Al2O3 coatings were investigated using transmission electron microscopy and x-ray diffraction. We supply the detailed explanations to support the new viewpoint that in situ formation of α-Al2O3 nanocrystals in the preexisting microcracks of the as-sprayed Al2O3 coating may be due to the stress-induced phase transformation. Owing to the partially coherent relationship, the phase interfaces between the α-Al2O3 nanocrystals with the preferred orientation and the γ-Al2O3 matrix may possess better bonding strength. The α-Al2O3 nanocrystals could repair the microcracks in the coating, which further strengthens grain boundaries. Grain boundary strengthening is beneficial to the coating fracture toughness enhancement.

  5. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI

    NASA Technical Reports Server (NTRS)

    Shahi, K.; Wagner, J. B., Jr.

    1981-01-01

    Ionic and electronic conductivities, and thermoelectric power have been measured for AgI and AgI containing a dispersion of submicron size Al2O3 particles. While the dispersion of Al2O3 enhances the ionic conductivity significantly, it does not affect the electronic properties of the matrix. The enhancement is a strong function of the size and concentration of the dispersoid. Various models have been tested to account for the enhanced conduction. However, the complex behavior of the present results points out the need for more sophisticated theoretical models. Ionic conduction and thermoelectric power data suggest that the dispersed Al2O3 generates an excess of cation vacancies and thereby enhances the conductivity and suppresses the thermoelectric power of the matrix. The individual heats of transport of cation interstitials and vacancies have been estimated and compared to their respective migration energies.

  6. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit. PMID:27433687

  7. Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts

    NASA Astrophysics Data System (ADS)

    Park, Jaehyun; Lee, Joohwi; Choi, Jung-Hae; Hwang, Do Kyung; Song, Yong-Won

    2015-07-01

    The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a ‘graphene sticker’ into an ultrafast mode-locked laser.

  8. Optical and x-ray photoelectron spectroscopy studies of α-Al2O3

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2016-05-01

    α-Al2O3 powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al2O3 phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al2O3 powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  9. Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts

    PubMed Central

    Park, Jaehyun; Lee, Joohwi; Choi, Jung-Hae; Hwang, Do Kyung; Song, Yong-Won

    2015-01-01

    The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a ‘graphene sticker’ into an ultrafast mode-locked laser. PMID:26137994

  10. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  11. Reactive Plasma Nitriding of AL2O3 Powder in Thermal Spray

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    Among advanced ceramics, aluminum nitride (AlN) had attracted much attention in the field of electrical and structural applications due to its outstanding properties. However, it is difficult to fabricate AlN coating by conventional thermal spray processes directly. Due to the thermal decomposition of feedstock AlN powder during spraying without a stable melting phase (which is required for deposition in thermal spray). Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of AlN thermally sprayed coatings. In this study the possibility of fabrication of AlN coating by reactive plasma nitriding of alumina (Al2O3) powder using N2/H2 plasma was investigated. It was possible to fabricate a cubic-AlN (c-AlN) based coating and the fabricated coating consists of c-AlN, α-Al2O3, Al5O6N and γ-Al2O3. It was difficult to understand the nitriding process from the fabricated coatings. Therefore, the Al2O3 powders were sprayed and collected in water. The microstructure observation of the collected powder and its cross section indicate that the reaction started from the surface. Thus, the sprayed particles were melted and reacted in high temperature reactive plasma and formed aluminum oxynitride which has cubic structure and easily nitride to c-AlN. During the coatings process the particles collide, flatten, and rapidly solidified on a substrate surface. The rapid solidification on the substrate surface due to the high quenching rate of the plasma flame prevents AlN crystal growth to form the hexagonal phase. Therefore, it was possible to fabricate c-AlN/Al2O3 based coatings through reactive plasma nitriding reaction of Al2O3 powder in thermal spray.

  12. A Pt/Al2O3-supported metal-organic framework film as the size-selective core-shell hydrogenation catalyst.

    PubMed

    Aguado, Sonia; El-Jamal, Sawsan; Meunier, Frederic; Canivet, Jerome; Farrusseng, David

    2016-06-01

    The substituted imidazolate-based MOF (SIM-1) easily forms a homogeneous layer at the surface of millimetric platinum-loaded alumina beads. This new core-shell SIM-1@Pt/Al2O3 catalyst shows the fine molecular sieving effect for the Pt-catalyzed hydrogenation of carbon-carbon double bonds. PMID:27172134

  13. Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries.

    PubMed

    Lai, Feiyan; Zhang, Xiaohui; Wang, Hongqiang; Hu, Sijiang; Wu, Xianming; Wu, Qiang; Huang, Youguo; He, Zeqiang; Li, Qingyu

    2016-08-24

    A three dimensional (3D) Al2O3 coating layer was synthesized by a facile approach including stripping and in situ self-assembly of γ-AlOOH. The uniform flower-like Al2O3 nanosheets with high specific area largely sequesters acidic species produced by side reaction between electrode and electrolyte. The inner coating layer wrapping spinel LiMn2O4 effectively inhibits the dissolution of Mn by suppressing directive contact with electrolyte to enhance cycling stability. The rate performance is improved because of the better electrolyte storage of the assembled hierarchical architecture of the 3D coating layer affording unimpeded Li(+) diffusion from electrode to electrolyte. The electrochemical results reveal the as-prepared coated LiMn2O4 sample with the amount of Al2O3 at 1 wt % exhibits superior cycle stability under room temperature even at elevated temperature. The initial specific discharge capacity is 128.5 mAh g(-1) at 0.1 C and retains 89.8% of the initial capacity after 800 cycles at 1 C rate. When cycling at 55 °C, the composite shows 93.6% capacity retention after 500 cycles. This facile surface modification and effective structure of coating layer can be adopted to enhance the cycling performance and thermal stability of other electrode materials for which Al2O3 plays its role. PMID:27490281

  14. Corrosion Resistance of Fe-Al/Al2O3 Duplex Coating on Pipeline Steel X80 in Simulated Oil and Gas Well Environment

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Wang, Ping-Gu; Shi, Qin-Yi; Zhang, Meng-Xian

    2015-04-01

    Corrosion resistant Fe-Al/Al2O3 duplex coating for pipeline steel X80 was prepared by a combined treatment of low-temperature aluminizing and micro-arc oxidation (MAO). Phase composition and microstructure of mono-layer Fe-Al coating and Fe-Al/Al2O3 duplex coating were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). Corrosion resistance of the coated pipeline steel X80 in a simulated oil and gas well condition was also investigated. Mono-layer Fe-Al coating consists of Fe2Al5 and FeAl, which is a suitable transitional layer for the preparation of ceramic coating by MAO on the surface of pipeline steel X80. Under the same corrosion condition at 373 K for 168 h with 1 MPa CO2 and 0.1 MPa H2S, corrosion weight loss rate of pipeline steel X80 with Fe-Al/Al2O3 duplex coating decreased to 23% of original pipeline steel X80, which improved by 10% than that of pipeline steel X80 with mono-layer Fe-Al coating. It cannot find obvious cracks and pits on the corrosion surface of pipeline steel X80 with Fe-Al/Al2O3 duplex coating.

  15. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  16. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-07-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  17. Magnetic core-shell nano-TiO2/Al2O3/NiFe2O4 microparticles with enhanced photocatalytic activity.

