Science.gov

Sample records for al2o3 sio2 tio2

  1. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.

    PubMed

    Bayat, Ali Esfandyari; Junin, Radzuan; Shamshirband, Shahaboddin; Chong, Wen Tong

    2015-09-16

    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness.

  2. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks

    PubMed Central

    Esfandyari Bayat, Ali; Junin, Radzuan; Shamshirband, Shahaboddin; Tong Chong, Wen

    2015-01-01

    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness. PMID:26373598

  3. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2016-08-01

    The focus of this investigation is to evaluate the phytotoxicity of selected metal oxide nanoparticles and microparticles as a function of maize seed germination and root elongation under different growth conditions (Petri plate, cotton and soil). The results of seed germination and root elongation experiments reveal that all the growth conditions show almost similar results. Alumina (Al2O3) and titania (TiO2) nanoparticles significantly reduce the germination percentage, whereas silica (SiO2) nanoparticles and microparticles enhance the same. The results of nanoparticles and microparticles of zirconia (ZrO2) are found to be same as those of controls. Root elongation is enhanced by SiO2 nanoparticles and microparticles treatment, whereas inhibition is observed with Al2O3 and TiO2 nanoparticles and microparticles. The X-ray fluorescence spectrometry data of the treated and control seed samples show that seeds uptake SiO2 particles to a greater extent followed by TiO2, Al2O3 and ZrO2. In addition, the uptake of nanoparticles is found to be greater than that of microparticles. Thus, the tested metal oxides penetrated seeds at the nanoscale as compared with the microscale. This study clarifies phytotoxicity of nanoparticles treated in different growth substrates and highlights the impact of nanoparticles on environment and agricultural systems. PMID:27463785

  4. Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks.

    PubMed

    Bayat, Ali Esfandyari; Junin, Radzuan; Shamshirband, Shahaboddin; Chong, Wen Tong

    2015-01-01

    Engineered aluminum oxide (Al2O3), titanium dioxide (TiO2), and silicon dioxide (SiO2) nanoparticles (NPs) are utilized in a broad range of applications; causing noticeable quantities of these materials to be released into the environment. Issues of how and where these particles are distributed into the subsurface aquatic environment remain as major challenges for those in environmental engineering. In this study, transport and retention of Al2O3, TiO2, and SiO2 NPs through various saturated porous media were investigated. Vertical columns were packed with quartz-sand, limestone, and dolomite grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolet-visible spectrophotometer. It was found that Al2O3 and TiO2 NPs are easily transported through limestone and dolomite porous media whereas NPs recoveries were achieved two times higher than those found in the quartz-sand. The highest and lowest SiO2-NPs recoveries were also achieved from the quartz-sand and limestone columns, respectively. The experimental results closely replicated the general trends predicted by the filtration and DLVO calculations. Overall, NPs mobility through a porous medium was found to be strongly dependent on NP surface charge, NP suspension stability against deposition, and porous medium surface charge and roughness. PMID:26373598

  5. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2016-08-01

    The focus of this investigation is to evaluate the phytotoxicity of selected metal oxide nanoparticles and microparticles as a function of maize seed germination and root elongation under different growth conditions (Petri plate, cotton and soil). The results of seed germination and root elongation experiments reveal that all the growth conditions show almost similar results. Alumina (Al2O3) and titania (TiO2) nanoparticles significantly reduce the germination percentage, whereas silica (SiO2) nanoparticles and microparticles enhance the same. The results of nanoparticles and microparticles of zirconia (ZrO2) are found to be same as those of controls. Root elongation is enhanced by SiO2 nanoparticles and microparticles treatment, whereas inhibition is observed with Al2O3 and TiO2 nanoparticles and microparticles. The X-ray fluorescence spectrometry data of the treated and control seed samples show that seeds uptake SiO2 particles to a greater extent followed by TiO2, Al2O3 and ZrO2. In addition, the uptake of nanoparticles is found to be greater than that of microparticles. Thus, the tested metal oxides penetrated seeds at the nanoscale as compared with the microscale. This study clarifies phytotoxicity of nanoparticles treated in different growth substrates and highlights the impact of nanoparticles on environment and agricultural systems.

  6. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3.

    PubMed

    Zhao, Wenru; Tang, Yu; Wan, Yaping; Li, Liang; Yao, Si; Li, Xiaowei; Gu, Jinlou; Li, Yongsheng; Shi, Jianlin

    2014-08-15

    A series of the CeO2-based catalysts loaded on TiO2, TiO2-SiO2, TiO2-Al2O3, and TiO2-SiO2-Al2O3 supports were prepared by incipient impregnation method for the selective catalytic reduction (SCR) of NO by NH3 in the presence of oxygen. The SCR activities of the catalysts with different supports increases in the order of Ce/TiO2 < Ce/TiO2-20SiO2 ≈ Ce/TiO2-3.5Al2O3 < Ce/TiO2-20SiO2-3.5Al2O3. The Ce/TiO2-20SiO2-3.5Al2O3 catalyst showed 100% NO conversion in the temperature range of 250-425°C and 100% N2 selectivity in the whole temperature range. The catalytic activity of Ce/TiO2-20SiO2-3.5Al2O3 exhibited good stability and strong resistance to SO2 and H2O poisoning. The co-introduction of SiO2 and Al2O3 into TiO2 could increase the amount of chemisorbed oxygen and Lewis acid sites on the surface of catalyst, which should be responsible for the excellent SCR activity.

  7. Synthesis of Copper-Based Nanostructured Catalysts on SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 Supports for NO Reduction.

    PubMed

    Namkhang, Pornpan; Kongkachuichay, Paisan

    2015-07-01

    The selective catalytic reduction of NO over a series of Cu-based catalysts supported on modified silica including SiO2-Al2O3, SiO2-TiO2, and SiO2-ZrO2 prepared via a sol-gel process and a flame spray pyrolysis (FSP) was studied. The prepared catalysts were characterized by means of TEM, XRD, XRF, TPR, and nitrogen physisorption measurement techniques, to determine particle diameter, morphology, crystallinity, phase composition, copper reducibility, surface area, and pore size of catalysts. The particles obtained from sol-gel method were almost spherical while the particles obtained from the FSP were clearly spherical and non-porous nanosized particles. The effects of Si:Al, Si:Ti, and Si:Zr molar ratio of precursor were identified as the domain for different crystalline phase of materials. It was clearly seen that a high SiO2 content inhibited the crystallization of materials. The BET surface area of catalysts obtained from sol-gel method was higher than that from the FSP and it shows that surface area increased with increasing SiO2 molar ratio due to high surface area from SiO2. The catalyst performances were tested for the selective catalytic reduction of NO with H2. It was found that the catalyst prepared over 7 wt% Cu on Si02-Al2O3 support was the most active compared with the others which converted NO as more than 70%. Moreover, the excess copper decreased the performance of NO reduction, due to the formation of CuO agglomeration covered on the porous silica as well as the alumina surface, preventing the direct contact of CO2 and AL2O3. PMID:26373151

  8. Ultrathin-layer chromatography on SiO(2), Al(2)O(3), TiO(2), and ZrO(2) nanostructured thin films.

    PubMed

    Wannenmacher, Julia; Jim, Steven R; Taschuk, Michael T; Brett, Michael J; Morlock, Gertrud E

    2013-11-29

    We explored four different inorganic oxides and determined their merits in miniaturized planar chromatography. Despite progression of chromatographic techniques over several decades, such alternatives to traditional planar silica gel stationary phases have not been fully evaluated. Glancing angle deposition(GLAD) provided an excellent platform for engineering nanostructured thin films in these materials for ultrathin-layer chromatography (UTLC). Separations of carotenoids and synthetic food dyes were used to investigate the attributes of SiO(2), Al(2)O(3), TiO(2), and ZrO(2)GLAD UTLC media. These anisotropic high surface area thin films possessed similar channel-like features but different chromatographic properties.TiO(2)and ZrO(2)media were especially interesting since analyte retention could be modified through sim-ple oxidation heat treatments and UV irradiation. Generally, oxidation reduced analyte retention while UV exposure increased retention. Changes in retention factor as large as ΔhRF∼ 40 (for Acid Red 14 on titanium oxide) were achieved. Food dye mixtures were applied using consumer inkjet printers as per the Office Chromatography concept and separation performance was quantified using advanced video instrumentation designed for miniaturized plates. Enhanced time-resolved UTLC methods were used to calculate figures of merit from recorded dye separation videos. Small theoretical plate heights (<4 μm)and low limits of detection (<2 ng per zone for the food dye tartrazine) were measured. The combination of engineered GLAD UTLC plates, inkjet application of analyte spots, time-resolved UTLC, and custom analysis algorithms enabled some of the best performance achieved on GLAD UTLC layers. Separations on the inorganic oxide thin films were also successfully hyphenated with electrospray ionization mass spectrometry for the first time. This investigation demonstrates the utility of alternative inorganic oxide GLADUTLC media and probes avenues of expanding

  9. Nature of magnetism in copper-doped oxides: ZrO2, TiO2, MgO, SiO2, Al2O3, and ZnO

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Seehra, M. S.; Zhang, Y.; Wender, I.

    2008-04-01

    The nature of magnetism in 10% Cu-doped ZrO2, TiO2, MgO, SiO2, and Al2O3 is investigated using superconducting quantum interference device magnetometry and electron magnetic resonance (EMR). The doping was done by the incipient wetness impregnation technique. X-ray diffraction studies showed the presence of some CuO notably in TiO2, SiO2, and Al2O3. However, EMR yielded typical Cu2+ spectra in all the samples, resulting from some doping. Magnetic field (H ) and temperature (T) dependences of the magnetization (M) show only paramagnetism in these oxides in contrast to ferromagnetism with Tc=380K observed in Cu /ZnO. Concentrations x of Cu2+ doped into the oxides are determined from the M vs T and M vs H data, showing Cu /ZrO2 with the largest x and hence largest magnetization.

  10. TiO2 effect on crystallization mechanism and physical properties of nano glass-ceramics of MgO-Al2O3-SiO2 glass system.

    PubMed

    Jo, Sinae; Kang, Seunggu

    2013-05-01

    The effect of TiO2 on the degree of crystallization, thermal properties and microstructure for MgO-Al2O3-SiO2 glass-ceramics system containing 0-13 wt% TiO2 and 0-1.5 wt% B2O3 in which the cordierite is the main phase was studied. Using Kissinger and Augis-Bennett equations, the activation energy, 510 kJ/mol and Avrami constant, 1.8 were calculated showing the surface-oriented crystallization would be preferred. The alpha-cordierite phase was generated in the glass-ceramics of containing TiO2 of 0-5.6 wt%. However, for the glass-ceramics of TiO2 content above 7 wt%, an alpha-cordierite disappeared and micro-cordierite phase was formed. The glass-ceramics of no TiO2 added had spherical crystals of few tens nanometer size spread in the matrix. As TiO2 content increased up to 5.6 wt%, a lump of dendrite was formed. In the glass-ceramics containing TiO2 7-13 wt%, in which the main phase is micro-cordierite, the dendrite crystal disappeared and a few hundred nanometer sized crystal particles hold tightly each other were generated. The thermal conductivity of glass-ceramics of both a-cordierite and micro-cordierite base decreased with TiO2 contend added. The thermal conductivity of glass-ceramics of 1.5 wt% TiO2 added was 3.4 W/mK which is 36% higher than that of glass-ceramics of no TiO2 added. The sintering temperature for 1.5 wt% TiO2 glass-ceramics was 965 degrees C which could be concluded as to apply to LTCC process for LED packaging.

  11. Surface characterization of coated powders with XPS: Al2O3-SiO2 coated TiO2 pigments

    NASA Astrophysics Data System (ADS)

    Johansson, Leena-Sisko; Losoi, Tuomo

    A study aimed at finding experimental strategies to characterize surface structures of coated powders with X-ray Photoelectron Spectroscopy (XPS) was reported. As an example, industrial TiO2 pigments, coated with hydrous alumina and silica were studied using different XPS methods. Isoeletric points and x-ray fluorescence analyses were also measured for comparison. The applicability of an XPS analysis method introduced by Tougaard et al was studied. In the method, the depth an element is calculated, analyzing elastic and inelastic photoelectron emissions from a low resolution XPS spectra. Used together with conventional analysis, two independent analyses may be calculated from line low resolution XPS spectrum. For fast and simple analysis, peak to background ratio D for the element can be measured. Good correlation was found between the results from conventional XPS layer calculations and the Tougaard equation. The methods are independent of each other. Together they seemed to give more reliable information on the nonideal powder surfaces studied than either of the methods alone.

  12. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements

    NASA Astrophysics Data System (ADS)

    Spende, Anne; Sobel, Nicolas; Lukas, Manuela; Zierold, Robert; Riedl, Jesse C.; Gura, Leonard; Schubert, Ina; Montero Moreno, Josep M.; Nielsch, Kornelius; Stühn, Bernd; Hess, Christian; Trautmann, Christina; Toimil-Molares, Maria E.

    2015-08-01

    Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 μm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.

  13. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements.

    PubMed

    Spende, Anne; Sobel, Nicolas; Lukas, Manuela; Zierold, Robert; Riedl, Jesse C; Gura, Leonard; Schubert, Ina; Moreno, Josep M Montero; Nielsch, Kornelius; Stühn, Bernd; Hess, Christian; Trautmann, Christina; Toimil-Molares, Maria E

    2015-08-21

    Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 μm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.

  14. Resistive switching characteristics in memristors with Al2O3/TiO2 and TiO2/Al2O3 bilayers

    NASA Astrophysics Data System (ADS)

    Alekseeva, Liudmila; Nabatame, Toshihide; Chikyow, Toyohiro; Petrov, Anatolii

    2016-08-01

    Differences between the resistive switching characteristics of Al2O3/TiO2 and TiO2/Al2O3 bilayer structures, fabricated by atomic layer deposition at 200 °C and post-deposition annealing, were studied in Pt bottom electrode (Pt-BE)/insulator/Pt top electrode (Pt-TE) capacitors. The Pt-BE/Al2O3/TiO2/Pt-TE capacitor exhibits stable bipolar resistive switching with an on-resistance/off-resistance ratio of ∼102 controlled by a small voltage of ±0.8 V. The forming process occurs in two steps of breaking of the Al2O3 layer and transfer of oxygen vacancies (VO) into the TiO2 layer. The capacitor showed poor endurance, particularly in the high-resistance state under vacuum conditions. This indicates that the insulating TiO2 layer without VO is not formed near the Al2O3 layer because oxygen cannot be introduced from the exterior. On the other hand, in the Pt-BE/TiO2/Al2O3/Pt-TE capacitor, multilevel resistive switching with several applied voltage-dependent nonvolatile states is observed. The switching mechanism corresponds to the Al2O3 layer’s trapped VO concentration, which is controlled by varying the applied voltage.

  15. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  16. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-02-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm2 at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10-8 A/cm2 at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  17. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  18. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  19. Different behavior of lithium interaction with SiO2 and Al2 O3

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Ban, Chunmei; Kappes, Branden B.; Xu, Qiang; Engtrakul, Chaiwat; Ciobanu, Cristian V.; Dillon, Anne C.

    2014-03-01

    Lithiation of SiO2 and lithium intercalation in Al2O3 is studied both theoretically and experimentally. Lithium interacts with these two types of oxides in distinctly different behaviors. Reversible insertion/extraction of lithium in SiO2 up to a Li density of 2/3 Li per Si are demonstrated experimentally. Density-functional-theory (DFT) calculation shows that neither free interstitial Li atoms (no reduction) nor formation of a local Li2O cluster plus a Si-Si bond (full reduction) is energetically favorable. However, two Li atoms can effectively break a Si-O bond and be stabilized between the Si and O atoms. Such a defect, representing a state of partial reduction of SiO2, is energetically favorable. DFT simulation shows that intercalation of SiO2 at high Li density through partial reduction results in crystalline compounds LixSiO2 (x <2/3) with tunable band-gaps in the range of 2-3.4 eV. In sharp contrast, Al2O3 is very stable against lithiation through any form of reduction. However, good conductivity of Li ions is shown in porous Al2O3. Work funded by the U.S. DOE under Subcontract No. DE-AC36-08GO28308 through the Office of EERE, the Office of the Vehicle Technologies Program, and by NSF through Award Nos. OCI-1048586 and CMMI-0846858.

  20. Crack-resistant Al2O3-SiO2 glasses.

    PubMed

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  1. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  2. Glass-ceramic nuclear waste forms obtained from SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): study of internal crystallization

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.; Baffier, N.; Mazerolles, L.; Fillet, C.

    2004-10-01

    Glass-ceramic waste forms such as zirconolite (nominally CaZrTi 2O 7) based ones can be envisaged as good candidates for minor actinides or Pu immobilization. Such materials, in which the actinides (or lanthanides used as actinide surrogates) would be preferentially incorporated into zirconolite crystals homogeneously dispersed in a durable glassy matrix, can be prepared by controlled crystallization (nucleation + crystal growth) of parent glasses belonging to the SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 system. In this work we present the effects of the nature of the minor actinide surrogate (Ce, Nd, Eu, Gd, Yb, Th) on the structure, the microstructure and the composition of the zirconolite crystals formed in the bulk of the glass-ceramics. The amount of lanthanides and thorium incorporated into zirconolite crystals is discussed in relation with the capacity of the glass to accommodate these elements and of the crystals to incorporate them in the calcium and zirconium sites of their structure.

  3. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  4. Behavior of Al2O3 and SiO2 with heating in a Cl2 + CO stream

    NASA Technical Reports Server (NTRS)

    Shchetinin, L. K.

    1984-01-01

    Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) were used to study the chlorination of alpha-Al2O3, gamma-Al2O3 and amorphous SiO2 in a Cl + CO stream, for the preparation of AlCl3 and SiCl4. The chlorination starting temperatures were 235 deg for Al2O3 and 680 deg for SiO2. The chlorination of alpha- and gamma-Al2O3 takes place via the formation of AlOCl as an intermediate product, and its subsequent dissociation at 480 to 560 deg, according to 3AlOCl yields AlCl3 + Al2O3. The chlorination activation energies are given for the three oxides.

  5. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  6. Synthesis and study on pore structure of SiO2/Al2O3 aerogel

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Glazkova, E. A.; Svarovskaya, N. V.; Lozhkomoev, A. S.; Lerner, M. I.; Petrova, T. M.; Ponomarev, Y. N.; Solodov, A. A.; Solodov, A. M.

    2015-10-01

    In the current paper, the mixed SiO2/Al2O3 aerogel was synthesized by sol-gel method with subcritical drying and characterized. Tetraethoxysilane was used as a precursor of silicon sol. The flower-shaped alumina suspension was peptized to produce alumina sol. The aerogel texture, morphology, and structure were determined using scanning electron microscopy, X-ray diffraction, low-temperature nitrogen adsorption, and high-resolution spectroscopy. A special attention was paid to the pore structure of aerogel, and aerogel framework was formed by the spherical agglomerates containing spherical particles of silicon oxide and alumina nanopetals. The pore size distribution was bimodal with peaks of 5.5 nm and 77 nm.

  7. Nano porous Al2O3-TiO2 thin film based humidity sensor prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chandrashekara, H. D.; Angadi, Basavaraj; Ravikiran, Y. T.; Poornima, P.; Shashidhar, R.; Murthy, L. C. S.

    2016-05-01

    The nano porous surface structured TiO2 and Al2O3-TiO2 thin films were prepared using spray pyrolysis technique at 350°C. The XRD pattern of Al2O3-TiO2 film shows anatase phase and mixed phase of Al2TiO5. The surface morphology of films show a uniformly distributed nano porous structure. The elemental analysis through EDAX shows good stoichiometry. The sensitivity for humidity sensing were determined for both films of TiO2 and Al2O3-TiO2 and corresponding values are found to be 74.2% and 84.02%, this result reveal that Al2O3-TiO2 films shows higher sensing percent than the TiO2 due to the nano porous surface nature. The Al2O3-TiO2 film shows fast response time and long recovery time than the TiO2 film, this may be due to the meso-porous morphology of these films.

  8. Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties

    NASA Astrophysics Data System (ADS)

    Testoni, G. E.; Chiappim, W.; Pessoa, R. S.; Fraga, M. A.; Miyakawa, W.; Sakane, K. K.; Galvão, N. K. A. M.; Vieira, L.; Maciel, H. S.

    2016-09-01

    TiO2/Al2O3 nanolaminates are being investigated to obtain unique materials with chemical, physical, optical, electrical and mechanical properties for a broad range of applications that include electronic and energy storage devices. Here, we discuss the properties of TiO2/Al2O3 nanolaminate structures constructed on silicon (1 0 0) and glass substrates using atomic layer deposition (ALD) by alternatively depositing a TiO2 sublayer and Al2O3 partial-monolayer using TTIP–H2O and TMA–H2O precursors, respectively. The Al2O3 is formed by a single TMA–H2O cycle, so it is a partial-monolayer because of steric hindrance of the precursors, while the TiO2 sublayer is formed by several TTIP–H2O cycles. Overall, each nanolaminate incorporates a certain number of Al2O3 partial-monolayers with this number varying from 10–90 in the TiO2/Al2O3 nanolaminate grown during 2700 total reaction cycles of TiO2 at a temperature of 250 °C. The fundamental properties of the TiO2/Al2O3 nanolaminates, namely film thickness, chemical composition, microstructure and morphology were examined in order to better understand the influence of the number of Al2O3 partial-monolayers on the crystallization mechanism of TiO2. In addition, some optical, electrical and mechanical properties were determined and correlated with fundamental characteristics. The results show clearly the effect of Al2O3 partial-monolayers as an internal barrier, which promotes structural inhomogeneity in the film and influences the fundamental properties of the nanolaminate. These properties are correlated with gas phase analysis that evidenced the poisoning effect of trimethylaluminum (TMA) pulse during the TiO2 layer growth, perturbing the growth per cycle and consequently the overall film thickness. It was shown that the changes in the fundamental properties of TiO2/Al2O3 nanolaminates had little influence on optical properties such as band gap and transmittance. However, in contrast, electrical properties as

  9. Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties

    NASA Astrophysics Data System (ADS)

    Testoni, G. E.; Chiappim, W.; Pessoa, R. S.; Fraga, M. A.; Miyakawa, W.; Sakane, K. K.; Galvão, N. K. A. M.; Vieira, L.; Maciel, H. S.

    2016-09-01

    TiO2/Al2O3 nanolaminates are being investigated to obtain unique materials with chemical, physical, optical, electrical and mechanical properties for a broad range of applications that include electronic and energy storage devices. Here, we discuss the properties of TiO2/Al2O3 nanolaminate structures constructed on silicon (1 0 0) and glass substrates using atomic layer deposition (ALD) by alternatively depositing a TiO2 sublayer and Al2O3 partial-monolayer using TTIP-H2O and TMA-H2O precursors, respectively. The Al2O3 is formed by a single TMA-H2O cycle, so it is a partial-monolayer because of steric hindrance of the precursors, while the TiO2 sublayer is formed by several TTIP-H2O cycles. Overall, each nanolaminate incorporates a certain number of Al2O3 partial-monolayers with this number varying from 10-90 in the TiO2/Al2O3 nanolaminate grown during 2700 total reaction cycles of TiO2 at a temperature of 250 °C. The fundamental properties of the TiO2/Al2O3 nanolaminates, namely film thickness, chemical composition, microstructure and morphology were examined in order to better understand the influence of the number of Al2O3 partial-monolayers on the crystallization mechanism of TiO2. In addition, some optical, electrical and mechanical properties were determined and correlated with fundamental characteristics. The results show clearly the effect of Al2O3 partial-monolayers as an internal barrier, which promotes structural inhomogeneity in the film and influences the fundamental properties of the nanolaminate. These properties are correlated with gas phase analysis that evidenced the poisoning effect of trimethylaluminum (TMA) pulse during the TiO2 layer growth, perturbing the growth per cycle and consequently the overall film thickness. It was shown that the changes in the fundamental properties of TiO2/Al2O3 nanolaminates had little influence on optical properties such as band gap and transmittance. However, in contrast, electrical properties as resistivity

  10. Study on Viscosity of the La2O3-SiO2-Al2O3 Slag System

    NASA Astrophysics Data System (ADS)

    Deng, Yong-chun; Wu, Sheng-li; Jiang, Yin-ju; Jia, Su-qi

    2016-08-01

    The viscosities and free-running temperatures of slag in a La2O3-SiO2-Al2O3 slag system were measured using an internal rotating cylinder method. For different La2O3 mass contents (45, 50, and 55 pct) in the La2O3-SiO2-Al2O3 ternary slag, the slag viscosity and free-running temperature decreased with a decrease in SiO2 content and an increase in Al2O3 content, and decreased with an increase in La2O3 content. Minor components B2O3, FeO, and MnO could decrease the viscosity and free-running temperature of La2O3-SiO2-Al2O3 ternary slag, especially FeO, and a small amount of FeO and B2O3 had an additive effect on slag viscosity and free-running temperature reduction.

  11. Al2O3 and TiO2 entrapped ABS membranes: Preparation, characterization and study of irradiation effect

    NASA Astrophysics Data System (ADS)

    Kamelian, Fariba Sadat; Mousavi, Seyed Mahmoud; Ahmadpour, Ali

    2015-12-01

    The present study focuses on the aluminum oxide (Al2O3) and titanium oxide (TiO2) entrapped acrylonitrile-butadiene-styrene (ABS) membranes prepared from phase inversion method. The effect of Al2O3 and TiO2 nanoparticles on the hydrophilicity, tensile strength, thermal stability, permeate flux, and rejection of wastewater pollution indices was investigated. Some of the membranes were exposed to ultraviolet (UV) irradiation. Al2O3 and TiO2 nanoparticles generally improved performance of the membranes. Thermal stability and tensile strength of the membranes were also enhanced in the presence of the nanoparticles. Increasing the nanoparticles concentration increased viscosity of the casting solutions. The UV irradiated membranes had better performance than the non-irradiated ones.

  12. Sintering aids for producing BaO-Al2O3-2SiO2 and SrO-Al2O3-2SiO2 ceramic materials

    SciTech Connect

    Talmy, I.G.; Zaykoski, J.A.

    1995-07-26

    Accordingly, an object of this invention is to provide a new lower temperature process for preparing dense monoclinic BaO.Al2O3.2SiO2 (BAS; celsian) monoclinic SrO.Al2O3.2SiO2 (SAS), or monoclinic BAS/SAS solid solution ceramic materials. Another object of this invention is to provide new sintering aids suitable for producing high strength, low dielectric ceramic materials from BAS, SAS, or mixtures thereof. These and other objects of this invention are accomplished by providing a sintering aid that is a homogenous glass containing (1) from 14 10 45 mole percent of an alkaline earth oxide that is BaO. SrO. or mixtures of BaO and SrO (2) from 8 to 16 weight percent of Al2O3 and (3) The remainder of the glass being SiO2. The homogeneous glass when mixed as a powder with monoclinic BAS powder, monoclinic SAS powder. or mixture of monoclinic BAS and SAS powders reduces the firing temperature required to produce a fully densified ceramic material.

  13. Stability of TiO2 and Al2O3 Nanofluids

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Ju; Li, Hai; Li, Xin-Fang; Wang, Zhou-Fei; Lin, Fang

    2011-08-01

    Aiming at the dispersion stability of nanofluids, we investigate the absorbency and the zeta potential of TiO2 and Al2O3 nanofluids under different pH values and different dispersant concentrations. The results show that in the mass fraction 0.05% alumina and 0.01% titanium dioxide nanosuspensions, the absolute value of the zeta potential and the absorbency of the two nanofluids with sodium dodecyl sulfate (SDS) dispersant are the highest at an optimal pH (pHAl2O3 ≈ 6.0, pHTiO2 ≈ 9.5) and that there is a good correlation between absorbency and zeta potential: the higher the absolute value of the zeta potential is, the greater the absorbency is, and the better the stability of the system is. The optimizing concentrations for SDS are 0.10% and 0.14%, respectively, at which the two nanofluids have the best dispersion results. The calculated DLVO interparticle interaction potentials verify the experimental results of the pH effect on the stability behavior.

  14. CO2 gas detection properties of a TIO2/Al2O3 heterostructure under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Demir, Mehmet; Yıldız, Dilber Esra; Acar, Selim

    2015-05-01

    Al/TiO2/p-Si and Al/TİO2/Al2O3/p-Si samples were prepared using the atomic layer deposition method (ALD) and their gas sensing properties were investigated. The electrical properties of the samples were studied using a two probe method in the temperature range 25-230 °C and at room temperature UV conditions. The TiO2/Al2O3 heterojunction sample exhibited an excellent gas sensing response to CO2 gas at room temperature and improved the effect of UV light irradiation. The results showed that heterostructures helped to improve the gas sensor properties, affected the sensing at room temperature and thus guided the design of photocatalysts. The TiO2/Al2O3 heterojunction prepared using this method can be used as a material for semiconductor gas sensors detecting poisonous gases like CO2 at room temperature with high sensitivity and selectivity.

  15. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  16. Magnetic field control and wavelength tunability of SPP excitations using Al2O3/SiO2/Fe structures

    NASA Astrophysics Data System (ADS)

    Kaihara, Terunori; Shimizu, Hiromasa; Cebollada, Alfonso; Armelles, Gaspar

    2016-09-01

    Here, we show the high wavelength tunability and magnetic field modulation of surface plasmon polaritons (SPPs) of a waveguide mode that Double-layer Dielectrics and Ferromagnetic Metal, Al2O3/SiO2/Fe, trilayer structures exhibit when excited in the Otto configuration of attenuated total reflection setup. First by modeling, and then experimentally, we demonstrate that it is possible to tune the wavelength at which the angular dependent reflectance of these structures reaches its absolute minimum by simply adjusting the SiO2 intermediate dielectric layer thickness. This precise wavelength corresponds to the cut-off condition of SPPs' waveguide mode supported by the proposed structure, and it can be then switched between two values upon magnetization reversal of the Fe layer. In this specific situation, a large enhancement of the transverse magneto-optical effect is also obtained.

  17. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%–100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm‑1, above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m2 K GW‑1, and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  18. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    PubMed

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates. PMID:27670821

  19. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    PubMed

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  20. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    PubMed

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  1. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    PubMed

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack. PMID:25919200

  2. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1992-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications as described. This work represents the first reporting of the sliding durability of this material system. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 C to 900 C, loads from 1.3 to 21.2 Newtons, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter, elastic modulus, and a pretest fiber heat treatment on friction and wear were measured. In most cases, wear increased with temperature. Friction ranged from about 0.36 at 500 C and low velocity (0.025 m/s) to over 1.1 at 900 C and high velocity (0.25 m/s). The pretest fiber heat treatment, which caused significant durability reductions for alumina-boria-silica ceramic fibers tested previously, had little effect on the alumina-silica fibers tested here. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications.

  3. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-2SiO2, is a potential glass-ceramic matrix for high-temperature composites. The glass has a density of 3.39 g/cu cm, thermal expansion coefficient of 6.6 x 10(exp -6)/deg C glass transition temperature of 910 C, and dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass were studied. CIP'ed samples, after appropriate heat treatments, always crystallized out as celsian whereas the presence of 5 to 10 weight percent of an additive was necessary for formation of celsian in sintered as well as hot pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot pressing resulted in fully dense samples.

  4. Femtosecond laser-induced pre-damage dynamics in Al2O3/SiO2 mirror

    NASA Astrophysics Data System (ADS)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-07-01

    UV femtosecond laser pulse was used to excite the ultrafast carrier dynamics inside the Al2O3/SiO2 high reflective mirror. Spectral shift between two different laser induced free electron absorption bands was observed. The former one centered at 406 nm undergo a fast decay of ~2.6 ps and a longer one of ~15 ps. Accompanied by the fast decay of the first absorption band, a new absorption band centered at 396 nm grew around ~2.8 ps after the laser excitation. The probable explanation the observed spectral shift of the free electron absorption band is that, the free carrier in the Al3O2 conductive band was trapped into some kind of defect state, which has an absorption peak at 396 nm, at a time scale of ~2.8 ps. Since the defect state has much longer lifetime than the initial generated free carriers in thee conductive band, probably under the condition of ultrafast high-frequency pulsed UV laser exposure, the incubation effect will decrease the laser damage threshold of the subsequent laser pulses.

  5. Transparent athermal glass-ceramics in Li2O-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Himei, Yusuke; Nagakane, Tomohiro; Sakamoto, Akihiko; Kitamura, Naoyuki; Fukumi, Kohei; Nishii, Junji; Hirao, Kazuyuki

    2005-04-01

    An attempt has been conducted to develop multicomponent transparent glass-ceramics which have athermal property better than silica glass. Transparent Li2O-Al2O3-SiO2 (LAS) glass-ceramics with small thermal expansion coefficient was chosen as a candidate. Athermal property of the glass-ceramics was improved by the independent control of temperature coefficients of electronic polarizability and thermal expansion coefficient, both of which govern the temperature coefficient of optical path length. It was found that temperature coefficient of electronic polarizability and thermal expansion coefficient of the LAS glass-ceramics were controllable by the additives and crystallization conditions. The doping of B2O3 and the crystallization under a hydrostatic pressure of 196 MPa were very effective to reduce temperature coefficient of electronic polarizability without a remarkable increase in thermal expansion coefficient. It was deduced that the reduction in temperature coefficient of electronic polarizability by the crystallization under 196 MPa resulted from the inhibition of the precipitation of beta-spodumene solid solution. The relative temperature coefficients of optical path length of B2O3-doped glass-ceramic crystallized under 196 MPa was 11.7 x 10-6/°C, which was slightly larger than that of silica glass. Nevertheless, the thermal expansion coefficient of this glass-ceramic was smaller than that of silica glass.

  6. Enhanced Sintering of β"-Al2O3/YSZ with the Sintering Aids of TiO2 and MnO2

    SciTech Connect

    Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Meinhardt, Kerry D.; Sprenkle, Vincent L.

    2015-07-11

    β"-Al2O3 has been the dominated choice for the electrolyte materials of sodium batteries because of its high ionic conductivity, excellent stability with the electrode materials, satisfactory mechanical strength, and low material cost. To achieve adequate electrical and mechanical performance, sintering of β"-Al2O3 is typically carried out at temperatures above 1600oC with deliberate efforts on controlling the phase, composition, and microstructure. Here, we reported a simple method to fabricate β"-Al2O3/YSZ electrolyte at relatively lower temperatures. With the starting material of boehmite, single phase of β"-Al2O3 can be achieved at as low as 1200oC. It was found that TiO2 was extremely effective as a sintering aid for the densification of β"-Al2O3 and similar behavior was observed with MnO2 for YSZ. With the addition of 2 mol% TiO2 and 5 mol% MnO2, the β"-Al2O3/YSZ composite was able to be densified at as low as 1400oC with a fine microstructure and good electrical/mechanical performance. This study demonstrated a new approach of synthesis and sintering of β"-Al2O3/YSZ composite, which represented a simple and low-cost method for fabrication of high-performance β"-Al2O3/YSZ electrolyte.

  7. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge.

    PubMed

    Tsai, Chen-Chiu; Wang, Kuen-Sheng; Chiou, Ing-Jia

    2006-06-30

    This study investigates the characteristics of lightweight aggregates sintered from sewage sludge ash by modifying the proportion of the main components (SiO(2)-Al(2)O(3)-flux). The ash of incinerated sludge from a municipal sewage treatment plant (STP) was used as the tested material and sintering temperature ranged from 1050 to 1100 degrees C within a time span of 10-30min. The sludge ash appeared to have a high proportion of SiO(2) (44.89%), Al(2)O(3) (11.62%) and Fe(2)O(3) (6.81%) resembling the dilatable shale. When the sintering temperature was raised to above 1060 degrees C, the blowing phenomenon appeared. The aggregates become lighter in weight by prolonging the sintering time and raising the temperature. Cullet powder (amorphous SiO(2)), Al(2)O(3), and fly ash were added to sludge ash to analyse the characteristic changes of the aggregates. The results showed that amorphous SiO(2) lowered the melting point and increased foaming; Al(2)O(3) raised the compression resistance; fly ash lowered the sintering temperature required. However, the composition of fly ash can vary dramatically, resulting in a less predictable characteristic of aggregates.

  8. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1994-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  9. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  10. The effect of Al2O3-SiO2 mixing ratio as steel coating S45C to the thermal and adhesiveness characteristic with flame spray method for rocket nozzle application

    NASA Astrophysics Data System (ADS)

    Widyastuti, Kukuh, W. W.; Putrawan, M. A.; Alvian, T. W.; Ridwan, S.

    2013-09-01

    Nozzle is one part of rocket which works at high temperatures. The S45C steel is applied for material base of nozzle. This material was coated by Thermal barrier coating (TBC) of Al2O3-SiO2. The mixing ratio of ceramic oxide were 80% Al2O3 - 20% SiO2; 70% Al2O3 - 30% SiO2, and 60% Al2O3 - 40% SiO2. Coating process is conduct by Flame Spray. The microstructure, phase and adhesion strength of TBC examined by Scanning Electron Microscope(SEM), X-Ray Diffraction and pull off test. The results shown that mullite formed at mixing ratio 70% Al2O3 - 30% SiO2. The reduction of TBC thickness was reduced to 40% of the initial thickness after heating. The adhesive strength decreases with increasing of SiO2 composition.

  11. A bio-material: mechanical behaviour of LDPE-Al2O3-TiO2

    NASA Astrophysics Data System (ADS)

    Dhabale, R.; Jatti, V. S.

    2016-09-01

    Polymer composites are prominent candidate for polymeric bio-composites due to its low cost, high strength and ease of manufacturing. However, they suffer from low mechanical properties such as high wear rate and low hardness. In view of this, present study focuses on the synthesis of hybrid bio polymer matrix composites using low density polyethylene as matrix material with reinforcing material namely, alumina and titanium oxide. The samples were fabricated as per ASTM standard by varying the percentage of reinforcing particles using injection moulding machine. Various tests namely, tensile, flexural, impact, hardness, wear, SEM and corrosion were conducted on the prepared samples. On the basis of the experimental results, it can be concluded that injection moulding process can fabricate defect free cast samples. Polymer matrix composites of 70%LDPE +10% TiO2 +20% Al2O3 composition is biocompatible and a good candidate for biomaterial. Thus based on the inference of this study the above polymer matrix composite is suitable for orthopaedic applications and can be applied on hard and soft tissues of implantable materials in a human body.

  12. (CaO · Al2O3 · SiO2): Eu phosphors for violet/ultraviolet-to-white radiation conversion

    NASA Astrophysics Data System (ADS)

    Gurin, N. T.; Paksyutov, K. V.; Terent'ev, M. A.; Shirokov, A. V.

    2012-02-01

    (2CaO · 0.5Al2O3 · 5SiO2): Eu and (CaO · 0.2Al2O3 · SiO2): Eu phosphors doped with B2O3 in an amount of 3 wt % are obtained by direct solid-phase synthesis at 1350°C. When excited by LED radiation with a maximum at 380 nm, these phosphors emit white light with color coordinates, which are close to those in the EBU and NTSC TV standards and fall into the field of white light corresponding to light warning systems according to the International Commission on Illumination (CIE).

  13. An Al@Al2O3@SiO2/polyimide composite with multilayer coating structure fillers based on self-passivated aluminum cores

    NASA Astrophysics Data System (ADS)

    Zhou, Yongcun; Wang, Hong

    2013-04-01

    We demonstrate a capability in combining two kinds of nanosize and microsize particles of core-shell Al@Al2O3@SiO2 with aluminum cores to form multilayer coating structures as fillers in polyimide matrix for electronic applications. The core-shell Al@Al2O3@SiO2 structure can effectively adjust the relative permittivity (about 12 @1 MHz) of the composite while keeping lower dielectric loss (0.015 @1 MHz) compared to that uncoated aluminum particles. The combination of "macro" and "micro" coating can significantly improve the dielectric properties of the composites. This work provides a useful method to modify the fillers for polymer matrix nanocomposite materials.

  14. Influence of Spraying Parameters on the Microstructure and Properties of Plasma-sprayed Al2O3/40%TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Kang, J. J.; Xu, B. S.; Wang, H. D.; Wang, C. B.

    In this paper, the influences of parameters such as spraying voltage, spraying current, primary gas feed rate and spraying distance on the properties of plasma-sprayed Al2O3-40 wt.%TiO2 composite ceramic coating were studied by using orthogonal experimental design. The influence sequences of the parameters on the properties of plasma-sprayed Al2O3-40 wt.%TiO2 coating are: spraying distance, spraying voltage, spraying current, argon gas flow rate. The optimum parameters were determined: spraying distance 100 mm, spraying current 440 A, spraying voltage 120 V, and argon gas flow rate 3.0 m3/h. Scanning electronic microscope was used to observe the surface and cross-section morphologies of the Al2O3-40 wt.%TiO2 coating prepared by using the optimum parameters. The phase structure was analyzed by X ray diffraction. The through-thickness microhardness was measured by microhardness instrument. The bonding strength between the coating and substrate was determined by dual tensile test method. The porosity was measured by image analysis method. The results showed that the plasma-sprayed Al2O3-40 wt.%TiO2 composite ceramic coating has a dense structure with the porosity of 1.5%. In addition, the coating has typical layered structure. Al2O3-rich area and TiO2-rich area exhibiting different colors have homogeneous distribution and good combination. Due to the function of NiAl/AlSi bond coating, the bonding strength between the Al2O3- 40 wt.% TiO2 coating and substrate reaches 45 MPa. The coating is mainly composed of γ-Al2O3 metastable phase, α-Al2O3 stable phase, Ti8O15 and Al2TiO5.

  15. Resistive Switching in Al/Al2O3/TiO2/Al/PES Flexible Device for Nonvolatile Memory Application.

    PubMed

    Lin, Chun-Chieh; Lee, Wang-Ying; Lee, Han-Tang

    2016-05-01

    Resistive switching memory devices with superior properties are possibly used in next-generation nonvolatile memory to replace the flash memory. In addition, flexible electronics has also attracted much attention because of its light-weight and flexibility. Therefore, an Al/Al2O3/TiO2/Al/PES flexible resistive switching memory is employed in this study. The resistive switching characteristics and stability of the flexible device are improved by inserting the Al2O3 film. The resistive switching of the flexible device can be repeated over hundreds of times after the bending test. A possible resistive switching model of the flexible device is also proposed. In addition, the non-volatility of the flexible device is demonstrated. Based on our research results, the proposed Al2O3/TiO2-based resistive switching memory is possibly used in next-generation flexible electronics and nonvolatile memory applications. PMID:27483828

  16. Effect of TiO2 addition on the microstructure and nanomechanical properties of Al2O3 Suspension Plasma Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bannier, E.; Vicent, M.; Rayón, E.; Benavente, R.; Salvador, M. D.; Sánchez, E.

    2014-10-01

    Alumina-titania coatings are widely used in industry for wear, abrasion or corrosion protection components. Such layers are commonly deposited by atmospheric plasma spraying (APS) using powder as feedstock. In this study, both Al2O3 and Al2O3-13 wt% TiO2 coatings were deposited on austenitic stainless steel coupons by suspension plasma spraying (SPS). Two commercial suspensions of nanosized Al2O3 and TiO2 particles were used as starting materials. The coatings microstructure and phase composition were fully characterised using FEG-SEM and XRD techniques. Nanoindentation technique was used to determine the coatings hardness and elastic modulus properties. Results have shown that the addition of titania to alumina SPS coatings causes different crystalline phases and a higher powder melting rate is reached. The higher melted material achieved, when titania is added leads to higher hardness and elastic modulus when the same spraying parameters are used.

  17. A practical organometallic decorated nano-size SiO2-Al2O3 mixed-oxides for methyl orange removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Arshadi, M.; Salimi Vahid, F.; Salvacion, J. W. L.; Soleymanzadeh, M.

    2013-09-01

    In this study, the application of a functional ferrocene (ferrocenecarboxaldehyde) firmly heterogenized over a modified nano-size SiO2-Al2O3 mixed-oxides was reported as a novel adsorbent for the removal of methyl orange from aqueous solution. SiO2-Al2O3 mixed-oxides was functionalized with 3-aminopropyl-triethoxysilane (3-APTES) group and ferrocenecarboxaldehyde covalently linked on this organo-functionalized SiO2-Al2O3 mixed-oxides support. The synthesized materials were characterized by FT-IR spectroscopy, UV-vis, CHN elemental analysis, BET, TGA, ICP-MS, TEM, and XPS. The contact time to obtain equilibrium for maximum adsorption was 50 min. XPS of Fe ions evidenced that most of the active sites of the nano-adsorbent is in the form of Fe3+ ions at the surface. The heterogeneous Fe3+ ions were found to be effective adsorbent for the removal of dyes from solution. The adsorption of methyl orange ions has been studied in terms of pseudo-first-order and pseudo-second-order kinetics, and the Freundlich, Langmuir, and Langmuir-Freundlich isotherm models have also been applied to the equilibrium adsorption data. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model.

  18. SiO 2-CaO-B 2O 3-Al 2O 3 ceramic glaze as sealant for planar ITSOFC

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Wang, S. R.; Nie, H. W.; Wen, T.-L.

    A series of ceramic glazes based on the SiO 2-CaO-B 2O 3-Al 2O 3 system as sealant for intermediate temperature solid oxide fuel cell (ITSOFC) were investigated. Different ratios of B 2O 3/SiO 2 and Al 2O 3/CaO were investigated to control softening process, phase separation, and crystallization. When B 2O 3/SiO 2 ratio was in the range of 0.14-0.27, the glazes showed good wetting and bonding behavior with both 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte and stainless steel interconnect which could satisfy the sealing demand at 850 °C. And the dimension stability can be kept for over 100 h by introducing ceramic felt and controlling the glazes viscosity in the range of 10 4 to 10 6 Pa s. By means of controlling Al 2O 3/CaO ratio in the range of 0.4-0.68, phase separation and crystallization were restrained effectively. After holding at 850 °C for 100 h, non-crystalline network in the glazes could be found, and a suitable viscous flow could well relax thermal stress. The sealing was effective even after 10 thermal cycles. Element analysis showed a good chemical stability at the ceramic glazes/stainless steel interconnect and ceramic glazes/8YSZ electrolyte interfaces.

  19. Absorption, emission, charge transfer resistance and photocatalytic activity of Al2O3/TiO2 core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Karunakaran, C.; Magesan, P.; Gomathisankar, P.; Vinayagamoorthy, P.

    2015-07-01

    Al2O3/TiO2 core/shell nanoparticles were prepared by sol-gel technique. The scanning electron micrograph reveals the synthesized nanomaterial as polycrystalline. While the obtained material displays the X-ray diffractogram of anatase TiO2 shell the energy dispersive X-ray spectrum shows the presence of Al in the Al2O3 core. The band gap energy of the prepared composite nanoparticles is 3.2 eV and the observed photoluminescence is characteristic of TiO2 shell. The solid state impedance spectrum of the synthesized nanoparticles is similar to that of TiO2. The prepared nanocomposite shows photoconductance revealing photogeneration of electron-hole pairs. The synthesized nanomaterial photocatalytically degrades dyes effectively.

  20. Enhanced density of negative fixed charges in Al2O3 layers on Si through a subsequent deposition of TiO2

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Ziegler, Johannes; Kaufmann, Kai; Ilse, Klemens; Sprafke, Alexander; Wehrspohn, Ralf B.

    2016-04-01

    The passivation of silicon surfaces play an important role for achieving high-efficiency crystalline silicon solar cells. In this work, a stack system comprising of 20nm Al2O3 with a 22nm TiO2 topping layer was deposited on p-type Si using thermal atomic layer deposition (ALD) and was investigated regarding its passivation quality. Quasi-steady-state photo conductance (QSSPC) measurements reveal that the minority carrier lifetime at an injection density of 1015cm-3 increased from 1.10ms to 1.96ms after the deposition of TiO2, which shows that the deposition of TiO2 onto Al2O3 is capable of enhancing its passivation quality. Capacity voltage (CV) measurements show that the amount of negative charges in the dielectric layer has increased from -2.4·1012cm-2 to -6.3·1012cm-2 due to the deposition of TiO2. The location of the additional charges was analyzed in this work by etching the dielectric layer stack in several steps. After each step CV measurements were performed. It is found that the additional negative charges are created within the Al2O3 layer. Additionally, ToF-SIMS measurements were performed to check for diffusion processes within the Al2O3 layer.

  1. Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae.

    PubMed

    García-Saucedo, Citlali; Field, James A; Otero-Gonzalez, Lila; Sierra-Álvarez, Reyes

    2011-09-15

    Increasing use of nanomaterials necessitates an improved understanding of their potential impact on environment health. This study evaluated the cytotoxicity of nanosized HfO(2), SiO(2), Al(2)O(3) and CeO(2) towards the eukaryotic model organism Saccharomyces cerevisiae, and characterized their state of dispersion in bioassay medium. Nanotoxicity was assessed by monitoring oxygen consumption in batch cultures and by analysis of cell membrane integrity. CeO(2), Al(2)O(3), and HfO(2) nanoparticles were highly unstable in yeast medium and formed micron-sized, settleable agglomerates. A non-toxic polyacrylate dispersant (Dispex A40) was used to improve nanoparticle stability and determine the impact of enhanced dispersion on toxicity. None of the NPs tested without dispersant inhibited O(2) uptake by yeast at concentrations as high as 1000 mg/L. Dispersant supplementation only enhanced the toxicity of CeO(2) (47% at 1000 mg/L). Dispersed SiO(2) and Al(2)O(3) (1000 mg/L) caused cell membrane damage, whereas dispersed HfO(2) and CeO(2) did not cause significant disruption of membrane integrity at the same concentration. These results suggest that the O(2) uptake inhibition observed with dispersed CeO(2) NPs was not due to reduced cell viability. This is the first study evaluating toxicity of nanoscale HfO(2), SiO(2), Al(2)O(3) and CeO(2) to S. cerevisiae. Overall the results obtained demonstrate that these nanomaterials display low or no toxicity to yeast.

