Science.gov

Sample records for al2o3 thin films

  1. Atomically Thin Al2O3 Films for Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  2. Antimicrobial effect of Al2O3, Ag and Al2O3/Ag thin films on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.; Todorova, S.

    2016-10-01

    The influence of Al2O3, Ag and Al2O3/Ag thin films on bacterial growth of Gramnegative bacteria Pseudomonas putida and Escherichia coli is studied. The nanostructured thin films are deposited on glass substrates without intentional heating through r.f. magnetron sputtering in Ar atmosphere of Al2O3 and Ag targets or through sequential sputtering of Al2O3 and Ag targets, respectively. The individual Ag thin films (thickness 8 nm) have a weak bacteriostatic effect on Escherichia coli expressed as an extended adaptive phase of the bacteria up to 5 hours from the beginning of the experiment, but the final effect is only 10 times lower bacterial density than in the control. The individual Al2O3 film (20 nm) has no antibacterial effect against two strains E. coli - industrial and pathogenic. The Al2O3/Ag bilayer films (Al2O3 20 nm/Ag 8 nm) have strong bactericidal effect on Pseudomonas putida and demonstrate an effective time of disinfection for 2 hours. The individual films Al2O3 and Ag have not pronounced antibacterial effect on Pseudomonas putida. A synergistic effect of Al2O3/Ag bilayer films in formation of oxidative species on the surface in contact with the bacterial suspension could be a reason for their antimicrobial effect on E. coli and P. putida.

  3. Non-volatile Al2O3 Memory using Nanoscale Al-rich Al2O3 Thin Film as a Charge Storage Layer

    NASA Astrophysics Data System (ADS)

    Nakata, Shunji; Saito, Kunio; Shimada, Masaru

    2006-04-01

    This article describes the fabrication process and capacitance-voltage (C-V) characteristics of a new non-volatile Al2O3 memory with nanoscale thin film deposited by electron-cyclotron-resonance sputtering. Al-rich Al2O3 shows characteristics somewhere between Al and Al2O3 in the refractive index and wet etching rate. C-V characteristics of Al-rich Al2O3 memory show a large hysteresis window due to the Al-rich structure, while there is no hysteresis window in the case of stoichiometric Al2O3. This memory is expected to stay non-volatile for several years or more because the capacitance value after writing and erasing operation remained almost unchanged after 4 h at T=85 °C. Also, another new memory structure comprising SiO2/Al2O3 and the Al-rich Al2O3 structure is proposed, which features increased mobility due to the reduction of electron scattering at the Si/Al2O3 interface.

  4. The chemisorption of H2O, HCOOH and CH3COOH on thin amorphous films of Al2O3

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Weinberg, W. H.; Mosesman, M.

    1974-01-01

    Investigation of the irreversible chemisorption of water, formic acid and acetic acid on a thin amorphous aluminum oxide film, using inelastic tunneling spectroscopy. All of the tunnel junctions employed were Al-Al2O3-Pb junctions with the adsorbate on the Al2O3 surface between the Al2O3 and the Pb electrode. The results obtained include the finding that all Al2O3 surfaces prepared by oxidation of Al have free CH groups present on them.

  5. The chemisorption of H2O, HCOOH and CH3COOH on thin amorphous films of Al2O3

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Weinberg, W. H.; Mosesman, M.

    1974-01-01

    Investigation of the irreversible chemisorption of water, formic acid and acetic acid on a thin amorphous aluminum oxide film, using inelastic tunneling spectroscopy. All of the tunnel junctions employed were Al-Al2O3-Pb junctions with the adsorbate on the Al2O3 surface between the Al2O3 and the Pb electrode. The results obtained include the finding that all Al2O3 surfaces prepared by oxidation of Al have free CH groups present on them.

  6. Photocatalysis of Thin Films of TiO2 on Al2O3 Substrates

    NASA Astrophysics Data System (ADS)

    Turbay, David; Luttrell, Timothy; Batzill, Matthias

    2013-03-01

    Titanium dioxide (TiO2) has grown to be one of the most promising photocatalysts in recent years because of extensive applications in renewable and clean energy. The rise in demand for these new energies has driven an increase in research on metal oxides and their properties. Our interest in growing the rutile structure of TiO2 stems from its lower excitation energy (3.0 eV) when compared to anatase (3.2 eV), which indicates it has better activity in the visible portion of the spectrum. It has been shown that sapphire (Al2O3) substrates are conducive to epitaxial rutile growth. In this study, we measured the photocatalytic activity of thin films of TiO2 on r-Al2O3 (1 -1 0 2) substrates. We used PLD and MBE to grow the films, which were characterized using XPS and AFM. Photoactivity was measured via the decomposition of methyl orange on the film's surface using a UV/VIS spectrophotometer. The decomposition of this organic compound is driven by oxidation-reduction reactions on the surface of the TiO2 film. From this, we calculated the charge carrier diffusion length and compared it to that of anatase. Funding provided by NSF Grant DMR-1004873

  7. Structural and optical characteristics of Ce, Nd, Gd, and Dy-doped Al2O3 thin films

    NASA Astrophysics Data System (ADS)

    Varpe, Ashwini S.; Deshpande, Mrinalini D.

    2017-07-01

    We present the optical properties of rare earth (RE)-doped Al_2O_3 thin films and discuss their possible use in applications like gate dielectric material and in coating industry. Aluminum oxide films doped with RE elements such as Ce, Nd, Gd, and Dy are synthesized on glass substrate using ultrasonic spray pyrolysis technique at 400°C. The concentration of rare earth element is varied from 0.5 to 5 mol% in 0.1 M solution of Al2O3. The X-ray diffraction analysis indicates that the thin films deposited with and without rare earth doping have an amorphous structure. Further, the optical properties of RE-doped Al2O3 thin films are studied by using UV-visible spectroscopy and photoluminescence measurement. The band gap is found to be 4.06 eV for Al2O3 thin film. A small blue shift is seen in the optical spectra of RE-doped samples as compared to undoped Al2O3 film. Dielectric constant of alumina thin film increases with doping of Gd and Dy while it decreases with Ce and Nd doping. Concentration quenching effects are observed in the photoluminescence spectra of Ce, Nd, Gd, and Dy-doped Al_2O_3 films. Among all these RE-doped Al2O3 thin films, Gd and Dy-doped Al2O3 films exhibit a potential for the construction of dielectric gate in transistors or as a coating material in the semiconductor industry.

  8. Effect of Al2O3 Buffer Layers on the Properties of Sputtered VO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Wen, Tianlong; Xiong, Ying; Qiu, Donghong; Wen, Qiye

    2017-07-01

    VO2 thin films were grown on silicon substrates using Al2O3 thin films as the buffer layers. Compared with direct deposition on silicon, VO2 thin films deposited on Al2O3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al2O3/VO2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C- V measurement result indicates that the phase transformation of VO2 thin films can be induced by an electrical field.

  9. The FTIR studies of gels and thin films of Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems.

    PubMed

    Adamczyk, Anna; Długoń, Elżbieta

    2012-04-01

    In this work, samples in form of bulk ones and thin films were obtained using the sol-gel method. The bulk samples were heated at different temperatures (500 °C, 850 °C and 1100 °C) corresponding to the annealing process of coatings, deposited on different substrates by dipping and pulling out samples from the proper sol with the stable speed. Thin films of both Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems were deposited on carbon, steel and titanium substrates in two different ways: as single layers obtained from Al2O3 sol, TiO2 sol and Al2O3 sol or deposited as mixed coatings from Al2O3-TiO2 sol as well as Al2O3-TiO2-SiO2 one. All bulk samples were studied by the FTIR spectroscopy and the X-ray diffractometry while thin films were also investigated by the electron microscopy. In the IR spectra of Al2O3-TiO2 samples, as well as gels and coatings, bands due to the vibrations of AlO bonds of the octahedrally and tetrahedrally coordinated aluminum were observed. The IR spectra of samples of Al2O3-TiO2-SiO2 system differ from that of Al2O3-TiO2 ones in presence of bands assigned to the SiO bond vibrations and in positions of bands due to AlO bond vibrations. In all spectra of bulk samples and coatings, the positions of TiO bond vibrations were ascribed basing on the IR spectra of the pure anatase and rutile.

  10. Effect of Al2O3 encapsulation on multilayer MoSe2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ah; Yeoul Kim, Seong; Kim, Jiyoung; Choi, Woong

    2017-03-01

    We report the effect of Al2O3 encapsulation on the device performance of multilayer MoSe2 thin-film transistors based on statistical investigation of 29 devices with a SiO2 bottom-gate dielectric. On average, Al2O3 encapsulation by atomic layer deposition increased the field-effect mobility from 10.1 cm2 V‑1 s‑1 to 14.8 cm2 V‑1 s‑1, decreased the on/off-current ratio from 8.5  ×  105 to 2.3  ×  105 and negatively shifted the threshold voltage from  ‑1.1 V to  ‑8.1 V. Calculation based on the Y-function method indicated that the enhancement of intrinsic carrier mobility occurred independently of the reduction of contact resistance after Al2O3 encapsulation. Furthermore, contrary to previous reports in the literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method for improving the carrier mobility of multilayer MoSe2 transistors, providing important implications on the application of MoSe2 and other 2D materials into high-performance transistors.

  11. Twin symmetry texture of energetically condensed niobium thin films on sapphire substrate (a-plane Al2O3)

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Phillips, L.; Reece, C. E.; Seo, Kang; Krishnan, M.; Valderrama, E.

    2011-08-01

    An energetic condensation technique, cathodic arc discharge deposition, is used to grow epitaxial Niobium (Nb) thin films on a-plane sapphire (hexagonal-closed-packed Al2O3) at moderate substrate heating temperature (<400 °C). The epitaxial Nb(110)/Al2O3(1,1,-2,0) thin films reached a maximum residual resistance ratio (RRR) value 214, despite using a reactor-grade Nb cathode source whose RRR was only 30. The measurements suggest that the film's density of impurities and structural defects are lower when compared to Nb films produced by other techniques, such as magnetron sputtering, e-beam evaporation or molecular-beam-epitaxy. At lower substrate temperature, textured polycrystalline Nb thin films were created, and the films might have twin symmetry grains with {110} orientations in-plane. The texture was revealed by x-ray diffraction pole figures. The twin symmetry might be caused by a combination effect of the Nb/Al2O3 three-dimensional epitaxial relationship ("3D-Registry" Claassen's nomenclature) and the "Volmer-Weber" (Island) growth model. However, pole figures obtained by electron backscattering diffraction (EBSD) found no twin symmetry on the thin films' topmost surface (˜50 nm in depth). The EBSD pole figures showed only one Nb{110} crystal plane orientation. A possible mechanism is suggested to explain the differences between the bulk (XRD) and surface (EBSD) pole figures.

  12. Reduction of Ordering Temperature of FePt Al2O3 Thin Films by N2 Addition During Sputtering

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Wei; Katayama, N.; Yang, Zheng; Wei, Fu-Lin; Matsumoto, M.; Morisako, A.; Liu, Xiao-Xi; Takei, S.

    2005-11-01

    We investigate the effect of N2 addition during sputtering on the microstructure and magnetic properties of FePt-Al2O3 thin films. The texture of FePt phase in FePt-Al2O3 thin films changes from (111) to a more random orientation by N2 addition during sputtering. The ordering temperature of FePt phase reduces about 100°C with appropriate N2 partial pressure. A larger coercivity of 6.0×105 A/m is obtained with N2 partial pressure about 15%. Structural analysis reveals that a small quantity of Fe3N phase forms during sputtering and the release of N atoms during the post annealing induces a large number of vacancies in the films, which benefits to the transformation of FePt phase from fcc to fct.

  13. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  14. Stabilizing electrochemical carbon capture membrane with Al2O3 thin-film overcoating synthesized by chemical vapor deposition.

    PubMed

    Tong, Jingjing; Si, Fengzhan; Zhang, Lingling; Fang, Jie; Han, Minfang; Huang, Kevin

    2015-02-18

    Development of high-efficiency and cost-effective carbon capture technology is a central element of our effort to battle the global warming and climate change. Here we report that the unique high-flux and high-selectivity of electrochemical silver-carbonate dual-phase membranes can be retained for an extended period of operation by overcoating the surfaces of porous silver matrix with a uniform layer of Al2O3 thin-film derived from chemical vapor deposition.

  15. On the damage behaviour of Al2O3 insulating layers in thin film systems for the fabrication of sputtered strain gauges

    NASA Astrophysics Data System (ADS)

    Suttmann, Oliver; Klug, Ulrich; Kling, Rainer

    2011-03-01

    We report on ablation experiments of sputter deposited thin film systems of NiCr and Al2O3 for the fabrication of strain sensors. To ensure proper functionality of the electrical circuits, the metal film has to be selectively removed while damage in the Al2O3 films has to be avoided. Damage thresholds of the Al2O3 layer are investigated and damage mechanisms are discussed. Damage thresholds decrease with increasing number of scans until reaching a constant value. The processing window defined as the ratio of Al2O3 damage threshold and NiCr ablation threshold increases with increasing film thickness and number of scans.

  16. Enhanced TC in granular and thin film Al-Al2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Greene, R. L.

    It is known since the 1970s that the superconducting transition temperature of granular aluminum films can be as high as two to three times the transition temperature of bulk aluminum, depending on the grain size and how strongly the nanometer size grains are connected1,2. As the strength of the grain connectivity becomes increasingly weak, the enhanced TC is suppressed. The mechanism behind this enhancement is still under debate. Recently, work on larger aluminum nanoparticles (18nm) embedded in an insulating Al2O3 matrix showed an onset of the superconducting transition as high as three times that of bulk aluminum3. In this situation, the Al grains are electrically disconnected and in a regime far removed from that of the granular films. Here we compare the two situations through electronic and thermal measurements in order to help elucidate the mechanism behind the enhancements. 1S. Pracht, et al., arXiv:1508.04270v1 [cond-mat.supr-con] (2015). 2G. Deutscher, New Superconductors From Granular to High TC, New Jersey: World Scientific, 2006, p. 72-74. 3V. N. Smolyaninova, et al., Sci. Rep. 5, 15777 (2015). Funding by NSF DMR # 1410665.

  17. Regimes of leakage current in ALD-processed Al2O3 thin-film layers

    NASA Astrophysics Data System (ADS)

    Spahr, Holger; Reinker, Johannes; Bülow, Tim; Nanova, Diana; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2013-04-01

    A recently known phenomenon of thin oxide layers with thicknesses below approximately 40 nm is the increase in their breakdown electric field, called disruptive strength, towards lower thicknesses. This offers the possibility of examining the current-electric field characteristics at higher electric field strengths without an early electric breakdown. In this paper, we report on the identification of a current regime of trap-free square law and the buildup of an S-shaped current-electric field characteristic curve. This observation for atomic layer deposition (ALD)-processed Al2O3 layers has not been mentioned in the literature so far. Additionally, a modern model of space charge limited current is used to fit the S-shaped characteristic and extract the associated parameters, such as mobility, density of states, and the energy band gap between the conduction band and the trap state. In this context, the Poole-Frenkel effect is neglected in the model to fit our measurements towards the current increase after the trap filled limit.

  18. Laser damage properties of TiO2/Al2O3 thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wei, Yaowei; Liu, Hao; Sheng, Ouyang; Liu, Zhichao; Chen, Songlin; Yang, Liming

    2011-08-01

    Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO2/Al2O3 films at 110° C and 280° C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100mm Φ samples, and the transmission is more than 99.8% at 1064nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO2/Al2O3 films, the LIDTs were 6.73±0.47J/cm2 and 6.5±0.46J/cm2 at 110° C on fused silica and BK7 substrates, respectively. The LIDTs at 110° C are notably better than 280° C.

  19. Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Kim, Jungwoo; Oh, Soong Ju; Kim, Daekyoung; Kim, Yong-Hoon; Chae, Heeyeop; Kim, Hyoungsub

    2016-07-01

    While colloidal semiconductor nanocrystal (NC) is preferred for use in solution-based optoelectronic devices, the large number of surface defects associated with its high surface-to-volume ratio degrades the optimal performance of NC-based devices due to the extensive trapping of free carriers available for charge transport. Here, we studied a simple and effective strategy to control the degree of passivation and doping level of solution-deposited ZnO NC films by infilling with ultra-thin Al2O3 using an atomic layer deposition (ALD) technique. According to various spectroscopic, microstructural, and electrical analyses, the ALD-Al2O3 treatment dramatically reduced the number of surface trap states with high ambient stability while simultaneously supplied excess carriers probably via a remote doping mechanism. As a consequence, the field-effect transistors built using the ZnO NC films with ALD-Al2O3 treatment for an optimal number of cycles exhibited significantly enhanced charge transport.

  20. Preparation and characterization of Co epitaxial thin films on Al2O3(0001) single-crystal substrates

    NASA Astrophysics Data System (ADS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki

    2011-01-01

    Co epitaxial thin films were prepared on Al2O3(0001) single-crystal substrates in a substrate temperature range between 50 and 500 °C by ultra high vacuum molecular beam epitaxy. Effects of substrate temperature on the structure and the magnetic properties of the films were investigated. The films grown at temperatures lower than 150 °C consist of fcc- Co(111) crystal. With increasing the substrate temperature, hcp-Co(0001) crystal coexists with the fcc crystal and the volume ratio of hcp to fcc crystal increases. The films prepared at temperatures higher than 250 °C consist primarily of hcp crystal. The film growth seems to follow island-growth mode. The films consisting primarily of hcp crystal show perpendicular magnetic anisotropy. The domain structure and the magnetization properties are influenced by the magnetocrystalline anisotropy and the shape anisotropy caused by the film surface roughness.

  1. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  2. Structural and mechanical characterization of Al/Al2O3 nanotube thin film on TiV alloy

    NASA Astrophysics Data System (ADS)

    Sarraf, M.; Zalnezhad, E.; Bushroa, A. R.; Hamouda, A. M. S.; Baradaran, S.; Nasiri-Tabrizi, B.; Rafieerad, A. R.

    2014-12-01

    In this study, the fabrication and characterization of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate were carried out. To this end, aluminum thin films were deposited as a first coating layer by direct current (DC) magnetron sputtering with the coating conditions of 300 W, 150 °C and 75 V substrate bias voltage. Al2O3 nanotube array as a second layer was grown on the Al layer by electrochemical anodisation at the constant potential of 20 V within different time periods in an electrolyte solution. For annealing the coated substrates, plasma treatment (PT) technique was utilized under various conditions to get the best adhesion strength of coating to the substrate. To characterize the coating layers, micro scratch test, Vickers hardness and field emission of scanning electron microscopy (FESEM) were used. Results show that after the deposition of pure aluminum on the substrate the scratch length, load and failure point were 794.37 μm, 1100 mN and 411.43 μm, respectively. After PT, the best adhesion strength (2038 mN) was obtained at RF power of 60 W. With the increase of the RF power up to 80 W, a reduction in adhesion strength was observed (1525.22 mN). From the microstructural point of view, a homogenous porous structure with an average pore size of 40-60 nm was formed after the anodisation for 10-45 min. During PT, the porous structure was converted to dense alumina layer when the RF power rose from 40 to 80 W. This led to an increase in hardness value from 2.7 to 3.4 GPa. Based on the obtained data, the RF power of 60 W was the optimum condition for plasma treatment of Al/Al2O3 nanotubular arrays on Ti-6Al-4V substrate.

  3. W:Al2O3 nanocomposite thin films with tunable optical properties prepared by atomic layer deposition

    DOE PAGES

    Babar, Shaista; Mane, Anil U.; Yanguas-Gil, Angel; ...

    2016-06-17

    Here, a systematic alteration in the optical properties of W:Al2O3 nanocomposite films is demonstrated by precisely varying the W cycle percentage (W%) from 0 to 100% in Al2O3 during atomic layer deposition. The direct and indirect band energies of the nanocomposite materials decrease from 5.2 to 4.2 eV and from 3.3 to 1.8 eV, respectively, by increasing the W% from 10 to 40. X-ray absorption spectroscopy reveals that, for W% < 50, W is present in both metallic and suboxide states, whereas, for W% ≥ 50, only metallic W is seen. This transition from dielectric to metallic character at W%more » ~ 50 is accompanied by an increase in the electrical and thermal conductivity and the disappearance of a clear band gap in the absorption spectrum. The density of the films increases monotonically from 3.1 g/cm3 for pure Al2O3 to 17.1 g/cm3 for pure W, whereas the surface roughness is greatest for the W% = 50 films. The W:Al2O3 nanocomposite films are thermally stable and show little change in optical properties upon annealing in air at 500 °C. These W:Al2O3 nanocomposite films show promise as selective solar absorption coatings for concentrated solar power applications.« less

  4. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    PubMed

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  5. The adsorption of water on Cu2O and Al2O3 thin films

    SciTech Connect

    Deng, Xingyi; Herranz, Tirma; Weis, Christoph; Bluhm, Hendrik; Salmeron, Miquel

    2008-06-27

    The initial stages of water condensation, approximately 6 molecular layers, on two oxide surfaces, Cu{sub 2}O and Al{sub 2}O{sub 3}, have been investigated by using ambient pressure X-ray photoelectron spectroscopy at relative humidity values (RH) from 0 to >90%. Water adsorbs first dissociatively on oxygen vacancies producing adsorbed hydroxyl groups in a stoichiometric reaction: O{sub lattic} + vacancies + H{sub 2}O = 2OH. The reaction is completed at {approx}1% RH and is followed by adsorption of molecular water. The thickness of the water film grows with increasing RH. The first monolayer is completed at {approx}15% RH on both oxides and is followed by a second layer at 35-40% RH. At 90% RH, about 6 layers of H{sub 2}O film have been formed on Al{sub 2}O{sub 3}.

  6. Effects of annealing conditions on the dielectric properties of solution-processed Al2O3 layers for indium-zinc-tin-oxide thin-film transistors.

    PubMed

    Kim, Yong-Hoon; Kim, Kwang-Ho; Park, Sung Kyu

    2013-11-01

    In this paper, the effects of annealing conditions on the dielectric properties of solution-processed aluminum oxide (Al2O3) layers for indium-zinc-tin-oxide (IZTO) thin-film transistors (TFTs) have been investigated. The dielectric properties of Al2O3 layers such as leakage current density and dielectric strength were largely affected by their annealing conditions. In particular, oxygen partial pressure in rapid thermal annealing, and the temperature profile of hot plate annealing had profound effects on the dielectric properties. From a refractive index analysis, the enhanced dielectric properties of Al2O3 gate dielectrics can be attributed to higher film density depending on the annealing conditions. With the low-temperature-annealed Al2O3 gate dielectric at 350 degrees C, solution-processed IZTO TFTs with a field-effect mobility of approximately 2.2 cm2/Vs were successfully fabricated.

  7. Al2O3 thin films by plasma-enhanced chemical vapour deposition using trimethyl-amine alane (TMAA) as the Al precursor

    NASA Astrophysics Data System (ADS)

    Chryssou, C. E.; Pitt, C. W.

    We report the low temperature (200-300 °C) deposition of uniform, amorphous Al2O3 thin films by plasma-enhanced chemical vapour deposition (PECVD) using trimethyl-amine alane (TMAA) as the Al precursor. The thin films were deposited on both Si and quartz silica (SiO2) substrates. Deposition rates were typically 60 Åmin-1 keeping the TMAA temperature constant at 45 °C. The deposited Al2O3 thin films were stoichiometric alumina with low carbon contamination (0.7-1.3 At%). The refractive index ranged from 1.54 to 1.62 depending on the deposition conditions. The deposition rate was studied as a function of both the RF power and the substrate temperature. The structure and the surface of the deposited Al2O3 thin films were studied using X-ray diffraction, atomic force microscopy (AFM) and scanning electron microscopy (SEM).

  8. Growth and magnetic anisotropy of thin W(110)/Co films on Al2O3(112¯0)

    NASA Astrophysics Data System (ADS)

    Sellmann, R.; Fritzsche, H.; Maletta, H.; Leiner, V.; Siebrecht, R.

    2001-06-01

    The growth and magnetism of thin W(110)/Co films deposited by molecular beam epitaxy on single-crystal sapphire Al2O3(112¯0) substrates is investigated. Low-energy electron diffraction analysis shows that the Co films grow on the epitaxial W(110) substrate layer with a constant lattice strain up to a Co thickness dCo=20 Å. Pseudomorphic growth is found for the W[11¯0] direction. The thickness-dependent magnetic anisotropy is studied in situ at T=300 K by means of magneto-optical Kerr-effect measurements on a Co wedge-shaped sample prior and after coverage with a Au overlayer. After the coverage the Co wedge reveals a perpendicular magnetic anisotropy for small Co film thickness followed by a spin-reorientation transition from out-of-plane to in-plane alignment of the magnetization vector in the thickness regime 7 Å<=dCo<=9 Å. Spin-dependent neutron reflectivity data provide evidence for a pronounced magnetic anisotropy within the film plane even for relatively thick Co films. The observed decrease of the splitting between spin-up and spin-down reflectivities for decreasing temperature indicates that the spin-reorientation transition of the system W(110)/Co/Au can also be induced thermally.

  9. Superconducting MgB2 thin films grown by pulsed laser deposition on Al2O3(0001) and MgO(100) substrates

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Dai, S. Y.; Zhou, Y. L.; Chen, Z. H.; Cui, D. F.; Xu, J. D.; He, M.; Lu, H. B.; Yang, G. Z.; Fu, G. S.; Han, L.