    PubMed

    Jing, Mao-Xiang; Han, Chong; Wang, Zhou; Shen, Xiang-Qian

    2013-07-01

    The core-shell nano-TiO2/Al2O3/NiFe2O4 microparticles of 5-8 microm were prepared by the heterogeneous precipitation followed by calcination treatment. The morphologies, structure, crystalline phase, and magnetic property were characterized by optical biomicroscopy (OBM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) and vibrating sample magnetometer (VSM) respectively. The photocatalytic activity was evaluated by degrading methyl orange solution either under UV light and sunlight. The results indicate that the nano-TiO2 layer consists of needle-like nanoparticles and the intermediate layer of Al2O3 avoids the nano-TiO2 agglomeration, shedding and uneven loading. The nano-TiO2/Al2O3/NiFe2O4 composite particles show high magnetization of 31.5 emu/g and enhanced photocatalytic activity to completely degrade 50 mg/L methyl orange solution either under UV light and sun light. The enhanced activity of the composite is attributed to the unique structure, insulation effect of Al2O3 intermediate layer and the hybrid effect of anatase TiO2 and NiFe2O4. The obtained catalyst may be magnetically separable and useful for many practical applications due to the improved photocatalytic properties under sunlight. PMID:23901515

  18. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  19. Adsorption of L-glutamic acid and L-aspartic acid to γ-Al2O3

    NASA Astrophysics Data System (ADS)

    Greiner, Edward; Kumar, Kartik; Sumit, Madhuresh; Giuffre, Anthony; Zhao, Weilong; Pedersen, Joel; Sahai, Nita

    2014-05-01

    The interactions of amino acids with mineral surfaces have potential relevance for processes ranging from pre-biotic chemistry to biomineralization to protein adsorption on biomedical implants in vivo. Here, we report the results of experiments investigating the adsorption of L-glutamic (Glu) and L-aspartic (Asp) acids to γ-Al2O3. We examined the extent of Glu and Asp coverage as a function of pH and solution concentration (pH edges and isotherms) in solution-depletion experiments and used in situ Attenuated Total Refkectance Fourier Transform Infrared (ATR-FTIR) spectroscopy to estimate the molecular conformations of the adsorbed molecules. Glu and Asp exhibited similar adsorption behavior on γ-Al2O3 with respect to pH and solution concentration. In general, adsorption decreased as pH increased. At low and high amino acid concentrations, the isotherms exhibited two apparent saturation coverages, which could be interpreted as 1:4 or 1:2 ratios of adsorbed molecule/surface Al sites. Tetradentate tetranuclear and bidentate binuclear species were the dominant conformations inferred independently from FTIR spectra. In these conformations, both carboxylate groups are involved in bonding to either four or to two Al surface atoms, through direct covalent bonds or via H-bonds. An outer sphere species, in which one carboxylate group interacts with a surface Al atom, could not be ruled out based on the FTIR spectra.

  20. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  1. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition.

    PubMed

    Yin, B; Sadtler, B; Berezin, M Y; Thimsen, E

    2016-09-25

    Applications of luminescent quantum dots require the materials to be stable under a wide range of temperatures, photon fluxes and chemical environments. In this work, we demonstrate that Al2O3 shells synthesized by atomic layer deposition on films of CdTe quantum dots are effective to prevent chemical degradation for up to 17 hours under continuous illumination at 90 °C in ambient air. Control samples with no Al2O3 coating experienced extensive oxidation and severe quenching of the photoluminescence intensity under these conditions. PMID:27550790

  2. New fully bakeable and moveable vacuum seal between stainless steel and Al2O3 ceramic.

    PubMed

    Langenwalter, M; Grössl, M; Märk, T D

    1979-02-01

    The current paper describes a simple construction which allows the monitoring of the radial dependence of the extracted and mass identified ion currents in a hollow cathode stationary afterglow apparatus at any time during the afterglow. The main feature of the monitoring device is a fully bakeable and moveable vacuum seal between polished stainless steel and polished Al2O3 ceramic. PMID:18699481

  3. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1988-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  4. Spin-coatable Al2O3 resists in electron-beam nanolithography

    NASA Astrophysics Data System (ADS)

    Saifullah, Mohammad S.; Namatsu, Hideo; Yamaguchi, Toru; Yamazaki, Kenji; Kurihara, Kenji

    1999-06-01

    Inorganic resist such as amorphous alumina are projected as potential candidates for high resolution electron beam nanolithography; the drawbacks being its low sensitivity and tedious deposition process such as sputtering. Therefore, a spin-coatable Al2O3 resist with higher sensitivity is strongly desirable to overcome these drawbacks. In this paper, we describe the electron beam exposure characteristics of spin-coatable Al2O3 gel films prepared by reacting aluminium tri-sec-butoxide, Al(OBus)3 with chelating agents like ethylacetoacetate. The electron beam sensitivity of approximately 70nm thick Al2O3 gel films baked at 40 degrees C as well as in the no-bake condition is approximately 4mCcm-2, which is approximately 106 times higher than the sputtered alumina films. Baking at 70 degrees C seems to produce little change in the sensitivity. The Fourier transformed IR spectroscopy studies indicate that the increased sensitivity of these films is due to the rapid breakdown of chelate rings under the electron beam. This rapid breakdown of organic bonds could have resulted in the appearance of inorganic Al-O bonds which are insoluble in acetone. Indeed the spin-coatable Al2O3 resist provides high resolution negative line patterns of linewidth of about 20nm.

  5. MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...

  6. Synthesis of MgO nanoparticle loaded mesoporous Al2O3 and its defluoridation study

    NASA Astrophysics Data System (ADS)

    Dayananda, Desagani; Sarva, Venkateswara R.; Prasad, Sivankutty V.; Arunachalam, Jayaraman; Parameswaran, Padmanabhan; Ghosh, Narendra N.

    2015-02-01

    MgO nanoparticle loaded mesoporous alumina has been synthesized using a simple aqueous solution based cost effective method for removal of fluoride from water. Wide angle powder X-ray diffraction, nitrogen adsorption desorption analysis, transmission electron microscopy techniques and energy dispersive X-ray spectroscopy were used to characterize the synthesized adsorbents. Synthesized adsorbents possess high surface area with mesoporous structure. The adsorbents have been thoroughly investigated for the adsorption of F- using batch adsorption method. MgO nanoparticle loading on mesoporous Al2O3 enhances the F- adsorption capacity of Al2O3 from 56% to 90% (initial F- concentration = 10 mg L-1). Kinetic study revealed that adsorption kinetics follows the pseudo-second order model, suggesting the chemisorption mechanism. The F- adsorption isotherm data was explained by both Langmuir and Freundlich model. The maximum adsorption capacity of 40MgO@Al2O3 was 37.35 mg g-1. It was also observed that, when the solutions having F- concentration of 5 mg L-1 and 10 mg L-1 was treated with 40MgO@Al2O3, the F- concentration in treated water became <1 mg L-1, which is well below the recommendation of WHO.

  7. Crystallization kinetics of BaO-Al2O3-SiO2 glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Hyatt, Mark J.

    1989-01-01

    Barium aluminosilicate glasses are being investigated as matrix materials in high-temperature ceramic composites for structural applications. Kinetics of crystallization of two refractory glass compositions in the barium aluminosilicate system were studied by differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). From variable heating rate DTA, the crystallization activation energies for glass compositions (wt percent) 10BaO-38Al2O3-51SiO2-1MoO3 (glass A) and 39BaO-25Al2O3-35SiO2-1MoO3 (glass B) were determined to be 553 and 558 kJ/mol, respectively. On thermal treatment, the crystalline phases in glasses A and B were identified as mullite (3Al2O3-2SiO2) and hexacelsian (BaO-Al2O3-2SiO2), respectively. Hexacelsian is a high-temperature polymorph which is metastable below 1590 C. It undergoes structural transformation into the orthorhombic form at approximately 300 C accompanied by a large volume change which is undesirable for structural applications. A process needs to be developed where stable monoclinic celsian, rather than hexacelsian, precipitates out as the crystal phase in glass B.