  2. Assessing the in vitro toxicity of the lunar dust environment using respiratory cells exposed to Al(2)O(3) or SiO(2) fine dust particles.

    PubMed

    Jordan, Jacqueline A; Verhoff, Ashley M; Morgan, Julie E; Fischer, David G

    2009-12-01

    Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al(2)O(3) (0.7 μm) and fine SiO(2) (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO(2) and Al(2)O(3) (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO(2) for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO(2) for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO(2) resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al(2)O(3). Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.

  3. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    PubMed

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption. PMID:27405514

  4. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    PubMed

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption.

  5. In-situ XAFS study for calcination process of Cr catalyst supported on γ-Al2O3 and SiO2

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Ikeda, K.; Katayama, M.; Inada, Y.

    2016-05-01

    The catalytic performance is largely affected by the oxidation state of supported Cr species, and its control changes the activity of Cr catalysts and the selectivity of products. In this study, the calcination process of the supported Cr catalysts on γ-Al2O3 and SiO2 was investigated by in-situ XAFS spectroscopy. The hydrate species was first supported by the impregnation method and was converted to CrO3 via Cr2O3 during the calcination process on both supporting materials. It was found that the temperature to complete the oxidation from Cr2O3 to CrO3 on SiO2 was higher than that on γ-Al2O3. The similarity of the interatomic distance between the surface oxygen atoms of the intermediate Cr2O3 species to that of SiO2 contributes to the stabilization of Cr2O3 on SiO2 during the calcination process.

  6. Selective catalytic reduction of NO with NH3 over V2O5 supported on TiO2 and Al2O3: A comparative study

    NASA Astrophysics Data System (ADS)

    Huang, Xianming; Zhang, Shule; Chen, Huinan; Zhong, Qin

    2015-10-01

    This study aimed at investigating the interaction of V2O5 species with TiO2 and Al2O3 supports to understand the effect of supports on SCR reaction. Analysis by XRD, BET, UV-vis, and DFT theoretical calculations, XPS, EPR and in situ DRIFT showed that the two kinds of supports could interact with V2O5. The interaction of electron excitation and charge transfer of supports to V2O5 species was important to the formation of the reduced V2O5. These aspects increased the formation of superoxide ions that could improve the NO oxidation over V2O5/TiO2. It was responsible for the higher SCR catalytic activity of V2O5/TiO2 than V2O5/Al2O3.

  7. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Meyer, III, Harry M.

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  8. An ex situ study of the adsorption of calcium phosphate from solution onto TiO2(110) and Al2O3(0001)

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Walczak, M. S.; Hussain, H.; Acres, M. J.; Muryn, C. A.; Thomas, A. G.; Silikas, N.; Lindsay, R.

    2016-04-01

    Ex situ atomic force microscopy and x-ray photoelectron spectroscopy are employed to characterise the adsorption of calcium phosphate from an aqueous solution of CaCl2.H2O and KH2PO4 onto rutile-TiO2(110) and α-Al2O3(0001). Prior to immersion, the substrates underwent wet chemical preparation to produce well-defined surfaces. Calcium phosphate adsorption is observed on both rutile-TiO2(110) and α-Al2O3(0001), with atomic force microscopy images indicating island-type growth. In contrast to other studies on less well-defined TiO2 and Al2O3 substrates, the induction period for calcium phosphate nucleation appears to be comparable on these two surfaces.

  9. Liquid-solid equilibria involving spinel, ilmenite, and ferropseudobrookite in the system 'FeO'-Al2O3-TiO2 in contact with metallic iron

    NASA Technical Reports Server (NTRS)

    Schreifels, W. A.; Muan, A.

    1975-01-01

    Phase relations in the liquidus temperature region of the system 'FeO'-Al2O3-TiO2 in contact with metallic iron, at a total pressure below 1 atm, have been determined by the quenching technique. Four invariant points have been located, with phase assemblages and temperatures as follows; wuestite, ulvoespinel, nercynite and liquid, 1306 C; ulvoespinel, ilmenite, ferropseudobrookite and liquid, 1340 C; ulvoespinel, hercynite, ferropseudobrookite and liquid, 1367 C; hercynite, ferropseudobrookite, corundum and liquid, 1465 C. The data obtained confirm the presence of a miscibility gap between titanate and aluminate spinels, and provide quantitative data for the effect of Al2O3 on mutual stability relations among spinel, ilmenite, and ferropseudobrookite phases in the presence of liquid at high temperatures and strongly reducing conditions. It is shown that Al2O3 has a strong stabilizing effect on the phase assemblage ferropseudobrookite and spinel relative to ilmenite.

  10. Enhanced photoelectrochemical performance of quantum dot-sensitized TiO2 nanotube arrays with Al2O3 overcoating by atomic layer deposition.

    PubMed

    Zeng, Min; Peng, Xiange; Liao, Jianjun; Wang, Guizhen; Li, Yanfang; Li, Jianbao; Qin, Yong; Wilson, Joshua; Song, Aimin; Lin, Shiwei

    2016-06-29

    While TiO2 nanotube arrays cosensitized with CdS and PbS quantum dots can achieve water splitting under visible light excitation, the use of quantum dots is limited by the relatively slow interfacial hole transfer rate and low internal quantum efficiencies in the visible region. Al2O3 overcoating by atomic layer deposition (ALD) can drastically enhance the photoelectrochemical performance of the quantum dot-sensitized TiO2 nanotube arrays. 30 ALD cycles of the Al2O3 overlayer can achieve a good balance between surface coverage and charge transfer resistance. The resulting maximum photocurrent density of 5.19 mA cm(-2) under simulated solar illumination shows a 52 times improvement over the pure TiO2 nanotube arrays, and more significantly, a 60% enhancement over bare quantum dot-sensitized TiO2 nanotube arrays. The incident photon-to-current conversion efficiency can reach the record value of 83% at 350 nm and remain above 30% up to 450 nm. A systematic examination of the role of the ALD Al2O3 overlayer indicates that surface recombination passivation, catalytic improvement in interfacial charge transfer kinetics, and chemical stabilization might synergistically enhance the photoelectrochemical performance in the visible region. These results provide a physical insight into the facile surface treatment, which could be applied to develop and optimize high-performance photoelectrodes for artificial photosynthesis. PMID:27138558

  11. Fabrication of charged membranes by the solvent-assisted lipid bilayer (SALB) formation method on SiO2 and Al2O3.

    PubMed

    Tabaei, Seyed R; Vafaei, Setareh; Cho, Nam-Joon

    2015-05-01

    In this study, we employed the solvent-assisted lipid bilayer (SALB) formation method to fabricate charged membranes on solid supports. The SALB formation method exploits a ternary mixture of lipid-alcohol-aqueous buffer to deposit lamellar phase structures on solid supports upon gradual increase of the buffer fraction. Using the quartz crystal microbalance with dissipation (QCM-D) technique, we investigated the formation of negatively and positively charged membranes via the SALB formation method and directly compared with the vesicle fusion method on two different oxide films. Bilayers containing an increasing fraction of negatively charged DOPS lipid molecules were successfully formed on both SiO2 and Al2O3 substrates using the SALB formation method at physiological pH (7.5). In contrast, the vesicle fusion method did not support bilayer formation on Al2O3 and those containing more than 10% DOPS ruptured on SiO2 only under acidic conditions (pH 5). Characterization of the fraction of negatively charge DOPS by in situ annexin 5A binding assay revealed that the fraction of DOPS lipid molecules in the bilayers formed on Al2O3 is significantly higher than that formed on SiO2. This suggests that the SALB self-assembly of charged membranes is predominantly governed by the electrostatic interaction. Furthermore, our findings indicate that when multicomponent lipid mixtures are used, the relative fraction of lipids in the bilayer may differ from the fraction of lipids in the precursor mixture. PMID:25858554

  12. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  13. Formation of MoS2 phase in Al2O3, ZrO2, and SiO2 through ion implantation of constituent elements

    NASA Astrophysics Data System (ADS)

    Rai, A. K.; Bhattacharya, R. S.; Kung, S. C.

    1990-11-01

    Polycrystalline α-Al2O3 and yttria-stabilized ZrO2 substrates were coimplanted with 175-keV Mo+ and 74-keV S+ at doses of 1×1017 and 74-keV S+ and 2×1017 cm-2, respectively. An amorphous SiO2 substrate was coimplanted with 175-keV Mo+ and 74 keV S+ at doses of 4.97×1016 and 1.02×1017 cm-2, respectively. The energies of Mo+ and S+ ions were chosen to obtain a nearly overlapping depth profiles in all three substrates. Transmission electron microscopy, Rutherford backscattering, and Auger electron spectroscopy techniques were used to characterize the ion-implanted materials. The formation of MoS2 phase was observed in the as-implanted condition as well as after annealing at 700 °C in all substrates. Thermodynamic calculations were performed to predict the equilibrium binary phase formed in Al2O3, ZrO2, and SiO2 under the present implantation and annealing conditions. The predictions agree with the experimental findings.

  14. Some thermodynamic properties of the Berman and Brown model for CaO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Barron, Lawrence M.

    1986-12-01

    The BERMAN and BROWN (1984) excess free energy model (B&B) is extremely convenient to use in modelling multicomponent solutions. However, spinodal calculations reveal that their calibration of this model for CaO-Al2O3-SiO2 produces liquation tielines that do not appear to be in agreement with experimental work. In addition, their calibration contains some strongly negative excess entropy parameters and these permit a most unusual inverted liquation field to start at approximately >2115°C, wt% (SiO2, Al2O3, CaO) = (70, 16, 14). This inverted field expands rapidly to cover most of the ternary for T > 2300°C and continues to expand at all higher temperatures. The Berman and Brown calibration for this system carries these negative excess entropies of mixing because the solution model is very strongly asymmetric as a result of the use of normal oxide mole weights in modelling the configurational entropy of mixing. A suggestion is made for a fairly natural restriction on the relative sizes of empirical models for excess versus configurational entropy. Expressions are presented for the general consolute condition (all solution models) and for the second and third partials of the B&B Gx model.

  15. Highly conformal SiO2/Al2O3 nanolaminate gas-diffusion barriers for large-area flexible electronics applications

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hwan; Kim, Young-Min; Park, Young-Wook; Park, Tae-Hyun; Jeong, Jin-Wook; Choi, Hyun-Ju; Song, Eun-Ho; Lee, Jin-Woo; Kim, Cheol-Ho; Ju, Byeong-Kwon

    2010-11-01

    The present study demonstrates a flexible gas-diffusion barrier film, containing an SiO2/Al2O3 nanolaminate on a plastic substrate. Highly uniform and conformal coatings can be made by alternating the exposure of a flexible polyethersulfone surface to vapors of SiO2 and Al2O3, at nanoscale thickness cycles via RF-magnetron sputtering deposition. The calcium degradation test indicates that 24 cycles of a 10/10 nm inorganic bilayer, top-coated by UV-cured resin, greatly enhance the barrier performance, with a permeation rate of 3.79 × 10 - 5 g m - 2 day - 1 based on the change in the ohmic behavior of the calcium sensor at 20 °C and 50% relative humidity. Also, the permeation rate for 30 cycles of an 8/8 nm inorganic bilayer coated with UV resin was beyond the limited measurable range of the Ca test at 60 °C and 95% relative humidity. It has been found that such laminate films can effectively suppress the void defects of a single inorganic layer, and are significantly less sensitive against moisture permeation. This nanostructure, fabricated by an RF-sputtering process at room temperature, is verified as being useful for highly water-sensitive organic electronics fabricated on plastic substrates.

  16. Binder Effects in SiO2‐ and Al2O3‐Bound Zeolite ZSM‐5‐Based Extrudates as Studied by Microspectroscopy

    PubMed Central

    Whiting, Gareth T.; Meirer, Florian; Mertens, Machteld M.; Bons, Anton‐Jan; Weiss, Brian M.; Stevens, Paul A.; de Smit, Emiel

    2015-01-01

    Abstract Microspectroscopic methods were explored to investigate binder effects occurring in ZSM‐5‐containing SiO2‐ and Al2O3‐bound millimetre‐sized extrudates. Using thiophene as a selective probe for Brønsted acidity, coupled with time‐resolved in situ UV/Vis and confocal fluorescence microspectroscopy, variations in reactivity and selectivity between the two distinct binder types were established. It was found that aluminium migration occurs in ZSM‐5‐containing Al2O3‐bound extrudates, forming additional Brønsted acid sites. These sites strongly influence the oligomer selectivity, favouring the formation of thiol‐like species (i.e., ring‐opened species) in contrast to higher oligomers, predominantly formed on SiO2‐bound ZSM‐5‐containing extrudates. Not only were the location and distribution of these oligomers visualised by 3 D analysis, it was also observed that more conjugated species appeared to grow off the surface of the zeolite ZSM‐5 crystals (containing less conjugated species) into the surrounding binder material. Furthermore, a higher binder content resulted in an increasing overall reactivity owing to the greater number of stored thiophene monomers available per Brønsted acid site. PMID:27158274

  17. Investigation on thermal stability of Ta2O5, TiO2 and Al2O3 coatings for application at high temperature

    NASA Astrophysics Data System (ADS)

    Shang, Peng; Xiong, Shengming; Li, Linghui; Tian, Dong; Ai, Wanjun

    2013-11-01

    In this paper, tantalum pentoxide (Ta2O5), titanium dioxide (TiO2) and aluminum oxide (Al2O3) coatings are deposited on silicon substrates by ion beam sputtering (IBS). The influences of the thermal exposure at high temperature in air on the surface morphology, roughness, and the structure were investigated. The results indicate that the chemical composition of the as-deposited TiO2 and Ta2O5 coatings are apparently close to the stoichiometry ratios and both of them are amorphous structures. The peaks corresponding to anatase TiO2 appear at 400 °C while the anatase-to-rutile transformation is not observed after 800 °C and 1000 °C bake. Ta2O5 coating crystallizes at 800 °C and 1000 °C to form the hexagonal structure and orthorhombic structure, respectively. TiO2 and Al2O3 single layers all develop catastrophic damage at 400 °C in the form of noted spallation or blisters, whereas there is no visible damage for the Ta2O5 coating even at 1000 °C. To understand possible damage mechanisms, the thermal stress distributions through the thickness of Ta2O5 and TiO2 coatings and the influence of the microstructure transformation are discussed. Finally, some possible approaches to improve the thermal stability are also proposed.

  18. Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials from SiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3.

    PubMed

    Partyka, Janusz; Leśniak, Magdalena

    2016-01-01

    This paper is focused on the effect of the molar ratio of SiO2/Al2O3 on the microstructure and structure of the internal aluminium-silicon-oxide lattice of the glass-ceramic materials from the SiO2-Al2O3-Na2O-K2O-CaO system. In order to examine the real composition of the obtained samples, a chemical analysis was performed. Following the heat-treatment procedure, pseudowollastonite, anorthite and the vitreous phase were identified. In order to determine the microstructure, research using the scanning electron microscope (SEM) with EDS was done. For the inner structural study, X-ray diffraction (XRD), Raman spectroscopy as well as MIR and FIR spectroscopy were performed.

  19. The effect of SiO2/Al2O3 ratio on the structure and microstructure of the glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system

    NASA Astrophysics Data System (ADS)

    Partyka, Janusz; Sitarz, Maciej; Leśniak, Magdalena; Gasek, Katarzyna; Jeleń, Piotr

    2015-01-01

    Ceramic glazes are commonly used to covering of the facing surface of ceramics ware. A well-chosen oxide composition and firing conditions of glazes causes significant improvement of technical parameters of ceramic products. Modern glazes are classified as glass-ceramic composites with different crystalline phases arising during firing. The presence of crystals in the glass matrix is influenced by many factors, especially by oxides molar composition. A crucial role is played by the molar ratio of SiO2/Al2O3. In this work the six composition of glazes from SiO2-Al2O3-CaO-MgO-Na2O-K2O system were examined. The only variable is the ratio of the silicon oxideto alumina at a constant content of other components: MgO, CaO, K2O, Na2O, ZnO. In order to determine the real phase composition of the obtained glazes research on fluorescence spectrometer (XRF) were done. For structural studies X-ray diffraction (XRD) and spectroscopic in the middle infrared (MIR) were performed. In order to determine the state of the surface (microstructure) research on the scanning electron microscope (SEM) with EDX. The research allowed to determine the influence of SiO2/Al2O3 ratio on the structure and phase composition of glazes and the nature, and type of formed crystalline phases.

  20. Effects of TiO2, ZrO2 and Al2O3 dopants on the compressive strength of tricalcium phosphate.

    PubMed

    Zawahreh, Y I; Popova, N; Smith, R W; Hendry, J; Smith, T J N; Ziolo, T L

    2005-12-01

    Tricalcium phosphate (TCP) powders synthesised using the Ca(NO3)2 and Ca(OH)2 routes were doped with TiO2, ZrO2 and Al2O3 in order to increase their compressive strength. An ultimate compressive strength (UCS) of 255 +/- 6 MPa was achieved for approximately 10 vol% TiO2 doping compared to 30 +/- 3 MPa for an un-doped control processed and tested in the same manner. Higher levels of TiO2 doping resulted in smaller increases in UCS with 30 and 50 vol% achieving 213 +/- 9 and 178 +/- 15 MPa, respectively. Very small amounts of Al2O3 doping (< 0.5 vol%) also resulted in a stronger materials. However, under the processing conditions employed, higher levels of Al2O3 and ZrO2 doping resulted in no beneficial effect on the UCS. Polyvinyl alcohol (PVA) was used as binding agent to facilitate processing. As expected, higher levels of PVA were associated with smaller increases in UCS. Powders synthesised using the Ca(OH)2 route had smaller particle size and resulted in larger increases in UCS compared to the Ca(NO3)2-synthesised powders. Although some powders contained alpha and beta-TCP phases, no other calcium phosphate, CaO, CaTiO3 or CaZrO3 phases were detected. In conclusion, a significant increase in the UCS of TCP was achieved by doping with approximately 10 vol% TiO2 which is expected to have little or no effect on the bioactivity or bioresorbability of the material.

  1. Sulfide Capacities of CaO-MgO-Al2O3-SiO2-CrO x Slags

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Wang, Yaxian; Chou, Kuo-chih; Seetharaman, Seshadri

    2016-08-01

    The sulfide capacities of CaO-MgO-Al2O3-SiO2-CrO x slags were measured by gas-slag equilibration method in the temperature range of 1823 K to 1898 K (1550 °C to 1625 °C) to reveal the effect of CrO x on the sulfide capacities of slags. Both higher basicity and temperature enhanced sulfide capacities. The CrO x additions in the range of 0 to 5 mass pct increased the sulfide capacity, but, further increase of CrO x contents to 7 pct was found to lower the sulfide capacity. Utilizing the relationship for estimating the ratio of Cr(II)/Cr(III) put forward by the present authors, the influence of Cr(II) on the sulfide capacities of the slags studied is discussed.

  2. Tunable white light emission by variation of composition and defects of electrospun Al2O3-SiO2 nanofibers.

    PubMed

    Zhou, Jinyuan; Sun, Gengzhi; Zhao, Hao; Pan, Xiaojun; Zhang, Zhenxing; Fu, Yujun; Mao, Yanzhe; Xie, Erqing

    2015-01-01

    Composite nanofibers consisting of Al2O3-SiO2 were prepared by electrospinning in combination with post-calcination in air. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to investigate the crystalline phase and microstructure of the composite nanofibers. Photoluminescence experiments indicated that the resulting white light emission can be tuned by the relative intensity of the individual spectral components, which are related to the individual defects such as: violet-blue emission from O defects, green emission from ≡Si(Al)-O-C∙=O, and red emission from intersystem radiative crossing. White light emission was realized at a Al/(Al-Si) ratio of 40 and 60 mol %. This research may offer a deeper understanding of the preparation of efficient and environmentally friendly, white luminescence materials. PMID:25821669

  3. Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and γ-Al2O3-supported Ag catalysts

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Ha; Teramoto, Yoshiyuki; Ogata, Atsushi

    2016-10-01

    We report the first instance of time-resolved imaging of surface streamers in air propagating on the surface of titanium dioxide (TiO2) and alumina (γ-Al2O3) beads at ambient temperature and atmospheric pressure. The propagation velocity of primary streamers was found to be dependent primarily on the applied voltage and the type of catalyst. The presence of Ag nanoparticles enhanced the propagation velocity of primary streamers in both TiO2 and γ-Al2O3. Some of the primary streamers passed through a partial discharge, which resulted in enhanced discharge intensity. Through successive steps, the partial discharge served as a staging point for primary streamers, and promoted their propagation toward the next catalyst bead. For a given configuration and catalyst, the velocity of the primary streamer was largely influenced by applied voltage and catalyst type. For a mesh-to-mesh reactor with Ag/ TiO2 catalyst, the primary streamer reached about 660 km s‑1. Secondary streamers occurred with much slower velocities after the primary streamer had disappeared. In contrast to primary streamers, secondary streamer velocities were almost completely independent of the applied voltage on both TiO2 (150  ±  50 km s‑1) and γ-Al2O3 (70  ±  10 km s‑1). Detailed time-resolved imaging data on surface streamers can provide important insight into understanding and modeling plasma-catalysis, which can accelerate the progress of research and development in this area.

  4. Excellent Passivation and Low Reflectivity Al2O3/TiO2 Bilayer Coatings for n-Wafer Silicon Solar Cells: Preprint

    SciTech Connect

    Lee, B. G.; Skarp, J.; Malinen, V.; Li, S.; Choi, S.; Branz, H. M.

    2012-06-01

    A bilayer coating of Al2O3 and TiO2 is used to simultaneously achieve excellent passivation and low reflectivity on p-type silicon. This coating is targeted for achieving high efficiency n-wafer Si solar cells, where both passivation and anti-reflection (AR) are needed at the front-side p-type emitter. It could also be valuable for front-side passivation and AR of rear-emitter and interdigitated back contact p-wafer cells. We achieve high minority carrier lifetimes {approx}1 ms, as well as a nearly 2% decrease in absolute reflectivity, as compared to a standard silicon nitride AR coating.

  5. Experimental determination of the oxygen K-shell fluorescence yield using thin SiO2 and Al2O3 foils

    NASA Astrophysics Data System (ADS)

    Hönicke, P.; Kolbe, M.; Krumrey, M.; Unterumsberger, R.; Beckhoff, B.

    2016-10-01

    In this work, the K-shell fluorescence yield for oxygen ωO,K-shell is determined experimentally, employing the radiometrically calibrated X-ray fluorescence instrumentation of the Physikalisch-Technische Bundesanstalt (PTB), Germany's National Metrology Institute. Four free-standing thin foils with two different thicknesses of both SiO2 and Al2O3 were used in order to derive an experimental value for this atomic fundamental parameter. Multiple excitation photon energies were applied to record fluorescence spectra of all four samples. The resulting value (ωO,K-shell = 0.00688 ± 0.00036) is almost 20 % higher than the commonly used value from the Krause tables [M. Krause, Atomic Radiative and Radiationless Yields for K and L shells, J. Phys. Chem. Ref. Data 8(2), 307-327 (1979)]. In addition, the achieved total uncertainty budget for the new experimental value is reduced significantly in comparison to available literature data. For validation purposes, thin SiO2 layers on Si samples were used. Here, the layer thicknesses derived from X-ray reflectometry are well in line with our X-ray fluorescence quantification results based on the new experimental value for the O K-shell fluorescence yield.

  6. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-10-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  7. Evaluation of Existing Viscosity Data and Models and Developments of New Viscosity Model for Fully Liquid Slag in the SiO2-Al2O3-CaO-MgO System

    NASA Astrophysics Data System (ADS)

    Han, Chen; Chen, Mao; Zhang, Weidong; Zhao, Zhixing; Evans, Tim; Zhao, Baojun

    2016-07-01

    Metallurgical properties of slag are determined to a great extent by its viscosity. High-temperature viscosity measurements are time-consuming and expensive. It is necessary to develop an accurate viscosity model for blast furnace slag in the SiO2-Al2O3-CaO-MgO system using reliable viscosity data. This paper describes a systemic evaluation procedure to determine the viscosity data to be used for model development. 1780 viscosity data from 10 to 65 wt pct SiO2, 3.5 to 40 wt pct Al2O3, 2 to 60 wt pct CaO, and 2 to 38 wt pct MgO in the SiO2-Al2O3-CaO-MgO system have been accepted for model evaluation after critical reviews. The existing 14 viscosity models in SiO2-Al2O3-CaO-MgO system is also reviewed and evaluated. Based on the structure of alumina-silicate slag and evaluated viscosity data, a new viscosity model has been proposed for the system SiO2-Al2O3-CaO-MgO. A new term "probability," based on the basic oxide and electronegativity, is introduced to calculate the integral activation energy of slag. The model has been evaluated and compared with existing viscosity models in three different composition ranges in SiO2-Al2O3-CaO-MgO system for different applications. The new model reports an outstanding agreement between predictions and experimental data. The industrial implications of the new model have also been discussed in ironmaking and steelmaking processes.

  8. Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics

    NASA Astrophysics Data System (ADS)

    García, E.; Nistal, A.; Martín de la Escalera, F.; Khalifa, A.; Sainz, M. A.; Osendi, M. I.; Miranzo, P.

    2015-01-01

    The suitability of certain glass compositions in the Y2O3-Al2O3-SiO2 (YAS) system as protecting coatings for silicon carbide components has been prospected. One particular YAS composition was formulated considering its glass formation ability and subsequent crystallization during service. Round-shaped and homogeneous granules of the selected composition were prepared by spray drying the corresponding homogeneous oxide powder mixture. Glassy coatings (197 µm thick) were obtained by oxyacetylene flame spraying the YAS granules over SiC substrates, previously grit blasted and coated with a Si bond layer (56 µm thick). Bulk glass of the same composition was produced by the conventional glass casting method and used as reference material for comparative evaluation of the characteristic glass transition temperatures, crystallization behavior, mechanical, and thermal coating properties. The mechanical properties and thermal conductivity of the coating were lower than those of the bulk glass owing to its lower density, higher porosity, and characteristic lamellar structure. The crystallization of both bulk glass and coating occurred during isothermal treatments in air at 1100-1350 °C. Preliminary data on ablation tests at 900 °C using the oxyacetylene gun indicated that the YAS glassy coating was a viable protective shield for the SiC substrate during 150 s.

  9. A Study of the Dielectric Properties of Al2O3-TiO2 Composite in the Microwave and RF Regions

    NASA Astrophysics Data System (ADS)

    Campos, R. V. B.; Bezerra, C. L.; Oliveira, L. N. L.; Gouveia, D. X.; Silva, M. A. S.; Sombra, A. S. B.

    2015-11-01

    We have studied the effect of addition of titania, as a sintering agent, to alumina on the dielectric characteristics of the ceramic composites obtained. The dielectric properties of the titania-alumina composites were studied by use of impedance spectroscopy and the Hakki-Coleman method in the radio-frequency and microwave regions, respectively. The temperature coefficient of the resonant frequency ( τ f ) was also studied. Dielectric permittivity ( ɛ') was increased and the dielectric loss (tan δ) was improved by addition of titania, as a result of better sintering; addition of 10 wt.% titania resulted in ɛ' = 12.68 and tan δ = 8.23 × 10-4 in the microwave region. Increasing the concentration of TiO2 led to inversion of the τ f signal; values were positive when the concentration of TiO2 was >7.5 wt.%. The ceramic composites were evaluated as antennas; for all samples the return loss ( S 11) was <-10 dB and the gain was approximately 3 dBi. Addition of 7.5 wt.% titania to the Al2O3 improved antenna performance. In conclusion, addition of the TiO2 to alumina improves its dielectric properties, resulting in the possibility of use of such composites as dielectric resonator antennas (DRA).

  10. Plasma-assisted CuO/CeO2/TiO2-γ-Al2O3 catalysts for NO + CH4 reaction and NO temperature programmed desorption studies

    NASA Astrophysics Data System (ADS)

    Li, Huijuan; Jiang, Xiaoyuan; Zheng, Xiaoming

    2013-09-01

    The removal of NO and CH4 has been studied with a hybrid system integrating plasma activation and four Cu-based catalysts. The best catalytic performance was observed for catalysts obtained from CuO/CeO2/TiO2/γ-Al2O3.The efficiency of NO removal decreased with the order: 12%CuO/10%CeO2/15%TiO2/γ-Al2O3 > 12%CuO/15%TiO2/γ-Al2O3 > 12%CuO/γ-Al2O3 > 12% CuO/TiO2. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) Temperature-programmed reduction (H2-TPR) and NO temperature-programmed desorption (NO-TPD) experiments were carried out to gain insight into the synergetic effects with the catalysts. The results revealed that copper species existed as bulk CuO crystalline for all the catalysts, H2-TPR suggested that the Cu2+ incorporated TiO2 or CeO2 lattice and crystalline CuO might be the most active component for NO removal, and NO-TPD studies indicated that 12%CuO/10%CeO2/15%TiO2/γ-Al2O3 catalyst had lower NO desorption temperature and larger peak area, which seemed to be responsible for the better catalytic activity over NO + CH4 reactions than other catalysts.

  11. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications. PMID:26911317

  12. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    PubMed Central

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-01-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics. PMID:27734918

  13. Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic

    NASA Astrophysics Data System (ADS)

    Seidel, Sabrina; Patzig, Christian; Wisniewski, Wolfgang; Gawronski, Antje; Hu, Yongfeng; Höche, Thomas; Rüssel, Christian

    2016-10-01

    The non-isochemical crystallization of glasses leads to glass-ceramics in which the chemical composition of the amorphous matrix differs from that of the parent glass. It is challenging to solely analyse the properties of these residual glassy phases because they frequently contain finely dispersed crystals. In this study, the composition of the residual glass matrix after the crystallization of a glass with the mol% composition 50.6 SiO2 · 20.7 MgO · 20.7 Al2O3 · 5.6 ZrO2 · 2.4 Y2O3 is analysed by scanning transmission electron microscopy (STEM) including energy dispersive X-ray analysis (EDXS). A batch of the residual glass with the determined composition is subsequently melted and selected properties are analysed. Furthermore, the crystallization behaviour of this residual glass is studied by X-ray diffraction, scanning electron microscopy including electron backscatter diffraction and STEM-EDXS analyses. The residual glass shows sole surface crystallization of indialite and multiple yttrium silicates while bulk nucleation does not occur. This is in contrast to the crystallization behaviour of the parent glass, in which a predominant bulk nucleation of spinel and ZrO2 is observed. The crystallization of the residual glass probably leads to different crystalline phases when it is in contact to air, rather than when it is enclosed within the microstructure of the parent glass-ceramics.

  14. Phase evolution of Na2O-Al2O3-SiO2-H2O gels in synthetic aluminosilicate binders.

    PubMed

    Walkley, Brant; San Nicolas, Rackel; Sani, Marc-Antoine; Gehman, John D; van Deventer, Jannie S J; Provis, John L

    2016-04-01

    This study demonstrates the production of stoichiometrically controlled alkali-aluminosilicate gels ('geopolymers') via alkali-activation of high-purity synthetic amorphous aluminosilicate powders. This method provides for the first time a process by which the chemistry of aluminosilicate-based cementitious materials may be accurately simulated by pure synthetic systems, allowing elucidation of physicochemical phenomena controlling alkali-aluminosilicate gel formation which has until now been impeded by the inability to isolate and control key variables. Phase evolution and nanostructural development of these materials are examined using advanced characterisation techniques, including solid state MAS NMR spectroscopy probing (29)Si, (27)Al and (23)Na nuclei. Gel stoichiometry and the reaction kinetics which control phase evolution are shown to be strongly dependent on the chemical composition of the reaction mix, while the main reaction product is a Na2O-Al2O3-SiO2-H2O type gel comprised of aluminium and silicon tetrahedra linked via oxygen bridges, with sodium taking on a charge balancing function. The alkali-aluminosilicate gels produced in this study constitute a chemically simplified model system which provides a novel research tool for the study of phase evolution and microstructural development in these systems. Novel insight of physicochemical phenomena governing geopolymer gel formation suggests that intricate control over time-dependent geopolymer physical properties can be attained through a careful precursor mix design. Chemical composition of the main N-A-S-H type gel reaction product as well as the reaction kinetics governing its formation are closely related to the Si/Al ratio of the precursor, with increased Al content leading to an increased rate of reaction and a decreased Si/Al ratio in the N-A-S-H type gel. This has significant implications for geopolymer mix design for industrial applications.

  15. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    SciTech Connect

    Bansal, N.P.

    1995-08-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers.

  16. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al 2O 3-SiO 2 and application to magma generation

    NASA Astrophysics Data System (ADS)

    Kojitani, Hiroshi; Akaogi, Masaki

    1997-12-01

    High-temperature drop calorimetry in the temperature range of 1398-1785 K was performed for the samples of mixtures of synthetic anorthite (An), diopside (Di), enstatite (En) and forsterite (Fo) with the same compositions as those of primary melts generated at 1.1, 3 and 4 GPa at most 10° above the solidus of anhydrous mantle peridotite in the CaO-MgO-Al 2O 3-SiO 2 system. From the differences between the heat contents ( H T-H 298) of liquid and that of crystal mixture at the liquidus temperature, melting enthalpies of the samples of 1.1, 3 and 4 GPa-primary melt compositions were determined at 1 atm to be 531 ± 39 J · g -1 at 1583 K, 604 ± 21 J · g -1 at 1703 K, 646 ± 21 J · g -1 at 1753 K, respectively. These heat of fusion values suggest that mixing enthalpy of the melt in the An-Di-En-Fo system is approximately zero within the experimental errors when we use the heat of fusion of Fo by Richet et al. (P. Richet, F. Leclerc, L. Benoist, Melting of forsterite and spinel, with implications for the glass transition of Mg 2SiO 4 liquid, Geophys. Res. Lett. 20 (1993) 1675-1678). The measured enthalpies of melting at 1 atm were converted into those for melting reactions which occur under high pressures by correcting enthalpy changes associated with solid-state mineral reactions. Correcting the effects of pressure, temperature and FeO and Na 2O components on the melting enthalpies at 1 atm, heat of fusion values of a representative mantle peridotite just above the solidus under high pressure were estimated to be 590 J at 1.1 GPa and 1523 K, 692 J at 3 GPa and 1773 K, and 807 J at 4 GPa and 1923 K for melting reactions producing liquid of 1 g, with uncertainties of 50 J. By applying these melting enthalpies to a mantle diapir model which generates present MORBs, a potential mantle temperature of 1533 K has been estimated, assuming an eruption temperature of magma of 1473 K.

  17. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1995-01-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these

  18. The Effect of Chlorine on the Rheology of Na2O-Fe2O3-Al2O3-SiO2 Melts

    NASA Astrophysics Data System (ADS)

    Zimova, M.; Webb, S.

    2004-12-01

    Because of the high fluid mobility of chlorine, the mantle wedge in subduction zone settings may be enriched in chlorine by the fluids released by the subducted altered oceanic crust plus sediments. The presence of chlorine (and other halogens) will affect the solidus temperature and the rheology of melts, thus influencing the magma evolution, eruption and degassing. Very little is known about the solubility mechanism and diffusivity of Cl in silicate melts and even less is known about the effect of Cl on viscosity. The present study addresses the effect of the halogen chlorine on the viscosity of silicate melts. The shear viscosities of Cl-bearing melts in the system Na2O-Fe2O3-Al2O3-SiO2 were determined over the temperature range 550-950C at room pressure in air. Viscosities were determined using the micropenetration technique in the range of 108.5 to 1012.0 Pa s. The compositions are based on addition of Fe2O3 or FeCl3 to aluminosilicate glasses with a fixed amount of SiO2 (67 mol %). Although there was loss of Cl- during the glass syntheses, no loss occurred during the viscometry experiments. It is to be expected that Cl- takes the structural position of an oxygen, and thus reduces the polymerization of the melt structure, and therefore the viscosity of the melt; as F- does. Our measurements show that, depending upon the melt composition, the addition of Cl- will either increase or decrease the viscosity of the melt. In the present melts at least 20% of the iron exists as network modifying, viscosity reducing Fe2+; while the rest exists as network forming Fe3+. It is proposed here that the different effects of chlorine on viscosity are due to the preferred Cl--Fe2+NBO bonding together with the different structure of peralkaline and peraluminous melts. In peralkaline aluminosilicate melts, the addition of Cl2O-1 will destroy 2 NBOs and create one BO if Cl- bonds primarily to the Fe2+ creating non-bridging oxygens. This would result in an increase in viscosity

  19. A critical review of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO nanofluids

    NASA Astrophysics Data System (ADS)

    Khurana, Deepak; Choudhary, Rajesh; Subudhi, Sudhakar

    2016-04-01

    Nanofluid is the colloidal suspension of nanosized solid particles like metals or metal oxides in some conventional fluids like water and ethylene glycol. Due to its unique characteristics of enhanced heat transfer compared to conventional fluid, it has attracted the attention of research community. The forced convection heat transfer of nanofluid is investigated by numerous researchers. This paper critically reviews the papers published on experimental studies of forced convection heat transfer and pressure drop of Al2O3, TiO2 and CuO based nanofluids dispersed in water, ethylene glycol and water-ethylene glycol mixture. Most of the researchers have shown a little rise in pressure drop with the use of nanofluids in plain tube. Literature has reported that the pumping power is appreciably high, only at very high particle concentration i.e. more than 5 %. As nanofluids are able to enhance the heat transfer at low particle concentrations so most of the researchers have used less than 3 % volume concentration in their studies. Almost no disagreement is observed on pressure drop results of different researchers. But there is not a common agreement in magnitude and mechanism of heat transfer enhancement. Few studies have shown an anomalous enhancement in heat transfer even at low particle concentration. On the contrary, some researchers have shown little heat transfer enhancement at the same particle concentration. A large variation (2-3 times) in Nusselt number was observed for few studies under similar conditions.

  20. 27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy of glasses in the system K2O-Al2O3-SiO2.

    PubMed

    Mundus, C; Müller-Warmuth, W

    1995-10-01

    27Al magic-angle spinning nuclear magnetic resonance satellite transition spectroscopy at 78 MHz has been applied to determine (true) chemical shift and quadrupole coupling parameters of glasses in the system K2O-Al2O3-SiO2 with 60-80 mol% SiO2 and K2O concentrations between 0 and 24 mol%. The powdered crystalline aluminosilicates andalusite and sillimanite have also been examined. In the glasses, all Al appears to be tetrahedrally bound in the aluminosilicate network unless x = mol% K2O:mol% Al2O3 becomes extremely small. Upon decreasing x the distortion of the tetrahedral Al(OSi)4 units increases in steps, and possible explanations are discussed. Six-coordinated aluminum observed for x < 0.2 is connected with the occurrence of interstitial Al3+ ions which charge-compensate the AlO4 units in addition to K+. PMID:8748646

  1. Ellipsometric study of Al2O3/Ag/Si and SiO2/Ag/quartz ashed in an oxygen plasma. [protective coatings to prevent degradation of materials in low earth orbits

    NASA Technical Reports Server (NTRS)

    De, Bhola N.; Woollam, John A.

    1989-01-01

    The growth of silver oxide (proposed as a potentially useful protective coating for space environment) on a silver mirror coated with an Al2O3 or a SiO2 protective layer was investigated using the monolayer-sensitive variable angle of incidence spectroscopic ellipsometry technique. The samples were exposed to a pure oxygen plasma in a plasma asher, and the silver oxide growth was monitored as a function of the exposure time. It was found that atomic oxygen in the asher penetrated through the SiO2 or Al2O3 coatings to convert the silver underneath to silver oxide, and that the quantity of the silver oxide formed was proportional to the ashing time. The band gap of silver oxide was determined to be 1.3 eV. A schematic diagram of the variable angle of incidence spectroscopic ellipsometer is included.

  2. Development and characterization of glass-ceramic sealants in the (CaO-Al2O3-SiO2-B2O3) system for Solid Oxide Electrolyzer Cells

    NASA Astrophysics Data System (ADS)

    Khedim, Hichem; Nonnet, Hélène; Méar, François O.

    2012-10-01

    The efficiency of glass-ceramic sealants plays a crucial role in Solid Oxide Electrolyzer Cell performance and durability. In order to develop suitable sealants, operating around 800 °C, two parent glass compositions, CAS1B and CAS2B, from the CaO-Al2O3-SiO2-B2O3 system were prepared and explored. The thermal and physicochemical properties of the glass ceramics and their crystallization behavior were investigated by HSM, DTA and XRD analyses. The microstructure and chemical compositions of the crystalline phases were investigated by microprobe analysis. Bonding characteristic as well as chemical interactions of the parent glass with yttria-stabilized zirconia (YSZ) electrolyte and ferritic steel-based interconnect (Crofer®) were also investigated. The preliminary results revealed the superiority of CAS2B glass for sealing application in SOECs. The effect of minor additions of V2O5, K2O and TiO2 on the thermal properties was also studied and again demonstrated the advantages of the CAS2B glass composition. Examining the influence of heat treatment on the seal behavior showed that the choice of the heating rate is a compromise between delaying the crystallization process and delaying the viscosity drop. The thermal Expansion Coefficients (TEC) obtained for the selected glass ceramic are within the desired range after the heat treatment of crystallization. The crystallization kinetic parameters of the selected glass composition were also determined under non-isothermal conditions by means of differential thermal analysis (DTA) and using the formal theory of transformations for heterogeneous nucleation.

  3. Atomic-layer-deposited Al2O3 thin films with thin SiO2 layers grown by in situ O3 oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Keun; Hwang, Cheol Seong

    2004-08-01

    The growth, thermal annealing behaviors, and electrical properties of Al2O3 thin films grown by atomic layer deposition (ALD) on bare (100)Si and various oxidized Si wafers, by in situ O3 oxidation at 400°C and ex situ rapid thermal annealing (RTA) under O2 atmosphere at 900°C, were investigated. The ALD process was performed using Al(CH3)3 and high concentration of O3(400gm3). The high oxidation potential of O3 oxidized the Si surface at a very early stage of film growth and eliminated the incubation period even on a bare Si surface. The as-grown Al2O3 films had excess oxygen in the films, which diffused to the film Si interface and increased the interfacial layer by oxidizing the Si substrates during postannealing. The Al2O3 films grown on a bare Si substrate had the highest concentration of excess oxygen which resulted in the largest increase in the interfacial layer thickness during postannealing. As a result, the initial oxidation of the Si wafer did not significantly decrease the capacitance density compared to the films grown on a nonoxidized Si wafer at the as-deposited and postannealed states. Therefore, the Al2O3 layers grown using a high concentration of O3 oxidant on the in situ O3 oxidized Si wafers showed real high-k gate dielectric performance although the dielectric constants of the Al2O3 films were rather small (˜9) compared to other high-k gate dielectric films.

  4. The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Gasparik, T.; Newton, R. C.

    1984-02-01

    Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030 1,600° C and 10 28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): 410_2004_Article_BF00371708_TeX2GIFE1.gif begin{gathered} RT{text{ln(}}X_{{text{MgTs}}} {text{/}}X_{{text{En}}} {text{) + 29,190}} - {text{13}}{text{.42 }}T + 0.18{text{ }}T + 0.18{text{ }}T^{1.5} \\ + intlimits_1^P {Δ V_{T,P}^{text{0}} dP = 0,} \\ where 410_2004_Article_BF00371708_TeX2GIFE2.gif begin{gathered} + intlimits_1^P {Δ V_{T,P}^{text{0}} dP} \\ = [0.013 + 3.34 × 10^{ - 5} (T - 298) - 6.6 × 10^{ - 7} P]P. \\ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: 410_2004_Article_BF00371708_TeX2GIFE3.gif begin{gathered} - RT{text{ln(}}X_{{text{MgTs}}} \\cdot X_{{text{En}}} {text{) + 5,510}} - 88.91{text{ }}T + 19{text{ }}T^{1.2} \\ + intlimits_1^P {Δ V_{T,P}^{text{0}} dP = 0,} \\ where 410_2004_Article_BF00371708_TeX2GIFE4.gif begin{gathered} + intlimits_1^P {Δ V_{T,P}^{text{0}} dP} \\ = [ - 0.832 - 8.78{text{ }} × {text{ 10}}^{ - {text{5}}} (T - 298) + 16.6{text{ }} × {text{ 10}}^{ - 7} P]{text{ }}P. \\ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: 410_2004_Article_BF00371708_TeX2GIFE5.gif H_{f,970}^0 = - 4.77{text{ kJ/mol, }}S_{298}^0 = 129.44{text{ J/mol}} \\cdot {text{K,}} and 410_2004_Article_BF00371708_TeX2GIFE6.gif V_{298,1}^0 = 58.88{text{ cm}}^{text{3}} . The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent

  5. Melts in the Deep Earth: Calculating the Densities of CaO-FeO-MgO-Al2O3-SiO2 Liquids

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Guo, X.; Agee, C. B.; Asimow, P. D.; Lange, R. A.

    2012-12-01

    We present new equation of state (EOS) measurements for hedenbergite (Hd, CaFeSi2O6) and forsterite (Fo, Mg2SiO4) liquids. These liquid EOS add to the basis set in the CaO-FeO-MgO-Al2O3-SiO2 (CMASF) oxide space at elevated temperatures and pressures; other liquids include: enstatite (En, MgSiO3), anorthite (An, CaAl2Si2O8), diopside (Di, CaMgSi2O6), and fayalite (Fa, Fe2SiO4). The Hd EOS measurement was a multi-technique collaboration using 1-atm double-bob Archimedean, ultrasonic, sink/float, and shock wave techniques. Un-weighted linear fitting of the shock data in shock velocity (US)-particle velocity (up) space defines a pre-heated (1400 °C) Hugoniot US = 2.628(0.024) + 1.54(0.01)up km/s. The slope corresponds to a K' of 5.16(0.04), consistent with piston-cylinder and multi-anvil sink/float experiments. The intercept is fixed at the ultrasonic sound speed (Co) since the unconstrained intercept is within the stated error. This behavior demonstrates consistency across methods and that the liquid is relaxed during shock compression. Shock compression of pre-heated (2000°C) single crystal Fo gives an un-weighted linear Hugoniot of US = 2.674(0.188) + 1.64(0.06)up km/s. The unconstrained Co falls below estimates based on extrapolation in both temperature and composition from two published partial molar sound speed models, 3.195m/s [1] and 3.126 m/s [2]. The shock-derived Co indicates that dC/dT is negative for Fo liquid, contrary to the positive [1] and zero [2] temperature dependences derived over relatively narrow temperature intervals. CMASF liquid isentropes were calculated using five end-members (En, Fo, Fa, An, Di). For modeling crystallization of a fictive magma ocean, we examined two liquids: peridotite [3] (P=.33En+.56Fo+.07Fa+.03An+.007Di) and simplified chondrite [4] (Ch=.62En+.24Fo+.08Fa+.04An+.02Di). Each end-member is defined by a 3rd or 4th order Birch-Murnaghan isentrope, Mie-Grüneisen thermal pressure and a constant heat capacity. The volumes are

  6. Detailed structure of the carbonated peridotite solidus ledge in the system CaO-MgO- Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Keshav, S.; Gudfinnsson, G.; Presnall, D.

    2008-12-01

    The presence of carbonatitic melts in the sub-oceanic mantle has been inferred on the basis of geochemistry of ocean-island basalts and xenoliths, CO2-vesicles in voluminous mid-ocean ridge basalts, geophysical observations, and experimental petrology. The carbonate ledge somewhere between 2.0-3.0 GPa is a prominent feature of the solidus of carbonated peridotite. The ledge is formed by a precipitous temperature drop of the mantle solidus as the solubility of CO2 in the melt rapidly increases with increasing pressure, leading to a negative Clapeyron slope of the mantle solidus over some pressure interval. It is terminated by the appearance of crystalline carbonate, on the high-pressure side, at the expense of CO2 vapor that exists on the low pressure side. The solidus temperature of carbonated peridotite decreases by roughly 200 C at the ledge. The carbonate ledge was first noted at the solidus of carbonated peridotite in the system CaO- MgO-SiO2-CO2 [CMS-CO2], and it persists in the more complex model system CaO-MgO-Al2O3-SiO2-CO2 [CMAS-CO2]. In the system CMAS-CO2, the ledge appears to be bounded by two invariant points consisting of spinel-garnet peridotite+CO2+melt, on the low pressure side, and garnet peridotite+CO2+dolomite+melt, on the high pressure side. While the lower pressure invariant point is created by the intersection of the spinel-garnet (sp-gt) peridotite subsolidus boundary curve with the solidus of vapor-bearing peridotite, the higher pressure invariant point occurs where the CO2-bearing phase coexisting with the garnet peridotite phase assemblage changes from vapor to dolomite. The precise position and shape of the ledge and the position of the two invariant points is very significant because the temperatures at which the mantle melts and the melt compositions are dependent on the behavior of CO2, the depth interval in the Earth where carbon exists as CO2, and the onset of transformation of CO2 to crystalline carbonate in the Earth. Due to these

  7. TiO2(100)/Al2O3(0001) interface: A first-principles study supported by experiment

    NASA Astrophysics Data System (ADS)

    Popov, Maxim N.; Spitaler, Jürgen; Mühlbacher, Marlene; Walter, Claudia; Keckes, Jozef; Mitterer, Christian; Draxl, Claudia

    2012-11-01

    We present the results of combined theoretical and experimental investigations of the TiO2/Al2O3 interface. High-quality rutile films are grown on sapphire substrates and characterized by XRD and pole figures analysis. The epitaxial relations established by experiment agree well with those reported in literature and are used as input for ab initio modeling. In order to cope with the problem of lattice mismatch, we introduce a stress balancing approach, which takes into account the elastic tensors of the bulk materials forming the interface. Applying this approach, optimized interface models are obtained and used to evaluate the work of separation of interfaces with various stoichiometries. It is shown that the work of separation of both, oxygen-rich (0.5 J/m2) and oxygen-poor (1.6 J/m2) interfaces, is significantly smaller than the one of the metal-oxygen-metal stacked interface close to stoichiometry (8.8-9.3 J/m2). The influence of atomic relaxation on the work of separation is discussed. Analysis of electronic structure and bonding reveals for the oxygen-rich interface, localized oxygen 2p states above and below the the valence-band region of the other types of interfaces. The oxygen-poor one turns out to be metallic, whereas the interfaces close to bulk stoichiometry remain insulating. It is shown that energetically favorable interfaces are formed when the two sides are most similar to each other in coordination and stacking.