    2001-11-01

    Superconducting MgB2 thin films were fabricated on Al2O3(0001) and MgO(100) substrates by a two-step method. Boron thin films were deposited by pulsed laser deposition followed by an ex-situ annealing process. Resistance measurements of the deposited MgB2 films show a Tc of 38.6 K for MgB2/Al2O3 and 38.1 K for MgB2/MgO. Atomic force microscopy, scanning electron microscopy and x-ray diffraction were used to study the properties of the films. The results indicate that the MgB2/Al2O3 films consist of well-crystallized grains with a highly c-axis-oriented structure while the MgB2/MgO films have a dense uniform appearance with an unfixed orientation.

  10. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    PubMed Central

    Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo

    2015-01-01

    We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.

  11. Microwave plasma-assisted ALD of Al2O3 thin films: a study on the substrate temperature dependence of various parameters of interest

    NASA Astrophysics Data System (ADS)

    Thomas, Subin; Nalini, Savitha; Kumar, K. Rajeev

    2017-03-01

    This study utilizes microwave plasma-assisted atomic layer deposition (MPALD) in remote mode to deposit Al2O3 thin films with increased growth per cycle (GPC). Optical emission spectroscopy (OES) was used to identify the plasma configuration in the ALD chamber. MPALD-Al2O3 thin films were deposited at temperatures ranging from room temperature to 200 °C and the electrical parameters were investigated with Al/Al2O3/p-Si metal oxide semiconductor (MOS) structures. A GPC of 0.24 nm was observed for the films deposited at room temperature. The fixed oxide charge densities ( N fix) in all films were of the order of 1012 cm-2. The interface state density ( D it) exhibited a distinct minimum for the films deposited at 100 °C. The dependence of built-in voltage, N fix, and D it on Al2O3 deposition temperature was investigated. This can be used as a measure of the electrical applicability of these thin films.

  12. Hydrophobicity enhancement of Al2O3 thin films deposited on polymeric substrates by atomic layer deposition with perfluoropropane plasma treatment

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Choi, Kyung-Hyun; Kim, Chang Young; Doh, Yang Hoi; Jo, Jeongdai

    2014-06-01

    The optoelectronics devices such as organic light emitting diodes are greatly vulnerable to moisture, which reduces their functionality and life cycle. The Al2O3 thin films are mostly used as barrier coatings in such electronic devices to protect them from water vapors. The performance of the Al2O3 barrier films can be improved by enhancing their hydrophobicity. Greater the hydrophobicity of the barrier films, greater will be their protection against water vapors. This paper reports on the enhancement of hydrophobicity of Al2O3 thin films through perfluoropropane (C3F8) plasma treatment. Firstly, good quality Al2O3 films have been fabricated through atomic layer deposition (ALD) on polyethylene naphthalate (PEN) substrates at different temperatures. The fabricated films are then plasma treated with C3F8 to enhance their hydrophobicity. Hydrophobic Al2O3 thin films have shown good morphological and optical properties. Low average arithmetic roughness (Ra) of 1.90 nm, 0.93 nm and 0.88 nm have been recorded for the C3F8 plasma treated films deposited at room temperature (RT), 50 °C and 150 °C, respectively. Optical transmittance of more than 90% has been achieved for the C3F8 plasma treated films grown at 50 °C and 150 °C. The contact angle has been increased from 48° ± 3 to 158° ± 3 for the films deposited at RT and increased from 41° ± 3 to 148° ± 3 for the films deposited at 150 °C.

  13. Flexible low-voltage pentacene memory thin-film transistors with combustion-processable Al2O3 gate dielectric and Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Ha, Hyeon Jun; Jeong, Shin Woo; Oh, Tae-Yeon; Kim, Minseok; Choi, Kookhyun; Park, Jung Ho; Ju, Byeong-Kwon

    2013-06-01

    A Au nanoparticles (NPs) embedded pentacene thin-film transistor (TFT) with solution-based Al2O3 was fabricated on a polyethersulfone substrate. The TFT for low-voltage operation within -3 V was realized with the Al2O3 dielectric film. By a combustion process for Al2O3, efficient driving of conversion reaction at low annealing temperature of 200 °C can be achieved and the device can be made on a plastic substrate. And, the Au NPs were deposited by the contact printing method using the polydimethylsiloxane stamp. From the electrical characteristics of the devices, a saturation mobility value of 4.25 cm2 V-1 s-1, threshold voltage (Vth) of ˜0.5 V, subthreshold swing of 70 mV dec-1 and memory window of 0.21 V at -3 V programming gate bias voltage were obtained.

  14. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    NASA Astrophysics Data System (ADS)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  15. Interface Electrical Properties of Al2O3 Thin Films on Graphene Obtained by Atomic Layer Deposition with an in Situ Seedlike Layer.

    PubMed

    Fisichella, Gabriele; Schilirò, Emanuela; Di Franco, Salvatore; Fiorenza, Patrick; Lo Nigro, Raffaella; Roccaforte, Fabrizio; Ravesi, Sebastiano; Giannazzo, Filippo

    2017-03-01

    High-quality thin insulating films on graphene (Gr) are essential for field-effect transistors (FETs) and other electronics applications of this material. Atomic layer deposition (ALD) is the method of choice to deposit high-κ dielectrics with excellent thickness uniformity and conformal coverage. However, to start the growth on the sp(2) Gr surface, a chemical prefunctionalization or the physical deposition of a seed layer are required, which can effect, to some extent, the electrical properties of Gr. In this paper, we report a detailed morphological, structural, and electrical investigation of Al2O3 thin films grown by a two-steps ALD process on a large area Gr membrane residing on an Al2O3-Si substrate. This process consists of the H2O-activated deposition of a Al2O3 seed layer a few nanometers in thickness, performed in situ at 100 °C, followed by ALD thermal growth of Al2O3 at 250 °C. The optimization of the low-temperature seed layer allowed us to obtain a uniform, conformal, and pinhole-free Al2O3 film on Gr by the second ALD step. Nanoscale-resolution mapping of the current through the dielectric by conductive atomic force microscopy (CAFM) demonstrated an excellent laterally uniformity of the film. Raman spectroscopy measurements indicated that the ALD process does not introduce defects in Gr, whereas it produces a partial compensation of Gr unintentional p-type doping, as confirmed by the increase of Gr sheet resistance (from ∼300 Ω/sq in pristine Gr to ∼1100 Ω/sq after Al2O3 deposition). Analysis of the transfer characteristics of Gr field-effect transistors (GFETs) allowed us to evaluate the relative dielectric permittivity (ε = 7.45) and the breakdown electric field (EBD = 7.4 MV/cm) of the Al2O3 film as well as the transconductance and the holes field-effect mobility (∼1200 cm(2) V(-1) s(-1)). A special focus has been given to the electrical characterization of the Al2O3-Gr interface by the analysis of high frequency capacitance

  16. Effects of channel structure consisting of ZnO/Al2O3 multilayers on thin-film transistors fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cui, Guodong; Han, Dedong; Dong, Junchen; Cong, Yingying; Zhang, Xiaomi; Li, Huijin; Yu, Wen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-04-01

    By applying a novel active layer comprising ZnO/Al2O3 multilayers, we have successfully fabricated fully transparent high-performance thin-film transistors (TFTs) with a bottom gate structure by atomic layer deposition (ALD) at low temperature. The effects of various ZnO/Al2O3 multilayers were studied to improve the morphological and electrical properties of the devices. We found that the ZnO/Al2O3 multilayers have a significant impact on the performance of the TFTs, and that the TFTs with the ZnO/15-cycle Al2O3/ZnO structure exhibit superior performance with a low threshold voltage (V TH) of 0.9 V, a high saturation mobility (μsat) of 145 cm2 V-1 s-1, a steep subthreshold swing (SS) of 162 mV/decade, and a high I on/I off ratio of 3.15 × 108. The enhanced electrical properties were explained by the improved crystalline nature of the channel layer and the passivation effect of the Al2O3 layer.

  17. Temperature-induced changes in optical properties of thin film TiO2-Al2O3 bi-layer structures grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ali, Rizwan; Saleem, Muhammad Rizwan; Honkanen, Seppo

    2016-02-01

    We investigate the optical properties and corresponding temperature-induced changes in highly uniform thin amorphous films and their bi-layer stacks grown by Atomic Layer Deposition (ALD). The environmentally driven conditions such as temperature, humidity and pressure have a significant influence on optical properties of homogeneous and heterogeneous bi-layer stacked structures of TiO2-Al2O3 and subsequently affect the specific sensitive nature of optical signals from nano-optical devices. Owing to the super hydrophilic behavior and inhibited surface defects in the form of hydrogenated species, the thermo-optic coefficient (TOC) of ~ 100 nm thick ALD-TiO2 films vary significantly with temperature, which can be used for sensing applications. On the other hand, the TOC of ~ 100 nm thick ALD-Al2O3 amorphous films show a differing behavior with temperature. In this work, we report on reduction of surface defects in ALD-TiO2 films by depositing a number of ultra-thin ALD-Al2O3 films to act as impermeable barrier layers. The designed and fabricated heterostructures of ALD-TiO2/Al2O3 films with varying ALD-Al2O3 thicknesses are exploited to stabilize the central resonance peak of Resonant Waveguide Gratings (RWGs) in thermal environments. The temperature-dependent optical constants of ALD-TiO2/Al2O3 bi-layer films are measured by a variable angle spectroscopic ellipsometer (VASE), covering a wide spectral range 380 <= λ <= 1800 nm at a temperature range from 25 to 105 °C. The Cauchy model is used to design and retrieve refractive indices at these temperatures, measured with three angles of incidence (59°, 67°, and 75°). The optical constants of 100 nm thick ALD-TiO2 and various combinational thicknesses of ALD-Al2O3 films are used to predict TOCs using a polynomial fitting algorithm.

  18. FePt : Al2O3 nanocomposite thin films synthesized by magnetic trapping assisted pulsed laser deposition with reduced intergranular exchange coupling

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Pan, Z. Y.; Karamat, S.; Mahmood, S.; Lee, P.; Tan, T. L.; Springham, S. V.; Rawat, R. S.

    2008-05-01

    FePt : Al2O3 nanocomposite thin films synthesized by magnetic trapping (MT) assisted pulsed laser deposition (PLD) were found to have lower transition temperature for L10 face-centred-tetragonal (fct) phase due to higher concentration of defects. The low phase transition temperature together with non-magnetic matrix materials helps to reduce grain growth and agglomeration during annealing. Small remanence ratio and coercive squareness for nanocomposite thin films annealed at 300 °C to fct phase confirm that the main intergranular interaction is magnetostatic interaction rather than exchange coupling. The MT assisted PLD can synthesize fct-FePt : Al2O3 nanocomposite thin films with reduced intergranular exchange coupling.

  19. Fabrication and characterization of Al2O3 /Si composite nanodome structures for high efficiency crystalline Si thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiying; Zhu, Jian; Zhang, Zhen; Wang, Yanyan; Qiu, Bocang; Liu, Xuehua; Zhang, Jinping; Zhang, Yi; Fang, Qi; Ren, Zhong; Bai, Yu

    2015-12-01

    We report on our fabrication and characterization of Al2O3/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al2O3 layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al2O3thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0° to 45° is achieved when the Al2O3 film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device's leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al2O3 film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10-9 A/cm2 over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiOx layer formed between the interface of Si and the Al2O3 film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al2O3 coated CND structures is a truly viable approach to achieving higher device efficiency.

  20. Measurement of Young’s modulus and residual stress of atomic layer deposited Al2O3 and Pt thin films

    NASA Astrophysics Data System (ADS)

    Purkl, Fabian; Daus, Alwin; English, Timothy S.; Provine, J.; Feyh, Ando; Urban, Gerald; Kenny, Thomas W.

    2017-08-01

    The accurate measurement of mechanical properties of thin films is required for the design of reliable nano/micro-electromechanical devices but is increasingly challenging for thicknesses approaching a few nanometers. We apply a combination of resonant and static mechanical test structures to measure elastic constants and residual stresses of 8-27 nm thick Al2O3 and Pt layers which have been fabricated through atomic layer deposition. Young’s modulus of poly-crystalline Pt films was found to be reduced by less than 15% compared to the bulk value, whereas for amorphous Al2O3 it was reduced to about half of its bulk value. We observed no discernible dependence of the elastic constant on thickness or deposition method for Pt, but the use of plasma-enhanced atomic layer deposition was found to increase Young’s modulus of Al2O3 by 10% compared to a thermal atomic layer deposition. As deposited, the Al2O3 layers had an average tensile residual stress of 131 MPa. The stress was found to be higher for thinner layers and layers deposited without the help of a remote plasma. No residual stress values could be extracted for Pt due to insufficient adhesion of the film without an underlying layer to promote nucleation.

  1. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes.

    PubMed

    Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Zhou, Zhongwei; Peng, Junbiao

    2016-12-09

    A laminated structure of Al2O3 and MgO deposited by atomic layer deposition (ALD) is used to realize a thin film encapsulation technology in organic light-emitting diodes (OLEDs). This film was targeted to achieve an excellent barrier performance. As the thickness of MgO layer increased from 0 nm to 20 nm, its physical properties transformed from the amorphous state into a crystalline state. The optimized cyclic ratio of ALD Al2O3 and MgO exhibited much lower water vapor transmission rate (WVTR) of 4.6 × 10(-6) gm(-2)/day evaluated by Calcium (Ca) corrosion at 60 °C&100% RH, owing to the formation of a terrific laminated structure. Top-emitting OLEDs encapsulated with laminated Al2O3/MgO show longer operating lifetime under rigorous environmental conditions. These improvements were attributed to the embedded MgO film that served as a modified layer to establish a laminated structure to obstruct gas permeation, as well as a scavenger to absorb water molecules, thus alleviating the hydrolysis of bulk Al2O3 material.

  2. Realization of Al2O3/MgO laminated structure at low temperature for thin film encapsulation in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Zhou, Zhongwei; Peng, Junbiao

    2016-12-01

    A laminated structure of Al2O3 and MgO deposited by atomic layer deposition (ALD) is used to realize a thin film encapsulation technology in organic light-emitting diodes (OLEDs). This film was targeted to achieve an excellent barrier performance. As the thickness of MgO layer increased from 0 nm to 20 nm, its physical properties transformed from the amorphous state into a crystalline state. The optimized cyclic ratio of ALD Al2O3 and MgO exhibited much lower water vapor transmission rate (WVTR) of 4.6 × 10-6 gm-2/day evaluated by Calcium (Ca) corrosion at 60 °C&100% RH, owing to the formation of a terrific laminated structure. Top-emitting OLEDs encapsulated with laminated Al2O3/MgO show longer operating lifetime under rigorous environmental conditions. These improvements were attributed to the embedded MgO film that served as a modified layer to establish a laminated structure to obstruct gas permeation, as well as a scavenger to absorb water molecules, thus alleviating the hydrolysis of bulk Al2O3 material.

  3. Josephson effect in Nb/Al2O3/Al/MgB2 large-area thin-film heterostructures

    NASA Astrophysics Data System (ADS)

    Carapella, G.; Martucciello, N.; Costabile, G.; Ferdeghini, C.; Ferrando, V.; Grassano, G.

    2002-04-01

    We report the demonstration of dc and ac Josephson effects in Nb/Al2O3/Al/MgB2 thin-film heterostructure. The heterostructure exhibits moderately hysteretic current-voltage characteristic with a dc Josephson current branch and regular microwave-induced Shapiro steps. From conductance spectrum, a gap of about 2 meV at 7.7 K is estimated for the proximized surface of MgB2 electrode.

  4. Atomic layer deposition (ALD) of TiO2 and Al2O3 thin films on silicon

    NASA Astrophysics Data System (ADS)

    Mitchell, David R. G.; Triani, Gerry; Attard, Darren J.; Finnie, Kim S.; Evans, Peter J.; Barbe, Christophe J.; Bartlett, John R.

    2004-04-01

    The essential features of the ALD process involve sequentially saturating a surface with a (sub)monolayer of reactive species, such as a metal halide, then reacting it with a second species to form the required phase in-situ. Repetition of the reaction sequence allows the desired thickness to be deposited. The self-limiting nature of the reactions ensures excellent conformality, and sequential processing results in exquisite control over film thickness, albeit at rather slow deposition rates, typically <200nm/hr. We have been developing our capability with ALD deposition, to understand the influence of deposition parameters on the nature of TiO2 and Al2O3 films (high and low refractive index respectively), and multilayer stacks thereof. These stacks have potential applications as anti-reflection coatings and optical filters. This paper will explore the evolution of structure in our films as a function of deposition parameters including temperature and substrate surface chemistry. A broad range of techniques have been applied to the study of these films, including cross sectional transmission electron microscopy, spectroscopic ellipsometry, secondary ion mass spectrometry etc. These have enabled a wealth of microstructural and compositional information on the films to be acquired, such as accurate film thickness, composition, crystallization sequence and orientation with respect to the substrate. The ALD method is shown to produce single layer films and multilayer stacks with exceptional uniformity and flatness, and in the case of stacks, chemically abrupt interfaces. We are currently extending this technology to the coating of polymeric substrates.

  5. Control of phonon transport by the formation of the Al2O3 interlayer in Al2O3-ZnO superlattice thin films and their in-plane thermoelectric energy generator performance.

    PubMed

    Park, No-Won; Ahn, Jay-Young; Park, Tae-Hyun; Lee, Jung-Hun; Lee, Won-Yong; Cho, Kwanghee; Yoon, Young-Gui; Choi, Chel-Jong; Park, Jin-Seong; Lee, Sang-Kwon

    2017-04-03

    Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth-tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K. However, new and promising TE materials with enhanced TE performance, including doped zinc oxide (ZnO) multilayer or superlattice thin films, are also required for designing solid-state TE power generating devices with the maximum output power density and for investigating the physics of in-plane TE generators. Herein, we report the growth of Al2O3/ZnO (AO/ZnO) superlattice thin films, which were prepared by atomic layer deposition (ALD), and the evaluation of their electrical and TE properties. All the in-plane TE properties, including the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), of the AO/ZnO superlattice (with a 0.82 nm-thick AO layer) and AO/ZnO films (with a 0.13 nm-thick AO layer) were evaluated in the temperature range 40-300 K, and the measured S, σ, and κ were -62.4 and -17.5 μV K(-1), 113 and 847 (Ω cm)(-1), and 0.96 and 1.04 W m(-1) K(-1), respectively, at 300 K. Consequently, the in-plane TE ZT factor of AO/ZnO superlattice films was found to be ∼0.014, which is approximately two times more than that of AO/ZnO films (ZT of ∼0.007) at 300 K. Furthermore, the electrical power generation efficiency of the TE energy generator consisting of four couples of n-AO/ZnO superlattice films and p-Bi0.5Sb1.5Te3 (p-BST) thin-film legs on the substrate was demonstrated. Surprisingly, the output power of

  6. Influences of annealing on structural and compositional properties of Al2O3 thin films grown on 4H-SiC by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tian, Li-Xin; Zhang, Feng; Shen, Zhan-Wei; Yan, Guo-Guo; Liu, Xing-Fang; Zhao, Wan-Shun; Wang, Lei; Sun, Guo-Sheng; Zeng, Yi-Ping

    2016-12-01

    Annealing effects on structural and compositional performances of Al2O3 thin films on 4H-SiC substrates are studied comprehensively. The Al2O3 films are grown by atomic layer deposition through using trimethylaluminum and H2O as precursors at 300 °C, and annealed at various temperatures in ambient N2 for 1 min. The Al2O3 film transits from amorphous phase to crystalline phase as annealing temperature increases from 750 °C to 768 °C. The refractive index increases with annealing temperature rising, which indicates that densification occurs during annealing. The densification and grain formation of the film upon annealing are due to crystallization which is relative with second-nearest-neighbor coordination variation according to the x-ray photoelectron spectroscopy (XPS). Although the binding energies of Al 2p and O 1s increase together during crystallization, separations between Al 2p and O 1s are identical between as-deposited and annealed sample, which suggests that the nearest-neighbour coordination is similar. Project supported by the National Basic Research Program of China (Grant No. 2015CB759600), the National Natural Science Foundation of China (Grant Nos. 61474113, 61574140, and 61274007), and the Beijing Nova Program, China (Grant No. xx2016071), and the CAEP Microsystem and THz Science and Technology Foundation (Grant No. CAEPMT201502).

  7. In-situ hybrid study of thermal behaviour of Znsbnd Ni and Znsbnd Nisbnd Al2O3 nanocrystallite thin films induced TEA/MEA by electrocodeposition

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.; Dodo, M. R.

    Our present investigation focuses on the thermal stability of already developed electroforms of Znsbnd Ni and Znsbnd Nisbnd Al2O3 thin films induced with triethylamine (TEA) and monoethylamine (MEA) as surfactant by electrocodeposition on mild steel substrate with the aim to re-examine its micro-hardness and degradation behaviour in static sodium chloride solution. In the event, the samples were thermally treated at 200 °C and air cooled. The results obtained showed that the developed composites are thermally stable with hardness value of the Znsbnd Nisbnd Al2O3 coated; 185 Hv increased to 190.5 Hv indicating a 2.89% improvement. Noticeably, in the Znsbnd Ni coatings, a decrease in the hardness with 26.67% was observed. The oxidation resistance was however favored for both composites.

  8. Temperature behaviour of the average size of nanoparticle lattices co-deposited with an amorphous matrix. Analysis of Ge + Al2O3 and Ni + Al2O3 thin films.

    PubMed

    Mezzasalma, Stefano A; Car, Tihomir; Nekić, Nikolina; Jerčinović, Marko; Buljan, Maja

    2017-07-12

    We theoretically interpret the thermal behaviour of the average radius versus substrate temperature of regular quantum dot/nanocluster arrays formed by sputtering semiconductor/metal atoms with oxide molecules. The analysis relies on a continuum theory for amorphous films with given surface quantities, perturbed by a nanoparticle lattice. An account of the basic thermodynamic contributions is given in terms of force-flux phenomenological coefficients of each phase (Ge, Ni, Al2O3). Average radii turn out to be expressible by a characteristic length scale and a dimensionless parameter, which mainly depend upon temperature through diffusion lengths, film pressures and finite-size corrections to interfacial tensions. The numerical agreement is good in both Ge ([Formula: see text]) and Ni ([Formula: see text]) lattices grown at temperatures [Formula: see text]800 K, despite the lower temperature behaviour of quantum dots seeming to suggest further driving forces taking part in such processes.

  9. Thermoluminescent response of C-modified Al2O3 thin films deposited by parallel laser ablation plasmas

    NASA Astrophysics Data System (ADS)

    Garcés, J.; Escobar-Alarcón, L.; Gonzalez-Martinez, P. R.; Solís-Casados, D. A.; Romero, S.; Gonzalez-ZAvala, F.; Haro-Poniatowski, E.

    2017-01-01

    Aluminium oxide thin films modified with different amounts of carbon were prepared using a parallel laser ablation plasmas configuration. The effect of the amount of carbon incorporated in the films on their compositional, morphological, structural, and thermoluminescent properties was studied. The results showed that films with different C content, from 11 to 33 at. %, were obtained. The structural characterization revealed the growth of an amorphous material. Surface morphology of the obtained thin films showed smooth surfaces. The films were exposed to UV and gamma radiation (Co-60) in order to study their thermoluminescence response. The results tend to indicate that carbon incorporation into the alumina favours the increase of a high temperature TL peak.

  10. Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    Dingemans, G.; Beyer, W.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2010-10-01

    The role of hydrogen in Si surface passivation is experimentally identified for Al2O3 (capping) films synthesized by atomic layer deposition. By using stacks of SiO2 and deuterated Al2O3, we demonstrate that hydrogen is transported from Al2O3 to the underlying SiO2 already at relatively low annealing temperatures of 400 °C. This leads to a high level of chemical passivation of the interface. Moreover, the thermal stability of the passivation up to 800 °C was significantly improved by applying a thin Al2O3 capping film on the SiO2. The hydrogen released from the Al2O3 film favorably influences the passivation of Si interface defects.

  11. Surface plasmon coupled emission studies on engineered thin film hybrids of nano α-Al2O3 on silver

    NASA Astrophysics Data System (ADS)

    Mulpur, Pradyumna; Lingam, Kiran; Chunduri, Avinash; Rattan, Tanu Mimani; Rao, Apparao M.; Kamisetti, Venkataramaniah

    2014-01-01

    We report the first time engineering and fabrication of a novel thin film hybrid of nano α-alumina doped in a polyvinyl alcohol (PVA) matrix along with rhodamine b (Rh.B) on a silver thin film. Silver films of 50 nm thickness on glass slides were fabricated by thermal evaporation. Nano α-alumina was synthesized through the combustion route and characterized by XRD. The α-alumina was dispersed in the PVA-Rh.B matrix by tip sonication. The resultant solution was spin coated on the Ag thin film at 3000 rpm to generate an overcoat of ˜30 nm. We have designed and constructed an opto-mechanical setup for performing the SPCE studies. Excitation with a 532 nm continuous laser, led to the coupling of the energy of Rh.B emission to the surface plasmon modes of silver. The emission @ 580 nm was recorded using an Ocean Optics{copyright, serif} fiber optic spectrometer. Calculation of the ratio of signal intensity between the directional SPCE and isotropic fluorescence gives us the factor of signal enhancements which SPCE offers. We report an '8 fold' signal enhancement attributed to SPCE arising from the metal oxide doped thin film hybrid. We observed only a '5 fold' signal enhancement in the case of a thin film hybrid without α-alumina. The emission was also 92% P-polarized which is in coherence with the theory of SPCE. The greater degree of signal enhancement observed in the α-alumina doped thin film substrate can be attributed to the surface roughness which alumina offers to silver, which along with the porous nature of alumina enables a greater degree of adsorption of Rh.B which results in a higher emission intensity. Computational modeling was also performed, based on surface plasmon resonance (SPR) calculations to provide theoretical background to observed experimental data. The α-alumina thin film hybrid can be extended as an economical sensing platform towards the high sensitive detection of analytes.