  8. Compatibility of Ce-TZP/Al2O3 nanocomposite frameworks and veneering porcelains.

    PubMed

    Terui, Yuichi; Sato, Kotaro; Goto, Daisuke; Hotta, Yasuhiro; Tamaki, Yukimichi; Miyazaki, Takashi

    2013-01-01

    The aim of this study was to examine the compatibility of Ce-TZP/Al2O3 nanocomposite (CTA) frameworks and veneering porcelains using the Schwickerath crack initiation test and clarify the effects on debonding/crack initiation strength (DIS) of both surface pretreatment (include heat treatment) of the frameworks, type of veneering porcelain varying the coefficient of thermal expansion (CTE), and surface roughness of the frameworks. The surfaces of Ce-TZP/Al2O3 plates were mechanically treated and followed by post-heat treatment. The liner and body porcelains were built up and fired according to the manufacturer's instructions. Surface analyses of the fractured plates showed compatibility with liner porcelains. Since no statistically difference in the DIS was found amongst the different surface treatments, post-heat treatments don't be mandatory. Whereas, since differences in DIS were found when different porcelains with different CTE were used, we concluded the matching of CTE of the porcelain with that of Ce-TZP/Al2O3 was important for successful all-ceramic restorations using Ce-TZP/Al2O3 frameworks. PMID:24088843

  9. Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hirohito; Ito, Shintaro; Esashika, Keiko; Taguchi, Yoshihiro; Saiki, Toshiharu

    2016-03-01

    Nanopore sensors are being developed as a platform for analyzing single DNA, RNA, and protein. In nanopore sensors, ionic current measurement is widely used and proof-of-concept of nanopore DNA sequencing by it has been demonstrated by previous studies. Recently, we proposed an alternative platform of nanopore DNA sequencing that incorporates ultraviolet light and porous silicon membrane to perform high-throughput measurement. In the development of our DNA sequencing platform, controlling nanopore size in porous silicon membrane is essential but remains a challenge. Here, we report on observation of DNA translocation through Al2O3 sputtered silicon nanopores (Al2O3 nanopores) by our optical scheme. Electromagnetic wave simulation was performed to analyze the excitation volume on Al2O3 nanopores generated by focused ultraviolet light. In the experiment, DNA translocation time through Al2O3 nanopores was compared with that of silicon nanopores and we examined the effect of nanopore density and thickness of membrane by supplementing the static electric field simulation.

  10. Precipitation of ZnO in Al 2O 3-doped zinc borate glass ceramics

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2011-10-01

    Crystallization behavior of the oxide semiconductor ZnO in zinc borate glass was investigated. The precipitated crystalline phase of glass ceramics containing a small amount of Al 2O 3 was α-Zn 3B 2O 6 whereas that of the glass ceramics containing a large amount of Al 2O 3 was ZnO. It was found that the c-oriented precipitation of ZnO in a glass ceramic was brought about by the in-plane crystal growth of needle-like ZnO crystallites along the a-axis. Amount of Al 2O 3 that can make glass network affected the coordination state of B 2O 3 in the glass, and a three-coordinated BO 3 unit was preferentially formed in the glass containing a higher amount of Al 2O 3. The present results suggest that crystallization of ZnO from multi-component glass is dominated by the local coordination state of the mother glass.

  11. Performance and Long-Term Stability of Pd/PSS and Pd/Al2O3 Membranes for Hydrogen Separation

    PubMed Central

    Liguori, Simona; Iulianelli, Adolfo; Dalena, Francesco; Pinacci, Pietro; Drago, Francesca; Broglia, Maria; Huang, Yan; Basile, Angelo

    2014-01-01

    The present work is focused on the investigation of the performance and long-term stability of two composite palladium membranes under different operating conditions. One membrane (Pd/porous stainless steel (PSS)) is characterized by a ~10 µm-thick palladium layer on a porous stainless steel substrate, which is pretreated by means of surface modification and oxidation; the other membrane (Pd/Al2O3) is constituted by a ~7 µm-thick palladium layer on an asymmetric microporous Al2O3 substrate. The operating temperature and pressure ranges, used for studying the performance of these two kinds of membranes, are 350–450 °C and 200–800 kPa, respectively. The H2 permeances and the H2/N2 selectivities of both membranes were investigated and compared with literature data. At 400 °C and 200 kPa as pressure difference, Pd/PSS and Pd/Al2O3 membranes exhibited an H2/N2 ideal selectivity equal to 11700 and 6200, respectively, showing stability for 600 h. Thereafter, H2/N2 selectivity of both membranes progressively decreased and after around 2000 h, dropped dramatically to 55 and 310 for the Pd/PSS and Pd/Al2O3 membranes, respectively. As evidenced by Scanning Electron Microscope (SEM) analyses, the pinholes appear on the whole surface of the Pd/PSS membrane and this is probably due to release of sulphur from the graphite seal rings. PMID:24957126

  12. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  13. Dehydrogenation of dodecahydro-N-ethylcarbazole on Pd/Al2O3 model catalysts.

    PubMed

    Sobota, Marek; Nikiforidis, Ioannis; Amende, Max; Sanmartín Zanón, Beatriz; Staudt, Thorsten; Höfert, Oliver; Lykhach, Yaroslava; Papp, Christian; Hieringer, Wolfgang; Laurin, Mathias; Assenbaum, Daniel; Wasserscheid, Peter; Steinrück, Hans-Peter; Görling, Andreas; Libuda, Jörg

    2011-10-01

    To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst. PMID:21953930

  14. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts.

    PubMed

    Sattler, Jesper J H B; Beale, Andrew M; Weckhuysen, Bert M

    2013-08-01

    The deactivation of 0.5 wt% Pt/Al2O3 and 0.5 wt% Pt-1.5 wt% Sn/Al2O3 catalysts has been studied by operando Raman spectroscopy during the dehydrogenation of propane and subsequent regeneration in air for 10 successive dehydrogenation-regeneration cycles. Furthermore, the reaction feed was altered by using different propane/propene/hydrogen ratios. It was found that the addition of hydrogen to the feed increases the catalyst performance and decreases the formation of coke deposits, as was revealed by thermogravimetrical analysis. The positive effect of hydrogen on the catalyst performance is comparable to the addition of Sn, a promoter element which increases both the propane conversion and propene selectivity. Operando Raman spectroscopy showed that hydrogen altered the nature of the coke deposits formed during propane dehydrogenation. Due to this approach it was possible to perform a systematic deconvolution procedure on the Raman spectra. By analysing the related intensity, band position and bandwidth of the different Raman features, it was determined that smaller graphite crystallites, which have less defects, are formed when the partial pressure of hydrogen in the feed was increased. PMID:23615824

  15. Surface Tension of the System NaF -AlF3-Al2O3 and Surface Adsorption of Al2O3

    NASA Astrophysics Data System (ADS)

    Kucharík, Marián; Vasiljev, Roman

    2006-08-01

    Part of the molten system NaF-AlF3-Al2O3 was studied by surface tension measurements, which were performed at cryolite ratios (CR) between 1.5 and 3 [CR = n(NaF)/n(AlF3)]. The maximal bubble pressure method was applied. The surface adsorption of alumina (Al2O3) was also calculated. The obtained results were discussed in terms of the anionic composition of the melt. The addition of AlF3 to melt with CR= 3 decreases the surface tension, as AlF3 is surface-active in molten Na3AlF6. The concentration dependence of the surface tension and the surface adsorption of alumina in the title system are influenced by the formation of surface-active oxofluoroaluminates. An increase of the difference between the surface tension of NaF-AlF3 mixtures and the surface tension of pure alumina was observed with decreasing cryolite ratio.

  16. Defect energetics in α-Al2O3 and rutile TiO2

    NASA Astrophysics Data System (ADS)

    Catlow, C. R. A.; James, R.; Mackrodt, W. C.; Stewart, R. F.

    1982-01-01

    We report a theoretical survey of defect energetics in α-Al2O3 and rutile TiO2 which we relate to structural and transport properties of these materials. The study of these crystals has required us to modify our computational methods based on the Mott-Littleton theory, which were previously confined to the treatment of cubic materials. We discuss the theoretical aspects of a new and quite general computational procedure, HADES III, which can be used for defect calculations on crystals of any symmetry. Our discussion pays particular attention to the effects on the calculated energetics of the use of Mott-Littleton methods adapted for anisotropic crystals. Other features, considered in detail, are the sensitivity of calculated defect energies to the choice of lattice potential and to the size of the atomistically simulated region surrounding the defect. We also compare our results for α-Al2O3 and those of an earlier study of Dienes et al. Our calculations are then used to discuss the simplest features of the defect properties of pure and doped α-Al2O3 and TiO2. The present results support the dominance of Schottky disorder in both crystals; cation Frenkel energies are high and anion Frenkel pairs may be of significance in α-Al2O3. In addition we present a survey of doped alumina and of the effect of oxygen partial pressure on the defect structure of this material. Our results suggest that defect clustering will have a major influence on the properties of doped Al2O3.