  8. Shear viscosities of CaO-Al 2O 3-SiO 2 and MgO-Al 2O 3-SiO 2 liquids: Implications for the structural role of aluminium and the degree of polymerisation of synthetic and natural aluminosilicate melts

    NASA Astrophysics Data System (ADS)

    Toplis, Michael J.; Dingwell, Donald B.

    2004-12-01

    The shear viscosity of 66 liquids in the systems CaO-Al 2O 3-SiO 2 (CAS) and MgO-Al 2O 3-SiO 2 (MAS) have been measured in the ranges 1-10 4 Pa s and 10 8-10 12 Pa s. Liquids belong to series, nominally at 50, 67, and 75 mol.% SiO 2, with atomic M 2+/(M 2++ 2Al) typically in the range 0.60 to 0.40 for each isopleth. In the system CAS at 1600°C, viscosity passes through a maximum at all silica contents. The maxima are clearly centered in the peraluminous field, but the exact composition at which viscosity is a maximum is poorly defined. Similar features are observed at 900°C. In contrast, data for the system MAS at 1600°C show that viscosity decreases with decreasing Mg/(Mg + 2Al) at all silica contents, but that a maximum in viscosity must occur in the field where Mg/2Al >1. On the other hand, the viscosity at 850°C increases with decreasing Mg/(Mg + 2Al) and shows no sign of reaching a maximum, even for the most peraluminous composition studied. The data from both systems at 1600°C have been analysed assuming that shear viscosity is proportional to average bond strength and considering the equilibrium: Al-(⇔(-NBO+Al where Al [4]-(Mg,Ca) 0.5 represents a charge-balanced tetrahedrally coordinated Al; (Mg, Ca) 0.5-NBO represents a nonbridging oxygen (NBO) associated with Ca or Mg, and Al XS represents any structural role of Al that does not require a charge-balancing cation. The viscosity data were fitted using two adjustable variables: i) the equilibrium constant of the above reaction, and ii) the relative bond strength of Al XS. The values of these parameters in the system CAS suggest that Al XS remains in tetrahedral coordination, its charge deficit being satisfied by association with a three-coordinate oxygen in a structure called a tricluster. In contrast, fits to the MAS data at 1600°C infer the presence of high-coordinate Al. These interpretations are found to be consistent with independent spectroscopic and theoretical data. Furthermore, the fitted

  9. Peculiarities of the formation and properties of light-emitting structures based on ion-synthesized silicon nanocrystals in SiO2 and Al2O3 matrices

    NASA Astrophysics Data System (ADS)

    Mikhaylov, A. N.; Belov, A. I.; Kostyuk, A. B.; Zhavoronkov, I. Yu.; Korolev, D. S.; Nezhdanov, A. V.; Ershov, A. V.; Guseinov, D. V.; Gracheva, T. A.; Malygin, N. D.; Demidov, E. S.; Tetelbaum, D. I.

    2012-02-01

    A comprehensive comparative study of SiO2 and Al2O3 oxide layers with Si nanocrystals formed by Si+ ion implantation and high-temperature annealing has been performed. Information on morphology, phase composition, structure, and luminescent properties of ensembles of ion-synthesized silicon nanocrystals has been obtained using confocal Raman microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electron paramagnetic resonance, and photoluminescence. It has been found that the peculiarities of the formation of nanocrystals, the distribution of nanocrystals over the depth of the implanted layer, the structure, and the character of chemical bonds are similar for both types of oxide matrices; however, the photoluminescence in the wavelength range 600-1000 nm, which is caused by the nanocrystals in the Al2O3 matrix, has been observed only in the case of the formation of SiO2 shells around the Si nanocrystals. The surface oxidation of the Si nanocrystals, which is necessary for the formation of SiO2 shells, is possible due to the presence of excess oxygen in the Al2O3 matrix (the case of Si implantation into the deposited Al2O3 film), as well as due to the inflow of oxygen from the annealing atmosphere (the case of Si implantation into sapphire). In order to verify the quantum-confinement mechanism of luminescence, available data on the temperature dependence of the photoluminescence intensity have been analyzed. An analysis of the mechanisms of charge transfer and electroluminescence excitation in diode structures based on thin ion-synthesized layers with silicon nanocrystals has also been performed.

  10. Fabrication of Fe-TiC-Al2O3 composites on the surface of steel using a TiO2-Al-C-Fe combustion reaction induced by gas tungsten arc cladding

    NASA Astrophysics Data System (ADS)

    Sharifitabar, Mahmood; Khaki, Jalil Vahdati; Sabzevar, Mohsen Haddad

    2016-02-01

    The aim of the present study was to fabricate Fe-TiC-Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2-3C and 3TiO2-4Al-3C- xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2-3C mixture. However, ferrite-Fe3C-TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2-4Al-3C mixture. The addition of Fe to the TiO2-4Al-3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.

  11. Voltage-dependent capacitance behavior and underlying mechanisms in metal-insulator-metal capacitors with Al2O3-ZrO2-SiO2 nano-laminates

    NASA Astrophysics Data System (ADS)

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Ding, Shi-Jin

    2016-04-01

    Nano-laminates consisting of high-permittivity dielectrics and SiO2 have been extensively studied for radio frequency metal-insulator-metal (MIM) capacitors because of their superior voltage linearity and low leakage current. However, there are no reports on the capacitance-voltage (C-V) characteristics at a high sweep voltage range. In this work, an interesting variation in the voltage-dependent capacitance that forms a ‘ω’-like shape is demonstrated for the MIM capacitors with Al2O3/ZrO2/SiO2 nano-laminates. As the thickness ratio of the SiO2 film to the total insulator increases to around 0.15, the C-V curve changes from an upward parabolic shape to a ‘ω’ shape. This can be explained based on the competition between the orientation polarization from SiO2 and the electrode polarization from Al2O3 and ZrO2. When the SiO2 film is very thin, the electrode polarization dominates in the MIM capacitor, generating a positive curvature C-V curve. When the thickness of SiO2 is increased, the orientation polarization is enhanced and thus both polarizations are operating in the MIM capacitors. This leads to the appearance of a multiple domain C-V curve containing positive and negative curvatures. Therefore, good consistency between the experimental results and the theoretical simulations is demonstrated. Such voltage-dependent capacitance behavior is not determined by the stack structure of the insulator, measurement frequency and oscillator voltage, but by the thickness ratio of the SiO2 film to the whole insulator. These findings are helpful to engineer MIM capacitors with good voltage linearity.

  12. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control. PMID:27434254

  13. Multifunctional effect of Al2O3, SiO2 and CaO on the volatilization of PbO and PbCl2 during waste thermal treatment.

    PubMed

    Wang, Si-Jia; He, Pin-Jing; Shao, Li-Ming; Zhang, Hua

    2016-10-01

    Minerals including Al2O3, SiO2 and CaO are predominant matrixes in waste, and are thought to facilitate lead (Pb) emission control. This study distinguished the inhibition of each mineral on common stable Pb-containing compounds, including highly volatile PbCl2 and less volatile PbO. Al2O3 can lower the volatilization temperature of Pb by 29 °C due to the generation of a eutectic compound and play a minor but non-negligible role in reducing Pb volatilization. The most conspicuous inhibition effect was exerted by SiO2 and a mixture of Al2O3 and SiO2, which completely integrated PbO into the glass phase at 690 °C and prohibited its migration. In contrast, SiO2 had no significant inhibition on volatile PbCl2. CaO inhibited PbO volatilization in the absence of oxygen by controlling its diffusion, while it converted PbO to Ca2PbO4 in the presence of oxygen, thus controlling Pb diffusion and decreasing the Pb volatilization ratio and rate. The influence of CaO on PbCl2 was complex because CaO can convert PbCl2 to PbO with formation of CaCl2, and CaCl2 can also be a Cl-donor for PbO. The roles of mineral matrixes in Pb conversion were shown to be important for Pb emission control.

  14. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  15. TiO2 and Al2O3 promoted Pt/C nanocomposites as low temperature fuel cell catalysts for electro oxidation of methanol in acidic media

    NASA Astrophysics Data System (ADS)

    Naeem, Rabia; Ahmed, Riaz; Shahid Ansari, Muhammad

    2014-06-01

    Carbon corrosion and platinum dissolution are the two major catalyst layer degradation problems in polymer electrolyte membrane fuel cells (PEMFC). Ceramic addition can reduce the corrosion of carbon and increase the stability of catalysts. Pt/TiO2, Pt/TiO2-C, Pt/Al2O3 and Pt/Al2O3-C catalysts were synthesized and characterized. Electrochemical surface area of Pt/TiO2-C and Pt/Al2O3-C nanocomposite catalysts was much higher than the Pt/TiO2 and Pt/Al2O3 catalysts. Peak current, specific activity and mass activity of the catalysts was also determined by cyclic voltammetry and were much higher for the carbon nanocomposites. Exchange current densities were determined from Tafel plots. Heterogeneous rates of reaction of electro oxidation of methanol were determined for all the catalysts and were substantially higher for titania catalysts as compared to alumina added catalysts. Mass activity of Pt/TiO2-C was much higher than mass activity of Pt/Al2O3-C. Stability studies showed that addition of ceramics have increased the catalytic activity and durability of the catalysts considerably.

  16. Effect of Agitation on Crystallization Behavior of CaO-Al2O3-SiO2-Na2O-CaF2 Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Shu, Qifeng; Chou, Kuochih

    2015-08-01

    The effect of agitation on crystallization behaviors of CaO-Al2O3-SiO2-Na2O-CaF2 mold fluxes with basicity of 1.1 and 1.2 was investigated. It was found that crystallization temperatures of agitated samples were higher than those of static samples. The morphology of cuspidine shifted from dendrites to facet crystals with the decrease of temperature. The agitation was conducive to the formation of small dendritic cuspidine and could lead to crystals with smaller size. Crystalline fraction could be significantly enhanced by agitation at the initial stage of crystallization.

  17. Interface properties of atomic layer deposited TiO2/Al2O3 films on In(0.53)Ga(0.47)As/InP substrates.

    PubMed

    Mukherjee, C; Das, T; Mahata, C; Maiti, C K; Chia, C K; Chiam, S Y; Chi, D Z; Dalapati, G K

    2014-03-12

    Electrical and interfacial properties of metal-oxide-semiconductor (MOS) capacitors fabricated using atomic layer deposited bilayer TiO2/Al2O3 films on In0.53Ga0.47As/InP substrates are reported. Vacuum annealing at 350 °C is shown to improve the interface quality. Capacitance-voltage (C-V) characteristics with higher accumulation capacitance, negligible frequency dispersion, small hysteresis and low interface state density (∼1.5 × 10(11) cm(-2) eV(-1)) have been observed for MOS capacitors. Low frequency (1/f) noise characterization and inelastic electron tunneling spectroscopy (IETS) studies have been performed to determine defects and interface traps and explain the lattice dynamics and trap state generation mechanisms. Both the IETS and 1/f noise studies reveal the spatial locations of the traps near the interface and also the nature of the traps. The IETS study further revealed the dynamic evolution of trap states related to low frequency noise sources in the deposited TiO2/Al2O3 stacks. It is shown that deposition of an ultrathin layer of TiO2 on Al2O3 can effectively control the diffusion of As in the dielectric and the oxidation states of In and Ga at the In0.53Ga0.47As surface. PMID:24472090

  18. The Molar Volume of FeO-MgO-Fe2O3-Cr2O3-Al2O3-TiO2 Spinels

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2011-12-01

    will include some minor components, including Ti4+ and Cr3+. Because most constraints on the activity of garnet and pyroxene at high-P are derived from experiments with coexisting spinel, we must be confident in the ability of our spinel model to realistically reproduce thermodynamic behavior over all applicable compositions. Additionally, producing a spinel molar volume model calibrated with recent in situ high-P, T diffraction data is crucial to our ability to accurately model the spinel-garnet transition in Earth's upper mantle. For example, we recently calibrated Cr-Al exchange equilibria for garnet and spinel. When this new calibration is used with the current MELTS model, a region of garnet-spinel coexistence in lherzolites is predicted with width in pressure comparable to experimental constraints. The transition occurs, however, at the unexpectedly low pressure of ~1.7 GPa. The improved model of spinel molar volume presented here, along with a new garnet molar volume model in the system FeO-MgO-CaO-Fe2O3-Cr2O3-Al2O3-TiO2-Na2O-SiO2 currently being calibrated, will enable coupled recalibration of the garnet and pyroxene models to match both the absolute pressure and width of this key transition in mantle lithology.

  19. Study on the laser-induced damage performance of HfO2, Sc2O3, Y2O3, Al2O3 and SiO2 monolayer coatings

    NASA Astrophysics Data System (ADS)

    Zhu, Meiping; Yi, Kui; Li, Dawei; Qi, Hongji; Zhao, Yuanan; Liu, Jie; Liu, Xiaofeng; Hu, Guohang; Shao, Jianda

    2013-11-01

    The laser induced damage threshold (LIDT) and damage morphology of the monolayer coating are easily influenced by the finish condition of the substrate, which makes it difficult to compare the LIDT of different coating materials. In order to eliminate the influence of defect and sub-defect on the substrate, HfO2, Sc2O3, Y2O3, Al2O3 and SiO2 monolayer coatings were prepared on 1064 nm HfO2/SiO2 high reflection coatings, using conventional e-beam deposition. The LIDT, as well as the damage morphology after laser irradiation at wavelength of 1064 nm, was measured and compared with that of the monolayer coating deposited on BK7 glass substrate.

  20. Effect of (HfO2) X (Al2O3)1- X /SiO2 double-layered blocking oxide on program and erase speed in charge trapping memory devices

    NASA Astrophysics Data System (ADS)

    Oh, Jinho; Ko, Eun Jung; Na, Heedo; Ko, Dae-Hong; Sohn, Hyunchul

    2016-03-01

    In this work, the effect of hole injection into the charge trap layers from channel prior to program operation is investigated in charge trapping (CT) memory with stacked blocking oxide (BO). For efficient hole injection, a (HfO2) X (Al2O3)1 - X /SiO2 stacked BO structure is used. The CT memory device with stacked BO shows faster programming and erasing speed compared with single-layered SiO2 BO. The enhanced programming speed is attributed to the enhanced electric field introduced by excess holes injected into SiN charge trap layer. In addition, efficient hole injection from channel produced the widened memory window in CT memory.

  1. In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2015-12-17

    Real-time, in-situ ionoluminescence measurements provide information of evolution of emission bands with ion fluence, and thereby establish a correlation between point defect kinetics and phase stability. Using fast light ions (2 MeV H and 3.5 He MeV) and medium mass-high energy ions (8 MeV O, E=0.5 MeV/amu), scintillation materials of a-SiO2, crystalline quartz, and Al2O3 are comparatively investigated at room temperature with the aim of obtaining a further insight on the structural defects induced by ion irradiation and understand the role of electronic energy loss on the damage processes. For more energetic heavy ions, the electronic energy deposition pattern offersmore » higher rates of excitation deeper into the material and allows to evaluate the competing mechanisms between the radiative and non-radiative de-excitation processes. Irradiations with 8 MeV O ions have been selected corresponding to the electronic stopping regime, where the electronic stopping power is dominant, and above the critical amorphization threshold for quartz. Lastly, the usefulness of IBIL and its specific capabilities as a sensitive tool to investigate the material characterization and evaluation of radiation effects are demonstrated.« less

  2. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  3. Sulfide Capacities of CaO-Al2O3-SiO2 Slags in the Temperature Range 1673 K to 1773 K (1400 °C to 1500 °C)

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshinori; Wang, Lijun; Sano, Nobuo; Seetharaman, Seshadri

    2012-06-01

    With a goal to estimate the sulfide capacities of slags used in the pretreatment of hot metal, the sulfide capacities of CaO-Al2O3-SiO2 slags were measured at 1673 K to 1773 K (1400 °C to 1500 °C). The gas-slag equilibrium technique has been used for this measurement. From the results obtained, it was found that the temperature dependence of the sulfide capacity of this slag is independent of the slag compositions. Therefore, a new empirical model based on optical basicity for sulfide capacity estimation of this slag was developed using the measured values of the current work and literature. With the use of the new model, the isosulfide capacity curves at 1673 K (1400 °C) were mapped.

  4. Synthesis of MgO-CaO-Al2O3-SiO2 nanocomposite powder by polymeric complex method as a novel sintering additive of AlN ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Jun; Cho, Woo-Seok; Kim, Hyeong Jun; Pan, Wei; Shahid, Mohammad; Ryu, Sung-Soo

    2016-09-01

    A MgO-CaO-Al2O3-SiO2 (MCAS) nanocomposite powder with a particle size of 50 nm and a specific surface area of 40.6 m2/g was successfully synthesized via heat-treatment of polymeric precursors containing Mg, Ca, Al and Si in air at 700 °C for 5 h. It was characterized as a novel sintering additive for the densification AlN ceramics at a low temperature below 1600 °C. It was found that the nanosized MCAS powder was suitable for the densification of AlN ceramics. In particular, full densification could be achieved when only 1.0 wt% MCAS additive-doped AlN powder compact was sintered for 1 h at 1600 °C, and a thermal conductivity of 84 W/m·K was attained.

  5. CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7

    DOE PAGES

    Wang, Honglong; Bakal, Ahmet; Zhang, Xingxing; Tarwater, Emily; Sheng, Zhizhi; Fergus, Jeffrey W.

    2016-08-08

    Ceramic thermal barrier coatings are applied to superalloys used in gas turbine engineering to increase the operating temperature and the energy conversion efficiency. However, dust consisting of CaO-MgO-Al2O3-SiO2 (CMAS) from the air can be injected into the engines and corrode the thermal barrier coatings. Lanthanide zirconates are promising materials in thermal barrier coatings due to their low thermal conductivities, good phase stability and good corrosion resistance. However, the corrosion resistance mechanism of CMAS on lanthanide zirconates is still not clearly understood. In this work, the corrosion mechanism of Gd2Zr2O7 and Sm2Zr2O7 in CMAS is studied. Here, the results show thatmore » the CMAS can easily react with lanthanide zirconate thermal barrier coatings to form a dense layer, which can resist further corrosion« less

  6. Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O3 glass system.

    PubMed

    Dantas, Noelio O; Ayta, Walter E F; Silva, Anielle C A; Cano, Nilo F; Silva, Sebastião W; Morais, Paulo C

    2011-10-15

    The structural properties of the glass matrix 40SiO(2)·30Na(2)O·1Al(2)O(3)·(29-x)B(2)O(3)·xFe(2)O(3) (mol%), 0.0≤x≤29.0 were studied by X-ray diffraction (XRD), differential thermal analysis (DTA) and Raman and infrared spectroscopy (FT-IR). XRD demonstrated Fe(3)O(4) crystal formation for Fe(2)O(3) concentrations of 29.0 mol%. DTA showed that glass transition and crystallization temperatures changed as a function of Fe(2)O(3) concentration and that these alterations were related to structural change in the glass system. Interesting aspects of Raman and FT-IR spectra were found, and this gives information about of the structure changes in Si-O-Si units of these glasses as a function of Fe(2)O(3) concentration.

  7. Fluoride evaporation and crystallization behavior of CaF2-CaO-Al2O3-(TiO2) slag for electroslag remelting of Ti-containing steels

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-bin; Cho, Jung-wook; Zheng, Ding-li; Li, Jing

    2016-06-01

    To elucidate the behavior of slag films in an electroslag remelting process, the fluoride evaporation and crystallization of CaF2-CaO-Al2O3-(TiO2) slags were studied using the single hot thermocouple technique. The crystallization mechanism of TiO2-bearing slag was identified based on kinetic analysis. The fluoride evaporation and incubation time of crystallization in TiO2-free slag are found to considerably decrease with decreasing isothermal temperature down to 1503 K. Fish-bone and flower-like CaO crystals precipitate in TiO2-free slag melt, which is accompanied by CaF2 evaporation from slag melt above 1503 K. Below 1503 K, only near-spherical CaF2 crystals form with an incubation time of less than 1 s, and the crystallization is completed within 1 s. The addition of 8.1wt% TiO2 largely prevents the fluoride evaporation from slag melt and promotes the slag crystallization. TiO2 addition leads to the precipitation of needle-like perovskite (CaTiO3) crystals instead of CaO crystals in the slag. The crystallization of perovskite (CaTiO3) occurs by bulk nucleation and diffusion-controlled one-dimensional growth.

  8. Effects of CaO/SiO2 Ratio and Na2O Content on Melting Properties and Viscosity of SiO2-CaO-Al2O3-B2O3-Na2O Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Chen; Cai, Dexiang; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg

    2016-09-01

    This paper investigated the effects of CaO/SiO2 ratio (0.8 to 1.5) and Na2O concentration (6 to 9 wt pct) on melting properties and viscosity of SiO2-CaO-Al2O3-B2O3-Na2O mold fluxes with a fixed B2O3 content. Melting properties of fluxes (softening temperature T s, hemispherical temperature T h, and fluidity temperature T f) were determined by the hot-stage microscopy method. Viscosity was measured using rotating cylindrical viscometer, and structure of quenched fluxes was studied using Raman spectroscopy. Equilibrium phases in the SiO2-CaO-Al2O3-B2O3-Na2O system were calculated using FactSage. It was found that T h decreased with increasing CaO/SiO2 ratio from 0.8 to 1.0 and increased with a further increase in the CaO/SiO2 ratio to 1.5. The effect of Na2O content in the range of 6 to 9 wt pct on T h of the flux with a fixed CaO/SiO2 ratio at 1.3 was marginal. Increasing CaO/SiO2 ratio and Na2O content increased the break temperature and reduced the value of viscosity at 1673 K (1400 °C). Viscosity of liquid fluxes was discussed in the relationship with the flux structure. Melting properties and viscosity of boracic fluxes were compared with those of industrial fluorine-containing mold fluxes.

  9. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO 2, ZrO 2, Al 2O 3, and Ta 2O 5 from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Dobson, Kevin D.; McQuillan, A. James

    2000-02-01

    In situ infrared spectroscopy has been used to investigate the adsorption of a range of simple aromatic carboxylic acids from aqueous solution to metal oxides. Thin films of TiO 2, ZrO 2, Al 2O 3 and Ta 2O 5 were prepared by evaporation of aqueous sols on single reflection ZnSe prisms. Benzoic acid adsorbed very strongly to ZrO 2, in a bridging bidentate fashion, but showed only weak adsorption to TiO 2 and Ta 2O 5. Substituted aromatic carboxylic acids; salicylic, phthalic and thiosalicylic, were found to adsorb to each metal oxide. Salicylic and phthalic acids adsorbed to the metal oxides via bidentate interactions, involving coordination through both carboxylate and substituent groups. Thiosalicylic acid adsorbed to the metal oxides as a bridging bidentate carboxylate with no coordination through the thiol substituent group.

  10. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) – Comparison between TiO2 and Al2O3 overcoatings

    SciTech Connect

    Zhang, Hongbo; Canlas, Christian; Kropf, A. Jeremy; Elam, Jeffrey W.; Dumesic, James A; Marshall, Christopher L.

    2015-01-01

    TiO2 atomic layer deposition (ALD) overcoatings were applied to copper chromite catalysts to increase the stability for 2-furfuraldehyde (“furfural”) hydrogenation. After overcoating, about 75% activity was preserved compared to neat copper chromite: much higher activity than an alumina ALD overcoated catalyst with a similar number of ALD cycles. The effects of ALD TiO2 on the active Cu nanoparticles were studied extensively using both in-situ TPR/isothermal-oxidation and in-situ furfural hydrogenation via Cu XAFS. The redox properties of Cu were modified only slightly by the TiO2 ALD overcoat. However, a subtle electronic interaction was observed between the TiO2 ALD layers and the Cu nanoparticles. With calcination at 500 °C the interaction between the TiO2 overcoat and the underlying catalyst is strong enough to inhibit migration and site blocking by chromite, but is sufficiently weaker than the interaction between the Al2O3 overcoat and copper chromite that it does not strongly inhibit the catalytic activity of the copper nanoparticles.

  11. Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO2/Al2O3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling.

    PubMed

    Ostadhossein, Alireza; Kim, Sung-Yup; Cubuk, Ekin D; Qi, Yue; van Duin, Adri C T

    2016-04-01

    Atomically deposited layers of SiO2 and Al2O3 have been recognized as promising coating materials to buffer the volumetric expansion and capacity retention upon the chemo-mechanical cycling of the nanostructured silicon- (Si-) based electrodes. Furthermore, silica (SiO2) is known as a promising candidate for the anode of next-generation lithium ion batteries (LIBs) due to its superior specific charge capacity and low discharge potential similar to Si anodes. In order to describe Li-transport in mixed silica/alumina/silicon systems we developed a ReaxFF potential for Li-Si-O-Al interactions. Using this potential, a series of hybrid grand canonical Monte Carlo (GCMC) and molecular dynamic (MD) simulations were carried out to probe the lithiation behavior of silica structures. The Li transport through both crystalline and amorphous silica was evaluated using the newly optimized force field. The anisotropic diffusivity of Li in crystalline silica cases is demonstrated. The ReaxFF diffusion study also verifies the transferability of the new force field from crystalline to amorphous phases. Our simulation results indicates the capability of the developed force field to examine the energetics and kinetics of lithiation as well as Li transportation within the crystalline/amorphous silica and alumina phases and provide a fundamental understanding on the lithiation reactions involved in the Si electrodes covered by silica/alumina coating layers.

  12. Self-cleaning and superhydrophilic wool by TiO2/SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Pakdel, Esfandiar; Daoud, Walid A.; Wang, Xungai

    2013-06-01

    Wool fabrics were functionalised using TiO2 and TiO2/SiO2 nanocomposites through a low-temperature sol-gel method. Titanium terta isopropoxide (TTIP) and tetra ethylorthosilicate (TEOS) were employed as precursors of TiO2 and SiO2, respectively. Nanocomposite sols were devised based on three molar ratio percentages of TiO2/SiO2 70:30, 50:50, and 30:70 to investigate the role of each component. The self-cleaning and hydrophilicity of wool fabrics were analysed based on the removal of coffee stain under UV and water droplet contact angle measurements, respectively. It was observed that applying TiO2/SiO2 50:50 and 30:70 sols to wool rendered the fabric superhydrophilic. Fabrics functionalised with TiO2/SiO2 30:70 showed the highest efficiency in stain removal, followed by samples functionalised with TiO2/SiO2 50:50.

  13. In situ analysis of phase transformation in sol-gel cogelified nanopowder mixture of Al 2O 3 and TiO 2 using synchrotron X-ray radiation diffraction experiments

    NASA Astrophysics Data System (ADS)

    Jianu, A.; Stanciu, L.; Groza, J. R.; Lathe, Ch.; Burkel, E.

    2003-01-01

    Aluminium titanate (Al 2TiO 5) has been selected for study due to its high melting point and thermal shock resistance. In situ analysis of phase transformation and of transformation kinetics of sol-gel powder mixture of alumina and titania cogelified samples was performed using high-temperature synchrotron radiation X-ray diffraction experiments. The high reactivity and molecular mixing of sol-gel cogelified precursor powders contributed to the evolution of the reaction. The stability of the TiO 2-tetragonal structure (anatase) increases due to Al 2O 3 presence. The temperature of the aluminium titanate endothermic reaction decreases when heating rate increases. The results obtained by in situ analysis have been used to establish the sintering parameters in order to obtain fully transformed, dense aluminium titanate bulk ceramics.

  14. Influences of CaO on Crystallization, Microstructures, and Properties of BaO-Al2O3-B2O3-SiO2 Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Bo; Tang, Bo; Xu, Mingjiang

    2015-10-01

    We have developed BaO-CaO-Al2O3-B2O3-SiO2 glass-ceramics with high thermal coefficient of expansion (TCE) to overcome thermal mismatch at board level. The crystalline phases include quartz (major), cristobalite (minor), and bazirite BaZrSi3O9 (minor). Calculations from whole-pattern fitting show that the crystallinity varies slightly within the range of 33.48% to 34.89%, while the mass fraction of the phases changes remarkably with the CaO content. This indicates that CaO cannot promote crystallization of Ba-Al-B-Si glass, but effectively suppresses the phase transformation from quartz to cristobalite, making the thermal expansion curves linear. An empirical equation for the TCE versus the temperature and the amount of CaO is established. Furthermore, the densification mechanism of Ca modifiers is revealed. Due to its higher field strength than Ba, substitution of Ca increases the glass viscosity and inhibits ion diffusion. Excessive CaO is thus harmful to the density, bending strength, and electrical properties. The sample with 10 wt.% CaO sintered at 950°C exhibited high bending strength (154.1 MPa) and high TCE (12.38 ppm/°C) as well as good electrical properties ( ɛ = 6.2, tan δ = 5 × 10-4, ρ = 3.8 × 1012 Ω cm).

  15. Stability of the assemblage orthopyroxene-sillimanite-quartz in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Annersten, H.; Seifert, F.

    1981-06-01

    The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate →gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz→ cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)≧0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.

  16. Ladle and Continuous Casting Process Models for Reduction of SiO2 in SiO2-Al2O3-CaO Slags by Al in Fe-Al(-Si) Melts

    NASA Astrophysics Data System (ADS)

    Park, Jiwon; Sridhar, S.; Fruehan, Richard J.

    2015-02-01

    Based on a mixed control or two-phase mass transfer model considering mass transport in the metal and the slag phases, process models for ladle and continuous castor mold were developed to predict the changes in the metal and the slag chemistry and viscosity. In the ladle process model, the rate of reaction is primarily determined by stirring gas flow rate, which greatly alters the mass transports of the metal and the slag phases. In the continuous casting process model, the effects of the Al, Si, and SiO2 contents in the incoming flow of the fluid phases, casting speed, mold flux consumption rate, and depth of the liquid mold flux pool on the steady-state compositions of the metal and the mold flux were assessed.

  17. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  18. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    PubMed

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding. PMID:22962749

  19. Structure and Crystallization Kinetics of Glassy CaO-Al2O3-SiO2-CaF2-Na2O Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Yan, Baijun; Shu, Qifeng; Chou, Kuochih

    2015-12-01

    The structure and the crystallization kinetics of CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicities were investigated by solid-state 29Si nuclear magnetic resonance with magic angular spinning (MAS-NMR) and differential thermal analysis (DTA) technique, respectively. 29Si MAS-NMR study indicated that the increase of basicity decreased the degree of polymerization of mold fluxes. With the increasing basicity, Q 0, Q 2, and Q 3 gradually decreased, while Q 1 gradually increased, and the overall degree of polymerization was reduced. Crystallization analysis showed the cuspidine first crystallized from glass, and wollastonite crystal crystallized at elevated temperature for the samples with basicity (defined as CaO/SiO2 mass ratio) values of 0.9 and 1.0, respectively. Only cuspidine was found to crystallize from glass for the samples with basicity values of 1.1 and 1.2, indicating that the crystallization of wollastonite was suppressed with the increase of basicity. Crystallization kinetics analysis by DTA and field emission scanning electron microscopy equipped with energy dispersive spectroscopy investigation showed that growth mechanism of cuspidine is mainly of the diffusion-controlled three-dimensional growth with the increasing number of nuclei during heating. Activation energies for growth of cuspidine decreased with the increasing basicity of mold flux, which indicated that the crystallization ability was enhanced with the increase of basicity. The relationship between structure and crystallization of mold fluxes was established.

  20. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate

  1. Melting in the system CaO-MgO-Al2O3-SiO2-FeO-Cr2O3 spanning the plagioclase-spinel lherzolite transition at 7 to 10 kbar: experiments versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Keshav, S.; Tirone, M.; Gudfinnsson, G.; Presnall, D.

    2008-12-01

    Voluminous basaltic magmas erupt at mid-oceanic ridges (mid-ocean ridge basalts, MORB) as a consequence of mantle upwelling and melting beneath spreading plates. However, because the geochemistry of MORB is distinct from OIB (ocean-island basalts), both have great petrogenetic significance and carry important information about the chemical and physical properties/dynamics of the mantle. In the context of MORB, a critical yet unresolved question is how phase transitions within a polybaric melting zone affect melt productivity and thereby, possibly exert control on major and trace element composition of erupted magmas. Currently, the disagreements on these issues are fundamental, with great consequences that extend beyond petrology to global issues of potential temperatures, mantle melting, mantle heterogeneity, and mantle dynamics. Thermodynamics show that melt productivity depends critically on the transition reaction, and melting can in principle increase, decrease, or even stop at a transition. Phase equilibrium work from both systems CaO-MgO-Al2O3-SiO2-Na2O (CMASN) and CMAS-FeO (CMASF) have been used to argue that melt productivity may increase at the plagioclase-spinel (pl-sp) transition because the univariant solidus transition reaction has a positive dT/dP slope in these systems, moving to higher pressure relative to the CMAS system. However, melting models derived on the basis of MELTS and pMELTS show that the solidus has a negative slope on the pl-sp transition. If correct, this would cause suppression of melting as the mantle decompresses along a pertinent adiabat. Owing to these vast discrepancies between experiments and thermodynamics and to further clarify MORB genesis, in this work we present melting phase relations in the system CMASFCr at the plagioclase-spinel lherzolite transition from 7 to 10 kbar. Cr was chosen since recent work has shown that the addition of Cr to CMAS has an unusually large effect on Ca/Al of melt compositions at 1.1 GPa. With

  2. Nanoimprint lithography using TiO2-SiO2 ultraviolet curable materials

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-05-01

    Ultraviolet nanoimprint lithography has great potential for commercial device applications that are closest to production such as optical gratings, planar waveguides, photonic crystals, semiconductor, displays, solar cell panel, sensors, highbrightness LEDs, OLEDs, and optical data storage. I report and demonstrate the newly TiO2-SiO2 ultraviolet curable materials with 20-25 wt% ratio of high titanium for CF4/O2 etch selectivity using nanoimprint lithography process. The multiple structured three-dimensional micro- and nanolines patterns were observed to be successfully patterned over the large areas. The effect of titanium concentration on CF4/O2 etch selectivity with pattern transferring carbon layer imprinting time was investigated. CF4/O2 etching rate of the TiO2-SiO2 ultraviolet curable material was approximately 3.8 times lower than that of the referenced SiO2 sol-gel ultraviolet curable material. The TiO2-SiO2 ultraviolet curable material with high titanium concentration has been proved to be versatile in advanced nanofabrication.

  3. Comparative study of Laser induce damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm.

    PubMed

    Jiao, Hongfei; Ding, Tao; Zhang, Qian

    2011-02-28

    A comparative study of laser induced damage of HfO2/SiO2 and TiO2/SiO2 mirrors at 1064 nm has been carried out. One TiO2/SiO2 mirror with absorption of 300 ppm and two HfO2/SiO2 mirrors with absorption of 40 and 4.5 ppm were fabricated using electron beam evaporation method. For r-on-1 test, all HfO2/SiO2 mirrors with low average absorption are above 150 J/cm2 at 10 ns. However, the TiO2/SiO2 mirrors with high average absorption are just 9.5 J/cm2, which are probably due to the rather high absorption and rather low band gap energy. Meanwhile, all the samples were irradiated from front and back side respectively using the raster scan test mode. In case of front side irradiation, it is found that: for TiO2/SiO2 high reflectors, the representative damage morphologies are shallow pits that were probably caused by absorbing centers. However, for HfO2/SiO2 high reflectors, the dominant damage morphologies are micrometer-sized nodules ejected pits and the delamination initiating from the pits. The absorption of HfO2/SiO2 coatings is low enough to have minor influence on the laser damage resistance. In case of backside irradiation, the morphology of TiO2/SiO2 mirrors is mainly center melted pits that are thermal melting induced damage. Meanwhile, HfO2/SiO2 mirrors with isometrical fracture rings damage morphology are thermal induced stress damage.

  4. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A

    2013-07-01

    This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed.

  5. Quench-ring assisted flame synthesis of SiO2-TiO2 nanostructured composite.

    PubMed

    Worathanakul, Patcharin; Jiang, Jingkun; Biswas, Pratim; Kongkachuichay, Paisan

    2008-12-01

    A flame aerosol reactor (FLAR) was used to synthesize SiO2-based nanocomposite materials of SiO2-TiO2 in different precursor molar ratios and quench ring positions. Processing conditions were determined that resulted in formation of different crystal phases at different precursor concentration molar ratios. The results showed that the addition of SiO2 inhibited TiO2 phase transformation from anatase to rutile. The different morphology of SiO2-TiO2 nanocomposite was primarily the result of changing the quench ring position. Quenching can stop the growth kinetics, and this was obtained by locating the quench ring at different positions in the particle formation process. At a lower position, a binary mixture of SiO2-TiO2 was obtained in a core-shell structure. The difference in residence time for sintering and coalescence yielded different morphologies of SiO2-TiO2 nanocomposites. The results from FTIR confirmed Si-O-Ti bonding for all samples. The samples of SiO2-TiO2 exhibited better suspension in liquid than pure TiO2 as confirmed by zeta potential measurements.

  6. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A

    2013-07-01

    This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed. PMID:23602671

  7. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions.

  8. TiO2 nanoparticles doped SiO2 films with ordered mesopore channels: a catalytic nanoreactor.

    PubMed

    Saha, Jony; Mitra, Anuradha; Dandapat, Anirban; De, Goutam

    2014-04-01

    Titanium dioxide (TiO2) incorporated ordered 2D hexagonal mesoporous silica (SiO2) films on a glass substrate were fabricated for use as a catalytic nanoreactor. Films were prepared using a tetraethyl orthosilicate (TEOS) derived SiO2 sol and a commercially available dispersion of TiO2 nanoparticles (NPs) in the presence of pluronic P123 as the structure directing agent. The effect of TiO2 doping (4-10 mol% with respect to the equivalent SiO2) into the ordered mesoporous SiO2 matrix was thoroughly investigated. The undoped SiO2 film showed a mesostructural transformation after heat-treatment at 350 °C whereas incorporation of TiO2 restricted such a transformation. Among all the TiO2 incorporated films, TEM showed that the 7 equivalent mol% TiO2 doped SiO2 film (ST-7) had an optimal composition which could retain the more organized 2D hexagonal (space group p6mm)-like mesostructures after heat-treatment. The catalytic activities of the TiO2 doped (4-10 mol%) films were investigated for the reduction of toxic KMnO4 in an aqueous medium. ST-7 film showed the maximum catalytic activity, as well as reusability. A TEM study on the resultant solution after KMnO4 reduction revealed the formation of MnO2 nanowires. It was understood that the embedded TiO2 NPs bonded SiO2 matrix increased the surface hydroxyl groups of the composite films resulting in the generation of acidic sites. The catalytic process can be explained by this enhanced surface acidity. The mesoporous channel of the ST-7 films with TiO2 doping can be used as a nanoreactor to form extremely thin MnO2 nanowires.

  9. A thermodynamic analysis of the system LiAlSiO4-NaAlSiO4-Al2O3-SiO2-H2O based on new heat capacity, thermal expansion, and compressibility data for selected phases

    NASA Astrophysics Data System (ADS)

    Fasshauer, Detlef W.; Chatterjee, Niranjan D.; Cemic, Ladislav

    Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All Cp measurements have been executed by DSC in the temperature range 133-823K. The data for T>=223K have been fitted to the function Cp(T)=a+cT -2+dT -0.5+fT -3, the fit parameters being The thermal expansion data (up to 525°C) have been fitted to the function V0(T)=V0(T) [1+v1 (T-T0)+v2 (T-T0)2], with T0=298.15K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way.

  10. Preparation and characterization of transparent hydrophilic photocatalytic TiO2/SiO2 thin films on polycarbonate.

    PubMed

    Fateh, Razan; Dillert, Ralf; Bahnemann, Detlef

    2013-03-19

    Transparent hydrophilic photocatalytic TiO2 coatings have been widely applied to endow the surfaces self-cleaning properties. A mixed metal oxide (TiO2/SiO2) can enhance the photocatalytic performance improving the ability of surface adsorption and increasing the amount of hydroxyl surface groups. The present work introduces a systematic study concerning the effect of the SiO2 addition to TiO2 films on the wettability, the photocatalytic activity, the adhesion strength, and the mechanical stability of the films. Transparent hydrophilic photocatalytic TiO2/SiO2 thin films were used to coat the polycarbonate (PC) substrate which was precoated by an intermediate SiO2 layer. The TiO2/SiO2 thin film was prepared employing a bulk TiO2 powder (Sachtleben Hombikat UV 100) and different molar ratios of tetraethoxysilane in acidic ethanol. A dip-coating process was used to deposit the films onto the polycarbonate substrate. The films were characterized by UV/vis spectrophotometry, FTIR spectroscopy, ellipsometry, BET, AFM, XRD, and water contact angle measurements. The mechanical stability and the UV resistance were examined. The photocatalytic activity of the coated surface was calculated from the kinetic analysis of methylene blue photodegradation measurements and compared with the photocatalytic activity of Pilkington Activ sheet glass. The coated surfaces displayed considerable photocatalytic activity and superhydrophilicity after exposure to UV light. The addition of SiO2 results in an improvement of the photocatalytic activity of the TiO2 film reaching the highest value at molar ratio TiO2/SiO2 equal to 1:0.9. The prepared films exhibit a good stability against UV(A) irradiation.

  11. Active Sites on the Surface of Nano-Sized SiO2-TiO2 Composites

    NASA Astrophysics Data System (ADS)

    Valova, M. S.; Koryakova, O. V.; Maksimovskikh, A. I.; Fedorova, O. V.; Murashkevich, A. N.; Alisienok, O. A.

    2014-07-01

    The nature and amount of active sites on the surface of nano-sized SiO2-TiO2 oxides were studied by FTIR spectroscopy and back-titration methods. Increasing the TiO2 content in the SiO2-TiO2 composites increased the amount of activated surface H2O and adsorbed CO2. This increased the amount of active basic centers on the oxide surface and caused the first of two observed mechanisms for benzaldehyde adsorption (with and without its activation) to begin to prevail.

  12. Nanoporous SiO2/TiO2 coating with enhanced interfacial compatibility for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobing; Cao, Hengchun; You, Jing; Cheng, Xingbao; Xie, Youtao; Cao, Huiliang; Liu, Xuanyong

    2015-11-01

    Topographic modification in nanoscale is one of the most often used strategies to enhance the interfacial biocompatibility of implant materials. The aim of this work is to produce SiO2/TiO2 coatings with nanoporous structures and favorable biological properties by atmospheric plasma spraying technology and subsequently hydrothermal etching method in hydrogen fluoride solution. The effects of hydrothermal time and temperature on the microstructures and osteoblast behavior of the SiO2/TiO2 coatings were investigated. Results demonstrated that the as-sprayed SiO2/TiO2 coating was mainly composed of rutile and quartz phases. After etching, nanoporous topographies were formed on the surface of the coatings and the hydrothermal parameters had important influences on the size and shape of the pores. The interconnected network pores on the coating surface could only produce at the appropriate hydrothermal conditions (the hydrothermal time and temperature were 60 min and 100 °C, respectively). Compared to TiO2 and SiO2/TiO2 coatings, nanoporous SiO2/TiO2 coatings could enhance osteoblast adhesion and promote cell proliferation. The results suggested the potential application of the porous coatings for enhancing the biological performance of the currently used dental and orthopedic implant materials.

  13. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  14. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: A comparative study of photo catalysis on acid red 88

    NASA Astrophysics Data System (ADS)

    Balachandran, K.; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P.

    2014-07-01

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m2/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4 h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  15. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88. PMID:24682063

  16. TiO2 nanoparticles versus TiO2-SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88.

    PubMed

    Balachandran, K; Venckatesh, Rajendran; Sivaraj, Rajeshwari; Rajiv, P

    2014-07-15

    A novel, simple, less time-consuming and cost-effective wet chemical technique was used to synthesis TiO2 nanoparticles and TiO2-SiO2 nanocomposites using Titanium tetra isopropoxide (TTIP) as a precursor relatively at low temperature in acidic pH. Titania sol was prepared by hydrolysis of TTIP and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6h and dried at room temperature. The resulting powders were characterized by UV-Visible spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and transmission electron microscope (TEM). The grain size of the particles was calculated by X-ray diffraction, surface morphology and chemical composition was determined from scanning electron microscopy-energy dispersive spectroscopy, metal oxide stretching was confirmed from FT-IR spectroscopy, band gap was calculated using UV-Visible spectroscopy. Surface area of the composite as calculated by BET analyzer and it was found to be 65 and 75 m(2)/g for TiO2 and TiO2-SiO2 respectively. The photocatalytic experiments were performed with aqueous solution of acid red 88 with TiO2 and TiO2-SiO2 batch studies for 4h irradiation, direct photolysis of TiO2 and TiO2-SiO2 contributed 94.2% and 96.5% decomposition in solar radiation for the optimized concentration of acid red 88.

  17. Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications

    NASA Astrophysics Data System (ADS)

    Arun Kumar, D.; Merline Shyla, J.; Xavier, Francis P.

    2012-12-01

    The use of titania-silica in photocatalytic process has been proposed as an alternative to the conventional TiO2 catalysts. Mesoporous materials have been of great interest as catalysts because of their unique textural and structural properties. Mesoporous TiO2, SiO2 nanoparticles and TiO2/SiO2 nanocomposites were successfully synthesized by sol-gel method using titanium (IV) isopropoxide, tetra-ethylorthosilicate as starting materials. The synthesized samples are characterized by X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, Brunauett-Emmett-Teller and field-dependent photoconductivity. The UV-Vis spectrum of as-synthesized samples shows similar absorption in the visible range. The crystallite size of the as-synthesized samples was calculated by Scherrer's formula. The BET surface area for TiO2/SiO2 nanocomposite is found to be 303 m2/g and pore size distribution has average pore diameter about 10 nm. It also confirms the absence of macropores and the presence of micro and mesopores. The field-dependent photoconductivity of TiO2/SiO2 nanocomposite shows nearly 300 folds more than that of TiO2 nanoparticle for a field of 800 V/cm.

  18. Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore

    PubMed Central

    Venkatesan, Bala Murali; Polans, James; Comer, Jeffrey; Sridhar, Supriya; Wendell, David; Aksimentiev, Aleksei

    2011-01-01

    Solid-state nanopore sensors are highly versatile platforms for the rapid, label-free electrical detection and analysis of single molecules, applicable to next generation DNA sequencing. The versatility of this technology allows for both large scale device integration and interfacing with biological systems. Here we report on the development of a hybrid biological solid-state nanopore platform that incorporates a highly mobile lipid bilayer on a single solid-state Al2O3 nanopore sensor, for the potential reconstitution of ion channels and biological nanopores. Such a system seeks to combine the superior electrical, thermal, and mechanical stability of Al2O3 solid-state nanopores with the chemical specificity of biological nanopores. Bilayers on Al2O3 exhibit higher diffusivity than those formed on TiO2 and SiO2 substrates, attributed to the presence of a thick hydration layer on Al2O3, a key requirement to preserving the biological functionality of reconstituted membrane proteins. Molecular dynamics simulations demonstrate that the electrostatic repulsion between the dipole of the DOPC headgroup and the positively charged Al2O3 surface may be responsible for the enhanced thickness of this hydration layer. Lipid bilayer coated Al2O3 nanopore sensors exhibit excellent electrical properties and enhanced mechanical stability (GΩ seals for over 50 h), making this technology ideal for use in ion channel electrophysiology, the screening of ion channel active drugs and future integration with biological nanopores such as α-hemolysin and MspA for rapid single molecule DNA sequencing. This technology can find broad application in bio-nanotechnology. PMID:21487665

  19. Photocatalytic degradation of dyestuff wastewater with Zn(2+)-TiO2-SiO2 nanocomposite.

    PubMed

    Sui, Guozhe; Liu, Tao; Li, Jinlong; Jia, Lihua; Lv, Jun

    2013-06-01

    A novel photocatalyst of Zn(2+)-TiO2-SiO2 nanocomposite has been prepared by a sol-gel method, which is used for the degradation of Rhodamine B (RhB) and Congo red (CR) as the probe dyestuff that are notorious organic compounds present in dyes wastewater. The prepared samples are characterized by low temperature N2 adsorption (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS) and Fourier transformed infrared spectroscopy (FT-IR). It is found that the nanocomposite of Zn(2+)-TiO2-SiO2 exhibits much higher photocatalytic activity under both UV light and visible light irradiation as compared with Degussa P25, Zn(2+)-TiO2 and SiO2-TiO2. The photodegradation efficiencies of RhB (5 mg/L) and CR (10 mg/L) can reach above 90% and 83% for 1.5 h visible light irradiation, respectively. Synergetic effect between Zn(2+)-SiO2-doping not only inhibit the crystal growth and anatase-to-rutile transformation of TiO2 nanocatalyst, but also extend the light response to the visible region, which provides a good way and material in the degradation field of dyes wastewater.

  20. Physical and electrical properties of band-engineered SiO2/(TiO2) x (SiO2)1- x stacks for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Oh, Jinho; Na, Heedo; Mok, In-Su; Kim, Jonggi; Lee, Kyumin; Sohn, Hyunchul

    2012-09-01

    In our study, the physical properties of (TiO2) x (SiO2)1- x , including band-gap, band-offset, and thermal stability and the electrical properties of band-engineered SiO2/(TiO2) x (SiO2)1- x tunnel barrier stacks, including the tunneling current and charge-trapping characteristics for applications to nonvolatile memory devices were investigated. It was observed that the band-gap and band-offset of (TiO2) x (SiO2)1- x can be controlled by adjustment in the composition of the (TiO2) x (SiO2)1- x films. Ti-silicate film with TiO2:SiO2 cycle ratio of 1:5 was maintained in an amorphous phase, even after annealing at 950 °C. The tunneling current of the band-engineered SiO2/(TiO2) x (SiO2)1- x stacked tunnel barrier was larger than that of a single SiO2 barrier under a higher external bias, while the tunneling current of a SiO2/(TiO2) x (SiO2)1- x stacked tunnel barrier under a lower external bias was smaller. Charge-trapping tests showed that the voltage shift for SiO2/(TiO2) x (SiO2)1- x is slightly larger than that for single SiO2.