  12. Fabrication and characterization of highly luminescent Er3+:Al2O3 thin films with optimized growth parameters

    NASA Astrophysics Data System (ADS)

    Nayar, Priyanka; Zhu, Xue-Yi; Yang, Fuyi; Lu, Minghui; Lakshminarayana, G.; Liu, Xiao Ping; Chen, Yan-Feng; Kityk, I. V.

    2016-10-01

    Erbium doped amorphous alumina thin films were fabricated using Co-sputtering technique in various depositions runs with varying parameters for optimizing the deposition parameters to obtain the films with best optical performance. The main subject of investigation includes the effects of change in various deposition parameters such as substrate heating, radio frequency (RF) power and oxygen pressure inside the chamber while deposition. High quality as-deposited films with various Er concentrations and low carbon content have been confirmed by XPS. Substrate heating ∼500 °C was found to be very effective in getting highly dense films with high refractive index of 1.70 at 1530-1570 nm emission band. The Er3+-doped films showed very intense near-infrared luminescence peak at 1550 nm even without any post-deposition annealing treatment.

  13. Tailoring the magnetic properties and thermal stability of FeSiAl-Al2O3 thin films fabricated by hybrid oblique gradient-composition sputtering

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Phuoc, Nguyen N.; Soh, Wee Tee; Ong, C. K.; Peng, Long; Li, Lezhong

    2017-05-01

    In this study, we systematically investigate the dynamic magnetic properties of FeSiAl-Al2O3 thin films fabricated by hybrid oblique gradient-composition sputtering technique with respect to temperature ranging from 300 K to 420 K. The magnetic anisotropy field HK and ferromagnetic resonance frequency fFMR can be tuned from 14.06 to 110.18 Oe and 1.05-3.05 GHz respectively, by changing the oblique angle, which can be interpreted in terms of the contribution of stress-induced anisotropy and shape anisotropy. In addition, the thermal stability of FeSiAl-Al2O3 films in terms of magnetic anisotropy HK and ferromagnetic resonance frequency fFMR are enhanced with the increase of oblique angle up to 35° while the thermal stability of effective Gilbert damping factor αeff and the maximum imaginary permeability μ''max are improved with the increase of oblique angle up to 45°.

  14. Formation and structures of Au-Rh bimetallic nanoclusters supported on a thin film of Al2O3/NiAl(100).

    PubMed

    Hsu, Po-Wei; Liao, Zhen-He; Hung, Ting-Chieh; Lee, Hsuan; Wu, Yu-Cheng; Lai, Yu-Ling; Hsu, Yao-Jane; Lin, Yuwei; Wang, Jeng-Han; Luo, Meng-Fan

    2017-06-07

    Self-organized alloying of Au with Rh in nanoclusters on an ordered thin film of Al2O3/NiAl(100) was investigated via various surface probe techniques under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed on the sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. The formation was more effective on the oxide seeded with Rh, since all post-deposited Au joined the pregrown Rh clusters; for metal deposition in the reverse order, some separate Rh clusters were formed. The contrasting behavior is rationalized through the easier nucleation of Rh on the oxide surface, due to the stronger Rh-oxide and Rh-Rh bonds. The alloying in the clusters proceeded, regardless of the order of metal deposition, toward a specific structure: an fcc phase, (100) orientation and Rh core-Au shell structure. The orientation, structural ordering and lattice parameters of the Au-Rh bimetallic clusters resembled Rh clusters, rather than Au clusters, on Al2O3/NiAl(100), even with Rh in a minor proportion. The Rh-predominated core-shell structuring corresponds to the binding energies in the order Rh-Rh > Rh-Au > Au-Au. The core-shell segregation, although active, was somewhat kinetically hindered, since elevating the sample temperature induced further encapsulation of Rh. The bimetallic clusters became thermally unstable above 500 K, for which both Rh and Au atoms began to diffuse into the substrate. Moreover, the electronic structures of surface elements on the bimetallic clusters, controlled by both structural and electronic effects, show a promising reactivity.

  15. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-09-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  16. Enhanced photoelectrocatalytic performance of α-Fe2O3 thin films by surface plasmon resonance of Au nanoparticles coupled with surface passivation by atom layer deposition of Al2O3.

    PubMed

    Liu, Yuting; Xu, Zhen; Yin, Min; Fan, Haowen; Cheng, Weijie; Lu, Linfeng; Song, Ye; Ma, Jing; Zhu, Xufei

    2015-12-01

    The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.

  17. The process of growing Cr2O3 thin films on α-Al2O3 substrates at low temperature by r.f. magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gao, Yin; Leiste, Harald; Stueber, Michael; Ulrich, Sven

    2017-01-01

    Cr2O3 thin films with a thickness of 180 nm are grown on c-plane α-Al2O3 (0001) single crystal substrates at a substrate temperature of 320 °C by non-reactive radio frequency magnetron sputtering. Phase formation and composition are characterized by X-ray diffraction (XRD) and Raman spectroscopy analysis. Additional information such as in-plane and out-of-plane lattice parameters, strain relaxation and texture are obtained by reciprocal space mappings (RSMs) and pole figure measurements. Transmission electron microscopy (TEM) has been carried out in order to study the microstructure and further confirm the orientation and epitaxial relationship between films and substrates.

  18. Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO.

    PubMed

    Lee, Hsuan; Liao, Zhen-He; Hsu, Po-Wei; Hung, Ting-Chieh; Wu, Yu-Cheng; Lin, Yuwei; Wang, Jeng-Han; Luo, Meng-Fan

    2017-07-28

    The surface structures and compositions of Au-Rh bimetallic nanoclusters on an ordered thin film of Al2O3/NiAl(100) were investigated, primarily with infrared reflection absorption spectra and temperature-programmed desorption of CO as a probe molecule under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed by sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. Alloying in the clusters was active and proceeded toward a specific structure-a fcc phase, (100) orientation, and Rh core-Au shell structure, regardless of the order of metal deposition. For Au clusters incorporating deposited Rh, the Au atoms remained at the cluster surface through position exchange and became less coordinated; for deposition in reverse order, deposited Au simply decorated the surfaces of Rh clusters. Both adsorption energy and infrared absorption intensity were enhanced for CO on Au sites of the bimetallic clusters; both of them are associated with the bonding to Rh and also a decreased coordination number of CO-binding Au. These enhancements can thus serve as a fingerprint for alloying and atomic inter-diffusion in similar bimetallic systems.

  19. Surface structures and compositions of Au-Rh bimetallic nanoclusters supported on thin-film Al2O3/NiAl(100) probed with CO

    NASA Astrophysics Data System (ADS)

    Lee, Hsuan; Liao, Zhen-He; Hsu, Po-Wei; Hung, Ting-Chieh; Wu, Yu-Cheng; Lin, Yuwei; Wang, Jeng-Han; Luo, Meng-Fan

    2017-07-01

    The surface structures and compositions of Au-Rh bimetallic nanoclusters on an ordered thin film of Al2O3/NiAl(100) were investigated, primarily with infrared reflection absorption spectra and temperature-programmed desorption of CO as a probe molecule under ultrahigh-vacuum conditions and calculations based on density-functional theory. The bimetallic clusters were formed by sequential deposition of vapors of Au and Rh onto Al2O3/NiAl(100) at 300 K. Alloying in the clusters was active and proceeded toward a specific structure—a fcc phase, (100) orientation, and Rh core-Au shell structure, regardless of the order of metal deposition. For Au clusters incorporating deposited Rh, the Au atoms remained at the cluster surface through position exchange and became less coordinated; for deposition in reverse order, deposited Au simply decorated the surfaces of Rh clusters. Both adsorption energy and infrared absorption intensity were enhanced for CO on Au sites of the bimetallic clusters; both of them are associated with the bonding to Rh and also a decreased coordination number of CO-binding Au. These enhancements can thus serve as a fingerprint for alloying and atomic inter-diffusion in similar bimetallic systems.

  20. Magnetic and structural properties of Fe87Pt13-Al2O3 composite thin films synthesized by solid-state reactions

    NASA Astrophysics Data System (ADS)

    Zhigalov, V. S.; Myagkov, V. G.; Bykova, L. E.; Bondarenko, G. N.; Matsynin, A. A.; Volochaev, M. N.

    2017-02-01

    The structural and magnetic properties of Fe87Pt13 films synthesized by solid-state reactions and Fe87Pt13-Al2O3 composite films fabricated by aluminothermy are investigated. It is shown that the synthesized samples of both types are characterized by the rotational magnetic anisotropy, when the easy magnetization axis in the film plane can be set by a magnetic field. It is established that the value of rotational magnetic anisotropy in the Fe87Pt13-Al2O3 composite films is higher than in the Fe87Pt13 samples by an order of magnitude. The rotational magnetic anisotropy is assumed to be caused by the exchange coupling of the L10-FePt phase with the L12-Fe3Pt phase in the Fe87Pt13 films and magnetic iron oxides in the Fe87Pt13-Al2O3 samples.

  1. Morphological and optical properties of sol-gel derived 6SrO·6BaO·7Al 2O 3 thin films

    NASA Astrophysics Data System (ADS)

    Chavhan, P. M.; Sharma, Anubha; Sharma, R. K.; Kaushik, N. K.

    2010-01-01

    A novel 6SrO·6BaO·7Al 2O 3 (S6B6A7) thin film deposited onto soda lime float glass via sol-gel dip coating technique is reported. The morphological and compositional properties of the S6B6A7 thin films have been investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) revealing that the films were composed of S6B6A7 nanoparticles. The optical properties of the S6B6A7 films are affected by sol concentration, film thickness and annealing temperature as revealed by UV-vis transmittance. The transparency of S6B6A7 films improved on increasing annealing temperature up to 450 °C in air. The S6B6A7 films prepared using 2, 5, and 8 (wt.%) sols and annealed at 450 °C exhibit an average transmittance of over ˜91% in wide visible range.

  2. Kinetics aspects of initial stage thin γ-Al2O3 film formation on single crystalline β-NiAl (110)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongfan; Jung, Keeyoung; Li, Long; Yang, Judith C.

    2012-02-01

    The growth kinetics and mechanisms of thermally-grown thin γ-Al2O3 film at 650 °C in air on single-crystalline β-NiAl (110) was characterized via transmission electron microscopy, X-ray diffractometry, and thermo-gravimetric analyses. The oxidation kinetics as a function of thickness was gradually changing from an inverse-logarithmic to parabolic behavior across the "intermediate thickness regime" as the oxide thickness increases. To define the boundaries of the three thickness regimes, the high field approximation (x1) and Debye-Hückel length (LD) were determined using the existing theoretical kinetics models combined with experimentally measured data. All the relevant constants for each rate law at the three thickness regimes were also experimentally determined to quantitatively describe the initial stage growth kinetics.

  3. Microstructure and dielectric properties of (Ba 0.6Sr 0.4)TiO 3 thin films grown on super smooth glazed-Al 2O 3 ceramics substrate

    NASA Astrophysics Data System (ADS)

    Chen, Hongwei; Yang, Chuanren; Zheng, Shanxue; Zhang, Jihua; Zhang, Qiaozhen; Lei, Guanhuan; Lou, Feizhi; Yang, Lijun

    2011-12-01

    Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.

  4. Electron stimulated oxidation of Al(111) in H2O vapor: Dipole orientation effects in the Al2O3 thin film

    NASA Astrophysics Data System (ADS)

    Popova, I.; Zhukov, V.; Yates, J. T.; Chen, J. G.

    1999-12-01

    The electron stimulated oxidation of Al(111) using H2O(g) as a source of oxygen has been investigated at 300 K using near edge x-ray absorption fine structure (NEXAFS) and Auger electron spectroscopy. Irradiation with electrons (100 eV, 50 μA/cm2) produced thick Al2O3 film layers (up to 15 Å), compared to the films grown thermally (4 Å) by the same water exposure. A preferential normal orientation of the O-Al bonds was found for the films grown by the electron assisted process, causing the O K-edge NEXAFS spectra to depend on the incident angle of the polarized x-ray beam. In contrast, little polarization of the O-Al bonds was found for the case of Al2O3 films grown by thermal oxidation in H2O(g).

  5. Ultrathin-layer chromatography on SiO(2), Al(2)O(3), TiO(2), and ZrO(2) nanostructured thin films.

    PubMed

    Wannenmacher, Julia; Jim, Steven R; Taschuk, Michael T; Brett, Michael J; Morlock, Gertrud E

    2013-11-29

    We explored four different inorganic oxides and determined their merits in miniaturized planar chromatography. Despite progression of chromatographic techniques over several decades, such alternatives to traditional planar silica gel stationary phases have not been fully evaluated. Glancing angle deposition(GLAD) provided an excellent platform for engineering nanostructured thin films in these materials for ultrathin-layer chromatography (UTLC). Separations of carotenoids and synthetic food dyes were used to investigate the attributes of SiO(2), Al(2)O(3), TiO(2), and ZrO(2)GLAD UTLC media. These anisotropic high surface area thin films possessed similar channel-like features but different chromatographic properties.TiO(2)and ZrO(2)media were especially interesting since analyte retention could be modified through sim-ple oxidation heat treatments and UV irradiation. Generally, oxidation reduced analyte retention while UV exposure increased retention. Changes in retention factor as large as ΔhRF∼ 40 (for Acid Red 14 on titanium oxide) were achieved. Food dye mixtures were applied using consumer inkjet printers as per the Office Chromatography concept and separation performance was quantified using advanced video instrumentation designed for miniaturized plates. Enhanced time-resolved UTLC methods were used to calculate figures of merit from recorded dye separation videos. Small theoretical plate heights (<4 μm)and low limits of detection (<2 ng per zone for the food dye tartrazine) were measured. The combination of engineered GLAD UTLC plates, inkjet application of analyte spots, time-resolved UTLC, and custom analysis algorithms enabled some of the best performance achieved on GLAD UTLC layers. Separations on the inorganic oxide thin films were also successfully hyphenated with electrospray ionization mass spectrometry for the first time. This investigation demonstrates the utility of alternative inorganic oxide GLADUTLC media and probes avenues of expanding

  6. Comparative Study of Al2O3 Optical Crystalline Thin Films Grown by Vapor Combinations of Al(CH3)3/N2O and Al(CH3)3/H2O2

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroshi; Toyoda, Koichi; Matsumoto, Masahiko; Obara, Minoru

    1993-12-01

    We compared the use of nitrous oxide (N2O) and hydrogen peroxide (H2O2) as the oxidant in digital chemical vapor deposition to obtain high-quality optical crystalline thin films of Al2O3. Optical constants and thicknesses of these films were investigated in terms of growth temperature, by using variable-angle spectroscopic ellipsometry.

  7. Cobalt content- and magnetic field-dependent transmission behaviors of red laser light for Cosbnd Al2O3 granular thin films

    NASA Astrophysics Data System (ADS)

    Van Cuong, Giap; Trung, Tran; Tue, Nguyen Anh; Tuan, Nguyen Anh

    2017-07-01

    The transmission of red laser light with wavelength λ = 632.8 nm of Cox-(Al2O3)1-x magnetic granular thin films was investigated under the effect of external magnetic field H (0-500 Oe). Results showed the behaviors of variation in the T transmittance ratio as a function of H exhibit three trends depending on the Co content x: (1) T declines to a saturation value called the floor level of the transmission Tflo when x < 0.49; (2) T tends to reach a maximum and then decreases to a saturation floor level when x = 0.49; and (3) T increases to a saturation value called the ceiling level of the transmission Tcei, when x > 0.49. Tflo increases in accordance with x when x < 0.49, whereas Tcei decreases rapidly when x approaches 1. These phenomena were considered to be related to the magnon-plasmon interactions from excitation by photons for the spins polarized in the Co particles.

  8. Effects of Al2O3 capping layers on the thermal properties of thin black phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Kuilong; Ang, Kah-Wee; Lv, Youming; Liu, Xinke

    2016-12-01

    We investigate the thermal properties of thin black phosphorus (BP) with Al2O3 capping layer using the temperature-dependent and polarized-laser power-dependent Raman spectroscopy. Compared to the BP samples without Al2O3 capping layer, the Al2O3 passivation layer significantly improves the thermal stability of BP by reducing the thermal coefficients of the Ag1, B2g, and Ag2 Raman modes from -0.0082, -0.0142, and -0.0145 cm-1/K to -0.0046, -0.0074, and -0.0088 cm-1/K, respectively, which are attributed to the compressive strain and strong Al-P and O-P bonds. Meanwhile, the thermal conductivity reaches to about 45.4 and 54.4 W/mK along the armchair and zigzag directions, greatly larger than those of the BP films without Al2O3 24.1 and 39.0 W/mK, respectively, owing to the large thermal conductivity of Al2O3 and the interface charges between Al2O3 and BP. Overall, this work will contribute to improve the BP-based device performances and extend the BP applications profoundly.

  9. Thickness effect on the optical and morphological properties in Al2O3/ZnO nanolaminate thin films prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    López, J.; Martínez, J.; Abundiz, N.; Domínguez, D.; Murillo, E.; Castillón, F. F.; Machorro, R.; Farías, M. H.; Tiznado, H.

    2016-02-01

    In this work, we studied the optical and morphological properties of ultrathin nanolaminate films based on Al2O3/ZnO (AZ) bilayers stack. The films were deposited on Si (100) by means of thermal atomic layer deposition (ALD) technique. The bilayer thicknesses (ratio = 1:1) were 0.2, 1, 2, 4, 10 and 20 nm. Refractive index (n) and band gap (Eg) of each nanolaminate were studied via spectroscopic ellipsometry (SE), and spectral reflectance ultraviolet-visible spectroscopy (UV-vis). Surface morphology and roughness parameters of the nanolaminates were measured by Atomic Force Microscopy (AFM). The optical and morphological properties were shown highly dependent on the bilayer thickness. Ellipsometric data treated through the Cody-Lorentz optical model revealed that the refractive index decreases for thinner bilayers. A sharp intensity decay of refractive index and peaks at the UV region (200-400 nm) indicated increased transparency for thinner bilayers. It is also shown that the band gap is tunable. The maximum band gap value was 4.8 eV. These results reveal that ZnO combined with Al2O3 as bilayers stack can be converted into a dielectric material with enhanced band gap, opening the possibility for new optical and dielectric applications.

  10. Assembly of self-assembled monolayer-coated Al2O3 on TiO2 thin films for the fabrication of renewable superhydrophobic-superhydrophilic structures.

    PubMed

    Nishimoto, Shunsuke; Sekine, Hitomi; Zhang, Xintong; Liu, Zhaoyue; Nakata, Kazuya; Murakami, Taketoshi; Koide, Yoshihiro; Fujishima, Akira

    2009-07-07

    A renewable superhydrophobic-superhydrophilic pattern with a minimum dimension of 50 microm is prepared from octadecyltrimethoxysilane self-assembled monolayer-covered superhydrophobic Al2O3 overlayers on a superhydrophilic TiO2 surface via self-assembly and calcination of boehmite (AlOOH.nH2O) particles. The resulting Al2O3 layer plays dual roles as a superhydrophobic layer and as a UV-blocking layer for the underlying TiO2.

  11. Tribological properties of Ag/Ti films on Al2O3 ceramic substrates

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1991-01-01

    Ag solid lubricant films, with a thin Ti interlayer for enhanced adhesion, were sputter deposited on Al2O3 substrate disks to reduce friction and wear. The dual Ag/Ti films were tested at room temperature in a pin-on-disk tribometer sliding against bare, uncoated Al2O3 pins under a 4.9 N load at a sliding velocity of 1 m/s. The Ag/Ti films reduced the friction coefficient by 50 percent to about 0.41 compared to unlubricated baseline specimens. Pin wear was reduced by a factor of 140 and disk wear was reduced by a factor of 2.5 compared to the baseline. These films retain their good tribological properties including adhesion after heat treatments at 850 C and thus may be able to lubricate over a wide temperature range. This lubrication technique is applicable to space lubrication, advanced heat engines, and advanced transportation systems.

  12. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  13. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jen, Shih-Hui; Bertrand, Jacob A.; George, Steven M.

    2011-04-01

    < 30 nm. The high critical tensile and compressive strains for thin Al2O3 ALD films should be very useful for flexible gas diffusion barriers on polymers.

  14. Microstructural characteristics of tin oxide-based thin films on (0001) Al2O3 substrates: effects of substrate temperature and RF power during co-sputtering.

    PubMed

    Hwang, Sooyeon; Lee, Ju Ho; Kim, Young Yi; Yun, Myeong Goo; Lee, Kwan-Hun; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    While tin oxides such as SnO and SnO2 are widely used in various applications, surprisingly, only a limited number of reports have been presented on the microstructural characteristics of tin oxide thin films grown under various growth conditions. In this paper, the effects of the substrate temperature and content of foreign Zn ion on the microstructural characteristics of tin oxide thin films grown by radio-frequency magnetron sputtering were investigated. The increase in substrate temperature induced change in the stoichiometry of the thin films from SnO(1+x) to SnO(2-x). Additionally, the phase contrast in the transmission electron microscopy image revealed that SnO(1+x) and SnO(2-x) phases were alternating in thin films and the width of each phase became narrower at high substrate temperature. The ternary zinc tin oxide thin films were deposited using the co-sputtering method. As the ZnO target power increased, the crystallinity of the thin films became poly-crystalline, and then showed improved crystallinity again with two types of phases.

  15. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1-xZrxO2/Al2O3 thin film stacks

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Tapily, Kandabara; Consiglio, Steven; Clark, Robert D.; Wajda, Cory S.; Leusink, Gert J.; Woll, Arthur R.; Diebold, Alain C.

    2016-09-01

    Using a five-step atomic layer deposition (ALD)-anneal (DADA) process, with 20 ALD cycles of metalorganic precursors followed by 40 s of rapid thermal annealing at 1073 K, we have developed highly crystalline Hf1-xZrxO2 (0 ≤ x ≤ 1) thin films (<7 nm) on ˜1 nm ALD Al2O3 passivated Ge and Si substrates for applications in higher-k dielectric metal oxide semiconductor field effect transistors below 10 nm technology node. By applying synchrotron grazing incidence x-ray d-spacing maps, x-ray photoelectron spectroscopy (XPS), and angle-resolved XPS, we have identified a monoclinic to tetragonal phase transition with increasing ZrO2 content, elucidated the role of the Ge vs Si substrates in complete tetragonal phase formation (CTPF), and determined the interfacial characteristics of these technologically relevant films. The ZrO2 concentration required for CTPF is lower on Ge than on Si substrates (x ˜ 0.5 vs. x ˜ 0.86), which we attribute as arising from the growth of an ultra-thin layer of metal germanates between the Hf1-xZrxO2 and Al2O3/Ge, possibly during the first deposition and annealing cycle. Due to Ge-induced tetragonal phase stabilization, the interfacial metal germanates could act as a template for the subsequent preferential growth of the tetragonal Hf1-xZrxO2 phase following bottom-up crystallization during the DADA ALD process. We surmise that the interfacial metal germanate layer also function as a diffusion barrier limiting excessive Ge uptake into the dielectric film. An ALD Al2O3 passivation layer of thickness ≥1.5 nm is required to minimize Ge diffusion for developing highly conformal and textured HfO2 based higher-k dielectrics on Ge substrates using the DADA ALD process.

  16. Comparison of ALD and IBS Al2O3 films for high power lasers

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Jensen, Lars; Becker, Jürgen; Wurz, Marc Christopher; Ma, Ping; Ristau, Detlev

    2016-12-01

    Atomic layer deposition (ALD) has been widely studied in Micro-electronics due to its self-terminating property. ALD also grows film coatings with precise thickness and nodular-free structure, which are desirable properties for high power coatings. The depositing process was studied to produce uniform, stable and economic Al2O3 single layers. The layer properties relevant to high power laser industry were studied and compared with IBS Al2O3 single layers. ALD Al2O3 showed a stable growth of 0.104 nm/cycle, band gap energy of 6.5 eV and tensile stress of about 480 MPa. It also showed a low absorption at wavelength 1064 nm within several ppm, and LIDT above 30 J/cm2. These properties are superior to the reference IBS Al2O3 single layers and indicate a high versatility of ALD Al2O3 for high power coatings.

  17. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  18. Effects of annealing on properties of Al2O3 monolayer film at 355 nm

    NASA Astrophysics Data System (ADS)

    Tu, Feifei; Wang, Hu; Xing, Huanbin; Zheng, Ruxi; Zhang, Weili; Yi, Kui

    2015-07-01

    Al2O3 monolayer films were deposited on fused silica substrate and K9 glass substrate by electron-beam deposition. Annealing as a general post-treatment was used to enhance the quality of the Al2O3 coatings. The optical properties of the films were analyzed from the transmission spectra of the samples. The composition of the samples before and after annealing were measured by X-ray photoelectron spectroscopy (XPS). According to the analysis of the results, it can be found that the oxidation degree of the coatings increases after annealing in O2 inside coating chamber. The laser-induced damage thresholds of the Al2O3 films can be increased after the annealing process. Finally, the damage morphologies of the Al2O3 coatings were analyzed.

  19. High-Mobility Transparent SnO2 and ZnO-SnO2 Thin-Film Transistors with SiO2/Al2O3 Gate Insulators

    NASA Astrophysics Data System (ADS)

    Cheong, Woo-Seok; Yoon, Sung-Min; Hwang, Chi-Sun; Chu, Hye Yong

    2009-04-01

    Using a double-layered gate insulator [SiO2 (100 nm)/Al2O3 (10 nm)] and a dry-etching process for the channel layer, we could obtain high mobility top-gate SnO2 and ZnO-SnO2 (ZTO) transparent thin-film transistor (TTFT). After annealing at 300 °C, for 1 h in O2 ambient, the saturated mobility of SnO2 TTFT was 17.4 cm2 s-1 V-1, and that of ZTO TTFT was 50.4 cm2 s-1 V-1. Generally, both devices operated in the enhancement mode with a drain current on-off ratio of ˜106.