  17. Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed

    2016-07-01

    Nano size polycrystalline samples of the core@shell heterostructure of SnO2 @ xAl2O3 (x = 0, 25, 50, 75 wt.%) were synthesized by sol-gel technique. The resulting samples were characterized with fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and X-ray powder diffraction (XRD). The XRD patterns manifest diffraction peaks of SnO2 as main phase with weak peaks corresponding to Al2O3 phase. The formation of core@ shell structure is confirmed by TEM images and Rietveld quantitative phase analysis which revealed that small part of Al2O3 is incorporated into the SnO2 lattice while the main part (shell) remains as a separate phase segregated on the grain boundary surface of SnO2 (core). It is found that the grain size of the mixed oxides SnO2 @ xAl2O3 is below 10 nm while for pure SnO2 it is over 41 nm, indicating that alumina can effectively prevent SnO2 from further growing up in the process of calcination. This is confirmed by the large increase in the specific surface area for mixed oxide samples. The PL emission showed great dependence on the structure properties analyzed by XRD and FTIR. The PL results recommend Al2O3@SnO2 core@shell heterostructure to be a promising short-wavelength luminescent optoelectronic devices for blue, UV, and laser light-emitting diodes.

  18. Solidification processing of Al-Al2O3 composite using turbine stirrer

    NASA Astrophysics Data System (ADS)

    Al-Jarrah, J. A.; Ray, S.; Ghosh, P. K.

    1998-06-01

    Solidification processing of Al-Al2O3 composites involves mixing of nonwetting alumina particles in molten aluminum alloy resulting in a slurry where the particles are often attached to bubbles sucked at the center of vortex below the stirrer. The internal surface of bubbles is eventually oxidized by oxygen from air entrapped in it. These bubble-particle combines may float or settle during casting depending on the overall density influencing the particle and porosity distribution in a cast composite ingot where the performance of a stirrer may be evaluated under a given condition of processing. Particle incorporation is more for turbine stirrers instead of flat blade stirrers, but the porosity also increases. Flotation of bubble-particle combines during casting of ingot results in higher particle content at the top. Microstructure shows clusters of particles along circular boundaries of thin oxides at the top of the ingot and sometimes at the bottom. This may be a consequence of filling of bubbles to different extents by surrounding liquid puncturing the oxide layer, if necessary, during solidification. When the manner of stirring is changed to 2 minutes of stirring of particles into molten alloy with an intermediate 2-minute period of no stirring before stirring the slurry again for 2 minutes, relatively uniform particle incorporation results along the height of cast ingot compared to that obtained by continuous stirring. This difference in particle distribution may be attributed to flotation of bubble-particle combines to release the particles on the top of the slurry when stirring ceases and its remixing into the slurry when it is stirred again. However, an increase in the intermediate period of no stirring and a higher processing temperature result in enhanced porosity and a more inhomogeneous particle distribution along the height of the ingot.

  19. Studying the adsorption and activation of benzene and chlorobenzene on Ni(12%)/Al2O3 by means of gas chromatography and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Pichugina, D. A.; Lanin, S. N.; Beletskaya, A. V.; Bannykh, A. A.; Peristyi, A. A.; Polyakova, M. V.; Kuz'menko, N. E.

    2012-12-01

    In studying the surface and adsorption properties of Al2O3 and Ni(12%)/Al2O3 with respect to C6H6 and C6H5Cl, it is found that adsorbate-adsorbent interaction is stronger than adsorbate-adsorbate interaction. It is shown that the calculated isosteric heats of adsorption vary in a range of 61 to 45 kJ/mol depending on adsorption magnitude; for Ni(12%)/γ-Al2O3, as in the case of γ-Al2O3, the heat of adsorption of chlorobenzene is higher at low degrees of filling than that of benzene. According to density functional theory quantum-chemical calculations of the structures of complexes (Ni nC6H5Cl) z and (Ni n C6H6) z ( n = 1, 4; z = -1, 0, +1), a nickel atom can penetrate into C6H5Cl along the C-Cl bond. It is concluded that a negative charge on nickel contributes to the efficient activation of the C-Cl bond and to an increase in the rate of desorption of benzene, a key step in the hydrodechlorination of chlorobenzene.

  20. Hg(0) Capture over CoMoS/γ-Al2O3 with MoS2 Nanosheets at Low Temperatures.

    PubMed

    Zhao, Haitao; Yang, Gang; Gao, Xiang; Pang, Cheng Heng; Kingman, Samuel W; Wu, Tao

    2016-01-19

    CoMoS/γ-Al2O3 sorbent was prepared via incipient wetness impregnation (IWI) and sulfur-chemical vapor reaction (S-CVR) methods and tested in terms of its potential for Hg(0) capture. It was observed that the CoMoO/γ-Al2O3 showed a Hg(0) capture efficiency around 75% at a temperature between 175 and 325 °C while CoMoS/γ-Al2O3 achieved almost 100% Hg(0) removal efficiency at 50 °C. The high removal efficiency for CoMoS/γ-Al2O3 remained unchanged for 2000 min in the test. Its theoretical capacity for Hg(0) capture was found to be 18.95 mg/g based on the Elovich model. The ability of this material for Hg(0) capture is atributed to the MoS2 nanosheets coated on surface of the maro- and meso-pores of γ-Al2O3. These MoS2 are two-dimensional transition-metal dichalcogenide (2D TMDC) assembled with unsulfided cobalt atoms at the edges. It is believed that these MoS2 nanosheets provided dense active sites for Hg(0) capture. The removal of Hg(0) at low temperatures was achieved via the combination of Hg(0) with the chalcogen (S) atoms on the entire basal plane of the MoS2 nanosheets with coordinative unsaturated sites (CUS) to form a stable compound, HgS. PMID:26690488

  1. Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface.

    PubMed

    Tan, Xiaoli; Fang, Ming; Ren, Xuemei; Mei, Huiyang; Shao, Dadong; Wang, Xiangke

    2014-11-18

    The formation of mixed metal precipitates has been identified as a significant mechanism for the immobilization and elimination of heavy metal ions. Silicate is present in natural systems ubiquitously, which may interfere with metal uptake on the mineral surface and thereby influences the solubility of the precipitate. Herein, kinetic sorption and dissolution experiments combined with extended X-ray absorption fine structure spectroscopy (EXAFS) were performed to elucidate the effect of silicate on the formation of Ni precipitates at the γ-Al2O3 surfaces. The uptake of Ni on γ-Al2O3 decreased with increasing amounts of silicate coated onto the γ-Al2O3 surface. Results of EXAFS analyses suggested the formation of Ni-Al layered double hydroxide (LDH) phases. The surface coating of silicate on γ-Al2O3 reduced Al release and finally resulted in a high Ni:Al ratio due to a lower extent of Al substitution into the precipitates. The presence of silicate prevented the growth of the precipitates and led to the formation of less stable Ni-Al LDH. The influence of silicate on the precipitate formation provided the evidence for the growth relationship between the precipitate and mineral substrate in the real environment. Increased rates of proton-promoted dissolution of Ni surface precipitates were mainly attributed to higher Ni:Al ratios in Ni-Al LDH precipitates formed in the presence of silicate. PMID:25339547

  2. Stoichiometry of the ALD-Al2O3/4H–SiC interface by synchrotron-based XPS

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Saveda Suvanam, Sethu; Ghadami Yazdi, Milad; Göthelid, Mats; Sultan, Muhammad; Hallén, Anders

    2016-06-01

    The interface of Al2O3 with 4H-SiC is investigated with synchrotron-based high-resolution x-ray photoelectron spectroscopy to clarify the effect of post-dielectric deposition annealing processes (rapid thermal annealing (RTA) and furnace annealing (FA)) involved in device fabrication. Our results show that post-deposition annealing of Al2O3/4H-SiC up to 1100 °C forms a thin interfacial layer of SiO2 between Al2O3 and SiC, which possibly improves the dielectric properties of the system by reducing oxide charges and near-interface traps. Moreover, the formation of SiO2 at the interface gives additional band offset to the dielectric system. We have also observed that the RTA and FA processes have similar results at a high temperature of 1100 °C. Therefore, we propose that high-temperature post-oxide (Al2O3) deposition annealing of up to 1100 °C may be used in device processing, which can improve overall dielectric properties and consequently the device performance.