  1. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite-dolomite marbles from the Greek Rhodope massif in the system CaO-MgO-Al 2O 3-SiO 2-CO 2 and indications of prior aragonite

    NASA Astrophysics Data System (ADS)

    Proyer, A.; Mposkos, E.; Baziotis, I.; Hoinkes, G.

    2008-08-01

    Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti-)clinohumite and phlogopite were observed in calcite-dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO-MgO-Al 2O 3-SiO 2-CO 2 (CMAS-CO 2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite-calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO 2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO 2, garnet has to be present in aluminous calcite-dolomite-marble at UHP conditions.

  2. Effects of high-temperature O2 annealing on Al2O3 blocking layer and Al2O3/Si3N4 interface for MANOS structures

    NASA Astrophysics Data System (ADS)

    Xu, Zhongguang; Zhu, Chenxin; Huo, Zongliang; Zhao, Shengjie; Liu, Ming

    2012-05-01

    In this paper, we have investigated the effects of O2 post-deposition annealing (PDA) on metal/Al2O3/Si3N4/SiO2/Si (MANOS) devices. Compared with low-energy plasma oxygen pre-treatment and the N2 PDA process, the O2 PDA process can lead to a significant retention improvement. The improvement is attributed to the removal of oxygen vacancies in Al2O3 block oxide and the oxygen incorporation at the Si3N4/Al2O3 interfacial layer which is determined by x-ray photoelectron spectroscopy (XPS) depth profiling and electrical characteristics. Metal/Al2O3/SiO2/Si (MAOS) devices are also studied to confirm these effects. As a result, we consider that the O2 PDA process is a crucial process for future MANOS-type memory devices.

  3. Prediction of 10-fold coordinated TiO2 and SiO2 structures at multimegabar pressures

    PubMed Central

    Lyle, Matthew J.; Pickard, Chris J.; Needs, Richard J.

    2015-01-01

    We predict by first-principles methods a phase transition in TiO2 at 6.5 Mbar from the Fe2P-type polymorph to a ten-coordinated structure with space group I4/mmm. This is the first report, to our knowledge, of the pressure-induced phase transition to the I4/mmm structure among all dioxide compounds. The I4/mmm structure was found to be up to 3.3% denser across all pressures investigated. Significant differences were found in the electronic properties of the two structures, and the metallization of TiO2 was calculated to occur concomitantly with the phase transition to I4/mmm. The implications of our findings were extended to SiO2, and an analogous Fe2P-type to I4/mmm transition was found to occur at 10 TPa. This is consistent with the lower-pressure phase transitions of TiO2, which are well-established models for the phase transitions in other AX2 compounds, including SiO2. As in TiO2, the transition to I4/mmm corresponds to the metallization of SiO2. This transformation is in the pressure range reached in the interiors of recently discovered extrasolar planets and calls for a reformulation of the equations of state used to model them. PMID:25991859

  4. Prediction of 10-fold coordinated TiO2 and SiO2 structures at multimegabar pressures.

    PubMed

    Lyle, Matthew J; Pickard, Chris J; Needs, Richard J

    2015-06-01

    We predict by first-principles methods a phase transition in TiO2 at 6.5 Mbar from the Fe2P-type polymorph to a ten-coordinated structure with space group I4/mmm. This is the first report, to our knowledge, of the pressure-induced phase transition to the I4/mmm structure among all dioxide compounds. The I4/mmm structure was found to be up to 3.3% denser across all pressures investigated. Significant differences were found in the electronic properties of the two structures, and the metallization of TiO2 was calculated to occur concomitantly with the phase transition to I4/mmm. The implications of our findings were extended to SiO2, and an analogous Fe2P-type to I4/mmm transition was found to occur at 10 TPa. This is consistent with the lower-pressure phase transitions of TiO2, which are well-established models for the phase transitions in other AX2 compounds, including SiO2. As in TiO2, the transition to I4/mmm corresponds to the metallization of SiO2. This transformation is in the pressure range reached in the interiors of recently discovered extrasolar planets and calls for a reformulation of the equations of state used to model them. PMID:25991859

  5. Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol.

    PubMed

    Zhang, Meihong; Shi, Liyi; Yuan, Shuai; Zhao, Yin; Fang, Jianhui

    2009-02-01

    Stable, neutral TiO(2) hydrosols were prepared using TiCl(4) as titanium source, HNO(3) as peptizing agent, and SiO(2) as stabilizer. Based on XRD, TEM, and FTIR measurements, the TiO(2) was rodlike anatase crystallite with a major axis of 15-25 nm and a minor axis of 5 nm. TiOSi bonds were formed, which suppressed the TiO(2) grain growth and stabilized the TiO(2) hydrosols. The isoelectric points (IEP) of the series hydrosols were 3.1-4.7 pH values and the absolute zeta potentials of the SiO(2)-modified TiO(2) hydrosols were much higher than 50.0 mV under neutral conditions. Methylene blue and reactive brilliant red X-3B were taken as the simulated pollutants to study the adsorption and photocatalytic properties of the obtained hydrosols. The results suggested that the prepared hydrosols had strong adsorption capacity for cationic pollutants rather than anionic ones, and high photodegradation rate of both cationic and anionic pollutants.

  6. Interfacial chemical bonding effect on the photocatalytic activity of TiO2-SiO2 nanocoupling systems.

    PubMed

    Fujishima, Musashi; Takatori, Hiroaki; Tada, Hiroaki

    2011-09-15

    TiO(2) nanoparticles (NPs) were deposited on the surfaces of SiO(2) microspheres with a mesoporous structure prepared by a hydrolysis-controlled sol-gel technique. The TiO(2) NPs were firmly combined on the surfaces of SiO(2) microspheres through the interfacial Si-O-Ti bonds. The coupling causes the bandgap widening up to 3.37 eV, enhancing the photocatalytic activity for the decomposition of acetaldehyde under illumination of UV-light (330 < λ < 400 nm). Density functional theory calculations for model clusters suggested that the observed results are derived from the lowering in the valence band edge energy with the interfacial bond formation.

  7. Influence of vanadia content onto TiO 2-SiO 2 matrix for photocatalytic oxidation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Ismail, Adel Ali; Matsunaga, Hideyuki

    2007-10-01

    Direct synthesis of vanadia onto titania-silica matrices as photocatalysts was achieved by using simple sol-gel method. This synthetic strategy revealed that the vanadia species could be loaded into TiO 2-SiO 2 matrices up to 18.5 wt%. Results from FTIR indicated that at low loading amounts of vanadia species (i.e. ⩽1), the formation of monolayer vanadia species onto the matrices was successfully fabricated; however, a polymeric vanadate could be formed with high loading of vanadia species. On such heterogeneous photocatalytic systems, the oxidation affinity of trichloroethylene was substantially affected by the loading amount and the degree of dispersion V 2O 5 particles onto the TiO 2-SiO 2 support matrices, indicating the exclusive effect of the V 2O 5 nanoparticles on this photocatalytic reaction. Clearly evident is that this polymeric vanadate was a relatively inactive photocatalysts for the oxidation of trichloroethylene.

  8. Double-layered TiO2-SiO2 nanostructured films with self-cleaning and antireflective properties.

    PubMed

    Zhang, Xintong; Fujishima, Akira; Jin, Ming; Emeline, Alexei V; Murakami, Taketoshi

    2006-12-21

    Dual function of self-cleaning and antireflection can be created in double-layered TiO2-SiO2 nanostructured films. The film were prepared by (1) layer-by-layer deposition of multilayered SiO2 nanoparticles with polydiallyldimethylammonium (PDDA) cations, (2) layer-by-layer deposition of multilayered titanate nanosheets with polications on PDDA/SiO2 multilayer films, and (3) burning out the polymer and converting titanate nanosheets into TiO2 by hearing at 500 degrees C. The as-prepared films, consisting of a porous SiO2 bottom layer and a dense TiO2 top layer, improved the transmittance of glass or quartz substrates, as demonstrated by transmission spectra collected at normal incidence. The photocatalytic properties of the films were studied by the change of the water contact angle together with the decay of the IR absorption of the hydrocarbon chain of octadecylphosphonic-acid-modified films under 2.6 mW cm-2 UV illumination. Both the antireflective and the photocatalytic properties of the films were dependent on the number of PDDA/nanosheet bilayers deposited. however, excellent surface wettability of the films for water was obtained, independent of the preparation conditions. The experimental findings are discussed in terms of the special structure of the double-layered nanostructured film.

  9. Theoretical prediction of Grüneisen parameter for SiO2.TiO2 bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Singh, Chandra K.; Pandey, Anjani K.; Pandey, Brijesh K.

    2016-05-01

    The Grüneisen parameter (γ) is very important to decide the limitations for the prediction of thermoelastic properties of bulk metallic glasses. It can be defined in terms of microscopic and macroscopic parameters of the material in which former is based on vibrational frequencies of atoms in the material while later is closely related to its thermodynamic properties. Different formulation and equation of states are used by the pioneer researchers of this field to predict the true sense of Gruneisen parameter for BMG but for SiO2.TiO2 very few and insufficient information is available till now. In the present work we have tested the validity of two different isothermal EOS viz. Poirrior-Tarantola EOS and Usual-Tait EOS to predict the true value of Gruneisen parameter for SiO2.TiO2 as a function of compression. Using different thermodynamic limitations related to the material constraints and analyzing obtained result it is concluded that the Poirrior-Tarantola EOS gives better numeric values of Grüneisen parameter (γ) for SiO2.TiO2 BMG.

  10. Studies on TiO2/SiO2 and Pd/TiO2/SiO2 Catalysts in Photoreduction of CO2 with H2O to Methanol

    NASA Astrophysics Data System (ADS)

    Zbudniewek, K.; Góralski, J.; Rynkowski, J.

    2012-12-01

    The development of industry induced a massive increase in the emission of carbon dioxide into the atmosphere. A large amount of CO2 and its general availability causes that it could be a cheap reactant in a reaction that runs in a way similar to photosynthesis in plants. Pure TiO2 and metal doped TiO2 are the most studied semiconductor catalysts for photoreduction of CO2. The TiO2/SiO2 and Pd/TiO2/SiO2 catalysts were prepared and studied by temperature-programmed desorption, X-ray diffraction analysis, SEM-EDS, temperature-programmed reduction and then used for the methanol synthesis. The photoactivity of Pd/TiO2/SiO2 catalysts in the reduction of CO2 with H2O was tested at room temperature using photoreactor equipped with 16 lamps. The wavelength was characteristic of near ultraviolet. Post-reaction products were identified with gas chromatograph equipped with the flame ionization detector. Pd doping made the catalysts photoactive and the photoactivity of catalysts was changing as follows: 1%Pd/5%TiO2/SiO2 > 1% Pd/10% TiO2/SiO2 > 1% Pd/15% TiO2/SiO2. Optimum ultraviolet radiation time in the photoreduction of CO2 to methanol was 7 h. An addition of Pd does not change the surface of the carrier.

  11. Synthesis and Characterization of Magnetized Photocatalyst Fe3O4/SiO2/TiO2 by Heteroagglomeration Method

    NASA Astrophysics Data System (ADS)

    Hasnah Dewi, Sari; Sutanto; Fisli, A.; Wardiyati, S.

    2016-08-01

    Magnetic photocatalysts Fe3O4/SiO2/TiO2 have been prepared using heteroagglomeration method. Synthesis of magnetic photocatalyst Fe3O4/SiO2/TiO2 was carried out through four stages : (1) synthesis of photocatalyst TiO2 nanoparticles by TiCl4 coprecipitation in ammonia solution, (2) synthesis of Fe3O4 nanoparticles through precipitation method using a mixture of Fe (III) / Fe (II) (2: 1 mole ratio) in ammonia solution, (3) coating with SiO2 through hydrolysis of silicate ion, (4) in the final stage, Fe3O4/SiO2 was mixed with TiO2 in hetero-agglomeration manner. Structure and morphology of resultan composites have been investigated by X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Fourier transform infrared (FTIR) and Transmission electron microscopy (TEM) were confirmed that composite Fe3O4/SiO2/TiO2 succefully synthesized. The functionality photocatalyst of the particles was tested by eliminating of methylene blue (MB) under UV light. The result showed the magnetite photocatalyst Fe3O4/SiO2/TiO2 has phototacalytic and absorbtion properties so that it has good performance at dyes removal in water higher than pure TiO2, and capable to perform repeatition process at least 4 times.

  12. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase.

  13. Well-organized meso-macroporous TiO2/SiO2 film derived from amphiphilic rubbery comb copolymer.

    PubMed

    Jeon, Harim; Lee, Chang Soo; Patel, Rajkumar; Kim, Jong Hak

    2015-04-15

    We report the facile synthesis of a well-organized meso-macroporous TiO2/SiO2 thin film with high porosity and good interconnectivity from a binary mixture (i.e., titania precursor and polymer template). Our process is based on self-assembly of the amphiphilic rubbery comb copolymer, poly(dimethylsiloxane)-g-poly(oxyethylene methacrylate) (PDMS-g-POEM) with titanium tetraisopropoxide (TTIP). SiO2 is self-provided by thermal oxidation of PDMS chains during calcination under air. The selective, preferential interaction between TTIP and the hydrophilic POEM chains was responsible for the formation of well-organized TiO2/SiO2 films, as supported by transmission electron microscopy, scanning electron microscopy, X-ray photospectroscopy, and X-ray diffraction analyses. We investigated in detail the effect of precursor content, solvent type, and polymer concentration on thin film morphology. Photodegradation of methyl orange by the well-organized meso-macroporous TiO2/SiO2 film was greater than that of a dense TiO2 film prepared without PDMS-g-POEM as well as a SiO2-etched TiO2 film. These results indicate that the well-organized structure and SiO2 doping of the TiO2 film play a pivotal role in enhancing its photocatalytic properties. PMID:25805232

  14. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase. PMID:24710980

  15. Biomedical bandpass filter for fluorescence microscopy imaging based on TiO2/SiO2 and TiO2/MgF2 dielectric multilayers

    NASA Astrophysics Data System (ADS)

    Butt, M. A.; Fomchenkov, S. A.; Ullah, A.; Verma, P.; Khonina, S. N.

    2016-08-01

    We report a design for creating a multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 & 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging.

  16. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass.

  17. Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece

    NASA Astrophysics Data System (ADS)

    Will, Thomas; Okrusch, Martin; Schmädicke, Esther; Chen, Guoli

    Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist-greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite=calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450°C at 9.5 to 10kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520°C and 19kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey.

  18. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    PubMed

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. PMID:25303146

  19. Bulk Crystallization in a SiO2/Al2O3/Y2O3/AlF3/B2O3/Na2O Glass: Fivefold Pseudo Symmetry due to Monoclinic Growth in a Glassy Matrix Containing Growth Barriers

    PubMed Central

    Wisniewski, Wolfgang; Seyring, Martin; Patzig, Christian; Höche, Thomas; Keshavarzi, Ashkan; Rüssel, Christian

    2016-01-01

    A glass with the mol% composition 17 Y2O3·33 Al2O3·40 SiO2·2 AlF3·3 Na2O·2 CeF3·3 B2O3 is heat treated at 1000 °C for 6–24 h. This results in the surface nucleation and growth of YAG. Nucleation and growth of star-shaped alumina and later of monoclinic β-Y2Si2O7 and orthorhombic δ-Y2Si2O7 are additionally observed in the bulk. Phase identification and localization are performed by electron backscatter diffraction (EBSD) as well as TEM analysis. The monoclinic β-Y2Si2O7 observed in the bulk occurs in the form of large, crystal agglomerates which range from 50 to 120 μm in size. The individual crystals are aligned along the c-axis which is the fastest growing axis. Ten probability maxima are observed in the pole-figures illustrating the rotation of orientations around the c-axes indicating a fivefold symmetry. This symmetry is caused by multiple twinning which results in a high probability of specific orientation relationships with rotation angles of ~36°, ~108° (also referred to as the pentagon angle) and ~144° around the c-axis. All these rotation angles are close to the multiples of 36° which are required for an ideal fivefold symmetry. This is the first report of a fivefold symmetry triggered by the presence of barriers hindering crystal growth. PMID:26813152

  20. Bulk Crystallization in a SiO2/Al2O3/Y2O3/AlF3/B2O3/Na2O Glass: Fivefold Pseudo Symmetry due to Monoclinic Growth in a Glassy Matrix Containing Growth Barriers.

    PubMed

    Wisniewski, Wolfgang; Seyring, Martin; Patzig, Christian; Höche, Thomas; Keshavarzi, Ashkan; Rüssel, Christian

    2016-01-01

    A glass with the mol% composition 17 Y2O3·33 Al2O3·40 SiO2·2 AlF3·3 Na2O·2 CeF3·3 B2O3 is heat treated at 1000 °C for 6-24 h. This results in the surface nucleation and growth of YAG. Nucleation and growth of star-shaped alumina and later of monoclinic β-Y2Si2O7 and orthorhombic δ-Y2Si2O7 are additionally observed in the bulk. Phase identification and localization are performed by electron backscatter diffraction (EBSD) as well as TEM analysis. The monoclinic β-Y2Si2O7 observed in the bulk occurs in the form of large, crystal agglomerates which range from 50 to 120 μm in size. The individual crystals are aligned along the c-axis which is the fastest growing axis. Ten probability maxima are observed in the pole-figures illustrating the rotation of orientations around the c-axes indicating a fivefold symmetry. This symmetry is caused by multiple twinning which results in a high probability of specific orientation relationships with rotation angles of ~36°, ~108° (also referred to as the pentagon angle) and ~144° around the c-axis. All these rotation angles are close to the multiples of 36° which are required for an ideal fivefold symmetry. This is the first report of a fivefold symmetry triggered by the presence of barriers hindering crystal growth. PMID:26813152

  1. Bulk Crystallization in a SiO2/Al2O3/Y2O3/AlF3/B2O3/Na2O Glass: Fivefold Pseudo Symmetry due to Monoclinic Growth in a Glassy Matrix Containing Growth Barriers

    NASA Astrophysics Data System (ADS)

    Wisniewski, Wolfgang; Seyring, Martin; Patzig, Christian; Höche, Thomas; Keshavarzi, Ashkan; Rüssel, Christian

    2016-01-01

    A glass with the mol% composition 17 Y2O3·33 Al2O3·40 SiO2·2 AlF3·3 Na2O·2 CeF3·3 B2O3 is heat treated at 1000 °C for 6-24 h. This results in the surface nucleation and growth of YAG. Nucleation and growth of star-shaped alumina and later of monoclinic β-Y2Si2O7 and orthorhombic δ-Y2Si2O7 are additionally observed in the bulk. Phase identification and localization are performed by electron backscatter diffraction (EBSD) as well as TEM analysis. The monoclinic β-Y2Si2O7 observed in the bulk occurs in the form of large, crystal agglomerates which range from 50 to 120 μm in size. The individual crystals are aligned along the c-axis which is the fastest growing axis. Ten probability maxima are observed in the pole-figures illustrating the rotation of orientations around the c-axes indicating a fivefold symmetry. This symmetry is caused by multiple twinning which results in a high probability of specific orientation relationships with rotation angles of ~36°, ~108° (also referred to as the pentagon angle) and ~144° around the c-axis. All these rotation angles are close to the multiples of 36° which are required for an ideal fivefold symmetry. This is the first report of a fivefold symmetry triggered by the presence of barriers hindering crystal growth.

  2. Preparation and photocatalytic properties of nanometer-sized magnetic TiO2/SiO2/CoFe2O4 composites.

    PubMed

    Li, Hansheng; Zhang, Yaping; Wu, Qin; Wang, Xitao; Liu, Changhao

    2011-11-01

    Magnetic TiO2/SiO2/CoFe2O4 nanoparticles (TiO2/SCFs) were prepared by a sol-gel process in a reverse microemulsion combined with solvent-thermal technique. TiO2/SCFs were characterized by Fourier transform infrared spectrometry, thermogravimetric analysis-differential scanning calorimetry, X-ray diffraction, Raman spectrometry, TEM, BET specific surface area measurement, and magnetic analysis. Structure analyses indicated that TiO2/SCFs presented a core-shell structure with TiO2 uniformly coating on SiO2/CoFe2O4 nanomagnets (SCFs) and typical ferromagnetic hysteresis. TiO2/SCFs showed larger specific surface area and better photocatalytic activities than TiO2 and TiO2/CoFe2O4 photocatalysts prepared by the same method. The doping interaction between TiO2 and CoFe2O4 reduced thanks to the inert SiO2 mesosphere.

  3. Self-cleaning and depollution of fiber reinforced cement materials modified by neutral TiO2/SiO2 hydrosol photoactive coatings

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Lu, ChunHua; Xiong, JiRu

    2014-04-01

    Environmental pollution has an evidently adverse impact on the buildings that are constructed by the glass fiber reinforced cement (GRC) materials. In the present work, the stable, neutral TiO2/SiO2 hydrosols were prepared by using the Ti(SO4)2 as titanium source, HNO3 as peptizing agent, and SiO2 as stabilizer through a simple and low cost process. The morphologies and structures of TiO2/SiO2 hydrosol were further characterized by the TEM, SEM, XRD, and FTIR measurement. In the synthetic hydrosol, lots of nanoparticles with the diameters in the range of 10-20 nm can be observed. Tisbnd Osbnd Si band were formed, as observed from the FTIR spectrum. The Na2O·SiO2 was detected from the SEM. After drying the TiO2/SiO2 hydrosol, the XRD shown that the TiO2 has an anatase structure and the SiO2 is amorphous. The TiO2/SiO2 hydrosol can be compactly coated on the GRC surface due to the existence of Na2O·SiO2 binder and exhibited high photocatalytic activity and stability in the degradation of Rhodamine B.

  4. Thermochemistry of glasses and liquids in the systems CaMgSi 2O 6-CaAl 2Si 2O 8-NaAlSi 3O 8, SiO 2-CaAl 2Si 2O 8-NaAlSi 3O 8 and SiO 2-Al 2O 3-CaO-Na 2O

    NASA Astrophysics Data System (ADS)

    Navrotsky, A.; Hon, R.; Weill, D. F.; Henry, D. J.

    1980-10-01

    Enthalpies of solution in 2PbO· B 2O 3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO 2-SiO 2, Ca 0.5AlO 2-SiO 2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO 2-SiO 2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si 4O 8-CaAl 2Si 2O 8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive. Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by TAYLOR and BROWN (1979a, b) and others for the structure of aluminosilicate glasses.

  5. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.

    PubMed

    Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas

    2013-08-01

    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness.

  6. The Effects of Oxide Supports on the Low Temperature Hydrogenation Activity of Acetone over Pt/Ni Bimetallic Catalysts on SiO2 gamma-Al2O3 and TiO2

    SciTech Connect

    S Qi; B Cheney; R Zheng; W Lonergan; W Yu; J Chen

    2011-12-31

    Low temperature (308 K) hydrogenation of acetone was used as a probe reaction to investigate the support effect on the hydrogenation activity of Pt/Ni bimetallic catalysts supported on TiO{sub 2}, SiO{sub 2} and {gamma}-Al{sub 2}O{sub 3}. The oxide supports significantly affected the catalytic properties of Pt/Ni catalysts, in which Pt/Ni/SiO2 bimetallic catalysts exhibited significantly higher activity than the other two bimetallic catalysts. TEM measurements revealed that the three supported Pt/Ni bimetallic catalysts have similar particle size distribution, while CO chemisorption measurements showed very different chemisorption capacity. Extended X-Ray absorption fine structure (EXAFS) measurements of the Pt L{sub III}-edge indicated that Pt atoms were fully reduced and the Pt-Ni bimetallic bonds were formed on all three catalysts. The extent of Pt-Ni bond formation followed the trend of SiO{sub 2} > {gamma}-Al{sub 2}O{sub 3} > TiO{sub 2}, which correlated very well with the hydrogenation activity.

  7. Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures: Fabrication and enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wu, Song-Hai; Wu, Jing-Long; Jia, Shao-Yi; Chang, Qiao-Wan; Ren, Hai-Tao; Liu, Yong

    2013-12-01

    Cobalt(II) phthalocyanine-sensitized hollow Fe3O4@SiO2@TiO2 hierarchical nanostructures had been successfully obtained by combination of solvothermal processing and dipping processing. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR), UV-vis diffuse reflectance (DR) and vibrating sample magnetometer (VSM). The results revealed that the cobalt(II) phthalocyanine was successfully grown on the primary Fe3O4@SiO2@TiO2 nanostructures (Fe3O4@SiO2@TiO2@CoPcS). The hollow Fe3O4@SiO2@TiO2@CoPcS hierarchical nanostructure showed excellent photocatalytic efficiency for the degradation of methylene blue (MB) under UV-vis and visible light irradiation. More importantly, the photocatalyst could be effectively separated for reuse by simply applying an external magnetic field. A possible mechanism for the visible photocatalysis with the Fe3O4@SiO2@TiO2@CoPcS heterostructures was suggested.

  8. Improved Photodegradation of Organic Contaminants Using Nano-TiO2 and TiO2 -SiO2 Deposited on Portland Cement Concrete Blocks.

    PubMed

    Jafari, Hoda; Afshar, Shahrara

    2016-01-01

    The photocatalytic activity of TiO2 nanoparticles (nano-TiO2 ) and its hybrid with SiO2 (nano-TiO2 -SiO2 ) for degradation of some organic dyes on cementitious materials was studied in this work. Nanohybrid photocatalysts were prepared using an inorganic sol-gel precursor and then characterized using XRD, SEM and UV-Vis. The grain sizes were estimated by Scherrer's equation to be around 10 nm. Then, a thin layer was applied to Portland cement concrete (PCC) blocks by dipping them into nano-TiO2 and nano-TiO2 -SiO2 solution. The efficiency of coated PCC blocks for the photocatalytic decomposition of two dyes, Malachite Green oxalate (MG) and Methylene Blue (MB), was examined under UV and visible irradiation and then monitored by the chemical oxygen demand tests. The results showed that more than 80% and 92% of MG and MB were decomposed under UV-Vis irradiation using blocks coated with nano-TiO2 -SiO2 . TiO2 /PCC and TiO2 -SiO2 /PCC blocks showed a significant ability to oxidize dyes under visible and UV lights and TiO2 -SiO2 /PCC blocks require less time for dye degradation. Based on these results, coated blocks have increased photocatalytic activity which can make them commercially accessible photocatalysts. PMID:26648581

  9. New acoustic velocity measurements on CaO-MgO-Al2O3-SiO2 liquids: Reevaluation of the volume and compressibility of CaMgSi2O6-CaAl2Si2O8 liquids to 25 GPa

    NASA Astrophysics Data System (ADS)

    Ai, Yuhui; Lange, Rebecca A.

    2008-04-01

    Relaxed sound speed measurements on 12 liquids in the CaO-MgO-Al2O3-SiO2 (CMAS) system have been performed from 1410 to 1620°C at 1 bar with a frequency sweep acoustic interferometer. In all liquids, the sound speeds either decrease or remain constant with increasing temperature. These data are combined with those in the literature to calibrate models for βT and (∂V/∂P)T as a function of composition and temperature for CMAS liquids. CaO is the only oxide component that contributes to the temperature dependence of compressibility. The new compressibility models permit the bulk modulus (KT,0) of CaMgSi2O6 (Di), CaAl2Si2O8 (An), and the Di64-An36 eutectic liquid to be directly obtained. These results are used to uniquely constrain values for the pressure dependence of the bulk modulus (K0' = dK0/dP) in a third-order Birch-Murnaghan equation of state (EOS) for these three liquids from shock wave data in the literature. The revised K0' value is 6.8 (versus 6.9) for CaMgSi2O6 liquid, 4.7 (versus 5.3) for CaAl2Si2O8 liquid, and 5.6 (versus 4.85) for Di64-An36 liquid. Information on both KT,0 and K0' allows the density and compressibility for each of these three liquids to be calculated as a function of pressure to 25 GPa. Both the molar volume and isothermal compressibility of CaMgSi2O6-CaAl2Si2O8 liquids mix ideally between 0 and 25 GPa. The dominant mechanism of compression at low pressure (0-5 GPa) for all three liquids (CaMgSi2O6, CaAl2Si2O8, and the Di64-An36 eutectic) is topological, whereas gradual Al/Si coordination change plays an increasingly important role at higher pressure as topological mechanisms of compression are diminished.

  10. Al2O3-based nanofluids: a review

    NASA Astrophysics Data System (ADS)

    Sridhara, Veeranna; Satapathy, Lakshmi Narayan

    2011-07-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

  11. Al2O3-based nanofluids: a review

    PubMed Central

    2011-01-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%. PMID:21762528

  12. Tensile Behavior of Al2o3/feal + B and Al2o3/fecraly Composites

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Eldridge, J. I.; Aiken, B. J. M.

    1995-01-01

    The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal Al2O3 fibers. The interfacial shear strengths were low for Al203/FeAl + B and moderate to high for Al203/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the Al203 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.

  13. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials

    DOE PAGES

    Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.

    2014-01-01

    The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the applicationmore » of TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less

  14. Enhancement of photocatalytic properties of TiO2 nanoparticles doped with CeO2 and supported on SiO2 for phenol degradation

    NASA Astrophysics Data System (ADS)

    Hao, Chunjing; Li, Jing; Zhang, Zailei; Ji, Yongjun; Zhan, Hanhui; Xiao, Fangxing; Wang, Dan; Liu, Bin; Su, Fabing

    2015-03-01

    A series of CeO2-TiO2 and CeO2-TiO2/SiO2 composites were prepared with TiCl4 and Ce (NO3)3·6H2O as precursors via a facile co-precipitation method. The obtained samples were characterized by various techniques such as X-ray diffraction (XRD), nitrogen adsorption (N2-BET), Fourier transformation infrared spectrum (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis spectroscopy measurements. The results indicated that TiO2 doped with CeO2 and supported on SiO2 could reduce the crystallite size, inhibit the phase transformation, enhance the thermal stability, and effectively extend the spectral response from UV to visible range. When applied to the phenol photodegradation on a homemade batch reactor with an external cooling jacket, the CeO2-TiO2/SiO2 catalysts exhibited significantly enhanced photodegradation efficiency in comparison with commercial Degussa P25 and CeO2-TiO2. The unique catalytic properties of CeO2-TiO2/SiO2 were ascribed to improved electron-hole pairs separation efficiency and formation of more reactive oxygen species owing to the presence of Ce3+/Ce4+, as well as high dispersion of active component of CeO2-TiO2 as a result of the introduction of SiO2 support. Furthermore, the catalysts can be easily recovered from the reaction solution by centrifugation and reused for four cycles without significant loss of activity.

  15. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials.

    PubMed

    Marucco, Arianna; Gazzano, Elena; Ghigo, Dario; Enrico, Emanuele; Fenoglio, Ivana

    2016-01-01

    Many studies have shown that the composition of the protein corona dramatically affects the response of cells to nanomaterials (NMs). However, the role of each single protein is still largely unknown. Fibrinogen (FG), one of the most abundant plasma proteins, is believed to mediate foreign-body reactions. Since this protein is absent in cell media used in in vitro toxicological tests the possible FG-mediated effects have not yet been assessed. Here, the effect of FG on the toxicity of three different kinds of inorganic NMs (carbon, SiO2 and TiO2) on alveolar macrophages has been investigated. A set of integrated techniques (UV-vis spectroscopy, dynamic light scattering and sodium dodecyl sulphate-polyacrylamide gel electrophoresis) have been used to study the strength and the kinetics of interaction of FG with the NMs. The inflammatory response of alveolar macrophages (MH-S) exposed to the three NMs associated with FG has also been investigated. We found that FG significantly enhances the cytotoxicity (lactate dehydrogenase leakage) and the inflammatory response (increase in nitric oxide (NO) concentration and NO synthase activation) induced by SiO2, carbon and TiO2 NMs on alveolar macrophages. This effect appears related to the amount of FG interacting with the NMs. In the case of carbon NMs, the activation of fibrinolysis, likely related to the exposure of cryptic sites of FG, was also observed after 24 h. These findings underline the critical role played by FG in the toxic response to NMs.

  16. In vitro degradation, cytocompatibility and hemolysis tests of CaF2 doped TiO2-SiO2 composite coating on AZ31 alloy

    NASA Astrophysics Data System (ADS)

    Li, Bing; Chen, Yun; Huang, Wei; Yang, Wenzhong; Yin, Xiaoshuang; Liu, Ying

    2016-09-01

    In this study, a CaF2 doped TiO2-SiO2 composite coating was successfully coated onto AZ31 alloy by sol-gel method. Electrochemical tests, in vitro degradation, direct cellular experiment and hemolysis tests were conducted and the results showed that the CaF2 doped TiO2-SiO2 composite coating can not only improve the corrosion resistance, but also enhance the biocompatibility of AZ31 alloy. XRD, SEM and EDX were also performed to characterize the crystalline structures, morphologies and chemical compositions of the coatings.

  17. Effect of Different TiO2-SiO2 Multilayer Coatings Applied by Sol-Gel Method on Antireflective Property

    NASA Astrophysics Data System (ADS)

    lari, Najme; Ahangarani, Shahrokh; Shanaghi, Ali

    2015-07-01

    Multilayer thin films prepared using the sol-gel process have been used in many antireflection applications. In this paper, antireflective nanoscale multilayer TiO2-SiO2 coatings were formed on both sides of the glass substrates by combining sol-gel method and dip coating techniques. The coatings were carried out using tetraethyl orthosilicate as precursor for SiO2 and tetrabutyl orthotitanate as precursor for TiO2. The coatings prepared in this work were characterized using scanning electron microscope, Fourier-transformed infrared spectrophotometer and UV-Visible spectrophotometer. The SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glasses increased due to applied multilayer coating properties. Six-layer sol-gel TiO2-SiO2 coatings showed the highest visible transmittance about 99.25% at the band of 550-650 nm.

  18. Optically active SiO2/TiO2/polyacetylene multilayered nanospheres: Preparation, characterization, and application for low infrared emissivity

    NASA Astrophysics Data System (ADS)

    Bu, Xiaohai; Zhou, Yuming; He, Man; Chen, Zhenjie; Zhang, Tao

    2014-01-01

    Optically active silica/titania/substituted polyacetylene (SiO2/TiO2/SPA) multilayered core-shell nanocomposite was successfully prepared by the combination of subsequent surface titania deposition and polymer grafting on the bare silica nanosphere. The chiral amino acid-based SPA copolymer serving as the organic shell was optically active and adopted a predominately single-handed helical conformation. The SiO2/TiO2/SPA nanospheres were characterized by Fourier transform infrared spectroscopies (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) to record the formation of the multilayered architecture and the results clearly showed that the inorganic/organic hybrid nanoparticles exhibited hierarchical multilayered core-shell construction. The SPA outer shell experienced an enhancement in thermal stability and still remained considerable optical activity after grafting to the SiO2/TiO2 nanosphere. The SiO2/TiO2/SPA nanocomposite had an infrared emissivity value (ɛ = 0.548) at the wavelength of 8-14 μm which was much lower than each of its components. The reduced infrared emissivity values proved that the strengthened interfacial interactions originating from the coating SPA had an effective synergistic effect with the semiconductive anatase TiO2 nanoparticles on silica sphere in lowering the infrared emissivity value.

  19. TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mazur, M.; Wojcieszak, D.; Domaradzki, J.; Kaczmarek, D.; Song, S.; Placido, F.

    2013-06-01

    In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450-800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.

  20. Optical, electrical and dielectric properties of TiO 2-SiO 2 films prepared by a cost effective sol-gel process

    NASA Astrophysics Data System (ADS)

    Vishwas, M.; Rao, K. Narasimha; Gowda, K. V. Arjuna; Chakradhar, R. P. S.

    2011-12-01

    Titanium dioxide (TiO 2) and silicon dioxide (SiO 2) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO 2 and SiO 2 respectively. The pure and composite films of TiO 2 and SiO 2 were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO 2 and SiO 2 sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO 2 films on p-silicon (1 0 0) substrates. The current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 °C for their possible use in optoelectronic applications.

  1. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.

    PubMed

    Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S

    2011-12-01

    Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. PMID:21924670

  2. Functional photocatalytically active and scratch resistant antireflective coating based on TiO2 and SiO2

    NASA Astrophysics Data System (ADS)

    Mazur, M.; Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J.; Song, S.; Gibson, D.; Placido, F.; Mazur, P.; Kalisz, M.; Poniedzialek, A.

    2016-09-01

    Antireflection (AR) multilayer coating, based on combination of five TiO2 and SiO2 thin films, was deposited by microwave assisted reactive magnetron sputtering process on microscope glass substrates. In this work X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and wettability measurements were used to characterize the structural and surface properties of the deposited coating. These studies revealed that prepared coating was amorphous with low surface roughness. Photocatalytic properties were determined based on phenol decomposition reaction. Measurements of optical properties showed that transmittance in the visible wavelength range was increased after the deposition of AR coating as-compared to bare glass substrate. The mechanical properties were determined on the basis of nano-indentation and scratch resistance tests. Performed research has shown that deposition of an additional thin 10 nm thick TiO2 thin film top layer, the prepared AR coating was photocatalytically active, hydrophobic, scratch resistant and had increased hardness as-compared to bare glass substrate. These results indicate that prepared AR multilayer could be used also as a self-cleaning and protective coating.

  3. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources. PMID:27592192

  4. Comparative study of three magnetic nano-particles (FeSO4, FeSO4/SiO2, FeSO4/SiO2/TiO2) in plasmid DNA extraction.

    PubMed

    Rahnama, H; Sattarzadeh, A; Kazemi, F; Ahmadi, N; Sanjarian, F; Zand, Z

    2016-11-15

    Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources.

  5. Fabrication and super-hydrophilic property of transparent TiO2/SiO2 film from sol-gel process

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Yihe; Xu, Caiyun; Yu, Li; Lv, Fengzhu

    2011-11-01

    A series of transparent and super-hydrophilic TiO2/SiO2 composite films with high adhesion to the glass were fabricated by dipping methods. The sol was prepared using peroxotitanium complex (PTC) as precursor by sol-gel process at low temperature. The properties of transmittance, hydrophility and adhesion were characterized by ultraviolet-visible spectrophotometer, water contact angle and the tape test, and the structure was analyzed by Fourier transform infrared spectroscopy (FTIR). The relationship of structure, surfactant and the compound action of TiO2/SiO2 was investigated. The results indicated that the fabricated films achieved excellent transmittance to slide glass of over 90%. Because of the poor adhesion of pure TiO2 film, the TiO2/SiO2 composite film with polyvinyl alcohol (PVA) as the surfactant was prepared. The tape test indicated that the composite film had a steady adhesion on the surface of glass. At the same time, the water contact angle of the films was blow 5° after exposed to the UV light. Furthermore, the glass insulators with TiO2/SiO2 composite film were placed in the outdoor environment, and it showed self-cleaning ability after water drenching. It was proved from the experiments that the transparent TiO2/SiO2 hybrid films with self-cleaning property possessed potential application in the fields of outdoor glass constructions, suspended glass disk insulators and auto windshields.

  6. Fabrication and super-hydrophilic property of transparent TiO2/SiO2 film from sol-gel process

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Zhang, Yihe; Xu, Caiyun; Yu, Li; Lv, Fengzhu

    2012-04-01

    A series of transparent and super-hydrophilic TiO2/SiO2 composite films with high adhesion to the glass were fabricated by dipping methods. The sol was prepared using peroxotitanium complex (PTC) as precursor by sol-gel process at low temperature. The properties of transmittance, hydrophility and adhesion were characterized by ultraviolet-visible spectrophotometer, water contact angle and the tape test, and the structure was analyzed by Fourier transform infrared spectroscopy (FTIR). The relationship of structure, surfactant and the compound action of TiO2/SiO2 was investigated. The results indicated that the fabricated films achieved excellent transmittance to slide glass of over 90%. Because of the poor adhesion of pure TiO2 film, the TiO2/SiO2 composite film with polyvinyl alcohol (PVA) as the surfactant was prepared. The tape test indicated that the composite film had a steady adhesion on the surface of glass. At the same time, the water contact angle of the films was blow 5° after exposed to the UV light. Furthermore, the glass insulators with TiO2/SiO2 composite film were placed in the outdoor environment, and it showed self-cleaning ability after water drenching. It was proved from the experiments that the transparent TiO2/SiO2 hybrid films with self-cleaning property possessed potential application in the fields of outdoor glass constructions, suspended glass disk insulators and auto windshields.

  7. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  8. Co-electrospinning fabrication and study of structural and electromagnetic interference-shielding effectiveness of TiO2/SiO2 core-shell nanofibers

    NASA Astrophysics Data System (ADS)

    Nakhaei, Omolfajr; Shahtahmassebi, Nasser; Rezaee Roknabadi, Mahmood; Behdani, Mohammad

    2016-05-01

    The present paper reports novel outcome comprising experimental results on electromagnetic interference (EMI) shielding and radar signal absorption characteristics of one-dimensional (1D) TiO2/SiO2 core-shell nanofibers. 1D TiO2/SiO2 core-shell nanofibers with various concentrations of nanoparticles (NPs) were fabricated using a single-nozzle co-electrospinning method. The core-shell structure of polyvinylpyrrolidone/polyacrylonitrile nanofibers with NPs have been electrospun from the homogeneous solution of polyvinylpyrrolidone (PVP and TiO2 NPs, as core) and polyacrylonitrile (PAN and SiO2 NPs, as shell). The morphologies and structures of TiO2/SiO2 core-shell nanofibers were characterized by XRD, FTIR, EDS, and SEM images. Microwave absorption properties of the synthesized nanofibers were studied using a vector network analyzer between 2 and 20 GHz at room temperature. The maximum EMI-shielding effectiveness of 150 dB is obtained with the dominant shielding mechanism of absorption of EM radiation. The excellent microwave absorption properties of the composites nanofibers are attributed to the special 1D fibrous structure and the effective dielectric loss.

  9. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies

    PubMed Central

    2014-01-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases. PMID:25276103

  10. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies.

    PubMed

    Peña-Flores, Jesús I; Palomec-Garfias, Abraham F; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-01-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe(+3) ion concentration increases. PMID:25276103

  11. Nonlinear optical absorption and switching properties of gold nanoparticle doped SiO2-TiO2 sol-gel films.

    PubMed

    Venkatram, N; Kumar, R Sai Santosh; Rao, D Narayana; Medda, S K; De, Sucheta; De, Goutam

    2006-07-01

    The nonlinear optical absorption and switching properties of sol-gel derived of Au nanoparticle doped SiO2-TiO2 sol-gel films having different Au-surface plasmon absorption positions are reported in this paper. The Au nanoparticles are embedded in SiO2 and SiO2-TiO2 mixed glassy film matrices with different refractive index values. To study the nonlinear absorption properties, lasers with three different wavelengths are used. The optical switching behavior is studied by using the pump-probe technique with 532 nm as the excitation wavelength. Ground state conduction band, surface plasmon band, and the free carrier band are taken as three level model to explain theoretically the obtained RSA and SA behaviors.

  12. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  13. The effect of SiO2 on TiO2 up-conversion photoluminescence film

    NASA Astrophysics Data System (ADS)

    Meng, Xiaoqi; Li, Lianqiang; Zou, Kaishun; Liu, Juncheng

    2014-11-01

    In order to increase the photoelectric conversion efficiency of silicon solar cell, the up-conversion film has been tried to enhance the response of the solar cells to the infrared band. Yb3+, Er3+ co-doped SiO2/TiO2 composite films with different Ti/Si molar ratio were deposited on the glass substrate with sol-gel method and spin-coating technique. The effect of different molar ratio of Ti/Si on the film's morphology and optical properties was investigated. The morphology, the absorption spectra and photoluminescence (PL) spectra of the film were tested and analyzed. After the film was annealed at 900 °C, the XRD diffraction pattern indicated that rare earths ions have evenly dispersed into the matrix lattice. The FT-IR showed that Si ions entered into the lattice of titanium dioxide, and the Ti-O-Si bonds came into being. When the film pumped with a laser of 980 nm, there were a dominant red emission and several weak green peaks. In addition, with the increase of the mole ratio of Si/Ti, the intensity of the film's up-conversion luminescence increases at first and then decreases. When the molar ratio of Si/Ti is 1/8, the sample had the highest intensity of up-conversion luminescence.

  14. Heterogeneous Nucleation of n-Butanol Vapor on Submicrometer Particles of SiO2 and TiO2.

    PubMed

    Chen; Huang; Tao

    1999-03-15

    Condensation of a supersaturated vapor of n-butanol on monodisperse submicrometer particles is investigated in a flow cloud chamber (FCC). The size dependence of critical supersaturation in the range of 20 to 90 nm is experimentally determined. Two types of aerosol, SiO2 and TiO2, are tested. The results show that both aerosols induce heterogeneous nucleation better than perfectly wetted particles. The experimental critical supersaturation is smaller than that predicted by the Fletcher version of Volmer theory of heterogeneous nucleation even with the line tension and surface diffusion taken into account and has a size dependence in qualitative agreement with that theoretically predicted but to a lesser degree. The discrepancy can not be fully accounted for by the effects of line tension and surface diffusion and the existing theory concerning the curvature-dependent physical properties. The law of corresponding states was extended to the heterogeneous nucleation, and a simple correlation was observed. We conclude that the macroscopic theory of heterogeneous nucleation leads to a prediction of critical supersaturation higher than that experimentally measured. Copyright 1999 Academic Press. PMID:10049535

  15. Dependence of electrostatic potential distribution of Al2O3/Ge structure on Al2O3 thickness

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Xiang, Jinjuan; Wang, Wenwu; Zhao, Chao; Zhang, Jing

    2016-09-01

    Electrostatic potential distribution of Al2O3/Ge structure is investigated vs. Al2O3 thickness by X-ray photoelectron spectroscopy (XPS). The electrostatic potential distribution is found to be Al2O3 thickness dependent. This interesting phenomenon is attributed to the appearance of gap states on Al2O3 surface (GSAl2O3) and its higher charge neutrality level (CNL) compared with the CNL of gap states at Al2O3/Ge interface (GSAl2O3/Ge), leading to electron transfer from GSAl2O3 to GSAl2O3/Ge. In the case of thicker Al2O3, fewer electrons transfer from GSAl2O3 to GSAl2O3/Ge, resulting in a larger potential drop across Al2O3 and XPS results.

  16. Preparation and characterization of magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): effect of carbon coating and calcination temperature.

    PubMed

    Gad-Allah, Tarek A; Fujimura, Kyoko; Kato, Shigeru; Satokawa, Shigeo; Kojima, Toshinori

    2008-06-15

    TiO2/SiO2/Fe3O4 composite was synthesized by sol-gel technique for silica and titania coatings on magnetite core to enable recovery after photocatalytic degradation. Carbon coating was also carried out by calcination of TiO2/SiO2/Fe3O4 under nitrogen atmosphere in presence of PVA as a source of carbon to enhance the adsorption of organic compounds on catalyst surface and to get better activity. All prepared samples were characterized using EDX, CN analyzer, XRD, BET and SEM. Degradation of methyl orange dye was used to assess the photocatalytic performance of the prepared samples. Calcination temperature was found to affect rate of reaction because of the formation of rutile phase at high calcination temperature. Carbon coated samples unexpectedly exhibited lower rate of reaction at almost all calcination temperatures. PMID:18082953

  17. Characterization of SiO2-TiO2 Hybrid Corrosion Protective Coatings on Mild Steel

    NASA Astrophysics Data System (ADS)

    Kirtay, Sebahattin

    2014-12-01

    Organic-inorganic SiO2-TiO2 sol-gel coatings were prepared and applied on a mild steel substrate using dip coating technique and subsequently heat treated at 200 and 300 °C to improve the corrosion resistance. The coating sols were synthesized using Glycidoxytrimethoxysilane and titanium tetraisopropoxide as precursor materials. The corrosion resistances of the both coated and uncoated samples were evaluated by the Tafel polarization and electrochemical impedance spectroscopy in NaCl solution. The microstructure of coated specimens was characterized by scanning electron microscopy. Fourier transformed infrared and energy dispersive spectroscopy analyses were used to identify the presence of various functional groups in the coating solutions. A comparison of the corrosion resistance of the coated and uncoated mild steel was presented. i corr values of coated specimens heat treated at 200 °C were between 6.9 and 9.2 times smaller than those of uncoated specimen. In the case of coated specimens heat treated at 300 °C, i corr values were 4.4 and 5 times smaller than those of uncoated specimen. The coating film was noted to be smooth and between 7.2- and 7.5-µm thick. The measured electrochemical parameters indicated that the corrosion resistance was improved by the coating film. The elasticity of the coating can be improved by the presence of organic groups in the coating which reduces stress and crack formations during sintering. Ultimately, crack-free and elastic coating was obtained by heat treating of organic-inorganic coating at as low as 200 °C.

  18. Fabrication of TiO2-SiO2 bioceramic coatings on Ti alloy and its synergetic effect on biocompatibility and corrosion resistance.