  20. Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.

    2016-09-01

    The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.

  1. Angular properties of pure and Ca-substituted YBa2Cu3O7-δ superconducting thin films grown on SrTiO3 and CeO2 buffered Al2O3 substrates

    NASA Astrophysics Data System (ADS)

    Augieri, A.; Celentano, G.; Ciontea, L.; Galluzzi, V.; Gambardella, U.; Halbritter, J.; Petrisor, T.; Rufoloni, A.; Vannozzi, A.

    2007-09-01

    In this work transport properties of superconducting 10 at.% Ca-substituted YBCO thin films grown on (1 0 0)-SrTiO 3 single crystal substrate (STO) and superconducting pure and 10 at.% Ca-substituted YBCO thin films grown on CeO 2 buffered Al 2O 3 substrates (CAO) have been analyzed as a function of the temperature, applied magnetic field and angle between magnetic field direction and the direction normal to the film surfaces. Particularly, the angular analysis provides an easy way to discriminate between isotropic point defects and correlated pinning sites. Despite the intragrain pinning mechanisms remained unaffected by Ca substitution, a detrimental effect on grain boundary properties clearly emerged for 10 at.% Ca concentration. This effect is enhanced in sample grown on CeO 2 buffered sapphire where a more disturbed grain boundary is expected resulting in an enhancement of the correlated pinning, already observed in pure YBCO films grown on CAO, and in a reduction of the intrinsic pinning efficiency.

  2. Growth and characterization of Al2O3 films on fluorine functionalized epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Jernigan, Glenn G.; Wheeler, Virginia D.; Hernández, Sandra C.; Eddy, Charles R.; Mowll, Tyler R.; Ong, Eng Wen; Ventrice, Carl A.; Geisler, Heike; Pletikosic, Ivo; Yang, Hongbo; Valla, Tonica

    2016-08-01

    Intelligent engineering of graphene-based electronic devices on SiC(0001) requires a better understanding of processes used to deposit gate-dielectric materials on graphene. Recently, Al2O3 dielectrics have been shown to form conformal, pinhole-free thin films by functionalizing the top surface of the graphene with fluorine prior to atomic layer deposition (ALD) of the Al2O3 using a trimethylaluminum (TMA) precursor. In this work, the functionalization and ALD-precursor adsorption processes have been studied with angle-resolved photoelectron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy. It has been found that the functionalization process has a negligible effect on the electronic structure of the graphene, and that it results in a twofold increase in the adsorption of the ALD-precursor. In situ TMA-dosing and XPS studies were also performed on three different Si(100) substrates that were terminated with H, OH, or dangling Si-bonds. This dosing experiment revealed that OH is required for TMA adsorption. Based on those data along with supportive in situ measurements that showed F-functionalization increases the amount of oxygen (in the form of adsorbed H2O) on the surface of the graphene, a model for TMA-adsorption on graphene is proposed that is based on a reaction of a TMA molecule with OH.

  3. Anisotropic temperature-dependent thermal conductivity by an Al2O3 interlayer in Al2O3/ZnO superlattice films

    NASA Astrophysics Data System (ADS)

    Lee, Won-Yong; Lee, Jung-Hoon; Ahn, Jae-Young; Park, Tae-Hyun; Park, No-Won; Kim, Gil-Sung; Park, Jin-Seong; Lee, Sang-Kwon

    2017-03-01

    The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50-300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26-0.63 W m-1 K-1 of the AO/ZnO superlattice films (with an AO layer of ˜0.82 nm thickness) is approximately ˜150%-370% less than the in-plane thermal conductivity (0.96-1.19 W m-1 K-1) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

  4. Anisotropic temperature-dependent thermal conductivity by an Al2O3 interlayer in Al2O3/ZnO superlattice films.

    PubMed

    Lee, Won-Yong; Lee, Jung-Hoon; Ahn, Jae-Young; Park, Tae-Hyun; Park, No-Won; Kim, Gil-Sung; Park, Jin-Seong; Lee, Sang-Kwon

    2017-03-10

    The thermal conductivity of superlattice films is generally anisotropic and should be studied separately in the in-plane and cross-plane directions of the films. However, previous works have mostly focused on the cross-plane thermal conductivity because the electrons and phonons in the cross-plane direction of superlattice films may result in much stronger interface scattering than that in the in-plane direction. Nevertheless, it is highly desirable to perform systematic studies on the effect of interface formation in semiconducting superlattice films on both in-plane and cross-plane thermal conductivities. In this study, we determine both the in-plane and cross-plane thermal conductivities of Al2O3 (AO)/ZnO superlattice films grown by atomic layer deposition (ALD) on SiO2/Si substrates in the temperature range of 50-300 K by the four-point-probe 3-ω method. Our experimental results indicate that the formation of an atomic AO layer (0.82 nm) significantly contributes to the decrease of the cross-plane thermal conductivity of the AO/ZnO superlattice films compared with that of AO/ZnO thin films. The cross-plane thermal conductivity (0.26-0.63 W m(-1) K(-1) of the AO/ZnO superlattice films (with an AO layer of ∼0.82 nm thickness) is approximately ∼150%-370% less than the in-plane thermal conductivity (0.96-1.19 W m(-1) K(-1)) of the corresponding film, implying significant anisotropy. This indicates that the suppression of the cross-plane thermal conductivity is mainly attributed to the superlattice, rather than the nanograin columnar structure in the films. In addition, we theoretically analyzed strong anisotropic behavior of the in-plane and cross-plane thermal conductivities of the AO/ZnO superlattice films in terms of temperature dependence.

  5. The effect of an interfacial layer on electron tunneling through atomically-thin Al2O3 tunnel barriers.

    PubMed

    Wilt, Jamie Samantha; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-09

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy-efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al2O3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering-atomic layer deposition (ALD) to synthesize Al2O3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al2O3. The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al2O3. The IL forms primarily due to exposure of the Al to trace O2 and/or H2O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al2O3 barrier height from 0.9 eV to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step towards the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  6. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films.

    PubMed

    Ahmed, M F; Schnell, E; Ahmad, S; Yukihara, E G

    2016-10-21

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) 'pixel bleeding' caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and (12)C beams (430 MeV u(-1)). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a (12)C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  7. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u-1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  8. Controlled Gas Molecules Doping of Monolayer MoS2 via Atomic-Layer-Deposited Al2O3 Films.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Chen, Heyu; Shi, Jia; Shang, Qiuyu; Zhang, Shuai; Qiu, Xiaohui; Liu, Zheng; Zhang, Qing; Xu, Haiyang; Liu, Weizhen; Liu, Xinfeng; Liu, Yichun

    2017-08-23

    MoS2 as atomically thin semiconductor is highly sensitive to ambient atmosphere (e.g., oxygen, moisture, etc.) in optical and electrical properties. Here we report a controlled gas molecules doping of monolayer MoS2 via atomic-layer-deposited Al2O3 films. The deposited Al2O3 films, in the shape of nanospheres, can effectively control the contact areas between ambient atmosphere and MoS2 that allows precise modulation of gas molecules doping. By analyzing photoluminescence (PL) emission spectra of MoS2 with different thickness of Al2O3, the doped carrier concentration is estimated at ∼2.7 × 10(13) cm(-2) based on the mass action model. Moreover, time-dependent PL measurements indicate an incremental stability of single layer MoS2 as the thicknesses of Al2O3 capping layer increase. Effective control of gas molecules doping in monolayer MoS2 provides us a valuable insight into the applications of MoS2 based optical and electrical devices.

  9. The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

    NASA Astrophysics Data System (ADS)

    Botzakaki, M. A.; Skoulatakis, G.; Kennou, S.; Ladas, S.; Tsamis, C.; Georga, S. N.; Krontiras, C. A.

    2016-09-01

    It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (~0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D it values as low as ~7.4  ×  1010 eV-1 cm-2. To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10-1 A cm-2, which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D its into the energy bandgap of p-Ge, from the valence band

  10. Electrical characteristics of SrTiO3/Al2O3 laminated film capacitors

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Yao, Manwen; Chen, Jianwen; Xu, Kaien; Yao, Xi

    2016-07-01

    The electrical characteristics of SrTiO3/Al2O3 (160 nm up/90 nm down) laminated film capacitors using the sol-gel process have been investigated. SrTiO3 is a promising and extensively studied high-K dielectric material, but its leakage current property is poor. SrTiO3/Al2O3 laminated films can effectively suppress the demerits of pure SrTiO3 films under low electric field, but the leakage current value reaches to 0.1 A/cm2 at higher electric field (>160 MV/m). In this study, a new approach was applied to reduce the leakage current and improve the dielectric strength of SrTiO3/Al2O3 laminated films. Compared to laminated films with Au top electrodes, dielectric strength of laminated films with Al top electrodes improves from 205 MV/m to 322 MV/m, simultaneously the leakage current maintains the same order of magnitude (10-4 A/cm2) until the breakdown occurs. The above electrical characteristics are attributed to the anodic oxidation reaction in origin, which can repair the defects of laminated films at higher electric field. The anodic oxidation reactions have been confirmed by the corresponding XPS measurement and the cross sectional HRTEM analysis. This work provides a new approach to fabricate dielectrics with high dielectric strength and low leakage current.

  11. Nanostructured Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel thin films for integrated optics

    NASA Astrophysics Data System (ADS)

    Predoana, Luminita; Preda, Silviu; Anastasescu, Mihai; Stoica, Mihai; Voicescu, Mariana; Munteanu, Cornel; Tomescu, Roxana; Cristea, Dana

    2015-08-01

    The nanostructured multilayer silica-titania or silica-titania-alumina films doped with Er3+ were prepared by sol-gel method. The sol-gel method is a flexible and convenient way to prepare oxide films on several types of substrates, and for this reason it was extensively investigated for optical waveguides fabrication. The selected molar composition was 90%SiO2-10%TiO2 or 85%SiO2-10%TiO2-5% Al2O3 and 0.5% Er2O3. The films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Spectroellipsometry (SE), as well as by Atomic Force Microscopy (AFM) and photoluminescence (PL). The films deposited on Si/SiO2 substrate by dip-coating or spin-coating, followed by annealing at 900 °C, presented homogenous and continuous surface and good adherence to the substrate. Differences were noticed in the structure and properties of the prepared films, depending on the composition and the number of deposited layers. Channel optical waveguides were obtained by patterning Er3+-doped SiO2-TiO2 and SiO2-TiO2-Al2O3 sol-gel layers deposited on oxidized silicon wafers.

  12. Influence of Content of Al2O3 on Structure and Properties of Nanocomposite Nb-B-Al-O films.

    PubMed

    Liu, Na; Dong, Lei; Dong, Lei; Yu, Jiangang; Pan, Yupeng; Wan, Rongxin; Gu, Hanqing; Li, Dejun

    2015-12-01

    Nb-B-Al-O nanocomposite films with different power of Al2O3 were successfully deposited on the Si substrate via multi-target magnetron co-sputtering method. The influences of Al2O3's content on structure and properties of obtained nanocomposite films through controlling Al2O3's power were investigated. Increasing the power of Al2O3 can influence the bombarding energy and cause the momentum transfer of NbB2. This can lead to the decreasing content of Al2O3. Furthermore, the whole films showed monocrystalline NbB2's (100) phase, and Al2O3 shaded from amorphous to weak cubic-crystalline when decreasing content of Al2O3. This structure and content changes were proof by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). When NbB2 grains were far from each other in lower power of Al2O3, the whole films showed a typical nanocomposite microstructure with crystalline NbB2 grains embedded in a matrix of an amorphous Al2O3 phase. Continuing increasing the power of Al2O3, the less content of Al2O3 tended to cause crystalline of cubic-Al2O3 between the close distances of different crystalline NbB2 grains. The appearance of cubic-crystallization Al2O3 can help to raise the nanocomposite films' mechanical properties to some extent. The maximum hardness and elastic modulus were up to 21.60 and 332.78 GPa, which were higher than the NbB2 and amorphous Al2O3 monolithic films. Furthermore, this structure change made the chemistry bond of O atom change from the existence of O-Nb, O-B, and O-Al bonds to single O-Al bond and increased the specific value of Al and O. It also influenced the hardness in higher temperature, which made the hardness variation of different Al2O3 content reduced. These results revealed that it can enhance the films' oxidation resistance properties and keep the mechanical properties at high temperature. The study highlighted the importance of controlling the Al2O3's content to prepare

  13. Space-charge-controlled field emission model of current conduction through Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  14. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities

    NASA Astrophysics Data System (ADS)

    Hwang, Byungil; An, Youngseo; Lee, Hyangsook; Lee, Eunha; Becker, Stefan; Kim, Yong-Hoon; Kim, Hyoungsub

    2017-01-01

    There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol.

  15. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities.

    PubMed

    Hwang, Byungil; An, Youngseo; Lee, Hyangsook; Lee, Eunha; Becker, Stefan; Kim, Yong-Hoon; Kim, Hyoungsub

    2017-01-27

    There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol.

  16. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities

    PubMed Central

    Hwang, Byungil; An, Youngseo; Lee, Hyangsook; Lee, Eunha; Becker, Stefan; Kim, Yong-Hoon; Kim, Hyoungsub

    2017-01-01

    There is an increasing demand in the flexible electronics industry for highly robust flexible/transparent conductors that can withstand high temperatures and corrosive environments. In this work, outstanding thermal and ambient stability is demonstrated for a highly transparent Ag nanowire electrode with a low electrical resistivity, by encapsulating it with an ultra-thin Al2O3 film (around 5.3 nm) via low-temperature (100 °C) atomic layer deposition. The Al2O3-encapsulated Ag nanowire (Al2O3/Ag) electrodes are stable even after annealing at 380 °C for 100 min and maintain their electrical and optical properties. The Al2O3 encapsulation layer also effectively blocks the permeation of H2O molecules and thereby enhances the ambient stability to greater than 1,080 h in an atmosphere with a relative humidity of 85% at 85 °C. Results from the cyclic bending test of up to 500,000 cycles (under an effective strain of 2.5%) confirm that the Al2O3/Ag nanowire electrode has a superior mechanical reliability to that of the conventional indium tin oxide film electrode. Moreover, the Al2O3 encapsulation significantly improves the mechanical durability of the Ag nanowire electrode, as confirmed by performing wiping tests using isopropyl alcohol. PMID:28128218

  17. Characteristics of nanocomposite ZrO2/Al2O3 films deposited by plasma-enhanced atomic layer deposition.

    PubMed

    Yun, Sun Jin; Lim, Jung Wook; Kim, Hyun-Tak

    2007-11-01

    Nanocomposite ZrO2/Al2O3 (ZAO) films were deposited on Si by plasma-enhanced atomic layer deposition and the film characteristics including interfacial oxide formation, dielectric constant (k), and electrical breakdown strength were investigated without post-annealing process. In both the mixed and nano-laminated ZAO films, the thickness of the interfacial oxide layer (T(IL)) was considerably reduced compared to ZrO2 and Al2O3 films. The T(IL) was 0.8 nm in nano-composite films prepared at a mixing ratio (ZrO2:Al2O3) of 1:1. The breakdown strength and the leakage current level were greatly improved by adding Al2O3 as little as 7.9% compared to that of ZrO2 and were enhanced more with increasing content of Al2O3. The k of ZrO2 and mixed ZAO (Al2O3 7.9%) films were 20.0 and 16.5, respectively. These results indicate that the addition of Al2O3 to ZrO2 greatly improves the electrical properties with less cost of k compared to the addition of SiO2.

  18. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-01

    We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  19. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    PubMed

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al2O3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al2O3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al2O3, the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al2O3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al2O3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al2O3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al2O3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  20. Spectral density analysis of the optical properties of Ni-Al2O3 nano-composite films

    NASA Astrophysics Data System (ADS)

    Niklasson, Gunnar A.; Boström, Tobias K.; Tuncer, Enis

    2011-09-01

    Thin films consisting of transition metal nanoparticles in an insulating oxide exhibit a high solar absorptance together with a low thermal emittance and are used as coatings on solar collector panels. In order to optimise the nanocomposites for this application a more detailed understanding of their optical properties is needed. Here we use a highly efficient recently developed numerical method to extract the spectral density function of nickel-aluminum oxide (Ni-Al2O3) composites from experimental data on the dielectric permittivity in the visible and near-infrared wavelength ranges. Thin layers of Ni-Al2O3 were produced by a sol-gel technique. Reflectance and transmittance spectra were measured by spectrophotometry in the wavelength range 300 to 2500 nm for films with thicknesses in the range 50 to 100 nm. Transmission electron microscopy showed crystalline Ni particles with sizes in the 3 to 10 nm range. The spectral density function shows a multi-peak structure with three or four peaks clearly visible. The peak positions are influenced by particle shape, local volume fraction distributions and particle-particle interactions giving rise to structural resonances in the response of the composite to an electromagnetic field.

  1. Growth of Polarity-Controlled ZnO Films on (0001) Al2O3

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Chang, J. H.; Minegishi, T.; Lee, H. J.; Park, S. H.; Im, I. H.; Hanada, T.; Hong, S. K.; Cho, M. W.; Yao, T.

    2008-05-01

    The polarity control of ZnO films grown on (0001) Al2O3 substrates by plasma-assisted molecular-beam epitaxy (P-MBE) was achieved by using a novel CrN buffer layer. Zn-polar ZnO films were obtained by using a Zn-terminated CrN buffer layer, while O-polar ZnO films were achieved by using a Cr2O3 layer formed by O-plasma exposure of a CrN layer. The mechanism of polarity control was proposed. Optical and structural quality of ZnO films was characterized by high-resolution X-ray diffraction and photoluminescence (PL) spectroscopy. Low-temperature PL spectra of Zn-polar and O-polar samples show dominant bound exciton (I8) and strong free exciton emissions. Finally, one-dimensional periodic structures consisting of Zn-polar and O-polar ZnO films were simultaneously grown on the same substrate. The periodic inversion of polarity was confirmed in terms of growth rate, surface morphology, and piezo response microscopy (PRM) measurement.

  2. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  3. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    NASA Astrophysics Data System (ADS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-11-01

    Thin Al2O3 layers of 2-135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current.

  4. Atomic layer deposition of TiO2 / Al2O3 films for optical applications

    NASA Astrophysics Data System (ADS)

    Triani, Gerry; Evans, Peter J.; Mitchell, David R. G.; Attard, Darren J.; Finnie, Kim S.; James, Michael; Hanley, Tracey; Latella, Bruno; Prince, Kathryn E.; Bartlett, John

    2005-09-01

    Atomic layer deposition (ALD) is an important technology for depositing functional coatings on accessible, reactive surfaces with precise control of thickness and nanostructure. Unlike conventional chemical vapour deposition, where growth rate is dependent on reactant flux, ALD employs sequential surface chemical reactions to saturate a surface with a (sub-) monolayer of reactive compounds such as metal alkoxides or covalent halides, followed by reaction with a second compound such as water to deposit coatings layer-by-layer. A judicious choice of reactants and processing conditions ensures that the reactions are self-limiting, resulting in controlled film growth with excellent conformality to the substrate. This paper investigates the deposition and characterisation of multi-layer TiO2 /Al2O3 films on a range of substrates, including silicon <100>, soda glass and polycarbonate, using titanium tetrachloride/water and trimethylaluminium/water as precursor couples. Structure-property correlations were established using a suite of analytical tools, including transmission electron microscopy (TEM), secondary ion mass spectrometry (SIMS), X-ray reflectometry (XRR) and spectroscopic ellipsometry (SE). The evolution of nanostructure and composition of multi-layer high/low refractive index stacks are discussed as a function of deposition parameters.

  5. Enhancement of resistive switching properties in nitride based CBRAM device by inserting an Al2O3 thin layer

    NASA Astrophysics Data System (ADS)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2017-05-01

    In this letter, we propose a method to enhance resistive switching properties in SiCN-based conductive-bridge resistive switching memory (CBRAM) devices by inserting a thin Al2O3 layer between the SiCN resistive switching layer and the TiN bottom electrode. Compared with the Cu/Ta/SiCN/TiN single-layer device, the Cu/Ta/SiCN/Al2O3/TiN double layer device exhibits uniform resistive switching, long stable endurance cycles (>1.6 × 104), and stable retention (104 s) at 125 °C. These substantial improvements in the resistive switching properties are attributed to the location of the formation and rupture of conductive filaments that can be precisely controlled in the device after introducing the Al2O3 layer. Moreover, a multilevel resistive switching characteristic is observed in the Cu/Ta/SiCN/Al2O3/TiN double layer CBRAM device. The distinct six-level resistance states are obtained in double layer devices by varying the compliance current. The highly stable retention characteristics (>104) of the Cu/Ta/SiCN/Al2O3/TiN double layer device with multilevel resistance states are also demonstrated.

  6. Boat-like Au nanoparticles embedded mesoporous γ-Al2O3 films: an efficient SERS substrate

    NASA Astrophysics Data System (ADS)

    Dandapat, Anirban; Pramanik, Sourav; Bysakh, Sandip; De, Goutam

    2013-07-01

    Boat-like Au nanoparticles (NPs) have been synthesized within the mesoporous γ-Al2O3 films. First, mesoporous γ-Al2O3 film was prepared using aluminum alkoxide derived boehmite sol in the presence of CTAB as structure directing agent. The film was heat-treated at 500 °C to obtain γ-Al2O3 film with an average pore diameter of 4.3 nm. HAuCl4 solution was then soaked into the porous film followed by heat-treatment at 500 °C to generate Au NPs. The blue-colored films so obtained were characterized by UV-visible spectroscopy, grazing incidence X-ray diffraction, FESEM, and TEM studies. FESEM and TEM studies reveal the formation boat-like Au NPs in γ-Al2O3 film matrix. Cross-sectional FESEM shows the thickness of the films to be 2.2 μm. These nanocomposite films were used as a unique surface-enhanced Raman scattering (SERS) substrate for easy detection of low concentration (10-8 M) analyte (methylene blue) molecule. Boat-like shape of Au NPs have several edges and junctions that contain high density of hotspots to exhibit very high SERS signals. Due to such shape of Au NPs, the films also show strong absorption in the visible-NIR region that would extend the use of the films in heat-absorbing and biomedical applications.

  7. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    PubMed

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  8. Synthesis and Characterization of Biodegradable Ultrasonicated Films made from Chitosan/al2o3 Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Prakash, B.; Jothirajan, M. A.; Umapathy, S.; Amala, Viji

    Chitosan is a biopolymer which is biodegradable, biocompatible, non toxic and cationic in nature. Due to these interesting properties, it finds advanced applications in sensors, drug delivery vehicle and gene therapy etc., In this present work, the biocompatible Al2O3 Nano particles were embedded into Chitosan Polymer matrix by ultrasonication route. XRD and FTIR studies confirm the presence of Al2O3 nanoparticle in the Chitosan polymer matrix. The morphological, optical, electrical properties of the polymer nano composite films are carried out by employing scanning electron microscopy (SEM), UV- Vis, LCR and Impedance studies.

  9. Al2O3 half-wave films for long-life CW lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Ettenberg, M.; Lockwood, H. F.; Kressel, H.

    1977-01-01

    Long-term operating-life data are reported for (AlGa)As CW laser diodes. The use of half-wave Al2O3 facet coatings is shown to eliminate facet erosion, allowing stable diode operation at constant current for periods in excess of 10,000 h.

  10. Characterization of Al2O3 optically stimulated luminescence films for 2D dosimetry using a 6 MV photon beam

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Shrestha, N.; Schnell, E.; Ahmad, S.; Akselrod, M. S.; Yukihara, E. G.

    2016-11-01

    This work evaluates the dosimetric properties of newly developed optically stimulated luminescence (OSL) films, fabricated with either Al2O3:C or Al2O3:C,Mg, using a prototype laser scanning reader, a developed image reconstruction algorithm, and a 6 MV therapeutic photon beam. Packages containing OSL films (Al2O3:C and Al2O3:C,Mg) and a radiochromic film (Gafchromic EBT3) were irradiated using a 6 MV photon beam using different doses, field sizes, with and without wedge filter. Dependence on film orientation of the OSL system was also tested. Diode-array (MapCHECK) and ionization chamber measurements were performed for comparison. The OSLD film doses agreed with the MapCHECK and ionization chamber data within the experimental uncertainties (<2% at 1.5 Gy). The system background and minimum detectable dose (MDD) were  <0.5 mGy, and the dose response was approximately linear from the MDD up to a few grays (the linearity correction was  <10% up to ~2-4 Gy), with no saturation up to 30 Gy. The dose profiles agreed with those obtained using EBT3 films (analyzed using the triple channel method) in the high dose regions of the images. In the low dose regions, the dose profiles from the OSLD films were more reproducible than those from the EBT3 films. We also demonstrated that the OSL film data are independent on scan orientation and field size over the investigated range. The results demonstrate the potential of OSLD films for 2D dosimetry, particularly for the characterization of small fields, due to their wide dynamic range, linear response, resolution and dosimetric properties. The negligible background and potential simple calibration make these OSLD films suitable for remote audits. The characterization presented here may motivate further commercial development of a 2D dosimetry system based on the OSL from Al2O3:C or Al2O3:C,Mg.