  3. Enhanced electrochemical properties of Al2O3-coated LiV3O8 cathode materials for high-power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, S.; Tu, J. P.; Jian, X. M.; Lu, Y.; Shi, S. J.; Zhao, X. Y.; Wang, T. Q.; Wang, X. L.; Gu, C. D.

    2014-01-01

    Surface modified-LiV3O8 cathode materials with Al2O3 are successfully synthesized via a facile thermolysis process. The 0.5 wt.% Al2O3-coated LiV3O8 exhibits an enhanced cyclic stability at various charge-discharge current densities. At a current density of 100 mA g-1, it delivers an initial specific discharge capacity of 283.1 mAh g-1 between 2.0 and 4.0 V. Moreover, high capacities of 139.4 and 118.5 mAh g-1 are obtained at the 100th cycle at current densities of 2000 and 3000 mA g-1, respectively. The improved electrochemical performance is attributed to the Al2O3 coating, which can hinder the irreversible phase transformation and act as a protective layer to prevent the active material from direct contact with electrolyte. Furthermore, the formation of a Li-V-Al-O solid solution at the LiV3O8/Al2O3 interface provides a fast Li+ diffusion path which is of benefit to the electrochemical behaviors.

  4. Evaluation of Misfit Relaxation in α-Ga2O3 Epitaxial Growth on α-Al2O3 Substrate

    NASA Astrophysics Data System (ADS)

    Kaneko, Kentaro; Kawanowa, Hitoshi; Ito, Hiroshi; Fujita, Shizuo

    2012-02-01

    Corundum-structured α-Ga2O3 epitaxial thin films were grown on c-plane α-Al2O3 (sapphire) substrates by a mist chemical vapor deposition method. To reveal the defect structures, the α-Ga2O3 film was observed by high-resolution transmission electron microscopy (TEM). We found that the α-Ga2O3 thin film was in-plane compressive stressed from the α-Al2O3 substrate. Although misfit dislocations were periodically generated at the α-Ga2O3/α-Al2O3 interface owing to the large lattice mismatches between α-Ga2O3 and α-Al2O3, 3.54% (c-axis) and 4.81% (a-axis), most of the misfit dislocations did not thread through the layer. An extra-half plane was {bar 2110} consisting only of Ga. Screw dislocations were not confirmed, i.e., the density was under 107 cm-2. The threading dislocation density was 7 ×1010 cm-2.

  5. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  6. Sputtering-deposition of Ru nanoparticles onto Al2O3 modified with imidazolium ionic liquids: synthesis, characterisation and catalysis.

    PubMed

    Foppa, Lucas; Luza, Leandro; Gual, Aitor; Weibel, Daniel E; Eberhardt, Dario; Teixeira, Sérgio R; Dupont, Jairton

    2015-02-14

    Well-distributed Ru nanoparticles (Ru-NPs) were produced over Al(2)O(3) supports modified with covalently anchored imidazolium ionic liquids (ILs) containing different anions and cation lateral alkyl chain lengths by simple sputtering from a Ru foil. These Ru-NPs were active catalysts for the hydrogenation of benzene. Furthermore, depending on the nature of the IL used to modify the support (hydrophilic or hydrophobic), different catalytic behaviours were observed. Turnover numbers (TON) as high as 27 000 with a turnover frequency (TOF) of 2.73 s(-1) were achieved with Ru-NPs of 6.4 nm supported in Al(2)O(3) modified with an IL containing the N(SO(2)CF(3))2(-) anion, whereas higher initial cyclohexene selectivities (ca. 20% at 1% benzene conversion) were attained for Ru-NPs of 6.6 nm in the case where Cl(-) and BF(4)(-) anions were used. Such observations strongly suggest that thin layers of ILs surround the NP surface, modifying the reactivity of these catalytic systems. These findings open a new window of opportunity in the development of size-controlled Ru-NPs with tuneable reactivity. PMID:25531917

  7. Atomic layer deposited aluminum oxide and Parylene C bi-layer encapsulation for biomedical implantable devices

    NASA Astrophysics Data System (ADS)

    Xie, Xianzong

    Biomedical implantable devices have been developed for both research and clinical applications, to stimulate and record physiological signals in vivo. Chronic use of biomedical devices with thin-film-based encapsulation in large scale is impeded by their lack of long-term functionality and stability. Biostable, biocompatible, conformal, and electrically insulating coatings that sustain chronic implantation are essential for chip-scale implantable electronic systems. Even though many materials have been studied to for this purpose, to date, no encapsulation method has been thoroughly characterized or qualified as a broadly applicable long-term hermetic encapsulation for biomedical implantable devices. In this work, atomic layer deposited Al2O3 and Parylene C bi-layer was investigated as encapsulation for biomedical devices. The combination of ALD Al2O3 and CVD Parylene C encapsulation extended the lifetime of coated interdigitated electrodes (IDEs) to up to 72 months (to date) with low leakage current of ~ 15 pA. The long lifetime was achieved by significantly reducing moisture permeation due to the ALD Al2O3 layer. Moreover, the bi-layer encapsulation separates the permeated moisture (mostly at the Al2O3 and Parylene interface) from the surface contaminants (mostly at the device and Al 2O3 interface), preventing the formation of localized electrolyte through condensation. Al2O3 works as an inner moisture barrier and Parylene works as an external ion barrier, preventing contact of Al2O3 with liquid water, and slowing the kinetics of alumina corrosion. Selective removal of encapsulation materials is required to expose the active sites for interacting with physiological environment. A self-aligned mask process with three steps was developed to expose active sites, composed of laser ablation, oxygen plasma etching, and BOE etching. Al2O 3 layer was found to prevent the formation of microcracks in the iridium oxide film during laser ablation. Bi-layer encapsulated

  8. Influence of Al2O3/YSZ micro-laminated coatings on high temperature oxidation and spallation resistance of MCrAlY alloys

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren

    2013-03-01

    Al2O3/YSZ micro-laminated coatings with different layers were prepared on MCrAlY alloys by magnetron sputtering and characterized by high-resolution field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Results indicated that the laminated structures of Al2O3 and YSZ layers were observed with compact microstructure and the thickness at sub-micron level each layer. High-temperature cyclic oxidation test at 1000°C in air was performed to investigate the oxidation and spallation resistance of the coatings on MCrAlY substrates. Result shows that the coatings exhibit more excellent oxidation and spallation resistance with the increase of the layers, which can be attributed to the increase of stress tolerance and fracture toughness in the laminated coatings by the thinner layers and crack deflection toughening.

  9. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    PubMed Central

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  10. The effect of thermal treatment induced inter-diffusion at the interfaces on the charge trapping performance of HfO2/Al2O3 nanolaminate-based memory devices

    NASA Astrophysics Data System (ADS)

    Lan, Xuexin; Ou, Xin; Cao, Yanqiang; Tang, Shiyu; Gong, Changjie; Xu, Bo; Xia, Yidong; Yin, Jiang; Li, Aidong; Yan, Feng; Liu, Zhiguo

    2013-07-01

    The charge trapping memory devices based on different HfO2/Al2O3 nanolaminated charge trapping layers were prepared and investigated. The memory device with 6 interfaces HfO2/Al2O3 shows a memory window of 4.7 V in its capacitance-voltage curve and a better retention property. It was suggested that the thermal treatment would reduce the defects inside the bulk HfO2, but cause an inter-diffusion at the interface HfO2/Al2O3, which could create additional defects at HfO2/Al2O3 interface. Increasing the number of the interfaces could enhance the charge trapping capability of the devices. The band alignments were established to explain the variation trend of the memory window and the retention characteristics of the memory devices with different laminated structures.