    PubMed

    Mumjitha, M; Raj, V

    2015-06-01

    Most of the research work focussed on fabricating an implant material with an ideal combination of potential bioactivity on the surface and striking mechanical property of bulk in one elementary operation. Interwoven with above concept, SiO2 incorporated nanostructured titania coatings were fabricated on Ti alloy by anodization using sodium silico fluoride electrolyte (SSF). The coatings were characterized by SEM, EDS, AFM, XRD and AT-FTIR techniques. The bioactivity and biocompatibility of the anodic coatings were also investigated. The AT-FTIR, EDS and XRD studies confirm the incorporation of SiO2 into TiO2 coating was confirmed by EDS, XRD and AT-FTIR techniques. The coating formed at the optimum conditions displays a dome like structure with nano flake morphology with maximum mechanical and anticorrosion properties. AFM analysis inferred that the surface roughness of the ceramic coating is higher compared to the pure titania. The SBF test and cell adhesion results predicted that SiO2 incorporated TiO2 coating is superior in their bioactivity compared to TiO2 coating. PMID:25817608

  19. Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2.

    PubMed

    Dong, Chunyang; Xing, Mingyang; Zhang, Jinlong

    2016-08-01

    On the basis of the fact that the competitive adsorption between CO2 and H2O on the catalyst plays an important role in the CO2 photoreduction process, here we develop an economic NH4F-induced hydrophobic modification strategy to enhance the CO2 competitive adsorption on the mesoporous TiO2-SiO2 composite surface via a simple solvothermal method. After the hydrophobic modification, the CO2 photoreduction for the selective generation of CH4 over the noble-metal-free TiO2-SiO2 composite can be greatly enhanced (2.42 vs 0.10 μmol/g in 4h). The enhanced CO2 photoreduction efficiency is assigned to the rational hydrophobic modification on TiO2-SiO2 surface by replacing Si-OH to hydrophobic Si-F bonds, which will improve the CO2 competitive adsorption and trigger the eight-electron CO2 photoreduction on the reaction kinetics. PMID:27415144

  20. Biogenic Hierarchical TiO2/SiO2 Derived from Rice Husk and Enhanced Photocatalytic Properties for Dye Degradation

    PubMed Central

    Yang, Dalong; Fan, Tongxiang; Zhou, Han; Ding, Jian; Zhang, Di

    2011-01-01

    Background Rice husk, an agricultural bioresource, is utilized as a non-metallic bio-precursor to synthesize biogenic hierarchical TiO2/SiO2 (BH-TiO2/SiO2) and the products are applied to dye degradation. Methodology/Principal Findings The as-prepared BH-TiO2/SiO2 samples are characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), nitrogen-adsorption measurement, UV-vis spectroscopy and electronic paramagnetic resonance (EPR). The results show that BH-TiO2/SiO2 possesses both anatase and rutile phases with amorphous SiO2 as background, which contains mesopore structure, and nitrogen derived from original rice husk is self-doped into the lattice. Besides, the light-harvesting within the visible-light range of BH-TiO2/SiO2 has been enhanced. Moreover, the catalytic activity of BH-TiO2/SiO2 has been proven by EPR, and both the photocatalytic activity and stability of BH-TiO2/SiO2 are improved as well, which has been illustrated by cycled degradation of methylene blue dye under irradiation. Conclusions/Significance This work provides a good way to combine natural hierarchical porous structure with synthetic material chemistry based on available biomass in the vast natural environment for the sustainable development of human society, and extends potentials of biomass in applications such as photocatalysts, sunlight splitting water and so forth. PMID:21931853

  1. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  2. Enhanced photovoltaic performance of perovskite solar cells with mesoporous SiO2 scaffolds

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Chen, Si; Yan, Kai; Cai, Xin; Hu, Hsienwei; Peng, Ming; Chen, Buxin; Dong, Bin; Gao, Xue; Zou, Dechun

    2016-09-01

    We applied SiO2 nanoparticles as an alternative to mesoporous TiO2 or Al2O3 scaffolds and achieved power conversion efficiency (PCE) of up to 16.2%. Careful characterization of the effects of different scaffolds on device performance reveals that SiO2-based perovskite solar cells show much higher PCE due to the higher Voc and fill factor (FF), and the hysteresis for SiO2-based perovskite solar cell is less severe than for Al2O3-based perovskite solar cell. Time-correlated-single-photoncounting (TCSPC) luminescence decay and external quantum efficiency (EQE) tests provide further insights into the charge transfer behavior and light-harvesting characteristics of the proposed devices. Potential mechanisms of the observed phenomena are also suggested. Taken together, our results demonstrate that SiO2 nanoparticles may potentially replace mesoporous TiO2 or Al2O3 scaffolds in perovskite solar cells to achieve remarkably high PCE.

  3. Nanopore patterning using Al2O3 hard masks on SOI substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Goryll, Michael

    2015-07-01

    Aluminum oxide Al2O3, deposited using amorphous atomic layer deposition (ALD), is a very promising material to be utilized as a hard mask for nano-patterning. We used an aluminum oxide hard mask on a silicon-on-insulator (SOI) substrate to implement a sub-100 nm nanopore process. The transfer of nanoscale patterns via dry etching of the Al2O3 thin film was investigated by comparing etch profiles, etch rates, and selectivity of Al2O3 over PMMA resist, using different gas chemistries such as Cl2, Ar, Ar/BCl3 mixtures, and BCl3 plasma. A selectivity of 1:4 was observed using an inductively coupled plasma reactive ion etching (ICP-RIE) tool with BCl3 plasma, and the sub-100 nm nanopore patterns were anisotropically transferred to the alumina layer from a 250 nm PMMA layer. The dense and inert Al2O3 hard mask showed exceptional etch selectivity to Si and SiO2, which allowed the subsequent transfer of the nanopore patterns into the 340 nm-thick Si device layer and made it possible to attempt etching the 1 μm-thick buried oxide (BOX) layer. Using chlorine chemistry, nanopores patterned in the Si device layer showed excellent anisotropy while preserving the original pattern dimensions. The process demonstrated is ideally suited for patterning high aspect ratio nanofluidic structures.

  4. Crack-resistant Al2O3–SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  5. Crack-resistant Al2O3–SiO2 glasses

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  6. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    NASA Astrophysics Data System (ADS)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  7. Space-charge-controlled field emission model of current conduction through Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  8. SiO(2) /TiO(2) hollow nanoparticles decorated with Ag nanoparticles: enhanced visible light absorption and improved light scattering in dye-sensitized solar cells.

    PubMed

    Hwang, Sun Hye; Shin, Dong Hoon; Yun, Juyoung; Kim, Chanhoi; Choi, Moonjung; Jang, Jyongsik

    2014-04-01

    Hollow SiO2 /TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible-light absorption and improve light scattering in dye-sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2 /TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2 -based DSSCs to 8.1 % with HNP-based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP-based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare-HNP-based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP-based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar-cell performance.

  9. A semi-empirical thermodynamic formalism for high-pressure aqueous silicate solutions in the model system K2O-Na2O-CaO-MgO-Al2O3-SiO2-H2O-CO2, a first approach

    NASA Astrophysics Data System (ADS)

    Schertl, H.; Burchard, M.; Hertwig, A.; Maresch, W. V.

    2012-12-01

    The results of experimental solubility determinations in aqueous solutions at high pressures up to 5 GPa are often difficult to gauge with respect to precision and accuracy, because of the potential uncertainties inherent in the available experimental approaches. Existing models of aqueous silicate solutions at low pressures are either unsuitable for extrapolation beyond 0.5 to 1.0 GPa or involve polynomial fits in which the fit parameters lack direct physical meaning. An approach described by Gerya et al. [1,2], based on statistical thermodynamics, allows aqueous silicate solutions to be described as mixtures of fictive oxide "components" together with water molecules in both clustered and "gas-like", i.e. unassociated, states. Burchard et al. [3] presented a first data set for fluids in the system CaO-SiO2-H2O, using the statistical thermodynamic formulation of Gerya et al [1,2] and extending it to include charged fluid species such as Ca2+, Ca(OH)+, Ca(OH)2, OH- and H+. We have now further developed the data set of Burchard et al. [3] by including carbonic fluid species and extending the model system to include MgO and Al2O3. In addition, initial progress has been made in including potassium and sodium model species. Solid phase data were obtained by mathematical conversion of existing thermodynamic mineral data into the semi-empirical form. With this semi-empirical data set calculations for simple, "wet" silicate rocks are now possible. We present applications to suites of jadeitites and jadeite-lawsonite-quartz rocks from the Rio San Juan serpentinite mélanges of the northern Dominican Republic. These rocks have crystallized from high-pressure aqueous fluids in a long-lived intra-oceanic subduction-zone environment at various times and at different P-T conditions (Schertl et al. [4]). The fluid-rock interactions leading to these spectacular rocks are still poorly understood. [1] Gerya et al. (2004) Phys. Chem. Minerals 31, 429-455; [2] Gerya et al. (2005) Eur

  10. Microwave dielectric properties of CaCu3Ti4O12-Al2O3 composite

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Karim, Saniah Ab; Zaman, Rosyaini Afindi; Ain, Mohd Fadzil; Ahmad, Zainal Arifin; Mohamed, Julie Juliewatty

    2016-07-01

    (1-x)CaCu3Ti4O12 + (x)Al2O3 composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO3, CuO and TiO2 powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al2O3 were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl2O4 and Corundum (Al2O3) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al2O3 (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al2O3 (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al2O3 was reduced both dielectric loss and permittivity at least for an order of magnitude.

  11. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  12. NMR and FTIR Characterization of Sol-Gel Derived Ternary Oxide Glasses in the System BaO-TIO2-SiO2

    NASA Astrophysics Data System (ADS)

    Feike, M.; Meise-Gresch, K.; Chen, Qi; Frischat, G. H.

    1995-09-01

    The annealing history of glasses in the system (20-40) BaO-40TiO2(40-20)SiO2 has been mon­itored by 29Si MAS NMR and FTIR spectroscopy from the dried gel to the final glassy state. Assignment of chemical shifts to specific building units has been facilitated by comparative studies of the limiting less complex binary silicate systems. From the NMR spectra at various compositions appreciable condensation to a three-dimensional network is inferred already at low drying temper­atures. Processes like the pyrolysis of acetate rests of the starting materials and modification of the silicate structure due to Ba2+ cations have been mirrored in the spectra of both methods for samples annealed at intermediate temperatures. The microstructure of the final gel glass of the ternary system has been determined spectroscopically to consist of silicate and titanate species typical of crystalline fresnoite, whereas remaining amounts of TiO2 and SiO2 develop a separate network each. Only small amounts of Si-O-Ti linkages have been recognized in the vibrational absorptions; they vanish at higher annealing stages.

  13. Magnetically separable Fe3O4@SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity.

    PubMed

    Chi, Yue; Yuan, Qing; Li, Yanjuan; Zhao, Liang; Li, Nan; Li, Xiaotian; Yan, Wenfu

    2013-11-15

    Major efforts in modern material chemistry are devoted to the design and fabrication of nanostructured systems with tunable physical-chemical properties for advanced catalytic applications. Here, a novel Fe3O4@SiO2@TiO2-Ag nanocomposite has been synthesized and characterized by a series of techniques including SEM, TEM, XRD, XPS as well as magnetization measurement and subsequently tested for the photocatalytic activities. The well-designed nanocomposite exhibits significantly superior activity to that of the commercial Degussa P25 thanks to the suppression of electron-hole pairs from recombination by Ag nanoparticles, and can be easily recycled by applying an external magnetic field while maintaining the catalytic activity without significant decrease even after running 10 times. The unique nanostructure makes Fe3O4@SiO2@TiO2-Ag a highly efficient, recoverable, stable, and cost-effective photocatalytic system offering broad opportunities in the field of catalyst synthesis and application. PMID:24076477

  14. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2 microspheres (Fig. S5); adsorption rate curve of MB in dark for Ag@Fe3O4@SiO2@TiO2 samples (Fig. S6); photocatalytic degradation of MB over unannealed Ag@Fe3O4@SiO2@TiO2 (3 mg) and P25 (10 mg) under Xe lamp illumination (Fig. S7). See DOI: 10.1039/c4nr00534a

  15. The structural studies of Ag containing TiO2-SiO2 gels and thin films deposited on steel

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anna; Rokita, Magdalena

    2016-06-01

    FTIR spectroscopic structural studies of titania-silica monolith samples as well as thin films deposited on steel were described in this work. Thin films were synthesized by the sol-gel method applying the dip coating as separate one-component TiO2 and/or SiO2 layers or as two-component TiO2-SiO2 thin films. Silver nanoparticles were incorporated into the structure from pure SiO2 sol, deposited then as an additional layer in those hybrid multilayers systems. Except the spectroscopic studies, XRD diffraction, SEM microscopy with EDX analysis and AFM microscopy were applied. The structural studies allow to describe and compare the structure and the morphology of thin films, as well those Ag free as Ag containing ones, also by the comparison with the structure of bulk samples. In FTIR spectra, the band observed at about 613 cm-1 can be connected with the presence of the non-tetrahedral cation in the structure and is observed only in the spectra of Ag containing bulk samples and thin films. The bands at 435-467 cm-1 are due to the stretching vibrations of Ti-O bonds or as well to the bending vibrations of O-Si-O one. In the ranges of 779-799 cm-1 and 1027-1098 cm-1, the bands ascribed to the symmetric stretching vibrations and asymmetric vibrations of Si-O-Si connections, respectively, are observed. SEM and AFM images gave the information on the microstructure and the topography of samples surface. XRD measurements confirmed the presence of only amorphous phase in samples up to 500 °C and allowed to observe the tendency of their crystallization.

  16. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited.

  17. In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters.

    PubMed

    Schmitt, B; Borgogno, J P; Albrand, G; Pelletier, E

    1986-11-01

    We measure the refractive index of thin films of TiO2 and SiO2 for given deposition parameters. Two complementary methods are used. The first is a postdeposition technique which uses the measurements of reflectance and transmittance in air. The second, in contrast, makes use of in situ measurements (under vacuum and during the actual deposition of the layer). The differences between the values deduced from the two methods can be explained by the amount of atmospheric moisture adsorbed by films. One tries to minimize these shifts for the two materials by choosing deposition parameters. The difficulties come from the absorption losses which must be as small as possible. We use the measured refractive indices of individual layers to give good numerical prediction of the wavelength shift (observed during the admittance of air after deposition in the vacuum chamber) of the transmittance peak of multidielectric Fabry-Perot filters.

  18. [Kinetics model for photo-catalytic degradation of Rodamine B with TiO2 /SiO2 as catalyst].

    PubMed

    You, Hong; Yao, Jie; Luo, Wei-Nan; Chen, Ping

    2006-11-01

    A novel photo-catalytic reactor of three-phase internal circulation fluidized bed was employed to the photodegradation of Rhodamine B with TiO2/SiO2 carried on porous silica as photocatalyst. The degradation kinetics of Rodaming B is investigated in the reactor. It is found that the degradation of Rodaming B conform hyperbola model, the reciprocal of degradation rate 1/X is proportional to the reciprocal of time 1/t. The reaction rate constant has no relation with initial reactant concentration and is proportional to the light density and volumetric rate of energy absorption. The reaction rate conforms the experiment results quite well, the average relative error being less 3.25%.

  19. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  20. Synthesis, sintering and characterization of Al2O 3-TiC nano-composites powders from carbon coated precursors

    NASA Astrophysics Data System (ADS)

    Kaga, Hisashi

    Synthesis, sintering and characterization of Al2O3-TiC nano-composite powders from carbon coated precursors were investigated. Degussa P-25 titanium dioxide, Cabot carbon black, and Alfa Aesar aluminum were the initial starting powders. Hydrocarbon gas (C3H6) was used as the carbon source for the carbon coated precursors. Analytical methods employed in this research were BET surface area measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Vickers hardness tester, and differential scanning calorimetry (DSC). For Al2O3-TiC formation studies, three different types of precursors which are carbon coated TiO2/Al mixture, mixture of carbon coated TiO2 and Al, and standard mixture of TiO 2, Al, and carbon black were prepared to examine formation mechanism reaction. The carbon coated TiO2/Al mixture dramatically changed the reaction mechanism and produced high quality nanosize Al2O 3-TiC powders. XRD and BET results showed that the carbon coated TiO 2/Al synthesized at 1200°C had only Al2O3 and TiC phases with high surface area about 22m2/g which were formed via intermediate phases of Ti2O3 and Al 3Ti. TEM results showed that the produced Al2O3-TiC powders had fine particle size (20--80 nm), narrow particle size distribution, and freely agglomerated. DSC curve and XRD results of the carbon coated TiO 2/Al mixture also showed that there were two endothermic and three successive weak exothermic reactions because released heat was controlled by the carbon coating. Experimentally determined the first exothermic reaction 5Al + 3TiO 2 → Al2O3 + Ti2O3 + Al3Ti which was compared with theoretical explanation model and they were found to be in agreement. Sintering behavior of nano-size Al 2O3-TiC synthesized from carbon coated precursors was investigated in Al2O3-TiC-MgO system using pressureless sintering and hot-pressing methods. After pressureless sintering, MgO doped Al 2O3-20wt.%TiC resulted in 98% of theoretical

  1. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

    PubMed

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-05-21

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. PMID:24710730

  2. The application of low frequency dielectric spectroscopy to analyze the electrorheological behavior of monodisperse yolk-shell SiO2/TiO2 nanospheres.

    PubMed

    Guo, Xiaosong; Chen, Yulu; Li, Dong; Li, Guicun; Xin, Meng; Zhao, Mei; Yang, Chen; Hao, Chuncheng; Lei, Qingquan

    2016-01-14

    Monodisperse SiO2/TiO2 yolk-shell nanospheres (YSNSs) with different SiO2 core sizes were fabricated and adopted as dispersing materials for electrorheological (ER) fluids to investigate the influence of the gradual structural change of disperse particles on ER properties. The results showed that the ER performance of the YSNS-based ER fluid prominently enhanced with the decrease of SiO2 core size, which was attributed to the enhancement of electric field force between YSNSs. Combined with the analysis of dielectric spectroscopy, it was found that the increase of permittivity at low frequency (10(-2)-10(0) Hz) was due to the increase of polarized charges caused by secondary polarization (Psp). Moreover, the number of Psp closely related to the distributing change of polarized particles in ER fluid was a critical factor to assess the ER performance. Additionally, a parameter K (the absolute value of the slope of permittivity curves at 0.01 Hz) could be utilized to characterize the efficiency of structural evolution of polarized particles in ER fluid. Compared with the ER performance, it could be concluded that the value of Δε(100Hz-100kHz)' just demonstrated the initial intensity of the interface polarization in the ER fluid as the electric field was applied, which ignored the distributing evolution of polarized disperse particles in ER fluid. The polarizability Δε(0.01Hz-100kHz)' obtained in the frequency range of 10(-2)-10(5) Hz should be more suitable for analyzing the system of ER fluid. The relationships between polarizability of disperse particles, parameter K and ER properties were discussed in detail.

  3. Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation.

    PubMed

    Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen

    2015-01-01

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.

  4. Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation.

    PubMed

    Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen

    2015-01-01

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model. PMID:26540545

  5. Passivation of Al2O3 / TiO2 on monocrystalline Si with relatively low reflectance

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Ti; Huang, Yu-Shiang; Liu, C. W.

    2016-06-01

    Al2O3/TiO2 stack layers deposited by the plasma-enhanced atomic layer deposition enhance photoluminescence intensity by reducing effective surface recombination velocities on both n-type and p-type monocrystalline Si. The field effect of negative oxide charges in the dielectrics is responsible for the low effective surface recombination velocity. The dependence of the effective surface recombination velocity on the photoluminescence intensity is investigated by the 2D numerical simulation. The bilayer stacks without texture also reduce the AM1.5-weighted front side reflectance to 11.8%. The field-effect passivation of Al2O3/TiO2 films is further improved by a forming gas annealing due to the additional increase of the negative oxide charge density.

  6. Fast neutron detection with Al 2O 3 thermoluminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Ranogajec-Komor, Maria; Osvay, Margit; Dvornik, Igor; Biró, Tamàs

    1983-07-01

    The technique of thermoluminescent (TL) dosimeter activation can be used to detect any radiation making TL dosimeters radioactive. In the experiment discussed in this paper Al2O3:Mg, Y TL dosimeters were irradiated by cyclotron neutrons with 5±1 MeV mean energy and by accompanying gamma rays. The gamma and the fast neutron component can be separately measured by the same dosimeter. Because of low neutron sensitivity of Al2O3 the gamma dose can be determined by the first TL reading while the 27Al(n, α)24 Na reaction provides the possibility of fast neutron detection by the subsequent reading of thermoluminescence induced in the TL material by the decay of 24Na.

  7. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.

    PubMed

    Zhu, Tao; Chen, Rui; Xia, Ni; Li, Xiaoyang; He, Xianxian; Zhao, Wenjuan; Carr, Tim

    2015-01-01

    Volatile organic compounds' (VOCs) effluents, which come from many industries, are triggering serious environmental problems. As an emerging technology, non-thermal plasma (NTP) technology is a potential technology for VOCs emission control. NTP coupled with F-TiO2/γ-Al2O3 is used for toluene removal from a gaseous influent at normal temperature and atmospheric pressure. NTP is generated by dielectric barrier discharge, and F-TiO2/γ-Al2O3 can be prepared by sol-gel method in the laboratory. In the experiment, the different packed materials were packed into the plasma reactor, including γ-Al2O3, TiO2/γ-Al2O3 and F-TiO2/γ-Al2O3. Through a series of characterization methods such as X-ray diffraction, scanning electronic microscopy and Brunner-Emmet-Teller measurements, the results show that the particle size distribution of F-TiO2 is relatively smaller than that of TiO2, and the pore distribution of F-TiO2 is more uniformly distributed than that of TiO2. The relationships among toluene removal efficiency, reactor input energy density, and the equivalent capacitances of air gap and dielectric barrier layer were investigated. The results show that the synergistic technology NTP with F-TiO2/γ-Al2O3 resulted in greater enhancement of toluene removal efficiency and energy efficiency. Especially, when packing with F-TiO2/γ-Al2O3 in NTP reactor, toluene removal efficiency reaches 99% and higher. Based on the data analysis of Fourier Transform Infrared Spectroscopy, the experimental results showed that NTP reactor packed with F-TiO2/γ-Al2O3 resulted in a better inhibition for by-products formation effectively in the gas exhaust.

  8. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-08-01

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.

  9. Structural investigation of Au catalysts on TiO2-SiO2 supports - on the nature of the local structure of Ti and Au atoms by EXAFS and XANES

    SciTech Connect

    Schwartz, Viviane; Mullins, David R; Yan, Wenfu; Zhu, Haoguo; Dai, Sheng

    2007-01-01

    X-ray absorption spectroscopy (XAS) was utilized to investigate both the Au particle size on several supports composed by silica and titanium oxide, and the coordination of TiO2 in the support phase. Particularly, we wanted to utilize the technique to probe mixing in the support phase, by using different synthetic methods such as by functionalizing silica or by ALD (atomic layer deposition) techniques as prepared in our laboratories, and the growth and stability of Au nanoparticles deposited on these supports. The study using cosynthesis techniques to dope bulk mesoporous SiO2 with TiO2 resulted in TiO2 being dispersed in the SiO2 matrix; however, a second phase starts forming as the TiO2 content increases as indicated by the EXAFS Ti-O shell shift in position and increase of coordination number. On the supports prepared by cosynthesis, Au particles were smaller and more stable. The study using the surface sol-gel technique for deposition of single monolayers of an oxide such as TiO2 produced Ti environments in which the Ti-O shell and the next two Ti-Ti shells lie on the same position as expected for an anatase structure. Although undercoordinated, the presence of the Ti-Ti shells indicate that the titania species are not molecularly dispersed on the SiO2 surface as hypothesized, but there is indeed a cross-linking of the titania moieties.

  10. Structural Investigation of Au Catalysts on TiO2-SiO2 Supports: Nature of the Local Structure of Ti and Au Atoms by EXAFS and XANES

    SciTech Connect

    Schwartz,V.; Mullins, D.; Yan, W.; Zhu, H.; Dai, S.; Overbury, S.

    2007-01-01

    X-ray absorption spectroscopy (XAS) was utilized to investigate both the Au particle size on several supports composed by silica and titanium oxide, and the coordination of TiO2 in the support phase. Particularly, we wanted to utilize the technique to probe mixing in the support phase, by using different synthetic methods such as by functionalizing silica or by ALD (atomic layer deposition) techniques as prepared in our laboratories, and the growth and stability of Au nanoparticles deposited on these supports. The study using cosynthesis techniques to dope bulk mesoporous SiO2 with TiO2 resulted in TiO2 being dispersed in the SiO2 matrix; however, a second phase starts forming as the TiO2 content increases as indicated by the EXAFS Ti-O shell shift in position and increase of coordination number. On the supports prepared by cosynthesis, Au particles were smaller and more stable. The study using the surface sol-gel technique for deposition of single monolayers of an oxide such as TiO2 produced Ti environments in which the Ti-O shell and the next two Ti-Ti shells lie on the same position as expected for an anatase structure. Although undercoordinated, the presence of the Ti-Ti shells indicate that the titania species are not molecularly dispersed on the SiO2 surface as hypothesized, but there is indeed a cross-linking of the titania moieties.

  11. Density Measurements of Low Silica CaO-SiO2-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Muhmood, Luckman; Seetharaman, Seshadri

    2010-08-01

    Density measurements of a low-silica CaO-SiO2-Al2O3 system were carried out using the Archimedes principle. A Pt 30 pct Rh bob and wire arrangement was used for this purpose. The results obtained were in good agreement with those obtained from the model developed in the current group as well as with other results reported earlier. The density for the CaO-SiO2 and the CaO-Al2O3 binary slag systems also was estimated from the ternary values. The extrapolation of density values for high-silica systems also showed good agreement with previous works. An estimation for the density value of CaO was made from the current experimental data. The density decrease at high temperatures was interpreted based on the silicate structure. As the mole percent of SiO2 was below the 33 pct required for the orthosilicate composition, discrete {text{SiO}}4^{4 - } tetrahedral units in the silicate melt would exist along with O2- ions. The change in melt expansivity may be attributed to the ionic expansions in the order of {text{Al}}^{ 3+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ 2- } < {text{Ca}}^{ 2+ } - {text{O}}^{ - } Structural changes in the ternary slag also could be correlated to a drastic change in the value of enthalpy of mixing.

  12. Heating rate effects in simulated liquid Al2O_3

    NASA Astrophysics Data System (ADS)

    van Hoang, Vo

    2006-01-01

    The heating rate effects in simulated liquid Al{2}O{3} have been investigated by Molecular Dynamics (MD) method. Simulations were done in the basic cube under periodic boundary conditions containing 3000 ions with Born-Mayer type pair potentials. The temperature of the system was increasing linearly in time from the zero temperature as T(t)=T0 +γ t, where γ is the heating rate. The heating rate dependence of density and enthalpy of the system was found. Calculations show that static properties of the system such as the coordination number distributions and bond-angle distributions slightly depend on γ . Structure of simulated amorphous Al{2}O{3} model with the real density at the ambient pressure is in good agreement with Lamparter's experimental data. The heating rate dependence of dynamics of the system has been studied through the diffusion constant, mean-squared atomic displacement and comparison of partial radial distribution functions (PRDFs) for 10% most mobile and immobile particles with the corresponding mean ones. Finally, the evolution of diffusion constant of Al and O particles and structure of the system upon heating for the smallest heating rate was studied and presented. And we find that the temperature dependence of self-diffusion constant in the high temperature region shows a crossover to one which can be described well by a power law, D∝ (T-Tc )^γ . The critical temperature Tc is about 3500 K and the exponent γ is close to 0.941 for Al and to 0.925 for O particles. The glass phase transition temperature Tg for the Al{2}O{3} system is at anywhere around 2000 K.

  13. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  14. High-κ Al2O3 material in low temperature wafer-level bonding for 3D integration application

    NASA Astrophysics Data System (ADS)

    Fan, J.; Tu, L. C.; Tan, C. S.

    2014-03-01

    This work systematically investigated a high-κ Al2O3 material for low temperature wafer-level bonding for potential applications in 3D microsystems. A clean Si wafer with an Al2O3 layer thickness of 50 nm was applied as our experimental approach. Bonding was initiated in a clean room ambient after surface activation, followed by annealing under inert ambient conditions at 300 °C for 3 h. The investigation consisted of three parts: a mechanical support study using the four-point bending method, hermeticity measurements using the helium bomb test, and thermal conductivity analysis for potential heterogeneous bonding. Compared with samples bonded using a conventional oxide bonding material (SiO2), a higher interfacial adhesion energy (˜11.93 J/m2) and a lower helium leak rate (˜6.84 × 10-10 atm.cm3/sec) were detected for samples bonded using Al2O3. More importantly, due to the excellent thermal conductivity performance of Al2O3, this technology can be used in heterogeneous direct bonding, which has potential applications for enhancing the performance of Si photonic integrated devices.

  15. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  16. Specific heat capacity of nanoporous Al2O3

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Feng, Yan-Hui; Zhang, Xin-Xin; Li, Jing; Wang, Ge

    2013-09-01

    Based on Lindemann's criterion, a specific heat capacity model for nanoporous material was proposed by defining the surface-atom layer, to take the surface atoms and the volume atoms separately into account. The height of the surface-atom layer was determined from the experiment, and results show that only the first layer atoms on the surface should be separately considered for nanoporous Al2O3. The shape factor of the pore was also introduced in the model with values between 2 (for cylindrical pore) and 3 (for spherical pore) to characterize the morphology of the pore. It turns out experimentally that the specific heat capacity of the analyzed nanoporous Al2O3 is much larger than that of the bulk, which can be interpreted as due to the fact that the surface atom plays a more important role than the volume one. And the smaller the radius and/or the larger the porosity, which lead to a larger surface-volume ratio, the larger the specific heat capacity becomes. The nanoporous material could be a better heat storage medium than the corresponding bulk with a much lighter weight, smaller volume but higher heat storage capacity.

  17. Effect of Fluorine on the Structure of High Al2O3-Bearing System by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Fan, Guozheng; He, Shengping; Wu, Ting; Wang, Qian

    2015-08-01

    Calcium aluminosilicate is the most important slag system in continuous casting, while CaF2 is commonly used as a fluxing agent in mold fluxes. In this study, the structural properties of the CaO-Al2O3-SiO2-CaF2 system with varying fluorine content have been investigated by molecular dynamics simulation using the pairwise potential model. The results showed that with the substitution of oxygen ions by fluorine ions, the average bond length of Si-O remained unchanged, while the average bond length of Al-O increased from 1.74 to 1.75 Å. The addition of fluorine contributed to the increase in the bridging oxygen proportion and the network connectivity ( Q n ) degree, suggesting that the polymerization of melts was enhanced. Meanwhile, the threefold-coordinated Al was found when mass fraction of fluorine was increased, and it was due to that the fluorine ions substituted the oxygen ions and formed the [AlO3F] tetrahedron. The Al avoidance principle is not applicable in the CaO-Al2O3-SiO2-CaF2 system with a high content of Al2O3.

  18. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    NASA Astrophysics Data System (ADS)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10‑4 and 1 × 10‑3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10‑4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  19. A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material

    NASA Astrophysics Data System (ADS)

    Pinho, Luís; Elhaddad, Farid; Facio, Dario S.; Mosquera, Maria J.

    2013-06-01

    A TiO2-SiO2 nanocomposite material was formed inside the pore structure of a very friable carbonate stone by simple spraying of a sol containing silica oligomers, titania particles and a non-ionic surfactant (n-octylamine). The resulting nanomaterial provides an effective adhesive and crack-free surface layer to the stone, and gives it self-cleaning properties. In addition, it efficiently penetrates into the pores of the stone, significantly improving its mechanical resistance, and is thus capable of converting an extremely friable stone into a building material with self-cleaning properties. Another important advantage of the nanocomposite is that it substantially improves protection against salt crystallization degradation mechanisms. In the trial described, the untreated stone is reduced to a completely powdered material after 3 cycles of NaSO4 crystallization degradation, whereas stone treated with this novel product remains practically unaltered after 30 cycles. For comparison purposes, two commercial products (with consolidant and photocatalytic properties) were also tested, and both alternative materials produced coatings that crack and provide less mechanical resistance to the stone than this product. These results also confirm the valuable role played by n-octylamine in reducing the capillary pressure responsible for consolidant cracking, and in promoting silica polymerization inside the pores of the non-reactive pure carbonate stone.

  20. Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

    PubMed Central

    Tański, Tomasz; Hajduk, Barbara

    2016-01-01

    Summary The aim of this study was to produce nanocomposite polymer fibres, consisting of a matrix of polyacrylonitrile (PAN) and a reinforcing phase in the form of SiO2/TiO2/Bi2O3 nanoparticles, by electrospinning the solution. The effect of the nanoparticles and the electrospinning process parameters on the morphology and physical properties of the obtained composite nanofibres was then examined. The morphology of the fibres and the dispersion of nanoparticles in their volume were examined using scanning electron microscopy (SEM). All of the physical properties, which included the band gap width, dielectric constant and refractive index, were tested and plotted against the concentration by weight of the used reinforcing phase, which was as follows: 0%, 4%, 8% and 12% for each type of nanoparticles. The width of the band gap was determined on the basis of the absorption spectra of radiation (UV–vis) and ellipsometry methods. Spectroscopic ellipsometry has been used in order to determine the dielectric constant, refractive index and the thickness of the obtained fibrous mats. PMID:27547631

  1. Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings.

    PubMed

    Li, Xiaoyu; He, Junhui

    2013-06-12

    Silica-titania core-shell nanoparticles of 30, 40, 50, 55, 75, and 110 nm were prepared from tetraethyl orthosilicate (TEOS) and tetraisopropyl titanate (TIPT). After calcination, the amorphous titania shell transformed into anatase nanoparticles, and the silica-titania core-shell nanoparticles became raspberry-like nanoparticles. These nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and UV-vis spectroscopy. Hierarchically structured antireflective and self-cleaning particulate coatings were fabricated on glass substrates via layer-by-layer (LbL) assembly using silica-titania core-shell nanoparticles and silica nanoparticles as building blocks followed by calcination. The maximum transmittance of coated glass substrates reached as high as ca. 97%, while that of the glass substrates is only ca. 91%. The morphologies of the coatings were observed by SEM and atom force microscopy (AFM). Such hierarchically structured raspberry-like SiO2-TiO2 nanoparticle coatings had superhydrophilic and antifogging properties. The coatings also showed photocatalytic activity toward organic pollutants and thus a self-cleaning property.

  2. The Study of Femtosecond Laser Irradiation on GaAs Solar Cells With TiO2/SiO2 Anti-Reflection Films

    NASA Astrophysics Data System (ADS)

    Hua, Yinqun; Shi, Zhiguo; Wu, Wenhui; Chen, Ruifang; Rong, Zhen; Ye, Yunxia; Liu, Haixia

    Femtosecond laser ablation on GaAs solar cells for space power has been investigated. In particular, we studied the effects of laser energy and laser number on the ablation of solar cells. Furthermore, the morphologies and microstructure of ablation were characterized by the non-contact optical profilometer and scanning electron microscope (SEM). The photovoltaic properties were tested by the volt ampere characteristic test system. The abaltion threshold of the TiO2/SiO2 anti-reflection film of GaAs solar cells was obtained from the linear fit of the dependence of the square diameter of the ablated area with the natural logarithm of the femtosecond laser pulse energy, the resulting threshold of the laser fluence is about 0.31J/cm2, and the corresponding energy is 5.4uJ. The ablation depth showed nonlinear dependence of energy. With the fixed energy 6uJ and the increasing laser number, the damage degree increases obviously. Furthermore, the electric properties also suffer a certain degradation. Among all the evaluated electric properties, the photoelectric conversion efficiency (η) degraded remarkably.

  3. Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles.

    PubMed

    Tański, Tomasz; Matysiak, Wiktor; Hajduk, Barbara

    2016-01-01

    The aim of this study was to produce nanocomposite polymer fibres, consisting of a matrix of polyacrylonitrile (PAN) and a reinforcing phase in the form of SiO2/TiO2/Bi2O3 nanoparticles, by electrospinning the solution. The effect of the nanoparticles and the electrospinning process parameters on the morphology and physical properties of the obtained composite nanofibres was then examined. The morphology of the fibres and the dispersion of nanoparticles in their volume were examined using scanning electron microscopy (SEM). All of the physical properties, which included the band gap width, dielectric constant and refractive index, were tested and plotted against the concentration by weight of the used reinforcing phase, which was as follows: 0%, 4%, 8% and 12% for each type of nanoparticles. The width of the band gap was determined on the basis of the absorption spectra of radiation (UV-vis) and ellipsometry methods. Spectroscopic ellipsometry has been used in order to determine the dielectric constant, refractive index and the thickness of the obtained fibrous mats. PMID:27547631

  4. InP MOS capacitor and E-mode n-channel FET with ALD Al2O3-based high- k dielectric

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Feng; Yeh, Min-Yen; Chong, Kwok-Keung; Hsu, Chun-Fa; Lee, Ming-Kwei

    2016-07-01

    The electrical characteristics of atomic-layer-deposited Al2O3/TiO2/Al2O3 on (NH4)2S-treated InP MOS capacitor and related MOSFET were studied. The electrical characteristics were improved from the reduction of native oxides and sulfur passivation on InP by (NH4)2S treatment. The high bandgap Al2O3 on TiO2 can reduce the thermionic emission, and the Al2O3 under TiO2 improves the interface-state density by self-cleaning. The high dielectric constant TiO2 is used to lower the equivalent oxide thickness. The leakage currents can reach 2.3 × 10-8 and 2.2 × 10-7 A/cm2 at ±2 MV/cm, respectively. The lowest interface-state density is 4.6 × 1011 cm-2 eV-1 with a low-frequency dispersion of 15 %. The fabricated enhancement-mode n-channel sulfur-treated InP MOSFET exhibits good electrical characteristics with a maximum transconductance of 146 mS/mm and effective mobility of 1760 cm2/V s. The subthreshold swing and threshold voltage are 117 mV/decade and 0.44 V, respectively.

  5. Hydrothermal transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine-H 2O system

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Yang, Yang; Cui, Miao; Sun, Jiangbo; Qi, Lin; Ji, Shouhua; Meng, Changgong

    2011-12-01

    This study investigated the transformation of magadiite into ferrierite in Al 2O 3-Na 2O-ethylenediamine (EDA)-H 2O system. The influence of various parameters such as reaction temperature, time, alkalinity, the reactant Na 2O/SiO 2 ratio and EDA/SiO 2 ratio were examined. Thermal and acid stability of the synthetic ferrierite are presented. Highly crystallized and pure ferrierite could be obtained from dispersion with the molar composition: 0.01 Na 2O: 0.005 Al 2O 3: SiO 2: 30 H 2O: 20 EDA by heating at 433 K for 48 h. The structure of ferrierite was destroyed when the temperature rose above 873 K and the framework of the sample, stirred in 5 mol/L HCl for 3 h, is consistent with the untreated ferrierite.

  6. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    NASA Astrophysics Data System (ADS)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-06-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  7. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    NASA Astrophysics Data System (ADS)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  8. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO2&TiO2 double-shelled hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Yao, Lin; He, Junhui; Geng, Zhi; Ren, Tingting

    2015-07-01

    Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings.Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02467f

  9. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis.

    PubMed

    Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa

    2016-07-01

    Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively. PMID:27154712

  10. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis.

    PubMed

    Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa

    2016-07-01

    Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively.

  11. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system.

    PubMed

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-01-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  12. Synthesis of Vertically-Aligned Carbon Nanotubes from Langmuir-Blodgett Films Deposited Fe Nanoparticles on Al2O3/Al/SiO2/Si Substrate.

    PubMed

    Takagiwa, Shota; Kanasugi, Osamu; Nakamura, Kentaro; Kushida, Masahito

    2016-04-01

    In order to apply vertically-aligned carbon nanotubes (VA-CNTs) to a new Pt supporting material of polymer electrolyte fuel cell (PEFC), number density and outer diameter of CNTs must be controlled independently. So, we employed Langmuir-Blodgett (LB) technique for depositing CNT growth catalysts. A Fe nanoparticle (NP) was used as a CNT growth catalyst. In this study, we tried to thicken VA-CNT carpet height and inhibit thermal aggregation of Fe NPs by using Al2O3/Al/SiO2/Si substrate. Fe NP LB films were deposited on three typed of substrates, SiO2/Si, as-deposited Al2O3/Al/SiO2/Si and annealed Al2O3/Al/SiO2/Si at 923 K in Ar atmosphere of 16 Pa. It is known that Al2O3/Al catalyzes hydrocarbon reforming, inhibits thermal aggregation of CNT growth catalysts and reduces CNT growth catalysts. It was found that annealed Al2O3/Al/SiO2/Si exerted three effects more strongly than as-deposited Al2O3/Al/SiO2/Si. VA-CNTs were synthesized from Fe NPs-C16 LB films by thermal chemical vapor deposition (CVD) method. As a result, at the distance between two nearest CNTs 28 nm or less, VA-CNT carpet height on annealed Al2O3/Al/SiO2/Si was about twice and ten times thicker than that on SiO2/Si and that on as-deposited Al2O3/Al/SiO2/Si, respectively. Moreover, distribution of CNT outer diameter on annealed Al2O3/Al/SiO2/Si was inhibited compared to that on SiO2/Si. These results suggest that since thermal aggregation of Fe NPs is inhibited, catalyst activity increases and distribution of Fe NP size is inhibited. PMID:27451619

  13. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    PubMed

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their different physicochemical behaviors in seawater.

  14. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    PubMed

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their different physicochemical behaviors in seawater. PMID:26849326

  15. Reactions of alkoxysilanes on metal oxide surfaces: decomposition of tetraethoxysilane on MgO(100) and Al 2O 3(0001)

    NASA Astrophysics Data System (ADS)

    Danner, J. B.; Vohs, J. M.

    1993-12-01

    The thermal decomposition of tetraethoxysilane (TEOS) on MgO(100) and Al 2O 3(0001) surfaces was investigated using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and high-resolution electron energy-loss spectroscopy (HREELS). TEOS was found to dissociate on both MgO(100) and Al 2O 3(0001) to form ethoxysilane species, Si(OCH 2CH 3) n, n=2, 3. The ethoxysilanes are stable to a temperature of 600 K at which point they decompose, liberating ethanol, ethylene and ethyl radicals and depositing SiO 2.

  16. Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation.

    PubMed

    Chen, Fenghua; Yan, Fufeng; Chen, Qingtao; Wang, Yongwei; Han, Lifeng; Chen, Zhijun; Fang, Shaoming

    2014-09-28

    A quaternary nanocomposite Fe3O4@SiO2@TiO2/graphene oxide (GO) was for the first time successfully synthesized in this work for the repeated use in simultaneous adsorption and photocatalytic degradation of aromatically structured chemical pollutants. The resulting sample was characterized by TEM, XRD, FTIR, TG-DTG, XPS, PL, and VSM. Its photocatalytic activity was evaluated in the photocatalytic degradation of rhodamine B (RhB) under high-pressure mercury lamp irradiation. The results showed that about 63% of RhB was absorbed onto the prepared Fe3O4@SiO2@TiO2/GO nanocomposites by just 30 minute mixing, and after 120 min high-pressure mercury lamp irradiation, about 92.03% of RhB was converted. The photocatalytic degradation followed pseudo first-order reaction with an apparent rate constant of 0.0136 min(-1). Compared with the Fe3O4@SiO2@TiO2 nanoparticles, it exhibits an excellent ability to adsorb aromatic compounds via π-π stacking and a higher photocatalytic activity due to the presence of GO. In addition, the synthesized nanomaterial exhibited good magnetic response and the reusability study suggested that the prepared nanocomposites were stable enough and maintained high degradation rate and catalyst recovery even after five cycles, verifying their potential application in water purification.

  17. Unraveling the Origin of Structural Disorder in High Temperature Transition Al2O3: Structure of θ-Al2O3

    SciTech Connect

    Kovarik, Libor; Bowden, Mark E.; Shi, Dachuan; Washton, Nancy M.; Anderson, Amity; Hu, Jian Z.; Lee, Jaekyoung; Szanyi, Janos; Kwak, Ja Hun; Peden, Charles HF

    2015-09-22

    The crystallography of transition Al2O3 has been extensively studied in the past due to the advantageous properties of the oxide in catalytic and a range of other technological applications. However, existing crystallographic models are insufficient to describe the structure of many important Al2O3 polymorphs due to their highly disordered nature. In this work, we investigate structure and disorder in high-temperature treated transition Al2O3, and provide a structural description for θ-Al2O3 by using a suite of complementary imaging, spectroscopy and quantum calculation techniques. Contrary to current understanding, our high-resolution imaging shows that θ-Al2O3 is a disordered composite phase of at least two different end members. By correlating imaging and spectroscopy results with DFT calculations, we propose a model that describes θ-Al2O3 as a disordered intergrowth of two crystallographic variants at the unit cell level. One variant is based on β-Ga2O3, and the other on a monoclinic phase that is closely-related to δ-Al2O3. The overall findings and interpretations afford new insight into the origin of poor crystallinity in transition Al2O3, and also provide new perspectives on structural complexity that can emerge from intergrowth of closely related structural polymorphs.

  18. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    NASA Astrophysics Data System (ADS)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  19. Radiation endurance in Al2O3 nanoceramics

    PubMed Central

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; Di Fonzo, F.

    2016-01-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films. PMID:27653832

  20. Radiation endurance in Al2O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  1. Dipole defects in Al2O3:Mg,Cr.

    PubMed

    Blak, A R; Gobbi, V; Ayres, F

    2002-01-01

    In this work, dipole defects are investigated applying the thermally stimulated depolarisation currents (TSDC) technique. The TSDC spectra of Al2O3 doped with Mg and Cr show two bands centred at 230 K and 250 K, respectively. The maximum intensity of the bands increases linearly with the polarisation field, a typical behaviour of defects with dipole origin. An increase of the band at 250 K with gamma irradiation has been observed and a thermal decrease of the bands for heat treatments between 1000 K and 1400 K. Above this temperature the bands are partially recovered. Impurity neutron activation analysis shows that magnesium. chromium and iron content varies from 15 to 60 ppm. Optical absorption (AO) measurements show a broad band centred in 2.6 eV (21000 cm(-1)) associated with trapped holes localised on an O- ion adjacent to a cation site which is deficient in positive charge. It has been assumed that a substitutional Mg2+ ion occupies the cation site near a trapped hole on one of the six oxygen ions surrounding the magnesium impurity giving rise to the dipole responsible for the observed TSDC bands. Calculations carried out through defect simulation methods confirm that the probability of Al3+ being replaced by Mg2+ is higher than Mn2+, Co2+, Fe2+ and Cr2+. PMID:12382829

  2. The thermodynamic properties of hydrated -Al2O3 nanoparticles

    SciTech Connect

    Spencer, Elinor; Huang, Baiyu; Parker, Stewart F.; Kolesnikov, Alexander I; Ross, Dr. Nancy; Woodfield, Brian

    2013-01-01

    In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated -Al2O3 ( -alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (Cp) data presented herein provide further critical insights into the much-debated chemical composition of -alumina nanoparticles. Furthermore, the isochoric heat capacity (Cv) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four -alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated -alumina nanoparticles.

  3. In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol-gel processing with different SiO2 nanoparticle contents.

    PubMed

    Kawashita, Masakazu; Tanaka, Yui; Ueno, Shoji; Liu, Gengci; Li, Zhixia; Miyazaki, Toshiki

    2015-05-01

    Bioactive titania (TiO2) microparticles can be used as drug-releasing cement fillers for the chemotherapeutic treatment of metastatic bone tumors. Porous anatase-type TiO2 microspheres around 15 μm in diameter were obtained through a sol-gel process involving a water-in-oil emulsion with 30:70 SiO2/H2O weight ratio and subsequent NaOH solution treatment. The water phase consisted of methanol, titanium tetraisopropoxide, diethanolamine, SiO2 nanoparticles, and H2O, while the oil phase consisted of kerosene, Span 80, and Span 60. The resulting microspheres had a high specific surface area of 111.7 m(2)·g(-1). Apatite with a network-like surface structure formed on the surface of the microspheres within 8 days in simulated body fluid. The good apatite-forming ability of the microspheres is attributed to their porous structure and the negative zeta potential of TiO2. The release of rhodamine B, a model for a hydrophilic drug, was rapid for the first 6 h of soaking, but diffusion-controlled thereafter. The burst release in the first 6h is problematic for clinical applications; nonetheless, the present results highlight the potential of porous TiO2 microspheres as drug-releasing cement fillers able to form apatite.

  4. In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol-gel processing with different SiO2 nanoparticle contents.

    PubMed

    Kawashita, Masakazu; Tanaka, Yui; Ueno, Shoji; Liu, Gengci; Li, Zhixia; Miyazaki, Toshiki

    2015-05-01

    Bioactive titania (TiO2) microparticles can be used as drug-releasing cement fillers for the chemotherapeutic treatment of metastatic bone tumors. Porous anatase-type TiO2 microspheres around 15 μm in diameter were obtained through a sol-gel process involving a water-in-oil emulsion with 30:70 SiO2/H2O weight ratio and subsequent NaOH solution treatment. The water phase consisted of methanol, titanium tetraisopropoxide, diethanolamine, SiO2 nanoparticles, and H2O, while the oil phase consisted of kerosene, Span 80, and Span 60. The resulting microspheres had a high specific surface area of 111.7 m(2)·g(-1). Apatite with a network-like surface structure formed on the surface of the microspheres within 8 days in simulated body fluid. The good apatite-forming ability of the microspheres is attributed to their porous structure and the negative zeta potential of TiO2. The release of rhodamine B, a model for a hydrophilic drug, was rapid for the first 6 h of soaking, but diffusion-controlled thereafter. The burst release in the first 6h is problematic for clinical applications; nonetheless, the present results highlight the potential of porous TiO2 microspheres as drug-releasing cement fillers able to form apatite. PMID:25746276

  5. Oxidation Behavior of Al2O3 Coating on Ti-25Al-12.5Nb Alloy

    NASA Astrophysics Data System (ADS)

    Małecka, J.