  11. Rapid Estimation of the Height-Height Correlation Functions from the Synchrotron X-Ray and AFM Study of very Thin SnO2/α-Al2O3(0001) FILM

    NASA Astrophysics Data System (ADS)

    Rue, Gi Hong; Sug, Joung Young; Lee, Su Ho; Ha, Sook Jeong; Lee, Kyung Sook; Kim, Jin Gyu; Yoo, Dae Hwang; Hwang, Yoon Hwae; Kim, Hyung Kook

    For the defective semiconductor SnO2 thin film epitaxially grown on sapphire, height-height correlation functions are evaluated from x-ray scattering and atomic force mi-croscopy(AFM) by a quick method. The small value √ {G12(0)} ≈ 1.67 Å implies that the interfaces are fairly well correlated. This is consistent with the well-defined oscillation in the longitudinal diffuse scattering intensity.

  12. Effect of adsorbed films on friction of Al2O3-metal systems

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The kinetic friction of polycrystalline Al2O3 sliding on Cu, Ni, and Fe in ultrahigh vacuum was studied as a function of the surface chemistry of the metal. Clean metal surfaces were exposed to O2, Cl2, C2H4, and C2H3Cl, and the change in friction due to the adsorbed species was observed. Auger electron spectroscopy assessed the elemental composition of the metal surface. It was found that the systems exposed to Cl2 exhibited low friction, interpreted as the van der Waals force between the Al2O3 and metal chloride. The generation of metal oxide by oxygen exposures resulted in an increase in friction, interpreted as due to strong interfacial bonds established by reaction of metal oxide with Al2O3 to form the complex oxide (spinel). The only effect of C2H4 was to increase the friction of the Fe system, but C2H3Cl exposures decreases friction in both Ni and Fe systems, indicating the dominance of the chlorine over the ethylene complex on the surface

  13. Structure Evolution and Electric Properties of TaN Films Deposited on Al2O3-BASED Ceramic and Glass Substrates by Magnetron Reactive Sputtering

    NASA Astrophysics Data System (ADS)

    Zhou, Yan Ming; Ma, Yang Zhao; Xie, Zhong; He, Ming Zhi

    2014-03-01

    Structure evolution and electric properties of tantalum nitride (TaN) films deposited on Al2O3-based ceramic and glass substrates by magnetron reactive sputtering were carried out as a function of the N2-to-Ar flow ratio. The TaN thin films on Al2O3-based ceramic substrates grow with micronclusters composed of numerous nanocrystallites, contains from single-phase of Ta2N grains to TaN, and exhibits high defect density, sheet resistance and negative TCR as the N2-to-Ar flow ratio continuously increases. However, the films on the glass substrates grow in the way of sandwich close-stack, contains from single-phase of Ta2N grains to TaN and Ta3N5 phases with the increase of N2-to-Ar flow ratio. These results indicate that the N2-to-Ar flow ratio and surface characteristic difference of substrates play a dominant effect on the structure and composition of the TaN films, resulting in different electrical properties for the films on Al2O3-based ceramic and the samples on glass substrates.

  14. Integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor circuits on Si(1 0 0) substrate

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Akai, Daisuke; Ishida, Makoto

    2015-01-01

    In this paper, integration of crystalline orientated γ-Al2O3 films and complementary metal-oxide-semiconductor (CMOS) circuits on Si(1 0 0) substrate was reported. In this integration processes, crystalline γ-Al2O3 films need to be preserved their crystallinity during high temperature annealing processes of CMOS fabrication in order to prevent surface condition changes. The γ-Al2O3 films grown on Si substrates are annealed in the CMOS fabrication process conditions, drive-in annealing at 1150 °C in O2 atmosphere and wet annealing 1000 °C in H2O vapor atmosphere. Reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) were used to characterize the crystallinity of γ-Al2O3 films after the annealing processes. Surface conditions of the films are analyzed and observed with X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). As a result, RHEED patterns of the γ-Al2O3 films indicated that wet oxidation annealing was a critical process severally inferior surface condition of crystalline γ-Al2O3 films. XRD, XPS, and SEM investigation unveiled further details of the crystallinity changes on γ-Al2O3 films for each process. These results indicated passivation films were required to integrate γ-Al2O3 films with CMOS fabrication process. Therefore we proposed and introduced Si3N4/TEOS passivation films on γ-Al2O3 films in CMOS fabrication processes. At last, MOSFETs on γ-Al2O3 integrated Si(1 0 0) substrate were fabricated and characterized. The designed characteristics of MOSFETs were obtained on γ-Al2O3 integrated Si substrate.

  15. Growth of IZO/IGZO dual-active-layer for low-voltage-drive and high-mobility thin film transistors based on an ALD grown Al2O3 gate insulator

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Zhang, Hao; Ding, He; Zhang, Jianhua; Huang, Chuanxin; Shi, Weimin; Li, Jun; Jiang, Xueyin; Zhang, Zhilin

    2014-12-01

    We successfully integrated the high-performance oxide thin film transistors with novel IZO/IGZO dual-active-layers. The results showed that dual-active-layer (IZO/IGZO) TFTs, compared with single active layer IGZO TFTs and IZO TFTs, exhibited the excellent performances; specifically, a high field effect mobility of 14.4 cm2/Vs, a suitable threshold voltage of 0.8 V, a high on/off ratio of more than 107, a steep sub-threshold swing of 0.13 V/dec, and a substantially small threshold voltage shift of 0.51 V after temperature stress from 293 K to 353 K. In order to understand the superior performance, the density-of-states (DOS) were investigated based on the temperature-dependent transfer curves. The superior electric properties were attributed to the smaller DOS and higher carrier concentration. The proposed IZO/IGZO-TFT in this paper can be used as driving devices in the next-generation flat panel displays.

  16. Memristive behavior of Al2O3 film with bottom electrode surface modified by Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Qin, Shu-Chao; Dong, Rui-Xin; Yan, Xun-Ling

    2014-09-01

    The memristive behavior of Al2O3-based device is significantly improved by introducing Ag nanoparticles (NPs). Inserting Ag NPs can effectively reduce the switching voltages, increase the resistance ratio (about 104) and enhance the sweep endurance (300 cycles). In particular, the stable switching properties are obtained by inserting an Ag NPs layer with an average diameter of 14 nm on the surface of bottom electrode, and the devices show a long retention time (more than 106 s) compared with the devices without Ag NPs. The switching mechanism is related to the oxygen-vacancy-based conducting filaments and the interfacial effect. The local enhancement and nonuniform distribution of electric field have the benefits to promote, induce and modulate the growth of conducting filaments, such as shape, location and orientation, which are responsible for the improvement performance of the devices.

  17. Memristive behavior of Al2O3 film with bottom electrode surface modified by Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Qin, Shu-Chao; Dong, Rui-Xin; Yan, Xun-Ling

    2015-02-01

    The memristive behavior of Al2O3-based device is significantly improved by introducing Ag nanoparticles (NPs). Inserting Ag NPs can effectively reduce the switching voltages, increase the resistance ratio (about 104) and enhance the sweep endurance (300 cycles). In particular, the stable switching properties are obtained by inserting an Ag NPs layer with an average diameter of 14 nm on the surface of bottom electrode, and the devices show a long retention time (more than 106 s) compared with the devices without Ag NPs. The switching mechanism is related to the oxygen-vacancy-based conducting filaments and the interfacial effect. The local enhancement and nonuniform distribution of electric field have the benefits to promote, induce and modulate the growth of conducting filaments, such as shape, location and orientation, which are responsible for the improvement performance of the devices.

  18. Band alignment and electrical investigations of ultra-thin Al2O3 on Si by E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2017-05-01

    The continuous downscaling leads the search of high-κ gate dielectrics. The films amorphous in nature offered good mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, ˜ 16 nm thick amorphous Al2O3 films on silicon substrate are fabricated by E-beam evaporation. The high value of refractive index (1.76) extracted from ellipsometry analysis directs the deposition of compact film. The AFM analysis reveal a flat surface with small RMS surface roughness 1.5 Å. The band gap is extracted from O1s electron loss spectra and was found 6.7 eV and band alignment of Al2O3/Si is derived from the UPS measurements. The films are incorporated in Metal - Insulator - Semiconductor (MIS) capacitor to perform the electrical measurement. The flat band voltage (VFB), dielectric constant (κ) and oxide trapped charges (Qot) extracted from high frequency (1 MHz) C-V curve are - 0.4 V, 8.4 and 2 × 1011 cm-2, respectively. The small flat band voltage - 0.4 V, narrow hysteresis and very little frequency dispersion suggest an exceptional good Al2O3/Si interface with small quantity of trapped charges in the oxide. The leakage current density was 4.27 × 10-8 A/cm2 at 1 V. The moderate dielectric constant and low leakage current density with ultra-smooth surface is quite useful towards its application in future CMOS and memory devices.

  19. Low temperature photoluminescence properties of InGaN films grown on (0 1 overline1 2) Al 2O 3 and (0 0 0 1) Al 2O 3 substrates by low pressure MOVPE

    NASA Astrophysics Data System (ADS)

    Yuzhen, Tong; Guoyi, Zhang; Sixuan, Jin; Zhijian, Yang; Xiaozhong, Dang; Shumin, Wang

    1997-05-01

    Low temperature photoluminescence (PL) properties of InGaN films grown on (0 1 overline1 2) Al 2O 3 and (0 0 0 1) Al 2O 3 substrates by low pressure MOVPE were studied at 11 K. In the PL spectrum of a {In 0.11Ga 0.89N }/{AlN} buffer/(0 1 overline1 2)Al 2O 3 film, only one near band edge emission with wavelength 371.4 nm was observed in the range from 350 nm to 630 nm. For In xGa 1- xN/GaN/GaN buffer/(0 0 0 1)Al 2O 3 films with x = 0.02 and 0.035, similar PL spectra of GaN films, the recombinations of an exciton bound to a neutral donor ( I2 lines) were observed and seem to be dominant. The peak energy positions were 3.467 eV, 3.454 eV and 3.449 eV for x = 0, 0.02 and 0.03, respectively. It was found that FWHM roughly increase as x increases. Donor-Acceptor (D-A) pair combination near 3.27 eV and their LO-phonon replica (near 3.18 eV) also appeared in the PL spectra. The LO-phonon energy of In xGa 1- xN shift to high energy compared to GaN. It is suggested that the D-A pair recombination contributes to the transitions from a shallow donor to a carbon-related acceptor level.

  20. Synthesis of anodizing composite films containing superfine Al 2O 3 and PTFE particles on Al alloys

    NASA Astrophysics Data System (ADS)

    Chen, Suiyuan; Kang, Chen; Wang, Jing; Liu, Changsheng; Sun, Kai

    2010-09-01

    Anodized composite films containing superfine Al 2O 3 and PTFE particles were prepared on 2024 Al alloy using an anodizing method. The microstructures and properties of the films were studied by scanning electron microscopy, optical microscopy and X-ray diffraction. Friction wear tests were performed to evaluate the mechanical properties of the composites. Results indicate that the composite films with reinforced Al 2O 3 and PTFE two-particles have reduced friction coefficients and relatively high microhardness. The friction coefficient can be as small as 0.15, which is much smaller than that of an oxide film prepared under the same conditions but without adding any particles (0.25), while the microhardness can reach as high as 404 HV. When rubbed at room temperature for 20 min during dry sliding friction tests, the wear loss of the film was about 16 mg, which is about the half of that of the samples without added particles. The synthesized composite films that have good anti-wear and self-lubricating properties are desirable for oil-free industrial machinery applications.

  1. Influence of argon plasma on the deposition of Al2O3 film onto the PET surfaces by atomic layer deposition.

    PubMed

    Edy, Riyanto; Huang, Xiaojiang; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-02-15

    In this paper, polyethyleneterephthalate (PET) films with and without plasma pretreatment were modified by atomic layer deposition (ALD) and plasma-assisted atomic layer deposition (PA-ALD). It demonstrates that the Al2O3 films are successfully deposited onto the surface of PET films. The cracks formed on the deposited Al2O3 films in the ALD, plasma pretreated ALD, and PA-ALD were attributed to the energetic ion bombardment in plasmas. The surface wettability in terms of water contact angle shows that the deposited Al2O3 layer can enhance the wetting property of modified PET surface. Further characterizations of the Al2O3 films suggest that the elevated density of hydroxyl -OH group improve the initial growth of ALD deposition. Chemical composition of the Al2O3-coated PET film was characterized by X-ray photoelectron spectroscopy, which shows that the content of C 1s reduces with the growing of O 1s in the Al2O3-coated PET films, and the introduction of plasma in the ALD process helps the normal growth of Al2O3 on PET in PA-ALD.

  2. Comparative study of the breakdown transients of thin Al2O3 and HfO2 films in MIM structures and their connection with the thermal properties of materials

    NASA Astrophysics Data System (ADS)

    Pazos, S.; Aguirre, F.; Miranda, E.; Lombardo, S.; Palumbo, F.

    2017-03-01

    In this work, the breakdown transients of A l 2 O 3 - and HfO2-based metal-insulator-metal (MIM) stacks with the same oxide thickness and identical metal electrodes were compared. Their connection with the thermal properties of the materials was investigated using alternative experimental setups. The differences and similarities between these transients in the fast and progressive breakdown regimes were assessed. According to the obtained results, A l 2 O 3 exhibits longer breakdown transients than HfO2 and requires a higher voltage to initiate a very fast current runaway across the dielectric film. This distinctive behavior is ascribed to the higher thermal conductivity of A l 2 O 3 . Overall results link the breakdown process to the thermal properties of the oxides under test rather than to dissipation effects occurring at the metal electrodes.

  3. Passivation mechanism of thermal atomic layer-deposited Al2O3 films on silicon at different annealing temperatures

    PubMed Central

    2013-01-01

    Thermal atomic layer-deposited (ALD) aluminum oxide (Al2O3) acquires high negative fixed charge density (Qf) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Qf can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al2O3 films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Qf obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Qf. Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiOx/Si interface region decreased with increased temperature. Measurement results of Qf proved that the Al vacancy of the bulk film may not be related to Qf. The defect density in the SiOx region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. PMID:23452508

  4. Design of α-Al2O3/Cr2O3 nano-multilayered composite films with enhanced irradiation tolerance prepared by epitaxial growth at low temperature

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Dong, Yuming; Liu, Bo; Lin, Liwei; Zhu, Jingjun; Liu, Shifeng; Li, Qiran; Liu, Xiang

    2017-09-01

    In this paper, α-Al2O3/Cr2O3 nano-multilayered composite films were studied due to excellent properties of α-Al2O3 and template effect of Cr2O3 for the synthesis of α-Al2O3 at low temperature. SRIM code was used to simulate the irradiation damage of α-Al2O3/Cr2O3 multilayer films with different single layer thicknesses caused by 60 keV He+, in order to find out a better design of the structure of the multilayer film. α-Al2O3/Cr2O3 nano-multilayered films with different single layer thickness were deposited by RF magnetron reactive sputtering on Si (100) at 400 °C with Cr2O3 layers as crystallographic templates. The films were injected by 60 keV He+ with fluences of 0.5 × 1017, 1 × 1017 and 2 × 1017 He+/cm2 at temperature about 573 K to study the microstructural development and surface morphology evolution of α-Al2O3/Cr2O3 nano-multilayer films. The simulation results along with the SEM investigation indicated that to obtain better irradiation tolerance, one should design a multilayer with a high proportion of α-Al2O3 and more interfaces. The experimental results showed that the microstructures of the α-Al2O3 (100 nm)/Cr2O3 (60 nm) multilayers were nano-polycrystalline and remained stable even as the radiation fluences increase to 1 × 1017 He+/cm2. This suggests the excellent irradiation tolerance of α-Al2O3 (100 nm)/Cr2O3 (60 nm) nano-multilayered composite films.

  5. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  6. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films.

    PubMed

    Palomares, Emilio; Clifford, John N; Haque, Saif A; Lutz, Thierry; Durrant, James R

    2002-07-21

    The conformal growth of an overlayer of Al2O3 on a nanocrystalline TiO2 film is shown to result in a 4-fold retardation of interfacial charge recombination, and a 30% improvement in photovoltaic device efficiency.

  7. Epitaxial growth and electric properties of γ-Al2O3(110) films on β-Ga2O3(010) substrates

    NASA Astrophysics Data System (ADS)

    Hattori, Mai; Oshima, Takayoshi; Wakabayashi, Ryo; Yoshimatsu, Kohei; Sasaki, Kohei; Masui, Takekazu; Kuramata, Akito; Yamakoshi, Shigenobu; Horiba, Koji; Kumigashira, Hiroshi; Ohtomo, Akira

    2016-12-01

    Epitaxial growth and electrical properties of γ-Al2O3 films on β-Ga2O3(010) substrates were investigated regarding the prospect of a gate oxide in a β-Ga2O3-based MOSFET. The γ-Al2O3 films grew along the [110] direction and inherited the oxygen sublattice from β-Ga2O3 resulting in the unique in-plane epitaxial relationship of γ-Al2O3 [\\bar{1}10] ∥ β-Ga2O3[001]. We found that the γ-Al2O3 layer had a band gap of 7.0 eV and a type-I band alignment with β-Ga2O3 with conduction- and valence-band offsets of 1.9 and 0.5 eV, respectively. A relatively high trap density (≅ 2 × 1012 cm-2 eV-1) was found from the voltage shift of photoassisted capacitance-voltage curves measured for a Au/γ-Al2O3/β-Ga2O3 MOS capacitor. These results indicate good structural and electric properties and some limitations hindering the better understanding of the role of the gate dielectrics (a γ-Al2O3 interface layer naturally crystallized from amorphous Al2O3) in the β-Ga2O3 MOSFET.

  8. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  9. Si-rich Al2O3 films grown by RF magnetron sputtering: structural and photoluminescence properties versus annealing treatment

    PubMed Central

    2013-01-01

    Silicon-rich Al2O3 films (Six(Al2O3)1−x) were co-sputtered from two separate silicon and alumina targets onto a long silicon oxide substrate. The effects of different annealing treatments on the structure and light emission of the films versus x were investigated by means of spectroscopic ellipsometry, X-ray diffraction, micro-Raman scattering, and micro-photoluminescence (PL) methods. The formation of amorphous Si clusters upon the deposition process was found for the films with x ≥ 0.38. The annealing treatment of the films at 1,050°C to 1,150°C results in formation of Si nanocrystallites (Si-ncs). It was observed that their size depends on the type of this treatment. The conventional annealing at 1,150°C for 30 min of the samples with x = 0.5 to 0.68 leads to the formation of Si-ncs with the mean size of about 14 nm, whereas rapid thermal annealing of similar samples at 1,050°C for 1 min showed the presence of Si-ncs with sizes of about 5 nm. Two main broad PL bands were observed in the 500- to 900-nm spectral range with peak positions at 575 to 600 nm and 700 to 750 nm accompanied by near-infrared tail. The low-temperature measurement revealed that the intensity of the main PL band did not change with cooling contrary to the behavior expected for quantum confined Si-ncs. Based on the analysis of PL spectrum, it is supposed that the near-infrared PL component originates from the exciton recombination in the Si-ncs. However, the most intense emission in the visible spectral range is due to either defects in matrix or electron states at the Si-nc/matrix interface. PMID:23758885

  10. Magnetic properties and anisotropic coercivity in nanogranular films of Co/Al2O3 above the percolation limit

    NASA Astrophysics Data System (ADS)

    Kulyk, M. M.; Kalita, V. M.; Lozenko, A. F.; Ryabchenko, S. M.; Stognei, O. V.; Sitnikov, A. V.; Korenivski, V.

    2014-08-01

    Magnetic properties of nanogranular ferromagnetic Co/Al2O3 films with 74.5 at% Co, which is above the percolation limit, are investigated. It is established that the films have perpendicular magnetic anisotropy and a weaker in-plane anisotropy. The magnetization curves show that the film consists of two magnetic components: a dominating contribution from magneto-anisotropic isolated grains with the anisotropy axis perpendicular to the film plane and a weaker contribution from the percolated part of the film. This two-component magnetic composition of the films, with the dominating contribution from the nanograins, is confirmed by transmission electron microscopy as well as by ferromagnetic resonance spectroscopy. It is further established that the coercive field of the film is almost entirely determined by the percolated part of the film. In this, the angular dependence of the coercive force, Hc (θH), is essentially proportional to sin-1θH, where θH is the angle between the applied field and the film's normal. However, for θH → 0, Hc (θH) there is a narrow minimum with Hc approaching zero. Such non-linear dependence agrees well with our modelling results for a two-component magnetic system of the film, where the non-percolated nanograins have a distinct perpendicular anisotropy. The reported results should be important for in-depth characterization and understanding the magnetism and anisotropy in inhomogeneous systems as well as for applications, specifically in perpendicular magnetic recording.

  11. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 °C

    NASA Astrophysics Data System (ADS)

    Pei, Haiqing; Wen, Zhixun; Zhang, Yamin; Yue, Zhufeng

    2017-07-01

    Detailed long-term of 2000 h oxidation behavior of a Ni-based single crystal superalloy was investigated at 1000 °C. In the first oxidation stage, α-Al2O3 formed immediately, and then the mass gain curve obeys the parabolic law, which corresponds to the growth of α-Al2O3 film. A single α-Al2O3 film kept on the surface of the specimen before 750 h oxidation. The oxidation is controlled by the inward diffusion of oxygen anions to react with Al cations at the oxide/metal interface. The shape of the exfoliation region of single α-Al2O3 film is closed to an annulus, in which the (Ni, Co)O layer formed due to depletion of Al. The three-layer oxide scale formed rapidly after 750 h oxidation. With the continue consumption of Al, a discontinuous inner α-Al2O3 layer formed, making oxide scale spall seriously and gain mass rapidly. The states of α-Al2O3 film, the controlled film, are different in dendrite core and interdendritic region.

  12. Low Surface Recombination Velocity on P-Type Cz-Si Surface by Sol-Gel Deposition of Al2O3 Films for Solar Cell Applications.

    PubMed

    Balaji, Nagarajan; Park, Cheolmin; Raja, Jayapal; Ju, Minkyu; Venkatesan, Muthukumarasamy Rangaraju; Lee, Haeseok; Yi, Junsin

    2015-07-01

    High quality surface passivation has gained a significant importance in photovoltaic industry for fabricating low cost and high efficiency solar cells using thinner and lower cost wafers. The passivation property of spin coated Al2O3 films with a thickness of about 50 nm on p-type Cz-Si wafers has been investigated as a function of annealing temperatures. An effective surface recombination velocity of 55 cm/s was obtained for the films annealed at 500 °C. The chemical and field effect passivation was analyzed by C-V measurements. A high density of negative fixed charges (Qf) in the order of 9 x 10(11) cm(-2) was detected in Al2O3 films and its impact on the level of surface passivation was demonstrated experimentally. The C-V curves show density of the interface state (Dit) of 1 x 10(12) eV(-1)cm(-2) at annealing temperature of 500 °C. During annealing, a thin interfacial SiOx is formed, and this interfacial layer is supposed to play a vital role in the origin of negative QF and Dit. The homogeneous SiOx interlayer result in higher passivation performance due to both the increase of negative Qf and the decrease of Dit.

  13. Properties of atomic-layer-deposited Al2O3/ZnO dielectric films grown at low temperature for RF MEMS

    NASA Astrophysics Data System (ADS)

    Herrmann, Cari F.; Del Rio, Frank W.; George, Steven M.; Bright, Victor M.

    2005-01-01

    Al2O3/ZnO alloy films were grown at 100°C using atomic layer deposition (ALD) techniques. It has been previously established that the resistivity of these films can be tuned over a wide range by varying the amount of Zn in the film. Al2O3/ZnO ALD alloy films can therefore be designed with a dielectric constant high enough to provide a large down-state capacitance and a resistivity low enough to promote the dissipation of trapped charges. The material and electrical properties of the Al2O3/ZnO ALD films were investigated using Auger electron spectroscopy (AES), nanoindentation, and mercury probe measurements. Chemical analysis using AES confirmed the presence of both Al and Zn in the alloys. The nanoindentation measurements were used to calculate the Young's modulus and hardness of the films. Pure Al2O3 ALD was determined to have a modulus between 150 and 155 GPa and a hardness of ~8 GPa, while the results for pure ZnO ALD indicated a modulus between 120 and 140 GPa and a hardness of ~5 GPa. An Al2O3/ZnO ALD alloy displayed a modulus of 140-145 GPa, which falls between the two pure films, and a hardness of ~8 GPa, which is similar to the pure Al2O3 film. The dielectric constants of the ALD films were calculated from the mercury probe measurements and were determined to be around 6.8. These properties indicate that the Al2O3/ZnO ALD films can be engineered as a property specific dielectric layer for RF MEMS devices.

  14. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-08-01

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al2O3 films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al2O3 metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO2 capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al2O3 capacitors are found to outperform the SiO2 capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al2O3 interface. The Al2O3 electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al2O3 capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al2O3. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al2O3 capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al2O3/underlying SiO2 interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al2O3 films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450 °C ALD process is presently the most promising technology for growing high-reliability Al2O3 films.

  15. Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer

    NASA Astrophysics Data System (ADS)

    Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge

    2012-12-01

    The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.

  16. Preparation and characterization of α-Al2O3 film by low temperature thermal oxidation of Al8Cr5 coating

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Xu, Bajin; Ling, Guoping

    2015-03-01

    In this paper, α-Al2O3 film was prepared by low temperature thermal oxidation of Al8Cr5 coating. The Al8Cr5 alloy coating was prepared on SUS430 stainless steel through a two-step approach including electrodepositing Cr/Al composite coating and subsequent heat treatment at 740 °C for 16 h. After mechanical polishing removal of voids on the surface, the Al8Cr5 coating was thermal oxidized at 720 °C in argon for 100 h. The samples were characterized by SEM, EDX, XRD, XPS and TEM. XPS detection on the surface of oxidized Al8Cr5 coating showed that the oxide film mainly consisted of Al2O3. TEM characterization of the oxide film showed that it was α-Al2O3 films ca. 110 nm. The formation of α-Al2O3 films at low temperature can be attributed to the formation of Cr2O3 nuclei at the initial stage of oxidation which lowers the nucleation energy barrier of α-Al2O3.