  11. CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity

    SciTech Connect

    Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

    2013-11-01

    The catalytic performance of a series of Ru/Al2O3 catalysts with Ru content in the 0.1-5% range was examined in the reduction of CO2 with H2. At low Ru loadings (≤0.5 %) where the active metal phase is highly dispersed (mostly atomically) on the alumina support CO is formed with high selectivity. With increasing metal loading the selectivity toward CH4 formation increases, while that for CO production decreases. In the 0.1% Ru/Al2O3 catalyst Ru is mostly present in atomic dispersion as STEM images obtained from the fresh sample prior to catalytic testing reveal. STEM images recorded form this same sample following temperature programmed reaction test clearly show the agglomeration of small metal particles (and atoms) into 3D clusters. The clustering of the highly dispersed metal phase is responsible for the observed dramatic selectivity change during elevated temperature tests: dramatic decrease in CO, and large increase in CH4 selectivity. Apparent activation energies, estimated from the slopes of Arrhenius plots, of 82 kJ/mol and 62 kJ/mol for CO and CH4 formation were determined, respectively, regardless of Ru loading. These results suggest that the formation of CO and CH4 follow different reaction pathways, or proceed on active centers of different nature. Reactions with CO2/H2 and CO/H2 mixtures (under otherwise identical reaction conditions) reveal that the onset temperature of CO2 reduction is about 150 ºC lower than of CO reduction. We thank Dr. Feng Gao for carrying out the H2 chemisorption measurements on all the Ru/Al2O3 catalysts discussed in this work. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project, while the TEM work was supported by the Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US Department of Energy by Battelle under contract number DE-AC05-76RL01830. JHK also acknowledges the support of this work

  12. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  13. Oxygen defects in amorphous Al2O3: A hybrid functional study

    NASA Astrophysics Data System (ADS)

    Guo, Zhendong; Ambrosio, Francesco; Pasquarello, Alfredo

    2016-08-01

    The electronic properties of the oxygen vacancy and interstitial in amorphous Al2O3 are studied via ab initio molecular dynamics simulations and hybrid functional calculations. Our results indicate that these defects do not occur in amorphous Al2O3, due to structural rearrangements which assimilate the defect structure and cause a delocalization of the associated defect levels. The imbalance of oxygen leads to a nonstoichiometric compound in which the oxygen occurs in the form of O2- ions. Intrinsic oxygen defects are found to be unable to trap excess electrons. For low Fermi energies, the formation of peroxy linkages is found to be favored leading to the capture of holes. The relative +2/0 defect levels occur at 2.5 eV from the valence band.

  14. PTOSL response of commercial Al2O3:C detectors to ultraviolet radiation.

    PubMed

    Gronchi, Claudia C; Caldas, Linda V E

    2013-04-01

    The photo-transferred optically stimulated luminescence (PTOSL) technique using Al2O3:C detectors has been suggested as a good option for ultraviolet (UV) radiation dosimetry. The objective of this work was to study the PTOSL response of Al2O3:C InLight detectors and the OSL microStar reader of Landauer. The parameters such as radiation pre-dose, optical treatment time and UV illumination time were determined. The detectors presented a satisfactory stimulus of PTOSL signals when they were subjected to a preconditioning procedure with gamma radiation (1 Gy pre-dose), 30 min of optical treatment (to empty the shallow traps) and 30 min of UV illumination from an artificial source. PMID:22887115

  15. Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Lee, Bongmook; Misra, Veena

    2015-10-01

    In this work, a study has been performed to understand the gradual reset in Al2O3 resistive random-access memory (RRAM). Concentration of vacancies created during the forming or set operation is found to play a major role in the reset mechanism. The reset was observed to be gradual when a significantly higher number of vacancies are created in the dielectric during the set event. The vacancy concentration inside the dielectric was increased using a multi-step forming method which resulted in a diffusion-dominated gradual filament dissolution during the reset in Al2O3 RRAM. The gradual dissolution of the filament allows one to control the conductance of the dielectric during the reset. RRAM devices with gradual reset show excellent endurance and retention for multi-bit storage. Finally, the conductance modulation characteristics realizing synaptic learning are also confirmed in the RRAM.

  16. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  17. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates.

    PubMed

    Shinsho, Kiyomitsu; Kawaji, Yasuyuki; Yanagisawa, Shin; Otsubo, Keisuke; Koba, Yusuke; Wakabayashi, Genichiro; Matsumoto, Kazuki; Ushiba, Hiroaki

    2016-05-01

    This research demonstrated that commercially available alumina is well-suited for use in large area X-ray detectors. We discovered a new radiation imaging device that has a high spatial resolution, high sensitivity, wide dynamic range, large imaging area, repeatable results, and low operating costs. The high thermoluminescent (TL) properties of Al2O3 ceramic plates make them useful for X-ray imaging devices. PMID:26972627

  18. Charge injection from a surface depletion region—The Al 2O 3-silicon system

    NASA Astrophysics Data System (ADS)

    Kolk, J.; Heasell, E. L.

    1980-03-01

    Electron injection from a surface depletion region, over the surface barrier at an Al 2O 3-silicon interface is studied. The current passing over the barrier is measured by observing the rate of flat-band voltage shift as charge is trapped in the oxide. The data obtained is compared with the predictions of present models for charge injection. It is found that the so-called 'lucky-electron' model gives the most generally satisfactory agreement with the observations.

  19. Properties of the surface of ceramic formed under laser irradiation of Al2O3-TiO2 compacts

    NASA Astrophysics Data System (ADS)

    Márquez Aguilar, P. A.; Vlasova, M.; Escobar Martínez, A.; Tomila, T.; Stetsenko, V.

    2014-04-01

    The phase formation in the laser irradiation area from xAl2O3-yTiO2 compacts and the properties of the surface layer have been investigated by the XRD, IR, and SEM methods. Main phases precipitating from eutectic melt are tialite, corundum, and rutile. A high temperature on the surface of specimens leads to the development of dissociation processes of these compounds and molecules of the gaseous medium. As dissociation products fly apart and pass through different temperature zone, there are formed different metal oxides, metal hydroxides, and thermolysis products. When these different oxides are deposited on the surface of the ceramic, they form layers with different adhesion degrees.

  20. Microstructure and High-Temperature Mechanical Properties of ZrO2-Al2O3-SiC Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Ping; Ouyang, Jia-Hu; Wang, Yu-Jin; Liu, Zhan-Guo; Wang, Ya-Ming

    2015-09-01

    In the present work, ZrO2-Al2O3 ceramics incorporated with and without β-SiC were prepared by hot pressing. ZrO2-Al2O3 ceramic powder used in this study is a mixture of 71 vol.% YSZ (3 mol.% Y2O3 partially stabilized zirconia) and 29 vol.% α-Al2O3. β-SiC powders with different volume fractions are added into the ZrO2-Al2O3 powder to form the composite powder. The microstructure and high-temperature mechanical properties of ZrO2-Al2O3-SiC ceramics were investigated by tailoring the compositions and sintering parameters to optimize the strengthening mechanisms. For a comparative study, the TZ3Y20A powder was also hot-pressed under identical sintering condition to form dense bulk ceramic. ZrO2-Al2O3-SiC ceramics consist mainly of t-ZrO2, α-Al2O3, and β-SiC phases. SiC particles in the ZrO2-Al2O3 ceramic restrain the grain growth of the oxide matrix. The incorporation of SiC into ZrO2-Al2O3 ceramic enhances high-temperature flexural strength at 1273 K. ZrO2-Al2O3 ceramic incorporated with 15 vol.% SiC has a flexural strength of 518 MPa at 1273 K, much higher than that (201 MPa) of unmodified ZrO2-Al2O3 ceramic.

  1. Insight into the effects of different ageing protocols on Rh/Al2O3 catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Baohuai; Ran, Rui; Cao, Yidan; Wu, Xiaodong; Weng, Duan; Fan, Jun; Wu, Xueyuan

    2014-07-01

    In this work, a catalyst of Rh loaded on Al2O3 was prepared by impregnating method with rhodium nitrate aqueous solution as the Rh precursor. The catalyst was aged under different protocols (lean, rich, inert and cyclic) to obtain several aged samples. All the Rh/Al2O3 samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, CO-chemisorption, H2-temperature programmed reduction (H2-TPR), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that a specific ageing treatment could strongly affect the catalytic activity. The N2 aged and the H2 aged samples had a better catalytic activity for CO + NO reaction than the fresh sample while the air aged and the cyclic aged samples exhibited much worse activity. More surface Rh content and better reducibility were obtained in the N2 and the H2 aged samples and the Rh particles existed with an appropriate size, which were all favorable to the catalytic reaction. However, the air and the cyclic ageing protocols induced a strong interaction between Rh species and the Al2O3 support, which resulted in a severe sintering of particles of Rh species and the loss of active sites. The structure evolution scheme of the catalysts aged in different protocols was also established in this paper.