    2016-07-01

    The oxidation behavior of Al2O3 coating deposited on Ti-25Al-12.5Nb alloy by sol-gel method was investigated at 700 and 800 °C under isothermal oxidation conditions in air. At both temperatures, the coated samples exhibited reduced mass gain compared to uncoated alloy; at 700 °C rather insignificant differences were observed; however, at the temperature of 800 °C, the deposited coating strongly limits the mass gain of the test material. As a consequence of the isothermal oxidation a scale forms containing mainly TiO2 on the alloy surface of the uncoated alloy, while during the oxidation of the coated alloy the surface coating of Al2O3 dissociated and the initially compact Al2O3 coating dissolved and its place was taken by a porous scale. These coated samples displayed good resistance to oxidation in set conditions and no zones of dissolved oxygen and nitrogen were recorded. No spallation of the coated samples was observed.

  6. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei

    2009-08-01

    Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.

  7. Deposition and Properties of the Pseudobinary Alloy (Al2O3)x(TiO2)1-x and Its Application for Silicon Surface Passivation

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.; Alexieva, Z.; Agostinelli, G.

    2006-07-01

    The electrical properties of (Al2O3)x(TiO2)1-x thin films, obtained from sol solution by spin coating on Si substrates (c-Si or mc-Si), have been studied. By varying the ratios between Al2O3 and TiO2 components, the optical and dielectric characteristics can be changed. This deposition method can be used for effective engineering of physical properties of the dielectric layer. Surface recombination velocities as low as 150 cm/s have been obtained using (Al2O3)x(TiO2)1-x layers on 1 Ω\\cdotcm Czochralski (CZ) silicon wafers. Low surface recombination is achieved by field induced surface passivation due to a high density of negative fixed charges.

  8. Effect of Al2O3 Addition on the Precipitated Phase Transformation in Ti-Bearing Blast Furnace Slags

    NASA Astrophysics Data System (ADS)

    Li, Zhongmin; Li, Jinfu; Sun, Yongqi; Seetharaman, Seshadri; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    The present paper aims to provide a fundamental understanding on phase change of Ti-enriched crystalline phase induced by Al2O3 addition in Ti-bearing blast furnace slags with different basicities using Single Hot Thermocouple Technique and X-ray Diffraction. The results showed that an increase in the Al2O3 content led to phase change from rutile or perovskite to Mg3Al4Ti8O25 and prompted crystallization of the slags with basicity of 0.60 and 0.75, whereas only CaTiO3 was precipitated at a basicity of 0.95. Both thermodynamic and kinetic analyses were conducted to study the slag crystallization, which would throw light on phase change and enhanced crystallization. To further reveal the relationship with Al2O3 addition on slag structure and crystallization, Fourier transform infrared spectroscopy and magic angle spinning-nuclear magnetic resonance were adopted, with AlO4 tetrahedra and AlO6 octahedra observed in the slag. For slags with the basicity of 0.60 and 0.75, AlO6 octahedron, which was suggested to induce the phase change from TiO2 or CaTiO3 to Mg3Al4Ti8O25, was detected at high Al2O3 content. On the other hand, in slags with the basicity of 0.95, abundant Ca2+ may be connected to TiO6 octahedra, resulting in CaTiO3 formation.

  9. Enhanced degradation of azo dye in wastewater by pulsed discharge plasma coupled with MWCNTs-TiO2/γ-Al2O3 composite photocatalyst.

    PubMed

    Li, Xin; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-05-01

    In order to improve the photocatalytic performance of TiO2 in pulsed discharge plasma systems, easily recycled multi-walled carbon nanotubes (MWCNTs)-TiO2 supported on γ-Al2O3 (MWCNTs-TiO2/γ-Al2O3) composite photocatalyst were prepared. The morphology and physicochemical properties of the prepared catalysts were investigated using XRD, SEM, FTIR and UV-vis spectroscopy. The photocatalytic activity was evaluated by degradation of azo dye acid orange II (AO7) in wastewater under pulsed discharge plasma. The results indicate that the MWCNTs-TiO2/γ-Al2O3 composite catalyst possesses enhanced photocatalytic activity facilitating the decomposition of AO7 compared with TiO2/γ-Al2O3 composite in pulsed discharge plasma systems. Under pulsed discharge plasma, almost 100% AO7 is degraded by the MWCNTs-TiO2/γ-Al2O3 composite after 60 min at optimal conditions. The degradation efficiency of AO7 is also affected by the dosage of the composite catalyst and pulsed discharge peak voltage. As the amount of MWCNTs-TiO2/γ-Al2O3 composite and pulsed discharge peak voltage increases, the degradation efficiency of AO7 increases. The photocatalyst was implemented for 6 cycles and the degradation efficiency of AO7 remains higher than 85% under pulsed discharge plasma. Results indicate that the catalyst displays easy separation and minimal deactivation after several uses. Possible decomposition mechanisms were also investigated. MWCNTs are capable of improving the photocatalytic activity of TiO2/γ-Al2O3 composite in pulsed discharge plasma systems primarily due to the photo-induced-electron absorption effect and the electron trap effect of MWCNTs. The results of this study establish the feasibility and potential implementation of MWCNTs-TiO2/γ-Al2O3 composites in pulsed discharge plasma systems for the degradation of dye wastewater. PMID:26946167

  10. Enhanced degradation of azo dye in wastewater by pulsed discharge plasma coupled with MWCNTs-TiO2/γ-Al2O3 composite photocatalyst.

    PubMed

    Li, Xin; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2016-05-01

    In order to improve the photocatalytic performance of TiO2 in pulsed discharge plasma systems, easily recycled multi-walled carbon nanotubes (MWCNTs)-TiO2 supported on γ-Al2O3 (MWCNTs-TiO2/γ-Al2O3) composite photocatalyst were prepared. The morphology and physicochemical properties of the prepared catalysts were investigated using XRD, SEM, FTIR and UV-vis spectroscopy. The photocatalytic activity was evaluated by degradation of azo dye acid orange II (AO7) in wastewater under pulsed discharge plasma. The results indicate that the MWCNTs-TiO2/γ-Al2O3 composite catalyst possesses enhanced photocatalytic activity facilitating the decomposition of AO7 compared with TiO2/γ-Al2O3 composite in pulsed discharge plasma systems. Under pulsed discharge plasma, almost 100% AO7 is degraded by the MWCNTs-TiO2/γ-Al2O3 composite after 60 min at optimal conditions. The degradation efficiency of AO7 is also affected by the dosage of the composite catalyst and pulsed discharge peak voltage. As the amount of MWCNTs-TiO2/γ-Al2O3 composite and pulsed discharge peak voltage increases, the degradation efficiency of AO7 increases. The photocatalyst was implemented for 6 cycles and the degradation efficiency of AO7 remains higher than 85% under pulsed discharge plasma. Results indicate that the catalyst displays easy separation and minimal deactivation after several uses. Possible decomposition mechanisms were also investigated. MWCNTs are capable of improving the photocatalytic activity of TiO2/γ-Al2O3 composite in pulsed discharge plasma systems primarily due to the photo-induced-electron absorption effect and the electron trap effect of MWCNTs. The results of this study establish the feasibility and potential implementation of MWCNTs-TiO2/γ-Al2O3 composites in pulsed discharge plasma systems for the degradation of dye wastewater.

  11. The molar volume of cubic garnets in the system SiO2-Al2O3-TiO2-Fe2O3-Cr2O3-FeO-MnO-MgO-CaO-Na2O

    NASA Astrophysics Data System (ADS)

    Hamecher, E. A.; Antoshechkina, P. M.; Ghiorso, M. S.; Asimow, P. D.

    2012-12-01

    Garnet is a critical phase that controls major and trace element partitioning at pressures above ~3 GPa during partial melting of the Earth's upper mantle. A molar volume model is calibrated for cubic garnets (space group Ia3d) in the oxide system listed in the title. This model and a recent calibration of spinel molar volume (Hamecher et al., in press, CMP) will be used in calibration of thermodynamic activity-composition models of garnet and pyroxene solid solutions. The activity and molar volume models will be incorporated into the next generation MELTS (Ghiorso & Sack, 1995, CMP) model, xMELTS. A new garnet volume model calibrated with recent in situ high-P, T diffraction data is crucial for accurately modeling key mineralogical transitions in the mantle, e.g., the spinel-garnet transition and the mantle transition zone. Above 5 GPa a majorite component is an essential part of any thermodynamic model of mantle garnets, which to be useful must accurately predict garnet stability with respect to spinel, pyroxene, perovskites, and melt. Our model system contains nine independent end members: Ca3Al2Si3O12, Mg3Al2Si3O12, Fe2+3Al2Si3O12, Mg3Cr2Si3O12, Mg3Fe3+2Si3O12, Mn3Al2Si3O12, Na2(MgSi2)Si3O12, Mg3(TiMg)Si3O12, and cubic majorite component Mg3(MgSi)Si3O12. An inclusive set of end-member components is formed by linear combinations of these explicit end members. Approximately 950 published X-ray diffraction experiments performed on garnets at ambient and in situ high-P, T conditions are used to calibrate end-member equations of state and an excess volume model for this system. Optimal values of the bulk modulus and its pressure derivative are obtained by analyzing published compression and/or ultrasonic data for the end members for which such studies exist; for other end members, density functional theory results are used. For any cubic garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of the nine independent end-member volumes. In the first step of our least squares fitting procedure we calculate volumes of the explicit end members as a function of P and T using the high-T Vinet equation of state. We allow standard state volumes and coefficients of thermal expansion to vary for those independent end members where pure compositional data exist, either for the phase itself or for an appropriate dependent end member. For each dependent end member for which there are data, we calculate the volume of reaction for formation of the phase from the independent end members, ΔV. We then fit the binary and mixed composition data, using the singular value analysis method of Lawson & Hanson (1974) to ensure that the calibrated combinations of excess parameters obey the nine ΔV constraints from the first step. A key plausibility check on the model results from comparing the predicted T-dependence of the bulk modulus to high-T ultrasonic results that were not used in the calibration. The calculated pressure of the spinel-garnet transition using the new volume models is compared to that obtained with the previous models. The implications our model has for the density of the lithospheric mantle are explored.

  12. Selective-area growth and magnetic characterization of MnAs/AlGaAs nanoclusters on insulating Al2O3 layers crystallized on Si(111) substrates

    NASA Astrophysics Data System (ADS)

    Sakita, Shinya; Hara, Shinjiro; Elm, Matthias T.; Klar, Peter J.

    2016-01-01

    We report on selective-area metal-organic vapor phase epitaxy and magnetic characterization of coupled MnAs/AlGaAs nanoclusters formed on thin Al2O3 insulating layers crystallized on Si(111) substrates. Cross-sectional transmission electron microscopy reveals that poly-crystalline γ-Al2O3 grains are formed after an annealing treatment of the amorphous Al2O3 layers deposited by atomic layer deposition on Si(111) substrates. The ⟨111⟩ direction of the γ-Al2O3 grains tends to be oriented approximately parallel to the ⟨111⟩ direction of the Si substrate. We observe that hexagonal MnAs nanoclusters on AlGaAs buffer layers grown by selective-area metal-organic vapor phase epitaxy on partially SiO2-masked Al2O3 insulator crystallized on Si(111) substrates are oriented with the c-axis along the ⟨111⟩ direction of the substrates, but exhibit a random in-plane orientation. A likely reason is the random orientation of the poly-crystalline γ-Al2O3 grains in the Al2O3 layer plane. Magnetic force microscopy studies at room temperature reveal that arrangements of coupled MnAs nanoclusters exhibit a complex magnetic domain structure. Such arrangements of coupled MnAs nanoclusters may also show magnetic random telegraph noise, i.e., jumps between two discrete resistance levels, in a certain temperature range, which can be explained by thermally activated changes of the complex magnetic structure of the nanocluster arrangements.

  13. Tailoring the sealing properties of TiO2-CaO-SrO-B2O3-SiO2 glass-ceramic seals: Thermal properties, chemical compatibility and electrical property

    NASA Astrophysics Data System (ADS)

    Chen, Jialin; Zou, Qi; Zeng, Fanrong; Wang, Shaorong; Tang, Dian; Yang, Hsiwen; Zhang, Teng

    2013-11-01

    In this paper, TiO2 is added to CaO-SrO-B2O3-SiO2 sealing system to tailor the sealing properties of glass-ceramic seals. The coefficient of thermal expansion (CTE) of quenched glasses and glass-ceramics (held at 750 °C for 100 h) does not change significantly with the addition of TiO2; whereas, the glass stability (ΔTxg = Tx - Tg) decreases systematically with increasing TiO2. The addition of TiO2 accelerates the crystallization of sealing glasses. The formation of Sr-containing phase, e.g., Sr(TiO3), contributes to the improved chemical compatibility as well as the increase in conductivity of sealing glasses (e.g., from 7.9 × 10-8 S cm-1 to 6.9 × 10-5 S cm-1 at 800 °C). In addition, the good bonding is observed at the interface between Cr-containing interconnect (430SS) and glasses containing 4-8 mole % TiO2, held at 750 °C for 100 h.

  14. Stoichiometry of the ALD-Al2O3/4H–SiC interface by synchrotron-based XPS

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Saveda Suvanam, Sethu; Ghadami Yazdi, Milad; Göthelid, Mats; Sultan, Muhammad; Hallén, Anders

    2016-06-01

    The interface of Al2O3 with 4H-SiC is investigated with synchrotron-based high-resolution x-ray photoelectron spectroscopy to clarify the effect of post-dielectric deposition annealing processes (rapid thermal annealing (RTA) and furnace annealing (FA)) involved in device fabrication. Our results show that post-deposition annealing of Al2O3/4H-SiC up to 1100 °C forms a thin interfacial layer of SiO2 between Al2O3 and SiC, which possibly improves the dielectric properties of the system by reducing oxide charges and near-interface traps. Moreover, the formation of SiO2 at the interface gives additional band offset to the dielectric system. We have also observed that the RTA and FA processes have similar results at a high temperature of 1100 °C. Therefore, we propose that high-temperature post-oxide (Al2O3) deposition annealing of up to 1100 °C may be used in device processing, which can improve overall dielectric properties and consequently the device performance.

  15. Stoichiometry of the ALD-Al2O3/4H-SiC interface by synchrotron-based XPS

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Saveda Suvanam, Sethu; Ghadami Yazdi, Milad; Göthelid, Mats; Sultan, Muhammad; Hallén, Anders

    2016-06-01

    The interface of Al2O3 with 4H-SiC is investigated with synchrotron-based high-resolution x-ray photoelectron spectroscopy to clarify the effect of post-dielectric deposition annealing processes (rapid thermal annealing (RTA) and furnace annealing (FA)) involved in device fabrication. Our results show that post-deposition annealing of Al2O3/4H-SiC up to 1100 °C forms a thin interfacial layer of SiO2 between Al2O3 and SiC, which possibly improves the dielectric properties of the system by reducing oxide charges and near-interface traps. Moreover, the formation of SiO2 at the interface gives additional band offset to the dielectric system. We have also observed that the RTA and FA processes have similar results at a high temperature of 1100 °C. Therefore, we propose that high-temperature post-oxide (Al2O3) deposition annealing of up to 1100 °C may be used in device processing, which can improve overall dielectric properties and consequently the device performance.

  16. Acoustic velocity measurements on Na 2O-TiO 2-SiO 2 liquids: Evidence for a highly compressible TiO 2 component related to five-coordinated Ti

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Lange, Rebecca A.; Ai, Yuhui

    2007-09-01

    Longitudinal acoustic velocities were measured at 1 bar in 10 Na 2O-TiO 2-SiO 2 (NTS) liquids for which previous density and thermal expansion data are reported in the literature. Data were collected with a frequency-sweep acoustic interferometer at centered frequencies of 4.5, 5, and 6 MHz between 1233 and 1896 K; in all cases, the sound speeds decrease with increasing temperature. Six of the liquids have a similar TiO 2 concentration (˜25 mol %), so that the effect of varying Na/Si ratio on the partial molar compressibility of the TiO 2 component can be evaluated. Theoretically based models for βT and (∂ V/∂ P) T as a function of composition and temperature are presented. As found previously for the partial molar volume of TiO 2(V) in sodium silicate melts, values of β (13.7-18.8 × 10 -2/GPa) vary systematically with the Na/Si and Na/(Si + Ti) ratio in the liquid. In contrast values of β for the SiO 2 and Na 2O components (6.6 and 8.0 × 10 -2/GPa, respectively, at 1573 K) are independent of composition. Na 2O is the only component that contributes to the temperature dependence of the compressibility of NTS liquids (1.13 ± 0.04 × 10 -4/GPa K). The results further indicate that the TiO 2 component is twice as compressible as the Na 2O and SiO 2 components. The enhanced compressibility of TiO 2 appears to be related to the abundance of five-coordinated Ti ( [5]Ti) in these liquids, but not with a change in Ti coordination. Instead, it is proposed that the asymmetric geometry of [5]Ti in a square pyramidal site promotes different topological rearrangements in alkali titanosilicate liquids, which lead to the enhanced compressibility of TiO 2.

  17. Atomic rearrangements in amorphous Al2O3 under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Ishimaru, M.; Yasuda, H.; Nakajima, H.

    2013-02-01

    The electron-irradiation-induced crystallization of amorphous Al2O3 (a-Al2O3) was investigated by in-situ transmission electron microscopy under the wide electron-energy region of 25-300 keV. The formation of γ-Al2O3 nanocrystallites was induced by irradiating the a-Al2O3 thin film along with the formation of nanovoids in the crystalline grains regardless of the acceleration voltage. The crystallization became more pronounced with decreasing the electron energy, indicating that electronic excitation processes play a dominant role in the formation of γ-Al2O3. Radial distribution analyses suggested that a-Al2O3 transforms to γ-phase via the "excited" ("stimulated") amorphous state, in which the breaking and rearrangement of unstable short-range Al-O bonds, i.e., fivefold-coordinated Al-O (AlO5) basic units, occur.

  18. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  19. Wet foams hydrophobized by amphiphiles to give Al2O3 porous ceramics

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ashish; Park, Jung Gyu; Kim, Ik Jin

    2012-05-01

    Wet chemical method to prepare ceramic foams with antecedent stability using inorganic particles (Al2O3,SiO2 etc.) which are in situ hydrophobized upon adsorption of short-chain amphiphilic molecules in the wet state and heightened mechanical property in the sintered state was developed. These wet foams are stable over several days and show no bubble coarsening nor drainage or creaming. This long-term stability is achieved through the irreversible adsorption of partially hydrophobized colloidal particles to the air-water interface using short-chain amphiphiles to in situ modify the wetting behavior of the particle surface based on the observations of Pickering emulsions. As a result, the suspension is foamed homogeneously throughout its entire volume and porous bulk materials can be produced upon drying and sintering. Wet foams featuring average bubble sizes between 30 and 300μm and sintered foams with porosity from 50 to 85% were obtained by adjusting the amphiphile - particle concentration, and additives in the initial suspension. Cells were mostly closed with an average size of approximately 150 μm. Single cells were separated by walls with minimum thicknesses of 1-3 μm.

  20. pH-controlled selective etching of Al2O3 over ZnO.

    PubMed

    Sun, Kaige G; Li, Yuanyuan V; Saint John, David B; Jackson, Thomas N

    2014-05-28

    We describe pH-controlled selective etching of atomic layer deposition (ALD) Al2O3 over ZnO. Film thickness as a function of etch exposure was measured by spectroscopic ellipsometry. We find that alkaline aqueous solutions with pH between about 9 and 12 will etch Al2O3 at useful rate with minimal attack of ZnO. Highly selective etching of Al2O3 over ZnO (selectivity >400:1) and an Al2O3 etch rate of ∼50 nm/min can be obtained using a pH 12 etch solution at 60 °C. PMID:24818868

  1. Static compression of Al2O3 to 1.2 Mbars /120 GPa/

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Ruoff, A. L.

    1979-01-01

    Pressures up to 120 GPa were generated when a diamond indentor of radius 10.0 micrometers was pressed against a very thin sample of Al2O3 on a diamond flat. The thin film of Al2O3 was prepared by sputtering of aluminum in an oxygen atmosphere. From the measurement of the electrical resistance of Al2O3 as a function of pressure it was found that Al2O3 remains an insulator at the highest pressure studied, namely, 120 GPa.

  2. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography.

    PubMed

    Es'haghi, Zarrin; Esmaeili-Shahri, Effat

    2014-10-01

    Hollow fiber-solid phase micro-extraction (HF-SPME) technique containing sol-gel-derived Fe3O4/SiO2/TiO2 core-double shell nanocomposite as a novel high efficiency sorbent, coupled with high performance liquid chromatography was used to extraction and determination of six non-steroidal anti-inflammatory drugs; acetylsalicylic acid, naproxen, piroxicam, diclofenac, indomethacin and mefenamic acid, in hair samples. First, magnetite nanoparticles (Fe3O4-NPs) were synthesized by chemical co-precipitation of Fe(II) and Fe(III) ions (where the ratio of Fe(II) to Fe(III) is 1:2 and a non-oxidizing environment), in alkaline medium to produce magnetite particles. Subsequently, surface of Fe3O4-NPs was modified with SiO2 and TiO2 using layer-by-layer chemical technique. A core-shell structure of Fe3O4/SiO2/TiO2 composite was prepared by coating magnetite core particles with silica and titania layers. In the proposed method, NSAIDs were extracted by the synthesized nanocomposite and analyzed by HPLC. The parameters affecting the efficiency of magnetic nanoparticle (MNPs) assisted HF-SPME were investigated and optimized. The method validation was included and satisfying results with high pre-concentration factors (405 up to 2450) were obtained. It owes large surface area and porosity of the nano-adsorbent. Under the optimal conditions, the method detection limits (S/N=3) were in the range of 0.01-0.10μgml(-1) and the limits of quantification (S/N=10) between 0.04 and 0.30μgml(-1). Relative standard deviations were 3.09-6.61%. Eventually, the method was successfully applied to human hair after administration of NSAIDs.

  3. Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts coated with different contents of Ag nanoparticles under ultraviolet and visible light irradiations

    NASA Astrophysics Data System (ADS)

    Abdullah, Hairus; Kuo, Dong-Hau

    2016-08-01

    Photocatalytic performance of the SiO2 sphere/ n-type TiO2/ p-type CuBiS2 composite catalysts with different contents of silver nanoparticles (abbreviated as SiO2/ n-TiO2/ p-CuBiS2/Ag) toward the photodegradation of Acid Black 1 ( AB 1) dye under ultraviolet (UV) and visible light was investigated. The composite catalyst spheres were analyzed their crystal structure, microstructure, optical absorbance capabilities, and photodegradation capabilities of AB 1 dye. The best photodegradation performances of the 20 mg composite powder with only ~5 mg photoactive catalysts showed the degradation of AB 1 dye in 5 min under UV and 60 min under visible light irradiations. The concept of composite catalyst with numerous nano p- n diodes and its photodegradation mechanism were proposed.

  4. Evaluation of Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3 catalyst performance in a 5 N satellite thruster

    NASA Astrophysics Data System (ADS)

    Jofre, J. B. F.; Soares Neto, T. G.; Dias, F. F.; Cruz, G. M.

    2013-04-01

    Ir/Al2O3, Ir-Ru/Al2O3 and Ru/Al2O3 catalysts with approximately 33% metallic content in mass were prepared in 20 impregnation steps. For the Ru catalyst, two impregnation methods were employed: incipient wetness (chlorinated precursor) and by excess volume (non-chlorinated precursor). For the remaining catalysts, only incipient wetness impregnation was used with chlorinated precursors. Catalyst textural properties were evaluated before and after catalytic tests: metallic grade, specific area, mesopore volume distribution, metallic dispersion, and metallic particle average diameter. Catalysts were tested for hydrazine (N2H4) decomposition reaction in a 5 N satellite thruster and their performances were compared to Shell 405 commercial catalyst. Results showed that catalysts containing Ir were similar in performance to Shell 405 commercial catalyst and that the catalyst containing only Ru should not be used in cold starts.

  5. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  6. Microstructural and Tribological Properties of Al2O3-13pctTiO2 Thermal Spray Coatings Deposited by Flame Spraying

    NASA Astrophysics Data System (ADS)

    Younes, Rassim; Bradai, Mohand Amokrane; Sadeddine, Abdelhamid; Mouadji, Youcef; Bilek, Ali; Benabbas, Abderrahim

    2015-10-01

    T He present investigation has been conducted to study the tribological properties of Al2O3-13pctTiO2 (AT-13) ceramic coatings deposited on a low carbon steel type E335 by using a thermal flame spray technique. The microstructure and phase composition of wire and coatings were analyzed by scanning electron microscope, energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Measurements of micro hardness were also performed on the surface of the coatings. The tribological tests were carried out using a pin-on-disk tribometer at different loads. All tests were performed using two disks as counter body, namely Al2O3-ZrO2 (AZ-25) and Al2O3-TiO2 (AT-3) which formed couple 1 and couple 2, respectively, in order to work out the wear rate and friction coefficient. Roughness profiles were also evaluated before and after each test. The SEM showed that the dense microstructure of Al2O3-TiO2 (AT-13) coatings have a homogenous lamellar morphology and complex of several phases with the presence of porosities and unmelted particles. The XRD analysis of the wire before the spray showed a majority phase of α-Al2O3 rhombohedral structure and a secondary phase of Al2TiO5 orthorhombic structure with little traces of TiO2 (rutile) tetragonal structure, whereas the XRD of the coating revealed the disappearance of TiO2 replaced by the formation of a new metastable phase γ-Al2O3 cubic structure. The tribological results showed that the applied contact pressure affects the variation of the friction coefficient with time and that it decreases with the rise of the normal force of contact. It was found also that the couple 2 with nearly chemical compositions of spray-coated (AT-13) and disk (AT-3) exhibited much higher wear resistance than the couple 1 although they have sliding coefficient of friction nearly.

  7. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].

    PubMed

    Zha, Jian; Zhou, Hong-Cang; He, Du-Liang; Shan, Long; Zhang, Lu; Xie, Jie

    2014-10-01

    Three catalysts CuO/Al2O3, CeO2/Al2O3 and CuO-CeO2/Al2O3 were prepared by the impregnation method. The textural and structural properties of the synthesized catalysts were characterized by N2 adsorption/desorption, SEM and XRD, and the effect of active ingredients, flow rate and reaction temperature on catalytic degradation of naphthalene (NaP) were investigated in fixed-bed reactor. The experimental results show that the prepared 18% CeO2/Al2O3 has a low catalytic activity of NaP. Nevertheless, both 18% CuO/Al2O3 and 9% CuO-9% CeO2/Al2O3 exhibit high catalytic activity whose removal efficiencies at 300°C can reach 91% and 89%, respectively. Besides, compared with CuO/Al2O3, CuO-CeO2/Al2O3 possesses a higher low-temperature activity. Furthermore, the variation of flow rates has little effect on the performance of two catalysts.

  8. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  9. Injection Seeding of Ti:Al2O3 in an unstable resonator theory and experiment

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Wang, L. G.; Barnes, N. P.; Edwards, W. C.; Cheng, W. A.; Hess, R. V.; Lockard, G. E.; Ponsardin, P. L.

    1991-01-01

    Injection Seeding of a Ti:Al2O3 unstable resonator using both a pulsed single-mode Ti:Al2O3 laser and a continuous wave laser diode has been characterized. Results are compared with a theory which calculates injection seeding as function of seed and resonator alignment, beam profiles, and power.

  10. [Catalytic degradation of naphthalene by CuO (-CeO2)/Al2O3].

    PubMed

    Zha, Jian; Zhou, Hong-Cang; He, Du-Liang; Shan, Long; Zhang, Lu; Xie, Jie

    2014-10-01

    Three catalysts CuO/Al2O3, CeO2/Al2O3 and CuO-CeO2/Al2O3 were prepared by the impregnation method. The textural and structural properties of the synthesized catalysts were characterized by N2 adsorption/desorption, SEM and XRD, and the effect of active ingredients, flow rate and reaction temperature on catalytic degradation of naphthalene (NaP) were investigated in fixed-bed reactor. The experimental results show that the prepared 18% CeO2/Al2O3 has a low catalytic activity of NaP. Nevertheless, both 18% CuO/Al2O3 and 9% CuO-9% CeO2/Al2O3 exhibit high catalytic activity whose removal efficiencies at 300°C can reach 91% and 89%, respectively. Besides, compared with CuO/Al2O3, CuO-CeO2/Al2O3 possesses a higher low-temperature activity. Furthermore, the variation of flow rates has little effect on the performance of two catalysts. PMID:25693411

  11. [CuO-Ru/Al2O3 catalytic ozonation of acetophenone in water].

    PubMed

    Zhang, Hua; Shi, Rui; Zang, Xing-jie; Tong, Shao-ping; Ma, Chun-an

    2010-03-01

    Two-component CuO-Ru based on active Al2O3 (CuO-Ru/Al2O3) catalyst was prepared by incipient wetness impregnation and used to catalytic ozonation of acetophenone (AP). The results showed that doping Ru could significantly improve the catalytic activity of CuO/Al2O3. For example, the COD removal rates of AP solution after 30 min by ozonation alone, CuO/Al2O3/O3, and CuO-Ru/Al2O3/O3 were 6.3%, 20.0% and 54.0%, respectively. The change of pH almost had no affect on degradation efficiency of AP. However, a comparison of COD removal between ozonation alone and catalytic ozonation indicated that CuO-Ru/Al2O3 catalyst was more suitable for application in neutral or acidic condition. CuO-Ru/Al2O3 catalyst could accelerate decomposition rate of ozone in water, and its decomposition rate constant reached 2.58 x 10(-3) s(-1) while that of ozone alone in double-water was 1.19 x 10(-3) s(-1). The experimental result of t-butanol indicated that CuO-Ru/Al2O3 catalytic ozonation of AP followed a radical-type mechanism. PMID:20358832

  12. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  13. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  14. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Cho, K.-H.; Patel, U.; Podkaminer, J.; Gao, Y.; Folkman, C. M.; Bark, C. W.; Lee, S.; Zhang, Y.; Pan, X. Q.; McDermott, R.; Eom, C. B.

    2013-10-01

    We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001) Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature) quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  15. Interface behavior of Al2O3/Ti joints produced by liquid state bonding.

    PubMed

    Lemus-Ruiz, J; Guevara-Laureano, A O; Zarate-Medina, J; Arellano-Lara, A; Ceja-Cárdenas, L

    2015-04-01

    In this work we study brazing of Al2O3 to Ti with biocompatibility properties, using a Au-foil as joining element. Al2O3 was produced by sintering of powder at 1550°C. Al2O3 samples were coated with a 2 and 4μm thick of Mo layer and then stacked with Ti. Al2O3-Mo/Au/Ti combinations were joined at 1100°C in vacuum. Successful joining of Mo-Al2O3 to Ti was observed. Interface shows the formation of a homogeneous diffusion zone. Mo diffused inside Au forming a concentration line. Ti3Au and TiAu phases were observed.

  16. The Influence of Na2O on the Solidification and Crystallization Behavior of CaO-SiO2-Al2O3-Based Mold Flux

    NASA Astrophysics Data System (ADS)

    Gao, Jinxing; Wen, Guanghua; Sun, Qihao; Tang, Ping; Liu, Qiang

    2015-08-01

    The reaction between [Al] and SiO2 sharply increased the Al2O3 and decreased SiO2 contents in mold flux during the continuous casting of high-Al steels. These changes converted original CaO-SiO2-based flux into CaO-SiO2-Al2O3-based flux, promoting the crystallization and deteriorating the mold lubrication. Therefore, study on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux, with the applicable fluidizers, is of importance. The effect of Na2O, predominantly used as the fluidizer in mold flux, on the solidification and crystallization behavior of CaO-SiO2-Al2O3-based mold flux needs to be investigated. In this study, a CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O was designed; the effect of Na2O on the solidification and crystallization behavior of these mold fluxes was investigated using the single hot thermocouple technique (SHTT) and the double hot thermocouple technique (DHTT). Moreover, the slag film obtained by a heat flux simulator was analyzed using X-ray diffraction (XRD). The results indicate that the solid fraction of molten slag (Fs) and the crystalline fraction of solid slag (Fc) in the mold slag films decrease with increasing Na2O content from 0 to 2 wt pct. However, Fs and Fc increased when the Na2O content increased from 2 to 6 wt pct. The critical cooling rates initially decreases and then increases with increasing Na2O content. The XRD analysis results show that LiAlO2 and CaF2 were the basic crystals for all the mold fluxes. Increasing the Na2O content both inhibits the Ca2Al2SiO7 formation and promotes the production of Ca12Al14O33, indicating that the mold lubrication deteriorated because of the high melting-point phase formation of Ca2Al2SiO7 in the CaO-SiO2-Al2O3-based mold flux containing 6.5 wt pct Li2O, without Na2O. The strong crystallization tendency also deteriorated the mold lubrication for the mold flux with a higher Na2O content. Therefore, the addition of Na2O was less than 2 wt pct in

  17. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.

    PubMed

    Peng, Weiwei; Xu, Zuwei; Luo, Cong; Zhao, Haibo

    2015-07-01

    CaO-based sorbents are widely used for CO2 capture, steam methane reforming, and gasification enhancement, but the sorbents suffer from rapid deactivation during successive carbonation/calcination cycles. This research proposes a novel self-assembly template synthesis (SATS) method to prepare a hierarchical structure CaO-based sorbent, Ca-rich, Al2O3-supported, and TiO2-stabilized in a core-shell microarchitecture (CaO/TiO2-Al2O3). The cyclic CO2 capture performance of CaO/TiO2-Al2O3 is compared with those of pure CaO and CaO/Al2O3. CaO/TiO2-Al2O3 sorbent achieved superior and durable CO2 capture capacity of 0.52 g CO2/g sorbent after 20 cycles under the mild calcination condition and retained a high-capacity and long-life performance of 0.44 g CO2/g sorbent after 104 cycles under the severe calcination condition, much higher than those of CaO and CaO/Al2O3. The microstructure characterization of CaO/TiO2-Al2O3 confirmed that the core-shell structure of composite support effectively inhibited the reaction between active component (CaO particles) and main support (Al2O3 particles) by TiO2 addition, which contributed to its properties of high reactivity, thermal stability, mechanical strength, and resistance to agglomeration and sintering.

  18. Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent.

    PubMed

    Peng, Weiwei; Xu, Zuwei; Luo, Cong; Zhao, Haibo

    2015-07-01

    CaO-based sorbents are widely used for CO2 capture, steam methane reforming, and gasification enhancement, but the sorbents suffer from rapid deactivation during successive carbonation/calcination cycles. This research proposes a novel self-assembly template synthesis (SATS) method to prepare a hierarchical structure CaO-based sorbent, Ca-rich, Al2O3-supported, and TiO2-stabilized in a core-shell microarchitecture (CaO/TiO2-Al2O3). The cyclic CO2 capture performance of CaO/TiO2-Al2O3 is compared with those of pure CaO and CaO/Al2O3. CaO/TiO2-Al2O3 sorbent achieved superior and durable CO2 capture capacity of 0.52 g CO2/g sorbent after 20 cycles under the mild calcination condition and retained a high-capacity and long-life performance of 0.44 g CO2/g sorbent after 104 cycles under the severe calcination condition, much higher than those of CaO and CaO/Al2O3. The microstructure characterization of CaO/TiO2-Al2O3 confirmed that the core-shell structure of composite support effectively inhibited the reaction between active component (CaO particles) and main support (Al2O3 particles) by TiO2 addition, which contributed to its properties of high reactivity, thermal stability, mechanical strength, and resistance to agglomeration and sintering. PMID:26047026

  19. Magnetic core-shell nano-TiO2/Al2O3/NiFe2O4 microparticles with enhanced photocatalytic activity.

    PubMed

    Jing, Mao-Xiang; Han, Chong; Wang, Zhou; Shen, Xiang-Qian

    2013-07-01

    The core-shell nano-TiO2/Al2O3/NiFe2O4 microparticles of 5-8 microm were prepared by the heterogeneous precipitation followed by calcination treatment. The morphologies, structure, crystalline phase, and magnetic property were characterized by optical biomicroscopy (OBM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) and vibrating sample magnetometer (VSM) respectively. The photocatalytic activity was evaluated by degrading methyl orange solution either under UV light and sunlight. The results indicate that the nano-TiO2 layer consists of needle-like nanoparticles and the intermediate layer of Al2O3 avoids the nano-TiO2 agglomeration, shedding and uneven loading. The nano-TiO2/Al2O3/NiFe2O4 composite particles show high magnetization of 31.5 emu/g and enhanced photocatalytic activity to completely degrade 50 mg/L methyl orange solution either under UV light and sun light. The enhanced activity of the composite is attributed to the unique structure, insulation effect of Al2O3 intermediate layer and the hybrid effect of anatase TiO2 and NiFe2O4. The obtained catalyst may be magnetically separable and useful for many practical applications due to the improved photocatalytic properties under sunlight. PMID:23901515

  20. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters.

  1. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions. PMID:27033846

  2. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  3. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  4. Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study.

    PubMed

    Zhu, Hui; McDonnell, Stephen; Qin, Xiaoye; Azcatl, Angelica; Cheng, Lanxia; Addou, Rafik; Kim, Jiyoung; Ye, Peide D; Wallace, Robert M

    2015-06-17

    In situ "half cycle" atomic layer deposition (ALD) of Al2O3 was carried out on black phosphorus ("black-P") surfaces with modified phosphorus oxide concentrations. X-ray photoelectron spectroscopy is employed to investigate the interfacial chemistry and the nucleation of the Al2O3 on black-P surfaces. This work suggests that exposing a sample that is initially free of phosphorus oxide to the ALD precursors does not result in detectable oxidation. However, when the phosphorus oxide is formed on the surface prior to deposition, the black-P can react with both the surface adventitious oxygen contamination and the H2O precursor at a deposition temperature of 200 °C. As a result, the concentration of the phosphorus oxide increases after both annealing and the atomic layer deposition process. The nucleation rate of Al2O3 on black-P is correlated with the amount of oxygen on samples prior to the deposition. The growth of Al2O3 follows a "substrate inhibited growth" behavior where an incubation period is required. Ex situ atomic force microscopy is also used to investigate the deposited Al2O3 morphologies on black-P where the Al2O3 tends to form islands on the exfoliated black-P samples. Therefore, surface functionalization may be needed to get a conformal coverage of Al2O3 on the phosphorus oxide free samples.

  5. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  6. Finite element analysis of WC-Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Vaish, Rahul

    2014-02-01

    Object oriented finite element analysis (OOF2) is used to estimate the thermal and mechanical properties of WC-Al2O3 composites. In the present work, five compositions of 10%, 20%, 30%, 40% and 50% Al2O3 (by volume) are studied. Young's modulus, thermal conductivity and thermal expansion coefficient are estimated using OOF2 and compared with other known analytical methods. Stress and strain contours are plotted to study the thermal and mechanical behavior of composites. It is found that the stresses are largely concentrated at the interfaces of the WC-Al2O3 phases.

  7. Synthesis and optical studies of chemically synthesized PPy/Al2O3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Bahadur, Indra; Mishra, Sheo K.; Tripathi, Akhilesh; Shukla, R. K.

    2016-05-01

    In the present work, we have synthesised pure and 2wt% Al2O3 doped PPy by the chemical oxidation method. XRD patterns of 2wt% Al2O3 doped PPy shows several broad peaks while pure PPy shows only one single peak indicating poor crystalline phase of PPy. FTIR spectra confirm the formation of PPy and also suggest that doping of Al2O3 in PPy does not affect its structure. PL shows several emission peaks for both samples located at ˜365 nm with two shoulders at ˜473 nm and ˜533 nm. The further synthesis and properties study is under investigation.

  8. Thermoluminescence studies of γ-irradiated Al2O3:Ce3+ phosphor

    NASA Astrophysics Data System (ADS)

    Reddy, S. Satyanarayana; Nagabhushana, K. R.; Singh, Fouran

    2016-07-01

    Pure and Ce3+ doped Al2O3 phosphors were synthesized by solution combustion method. The synthesized samples were characterized by X-ray diffraction (XRD) and its shows α-phase of Al2O3. Crystallite size was estimated by Williamson-Hall (W-H) method and found to be 49, 59 and 84 nm for pure, 0.1 mol% and 1 mol% Ce3+ doped Al2O3 respectively. Trace elemental analysis of undoped Al2O3 shows impurities viz. Fe, Cr, Mn, Mg, Ti, etc. Photoluminescence (PL) spectra of Al2O3:Ce3+ shows emission at 367 nm and excitation peak at 273 nm, which are corresponding to 5D → 4F and 4F → 5D transitions respectively. PL intensity decreases with concentration up to 0.4 mol%, beyond this mol% PL intensity increases with doping concentration up to 2 mol%. Thermoluminescence (TL) studies of γ-rayed pure and Ce3+ doped Al2O3 have been studied. Two well resolved TL glow peaks at 457.5 K and 622 K were observed in pure Al2O3. Additional glow peak at 566 K was observed in Al2O3:Ce3+. Maximum TL intensity was observed for Al2O3:Ce3+ (0.1 mol%) beyond this TL intensity decreases with increasing Ce3+ concentration. Computerized glow curve deconvolution (CGCD) method was used to resolve the multiple peaks and to calculate TL kinetic parameters. Thermoluminescence emission (TLE) spectra of pure Al2O3 glow peaks (457.5 K and 622 K) shows sharp emission at 694 nm and two small humps at 672 nm and 709 nm. The sharp peak at 696 nm corresponds to Cr3+ impurity of 2Eg → 4A2g transition of R lines and 713 nm hump is undoubtedly belongs to Cr3+ emission of near neighbor pairs. The emission at 672 nm is characteristic of Mn4+ impurity ions of 2E → 4A2 transition. TLE of Al2O3:Ce3+ (0.1 mol%) shows additional broad emission at 412 nm corresponds to F-centers. Linearity is observed in the dose range 20-500 Gy in Al2O3:Ce3+ (1 mol%).

  9. [Preparation, characterization and three way catalytic performance for Pd/CZ/Al2O3 catalyst].

    PubMed

    Fang, Shi-Ping; Chen, Hong-De; Tian, Qun; Yao, Qing; Han, Yun

    2005-09-01

    Pd/CZ/Al2O3 catalyst was prepared by impregnating a noble metal solution to the support CZ/Al2O3 which was prefabricated by co-impregnation. The investigation results show that Pd/CZ/Al2O3 has a superior three-way catalytic performance, which is comparable to Pd/CZ for the fresh sample and a better one after thermal ageing. Based on the XRD, BET and TPR characterizations, the internal relationship between catalytic performance, composition and structure was discussed. The relatively high activity after thermal ageing is ascribed to the maintenance of the Strong Metal-Support Interaction (SMSI).

  10. Structural investigation in the TiB 2-(Na 2O·B 2O 3·Al 2O 3) system

    NASA Astrophysics Data System (ADS)

    Buixaderas, Elena; Maria Anghel, Elena; Petrescu, Simona; Osiceanu, Petre

    2010-09-01

    Composites in the TiB 2-Na 2O·B 2O 3·Al 2O 3 systems, TiB 2-MBA (MB stands for sodium metaborate and A is Al 2O 3), were prepared by self-propagating high-temperature synthesis (SHS), in simultaneous mode. Selection of these compositions was ruled by the interesting properties of both TiB 2 and double borates of alkali metal and aluminum. The structure of the obtained materials was evaluated by micro-Raman spectroscopy, from room temperature up to 600 °C, and X-ray photoelectron spectroscopy (XPS). Formation of the TiB 2 and TiO 2- xB x phases along with TiO 2 as rutile were identified as titanium speciation in the grain phase embedded in a sodium aluminum borate matrix. Integration of the Raman spectra of the grain phases revealed a TiB 2 content of 16.99% and 23.32% for the two composite investigated 2TiB 2·2MBA and 3TiB 2·5MBA. A constrained-width model for the spectral deconvolution of the high-frequency Raman band was forwarded to calculate the proportion of tetrahedral boron atoms (7.424%) in the blank borate matrix Na 2B 2O 4·Al 2O 3 in solid phase.

  11. Border trap reduction in Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, Kechao; Winter, Roy; Zhang, Liangliang; Droopad, Ravi; Eizenberg, Moshe; McIntyre, Paul C.

    2015-11-01

    The effect of Al2O3 atomic layer deposition (ALD) temperature on the border trap density (Nbt) of Al2O3/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces Nbt. The reduction of Nbt coincides with increased hydrogen incorporation in low temperature ALD-grown Al2O3 films during post-gate metal forming gas annealing. It is also found that large-dose (˜6000 L) exposure of the In0.53Ga0.47As (100) surface to TMA immediately after thermal desorption of a protective As2 capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al2O3/InGaAs samples made at low ALD temperatures.

  12. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Zhao, Lidong; Kopp, Nils; Warda, Thomas

    2012-12-01

    Carbon fibre reinforced carbon (CFC) materials are increasingly applied as sample carriers in modern furnaces. Only their tendency to react with different metals at high temperatures by C-diffusion is a disadvantage, which can be solved by application of diffusion barriers. Within this study the feasibility of plasma sprayed Al2O3 coatings as diffusion barrier was studied. Al2O3 coatings were prepared by air plasma spraying (APS). The coatings were investigated in terms of their microstructure, bonding to CFC substrates and thermal stability. The results showed that Al2O3 could be well deposited onto CFC substrates. The coatings had a good bonding and thermal shock behavior at 1060°C. At higher temperature of 1270°C, crack network formed within the coating, showing that the plasma sprayed Al2O3 coatings are limited regarding to their application temperatures as diffusion barrier on CFC components.

  13. Production of hydrogen by autothermal reforming of propane over Ni/delta-Al2O3.

    PubMed

    Lee, Hae Ri; Lee, Kwi Yeon; Park, Nam Cook; Shin, Jae Soon; Moon, Dong Ju; Lee, Byung Gwon; Kim, Young Chul

    2006-11-01

    The performance of Ni/delta-Al2O3 catalyst in propane autothermal reforming (ATR) for hydrogen production was investigated in the present study. The catalysts were characterized using XRD, TEM, and SEM. The activity of the Ni/delta-Al2O3 catalyst manufactured by the water-alcohol method was better than those of the catalysts manufactured by the impregnation and chemical reduction methods. The Ni/delta-Al2O3 catalysts were modified by the addition of promoters such as Mg, La, Ce, and Co, in order to improve their stability and yield. Hydrogen production was the largest for the Ni-Co-CeO2/Al2O3, catalyst.

  14. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  15. Sliding wear of self-mated Al2O3-SiC whisker reinforced composites at 23-1200 C

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Book, Patricia O.; Dellacorte, Christopher

    1991-01-01

    Microstructural changes occurring during sliding wear of self-mated Al2O3-SiC whisker reinforced composites were studied using optical, scanning electron microscopy, and transmission electron microscopy. Pin-on-disk specimens were slid in air at 2.7 m/sec sliding velocity under a 26.5 N load for 1 hr. Wear tests were conducted at 23, 600, 800, and 1200 C. Mild wear with a wear factor of 2.4 times 10(exp -7) to 1.5 times 10(exp -6) cu mm/Nm was experienced at all test temperatures. The composite shows evidence of wear by fatigue mechanisms at 800 C and below. Tribochemical reaction (SiC oxidation and reaction of SiO2 and Al2O3) leads to intergranular failure at 1200 C. Distinct microstructural differences existing at each test temperature are reported.

  16. Tb3+ ion doping into Al2O3: Solubility limit and luminescence properties

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2016-11-01

    Tb3+-activated Al2O3 phosphors with a molar ratio of \\text{Al}:\\text{Tb} = (1 - x):x are synthesized by metal organic decomposition (x = 0–0.15) and subsequent calcination at T c = 200–1200 °C for 1 h in air. The material properties of the synthesized phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) analyses, PL excitation spectroscopy, and luminescence lifetime measurements. At x = 0.015, the metastable phase of γ-Al2O3 is obtained by calcination at T c ∼ 300–1050 °C and a mixture of γ, θ, and α phases at T c ∼ 1050–1150 °C. The high-temperature stable phase of α-Al2O3 is obtained only at T c ≥ 1150 °C. Below T c ∼ 300 °C, the XRD data suggest the formation of boehmite (AlOOH). The solubility limit of Tb3+ in α-Al2O3 is also clearly determined to be x ∼ 0.015 (1.5%). The PL decay time of the Tb3+ green emission in α-Al2O3 is ∼1.1 ms for x < 0.015 and slowly decreases with further increase in x (Tb3+). The schematic energy-level diagram of Tb3+ in α-Al2O3 is proposed for a better understanding of the present phosphor system. Finally, the temperature dependence of the PL intensity is examined between T = 20 and 450 K, yielding quenching energies of E q ∼ 0.28 eV (α-Al2O3 and γ-Al2O3).

  17. TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane

    2016-10-01

    The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.

  18. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2015-05-01

    Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes have been studied for different concentrations of Al2O3 nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al2O3. The maximum ionic conductivity ˜3.3 × 10-4 S cm-1 has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al2O3 nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al2O3 concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al2O3 in these electrolytes.

  19. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-01

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  20. Influence of annealing temperature on the phase transformation of Al2O3

    NASA Astrophysics Data System (ADS)

    Mahat, Annie Maria; Mastuli, Mohd Sufri; Kamarulzaman, Norlida

    2016-02-01

    In the present study, Al2O3 powders were prepared via a self-propagating combustion method using citric acid as a combustion agent. Effects of annealing temperature on the phase transformation of the prepared powders were studied on samples annealed at 800 °C and 1000 °C. The Al2O3 samples were characterized using X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and N2 adsorption-desorption measurements. The XRD results showed that pure η-phase and pure α-phase of Al2O3 were obtained at 800 °C and 1000 °C, respectively. Their crystallite sizes are totally different as can be seen clearly from the FESEM micrographs. The η-Al2O3 sample annealed at low temperature has crystallite size smaller than 10 nm compared to the α-Al2O3 sample annealed at higher temperature which has crystallites from few microns to hundreds microns in size. From the BET (Brunauer-Emmett-Teller) method, the specific surface area for both samples are 59.4 m2g-1 and 3.1 m2g-1, respectively. It is proposed that the annealing temperature less pronounced for the morphology, but, it is significant for the phase transitions as well as the size and the specific surface area of the Al2O3 samples.