  17. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei

    2009-08-01

    Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.

  18. Silicon solar cells with Al2O3 antireflection coating

    NASA Astrophysics Data System (ADS)

    Dobrzański, Leszek A.; Szindler, Marek; Drygała, Aleksandra; Szindler, Magdalena M.

    2014-09-01

    The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.

  19. Silicon solar cells with Al2O3 antireflection coating

    NASA Astrophysics Data System (ADS)

    Dobrzański, Leszek; Szindler, Marek; Drygała, Aleksandra; Szindler, Magdalena

    2014-09-01

    The paper presents the possibility of using Al2O3 antireflection coatings deposited by atomic layer deposition ALD. The ALD method is based on alternate pulsing of the precursor gases and vapors onto the substrate surface and then chemisorption or surface reaction of the precursors. The reactor is purged with an inert gas between the precursor pulses. The Al2O3 thin film in structure of the finished solar cells can play the role of both antireflection and passivation layer which will simplify the process. For this research 50×50 mm monocrystalline silicon solar cells with one bus bar have been used. The metallic contacts were prepared by screen printing method and Al2O3 antireflection coating by ALD method. Results and their analysis allow to conclude that the Al2O3 antireflection coating deposited by ALD has a significant impact on the optoelectronic properties of the silicon solar cell. For about 80 nm of Al2O3 the best results were obtained in the wavelength range of 400 to 800 nm reducing the reflection to less than 1%. The difference in the solar cells efficiency between with and without antireflection coating was 5.28%. The LBIC scan measurements may indicate a positive influence of the thin film Al2O3 on the bulk passivation of the silicon.

  20. Role of oxygen pressure on the structural, morphological and optical properties of c-Al2O3 films deposited by thermal evaporator

    NASA Astrophysics Data System (ADS)

    Khan, Ijaz Ahmad; Amna, Noureen; Kanwal, Nosheen; Razzaq, Maleeha; Farid, Amjad; Amin, Nasir; Ikhlaq, Uzma; Saleem, Murtaza; Ahmad, Riaz

    2017-03-01

    Aluminum oxide (c-Al2O3) films are deposited for various (0.5, 1, 1.5 and 2 mbar) oxygen pressures on glass substrates by thermal evaporator. The x-ray diffraction patterns exhibit the development of single diffraction peak related to c-Al2O3 phase which grows along (2 2 0) orientation up to 1.5 mbar pressure. For 2 mbar pressure, the deposited film becomes amorphous because no diffraction peak is observed. A minimum FWHM and maximum crystallite size of c-Al2O3 (2 2 0) plane is observed for 1 mbar pressure. The enhanced crystallite size of c-Al2O3 (2 2 0) plane is responsible to decrease the dislocation density and residual stresses developed during the deposition process. The field emission scanning electron microscopic analysis reveals the formation of smooth, uniform and compact films showing uniform distribution of nano-particles of different shapes and sizes. The energy dispersive x-ray spectroscopic analysis confirms the presence of Al whose content is decreased with the increase of oxygen pressures. The ellipsometric analysis confirms that the refractive index and the thickness of c-Al2O3 film deposited for 0.5 mbar pressure are found to 1.685 and 124.43 nm respectively. In short, the crystal structure, surface morphology, film thickness and refractive index of c-Al2O3 films are associated with the increase of oxygen pressures.

  1. WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films

    SciTech Connect

    Ahmed, M F; Yukihara, E; Schnell, E; Ahmad, S; Akselrod, M; Brons, S; Greilich, S; Jakel, O; Osinga, J

    2015-06-15

    Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flat field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr

  2. Performance of AlGaN/GaN MISHFET using dual-purpose thin Al2O3 layer for surface protection and gate insulator

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kywn; Sindhuri, V.; Jo, Young-Woo; Kim, Dong-Seok; Kang, Hee-Sung; Lee, Jun-Hyeok; Lee, Yong Soo; Bae, Youngho; Hahm, Sung-Ho; Lee, Jung-Hee

    2014-10-01

    In this work, we have investigated a role of a thin Al2O3 layer in AlGaN/GaN MISHFET by characterizing the variation of the sheet resistance of the 2DEG channel layer. The Al2O3 layer, varying the thickness from 0 to 10 nm, was utilized as the gate insulator of the device as well as the surface protection layer during RTP for ohmic contact formation. After RTP, the 2DEG channel layer without the Al2O3 layer was rapidly degraded by increasing the sheet resistance of the layer to 1360 Ω/□ from the sheet resistance of 400 Ω/□ of the as-grown sample. The degradation was still observed even when 1.5 nm-thick Al2O3 layer was used. However, the sheet resistances of the devices remained constant with slightly decreased value from that of the as-grown sample when the thickness is larger than 3 nm, which indicates that the 3 nm-thick Al2O3 layer well protects the AlGaN surface above the 2DEG channel during RTP. The slight decrease in sheet resistance is probably because some acceptor-like states existing at AlGaN surface become neutralized and hence the 2DEG density increases. The Al2O3 layer was not removed for proceeding the fabrication of AlGaN/GaN MISHFET, but rather used as a gate dielectric, which simplifies the device fabrication eliminating the additional deposition steps for the gate dielectric. The threshold voltage of the device, investigated in this work, was increased to the negative direction with increasing the thickness of Al2O3 layers while the transconductance was decreased. The best performances were obtained from the device with 8 nm-thick Al2O3 layer, exhibiting very low gate leakage current of 10-9 A/mm with subthreshold swing (SS) of 80 mV/dec and very high Ion/Ioff ratio (>9 orders).

  3. Effect of annealing temperature on the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF gel films

    NASA Astrophysics Data System (ADS)

    Malashkevich, G. E.; Kornienko, A. A.; Dunina, E. B.; Prusova, I. V.; Shevchenko, G. P.; Bokshits, Yu. V.

    2007-06-01

    The dependence of the structural reorganization of Eu3+ optical centers in Al2O3-Eu2O3-BiOF films on the annealing temperature has been investigated. It is shown by the methods of crystal field theory and computer simulation that the increase in the annealing temperature from 700 to 1100 °C leads to removal of bismuth from Eu-O-Bi complex centers with the C 3V symmetry in the Al2O3 structure and the change in symmetry from D 3 to O h for a large fraction of EuAlO3 centers.

  4. Static compression of Al2O3 to 1.2 Mbars /120 GPa/

    NASA Technical Reports Server (NTRS)

    Gupta, M. C.; Ruoff, A. L.

    1979-01-01

    Pressures up to 120 GPa were generated when a diamond indentor of radius 10.0 micrometers was pressed against a very thin sample of Al2O3 on a diamond flat. The thin film of Al2O3 was prepared by sputtering of aluminum in an oxygen atmosphere. From the measurement of the electrical resistance of Al2O3 as a function of pressure it was found that Al2O3 remains an insulator at the highest pressure studied, namely, 120 GPa.

  5. Vanadium oxides on aluminum oxide supports. 1. Surface termination and reducibility of vanadia films on alpha-Al2O3(0001).

    PubMed

    Todorova, Tanya K; Ganduglia-Pirovano, M Veronica; Sauer, Joachim

    2005-12-15

    Using density functional theory and statistical thermodynamics, we obtained the phase diagram of thin VnOm films of varying thickness (approximately 2-6 A, 1-6 vanadium layers) supported on alpha-Al2O3(0001). Depending on the temperature, oxygen pressure, and vanadium concentration, films with different thickness and termination may form. In ultrahigh vacuum (UHV), at room temperature and for low vanadium concentrations, an ultrathin (1 x 1) O=V-terminated film is most stable. As more vanadium is supplied, the thickest possible films form. Their structures and terminations correspond to previous findings for the (0001) surface of bulk V2O3 [Kresse et al., Surf. Sci. 2004, 555, 118]. The presence of surface vanadyl (O=V) groups is a prevalent feature. They are stable up to at least 800 K in UHV. Vanadyl oxygen atoms induce a V(2p) core-level shift of about 2 eV on the surface V atoms. The reducibility of the supported films is characterized by the energy of oxygen defect formation. For the stable structures, the results vary between 4.11 and 3.59 eV per 1/2O2. In contrast, oxygen removal from the V2O5(001) surface is much easier (1.93 eV). This provides a possible explanation for the lower catalytic activity of vanadium oxides supported on alumina compared to that of crystalline vanadia particles.

  6. Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition

    Treesearch

    K. Tapily; Joseph E. Jakes; D. S. Stone; P. Shrestha; D. Gu; H. Baumgart; A. A. Elmustafa

    2008-01-01

    The challenges of reducing gate leakage current and dielectric breakdown beyond the 45 nm technology node have shifted engineers’ attention from the traditional and proven dielectric SiO2 to materials of higher dielectric constant also known as high-k materials such as hafnium oxide (HfO2) and aluminum oxide (Al2O3). These high-k materials are projected to...

  7. Study of ZrO2/Al2O3/ZrO2 and Al2O3/ZrO2/Al2O3 stack structures deposited by sol-gel method on Si

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.; Dimitrova, T.

    2010-02-01

    Based on our previous experience with pseudobinary alloys of (Al2O3)x(ZrO2)1-x as high-k materials and passivating coatings for solar cells, stack systems of ZrO2/Al2O3/ZrO2and Al2O3/ZrO2/Al2O3, deposited by simple and low cost sol-gel technology have been studied. The thin films of ZrO2 and Al2O3 were sequentially obtained on Si substrates including spin coating deposition from stable solutions. High resolution scanning electron microscopy (HRSEM) was used to compare the morphology of the nanolaminates. The layers were optically characterized by UV-VIS spectrophotometry. The electrical measurements were carried out on metal-insulator-semiconductor (MIS) structures. Their leakage current and relative permittivity were determined.

  8. Preparation and characterization of super-water-repellent Al2O3 coating films with high transparency

    NASA Astrophysics Data System (ADS)

    Minami, Tsutomu; Katata, Noriko; Tadanaga, Kiyoharu

    1997-10-01

    Alumina thin films with a roughness of 20 to 50 nm were formed by immersing the porous alumina gel films prepared by the sol- gel method in boiling water. When hydrolyzed fluoroalkyltrimethoxysilane was coated on the alumina films, the films showed super-water-repellency and high transparency; the contact angle for water of the film was 165 degrees and the transmittance for visible light was higher than 92%. When the fluoroalkyltrimethoxysilane-coated thin films were heat- treated at temperatures higher than 500 degrees Celsius, the films became super-hydrophilic; the contact angle for water on the films was less than 5 degrees. It was shown the existence of air in the pores on the surface caused the super-water- repellency and that of water in the pores caused the super- hydrophilic property. The transparent, super water-repellent and super-hydrophilic coating films formed on glasses, metals, and ceramics have practical applications such as optical lenses, eye-glasses, cover glasses for solar cells, windshields of automobiles, and so on.

  9. Optical and magneto-optical properties and magnetorefractive effect in metal-insulator CoFe-Al2O3 granular films

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Poperenko, L. V.; Yurgelevych, I. V.; Pogorily, A. M.; Kravets, A. F.

    2005-08-01

    Optical and magneto-optical properties of metal-insulator (CoFe)x(Al2O3)1-x granular films have been investigated. The results have been compared with the experimental data of the magnetorefractive effect in the IR region. The optical and magneto-optical spectra of the films depend strongly on the volume fraction of ferromagnetic particles. It was found that the Kerr effect is substantially increased in the spectral region of the plasma frequency. It was revealed that appearance peculiarities observed in the magnetoreflection spectra at 7.5-9.5μm are associated with the excitation of longitudinal phonon modes in the Al2O3 dielectric matrix. It has been shown that both intraband and interband electron transitions contribute to the magnetoresistivity as well as to the IR magnetoreflection. The optical and magneto-optical properties of the (CoFe)x(Al2O3)1-x granular films can be interpreted in the frame of the effective-medium approximation. The magnetorefractive effect can be explained in terms of the modified Hagen-Rubens relation.

  10. Photoluminescence of Ga-doped ZnO film grown on c-Al2O3 (0001) by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Park, H. C.; Byun, D.; Angadi, B.; Hee Park, D.; Choi, W. K.; Choi, J. W.; Jung, Y. S.

    2007-10-01

    High quality gallium doped ZnO (Ga:ZnO) thin films were grown on c-Al2O3(1000) by plasma-assisted molecular beam epitaxy, and Ga concentration NGa was controlled in the range of 1×1018-2.5×1020/cm3 by adjusting/changing the Ga cell temperature. From the low-temperature photoluminescence at 10K, the donor bound exciton I8 related to Ga impurity was clearly observed and confirmed by comparing the calculated activation energy of 16.8meV of the emission peak intensity with the known localization energy, 16.1meV. Observed asymmetric broadening with a long tail on the lower energy side in the photoluminescence (PL) emission line shape could be fitted by the Stark effect and the compensation ratio was approximately 14-17% at NGa⩾1×1020/cm3. The measured broadening of photoluminescence PL emission is in good agreement with the total thermal broadening and potential fluctuations caused by random distribution of impurity at NGa lower than the Mott critical density.

  11. Uniform deposition of ultrathin polymer films on the surfaces of Al2O3 nanoparticles by a plasma treatment

    NASA Astrophysics Data System (ADS)

    Shi, Donglu; Wang, S. X.; van Ooij, Wim J.; Wang, L. M.; Zhao, Jiangang; Yu, Zhou

    2001-02-01

    Surface modification of nanoparticles will present great challenges due to their extremely small dimensions, high surface areas, and high surface energies. In this research, we demonstrate the uniform deposition of ultrathin polymer films of 2 nm on the surfaces of alumina nanoparticles. The deposited film can also be tailored to multilayers. Time-of-flight secondary ion mass spectroscopy was used to confirm the pyrrole thin film on the nanoparticle surfaces. Using such a nanocoating, it is possible to alter the intrinsic properties of materials that cannot be achieved by conventional methods and materials.

  12. Giant Blistering of Nanometer-Thick Al2O3/ZnO Films Grown by Atomic Layer Deposition: Mechanism and Potential Applications.

    PubMed

    Liu, Hongfei; Guo, Shifeng; Yang, Ren Bin; Lee, Coryl J J; Zhang, Lei

    2017-08-09

    Giant circular blisters of up to 300 μm diameter and 10 μm deflection have been produced on nanometer-thick Al2O3-on-ZnO stacks grown by atomic layer deposition at 150 °C followed by annealing at elevated temperatures. Their shape changes upon varied ambient pressures provide evidence that their formation is related to an anneal-induced outgassing combined with their impermeability. The former mainly occurs in the bottom ZnO layer that recrystallizes and releases residual hydroxide ions at elevated temperatures while the latter is dominantly contributed by the pinhole-free Al2O3 layer on top. Vibrations at a resonant frequency of ∼740 kHz are mechanically actuated and optically probed from an individual blister. By modulating the thickness and stacking sequence of Al2O3 and ZnO, we further demonstrate a localized circular film swelling upon electron-beam irradiation and its recovery after reducing the irradiation flux. The elastic blistering and the recoverable swelling of the nanometer-thick films represent a miniaturized event-driven mechanical system for potential functioning applications.

  13. Thermal Stability of the Dynamic Magnetic Properties of FeSiAl-Al2O3 and FeSiAl-SiO2 Films Grown by Gradient-Composition Sputtering Technique

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoxi; Phuoc, Nguyen N.; Soh, Wee Tee; Ong, C. K.; Peng, Long; Li, Lezhong

    2017-01-01

    We carry out a systematic investigation of the dynamic magnetic properties of FeSiAl-Al2O3 and FeSiAl-SiO2 thin films prepared by gradient-composition deposition technique with respect to temperature in the range of 300 K to 420 K. It was found that the magnetic anisotropy field ( H K) and ferromagnetic resonance frequency ( f FMR) are increased with increasing deposition angle ( β) due to the enhancement of stress ( σ) when concentrations of Al and O or Si and O are increased. The thermal stability of FeSiAl-Al2O3 films show a very interesting behavior with the magnetic anisotropy increasing with temperature when the deposition angle is increased. In contrast, when the deposition angle is lower, the usual trend of decreasing magnetic anisotropy with increasing temperature is observed. Moreover, the temperature-dependent behaviors of the dynamic permeability and effective Gilbert damping coefficient ( α eff) for FeSiAl-Al2O3 and FeSiAl-SiO2 films at different deposition angles are discussed in detail.

  14. Comparison of the microstructure and magnetic properties of strontium hexaferrite films deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates by pulsed laser technique

    NASA Astrophysics Data System (ADS)

    Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.; Ong, C. K.

    2014-01-01

    Strontium hexaferrite SrFe12O19 (SrM) films have been deposited on Al2O3(0001), Si(100)/Pt(111) and Si(100) substrates. The (001) oriented SrFe12O19 films deposited on the Al2O3(0001) and Si(100)/Pt(111) substrates have been confirmed by X-ray diffraction patterns. Higher coercivity in perpendicular direction rather than in-plane direction of the SrM/Al2O3(0001) and SrM/Pt(111) films showed that the films had perpendicular magnetic anisotropy. The (001) orientation and similar microstructure and magnetic properties of the SrM/Al2O3(0001) and SrM/Pt(111) films show the Al2O3(0001) substrate can be replaced by the Si(100)/Pt(111) substrate.

  15. Low temperature H2O and NO2 coadsorption on theta-Al2O3/NiAl(100) ultrathin films.

    PubMed

    Ozensoy, Emrah; Peden, Charles H F; Szanyi, János

    2006-04-20

    The coadsorption of H(2)O and NO(2) molecules on a well-ordered, ultrathin theta-Al(2)O(3)/NiAl(100) film surface was studied using temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS). For H(2)O and NO(2) monolayers adsorbed separately on the theta-Al(2)O(3)/NiAl(100) surface, adsorption energies were estimated to be 44.8 and 36.6 kJ/mol, respectively. Coadsorption systems prepared by sequential deposition of NO(2) and H(2)O revealed the existence of coverage and temperature-dependent adsorption regimes where H(2)O molecules and the surface NO(x) species (NO(2)/N(2)O(4)/NO(2)(-),NO(3)(-)) form segregated and/or mixed domains. Influence of the changes in the crystallinity of solid water (amorphous vs crystalline) on the coadsorption properties of the NO(2)/H(2)O/theta-Al(2)O(3)/NiAl(100) system is also discussed.

  16. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-01

    The Al2O3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H2O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D2O instead of H2O in the ALD and found that the Al2O3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH3 groups than the high-temperature film. This CH3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H2O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H2O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D2O-oxidant ALD but found that the mass density and dielectric constant of D2O-grown Al2O3 films are smaller than those of H2O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al2O3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.

  17. IMPERMEABLE THIN Al2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-03-10

    In order to improve the hot corrosion resistance of conventional YSZ TBC system, a thin and dense {alpha}-Al{sub 2}O{sub 3} overlay has been deposited on the YSZ surface by the composite-sol-gel route (CSG). The YSZ substrates were dipped with boehmite sol containing calcined {alpha}-Al{sub 2}O{sub 3} particles, dried to form a gel film and calcined at 1200 C to form {alpha}-Al{sub 2}O{sub 3} overlay. Hot corrosion tests were carried out on the TBCs with and without Al{sub 2}O{sub 3} coating in molten salt mixtures (Na{sub 2}SO{sub 4} + 5% V{sub 2}O{sub 5}) at 950 C for 10 hours. The results showed that besides a thin and dense alumina overlay with the thickness of about 100-500 nm formed on the YSZ surface, the microcracks and porous near the surface in YSZ was also occupied by alumina because of penetration of the low viscosity precursor. As a result, the Al{sub 2}O{sub 3} overlay remarkably refrained the infiltration of the molten salt into the YSZ coating. The amount of M-phase in the TBC coating with Al{sub 2}O{sub 3} overlay was substantially reduced comparing to that without alumina overlay. In the next reporting period, we will prepare the alumina overlay by CSG route with different thickness and study the hot corrosion mechanism of YSZ TBC with thin Al{sub 2}O{sub 3} overlay coating produced by CSG.

  18. Electronic properties of ultrathin HfO2, Al2O3, and Hf-Al-O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Oh, Suhk Kun; Kang, Hee Jae; Tougaard, Sven

    2006-10-01

    Quantitative analysis of reflection electron energy loss spectra for ultrathin HfO2, Al2O3, and Hf-Al-O dielectric thin films on Si(100) were carried out by using Tougaard-Yubero [Surf. Interface Anal. 36, 824 (2004)] QUEELS-ɛ(k ,ω)-REELS software. Experimental cross sections obtained from reflection electron energy loss spectroscopy were compared with theoretical inelastic scattering cross section Ksc deduced from the simulated energy loss function (ELF). The ELF is expressed as a sum of Drude oscillators. For HfO2, the ELF shows peaks in the vicinity of 10, 17, 22, 27, 37, and 47eV. For Al2O3, a broad peak at 22eV with a very weak shoulder at 14eV and a shoulder at 32eV were observed, while for the Al2O3 doped HfO2, the peak position is similar to that of HfO2. This indicates that when Hf-Al-O film is used as a gate dielectric in a complementary metal-oxide semiconductor transistor, its electronic structure is mainly determined by the d state of Hf. In addition, the inelastic mean free path (IMFP) was also calculated from the theoretical inelastic scattering cross section. The IMFPs at 300eV were about 7.05, 9.62, and 8.48Å and those at 500eV were 11.42, 15.40, and 13.64Å for HfO2, Al2O3, and Hf-Al-O, respectively. The method of determining the IMFP from the ELF is a convenient tool for ultrathin dielectric materials.

  19. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-10-01

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications. Electronic supplementary information (ESI) available: UV-Vis spectra of desorbed N719 dyes from

  20. Uniformity and passivation research of Al2O3 film on silicon substrate prepared by plasma-enhanced atom layer deposition

    NASA Astrophysics Data System (ADS)

    Jia, Endong; Zhou, Chunlan; Wang, Wenjing

    2015-03-01

    Plasma-enhanced atom layer deposition (PEALD) can deposit denser films than those prepared by thermal ALD. But the improvement on thickness uniformity and the decrease of defect density of the films deposited by PEALD need further research. A PEALD process from trimethyl-aluminum (TMA) and oxygen plasma was investigated to study the influence of the conditions with different plasma powers and deposition temperatures on uniformity and growth rate. The thickness and refractive index of films were measured by ellipsometry, and the passivation effect of alumina on n-type silicon before and after annealing was measured by microwave photoconductivity decay method. Also, the effects of deposition temperature and annealing temperature on effective minority carrier lifetime were investigated. Capacitance-voltage and conductance-voltage measurements were used to investigate the interface defect density of state ( D it) of Al2O3/Si. Finally, Al diffusion P+ emitter on n-type silicon was passivated by PEALD Al2O3 films. The conclusion is that the condition of lower substrate temperature accelerates the growth of films and that the condition of lower plasma power controls the films' uniformity. The annealing temperature is higher for samples prepared at lower substrate temperature in order to get the better surface passivation effects. Heavier doping concentration of Al increased passivation quality after annealing by the effective minority carrier lifetime up to 100 μs.

  1. TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization

    NASA Astrophysics Data System (ADS)

    Vargová, Melinda; Plesch, Gustav; Vogt, Ulrich F.; Zahoran, Miroslav; Gorbár, Michal; Jesenák, Karol

    2011-03-01

    TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.

  2. Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 °C in air

    NASA Astrophysics Data System (ADS)

    Suria, Ateeq J.; Yalamarthy, Ananth Saran; Heuser, Thomas A.; Bruefach, Alexandra; Chapin, Caitlin A.; So, Hongyun; Senesky, Debbie G.

    2017-06-01

    In this paper, we describe the use of 50 nm atomic layer deposited (ALD) Al2O3 to suppress the interfacial reaction and inter-diffusion between the gate metal and semiconductor interface, to extend the operation limit up to 600 °C in air. Suppression of diffusion is verified through Auger electron spectroscopy (AES) depth profiling and X-ray diffraction (XRD) and is further supported with electrical characterization. An ALD Al2O3 thin film (10 nm and 50 nm), which functions as a dielectric layer, was inserted between the gate metal (Ni/Au) and heterostructure-based semiconductor material (AlGaN/GaN) to form a metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). This extended the 50 nm ALD Al2O3 MIS-HEMT (50-MIS) current-voltage (Ids-Vds) and gate leakage (Ig,leakage) characteristics up to 600 °C. Both, the 10 nm ALD Al2O3 MIS-HEMT (10-MIS) and HEMT, failed above 350 °C, as evidenced by a sudden increase of approximately 50 times and 5.3 × 106 times in Ig,leakage, respectively. AES on the HEMT revealed the formation of a Ni-Au alloy and Ni present in the active region. Additionally, XRD showed existence of metal gallides in the HEMT. The 50-MIS enables the operation of AlGaN/GaN based electronics in oxidizing high-temperature environments, by suppressing interfacial reaction and inter-diffusion of the gate metal with the semiconductor.

  3. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern

    NASA Astrophysics Data System (ADS)

    Mynbaeva, M. G.; Kremleva, A. V.; Kirilenko, D. A.; Sitnikova, A. A.; Pechnikov, A. I.; Mynbaev, K. D.; Nikolaev, V. I.; Bougrov, V. E.; Lipsanen, H.; Romanov, A. E.