  2. Effect of Hydrogen on Interfacial Structure and Adhesion of Metal/Al_2O_3

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Scheffler, Matthias

    2001-03-01

    Metal/sapphire interfaces have been intensively studying because of their importance in many technological applications. A large work of adhesion was found for the oxygen-terminated Al_2O_3(0001)/metal interfaces. As well known, the clean oxygen-terminated Al_2O3 surface is not stable even under a high oxygen pressure[1]. The understanding of how the oxygen-terminated interfaces can be formed is limited. Using an ab initio full-potential linearized augmented plane wave method, we investigated the effect of hydrogen on the formation of metal/Al_2O_3(0001) interfaces. Our results reveal that hydrogen plays an important role in the formation of the oxygen-terminated interfaces. Hydrogen impurities greatly decrease the work of adhesion. The behavior of hydrogen in deposition process of ultrathin metal films on sapphire substrates and the possible structures of the ultrathin films are discussed also. [1] Xiao-Gang Wang, Anne Chaka, Matthias Scheffler, Phys. Rev. Lett. 84, 3650 (2000).

  3. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  4. Removal of alachlor from water by catalyzed ozonation on Cu/Al2O3 honeycomb

    PubMed Central

    2013-01-01

    Background The herbicide alachlor (2-chloro-2′6′-diethyl-N-methoxymethylacetanilide) has been known as a probable human carcinogen, and the MCL (minimum contamination level) for drinking water has been set at 2 μg L-1. Therefore, the advanced methods for effectively removing it from water are a matter of interest. Catalyzed ozonation is a promising method for refractory organics degradation. Cu/Al2O3 catalyzed ozonation for degrading an endocrine disruptor (alachlor) in water was investigated. Results Experimental results showed that the ozonation of alachlor can be effectively catalyzed and enhanced by Cu/Al2O3-honeycomb. The main intermediate products formed (aliphatic carboxylic acids) were mineralized to a large extent in the catalytic process. Conclusions This study has shown that Cu/Al2O3-honeycomb is a feasible and efficient catalyst in the ozonation of alachlor in water. Less intermediate oxidation product was produced in the catalytic process than in the uncatalytic one. Furthermore, the mineralization of alachlor could be enhanced by increasing the pH of the reaction solution. PMID:23977841

  5. Impact of Al2O3 on the aggregation and deposition of graphene oxide.

    PubMed

    Ren, Xuemei; Li, Jiaxing; Tan, Xiaoli; Shi, Weiqun; Chen, Changlun; Shao, Dadong; Wen, Tao; Wang, Longfei; Zhao, Guixia; Sheng, Guoping; Wang, Xiangke

    2014-05-20

    To assess the environmental behavior and impact of graphene oxide (GO) on living organisms more accurately, the aggregation of GO and its deposition on Al2O3 particles were systematically investigated using batch experiments across a wide range of solution chemistries. The results indicated that the aggregation of GO and its deposition on Al2O3 depended on the solution pH and the types and concentrations of electrolytes. MgCl2 and CaCl2 destabilized GO because of their effective charge screening and neutralization, and the presence of NaH2PO4 and poly(acrylic acid) (PAA) improved the stability of GO with the increase in pH values as a result of electrostatic interactions and steric repulsion. Specifically, the dissolution of Al2O3 contributed to GO aggregation at relatively low pH or high pH values. Results from this study provide critical information for predicting the fate of GO in aquatic-terrestrial transition zones, where aluminum (hydro)oxides are present. PMID:24754235

  6. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  7. Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization.

    PubMed

    Nine, M J; Batmunkh, Munkhbayar; Kim, Jun-Hyo; Chung, Han-Shik; Jeong, Hyo-Min

    2012-06-01

    Synthesis of water based Al2O3-MWCNTs hybrid nanofluids have been investigated and characterized. Al2O3-MWCNTs nanoparticles in weight proportion of 97.5:2.5 to 90:10 have been studied over 1% to 6% weight concentration. Dispersion quality of nanofluids is assured by additional synthesis process like acids treatment and grinding of MWCNTs by planetary ball mill. The effects of ground and non-ground MWCNTs over dispersion quality and thermal conductivity have been investigated. Sedimentation effect of hybrid nanofluids with time length has been studied by sample visualization and TEM micrographs. The augmentative absorbance and thermal conductivity of hybrid nanofluids have been compared with pure Al2O3/water nanofluids. The overall result shows that the enhancement in normalized thermal conductivity of hybrid nanofluids is still not so sharp though the absorbance and other qualities show much better comparing mono type nanofluids. Hybrid nanofluids with spherical particles show a smaller increase in thermal conductivity comparing cylindrical shape particles. PMID:22905499

  8. Electrical characteristics of SrTiO3/Al2O3 laminated film capacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Yao, Manwen; Chen, Jianwen; Xu, Kaien; Yao, Xi

    2016-07-01

    The electrical characteristics of SrTiO3/Al2O3 (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO3 is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO3/Al2O3 laminated films can effectively suppress the demerits of pure SrTiO3 films under low electric field, but the leakage current value reaches to 0.1 A/cm2 at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO3/Al2O3 laminated films. Compared to laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10-4 A/cm2) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.

  9. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  10. A short-time fading study of Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nascimento, L. F.; Vanhavere, F.; Silva, E. H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al2O3:C by measuring optically stimulated luminescence (OSL) signals (Total OSL: TOSL, and Peak OSL: POSL) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al2O3:C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al2O3:C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (TOSL and POSL) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both TOSL and POSL from droplets and Luxel™.

  11. The electrical conductivity of Al2O3 under shock-compression

    PubMed Central

    Liu, Hanyu; Tse, John S.; Nellis, W. J.

    2015-01-01

    Sapphire (Al2O3) crystals are used below 100 GPa as anvils and windows in dynamic-compression experiments because of their transparency and high density. Above 100 GPa shock pressures, sapphire becomes opaque and electrically conducting because of shock-induced defects. Such effects prevent temperature and dc conductivity measurements of materials compressed quasi-isentropically. Opacities and electrical conductivities at ~100 GPa are non-equilibrium, rather than thermodynamic parameters. We have performed electronic structure calculations as a guide in predicting and interpreting shock experiments and possibly to discover a window up to ~200 GPa. Our calculations indicate shocked sapphire does not metallize by band overlap at ~300 GPa, as suggested previously by measured non-equilibrium data. Shock-compressed Al2O3 melts to a metallic liquid at ~500 GPa and 10,000 K and its conductivity increases rapidly to ~2000 Ω−1cm−1 at ~900 GPa. At these high shock temperatures and pressures sapphire is in thermal equilibrium. Calculated conductivity of Al2O3 is similar to those measured for metallic fluid H, N, O, Rb, and Cs. Despite different materials, pressures and temperatures, and compression techniques, both experimental and theoretical, conductivities of all these poor metals reach a common end state typical of strong-scattering disordered materials. PMID:26239369

  12. Oxidation behavior of single-crystal Al2O3-fiber-reinforced Ni3Al-based composites

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, S.; Rhee, W. H.; Sahin, O.; Margolin, H.