  1. Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion.

    PubMed

    Jung, Sung Chul; Kim, Hyung-Jin; Choi, Jang Wook; Han, Young-Kyu

    2014-11-12

    Surface coating of active materials has been one of the most effective strategies to mitigate undesirable side reactions and thereby improve the overall battery performance. In this direction, aluminum oxide (Al2O3) is one of the most widely adopted coating materials due to its easy synthesis and low material cost. Nevertheless, the effect of Al2O3 coating on carrier ion diffusion has been investigated mainly for Li ion batteries, and the corresponding understanding for emerging Na ion batteries is currently missing. Using ab initio molecular dynamics calculations, herein, we first find that, unlike lithiation, sodiation of Al2O3 is thermodynamically unfavorable. Nonetheless, there can still exist a threshold in the Na ion content in Al2O3 before further diffusion into the adjacent active material, delivering a new insight that both thermodynamics and kinetics should be taken into account to describe ionic diffusion in any material media. Furthermore, Na ion diffusivity in NaxAl2O3 turns out to be much higher than Li ion diffusivity in LixAl2O3, a result opposite to the conventional stereotype based on the atomic radius consideration. While hopping between the O-rich trapping sites via an Na-O bond breaking/making process is identified as the main Na ion diffusion mechanism, the weaker Na-O bond strength than the Li-O counterpart turns out to be the origin of the superior diffusivity of Na ions.

  2. Reactive Plasma Spraying of Fine Al2O3/AlN Feedstock Powder

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2013-12-01

    Reactive plasma spraying (RPS) is a promising technology for in situ formation of aluminum nitride (AlN) coatings. Recently, AlN-based coatings were fabricated by RPS of alumina (Al2O3) powder in N2/H2 thermal plasma. This study investigated the feasibility of RPS of a fine Al2O3/AlN mixture and the influence of the plasma gases (N2, H2) on the nitriding conversion, and coating microstructure and properties. Thick AlN/Al2O3 coatings with high nitride content were successfully fabricated. The coatings consist of h-AlN, c-AlN, Al5O6N, γ-Al2O3, and a small amount of α-Al2O3. Use of fine particles enhanced the nitriding conversion and the melting tendency by increasing the surface area. Furthermore, the AlN additive improved the AlN content in the coatings. Increasing the N2 gas flow rate improved the nitride content and complete crystal growth to the h-AlN phase, and enhanced the coating thickness. On the other hand, though the H2 gas is required for plasma nitriding of the Al2O3 particles, increasing its flow rate decreased the nitride content and the coating thickness. Remarkable influence of the plasma gases on the coating composition, microstructure, and properties was observed during RPS of the fine particles.

  3. Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery.

    PubMed

    Lim, Yu-Jeong; An, Yu-Ha; Jo, Nam-Ju

    2012-01-05

    In a common salt-in-polymer electrolyte, a polymer which has polar groups in the molecular chain is necessary because the polar groups dissolve lithium salt and coordinate cations. Based on the above point of view, polystyrene [PS] that has nonpolar groups is not suitable for the polymer matrix. However, in this PS-based composite polymer-in-salt system, the transport of cations is not by segmental motion but by ion-hopping through a lithium percolation path made of high content lithium salt. Moreover, Al2O3 can dissolve salt, instead of polar groups of polymer matrix, by the Lewis acid-base interactions between the surface group of Al2O3 and salt. Notably, the maximum enhancement of ionic conductivity is found in acidic Al2O3 compared with neutral and basic Al2O3 arising from the increase of free ion fraction by dissociation of salt. It was revealed that PS-Al2O3 composite solid polymer electrolyte containing 70 wt.% salt and 10 wt.% acidic Al2O3 showed the highest ionic conductivity of 9.78 × 10-5 Scm-1 at room temperature.

  4. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction.

    PubMed

    Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G

    2015-08-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  5. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction

    PubMed Central

    Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.M.S.; Minas, G.

    2015-01-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  6. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u‑1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  7. Microstructure and dielectric properties of (Ba 0.6Sr 0.4)TiO 3 thin films grown on super smooth glazed-Al 2O 3 ceramics substrate

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Yang, Chuanren; Zheng, Shanxue; Zhang, Jihua; Zhang, Qiaozhen; Lei, Guanhuan; Lou, Feizhi; Yang, Lijun

    2011-12-01

    Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.

  8. Micro-CT and histological analysis of Ti6Al7Nb custom made implants with hydroxyapatite and SiO2-TiO2 coatings in a rabbit model

    PubMed Central

    ARMENCEA, GABRIEL; BERCE, CRISTIAN; ROTARU, HORATIU; BRAN, SIMION; LEORDEAN, DAN; COADA, CAMELIA; TODEA, MILICA; JULA, CAMELIA AUGUSTA; GHEBAN, DAN; BACIUT, GRIGORE; BACIUT, MIHAELA; CAMPIAN, RADU SEPTIMIU

    2015-01-01

    Background and aim Bone defect reconstruction in the maxillofacial area comes as a necessity after traumatic, oncological or congenital pathology. Custom made implant manufacturing, such as selective laser melting (SLM), is very helpful when bone reconstruction is needed. In the present study we assessed the osseointegration of custom made implants made of Ti6Al7Nb with two different coatings: SiO2-TiO2 and hydroxyapatite, by comparing the bone mineral density (BMD) measured on micro-CT and the histological mineralized bone surrounding the implants. Methods Custom made – cylindrical type – implants were produced by selective laser melting, coated with SiO2-TiO2 and hydroxyapatite and implanted in the rabbit femur. The animals (divided into 3 groups) were sacrificed at 1, 3 and 6 months and the implants were removed together with the surrounding bone. Bone mineral density and histological examination of the bone-implant surface was performed for each group. Results BMD and histological examination of the samples determined the quantity of mineralized bone at the implant site, showing a good percentage of mineralized bone for the coated implants at 1, 3 and 6 months. The measurements for the implants without coating showed a significant lower quantity of mineralized bone at 3 months compared with the implants with coating, and a good quantity of mineralized bone at 6 months, showing a process of demineralization followed by remineralization in the last month. The measurements of BMD showed similar results with the histological examination. Conclusions The use of micro-CT and the measurement of BMD are a reliable, minimally invasive and a quick method of osseointegration assessment. PMID:26609278

  9. First-principles Analysis of NOx Adsorption on Anhydrous γ-Al2O3 Surfaces

    SciTech Connect

    Mei, Donghai; Ge, Qingfeng; Szanyi, Janos; Peden, Charles HF

    2009-04-09

    The interaction of nitrogen oxides NOx (x=1-3) with gamma Al2O3 has been investigated using first-principles density functional theory calculations. NO and NO2 weakly physisorb on the clean, dehydrated (100) and (110) surfaces of gamma Al2O3, whereas the adsorption of the NO3 radical is rather strong. Only the basic-like O-down adsorption configurations were found to be stable. The interaction between NOx and gamma Al2O3 can be described as a surface mediated electron transfer process. For single NOx adsorption, greater electron transfer from the surface to the adsorbate (negatively charged) yields stronger interactions between NOx and the surface. The adsorption of four combinations of NOx+NOy (x=1-3, y=2, 3) pairs on the (100) and the (110) facets of gamma Al2O3 were investigated. Except for the NO2+NO2 pair, a strong cooperative effect that substantially enhances the stability of NOx on both gamma Al2O3 surfaces was found. This cooperative effect consists of surface-mediated electron transfer processes resulting in a favorable electrostatic interaction between two adsorbed NOx species. The pair was found to be the thermodynamically most stable state among the co-adsorbed NOx+NOy pairs on both gamma Al2O3 surfaces. The results are used to analyze the experimentally observed NOx evolution during temperature programmed desorption from NO2-saturated gamma Al2O3 substrates. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  10. Atomic layer controlled deposition of Al 2O 3 films using binary reaction sequence chemistry

    NASA Astrophysics Data System (ADS)

    Ott, A. W.; McCarley, K. C.; Klaus, J. W.; Way, J. D.; George, S. M.

    1996-11-01

    Al 2O 3 films with precise thicknesses and high conformality were deposited using sequential surface chemical reactions. To achieve this controlled deposition, a binary reaction for Al 2O 3 chemical vapor deposition (2Al(CH 3) 3 + 3H 2O → Al 2O 3 + 6CH 4) was separated into two half-reactions: (A) AlOH ∗ + Al(CH 3) 3 → AlOAl(CH 3) 2∗ + CH 4, (B) AlCH 3∗ + H 2O → AlOH ∗ + CH 4, where the asterisks designate the surface species. Trimethylaluminum (Al(CH 3) 3) (TMA) and H 2O reactants were employed alternately in an ABAB … binary reaction sequence to deposit Al 2O 3 films on single-crystal Si(100) and porous alumina membranes with pore diameters of ˜ 220 Å. Ellipsometric measurements obtained a growth rate of 1.1 Å/AB cycle on the Si(100) substrate at the optimal reaction conditions. The Al 2O 3 films had an index of refraction of n = 1.65 that is consistent with a film density of ϱ = 3.50 g/cm 3. Atomic force microscope images revealed that the Al 2O 3 films were exceptionally flat with a surface roughness of only ±3 Å ( rms) after the deposition of ˜ 270 Å using 250 AB reaction cycles. Al 2O 3 films were also deposited inside the pores of Anodisc alumina membranes. Gas flux measurements for H 2 and N 2 were consistent with a progressive pore reduction versus number of AB reaction cycles. Porosimetry measurements also showed that the original pore diameter of ˜ 220 Å was reduced to ˜ 130 Å after 120 AB reaction cycles.

  11. Titanium solubility in olivine in the system TiO2 MgO SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine

    NASA Astrophysics Data System (ADS)

    Hermann, J.; O'Neill, H. S. C.; Berry, A. J.

    2005-02-01

    The finding of ilmenite rods in olivine from orogenic peridotites has sparked a discussion about the processes of incorporation and exsolution of titanium in olivine. We have experimentally investigated the solubility of Ti in olivine as a function of composition, temperature and pressure in the synthetic TiO2 MgO SiO2 system. Experiments at atmospheric pressure in the temperature range 1,200 1,500°C showed that the highest concentration of TiO2 is obtained when olivine coexists with spinel (Mg2TiO4). The amount of TiO2 in olivine in the assemblages olivine + spinel + periclase and olivine + spinel + ilmenite at 1,500°C was 1.25 wt.%. Changes in the coexisting phases and decreasing temperature result in a significant reduction of the Ti solubility. Olivine coexisting with pseudobrookite (MgTi2O5) and a Ti Si-rich melt at 1,500°C displays a fourfold lower TiO2 content than when buffered with spinel. A similar decrease in solubility is obtained by a decrease in temperature to 1,200°C. There is a negative correlation between Ti and Si and no correlation between Ti and Mg in Ti-bearing olivine. Together with the established phase relations this suggests that there is a direct substitution of Ti for Si at these temperatures, such that the substituting component has the stoichiometry Mg2TiO4. The unit cell volume of olivine increases systematically with increasing TiO2 content demonstrating that the measured TiO2 contents in olivine are not caused by micro-inclusions but by incorporation of Ti in the olivine structure. Least squares fitting of 20 olivine unit cell volumes against the Ti content yield the relation: V (Å3)=290.12(1) + 23.67(85) NTi. The partial molar volume of end-member Mg2TiO4 olivine (NTi=1) is thus 47.24±0.13 cm3. The change of the Ti solubilty in olivine coexistent with rutile and orthopyroxene with pressure was investigated by piston cylinder experiments at 1,400°C from 15 to 55 kbar. There is no increase in TiO2 contents with pressure and in all the experiments olivine contains ~0.2 wt.% TiO2. Moreover, a thermodynamic analysis indicates that Ti contents of olivine coexisting with rutile and orthopyroxene should decrease rather than increase with increasing pressure. These data indicate that the ilmenite exsolution observed in some natural olivine does not signify an ultra-deep origin of peridotite massifs.

  12. Thermodynamics of MnO-SiO2-Al2O3-MnS Liquid Oxysulfide: Experimental and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Kim, Ye-Jin; Woo, Dae-Hee; Gaye, Henri; Lee, Hae-Geon; Kang, Youn-Bae

    2011-06-01

    The activities of MnO and MnS in a MnO-SiO2-Al2O3(or AlO1.5)-MnS liquid oxysulfide solution were investigated by employing the gas/liquid/Pt-Mn alloy chemical equilibration technique under a controlled atmosphere at 1773 K (1500 °C). Also, the sulfide capacity, defined as C S = (wt pct S)( pO2/ pS2)1/2, in MnO-SiO2-Al2O3 slag with a dilute MnS concentration was obtained from the measured experimental data. As X SiO2/( X MnO + X SiO2) in liquid oxysulfide increases, the activity coefficient of MnO decreases, while that of MnS first increases and then decreases. As X(AlO1.5) in liquid oxysulfide increases, the activity coefficient of MnS increases, while no remarkable change is observed for the activity coefficient of MnO. The behavior of the activity coefficient of MnS was qualitatively analyzed by considering MnO + A x S y (SiS2 or Al2S3) = MnS + A x O y (SiO2 or Al2O3) reciprocal exchange reactions in the oxysulfide solution. The behavior was shown to be consistent with phase diagram data, namely, the MnS saturation boundary. Quantitative analysis of the activity coefficient of the oxysulfide solution was also carried out by employing the modified quasichemical model in the quadruplet approximation.

  13. Photochemistry of the α-Al2O3-PETN interface

    DOE PAGES

    Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; Rashkeev, Sergey N.; Kuklja, Maija M.

    2016-02-29

    Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a wide band gap aluminum oxide (α-Al2O3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surfacePETN transitions. We predict the low energy α-Al2O3 F0-centerPETN transition, producing the excited triplet state, and α-Al2O3 F-0-centerPETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN atmore » the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less

  14. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    PubMed

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites. PMID:27251994

  15. Hydrogen bonds in Al2O3 as dissipative two-level systems in superconducting qubits

    PubMed Central

    Gordon, Luke; Abu-Farsakh, Hazem; Janotti, Anderson; Van de Walle, Chris G.

    2014-01-01

    Dissipative two-level systems (TLS) have been a long-standing problem in glassy solids over the last fifty years, and have recently gained new relevance as sources of decoherence in quantum computing. Resonant absorption by TLSs in the dielectric poses a serious limitation to the performance of superconducting qubits; however, the microscopic nature of these systems has yet to be established. Based on first-principles calculations, we propose that hydrogen impurities in Al2O3 are the main source of TLS resonant absorption. Hydrogen is an ubiquitous impurity and can easily incorporate in Al2O3. We find that interstitial H in Al2O3 forms a hydrogen bond (O-H…O). At specific O-O distances, consistent with bond lengths found in amorphous Al2O3 or near Al2O3 surfaces or interfaces, the H atom feels a double well. Tunneling between two symmetric positions gives rise to resonant absorption in the range of 10 GHz, explaining the experimental observations. We also calculate the expected qubit-TLS coupling and find it to lie between 16 and 20 MHz, consistent with experimental measurements. PMID:25534108

  16. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    SciTech Connect

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Szanyi, Janos

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoretical DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.

  17. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  18. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    NASA Astrophysics Data System (ADS)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  19. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    NASA Astrophysics Data System (ADS)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C–V, G–V, C–f, G–f and J–V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C–V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill–Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV‑1 cm‑2. To our knowledge, these values are among the lowest reported. J–V measurements reveal leakage currents in the order of 10–1 A cm‑2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from

  20. In situ Formed α-Al2O3 Nanocrystals Repaired the Preexisting Microcracks in Plasma-Sprayed Al2O3 Coating via Stress-Induced Phase Transformation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Feng, Jingwei; Rong, Jian; Liu, Chenguang; Tao, Shunyan; Ding, Chuanxian

    2016-02-01

    In the present study, the phase composition and generation mechanism of the nanocrystals located in the microcracks of plasma-sprayed Al2O3 coating were reevaluated. The Al2O3 coatings were investigated using transmission electron microscopy and x-ray diffraction. We supply the detailed explanations to support the new viewpoint that in situ formation of α-Al2O3 nanocrystals in the preexisting microcracks of the as-sprayed Al2O3 coating may be due to the stress-induced phase transformation. Owing to the partially coherent relationship, the phase interfaces between the α-Al2O3 nanocrystals with the preferred orientation and the γ-Al2O3 matrix may possess better bonding strength. The α-Al2O3 nanocrystals could repair the microcracks in the coating, which further strengthens grain boundaries. Grain boundary strengthening is beneficial to the coating fracture toughness enhancement.

  1. Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; Lozano, M. A. Gonzalez; Cullen, D. A.; Terrones, H.; Smith, D. J.; Terrones, M.

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al2O3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al2O3. Extensive characterization of the resulting γ-Al2O3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  2. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit. PMID:27433687

  3. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  4. Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts

    PubMed Central

    Park, Jaehyun; Lee, Joohwi; Choi, Jung-Hae; Hwang, Do Kyung; Song, Yong-Won

    2015-01-01

    The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a ‘graphene sticker’ into an ultrafast mode-locked laser. PMID:26137994

  5. Optical and x-ray photoelectron spectroscopy studies of α-Al2O3

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2016-05-01

    α-Al2O3 powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al2O3 phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al2O3 powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  6. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  7. HRTEM observation of bonding interface between Ce-TZP/Al2O3 nanocomposite and porcelain.

    PubMed

    Ban, Seiji; Nawa, Masahiro; Sugata, Fumio; Tsuruki, Jiro; Kono, Hiroshi; Kawai, Tatsushi

    2014-01-01

    The surface of a ceria-stabilized tetragonal zirconia polycrystal (Ce-TZP/Al2O3) nanocomposite was sandblasted by alumina particles and veneered with feldspathic porcelain via a conventional condensation method. The part of each specimen containing the interface layer was sliced to ultrathin sections with an argon ion slicer, and these sliced sections were observed using high-resolution transmission electron microscopy (HRTEM). For both interfaces, Ce-TZP/porcelain and Al2O3/porcelain, no transition layers due to abrupt changes in atomic distributions were observed. Besides, the porcelain layers of both interfaces consisted of homogeneous amorphous phases. These results suggested that both Ce-TZP and Al2O3 could be directly bonded to porcelain by Van der Waals forces arising from the close contact between them.

  8. Electrical conductivity studies on CuBr containing Al2O3 particles

    NASA Technical Reports Server (NTRS)

    Dubec, P. M.; Wagner, J. B., Jr.

    1984-01-01

    The conductivity of CuBr was studied and the role of a second phase, Al2O3, dispersed in CuBr was tested. CuBr melts at 493 C and exhibits three phases in the solid state. CuBr is a good ionic conductor with a transport number for copper ions of virtually unity with weighed proportions of the appropriate chemicals used. The CuBr materials were heated above melting point of CuBr, and the samples were sandwiched between copper electrodes. The ac conductivity, was determined at 1 kHz between 25 and 440 C depending on the sample. It was shown that at low temperatures, the conductivity for CuBr (Al2O3) increased by as much as 100, whereas in the beta phase the conductivity of CuBr containing Al2O3 decreased. The electrical conductivity studies are in agreement with earlier data.

  9. Optimum Composition of CaO-SiO2-Al2O3-MgO Slag for Spring Steel Deoxidized by Si and Mn in Production

    NASA Astrophysics Data System (ADS)

    Yang, Hulin; Ye, Jiansong; Wu, Xiaoliang; Peng, Yongsheng; Fang, Yi; Zhao, Xinbing

    2016-04-01

    The relations between plasticity of inclusions and contents of oxygen, aluminum, and sulfur in molten steel were overall discussed by thermodynamics and FactSage software. Then, the optimum compositions of slag were obtained and the activities of components of refining slag system were analyzed. Finally, experiments were carried out based on the results of calculation. According to the relations, it could achieve better effect to improve basicity R ( R = CaO/SiO2 by mass pct) and C/ A ( C/ A = CaO/Al2O3 by mass pct) in the low melting temperature [≤1673 K (≤1400 °C)] region of refining slag as far as possible. For the CaO-SiO2-Al2O3-MgO slag, the optimum compositions are MgO: 5-9 pct, CaO: 47.4-50.2 pct, SiO2: 41.9-45.6 pct and Al2O3: ≤2.79 pct, respectively, in which the basicity is at the range of 1.0 to 1.19 and C/ A is above 9.0. It is proved by experiments that the plasticity of inclusions and the contents of [O], [Al], and [S] can be controlled effectively by the optimum composition of refining slag, and the high cleanness is achieved in spring wire rods.

  10. Rapid fabrication of Al2O3 encapsulations for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Ali, Junaid; Mehdi, Syed Murtuza; Choi, Kyung-Hyun; An, Young Jin

    2015-10-01

    Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al2O3 encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al2O3 encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (Ra) of 9.66 nm have been effectively covered by Al2O3 encapsulation having Ra of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al2O3 films. Electrical current-voltage (I-V) measurements confirmed that the Al2O3 encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al2O3 encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one week. The performance of encapsulated device had been promising after being subjected to bending test for 100 cycles and the variations in its stability were of minor concern confirming the mechanical robustness and flexibility of the devices.

  11. Reactive Plasma Nitriding of AL2O3 Powder in Thermal Spray

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    Among advanced ceramics, aluminum nitride (AlN) had attracted much attention in the field of electrical and structural applications due to its outstanding properties. However, it is difficult to fabricate AlN coating by conventional thermal spray processes directly. Due to the thermal decomposition of feedstock AlN powder during spraying without a stable melting phase (which is required for deposition in thermal spray). Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of AlN thermally sprayed coatings. In this study the possibility of fabrication of AlN coating by reactive plasma nitriding of alumina (Al2O3) powder using N2/H2 plasma was investigated. It was possible to fabricate a cubic-AlN (c-AlN) based coating and the fabricated coating consists of c-AlN, α-Al2O3, Al5O6N and γ-Al2O3. It was difficult to understand the nitriding process from the fabricated coatings. Therefore, the Al2O3 powders were sprayed and collected in water. The microstructure observation of the collected powder and its cross section indicate that the reaction started from the surface. Thus, the sprayed particles were melted and reacted in high temperature reactive plasma and formed aluminum oxynitride which has cubic structure and easily nitride to c-AlN. During the coatings process the particles collide, flatten, and rapidly solidified on a substrate surface. The rapid solidification on the substrate surface due to the high quenching rate of the plasma flame prevents AlN crystal growth to form the hexagonal phase. Therefore, it was possible to fabricate c-AlN/Al2O3 based coatings through reactive plasma nitriding reaction of Al2O3 powder in thermal spray.

  12. Charge trapping behavior and its origin in Al2O3/SiC MIS system

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Yu; Wang, Yi-Yu; Peng, Zhao-Yang; Li, Cheng-Zhan; Wu, Jia; Bai, Yun; Tang, Yi-Dan; Liu, Ke-An; Shen, Hua-Jun

    2015-08-01

    Charge trapping behavior and its origin in Al2O3/SiC MOS structure are investigated by analyzing the capacitance-voltage (C-V) hysteresis and the chemical composition of the interface. The C-V hysteresis is measured as a function of oxide thickness series for an Al2O3/SiC MIS capacitor. The distribution of the trapped charges, extracted from the C-V curves, is found to mainly follow a sheet charge model rather than a bulk charge model. Therefore, the electron injection phenomenon is evaluated by using linear fitting. It is found that most of the trapped charges are not distributed exactly at the interface but are located in the bulk of the Al2O3 layers, especially close to the border. Furthermore, there is no detectable oxide interface layer in the x-ray photoelectron spectroscope (XPS) and transmission electron microscope (TEM) measurements. In addition, Rutherford back scattering (RBS) analysis shows that the width of the Al2O3/SiC interface is less than 1 nm. It could be concluded that the charge trapping sites in Al2O3/SiC structure might mainly originate from the border traps in Al2O3 film rather than the interface traps in the interfacial transition layer. Project supported by the National Natural Science Foundation of China (Grant No. 61106080) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02305).

  13. In2O3/Al2O3 Catalysts for NOx Reduction in Lean Condition

    SciTech Connect

    Park, Paul W.; Ragle, Christie; Boyer, Carrie S.; Balmer, M Lou; Engelhard, Mark H. ); McCready, David E. )

    2002-01-01

    The lean NOx performance and catalytic properties of In2O3/Al2O3 catalysts were investigated. High lean NOx activity was observed when propene was used as a reductant in the presence of 9% O2 and 7% H2O at a space velocity of 30,000h-1. The optimum lean NOx activity of In2O3/Al2O3 catalysts was observed at a loading of 2.5 wt.% indium on -Al2O3 which was prepared by a sol-gel technique (230 m2/g). When propane was used as a reductant, the In2O3/Al2O3 catalyst did not promote NOx reduction compared to the alumina substrate. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and temperature programmed reduction (TPR) have been used to characterize a series of In2O3/Al2O3 catalysts to better understand the surface structure of indium oxide species on the alumina support. The XRD data indicated that crystalline In2O3 was present at In2O3 loadings > 5wt.% and the quantity of the crystalline phase increased as a function of indium loading. XPS results suggested that indium oxide existed as a well-dispersed phase up to 10wt.% indium. The well dispersed or reducible indium oxide species below 400 C in TPR experiments were assigned as the sites which activate propene to oxygenated hydrocarbons such as acetaldehyde and acrolein. Alumina sites readily utilize the oxygenated hydrocarbons to reduce NOx. Dual-function mechanism was proposed to explain NOx reduction over In2O3/Al2O3 catalysts.

  14. Pt-Al2O3 interfaces in cofired ceramics for use in miniaturized neuroprosthetic implants.

    PubMed

    Guenther, Thomas; Kong, Charlie; Lu, Hong; Svehla, Martin J; Lovell, Nigel H; Ruys, Andrew; Suaning, Gregg J

    2014-04-01

    A core element to miniaturized, hermetic encapsulations for neuroprosthetic implants with high numbers of stimulation channels is the creation of electrical feedthroughs. Platinum (Pt) and alumina (Al2 O3 ) are necessary to connect the sealed electronics to external components including electrode arrays that provide a neural interface function, as well as to sources of power or data. Combined with laser micro-processing, high-density feedthrough arrays were created with up to 2500 channels per cm(2) . The chemistry, micro structure, and crystallography of the Pt-Al2 O3 interface created by the cofiring of Pt particles and Al2 O3 particulate in binder were studied by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and selective area electron diffraction (SAED) to determine the nature of the Pt-Al2 O3 bond. While Pt-Al2 O3 interfaces only occurred in cases where the different grains were in distinct orientations where the crystal lattices matched, the addition of glass additives allowed for bonding nonmatching orientations by devitrification to form Pt-glass-Al2 O3 interfaces. The conditions for the formation of both mechanisms were determined, and it was shown that higher order crystal planes than previously described can be matched. Analyzing the lattice matches in detail showed the ability of the material compound to compensate for mismatches by the formation of dislocations, out-of-angle matching, lattice distortion, and the existence of semi-coherent interfaces in case of integer misfit ratios to create domain matching. PMID:24106159

  15. Property transformation of graphene with Al2O3 films deposited directly by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zheng, Li; Cheng, Xinhong; Cao, Duo; Wang, Zhongjian; Xia, Chao; Yu, Yuehui; Shen, Dashen

    2014-01-01

    Al2O3 films are deposited directly onto graphene by H2O-based atomic layer deposition (ALD), and the films are pinhole-free and continuously cover the graphene surface. The growth process of Al2O3 films does not introduce any detective defects in graphene, suppresses the hysteresis effect and tunes the graphene doping to n-type. The self-cleaning of ALD growth process, together with the physically absorbed H2O and oxygen-deficient ALD environment consumes OH- bonds, suppresses the p-doping of graphene, shifts Dirac point to negative gate bias and enhances the electron mobility.

  16. Study of the KNO3-Al2O3 system by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Amirov, A. M.; Gafurov, M. M.; Rabadanov, K. Sh.

    2016-09-01

    The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1- x)KNO3- x Al2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.

  17. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  18. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-07-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  19. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  20. Electrochemical Impedance Studies on Tribocorrosion Behavior of Plasma-Sprayed Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Chu, Zhenhua; Chen, Xueguang; Dong, Yanchun; Yang, Yong; Li, Yingzhen; Yan, Dianran

    2015-06-01

    In this paper, the tribocorrosion of plasma-sprayed Al2O3 coatings in simulated seawater was investigated by electrochemical impedance spectroscopy (EIS) technique, complemented by scanning electron microscopy to observe the morphology of the tribocorrosion attack. Base on EIS of plasma-sprayed Al2O3 coatings undergoing long-time immersion in simulated seawater, the corrosion process of Al2O3 coatings can be divided into the earlier stage of immersion (up to 20 h) and the later stage (beyond 20 h). Then, the wear tests were carried out on the surface of Al2O3 coating undergoing different times of immersion to investigate the influence of wear on corrosion at different stages. The coexistence of wear and corrosion condition had been created by a boron nitride grinding head rotating on the surface of coatings corroded in simulated seawater. The measured EIS and the values of the fitting circuit elements showed that wear accelerated corrosion at the later stage, meanwhile, corrosion accelerated wear with the immersion time increasing.

  1. Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hirohito; Ito, Shintaro; Esashika, Keiko; Taguchi, Yoshihiro; Saiki, Toshiharu

    2016-03-01

    Nanopore sensors are being developed as a platform for analyzing single DNA, RNA, and protein. In nanopore sensors, ionic current measurement is widely used and proof-of-concept of nanopore DNA sequencing by it has been demonstrated by previous studies. Recently, we proposed an alternative platform of nanopore DNA sequencing that incorporates ultraviolet light and porous silicon membrane to perform high-throughput measurement. In the development of our DNA sequencing platform, controlling nanopore size in porous silicon membrane is essential but remains a challenge. Here, we report on observation of DNA translocation through Al2O3 sputtered silicon nanopores (Al2O3 nanopores) by our optical scheme. Electromagnetic wave simulation was performed to analyze the excitation volume on Al2O3 nanopores generated by focused ultraviolet light. In the experiment, DNA translocation time through Al2O3 nanopores was compared with that of silicon nanopores and we examined the effect of nanopore density and thickness of membrane by supplementing the static electric field simulation.

  2. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  3. Investigation of Ti/Al2O3 joints with intermediate tantalum and niobium layers.

    PubMed

    Gibbesch, B; Elssner, G; Petzow, G

    1992-01-01

    The microstructure of TiTa30 alloys diffusion bonded to a 99.7 wt% Al2O3 ceramic was subdivided into a reaction double layer containing the intermetallic phases TiAl and Ti3Al and the (alpha + beta) Ti microstructure. Excellent fracture toughness data of the TiTa30/Al2O3 joints of about 37 J/m2 were obtained after welding at 1200 degrees C for 1 h. The fracture energies of the joints were strongly dependent on the welding temperature which also influenced the thickness of the reaction double layer. The uptake of aluminium and oxygen into the reaction layer and the metal caused an embrittlement and decreased the yield stress and ductility of the metal. Introducing an Nb or Ta layer between pure Ti and Al2O3 before welding resulted in high fracture energies of 40 J/m2 for the Ti/Al2O3 joints. The thermal-induced stresses at the metal-ceramic interface were reduced by the occurrence of an Nb- or Ta-enriched region. The intermediate metal foils also decreased the O and Al uptake of the metal and therefore reduced the brittleness of the reaction zone and the adjacent metal. The thermal-induced stresses at the metal-ceramic interface caused a deflection of the crack into the ceramic during fracture mechanical testing in four-point bending.

  4. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement.

    PubMed

    Tanaka, Kenji; Tamura, Jiro; Kawanabe, Keiichi; Nawa, Masahiro; Oka, Masanori; Uchida, Masaki; Kokubo, Tadashi; Nakamura, Takashi

    2002-01-01

    The objectives of this study were to investigate the biocompatibility, phase stability, and wear properties of a newly developed Ce-TZP/Al(2)O(3) nanocomposite, as compared to conventional ceramics, and to determine whether the new composite could be used as a bearing material in total joint prostheses. In tests of mechanical properties, this composite showed significantly higher toughness than conventional Y-TZP. For biocompatibility tests, cylindrical specimens of both the Ce-TZP/Al(2)O(3) nanocomposite and monolithic alumina were implanted into the paraspinal muscles of male Wistar rats. The tissue reactions were almost the same, and at 24 weeks after implantation, thin fibrous capsules with almost no inflammation were observed around both of them. There were no significant differences in membrane thickness between the two ceramics. After hydrothermal treatment in 121 degrees C vapor for 18 h, the new composite showed complete resistance to aging degradation, whereas Y-TZP showed a phase transformation of 25.3 vol% (initial 0.4%) to the monoclinic form. According to the results of pin-on-disk tests, the wear rates of Ce-TZP/Al(2)O(3) nanocomposite and alumina were 0.55 +/- 0.04 x 10(-7) and 2.12 +/- 0.37 x 10(-7)mm(3)/Nm, respectively. The results of this study suggest that the Ce-TZP/Al(2)O(3) nanocomposite is a promising alternative ceramic component for total joint replacement.

  5. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  6. Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3

    NASA Astrophysics Data System (ADS)

    Cao, Yu-Chao; Zhao, Lei; Luo, Jin; Wang, Ke; Zhang, Bo-Ping; Yokota, Hiroki; Ito, Yoshiyasu; Li, Jing-Feng

    2016-03-01

    The plasma etching behavior of Y2O3 coating was investigated and compared with that of Al2O3 coating under various conditions, including chemical etching, mixing etching and physical etching. The etching rate of Al2O3 coating declined with decreasing CF4 content under mixing etching, while that of Y2O3 coating first increased and then decreased. In addition, the Y2O3 coating demonstrated higher erosion-resistance than Al2O3 coating after exposing to fluorocarbon plasma. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formations of YF3 and AlF3 on the Y2O3 and Al2O3 coatings, respectively, which acted as the protective layer to prevent the surface from further erosion with fluorocarbon plasma. It was revealed that the etching behavior of Y2O3 depended not only on the surface fluorination but also on the removal of fluoride layer. To analyze the effect of porosity, Y2O3 bulk samples with high density were prepared by spark plasma sintering, and they demonstrated higher erosion-resistances compared with Y2O3 coating.

  7. Consolidation of Al2O3/Al Nanocomposite Powder by Cold Spray

    NASA Astrophysics Data System (ADS)

    Poirier, Dominique; Legoux, Jean-Gabriel; Drew, Robin A. L.; Gauvin, Raynald

    2011-01-01

    While the improvement in mechanical properties of nanocomposites makes them attractive materials for structural applications, their processing still presents significant challenges. In this article, cold spray was used to consolidate milled Al and Al2O3/Al nanocomposite powders as well as the initial unmilled and unreinforced Al powder. The microstructure and nanohardness of the feedstock powders as well as those of the resulting coatings were compared. The results show that the large increase in hardness of the Al powder after mechanical milling is preserved after cold spraying. Good quality coating with low porosity is obtained from milled Al. However, the addition of Al2O3 to the Al powder during milling decreases the powder and coating nanohardness. This lower hardness is attributed to non-optimized milling parameters leading to cracked particles with insufficient Al2O3 embedding in Al. The coating produced from the milled Al2O3/Al mixture also showed lower particle cohesion and higher amount of porosity.

  8. New fully bakeable and moveable vacuum seal between stainless steel and Al2O3 ceramic.

    PubMed

    Langenwalter, M; Grössl, M; Märk, T D

    1979-02-01

    The current paper describes a simple construction which allows the monitoring of the radial dependence of the extracted and mass identified ion currents in a hollow cathode stationary afterglow apparatus at any time during the afterglow. The main feature of the monitoring device is a fully bakeable and moveable vacuum seal between polished stainless steel and polished Al2O3 ceramic. PMID:18699481

  9. Transport mechanisms of leakage current in Al2O3/InAlAs MOS capacitors

    NASA Astrophysics Data System (ADS)

    Jin, Chengji; Lu, Hongliang; Zhang, Yimen; Zhang, Yuming; Guan, He; Wu, Lifan; Lu, Bin; Liu, Chen

    2016-09-01

    An Al2O3 layer is inserted between the InAlAs layer and the metal gate in InAs/AlSb HEMTs to suppress the leakage current. The transport mechanisms of leakage current in Al2O3/InAlAs metal-oxide-semiconductor (MOS) capacitors at both positive and negative biases at different temperatures ranging from 10 °C to 70 °C are investigated. For positive bias, the leakage current is dominated by Schottky emission. Based on the fitted straight lines, the relative dielectric constant of Al2O3 and the barrier height between Al2O3 and InAlAs are extracted. However, for negative bias, the leakage current is dominated by Frenkel-Poole (F-P) emission and the depth of the trap energy level from the conduction band (ϕt) is extracted. Furthermore, authors explain the reason why the dominating mechanisms at positive and negative biases are different.

  10. Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality?

    NASA Astrophysics Data System (ADS)

    Choudhury, Devika; Rajaraman, Gopalan; Sarkar, Shaibal K.

    2016-03-01

    The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface.The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface. Electronic supplementary information (ESI) available: Additional QCM results, FTIR spectra and DFT results. See DOI: 10.1039/c5nr06974b

  11. Operando Raman spectroscopy study on the deactivation of Pt/Al2O3 and Pt-Sn/Al2O3 propane dehydrogenation catalysts.

    PubMed

    Sattler, Jesper J H B; Beale, Andrew M; Weckhuysen, Bert M

    2013-08-01

    The deactivation of 0.5 wt% Pt/Al2O3 and 0.5 wt% Pt-1.5 wt% Sn/Al2O3 catalysts has been studied by operando Raman spectroscopy during the dehydrogenation of propane and subsequent regeneration in air for 10 successive dehydrogenation-regeneration cycles. Furthermore, the reaction feed was altered by using different propane/propene/hydrogen ratios. It was found that the addition of hydrogen to the feed increases the catalyst performance and decreases the formation of coke deposits, as was revealed by thermogravimetrical analysis. The positive effect of hydrogen on the catalyst performance is comparable to the addition of Sn, a promoter element which increases both the propane conversion and propene selectivity. Operando Raman spectroscopy showed that hydrogen altered the nature of the coke deposits formed during propane dehydrogenation. Due to this approach it was possible to perform a systematic deconvolution procedure on the Raman spectra. By analysing the related intensity, band position and bandwidth of the different Raman features, it was determined that smaller graphite crystallites, which have less defects, are formed when the partial pressure of hydrogen in the feed was increased. PMID:23615824

  12. Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface

    NASA Astrophysics Data System (ADS)

    Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.

    2015-10-01

    Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.

  13. Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed

    2016-07-01

    Nano size polycrystalline samples of the core@shell heterostructure of SnO2 @ xAl2O3 (x = 0, 25, 50, 75 wt.%) were synthesized by sol-gel technique. The resulting samples were characterized with fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and X-ray powder diffraction (XRD). The XRD patterns manifest diffraction peaks of SnO2 as main phase with weak peaks corresponding to Al2O3 phase. The formation of core@ shell structure is confirmed by TEM images and Rietveld quantitative phase analysis which revealed that small part of Al2O3 is incorporated into the SnO2 lattice while the main part (shell) remains as a separate phase segregated on the grain boundary surface of SnO2 (core). It is found that the grain size of the mixed oxides SnO2 @ xAl2O3 is below 10 nm while for pure SnO2 it is over 41 nm, indicating that alumina can effectively prevent SnO2 from further growing up in the process of calcination. This is confirmed by the large increase in the specific surface area for mixed oxide samples. The PL emission showed great dependence on the structure properties analyzed by XRD and FTIR. The PL results recommend Al2O3@SnO2 core@shell heterostructure to be a promising short-wavelength luminescent optoelectronic devices for blue, UV, and laser light-emitting diodes.

  14. Effect of Al2O3 mole fraction and cooling method on vitrification of an artificial hazardous material. Part 1: variation of crystalline phases and slag structures.

    PubMed

    Kuo, Yi-Ming; Huang, Kuo-Lin; Wang, Chih-Ta; Wang, Jian-Wen

    2009-09-30

    This study investigated how Al ions affect slag structure. During vitrification, pure Al(2)O(3), CaO, and SiO(2) served as the encapsulation phases with the use of Al mol% as an operating parameter. All specimens with the same basicity (mass ratio of CaO to SiO(2)) of 2/3 were vitrified at 1400 degrees C and cooled by air cooling or water quenching. XRD was used to measure the volume fractions of crystalline and amorphous phases. In a non-Al environment, CaSiO(3) was formed in air-cooled and water-quenched slags. With the addition of Al(2)O(3), no crystalline phases were observed in water-quenched slags. With the increase of Al mol% in specimens, the Al ions in air-cooled slags initially acted as an intermediate linking one tetrahedron chain to another and reducing the amount of crystalline phase, then behaved as a network former making the slags amorphous, and finally replaced Si ions in silicate frames to generate a large amount of CaAl(2)Si(2)O(8). Air cooling improved the formation of crystallize structures with more leachable metal ions. A highly crystallized Al-framed structure is not suitable for encapsulating hazardous metals in vitrified slags. PMID:19428182

  15. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  16. Investigating the surface reactivity of SiO2-TiO2-CaO-Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid.

    PubMed

    Li, Y; Coughlan, A; Wren, Anthony W

    2014-08-01

    This study focuses on evaluating the biocompatibility of a SiO2-TiO2-CaO-Na2O/SrO glass and glass-ceramic series. Glass and ceramic samples were synthesized and characterized using X-ray diffraction. Each material was subject to maturation in simulated body fluid over 1, 7 and 30 days to describe any changes in surface morphology. Calcium phosphate (CaP) deposition was observed predominantly on the Na(+) containing amorphous and crystalline materials, with plate-like morphology. The precipitated surface layer was also observed to crystallize with respect to maturation, which was most evident in the amorphous Na(+) containing glasses, Ly-N and Ly-C. The addition of Sr(2+) greatly reduced the solubility of all samples, with limited CaP precipitation on the amorphous samples and no deposition on the crystalline materials. The morphology of the samples was also different, presenting irregular plate-like structures (Ly-N), needle-like deposits (Ly-C) and globular-like structures (Ly-S). Cell culture analysis presented a significant increase in cell viability with the Na(+) materials, 134%, while the Sr(2+) containing glasses, 60-80% and ceramics, 60-85% presented a general reduction in cell viability, however these reductions were not significant.

  17. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface. PMID:25644099

  18. Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-09-01

    Al2O3-ZrO2 coatings were deposited by the suspension plasma spray (SPS) molecularly mixed amorphous powder and the conventional air plasma spray (APS) Al2O3-ZrO2 crystalline powder. The amorphous powder was produced by heat treatment of molecularly mixed chemical solution precursors below their crystallization temperatures. Phase composition and microstructure of the as-synthesized and heat-treated SPS and APS coatings were characterized by XRD and SEM. XRD analysis shows that the as-sprayed SPS coating is composed of α-Al2O3 and tetragonal ZrO2 phases, while the as-sprayed APS coating consists of tetragonal ZrO2, α-Al2O3, and γ-Al2O3 phases. Microstructure characterization revealed that the Al2O3 and ZrO2 phase distribution in SPS coatings is much more homogeneous than that of APS coatings.

  19. How deposition parameters affect corrosion behavior of TiO2-Al2O3 nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Niazi, H.; Yari, S.; Golestani-Fard, F.; Shahmiri, M.; Wang, W.; Alfantazi, A.; Bayati, R.

    2015-10-01

    Titania-Alumina coatings were grown on titanium substrates by Eectrophoretic Enhanced Micro Arc Oxidation (EEMAO) technique in electrolytes containing various concentrations of alumina nanoparticles. The effect of concentration of alumina on surface morphology, phase composition, microhardness, and corrosion behavior was investigated at different voltages. It was found that the impact of alumina concentration on microstructure actually depends on the voltage and its effects gets more conspicuous at intermediate and high voltages. A finer morphology was obtained at higher concentrations of alumina at a constant voltage. The coatings mainly consisted of anatase and rutile. Tialite was observed at 450 V and 3 g l-1 alumina. The formation kinetics and thermodynamics of the tialite phase was studied. In all voltages, samples prepared in an alumina-rich electrolyte showed a higher surface hardness. The nanocomposite coatings exhibited an enhanced corrosion resistance compared to the titanium substrates where the effect of alumina concentration became more tangible when the voltage exceeded a critical value (350 V). At 450 V, the polarization resistance of the sample prepared in alumina-rich electrolytes was higher by 3 orders of magnitude compared to the coating prepared in the electrolyte containing 1 g l-1 alumina. A processing-microstructure-properties correlation is established.

  20. Al6Ti2O13, a new phase in the Al2O3-TiO2 system.

    PubMed

    Norberg, Stefan T; Hoffmann, Stefan; Yoshimura, Masahiro; Ishizawa, Nobuo

    2005-03-01

    The compound Al6Ti2O13 (hexaaluminium dititanium tridecaoxide) has been synthesized using an arc-imaging furnace, which allows fast cooling of melted oxides. The structure consists of infinite double chains of polyhedra running along the c axis. These chains are built up by four kinds of strongly distorted oxygen octahedra randomly occupied by either Ti or Al (point symmetry m or m2m), and by trigonal bipyramids exclusively occupied by Al (point symmetry m2m).

  1. Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films.

    PubMed

    Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun

    2015-12-01

    Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare

  2. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    PubMed Central

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  3. Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement.

    PubMed

    Mittal, Manoj; Nath, S K; Prakash, Satya

    2013-07-01

    Thermal sprayed hydroxyapatite coatings suffer from poor mechanical properties like tensile strength, wear resistance, hardness, toughness and fatigue. The mechanical properties of hydroxyapatite coatings can be enhanced via incorporation of secondary bioinert reinforcement material. In this study an attempt has been made to improve the mechanical properties of plasma sprayed hydroxyapatite by reinforcing it with 10, 20 and 30% Al2O3. The plasma sprayed coatings have been characterized using FE-SEM/EDAX, XRD, AFM and FTIR spectroscopy. Corrosion studies have been done in simulated body fluid and abrasive wear studies have been performed on flat specimens on a disk wear tester. Microhardness, tensile strength and wear resistance are found to be increased with increasing Al2O3 content. All types of coatings show superior resistance against corrosion in simulated body fluid.

  4. Atomic Layer Deposition of Al2O3 on WSe2 Functionalized by Titanyl Phthalocyanine.

    PubMed

    Park, Jun Hong; Fathipour, Sara; Kwak, Iljo; Sardashti, Kasra; Ahles, Christopher F; Wolf, Steven F; Edmonds, Mary; Vishwanath, Suresh; Xing, Huili Grace; Fullerton-Shirey, Susan K; Seabaugh, Alan; Kummel, Andrew C

    2016-07-26

    To deposit an ultrathin dielectric onto WSe2, monolayer titanyl phthalocyanine (TiOPc) is deposited by molecular beam epitaxy as a seed layer for atomic layer deposition (ALD) of Al2O3 on WSe2. TiOPc molecules are arranged in a flat monolayer with 4-fold symmetry as measured by scanning tunneling microscopy. ALD pulses of trimethyl aluminum and H2O nucleate on the TiOPc, resulting in a uniform deposition of Al2O3, as confirmed by atomic force microscopy and cross-sectional transmission electron microscopy. The field-effect transistors (FETs) formed using this process have a leakage current of 0.046 pA/μm(2) at 1 V gate bias with 3.0 nm equivalent oxide thickness, which is a lower leakage current than prior reports. The n-branch of the FET yielded a subthreshold swing of 80 mV/decade. PMID:27305595

  5. Oxygen defects in amorphous Al2O3: A hybrid functional study

    NASA Astrophysics Data System (ADS)

    Guo, Zhendong; Ambrosio, Francesco; Pasquarello, Alfredo

    2016-08-01

    The electronic properties of the oxygen vacancy and interstitial in amorphous Al2O3 are studied via ab initio molecular dynamics simulations and hybrid functional calculations. Our results indicate that these defects do not occur in amorphous Al2O3, due to structural rearrangements which assimilate the defect structure and cause a delocalization of the associated defect levels. The imbalance of oxygen leads to a nonstoichiometric compound in which the oxygen occurs in the form of O2- ions. Intrinsic oxygen defects are found to be unable to trap excess electrons. For low Fermi energies, the formation of peroxy linkages is found to be favored leading to the capture of holes. The relative +2/0 defect levels occur at 2.5 eV from the valence band.

  6. Effect of sulfur removal on Al2O3 scale adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1991-01-01

    The effect of removing sulfur impurity on the adhesion of Al2O3 scale to NiCrAl was investigated in four experiments. It was found that removing sulfur to concentration less than 1 ppm per weight is sufficient to produce a very significant degree of alpha-Al2O3 scale adhesion to undoped NiCrAl alloys. Results of experiments show that repeated oxidation, and polishing after each oxidation cycle, of pure NiCrAl alloy lowered sulfur content from 10 to 2 ppm by weight (presumably by removing the segregated interfacial layer after each cycle); thinner samples became adherent after fewer oxidation-polishing cycles because of more limited supply of sulfur. It was found that spalling in subsequent cyclic oxidation tests was a direct function of the initial sulfur content. The transition between the adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  7. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    NASA Astrophysics Data System (ADS)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10-70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV-visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470-640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680-720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  8. Influence of hydrothermal modification on the properties of Ni/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Gong, Y. L.; Li, J. C.; Wang, Z. W.