    2016-07-01

    A TEM study of defect structure of GaN films grown by chloride vapor-phase epitaxy (HVPE) on GaN/Al2O3 substrates was performed. The substrates were fabricated by metal-organic chemical vapor deposition overgrowth of templates with buried column pattern. The results of TEM study showed that the character of the defect structure of HVPE-grown films was determined by the configuration of the column pattern in the substrate. By choosing the proper pattern, the reduction in the density of threading dislocations in the films by two orders of magnitude (in respect to the substrate material), down to the value of 107 cm-2, was achieved.

  4. Hollow hematite single crystals deposited with ultra-thin Al2O3 by atom layer deposition for improved photoelectrochemical performance.

    PubMed

    Jiao, Wei; Wu, Jingrui; Cui, Siwen; Wei, Ning; Rahman, Zia Ur; Yu, Meiyan; Chen, Shougang; Zhou, Yangtao; Wang, Daoai

    2017-08-15

    Hematite (α-Fe2O3) is a red material with a band gap of about 2.0 eV, which indicates that it can absorb more solar light. It is a promising photocatalyst applied in many fields. In this paper, α-Fe2O3 single crystal hollow hexagonal bipyramids were synthesized by a simple one-pot hydrothermal method. The morphology and structure of the prepared α-Fe2O3 hollow hexagonal bipyramids were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The hollow single crystals show a good light absorption and performance in photodegradation of methylene blue (MB). Due to the strategy of depositing ultra-thin layers of Al2O3 by atomic layer deposition (ALD), the photoelectrochemical (PEC) performance of α-Fe2O3 under the simulated solar light irradiation is also improved.

  5. IMPERMEABLE THIN AL2O3 OVERLAY FOR TBC PROTECTION FROM SULFATE AND VANADATE ATTACK IN GAS TURBINES

    SciTech Connect

    Scott X. Mao

    2003-12-16

    To improve the hot corrosion resistance of YSZ thermal barrier coatings, a 25 {micro}m and a 2 {micro}m thick Al{sub 2}O{sub 3} overlay were deposited by HVOF thermal spray and by sol-gel coating method, respectively, onto to the surface of YSZ coating. Indenter test was employed to investigate the spalling of YSZ with and without Al{sub 2}O{sub 3} overlay after hot corrosion. The results showed that Al{sub 2}O{sub 3} overlay acted as a barrier against the infiltration of the molten salt into the YSZ coating during exposure, thus significantly reduced the amount of M-phase of ZrO{sub 2} in YSZ coating. However, a thick Al{sub 2}O{sub 3} overlay was harmful for TBC by increasing compressive stress which causes crack and spalling of YSZ coating. As a result, a dense and thin Al{sub 2}O{sub 3} overlay is critical for simultaneously preventing YSZ from hot corrosion and spalling. In the next reporting period, we will measure or calculate the residue stress within Al{sub 2}O{sub 3} overlay and YSZ coating to study the mechanism of effect of Al{sub 2}O{sub 3} overlay on spalling of YSZ coating.

  6. Stable, Microfabricated Thin Layer Chromatography Plates without Volume Distortion on Patterned, Carbon and Al2O3-Primed Carbon Nanotube Forests

    SciTech Connect

    Jensen, David S.; Kanyal, Supriya S.; Gupta, Vipul; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Vanfleet, Richard; Davis, Robert C.; Linford, Matthew R.

    2012-09-28

    In a recent report (Song, J.; et al., Advanced Functional Materials 2011, 21, 1132-1139) some of us described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests, which were directly infiltrated/coated with silicon by low pressure chemical vapor deposition (LPCVD) of silicon using SiH4. Following infiltration, the nanotubes were removed from the assemblies and the silicon simultaneously converted to SiO2 in a high temperature oxidation step. However, while straightforward, this process had some shortcomings, not the least of which was some distortion of the lithographically patterned features during the volume expansion that accompanied oxidation. Herein we overcome theis issue and also take substantial steps forward in the microfabrication of TLC plates by showing: (i) A new method for creating an adhesion promotion layer on CNT forests by depositing a few nanometers of carbon followed by atomic layer deposition (ALD) of Al2O3. This method for appears to be new, and X-ray photoelectron spectroscopy confirms the expected presence of oxygen after carbon deposition. ALD of Al2O3 alone and in combination with the carbon on patterned CNT forests was also explored as an adhesion promotion layer for CNT forest infiltration. (ii) Rapid, conformal deposition of an inorganic material that does not require subsequent oxidation: fast pseudo-ALD growth of SiO2 via alumina catalyzed deposition of tris(tert-butoxy)silanol onto the carbon/Al2O3-primed CNT forests. (iii) Faithful reproduction of the features in the masks used to microfabricate the TLC plates (M-TLC) this advance springs from the previous two points. (iv) A bonded (amino) phase on a CNT-templated microfabricated TLC plate. (v) Fast, highly efficient (125,000 - 225,000 N/m) separations of fluorescent dyes on M-TLC plates. (vi) Extensive characterization of our new materials by TEM, SEM, EDAX, DRIFT, and XPS. (vii) A substantially lower process temperature for the

  7. Effect of interface on epitaxy and magnetism in h-RFeO3/Fe3O4/Al2O3 films (R  =  Lu, Yb)

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhe; Yin, Yuewei; Yang, Sen; Yang, Zhimao; Xu, Xiaoshan

    2017-04-01

    We have carried out the growth of h-RFeO3 (0 0 1) (R  =  Lu, Yb) thin films on Fe3O4 (1 1 1)/Al2O3 (0 0 1) substrates, and studied the effect of the h-RFeO3 (0 0 1)/Fe3O4 (1 1 1) interfaces on the epitaxy and magnetism. The observed epitaxial relations between h-RFeO3 and Fe3O4 indicate an unusual matching of Fe sub-lattices rather than a matching of O sub-lattices. The out-of-plane direction was found to be the easy magnetic axis for h-YbFeO3 (0 0 1) but the hard axis for Fe3O4 (1 1 1) in the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1)/Al2O3 (0 0 1) films, suggesting a perpendicular magnetic alignment at the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1) interface. These results indicate that Fe3O4 (1 1 1)/Al2O3 (0 0 1) could be a promising substrate for epitaxial growth of h-RFeO3 films of well-defined interface and for exploiting their spintronic properties.

  8. Effect of interface on epitaxy and magnetism in h-RFeO3/Fe3O4/Al2O3 films (R  =  Lu, Yb).

    PubMed

    Zhang, Xiaozhe; Yin, Yuewei; Yang, Sen; Yang, Zhimao; Xu, Xiaoshan

    2017-04-26

    We have carried out the growth of h-RFeO3 (0 0 1) (R  =  Lu, Yb) thin films on Fe3O4 (1 1 1)/Al2O3 (0 0 1) substrates, and studied the effect of the h-RFeO3 (0 0 1)/Fe3O4 (1 1 1) interfaces on the epitaxy and magnetism. The observed epitaxial relations between h-RFeO3 and Fe3O4 indicate an unusual matching of Fe sub-lattices rather than a matching of O sub-lattices. The out-of-plane direction was found to be the easy magnetic axis for h-YbFeO3 (0 0 1) but the hard axis for Fe3O4 (1 1 1) in the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1)/Al2O3 (0 0 1) films, suggesting a perpendicular magnetic alignment at the h-YbFeO3 (0 0 1)/Fe3O4 (1 1 1) interface. These results indicate that Fe3O4 (1 1 1)/Al2O3 (0 0 1) could be a promising substrate for epitaxial growth of h-RFeO3 films of well-defined interface and for exploiting their spintronic properties.

  9. Al2O3 e-Beam Evaporated onto Silicon (100)/SiO2, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Samha, Hussein; Linford, Matthew R.

    2013-09-25

    We report the XPS characterization of a thin film of Al2O3 (35 nm) deposited via e-beam evaporation onto silicon (100). The film was characterized with monochromatic Al Ka radiation. An XPS survey scan, an Al 2p narrow scan, and the valence band spectrum were collected. The Al2O3 thin film is used as a diffusion barrier layer for templated carbon nanotube (CNT) growth in the preparation of microfabricated thin layer chromatography plates.

  10. Atomic layer deposition of TiO2 and Al2O3 on nanographite films: structure and field emission properties

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Ismagilov, Rinat R.; Smolnikova, Elena A.; Obraztsova, Ekaterina A.; Tuyakova, Feruza; Obraztsov, Alexander N.

    2016-03-01

    Atomic layer deposition (ALD) of metal oxides (MO) was used to modify the properties of nanographite (NG) films produced by direct current plasma-enhanced chemical vapor deposition technique. NG films consist of a few layers of graphene flakes (nanowalls) and nanoscrolls homogeneously distributed over a silicon substrate with a predominantly vertical orientation of graphene sheets to the substrate surface. TiO2 and Al2O3 layers, with thicknesses in the range of 50 to 250 nm, were deposited on NG films by ALD. The obtained NG-MO composite materials were characterized by scanning electron microscopy, energy dispersive x-ray analysis, and Raman spectroscopy. It was found that ALD forms a uniform coating on graphene flakes, while on the surface of needle-like nanoscrolls it forms spherical nanoparticles. Field emission properties of the films were measured in a flat vacuum diode configuration. Analysis based on obtained current-voltage characteristics and electrostatic calculations show that emission from NG-TiO2 films is determined by the nanoscrolls protruding from the TiO2 coverage. The TiO2 layers with thicknesses of <200 nm almost do not affect the overall field emission characteristics of the films. At the same time, these layers are able to stabilize the NG films' surface and can lead to an improvement of the NG cold cathode performance in vacuum electronics.

  11. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells.

    PubMed

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-11-07

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.

  12. Experimental determination of the oxygen K-shell fluorescence yield using thin SiO2 and Al2O3 foils

    NASA Astrophysics Data System (ADS)

    Hönicke, P.; Kolbe, M.; Krumrey, M.; Unterumsberger, R.; Beckhoff, B.

    2016-10-01

    In this work, the K-shell fluorescence yield for oxygen ωO,K-shell is determined experimentally, employing the radiometrically calibrated X-ray fluorescence instrumentation of the Physikalisch-Technische Bundesanstalt (PTB), Germany's National Metrology Institute. Four free-standing thin foils with two different thicknesses of both SiO2 and Al2O3 were used in order to derive an experimental value for this atomic fundamental parameter. Multiple excitation photon energies were applied to record fluorescence spectra of all four samples. The resulting value (ωO,K-shell = 0.00688 ± 0.00036) is almost 20 % higher than the commonly used value from the Krause tables [M. Krause, Atomic Radiative and Radiationless Yields for K and L shells, J. Phys. Chem. Ref. Data 8(2), 307-327 (1979)]. In addition, the achieved total uncertainty budget for the new experimental value is reduced significantly in comparison to available literature data. For validation purposes, thin SiO2 layers on Si samples were used. Here, the layer thicknesses derived from X-ray reflectometry are well in line with our X-ray fluorescence quantification results based on the new experimental value for the O K-shell fluorescence yield.

  13. Alternative Dielectric Films for rf MEMS Capacitive Switches Deposited using Atomic Layer Deposited Al2O3/ZnO Alloys

    DTIC Science & Technology

    2006-07-02

    switches deposited using atomic layer deposited Al2O3/ZnO alloys Cari F. Herrmann a,b, Frank W. DelRio a, David C. Miller a, Steven M. George b,c, Victor...The layer is an alloy mixture of Al2O3 and ZnO and is proposed for use as charge dissipative layers in which the dielectric onstant is significant...investigates Al2O3/ZnO ALD alloys deposited at 100 and 177 ◦C and compares their material properties. Auger electron pectroscopy was used to determine the

  14. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer.

    PubMed

    Silva, J P B; Faita, F L; Kamakshi, K; Sekhar, K C; Moreira, J Agostinho; Almeida, A; Pereira, M; Pasa, A A; Gomes, M J M

    2017-04-11

    An enhanced resistive switching (RS) effect is observed in Pt/BaTiO3(BTO)/ITO ferroelectric structures when a thin HfO2:Al2O3 (HAO) dielectric layer is inserted between Pt and BTO. The P-E hysteresis loops reveal the ferroelectric nature of both Pt/BTO/ITO and Pt/HAO/BTO/ITO structures. The relation between the RS and the polarization reversal is investigated at various temperatures in the Pt/HAO/BTO/ITO structure. It is found that the polarization reversal induces a barrier variation in the Pt/HAO/BTO interface and causes enhanced RS, which is suppressed at Curie temperature (Tc = 140 °C). Furthermore, the Pt/HAO/BTO/ITO structures show promising endurance characteristics, with a RS ratio >10(3) after 10(9) switching cycles, that make them potential candidates for resistive switching memory devices. By combining ferroelectric and dielectric layers this work provides an efficient way for developing highly efficient ferroelectric-based RS memory devices.

  15. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer

    PubMed Central

    Silva, J. P. B.; Faita, F. L.; Kamakshi, K.; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Pasa, A. A.; Gomes, M. J. M.

    2017-01-01

    An enhanced resistive switching (RS) effect is observed in Pt/BaTiO3(BTO)/ITO ferroelectric structures when a thin HfO2:Al2O3 (HAO) dielectric layer is inserted between Pt and BTO. The P-E hysteresis loops reveal the ferroelectric nature of both Pt/BTO/ITO and Pt/HAO/BTO/ITO structures. The relation between the RS and the polarization reversal is investigated at various temperatures in the Pt/HAO/BTO/ITO structure. It is found that the polarization reversal induces a barrier variation in the Pt/HAO/BTO interface and causes enhanced RS, which is suppressed at Curie temperature (Tc = 140 °C). Furthermore, the Pt/HAO/BTO/ITO structures show promising endurance characteristics, with a RS ratio >103 after 109 switching cycles, that make them potential candidates for resistive switching memory devices. By combining ferroelectric and dielectric layers this work provides an efficient way for developing highly efficient ferroelectric-based RS memory devices. PMID:28397865

  16. Enhanced resistive switching characteristics in Pt/BaTiO3/ITO structures through insertion of HfO2:Al2O3 (HAO) dielectric thin layer

    NASA Astrophysics Data System (ADS)

    Silva, J. P. B.; Faita, F. L.; Kamakshi, K.; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Pasa, A. A.; Gomes, M. J. M.

    2017-04-01

    An enhanced resistive switching (RS) effect is observed in Pt/BaTiO3(BTO)/ITO ferroelectric structures when a thin HfO2:Al2O3 (HAO) dielectric layer is inserted between Pt and BTO. The P-E hysteresis loops reveal the ferroelectric nature of both Pt/BTO/ITO and Pt/HAO/BTO/ITO structures. The relation between the RS and the polarization reversal is investigated at various temperatures in the Pt/HAO/BTO/ITO structure. It is found that the polarization reversal induces a barrier variation in the Pt/HAO/BTO interface and causes enhanced RS, which is suppressed at Curie temperature (Tc = 140 °C). Furthermore, the Pt/HAO/BTO/ITO structures show promising endurance characteristics, with a RS ratio >103 after 109 switching cycles, that make them potential candidates for resistive switching memory devices. By combining ferroelectric and dielectric layers this work provides an efficient way for developing highly efficient ferroelectric-based RS memory devices.

  17. Evaluation of the optoelectronic properties and corrosion behavior of Al2O3-doped ZnO films prepared by dc pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; Berasategui, E. G.; Bayón, R.; Escobar Galindo, R.; Barros, R.; Gaspar, D.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E.; Barriga, J.

    2014-12-01

    The main requirements for transparent conducting oxide (TCO) films acting as electrodes are a high transmission rate in the visible spectral region and low resistivity. However, in many cases, tolerance to temperature and humidity exposure is also an important requirement to be fulfilled by the TCOs to assure proper operation and durability. Besides improving current encapsulation methods, the corrosion resistance of the developed TCOs must also be enhanced to warrant the performance of optoelectronic devices. In this paper the performance of aluminum-doped zinc oxide (AZO) films deposited by pulsed dc magnetron sputtering has been studied. Structure, optical transmittance/reflectance, electrical properties (resistivity, carrier concentration and mobility) and corrosion resistance of the developed coatings have been analyzed as a function of the doping of the target and the coating thickness. Films grown from a 2.0 wt% Al2O3 target with a thickness of approximately 1 µm showed a very low resistivity of 6.54  ×  10-4 Ωcm and a high optical transmittance in the visible range of 84%. Corrosion studies of the developed samples have shown very low corrosion currents (nanoamperes), very high corrosion resistances (in the order of 107 Ω) and very high electrochemical stability, indicating no tendency for electrochemical corrosion degradation.

  18. Structure, magnetic, and microwave properties of thick Ba-hexaferrite films epitaxially grown on GaN/Al2O3 substrates

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Yang, A.; Mahalingam, K.; Averett, K. L.; Gao, J.; Brown, G. J.; Vittoria, C.; Harris, V. G.

    2010-06-01

    Thick barium hexaferrite [BaOṡ(Fe2O3)6] films, having the magnetoplumbite structure (i.e., Ba M), were epitaxially grown on c-axis oriented GaN/Al2O3 substrates by pulsed laser deposition followed by liquid phase epitaxy. X-ray diffraction showed (0,0,2n) crystallographic alignment with pole figure analyses confirming epitaxial growth. High resolution transmission electron microscopy images revealed magnetoplumbite unit cells stacked with limited interfacial mixing. Saturation magnetization, 4πMs, was measured for as-grown films to be 4.1±0.3 kG with a perpendicular magnetic anisotropy field of 16±0.3 kOe. Ferromagnetic resonance linewidth, the peak-to-peak power absorption derivative at 53 GHz, was 86 Oe. These properties will prove enabling for the integration of low loss Ba M ferrite microwave passive devices with active semiconductor circuit elements in systems-on-a-wafer architecture.

  19. Distribution of Oxygen Vacancies and Gadolinium Dopants in ZrO2-CeO2 Multi-Layer Films Grown on α-Al2O3

    SciTech Connect

    Wang, Chong M.; Engelhard, Mark H.; Azad, Samina; Saraf, Laxmikant V.; McCready, David E.; Shutthanandan, V.; Yu, Zhongqing; Thevuthasan, Suntharampillai; Watanabe, M.; Williams, D. B.

    2006-06-15

    Gd-doped ZrO2 and CeO2 multi-layer films were deposited on α-Al2O3 (0001) using oxygen plasma assisted molecular beam epitaxy. Oxygen vacancies and Gd dopant distributions were investigated in these multi-layer films using x-ray diffraction (XRD), conventional and high-resolution transmission electron microscopy (HRTEM), annular dark-filed imaging in scanning transmission electron microscopy (STEM), energy dispersive x-ray spectroscopy (EDS) elemental mapping and x-ray photoelectron spectroscopy (XPS) depth profiling. EDS and XPS reveal that Gd concentration in the ZrO2 layer is lower than that in the CeO2 layer. As a result, higher oxygen vacancy concentration exists in CeO2 layers compared to that in ZrO2 layers. In addition, Gd is found to segregate only at the interfaces formed during the deposition of CeO2 layers on ZrO2 layers. On the other hand, the interfaces formed during the deposition of ZrO2 layers on CeO2 layers did not show any Gd segregation. The Gd segregation behavior at the every other interface is believed to be associated with the low solubility of Gd in ZrO2.

  20. Reduced impurities and improved electrical properties of atomic-layer-deposited HfO2 film grown at a low temperature (100 °C) by Al2O3 incorporation

    NASA Astrophysics Data System (ADS)

    Park, Tae Joo; Byun, Youngchol; Wallace, Robert M.; Kim, Jiyoung

    2016-05-01

    The HfO2 films grown by atomic layer deposition (ALD) at a low temperature (100 °C) necessarily has a large amount of residual impurities due to lack of thermal energy for stable ALD reactions such as ligand removal and oxidation, which degrades various properties. However, Al2O3 incorporation into the film significantly decreased the residual impurities despite of a low growth temperature. The decrease in C impurity is attributed to the reduced oxygen vacancies by the incorporated Al2O3 phase or the high reactivity of Al precursor. Consequently, the electronic band structure of the film, and thereby the electrical properties were improved significantly.

  1. Fabrication and optical properties of nanostructured plasmonic Al2O3/Au-Al2O3/Al2O3 metamaterials

    NASA Astrophysics Data System (ADS)

    Bakkali, H.; Blanco, E.; Domínguez, M.; Garitaonandia, J. S.

    2017-08-01

    Discontinuous multilayer (DML) thin films, which consist of nano-granular metals (NGMs) embedded in a dielectric matrix, have attracted significant interest as engineered plasmonic metamaterials. In this study, a systematic layer-by-layer deposition of three-dimensional sub-wavelength periodic plasmonic DML structures via the radio frequency sputtering of a composite target has been reported. The overall optical response of the DML films composed of Au-Al2O3 NGM homogenous layers, which are periodically sandwiched between two amorphous Al2O3 layers, are studied using reflection spectroscopic ellipsometry and transmission spectroscopy techniques. By applying the analytical optical approaches based on multiple Gaussian oscillators, ambient DML sub-wavelength structures have been successfully modeled. As a result, the effects of the size and shape of the Au nanoparticles as well as of the surrounding and interfacial media on their localized surface plasmon resonance (LSPR) are elucidated, and the related films thickness and effective optical constants are determined. Interestingly, during the examination of resonance frequencies and dielectric functions, the obtained DML structures exhibit unusual characteristics that are different from those of their NGM constituents due to the electromagnetic interactions of the NGM layers with the LSPR, which represent metamaterial features.

  2. Fabrication and optical properties of nanostructured plasmonic Al2O3/Au-Al2O3/Al2O3 metamaterials.

    PubMed

    Bakkali, H; Blanco, E; Domínguez, M; Garitaonandia, J S

    2017-08-18

    Discontinuous multilayer (DML) thin films, which consist of nano-granular metals (NGMs) embedded in a dielectric matrix, have attracted significant interest as engineered plasmonic metamaterials. In this study, a systematic layer-by-layer deposition of three-dimensional sub-wavelength periodic plasmonic DML structures via the radio frequency sputtering of a composite target has been reported. The overall optical response of the DML films composed of Au-Al2O3 NGM homogenous layers, which are periodically sandwiched between two amorphous Al2O3 layers, are studied using reflection spectroscopic ellipsometry and transmission spectroscopy techniques. By applying the analytical optical approaches based on multiple Gaussian oscillators, ambient DML sub-wavelength structures have been successfully modeled. As a result, the effects of the size and shape of the Au nanoparticles as well as of the surrounding and interfacial media on their localized surface plasmon resonance (LSPR) are elucidated, and the related films thickness and effective optical constants are determined. Interestingly, during the examination of resonance frequencies and dielectric functions, the obtained DML structures exhibit unusual characteristics that are different from those of their NGM constituents due to the electromagnetic interactions of the NGM layers with the LSPR, which represent metamaterial features.

  3. Ni-based anode-supported Al2O3-doped-Y2O3-stabilized ZrO2 thin electrolyte solid oxide fuel cells with Y2O3-stabilized ZrO2 buffer layer

    NASA Astrophysics Data System (ADS)

    Lei, Libin; Bai, Yaohui; Liu, Jiang

    2014-02-01

    In order to reduce the sintering temperature of Ni-based anode-supported thin 8 mol% yttria-stabilized zirconia (YSZ) elsectrolyte solid oxide fuel cells (SOFCs), alumina, with a weight percent of 1, 3, 5, and 7, is respectively doped into YSZ as sintering aid. A pure YSZ buffer layer is introduced between the Al2O3-doped-YSZ electrolyte and Ni-YSZ anode, to prevent Al2O3 and NiO from forming non-conductive spinel NiAl2O4. The experimental results show that doping proper amount of Al2O3 doping can reduce the sintering temperature of YSZ, e.g., 1 wt.% doping decreases the temperature from 1673 K to 1573 K. Anode-supported SOFCs are prepared with Al2O3-doped-YSZ electrolytes sintered at different temperatures. Electrochemical characterization of the SOFCs shows that the single cell with 1 wt.% alumina-doped YSZ electrolyte sintered at 1573 K gives the highest output. The effect of alumina doping on sintering behavior and electrical performance of YSZ is discussed in detail.

  4. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices

    PubMed Central

    Canto, Bárbara; Gouvea, Cristol P.; Archanjo, Bráulio S.; Schmidt, João E.; Baptista, Daniel L.

    2015-01-01

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm. PMID:26395513

  5. On the Structural and Chemical Characteristics of Co/Al2O3/graphene Interfaces for Graphene Spintronic Devices.

    PubMed

    Canto, Bárbara; Gouvea, Cristol P; Archanjo, Bráulio S; Schmidt, João E; Baptista, Daniel L

    2015-09-23

    We report a detailed investigation of the structural and chemical characteristics of thin evaporated Al2O3 tunnel barriers of variable thickness grown onto single-layer graphene sheets. Advanced electron microscopy and spectrum-imaging techniques were used to investigate the Co/Al2O3/graphene/SiO2 interfaces. Direct observation of pinhole contacts was achieved using FIB cross-sectional lamellas. Spatially resolved EDX spectrum profiles confirmed the presence of direct point contacts between the Co layer and the graphene. The high surface diffusion properties of graphene led to cluster-like Al2O3 film growth, limiting the minimal possible thickness for complete barrier coverage onto graphene surfaces using standard Al evaporation methods. The results indicate a minimum thickness of nominally 3 nm Al2O3, resulting in a 0.6 nm rms rough film with a maximum thickness reaching 5 nm.