    1994-07-01

    A series of single-crystal Al2O3-fiber-reinforced Ni3Al-based intermetallic matrix composites were fabricated by pressure casting. The matrices employed were binary Ni3Al, Ni3Al-0.5 at. pct Cr, and Ni3Al-0.34 at. pct Zr. The development of microstructure upon oxidation in air at either 1100 °C or 1200 °C was investigated by optical, scanning, and transmission electron microscopy. In air-oxidized binary Ni3Al, some of the fibers were fully or partially covered with a layer of oxide. A weak fiber/matrix bond in this system, which led to fiber debonding during composite processing, is believed to be responsible for the ingress of O into the composite and oxidation of the matrix in the debonded regions at the fiber/matrix interface. Addition of Cr to Ni3Al resulted in an almost threefold increase in fiber/matrix bond strength. No oxidation of the interface was observed. A thick layer of oxide was formed around all the fibers when the composite was thermally cycled prior to isothermal annealing. Addition of Zr to Ni3Al resulted in the formation of a layer of ZrO2 on the surface of the fibers during composite processing. The ZrO2 layer provided a fast path for the diffusion of O, which led to the formation of a rootlike oxide structure around the fibers. The rootlike structure consisted of a network of Al2O3-covered ZrO2.

  13. Fixed charge and trap states of in situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kim, J.; Yeluri, R.; Lal, S.; Li, H.; Lu, J.; Keller, S.; Mazumder, B.; Speck, J. S.; Mishra, U. K.

    2013-10-01

    In situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors (MOSCAPs) were grown by metalorganic chemical vapor deposition and measured using capacitance-voltage techniques. The flat band voltage and hysteresis had a linear relationship with Al2O3 thickness, which indicates the presence of fixed charge and trap states that are located at or near the Al2O3/GaN interface. In addition, slow and fast near-interface states are distinguished according to their different electron emission characteristics. Atom probe tomography was used to characterize the in situ MOSCAPs to provide information on the Al/O stoichiometric ratios, Al2O3/GaN interface abruptnesses, and C concentrations. The in situ MOSCAPs with Al2O3 deposited at 700 °C exhibited an order of magnitude higher fast near-interface states density but a lower slow near-interface states density compared with those with Al2O3 deposited at 900 and 1000 °C. Furthermore, the 700 °C MOSCAPs exhibited a net negative fixed near-interface charge, whereas the 900 and 1000 °C MOSCAPs exhibited net positive fixed near-interface charges. The possible origins of various fixed charge and trap states are discussed in accordance with the experimental data and recently reported first-principals calculations.

  14. Characteristics of the dynamics of breakdown filaments in Al2O3/InGaAs stacks

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Shekhter, P.; Cohen Weinfeld, K.; Eizenberg, M.

    2015-09-01

    In this paper, the Al2O3/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.

  15. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  16. Colony structure in Ce-doped Al2O3/YAG eutectic systems grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Yamada, Seiya; Yoshimura, Masafumi; Sakata, Shin-ichi; Taishi, Toshinori; Hoshikawa, Keigo

    2016-08-01

    We investigated the influence of growth rate and Ce concentration on colony structure variation in Al2O3/YAG:Ce eutectic systems. The distance between boundary zones in the colony structure decreased with increases in either growth rate or Ce concentration. The eutectic spacing in the coarse microstructure in the boundary zone decreased with increasing growth rate but increased with increasing Ce concentration. We conclude that the colony structure is formed by cellular growth driven by constitutional supercooling with an interface instability due to Ce atom accumulation, so that the distance between boundary zones depends on both the growth rate and Ce concentration, and the coarse microstructure in the boundary zone depends on the solidification rate perpendicular to the growth interface at the cell bottom of the microscopic growth interface shape in the cellular growth.

  17. Cu/Ba/bauxite: an Inexpensive and Efficient Alternative for Pt/Ba/Al2O3 in NOx Removal

    PubMed Central

    Wang, Xiuyun; Chen, Zhilin; Luo, Yongjin; Jiang, Lilong; Wang, Ruihu

    2013-01-01

    Cu/Ba/bauxite possesses superior NOx storage and reduction (NSR) performances, high thermal stability, strong resistance against SO2 poisoning and outstanding regeneration ability in comparison with Pt/Ba/Al2O3. It can serve as a cheap and promising alternative for traditional Pt/Ba/Al2O3 in NOx removal from lean-burn engines. PMID:23536149

  18. Effect of B content on structure and magnetic properties of FeCoB-Al2O3 nanogranular films

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Zhang, Xudong; Li, Jiangong; Tian, Qiang; Kou, Xinli

    2011-07-01

    The effect of B content on the structure, soft magnetic properties, and high frequency characteristics of as-deposited FeCoB-Al2O3 nanogranular films fabricated by radio frequency magnetron co-sputtering was studied in this work. The introduction of B into the FeCo-Al2O3 films leads to a refinement of granular microstructure. The FeCoB-Al2O3 nanogranular films consist of the FeCoB nanoparticles uniformly embedded in the amorphous Al2O3 matrix. An addition of a small amount of B into the FeCo-Al2O3 films can markedly decrease the coercivity of the films. The excellent magnetic softness with a low coercivity of about 0.08 kA/m was achieved in the FeCoB-Al2O3 films. The Henkel plots confirm the existence of intergranular exchange coupling in the FeCoB-Al2O3 films. The FeCoB-Al2O3 films with low B content exhibit a high permeability over 200 at low frequency and a high-resonance frequency of 3.2 GHz, implying a high cut-off frequency for high frequency applications.

  19. Single-particle blocking and collective magnetic states in discontinuous CoFe/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Bedanta, S.; Petracic, O.; Chen, X.; Rhensius, J.; Bedanta, S.; Kentzinger, E.; Rücker, U.; Brückel, T.; Doran, A.; Scholl, A.; Cardoso, S.; Freitas, P. P.; Kleemann, W.

    2010-12-01

    Discontinuous metal-insulator multilayers (DMIMs) of [CoFe(tn)/Al2O3]m containing soft ferromagnetic (FM) Co80Fe20 nanoparticles embedded discontinuously in a diamagnetic insulating Al2O3 matrix are ideal systems to study interparticle interaction effects. Here the CoFe nanoparticles are treated as superspins with random size, position and anisotropy. At low particle density, namely nominal layer thickness tn = 0.5 nm, single-particle blocking phenomena are observed due to the absence of large enough interparticle interactions. However at 0.5 nm < tn < 1.1 nm, the particles encounter strong interactions which give rise to a superspin glass (SSG) phase. The SSG phase has been characterized by memory effect, ageing, dynamic scaling, etc. With further increase in particle concentration (1.1 nm < tn < 1.4 nm) and, hence, smaller interparticle distances, strong interactions lead to a FM-like state which is called superferromagnetic (SFM). The SFM state has been characterized by several techniques, e.g. dynamic hysteresis, Cole-Cole plots extracted from ac susceptibility, polarized neutron reflectometry, etc. Moreover, the SFM domains could be imaged by x-ray photoemission electron microscopy and magneto-optic Kerr effect microscopy. At tn > 1.4 nm physical percolation occurs between the particles and the samples are no longer discontinuous and then termed as metal insulating multilayers. Competition between long- and short-ranged dipolar interactions leads to an oscillating magnetization depth profile from CoFe layer to CoFe layer with an incommensurate periodicity.

  20. Nanostructured Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel thin films for integrated optics

    NASA Astrophysics Data System (ADS)

    Predoana, Luminita; Preda, Silviu; Anastasescu, Mihai; Stoica, Mihai; Voicescu, Mariana; Munteanu, Cornel; Tomescu, Roxana; Cristea, Dana

    2015-08-01

    The nanostructured multilayer silica-titania or silica-titania-alumina films doped with Er3+ were prepared by sol-gel method. The sol-gel method is a flexible and convenient way to prepare oxide films on several types of substrates, and for this reason it was extensively investigated for optical waveguides fabrication. The selected molar composition was 90%SiO2-10%TiO2 or 85%SiO2-10%TiO2-5% Al2O3 and 0.5% Er2O3. The films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Spectroellipsometry (SE), as well as by Atomic Force Microscopy (AFM) and photoluminescence (PL). The films deposited on Si/SiO2 substrate by dip-coating or spin-coating, followed by annealing at 900 °C, presented homogenous and continuous surface and good adherence to the substrate. Differences were noticed in the structure and properties of the prepared films, depending on the composition and the number of deposited layers. Channel optical waveguides were obtained by patterning Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel layers deposited on oxidized silicon wafers.