    2004-12-01

    An advanced hydrothermal modification method was developed to synthesis Ni/Al 2O 3 catalyst with perfect activity. SEM, XRD, DTA-TG and XPS were used to characterize the textural properties of the materials obtained after each synthesis step. The experimental results indicated that the modification of the impregnation samples at elevated temperatures enhanced the absorption of Ni(NO 3) 2· xH 2O on the surface of supporters which were composed mainly of Al(OH) 3 and AlOOH, leading to the formation of the porous sintering products (NiAl 2O 4/Al 2O 3) with bigger specific surface areas and higher Ni contents. The conversion of CH 4 increased a lot by using the hydrothermal-modified catalyst instead of using the catalyst prepared via the traditional impregnation-sintering route.

  9. DRIFTS study of CO adsorption on praseodymium modified Pt/Al2O3

    NASA Astrophysics Data System (ADS)

    Tankov, I.; Cassinelli, W. H.; Bueno, J. M. C.; Arishtirova, K.; Damyanova, S.

    2012-10-01

    The effect of PrO2 content (1-20 wt.%) and temperature pretreatment on the structure and surface properties of PrO2-Al2O3-supported Pt catalysts was studied by XRD, XPS and DRIFTS of carbon monoxide adsorption. XRD analysis showed that platinum particle size decreases with the increase of PrO2 content for samples calcined at high temperature of 1023 K. The intensity and position of the infrared bands were strongly dependent on the praseodymium oxide content and reduction temperature. Two kinds of Pt sites (Pt0 and Ptδ+) were recorded in reduced PrO2-containing samples. A better thermal stability of the Ptsbnd CO bond in PrO2-containing samples compared to Pt/Al2O3 was observed.

  10. PTOSL response of commercial Al2O3:C detectors to ultraviolet radiation.

    PubMed

    Gronchi, Claudia C; Caldas, Linda V E

    2013-04-01

    The photo-transferred optically stimulated luminescence (PTOSL) technique using Al2O3:C detectors has been suggested as a good option for ultraviolet (UV) radiation dosimetry. The objective of this work was to study the PTOSL response of Al2O3:C InLight detectors and the OSL microStar reader of Landauer. The parameters such as radiation pre-dose, optical treatment time and UV illumination time were determined. The detectors presented a satisfactory stimulus of PTOSL signals when they were subjected to a preconditioning procedure with gamma radiation (1 Gy pre-dose), 30 min of optical treatment (to empty the shallow traps) and 30 min of UV illumination from an artificial source. PMID:22887115

  11. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  12. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    NASA Astrophysics Data System (ADS)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10–70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV–visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470–640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680–720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  13. [Laser Raman spectra study on Co-Mo/Al2O3 hydrodesulphurization catalysts].

    PubMed

    Yuan, Hui; Xu, Guang-Tong; Qiherima; Li, Hui-Feng; Lu, Li-Jun; Yang, Xing-Yuan; Tana

    2014-02-01

    Due to the implementation of more stringent specifications in sulfur content for gasoline , a deep understanding of the active phase of Co-Mo/Al2O3 catalysts is necessary to the development of hydrodesulphurization (HDS) catalysts. A series of Co-Mo/Al2O3 HDS catalysts with different metal loading were studied by laser Raman spectra. The existence form and the content of the active component of the catalyst were obtained by Raman spectra. The result shows that the percentage of characteristic Raman bands 940 cm(-1) correlates linearly with the HDS selectivity, which can be used as an experimental evidence for developing industrial selective HDS catalysts. Raman spectra of sulfided catalysts show that the bands of oxidic catalysts at 839 and 940 cm(-1) disappeared, and simultaneously, the bands of Mo-S at 372 and 408 cm(-1) emerged, which indicate that the oxidic sample is sulfided completely. PMID:24822416

  14. Geant4 calculations for space radiation shielding material Al2O3

    NASA Astrophysics Data System (ADS)

    Capali, Veli; Acar Yesil, Tolga; Kaya, Gokhan; Kaplan, Abdullah; Yavuz, Mustafa; Tilki, Tahir

    2015-07-01

    Aluminium Oxide, Al2O3 is the most widely used material in the engineering applications. It is significant aluminium metal, because of its hardness and as a refractory material owing to its high melting point. This material has several engineering applications in diverse fields such as, ballistic armour systems, wear components, electrical and electronic substrates, automotive parts, components for electric industry and aero-engine. As well, it is used as a dosimeter for radiation protection and therapy applications for its optically stimulated luminescence properties. In this study, stopping powers and penetrating distances have been calculated for the alpha, proton, electron and gamma particles in space radiation shielding material Al2O3 for incident energies 1 keV - 1 GeV using GEANT4 calculation code.

  15. Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics

    NASA Astrophysics Data System (ADS)

    Chalker, P. R.; Marshall, P. A.; Dawson, K.; Brunell, I. F.; Sutcliffe, C. J.; Potter, R. J.

    2015-01-01

    We report the photochemical atomic layer deposition of Al2O3 thin films and the use of this process to achieve area-selective film deposition. A shuttered vacuum ultraviolet (VUV) light source is used to excite molecular oxygen and trimethyl aluminum to deposit films at 60°C. In-situ QCM and post-deposition ellipsometric measurements both show that the deposition rate is saturative as a function of irradiation time. Selective area deposition was achieved by projecting the VUV light through a metalized magnesium fluoride photolithographic mask and the selectivity of deposition on the illuminated and masked regions of the substrate is a logarithmic function of the UV exposure time. The Al2O3 films exhibit dielectric constants of 8 - 10 at 1 MHz after forming gas annealing, similar to films deposited by conventional thermal ALD.

  16. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    PubMed Central

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization. PMID:26742878

  17. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates.

    PubMed

    Shinsho, Kiyomitsu; Kawaji, Yasuyuki; Yanagisawa, Shin; Otsubo, Keisuke; Koba, Yusuke; Wakabayashi, Genichiro; Matsumoto, Kazuki; Ushiba, Hiroaki

    2016-05-01

    This research demonstrated that commercially available alumina is well-suited for use in large area X-ray detectors. We discovered a new radiation imaging device that has a high spatial resolution, high sensitivity, wide dynamic range, large imaging area, repeatable results, and low operating costs. The high thermoluminescent (TL) properties of Al2O3 ceramic plates make them useful for X-ray imaging devices. PMID:26972627

  18. Solid state reduction of chromium (VI) pollution for Al2O3-Cr metal ceramics application

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yangai; Tang, Hao; Min, Xin; Wu, Xiaowen

    2016-04-01

    Reduction of chromium (VI) from Na2CrO4 through aluminothermic reaction and fabrication of metal-ceramic materials from the reduction products have been investigated in this study. Na2CrO4 could be successfully reduced into micrometer-sized Cr particles in a flowing Ar atmosphere in presence of Al powder. The conversion ratio of Na2CrO4 to metallic Cr attained 96.16% efficiency. Al2O3-Cr metal-ceramic with different Cr content (5 wt%, 10 wt%, 15 wt%, 20 wt%) were further prepared from the reduction product Al2O3-Cr composite powder, and aluminum oxide nanopowder via pressure-less sintering. The phase composition, microstructure and mechanical properties of metal-ceramic composites were characterized to ensure the potential of the Al2O3-Cr composite powder to form ceramic materials. The highest relative density and bending strength can reach 93.4% and 205 MP, respectively. The results indicated that aluminothermic reduction of chromium (VI) for metal-ceramics application is a potential approach to remove chromium (VI) pollutant from the environment.

  19. Spectroscopy and optically stimulated luminescence of Al2O3:C using time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Yukihara, E. G.; McKeever, S. W. S.

    2006-10-01

    This paper reports the observation of ultraviolet (UV) emission at 335nm in the optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al2O3:C) and presents results on the investigation of the OSL properties of this band, including its dose response, time dependence after irradiation, and dependence of the OSL signal on the type of radiation. Time-resolved OSL measurements were used to separate the UV emission band from the dominant OSL emission band of Al2O3:C, namely, the F-center luminescence at 420nm. A comparison of the OSL properties of the UV and F-center emission bands is important for various dosimetric applications because the relative contribution of the UV and F-center emissions to the OSL signal varies with readout technique and optical filters used in the readout equipment. The UV emission band is found to show an ionization density dependence that is different from the dependence observed for the F-center emission, and an increase in intensity with time elapsed after beta irradiation. These results are relevant for OSL dosimetry of radiation fields containing heavy charged particles, such as the space radiation field and the secondary fields created by interactions of matter with energetic neutrons, as well as for understanding of the basic OSL mechanism in Al2O3:C.

  20. A short-time fading study of Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nascimento, L. F.; Vanhavere, F.; Silva, E. H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al2O3:C by measuring optically stimulated luminescence (OSL) signals (Total OSL: TOSL, and Peak OSL: POSL) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al2O3:C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al2O3:C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (TOSL and POSL) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both TOSL and POSL from droplets and Luxel™.

  1. Thermoluminescence glow curves and optical stimulated luminescence of undoped alpha-Al2O3 crystals.

    PubMed

    Zhang, C X; Tang, Q; Lin, L B; Luo, D L

    2006-01-01

    The characteristics of thermoluminescence (TL) and optical stimulated luminescence (OSL) in undoped alpha-Al2O3 single crystals were studied. The TL glow curves of the crystal samples irradiated at various dose levels were measured by RisØ TL/OSL-DA-15B/C reader with U-340 or 7-59 filters at different heating rates. The glow peaks measured with U-340 at approximately 210 degrees C of the undoped alpha-Al2O3 can be well fitted by first-order kinetic equation whereas the glow peaks measured with 7-59 filters are a composite of two first-order glow peaks. It indicates that the TL glow curves are dependent upon the filter used in the reader that is related to the emission spectra of luminescence materials. The OSL were also measured and fitted by two exponential functions to get the luminescence intensities. The TL and OSL dose responses of the undoped alpha-Al2O3 crystal were obtained in the dose range of 0.12-248 Gy and fitted by the composite action dose-response function to get nonlinear characteristic parameters. The TL and OSL dose responses are linear-sublinear. PMID:16644982

  2. Electrical characteristics of SrTiO3/Al2O3 laminated film capacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Yao, Manwen; Chen, Jianwen; Xu, Kaien; Yao, Xi

    2016-07-01

    The electrical characteristics of SrTiO3/Al2O3 (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO3 is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO3/Al2O3 laminated films can effectively suppress the demerits of pure SrTiO3 films under low electric field, but the leakage current value reaches to 0.1 A/cm2 at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO3/Al2O3 laminated films. Compared to laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10-4 A/cm2) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.

  3. Insight into the effects of different ageing protocols on Rh/Al2O3 catalyst

    NASA Astrophysics Data System (ADS)

    Zhao, Baohuai; Ran, Rui; Cao, Yidan; Wu, Xiaodong; Weng, Duan; Fan, Jun; Wu, Xueyuan

    2014-07-01

    In this work, a catalyst of Rh loaded on Al2O3 was prepared by impregnating method with rhodium nitrate aqueous solution as the Rh precursor. The catalyst was aged under different protocols (lean, rich, inert and cyclic) to obtain several aged samples. All the Rh/Al2O3 samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, CO-chemisorption, H2-temperature programmed reduction (H2-TPR), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that a specific ageing treatment could strongly affect the catalytic activity. The N2 aged and the H2 aged samples had a better catalytic activity for CO + NO reaction than the fresh sample while the air aged and the cyclic aged samples exhibited much worse activity. More surface Rh content and better reducibility were obtained in the N2 and the H2 aged samples and the Rh particles existed with an appropriate size, which were all favorable to the catalytic reaction. However, the air and the cyclic ageing protocols induced a strong interaction between Rh species and the Al2O3 support, which resulted in a severe sintering of particles of Rh species and the loss of active sites. The structure evolution scheme of the catalysts aged in different protocols was also established in this paper.

  4. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  5. Room Temperature Radiolytic Synthesized Cu@CuAlO2-Al2O3 Nanoparticles

    PubMed Central

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO2-Al2O3 bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a 60Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO2-Al2O3 nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO2-Al2O3 nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  6. Room temperature radiolytic synthesized Cu@CuAlO(2)-Al(2)O(3) nanoparticles.

    PubMed

    Abedini, Alam; Saion, Elias; Larki, Farhad; Zakaria, Azmi; Noroozi, Monir; Soltani, Nayereh

    2012-01-01

    Colloidal Cu@CuAlO(2)-Al(2)O(3) bimetallic nanoparticles were prepared by a gamma irradiation method in an aqueous system in the presence of polyvinyl pyrrolidone (PVP) and isopropanol respectively as a colloidal stabilizer and scavenger of hydrogen and hydroxyl radicals. The gamma irradiation was carried out in a (60)Co gamma source chamber with different doses up to 120 kGy. The formation of Cu@CuAlO(2)-Al(2)O(3) nanoparticles was observed initially by the change in color of the colloidal samples from colorless to brown. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of bonds between polymer chains and the metal surface at all radiation doses. Results of transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD) showed that Cu@CuAlO(2)-Al(2)O(3) nanoparticles are in a core-shell structure. By controlling the absorbed dose and precursor concentration, nanoclusters with different particle sizes were obtained. The average particle diameter increased with increased precursor concentration and decreased with increased dose. This is due to the competition between nucleation, growth, and aggregation processes in the formation of nanoclusters during irradiation. PMID:23109893

  7. Removal of alachlor from water by catalyzed ozonation on Cu/Al2O3 honeycomb

    PubMed Central

    2013-01-01

    Background The herbicide alachlor (2-chloro-2′6′-diethyl-N-methoxymethylacetanilide) has been known as a probable human carcinogen, and the MCL (minimum contamination level) for drinking water has been set at 2 μg L-1. Therefore, the advanced methods for effectively removing it from water are a matter of interest. Catalyzed ozonation is a promising method for refractory organics degradation. Cu/Al2O3 catalyzed ozonation for degrading an endocrine disruptor (alachlor) in water was investigated. Results Experimental results showed that the ozonation of alachlor can be effectively catalyzed and enhanced by Cu/Al2O3-honeycomb. The main intermediate products formed (aliphatic carboxylic acids) were mineralized to a large extent in the catalytic process. Conclusions This study has shown that Cu/Al2O3-honeycomb is a feasible and efficient catalyst in the ozonation of alachlor in water. Less intermediate oxidation product was produced in the catalytic process than in the uncatalytic one. Furthermore, the mineralization of alachlor could be enhanced by increasing the pH of the reaction solution. PMID:23977841

  8. Atomic layer deposition of Al2O3 thin films using dimethylaluminum isopropoxide and water

    NASA Astrophysics Data System (ADS)

    Cho, Wontae; Sung, Kiwhan; An, Ki-Seok; Sook Lee, Sun; Chung, Taek-Mo; Kim, Yunsoo

    2003-07-01

    Dimethylaluminum isopropoxide (DMAI), (CH3)2AlOCH(CH3)2, a precursor originally developed for the metalorganic chemical vapor deposition of alumina, was adopted as a new precursor for growing aluminum oxide thin films on HF-treated Si(001) substrates by atomic layer deposition (ALD). This precursor is stable for a prolonged period of storage time under inert atmosphere (such as in nitrogen or argon) and does not react vigorously in air, and therefore is easy to handle and safe, without causing hazards. The self-limiting ALD process by alternate surface reactions of DMAI and H2O was confirmed by thicknesses of the grown aluminum oxide films measured as functions of the DMAI pulse time and the number of DMAI-H2O cycles. A maximum growth rate of ~1.06 Å/cycle was achieved in the substrate temperature range ~120-150 °C. Growth of stoichiometric Al2O3 thin films without appreciable carbon incorporation was verified by Rutherford backscattering spectrometry. Atomic force microscopy images showed atomically flat and uniform surfaces. In particular, a cross-sectional high-resolution transmission electron microscopy image of an Al2O3 film shows that there is no distinguishable interfacial oxide layer between the Al2O3 film and the Si substrate. These results prove the validity of DMAI as a new ALD source for aluminum oxide.

  9. The electrical conductivity of Al2O3 under shock-compression

    PubMed Central

    Liu, Hanyu; Tse, John S.; Nellis, W. J.

    2015-01-01

    Sapphire (Al2O3) crystals are used below 100 GPa as anvils and windows in dynamic-compression experiments because of their transparency and high density. Above 100 GPa shock pressures, sapphire becomes opaque and electrically conducting because of shock-induced defects. Such effects prevent temperature and dc conductivity measurements of materials compressed quasi-isentropically. Opacities and electrical conductivities at ~100 GPa are non-equilibrium, rather than thermodynamic parameters. We have performed electronic structure calculations as a guide in predicting and interpreting shock experiments and possibly to discover a window up to ~200 GPa. Our calculations indicate shocked sapphire does not metallize by band overlap at ~300 GPa, as suggested previously by measured non-equilibrium data. Shock-compressed Al2O3 melts to a metallic liquid at ~500 GPa and 10,000 K and its conductivity increases rapidly to ~2000 Ω−1cm−1 at ~900 GPa. At these high shock temperatures and pressures sapphire is in thermal equilibrium. Calculated conductivity of Al2O3 is similar to those measured for metallic fluid H, N, O, Rb, and Cs. Despite different materials, pressures and temperatures, and compression techniques, both experimental and theoretical, conductivities of all these poor metals reach a common end state typical of strong-scattering disordered materials. PMID:26239369

  10. A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating fabricated by micro-arc oxidation for hip joint prosthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Zhang, Wenting; Han, Yong; Tang, Wu

    2016-01-01

    A nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 coating was fabricated on Zr substrate by micro-arc oxidation (MAO). The structure, formation mechanism, anti-wear property and aging behavior of the coating were explored. The obtained results show that the coating is composed of Al2O3 and ZrO2; the amount and crystallinity of Al2O3 increase gradually from inner layer to the coating surface; monoclinic ZrO2 (m-ZrO2) and tetragonal ZrO2 (t-ZrO2) are both present in the coating, and the ratio of t-ZrO2/m-ZrO2 increases with closing to the coating surface by a "constraint" mechanism of Al2O3; the coating surface mainly consists of nanoplate-like α-Al2O3, and a small amount of nanocrystallized m- and t-ZrO2. The superimposition of α-Al2O3 growth unit on {0 0 0 1} face should be prohibited by PO43- during the MAO process, resulting in the formation of nanoplate-like α-Al2O3 on the coating surface. Compared with pure Zr, the coating shows noticeable improvement in wear-resistance. For aging behavior, although more t-ZrO2 in the coating is transformed to m-ZrO2 with increasing aging time, wear loss increases slightly. It indicates that the nanoplate-like α-Al2O3 out-layered Al2O3-ZrO2 is a potential coating for articular head replacement.

  11. Cu/Ba/bauxite: an Inexpensive and Efficient Alternative for Pt/Ba/Al2O3 in NOx Removal

    PubMed Central

    Wang, Xiuyun; Chen, Zhilin; Luo, Yongjin; Jiang, Lilong; Wang, Ruihu

    2013-01-01

    Cu/Ba/bauxite possesses superior NOx storage and reduction (NSR) performances, high thermal stability, strong resistance against SO2 poisoning and outstanding regeneration ability in comparison with Pt/Ba/Al2O3. It can serve as a cheap and promising alternative for traditional Pt/Ba/Al2O3 in NOx removal from lean-burn engines. PMID:23536149

  12. Characterization of Al2O3 in High-Strength Mo Alloy Sheets by High-Resolution Transmission Electron Microscopy.

    PubMed

    Zhou, Yucheng; Gao, Yimin; Wei, Shizhong; Hu, Yajie

    2016-02-01

    A novel type of alumina (Al2O3)-doped molybdenum (Mo) alloy sheet was prepared by a hydrothermal method and a subsequent powder metallurgy process. Then the characterization of α-Al2O3 was investigated using high-resolution transmission electron microscopy as the research focus. The tensile strength of the Al2O3-doped Mo sheet is 43-85% higher than that of the pure Mo sheet, a very obvious reinforcement effect. The sub-micron and nanometer-scale Al2O3 particles can increase the recrystallization temperature by hindering grain boundary migration and improve the tensile strength by effectively blocking the motion of the dislocations. The Al2O3 particles have a good bond with the Mo matrix and there exists an amorphous transition layer at the interface between Al2O3 particles and the Mo matrix in the as-rolled sheet. The sub-structure of α-Al2O3 is characterized by a number of nanograins in the $\\left[ {2\\bar{2}1} \\right]$ direction. Lastly, a new computer-based method for indexing diffraction patterns of the hexagonal system is introduced, with 16 types of diffraction patterns of α-Al2O3 indexed. PMID:26914997

  13. Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Wang, Cheng-Bing; Guo, Zhi-Ming; Geng, Qing-Fen; Theiss, Wolfgang; Liu, Gang

    2016-08-01

    Traditional metal-dielectric composite coating has found important application in spectrally selective solar absorbers. However, fine metal particles can easily diffuse, congregate, or be oxidized at high temperature, which causes deterioration in the optical properties. In this work, we report a new spectrally selective solar absorber coating, composed of low Al2O3 ceramic volume fraction (Al2O3(L)-WC) layer, high Al2O3 ceramic volume fraction (Al2O3(H)-WC layer) and Al2O3 antireflection layer. The features of our work are: 1) compared with the metal-dielectric composites concept, Al2O3-WC nanocomposite ceramic successfully achieves the all-ceramic concept, which exhibits a high solar absorptance of 0.94 and a low thermal emittance of 0.08, 2) Al2O3 and WC act as filler material and host material, respectively, which are different from traditional concept, 3) Al2O3-WC nanocomposite ceramic solar absorber coating exhibits good thermal stability at 600 °C. In addition, the solar absorber coating is successfully modelled by a commercial optical simulation programme, the result of which agrees with the experimental results.

  14. Recombinant Phage Coated 1D Al2O3 Nanostructures for Controlling the Adhesion and Proliferation of Endothelial Cells

    PubMed Central

    Lee, Juseok; Jeon, Hojeong; Haidar, Ayman; Abdul-Khaliq, Hashim; Veith, Michael; Kim, Youngjun

    2015-01-01

    A novel synthesis of a nanostructured cell adhesive surface is investigated for future stent developments. One-dimensional (1D) Al2O3 nanostructures were prepared by chemical vapor deposition of a single source precursor. Afterwards, recombinant filamentous bacteriophages which display a short binding motif with a cell adhesive peptide (RGD) on p3 and p8 proteins were immobilized on these 1D Al2O3 nanostructures by a simple dip-coating process to study the cellular response of human endothelial EA hy.926. While the cell density decreased on as-deposited 1D Al2O3 nanostructures, we observed enhanced cell proliferation and cell-cell interaction on recombinant phage overcoated 1D Al2O3 nanostructures. The recombinant phage overcoating also supports an isotropic cell spreading rather than elongated cell morphology as we observed on as-deposited Al2O3 1D nanostructures. PMID:26090458

  15. NMR Spectroscopy of the Hydrated Layer of Composite Particles Based on Nanosized Al2O3 and Vitreous Humor

    NASA Astrophysics Data System (ADS)

    Turov, V. V.; Gerashchenko, I. I.; Markina, A. I.

    2013-11-01

    The hydrated layer of composite particles prepared using Al2O3 and cattle vitreous humor was investigated using NMR spectroscopy. It was found that water bound to Al2O3 nanoparticles was present in the form of clusters with different degrees of association and energies of interaction with the surface. Water bound to the surface of the Al2O3/vitreous humor composite became more uniform upon immobilization of vitreous humor components on the surface of the Al2O3. With this, the clusters of adsorbed water had characteristics that were close to those found in air and weakly polar CHCl3 media. Addition of polar CH3CN led to the formation of very small water clusters. PMR spectra of the surface of the Al2O3/vitreous humor composite in the presence of trifluoroacetic acid differentiated four types of hydrated structures that differed in the degree of water association.

  16. Research on microcracks avoidance in processing of α-Al2O3 by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Wei; Zhao, Quan-Zhong

    2013-07-01

    The optical crystal α-Al2O3 has been widely used as the matrix of ruby and blue sapphire for its wide transparency, high thermal conductivity, big scale and low cost. α-Al2O3 is so hard that cutter is easily abraded. Micromachining of α-Al2O3 by ultrashort pulsed laser is superior to the traditional mechanical approach as its non-contact and cold machining features. However, unexpected cracks on the surface of α-Al2O3 are observed after femtosecond laser machining. In order to hinder the crack source from stretching, we optimize the laser parameters accompanied with annealing. The crack-free machining can be achieved. Three-dimensional α-Al2O3 microstructures free from fracture, such as cylinder, barrel and sphere are demonstrated.

  17. Effect of Microstructure on the Thermal Conductivity of Plasma-Sprayed Al2O3-YSZ Coatings

    NASA Astrophysics Data System (ADS)

    Song, Xuemei; Liu, Ziwei; Kong, Mingguang; Wang, Yongzhe; Huang, Liping; Zheng, Xuebin; Zeng, Yi

    2016-04-01

    The microstructures of three atmospheric plasma-sprayed (APS) Al2O3-ZrO2 coatings were investigated using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The differences in the microstructures of the three Al2O3-ZrO2 coatings, including their phase compositions, cracks, pores, grain sizes, and solid solutions, were analyzed in detail. A close relationship was observed between the thermal conductivities of the coatings and the microstructures, and the Al2O3-YSZ coatings with more spherical pores, fewer vertical cracks, and finer grains exhibited the lowest thermal conductivity of 0.91 W/m·K. Compared with YSZ coatings, Al2O3-YSZ coatings can exhibit lower thermal conductivity, which may be attributed to the formation of an amorphous phase, smaller grains, and Al2O3-YSZ solid solution.

  18. Preparation and characterization of Ppy/Al 2O 3/Al used as a solid-state capacitor

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Liao; Chen, Pei-Jiun; Do, Jing-Shan

    The characteristics of a solid-state capacitor based on Ppy (polypyrrole)/Al 2O 3/Al prepared by the constant-current method are investigated. The surface composition of aluminum (Al) foil analyzed to by electron spectroscopy for chemical analysis (ESCA) is found to be AlO 2- when the native oxide on the Al foil is etched by 0.1 M NaOH. Three stages are defined from the relationship between the potential and the electrolysis time in simultaneously preparing the dielectric layer (Al 2O 3) and the conducting polymer (Ppy) on Al foil etched with 0.1 M NaOH. The experimental results indicate that only stage one, i.e. the formation of Al 2O 3, occurs in the preparation of Ppy/Al 2O 3/Al at a current density greater than 0.9 mA cm -2. A higher concentration of pyrrole enhances the nucleation of Ppy within the pores of Al 2O 3 such that the period of the first stage decrease and the second stage of the propagation of Ppy is increased. The leakage current of Ppy/Al 2O 3/Al rises from 0.009 to 0.405 μA cm -2 with increase in the concentration of pyrrole in preparing Ppy/Al 2O 3/Al from 0.05 to 0.15 M. Raising the cut-off potential for preparing Ppy/Al 2O 3/Al from 20 to 60 V increases the thickness of Al 2O 3 and lowers the capacity of Ppy/Al 2O 3/Al from 478.5 to 174.2 nF cm -2.

  19. Friction and Wear Behavior of Plasma-Sprayed Al2O3-13 wt.%TiO2 Coatings Under the Lubrication of Liquid Paraffin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqin; An, Yulong; Hou, Guoliang; Zhou, Huidi; Chen, Jianmin

    2014-04-01

    Two types of ceramic composite coatings (denoted as N-AT13 coating and M-AT13 coating) were fabricated on 1Cr18Ni9Ti stainless steel substrate from ultra-fine and coarse Al2O3-13%TiO2 feedstocks by air plasma spraying. The friction and wear behavior of as-prepared coatings sliding against Al2O3 and stainless steel balls under the lubrication of liquid paraffin was evaluated with an SRV friction and wear tester (Optimol, Germany). The fractured and worn surfaces of the coatings were observed using a scanning electron microscope and a field-emission scanning electron microscope; and the wear mechanisms of the coatings were discussed based on scanning electron microscopic analysis and energy dispersive spectrometric analysis. Results show that N-AT13 coating possesses a unique microstructure and strong inter-splat bonding, thereby showing increased microhardness and bonding strength as well as much better friction-reduction and wear resistance than M-AT13 coating. Moreover, there exist differences in the wear mechanisms of N-AT13 and M-AT13 coatings which slide against ceramic and stainless steel balls under the lubrication of liquid paraffin. Namely, with the increase of normal load, the burnishing of N-AT13 coating coupled with Al2O3 ball is gradually transformed to grain-abrasion and deformation, while M-AT13 coating is dominated by grain-pullout and brittle fracture in the whole range of tested normal load.

  20. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    PubMed

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system. PMID:27483765

  1. Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

    PubMed

    Jeong, Soyeon; Kim, Do Heui

    2016-05-01

    The comparative study between Pt-BaO/Al2O3 and Pt-BaO/MgO-Al2O3 gives the information about the effect of MgO addition to Al2O3 support on the sulfation and desulfation behavior of Pt-BaO/MgO-Al2O3 NOx storage reduction catalyst. The sulfated two samples were analyzed by using element analysis (EA), X-ray diffraction (XRD), H2 temperature programmed reaction (H2 TPRX) and NOx uptake measurement. The amount of sulfur uptake on 2 wt% Pt-20 wt% BaO/Al2O3 and 2 wt% Pt-20 wt% BaO/MgO-Al2O3 are almost identical as 0.45 and 0.40 of S/Ba, respectively, which yields the drastic decrease in NOx uptake for both sulfated samples. However, after desulfa- tion with H2 at 600 degrees C, the residual sulfur amount on MgO-Al2O3 supported catalyst is three times larger than that on Al2O3 supported one, indicating that sulfur species formed on the former are more stable than those on the latter. It is also well corresponding to the H2 TPRX results where the main H2S peak from MgO-Al2O3 supported sample is observed at higher temperature than Al2O3 supported one, resulting in the lower NOx uptake activity of former sample than the latter one. Meanwhile, after desulfation of MgO-Al2O3 supported sample at 700 degrees C and 800 degrees C, the activity is recovered more significantly due to the removal of the large amount of sulfur while Al2O3 supported one decreases monotonically due to the sintering of Pt crystallite and the formation of BaAl2O4 phase. It is summarized that MgO-Al2O3 supported catalyst enhances the thermal stability of the catalyst, however, forms the stable sulfate species, which needs to be improved to develop the more sulfur resistant NSR catalyst system.

  2. A novel Al 2O 3 fluorescent nuclear track detector for heavy charged particles and neutrons

    NASA Astrophysics Data System (ADS)

    Akselrod, G. M.; Akselrod, M. S.; Benton, E. R.; Yasuda, N.

    2006-06-01

    A novel Al2O3 fluorescent nuclear track detector (FNTD), recently developed by Landauer, Inc., has demonstrated sensitivity and functionality superior to that of existing nuclear track detectors. The FNTD is based on single crystals of aluminum oxide doped with carbon and magnesium, and having aggregate oxygen vacancy defects (Al2O3:C,Mg). Radiation-induced color centers in the new material have an absorption band at 620 nm and produce fluorescence at 750 nm with a high quantum yield and a short, 75 ± 5 ns, fluorescence lifetime. Non-destructive readout of the detector is performed using a confocal fluorescence microscope. Scanning of the three-dimensional spatial distribution of fluorescence intensity along the track of a heavy charged particle (HCP) permits reconstruction of particle trajectories through the crystal and the LET can be determined as a function of distance along the trajectory based on the fluorescence intensity. Major advantages of Al2O3:C,Mg FNTD over conventionally processed CR-39 plastic nuclear track detector include superior spatial resolution, a wider range of LET sensitivity, no need for post-irradiation chemical processing of the detector and the capability to anneal and reuse the detector. Preliminary experiments have demonstrated that the material possesses a low-LET threshold of <1 keV/μm, does not saturate at LET in water as high as 1800 keV/μm, and is capable of irradiation to fluences in excess of 106 cm-2 without saturation (track overlap).

  3. Particulate strengthened Ni Al2O3 microcomposite HARMs for harsh-environmental micromechanical applications

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kelly, Kevin W.

    2005-01-01

    The LIGA micromachining process can be used to fabricate high-aspect-ratio microstructures (HARMs), usually from electroplated nickel (Ni). In recent years, there has been a growing demand for applications involving HARMs subjected to harsh environments such as high temperatures, high pressures, constant erosion and friction. Numerous mechanical characterizations and tests revealed that LIGA-fabricated Ni devices might not meet the criteria required in these applications due to their insufficient mechanical and tribological properties under service conditions. By incorporating particulates into the electroplated Ni HARMs, LIGA-compatible particulate strengthened metal matrix composite microstructures result with substantially higher strength and wear resistance. In this paper, nickel-alumina (Ni-Al2O3) composite microstructures were electrodeposited into x-ray-patterned high-aspect-ratio polymethyl-methacrylate (PMMA) cavities from Ni sulfamate electrolytes containing submicron Al2O3 particles. The resulting microstructures were characterized with the use of a scanning electron microscope, a energy dispersive x-ray spectrometer, a wavelength dispersive x-ray spectrometer, a transmission electron microscope and a microhardness tester. It was found that the electrolytes containing surfactant sodium dodecyl sulfate (SDS) alone led to particle agglomeration in deposited microstructures, while homogenous composites were obtained from a bath containing SDS, saccharin and coumarin. Bath agitation has little effect on the particle dispersion under the conditions studied. A hypothesis in view of alumina solid/electrolyte interaction was proposed to better understand the evolution of the agglomerates. It suggests an approach to manipulate the composite material properties by optimizing surfactants to control the balance between the attractive van der Waals force and repulsive force of like-charged particles. Examinations showed that the hardness of the composites was

  4. Shock-induced transformation of Al2O3 and LiF into semiconducting liquids.

    PubMed

    Hicks, D G; Celliers, P M; Collins, G W; Eggert, J H; Moon, S J

    2003-07-18

    Shock compression of sapphire (Al2O3) and lithium fluoride (LiF) to pressures above 5 Mbar has been observed to transform these transparent, wide band-gap insulators into partially degenerate liquid semiconductors with optical reflectivities of several percent. Reflectivities rise steadily with shock pressure up to 45% in sapphire at 20 Mbar and 20% in LiF at 13 Mbar. Using a simple model, the electron scattering length was inferred to be approximately the interatomic distance. In addition, several equation-of-state points at these pressures were measured.

  5. NOx Uptake Mechanism on Pt/BaO/Al2O3 Catalysts

    SciTech Connect

    Kwak, Ja Hun; Kim, Do Heui; Szailer, Tamas; Peden, Charles HF; Szanyi, Janos

    2006-11-01

    The NOx adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NOx storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8 and 20 wt%) catalysts. NOx uptake profiles on 2%Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NOx level starts gradually increasing with time and it reaches 75% of the inlet NOx concentration after 30 min time-on-stream. Although this catalyst shows fairly high NOx conversion at 523 K, only ~ 2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NOx adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NOx uptake period at the beginning of adsorption and the overall NOx uptake is controlled by the gas-solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NOx uptake occurs and the time it takes to convert ~ 4 % of BaO to Ba(NO3)2 is independent of the NO concentration. These NOx uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NOx uptake, this spill-over process is very fast and so it is able to provide complete NOx storage. However, the NOx uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NOx slip. As NOx uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.

  6. In situ study of atomic layer deposition Al2O3 on GaP (100)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Brennan, B.; Qin, X.; Zhernokletov, D. M.; Hinkle, C. L.; Kim, J.; Wallace, R. M.

    2013-09-01

    The interfacial chemistry of atomic layer deposition (ALD) of Al2O3 on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A "self-cleaning" effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  7. Calcinations effect on the grain size distributions Al2O3 powder

    NASA Astrophysics Data System (ADS)

    Issa, Tarik Talib; Mohammed, Awattif A.; Kamil, Dunia

    2012-09-01

    Fine of Al2O3 Powder was calcined at 200°C, 400°C, 600°C, and 800°C respectively for 2 hours under static air, x-ray diffraction, optical microscope and grain size distribution were done to analysis the resulting data after calcinations process. Batter particle size was achieved at 800°C of value (0.486) μm, while batter particles mean value of size 7.18 μm was found at 400°C. SEM micrographs shows that the agglomerate particles were vanished due to the calcinations process.

  8. Hydrogen and Carbon Effects on Al2O3 Surface Phases and Metal Deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2005-03-01

    Effects of H and C impurities on α-Al2O3 (0001) surface stability and metal wetting behavior are determined from first principles[1]. The ab initio surface phase diagram for H and C on the alumina surface reveals six distinct surface phases. These different surface phases exhibit a variety of adhesion strengths with Cu and Co, and correspondingly different wetting behaviors. These results are consistent with the varied wetting characteristics observed experimentally. [1] Xiao-Gang Wang and John R. Smith, Phys. Rev. B70, Rapid communications, 081401 (2004).

  9. Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids

    PubMed Central

    2011-01-01

    An investigation on viscosity was conducted 2 weeks after the Al2O3-water nanofluids having dispersants were prepared at the volume concentration of 1-5%. The shear stress was observed with a non-Newtonian behavior. On further ultrasonic agitation treatment, the nanofluids resumed as a Newtonian fluids. The relative viscosity increases as the volume concentrations increases. At 5% volume concentration, an increment was about 60% in the re-ultrasonication nanofluids in comparison with the base fluid. The microstructure analysis indicates that a higher nanoparticle aggregation had been observed in the nanofluids before re-ultrasonication. PMID:21711762

  10. Head-up display using an inclined Al2O3 column array.

    PubMed

    Cho, Wen-Hao; Lee, Chao-Te; Kei, Chi-Chung; Liao, Bo-Huei; Chiang, Donyau; Lee, Cheng-Chung

    2014-02-01

    An orderly inclined Al2O3 column array was fabricated by atomic layer deposition and sequential electron beam evaporation using a hollow nanosphere template. The transmittance spectra at various angles of incidence were obtained through the use of a Perkin-Elmer Lambda 900 UV/VIS/NIR spectrometer. The inclined column array could display the image information through a scattering mechanism and was transparent at high viewing angles along the deposition plane. This characteristic of the inclined column array gives it potential for applications in head-up displays in the automotive industry.

  11. Shock properties of Al2O3 and ZrO2 ceramics

    NASA Astrophysics Data System (ADS)

    Song, H.; Bless, S. J.; Brar, N. S.; Simha, C. H.; Jang, S. D.

    1994-07-01

    We conducted plate impact experiments on Al2O3 and ZrO2 ceramics using embedded Manganin gages. Composition and microstructure were controlled to study their effects on dynamic properties. Stress time curves were reduced to stress-strain loading paths. Some of the specimens exhibited ``multiple'' HEL's thus indicating the persistence of elastic behavior. Unloading behavior was analyzed by comparing measured stress levels with those predicted by the impedance match solution, which indicated that the unloading was primarily elastic. Anomalies in the plastic wave speed were noted, which may indicate some degree of polymorphic phase change in the shocked material.

  12. Sputtering characteristics, crystal structures, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0 0 0 1) and glass substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2012-12-01

    Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.

  13. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate. PMID:26369207

  14. Enhanced Dielectric Properties and High-Temperature Microwave Absorption Performance of Zn-Doped Al2O3 Ceramic

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Luo, Fa; Wei, Ping; Zhou, Wancheng; Zhu, Dongmei

    2015-07-01

    To improve the dielectric and microwave absorption properties of Al2O3 ceramic, Zn-doped Al2O3 ceramic was prepared by conventional ceramic processing. X-ray diffraction analysis confirmed that Zn atoms successfully entered the Al2O3 ceramic lattice and occupied Al sites. The complex permittivity increased with increasing Zn concentration, which is mainly attributed to the increase in charged vacancy defects and densification of the Al2O3 ceramic. In addition, the temperature-dependent complex permittivity of 3% Zn-doped Al2O3 ceramic was determined in the temperature range from 298 K to 873 K. Both the real and imaginary parts of the complex permittivity increased monotonically with increasing temperature, which can be ascribed to the shortened relaxation time and increasing electrical conductivity. The increased complex permittivity leads to a great improvement in microwave absorption. In particular, when the temperature is up to 873 K, the 3% Zn-doped Al2O3 ceramic exhibited the best absorption performance with a maximum peak (-12.1 dB) and broad effective absorption bandwidth (reflection loss less than -10 dB from 9.3 GHz to 12.3 GHz). These results reveal that Zn-doped Al2O3 ceramic is a promising candidate for use as a kind of high-temperature microwave absorption material.

  15. [Photocatalytic removing of a mustard gas analogue 2-CEES vapor over SO4(2-)/TiO2].

    PubMed

    Han, Shi-tong; Xi, Hai-ling; Wang, Xu-xu; Fu, Xian-zhi

    2005-05-01

    Disinfection with photocatalysis, compared to with the conventional cleanout, is both high efficient and non contaminative, but the simple TiO2 photocatalyst is showing to be of low activity and low active stability so to be hardly practical application. In the paper, SO4(2-)/TiO2 were papered by surface modification of TiO2 with dilute H2SO4, and the photocatalytic degradation of 2-chloroethyl ethyl sulfide (2-CEES) on the samples was examined in a fixed-bed microreactor. The examination show that the acidic modification enhanced both the activity and the active stability of TiO2, and the sample ST200 prepared by calcination at 200 degrees C was better than ST400 by calcination at 400 degrees C. The effect of water vapor content and reaction temperature on the photocatalytic degradation of 2-CEES was also tested, showing that the sample ST200 had high activity and stability at 90 degrees C, and kept a constant activity when adding 30.5 mL/L water vapor into the reactive system in which 2-CEES initial concentration was low to < 61 microL x L(-1). In addition, it was found that supporting SO4(2-)/TiO2 on gamma-Al2O3, SiO2 and active carbon could improve on the activity and stability of SO4(2-)/TiO2, and on supports SiO2 is the best one.

  16. Surface micromorphology of dental composites [CE-TZP]-[Al2O3] with Ca(+2) modifier.

    PubMed

    Berezina, Sofia; Il'icheva, Alla Alexandrovna; Podzorova, Lyudmila Ivanovna; Ţălu, Ştefan

    2015-09-01

    The objective of this study was to characterize the three-dimensional (3D) surface micromorphology of the ceramics produced from nanoparticles of alumina and tetragonal zirconia (t-ZrO2) with addition of Ca(+2) for sintering improvement. The 3D surface roughness of samples was studied by atomic force microscopy (AFM), fractal analysis of the 3D AFM-images, and statistical analysis of surface roughness parameters. Cube counting method, based on the linear interpolation type, applied for AFM data was used for fractal analysis. The morphology of non-modified ceramic sample was characterized by the rather big (1-2 μm) grains of α-Al2O3 phase with a habit close to hexagonal drowned in solid solution of t-ZrO2 with smooth surface. The pattern surfaces of modified composite content a little amount of elongated prismatic grains with composition close to the phase of СаСеAl3О7 as well as hexahedral α-Al2O3-grains. Fractal dimension, D, as well as height values distribution have been determined for the surfaces of the samples with and without modifying. It can be concluded that the smoothest surface is of the modified samples with Ca(+2) modifier but the most regular one is of the non-modified samples. A connection was observed between the surface morphology and the physical properties as assessed in previous works. PMID:26190812

  17. Dissolution Behavior of Indium in CaO-SiO2-Al2O3 Slag

    NASA Astrophysics Data System (ADS)

    Ko, Kyu Yeol; Park, Joo Hyun

    2011-12-01

    The solubility of indium in a molten CaO-SiO2-Al2O3 system was measured at 1773 K (1500 °C) to establish the dissolution mechanism of indium under a highly reducing atmosphere. The solubility of indium increases with increasing oxygen potential, whereas it decreases with increased activity of basic oxide. Therefore, a dissolution mechanism of indium can be constructed according to the following equation: {{In}}({{s}}) + 1/4{{O}}2 ({{g}}) = ({{In}}^{ + } ) + 1/2({{O}}^{2 - } ) The relationship between indium capacity and sulfide capacity shows a good correlation that is consistent with theoretical expectations. The enthalpy change of the indium dissolution reaction is negative, which indicates that the dissolution is an exothermic reaction. The heat of dissolution into high-silica melts is greater than that into low-silica melts. The solubility of indium is strongly dependent on the silica content. The activity coefficient, and thus the excess free energy of In2O, decreases linearly with increasing silica content, indicating that the In2O is believed to behave as a weak basic oxide in the current CaO-SiO2-Al2O3 ternary system under reducing conditions.

  18. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  19. Growth and characterization of Al2O3 films on fluorine functionalized epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Jernigan, Glenn G.; Wheeler, Virginia D.; Hernández, Sandra C.; Eddy, Charles R.; Mowll, Tyler R.; Ong, Eng Wen; Ventrice, Carl A.; Geisler, Heike; Pletikosic, Ivo; Yang, Hongbo; Valla, Tonica

    2016-08-01

    Intelligent engineering of graphene-based electronic devices on SiC(0001) requires a better understanding of processes used to deposit gate-dielectric materials on graphene. Recently, Al2O3 dielectrics have been shown to form conformal, pinhole-free thin films by functionalizing the top surface of the graphene with fluorine prior to atomic layer deposition (ALD) of the Al2O3 using a trimethylaluminum (TMA) precursor. In this work, the functionalization and ALD-precursor adsorption processes have been studied with angle-resolved photoelectron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy. It has been found that the functionalization process has a negligible effect on the electronic structure of the graphene, and that it results in a twofold increase in the adsorption of the ALD-precursor. In situ TMA-dosing and XPS studies were also performed on three different Si(100) substrates that were terminated with H, OH, or dangling Si-bonds. This dosing experiment revealed that OH is required for TMA adsorption. Based on those data along with supportive in situ measurements that showed F-functionalization increases the amount of oxygen (in the form of adsorbed H2O) on the surface of the graphene, a model for TMA-adsorption on graphene is proposed that is based on a reaction of a TMA molecule with OH.

  20. Activation energy of negative fixed charges in thermal ALD Al2O3

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Richter, A.; Hofmann, M.

    2016-08-01

    A study of the thermally activated negative fixed charges Qtot and the interface trap densities Dit at the interface between Si and thermal atomic-layer-deposited amorphous Al2O3 layers is presented. The thermal activation of Qtot and Dit was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Qtot and Dit were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of EA = (2.2 ± 0.2) eV and EA = (2.3 ± 0.7) eV for Qtot and Dit, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Qtot and Dit were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Qtot based on an electron hopping process between the silicon and Al2O3 through defects is proposed.

  1. Cold-Sprayed Ni-Al2O3 Coatings for Applications in Power Generation Industry

    NASA Astrophysics Data System (ADS)

    Sevillano, F.; Poza, P.; Múnez, C. J.; Vezzù, S.; Rech, S.; Trentin, A.

    2013-06-01

    Cermets coatings are extensively used in energy applications both because of their high wear resistance as required, for example, in components like gas turbine sealants, and because of their specific functionality as required in solar absorbers. So far, high-temperature thermal spraying and physical vapor deposition have traditionally been used to deposit this kind of coatings. In this study, Ni-Al2O3 coatings have been deposited using a Kinetic®3000 cold-spray system starting from Ni and Al2O3 powders blend; five blends have been prepared setting the alumina content in the feedstock to 10, 25, 50, 75, and 90 wt.%. The embedded alumina ranges between a few percent weight up to 16 and 31 wt.%, while the microhardness shows a deep increase from 175 Vickers in the case of pure Ni coatings up to 338 Vickers. The spray and coating growth mechanism have been discussed, with special attention to the fragmentation of the ceramic particles during the impact. Finally, the coating behavior at high temperature was analyzed by oxidation tests performed in air at 520 °C emphasizing a good oxidation resistance that could represent a very promising basis for application in power generation systems.

  2. Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water.

    PubMed

    Peterson, Jonathan W; Burkhart, Rachel S; Shaw, Drew C; Schuiling, Amanda B; Haserodt, Megan J; Seymour, Michael D

    2010-09-01

    Transport of antibiotics in soil-water systems is controlled in part by adsorption to nanometer-size (10(-9)m) particles. Batch adsorption experiments were performed with ampicillin, a common amphoteric antibiotic, and 50 nm-Al(2)O(3) (alpha-alumina) at different pH conditions. Sorption to Al(2)O(3) can be described by linear isotherms for 2.9 microM-2.9 mM ampicillin concentrations. Distribution coefficients (K(d)) are 11.1 (+/-0.32)L kg(-1) at pH 2, 0.55 (+/-.04) L kg(-1) at pH 4, 21.9 (+/-0.9) L kg(-1) at pH 6, and 39.5 (+/-2.2) L kg(-1) at pH 8. At pH 2, approximately 47% of the initially adsorbed drug was removable by rinsing, at pH 4-56% was removed. Only 7% of the drug could be removed by rinsing at pH 6, and 3% at pH 8. Weak electrostatic forces dominate at pH<4, and stronger attachment mechanisms at higher pH. Low yields in rinsing (desorption) experiments at pH6 indicate strong attachment mechanisms, either electrostatic or possibly surface complexation. PMID:20638098

  3. Electrodeposition of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2016-09-01

    Electrodeposition is one of the most technologically feasible and economically superior technique for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. This layer offers protection against oxidation thus prevents the formation of a native oxide layer. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters on surface morphology and wear behavior was studied. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate followed by the bath temperature. The decrease in wear rate was observed with the increased current density and temperature.

  4. Containerless solidification of undercooled SrO-Al2O3 binary melts.

    PubMed

    Kato, Katsuyoshi; Masuno, Atsunobu; Inoue, Hiroyuki

    2015-03-01

    The solidification of the SrO-Al2O3 binary system was investigated under containerless conditions using an aerodynamic levitation furnace. Glass formation was observed in compositions with 35-45 mol% SrO and 55-75 mol% SrO. Cooling curves were obtained at a constant cooling rate in the range of 1-1000 °C s(-1). The crystallization temperature was apparently independent of the cooling rate and far below the melting point when the sample was fully crystallized, whereas it decreased when the sample was partially crystallized. The difference between the crystallization temperature and the melting point under containerless conditions is considered a good measure of the glass-forming ability when there is not much difference in the critical cooling rates between the melt compositions. Furthermore, the homogeneous nucleation theory suggests that the apparent time-independent crystallization temperature is attributed to the high glass-forming ability of the SrO-Al2O3 binary system. The re