  6. In situ study on the thermal stability and interfaces properties of Er2O3/Al2O3/Si multi stacked films by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Baolong; Mamat, Mamatrishat; Ghupur, Yasenjan; Ablat, Abduleziz; Ibrahim, Kurash; Wang, Jiaou; Liu, Chen; Zhao, Jiali

    2017-04-01

    Ultrathin high-k dielectric films with Er2O3/Al2O3/Si structure were fabricated by the pulsed laser deposition (PLD) technique. The samples were annealed in O2 ambient at the various temperatures. The interface reaction, and as well as the thermal stability between Si substrate and Er2O3 layer were studied in situ using X-ray photoelectron spectroscopy (XPS). The Film thickness was measured with scanning electron microscope (SEM). The experimental results indicate that the thickness of the silicate layer lessening at the interface with increasing of the thickness of Al2O3, and the production of the SiOx and the silicide is more easily formed than Er-silicate after annealing at the lower temperature because of the similarity of the structure and the small lattice mismatch.

  7. Super Smooth Modification of Al2O3 Ceramic Substrate by High Temperature Glaze of CaO-Al2O3-SiO2 System

    NASA Astrophysics Data System (ADS)

    Zhang, Jihua; Zhen, Shanxue; Yang, Lijun; Lou, Feizhi; Chen, Hongwei; Yang, Chuanren

    2011-01-01

    The rough surface of ceramic substrate is an obstacle for the scale down of line-width for thin film passive integrated devices (PID). In this paper, a modification method for Al2O3 ceramic substrate with super smooth in surface was proposed. Coating a layer of CaO-Al2O3-SiO2 (CAS) glass was performed to flat the rough surface of alumina substrate by sol-gel method. It was found that addition of 0.06% V2O5 can inhibit the recrystallization of the glaze. The root-mean-square (RMS) roughness of the glazed substrates reached a surprising flatness as small as 0.5 nm, and its melting temperature is higher than 1300 °C. This substrate with super flatness and high temperature endurance may be promising for high performance thin film devices.

  8. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings

    NASA Astrophysics Data System (ADS)

    Marszałek, Konstanty; Winkowski, Paweł; Jaglarz, Janusz

    2014-01-01

    Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10-3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm - 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively.

  9. Capability Study of Ti, Cr, W, Ta and Pt as Seed Layers for Electrodeposited Platinum Films on γ-Al2O3 for High Temperature and Harsh Environment Applications

    PubMed Central

    Seifert, Marietta; Brachmann, Erik; Rane, Gayatri K.; Menzel, Siegfried B.; Gemming, Thomas

    2017-01-01

    High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al2O3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al2O3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al2O3 substrate. PMID:28772415

  10. The performance of Pt bottom electrode and PZT films deposited on Al 2O 3 /Si substrate by using LaNiO 3 film as an adhesion layer

    NASA Astrophysics Data System (ADS)

    Guo, Yiping; Akai, Daisuke; Sawada, Kazuaki; Ishida, Makoto

    2008-02-01

    A (110) preferred Pt electrode by using a (100)-oriented conductive oxide electrode LaNiO 3 film as an adhesion layer on a γ- Al 2O 3 (100)/Si substrate has been deposited by RF magnetron sputtering. It was found that the phase instability of LaNiO 3 almost has no effect on the (110)-orientated Pt growth. Highly (110)-textured Pb(Zr 0.40Ti 0.60)O 3 films can been achieved when it was deposited on the (110) preferred Pt bottom electrode. The as-grown Pb(Zr 0.40Ti 0.60)O 3 films possesses excellent dielectric, ferroelectric and pyroelectric properties. The results indicate that the Pt/LNO/γ- Al 2O 3/Si substrate is attractive for depositing highly (110)-orientated ferroelectric films with perovskite structure and the highly (110)-orientated Pb(Zr 0.4Ti 0.60)O 3 films are promising for sensor and actuator applications.

  11. Interfacial stability of ultrathin films of magnetite Fe3O4 (111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hong, Hawoong; Kim, Jongjin; Fang, Xinyue; Hong, Seungbum; Chiang, T.-C.

    2017-01-01

    The thin films of iron oxides including magnetite (Fe3O4) and hematite (α-Fe2O3) have many important applications. Both forms of oxide can occur naturally during film growth by iron deposition under various oxidation environments; an important issue is to understand and control the process resulting in a single-phase film. We have performed the in-situ -time studies using X-ray diffraction of such film growth on sapphire (001) under pure ozone by monitoring the (00L) rod. Stable magnetite growth can be maintained at growth temperatures below 600 °C up to a certain critical film thickness, beyond which the growth becomes hematite. The results demonstrate the importance of interfacial interaction in stabilizing the magnetite phase.

  12. Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 and O2 precursors for nonvolatile memory applications

    PubMed Central

    2013-01-01

    Pt nanodots have been grown on Al2O3 film via atomic layer deposition (ALD) using (MeCp)Pt(Me)3 and O2 precursors. Influence of the substrate temperature, pulse time of (MeCp)Pt(Me)3, and deposition cycles on ALD Pt has been studied comprehensively by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Therefore, Pt nanodots with a high density of approximately 2 × 1012 cm-2 have been achieved under optimized conditions: 300°C substrate temperature, 1 s pulse time of (MeCp)Pt(Me)3, and 70 deposition cycles. Further, metal-oxide-semiconductor capacitors with Pt nanodots embedded in ALD Al2O3 dielectric have been fabricated and characterized electrically, indicating noticeable electron trapping capacity, efficient programmable and erasable characteristics, and good charge retention. PMID:23413837

  13. Sputtering characteristics, crystal structures, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0 0 0 1) and glass substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2012-12-01

    Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.

  14. Radiation endurance in Al2O3 nanoceramics

    PubMed Central

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; Di Fonzo, F.

    2016-01-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films. PMID:27653832

  15. Radiation endurance in Al2O3 nanoceramics

    NASA Astrophysics Data System (ADS)

    García Ferré, F.; Mairov, A.; Ceseracciu, L.; Serruys, Y.; Trocellier, P.; Baumier, C.; Kaïtasov, O.; Brescia, R.; Gastaldi, D.; Vena, P.; Beghi, M. G.; Beck, L.; Sridharan, K.; di Fonzo, F.

    2016-09-01

    The lack of suitable materials solutions stands as a major challenge for the development of advanced nuclear systems. Most issues are related to the simultaneous action of high temperatures, corrosive environments and radiation damage. Oxide nanoceramics are a promising class of materials which may benefit from the radiation tolerance of nanomaterials and the chemical compatibility of ceramics with many highly corrosive environments. Here, using thin films as a model system, we provide new insights into the radiation tolerance of oxide nanoceramics exposed to increasing damage levels at 600 °C –namely 20, 40 and 150 displacements per atom. Specifically, we investigate the evolution of the structural features, the mechanical properties, and the response to impact loading of Al2O3 thin films. Initially, the thin films contain a homogeneous dispersion of nanocrystals in an amorphous matrix. Irradiation induces crystallization of the amorphous phase, followed by grain growth. Crystallization brings along an enhancement of hardness, while grain growth induces softening according to the Hall-Petch effect. During grain growth, the excess mechanical energy is dissipated by twinning. The main energy dissipation mechanisms available upon impact loading are lattice plasticity and localized amorphization. These mechanisms are available in the irradiated material, but not in the as-deposited films.

  16. A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports

    DOE PAGES

    Mao, Bao -Hua; Chang, Rui; Shi, Lei; ...

    2014-10-29

    Here, we have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO2 and 0.95 eV higher on Al2O3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak is observed on different silvermore » clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.« less

  17. Crystal structure and magnetism in κ-Al2O3-type AlxFe2-xO3 films on SrTiO3(111)

    NASA Astrophysics Data System (ADS)

    Hamasaki, Yosuke; Shimizu, Takao; Yasui, Shintaro; Shiraishi, Takahisa; Akama, Akihiro; Kiguchi, Takanori; Taniyama, Tomoyasu; Itoh, Mitsuru

    2017-07-01

    We prepared κ-Al2O3-type structured AlxFe2-xO3 films in the range of x = 0 - 1.70 deposited on SrTiO3(111) substrates and investigated their crystal structures and magnetic properties. All films could be stabilized in the κ-Al2O3-type orthorhombic phase, and the lattice parameters were found to be monotonically decreased with an increase in the Al content. Néel temperature of AlxFe2-xO3 films was found to decrease with an increase in Al content, until the Al1.70Fe0.30O3 film showed paramagnetic behavior. On the other hand, saturation magnetization showed a maximum 0.79 μB/Fe at 10 K in the Al0.91Fe1.09O3 film, manifesting the preferential occupation of Al in the tetrahedral site. Cross sectional TEM observation has revealed the columnar growth of AlxFe2-xO3 films with an average width of ˜10 nm on the bottom layer that may have a similar cation arrangement with a bixbyite-type structure.

  18. Trapped charge densities in Al2O3-based silicon surface passivation layers

    NASA Astrophysics Data System (ADS)

    Jordan, Paul M.; Simon, Daniel K.; Mikolajick, Thomas; Dirnstorfer, Ingo

    2016-06-01

    In Al2O3-based passivation layers, the formation of fixed charges and trap sites can be strongly influenced by small modifications in the stack layout. Fixed and trapped charge densities are characterized with capacitance voltage profiling and trap spectroscopy by charge injection and sensing, respectively. Al2O3 layers are grown by atomic layer deposition with very thin (˜1 nm) SiO2 or HfO2 interlayers or interface layers. In SiO2/Al2O3 and HfO2/Al2O3 stacks, both fixed charges and trap sites are reduced by at least a factor of 5 compared with the value measured in pure Al2O3. In Al2O3/SiO2/Al2O3 or Al2O3/HfO2/Al2O3 stacks, very high total charge densities of up to 9 × 1012 cm-2 are achieved. These charge densities are described as functions of electrical stress voltage, time, and the Al2O3 layer thickness between silicon and the HfO2 or the SiO2 interlayer. Despite the strong variation of trap sites, all stacks reach very good effective carrier lifetimes of up to 8 and 20 ms on p- and n-type silicon substrates, respectively. Controlling the trap sites in Al2O3 layers opens the possibility to engineer the field-effect passivation in the solar cells.

  19. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    PubMed

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  20. Al2O3 passivation effect in HfO2·Al2O3 laminate structures grown on InP substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-04-07

    The passivation effect of an Al2O3 layer on electrical properties were investigated in HfO2--Al2O3 laminate structures grown on InP substrate by atomic layer deposition (ALD). The chemical state using HR-XPS showed that interfacial reactions were dependent on the presence of the Al2O3 passivation layer and its sequence in the HfO2--Al2O3 laminate structures. The Al2O3/HfO2/Al2O3 structure showed the best electrical characteristics, due to the interfacial reaction, compared with those of different stacking structures. The top Al2O3 layer suppressed the interdiffusion of oxidizing species into the HfO2 films, while the bottom Al2O3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was effectively suppressed in the Al2O3/HfO2/Al2O3/InP structure than that of HfO2-on-InP system. Moreover, conductance data revealed that the Al2O3/ layer on InP reduces the midgap traps to 2.6 × 10(12) eV(-1)cm(-2) (compared with that of HfO2/InP = 5.4 × 10(12) eV(-1)cm(-2)). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  1. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system.

    PubMed

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-01-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  2. Investigation on the passivated Si/Al2O3 interface fabricated by non-vacuum spatial atomic layer deposition system

    NASA Astrophysics Data System (ADS)

    Lien, Shui-Yang; Yang, Chih-Hsiang; Wu, Kuei-Ching; Kung, Chung-Yuan

    2015-02-01

    Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage ( V oc) and short-circuit current ( J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm2, fill factor of 0.776, and the efficiency of 19.18% can be achieved.

  3. Ab initio study of γ- Al2 O3 surfaces

    NASA Astrophysics Data System (ADS)

    Pinto, Henry P.; Nieminen, R. M.; Elliott, Simon D.

    2004-09-01

    Starting from the theoretical prediction of the γ-Al2O3 structure using density-functional theory in the generalized gradient approximation, we have studied the (1 1 1), (0 0 1), (1 1 0), and (1 5 0) surfaces. The surface energies and their corresponding structures are computed and compared with predictions for (0 0 0 1) α-Al2O3 and available experimental results for γ -alumina surfaces. (1 1 1) and (0 0 1) surfaces are predicted to be equally stable, but to show quite different structure and reactivity. Whereas a low coverage of highly reactive trigonal Al occurs on (1 1 1), (0 0 1) exhibits a more dense plane of both five-coordinate and tetrahedral Al. Microfaceting of a (1 1 0) surface into (1 1 1)-like planes is also observed. The implications for the structure of ultrathin dielectric films and for the surfaces of disordered transition aluminas are discussed.

  4. Tensile Behavior of Al2o3/feal + B and Al2o3/fecraly Composites

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Eldridge, J. I.; Aiken, B. J. M.

    1995-01-01

    The feasibility of Al2O3/FeAl + B and Al2O3/FeCrAlY composites for high-temperature applications was assessed. The major emphasis was on tensile behavior of both the monolithics and composites from 298 to 1100 K. However, the study also included determining the chemical compatibility of the composites, measuring the interfacial shear strengths, and investigating the effect of processing on the strength of the single-crystal Al2O3 fibers. The interfacial shear strengths were low for Al203/FeAl + B and moderate to high for Al203/FeCrAlY. The difference in interfacial bond strengths between the two systems affected the tensile behavior of the composites. The strength of the Al203 fiber was significantly degraded after composite processing for both composite systems and resulted in poor composite tensile properties. The ultimate tensile strength (UTS) values of the composites could generally be predicted with either rule of mixtures (ROM) calculations or existing models when using the strength of the etched-out fiber. The Al2O3/FeAl + B composite system was determined to be unfeasible due to poor interfacial shear strengths and a large mismatch in coefficient of thermal expansion (CTE). Development of the Al2O3/FeCrAlY system would require an effective diffusion barrier to minimize the fiber strength degradation during processing and elevated temperature service.

  5. Atomic layer deposition of Al2O3 on NF3-pre-treated graphene

    NASA Astrophysics Data System (ADS)

    Junige, Marcel; Oddoy, Tim; Yakimova, Rositsa; Darakchieva, Vanya; Wenger, Christian; Lupina, Grzegorz; Kitzmann, Julia; Albert, Matthias; Bartha, Johann W.

    2015-06-01

    Graphene has been considered for a variety of applications including novel nanoelectronic device concepts. However, the deposition of ultra-thin high-k dielectrics on top of graphene has still been challenging due to graphene's lack of dangling bonds. The formation of large islands and leaky films has been observed resulting from a much delayed growth initiation. In order to address this issue, we tested a pre-treatment with NF3 instead of XeF2 on CVD graphene as well as epitaxial graphene monolayers prior to the Atomic Layer Deposition (ALD) of Al2O3. All experiments were conducted in vacuo; i. e. the pristine graphene samples were exposed to NF3 in the same reactor immediately before applying 30 (TMA-H2O) ALD cycles and the samples were transferred between the ALD reactor and a surface analysis unit under high vacuum conditions. The ALD growth initiation was observed by in-situ real-time Spectroscopic Ellipsometry (irtSE) with a sampling rate above 1 Hz. The total amount of Al2O3 material deposited by the applied 30 ALD cycles was cross-checked by in-vacuo X-ray Photoelectron Spectroscopy (XPS). The Al2O3 morphology was determined by Atomic Force Microscopy (AFM). The presence of graphene and its defect status was examined by in-vacuo XPS and Raman Spectroscopy before and after the coating procedure, respectively.

  6. Direct growth of high-quality Al2O3 dielectric on graphene layers by low-temperature H2O-based ALD

    NASA Astrophysics Data System (ADS)

    Zhang, Youwei; Qiu, Zhijun; Cheng, Xinhong; Xie, Hong; Wang, Haomin; Xie, Xiaomin; Yu, Yuehui; Liu, Ran

    2014-02-01

    A thin Al2O3 dielectric film was directly grown onto graphene layers without any surface treatment prior to H2O-based atomic layer deposition for the first time. The growth mechanism of Al2O3 dielectric film has been studied by changing the growth temperature and purge time. We found that the film morphology was influenced by the amount and distribution of physically adsorbed precursor molecules on the graphene, especially by physically adsorbed H2O molecules. Within an optimal temperature window, conformal and uniform Al2O3 thin films were obtained as confirmed by atomic force microscopy and transmission electron microscopy results. Raman spectroscopy revealed that no extra defects are generated in the graphene layers. Furthermore, the low leakage current and interface traps in dual-gated graphene field-effect transistors demonstrate the high-quality dielectric/graphene stack.

  7. Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates

    NASA Astrophysics Data System (ADS)

    Ahn, Jaehyun; Chou, Harry; Banerjee, Sanjay K.

    2017-04-01

    The quest of obtaining sustainable, clean energy is an ongoing challenge. While silicon-based solar cells have widespread acceptance in practical commercialization, continuous research is important to expand applicability beyond fixed-point generation to other environments while also improving power conversion efficiency (PCE), stability, and cost. In this work, graphene-on-silicon Schottky junction and graphene-insulator-silicon (GIS) solar cells are demonstrated on flexible, thin foils, which utilize the electrical conductivity and optical transparency of graphene as the top transparent contact. Multi-layer graphene was grown by chemical vapor deposition on Cu-Ni foils, followed by p-type doping with Au nanoparticles and encapsulated in poly(methyl methacrylate), which showed high stability with minimal performance degradation over more than one month under ambient conditions. Bendable silicon film substrates were fabricated by a kerf-less exfoliation process based on spalling, where the silicon film thickness could be controlled from 8 to 35 μm based on the process recipe. This method allows for re-exfoliation from the parent Si wafer and incorporates the process for forming the backside metal contact of the solar cell. GIS cells were made with a thin insulating Al2O3 atomic layer deposited film, where the thin Al2O3 film acts as a tunneling barrier for holes, while simultaneously passivating the silicon surface, increasing the minority carrier lifetime from 2 to 27 μs. By controlling the Al2O3 thickness, an optimized cell with 7.4% power conversion efficiency (PCE) on a 35 μm thick silicon absorber was fabricated.

  8. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization.

  9. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure.

    PubMed

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Kim, Keum Do; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-08

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization - voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization.

  10. The role of thermally and chemically stable composite Y2O3:Al2O3 in the development of YBa2Cu3O7-x films on metal substrates

    NASA Astrophysics Data System (ADS)

    Stan, L.; Tao, B. W.; Holesinger, T. G.; Yang, H.; Feldmann, D. M.; Maiorov, B.; Baily, S. A.; Civale, L.; DePaula, R. F.; Li, Y. R.; Jia, Q. X.

    2010-04-01

    We have developed Y2O3:Al2O3 (YAlO) composites to simplify the architecture of superconducting YBa2Cu3O7-x (YBCO) thick films on polycrystalline metal substrates. By implementing the use of YAlO, we have reduced the total number of non-superconducting layers between the polycrystalline metal substrate and the YBCO film from five (as in the standard architecture used by industry) to three. The YBCO films grown on this simplified platform exhibited an in-plane mosaic spread of less than 4° in full width at half-maximum, correlated pinning centered at \\mathbf {H}\\parallel c , and an α value (the proportionality factor of the critical current density H - α) of around 0.38 over the field range of 0.1-1.0 T. We believe that the excellent structural stability at high temperatures and the exceptional chemical inertness in an oxidizing environment make YAlO a good choice for use in the growth of biaxially oriented MgO and subsequent buffer and superconducting layers.

  11. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3

    NASA Astrophysics Data System (ADS)

    Rückerl, Andreas; Zeisel, Roland; Mandl, Martin; Costina, Ioan; Schroeder, Thomas; Zoellner, Marvin H.

    2017-01-01

    Atomic layer deposited aluminum oxide (ALD-Al2O3) is a dielectric material, which is widely used in organic light emitting diodes in order to prevent their organic layers from humidity related degradation. Unfortunately, there are strong hints that in some cases, ALD-Al2O3 itself is suffering from humidity related degradation. Especially, high temperature and high humidity seem to enhance ALD-Al2O3 degradation strongly. For this reason, the degradation behavior of ALD-Al2O3 films at high temperature and high humidity was investigated in detail and a way to prevent it from degradation was searched. The degradation behavior is analyzed in the first part of this paper. Using infrared absorbance measurements and X-ray diffraction, boehmite (γ-AlOOH) was identified as a degradation product. In the second part of the paper, it is shown that ALD-Al2O3 films can be effectively protected from degradation using a silicon oxide capping. The deposition of very small amounts of silicon in a molecular beam epitaxy system and an X-ray photoelectron spectroscopy investigation of the chemical bonding between the silicon and the ALD-Al2O3 surface led to the conclusion that a silicon termination of the ALD-Al2O3 surface (Al*-O-SiOx) is able to stop humidity related degradation of the underlying ALD-Al2O3 films. The third part of the paper shows that the protection mechanism of the silicon termination is probably due to the strong tendency of silicic acid to resilificate exposed ALD-Al2O3 surfaces. The protective effect of a simple silicon source on an ALD-Al2O3 surface is shown exemplary and the related chemical reactions are presented.

  12. High Temperature Mechanical Characterization and Analysis of Al2O3 /Al2O3 Composition

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Jaskowiak, Martha H.

    1999-01-01

    Sixteen ply unidirectional zirconia coated single crystal Al2O3 fiber reinforced polycrystalline Al2O3 was tested in uniaxial tension at temperatures to 1400 C in air. Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity of approximately 40%. Theories for predicting the Young's modulus, first matrix cracking stress, and ultimate strength were applied and evaluated for suitability in predicting the mechanical behavior of Al2O3/Al2O3 composites. The composite exhibited pseudo tough behavior (increased area under the stress/strain curve relative to monolithic alumina) from 22 to 1400 C. The rule-of-mixtures provides a good estimate of the Young's modulus of the composite using the constituent properties from room temperature to approximately 1200 C for short term static tensile tests in air. The ACK theory provides the best approximation of the first matrix cracking stress while accounting for residual stresses at room temperature. Difficulties in determining the fiber/matrix interfacial shear stress at high temperatures prevented the accurate prediction of the first matrix cracking stress above room temperature. The theory of Cao and Thouless, based on Weibull statistics, gave the best prediction for the composite ultimate tensile strength.

  13. Ultra-low thermal conductivity in W/Al2O3 nanolaminates.

    PubMed

    Costescu, R M; Cahill, D G; Fabreguette, F H; Sechrist, Z A; George, S M

    2004-02-13

    Atomic layer deposition and magnetron sputter deposition were used to synthesize thin-film multilayers of W/Al(2)O(3). With individual layers only a few nanometers thick, the high interface density produced a strong impediment to heat transfer, giving rise to a thermal conductivity of approximately 0.6 watts per meter per kelvin. This result suggests that high densities of interfaces between dissimilar materials may provide a route for the production of thermal barriers with ultra-low thermal conductivity.

  14. Effective passivation of defects in Ge-rich SiGe-on-insulator substrates by Al 2O 3 deposition and subsequent post-annealing

    NASA Astrophysics Data System (ADS)

    Yang, Haigui; Iyota, Masatoshi; Ikeura, Shogo; Wang, Dong; Nakashima, Hiroshi

    2011-06-01

    A method of Al 2O 3 deposition and subsequent post-deposition annealing (Al 2O 3-PDA) was proposed to passivate electrically active defects in Ge-rich SiGe-on-insulator (SGOI) substrates, which were fabricated using Ge condensation by dry oxidation. The effect of Al 2O 3-PDA on defect passivation was clarified by surface analysis and electrical evaluation. It was found that Al 2O 3-PDA could not only suppress the surface reaction during Al-PDA in our previous work [Yang H, Wang D, Nakashima H, Hirayama K, Kojima S, Ikeura S. Defect control by Al-deposition and the subsequent post-annealing for SiGe-on-insulator substrates with different Ge fractions. Thin Solid Films 2010; 518: 2342-5.], but could also effectively passivate p-type defects generated during Ge condensation. The concentration in the range of 10 16-10 18 cm -3 for defect-induced acceptors and holes in Ge-rich SGOI drastically decreased after Al 2O 3-PDA. As a result of defect passivation, the electrical characteristics of both back-gate p-channel and n-channel metal-oxide-semiconductor field-effect transistors fabricated on Ge-rich SGOI were greatly improved after Al 2O 3-PDA.

  15. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  16. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for

  17. Effect of Ultrasonic Vibration on the Behavior of Antifriction and Wear Resistance of Al2O3/Al2O3 Ceramic Friction Pairs Under Oil Lubrication

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Qiao, Y. L.; Zang, Y.; Cui, Q. S.

    The behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs lubricated by four different lubrication oils under ultrasonic vibration was studied. The surface morphologies of wear scare was analyzed by metallographic microscope. The effect mechanism of ultrasonic vibration on frictional pairs under different lubrication oils was discussed. The studied results showed that, ultrasonic vibration would improve the behavior of antifriction and wear resistance of the Al2O3/Al2O3 ceramic friction pairs under various lubrication oils.The improving would be dramaticer when the viscosity of lubrication oil was low. Ultrasonic vibration decreased the friction coefficient and wear volume 12.9% and 38.7% respectively, when the lubrication oil was 6#,the viscosity of which is 39.77 mm2/s. When the lubrication oil was 150BS, the viscosity of which is 549.69 mm2/s, ultrasonic vibration made friction coefficient and wear volume decreased 4.6% and 11.6% respectively.The effect of ultrasonic vibration on the behavior of antifriction and wear resistance of Al2O3/Al2O3 ceramic friction pairs was determined by the formation and the destruction of oil film on the friction surface and the upward floatage created by ultrasonic vibration.

  18. Deposition of TiO2/Al2O3 bilayer on hydrogenated diamond for electronic devices: Capacitors, field-effect transistors, and logic inverters

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Banal, R. G.; Koide, Y.

    2017-06-01

    The wide bandgap semiconductor diamond has been studied to develop high-power and high-frequency electronic devices. Here, high dielectric constant (high-k) TiO2/Al2O3 bilayers are deposited on hydrogenated diamond (H-diamond) channel layers using sputter deposition (SD) and atomic layer deposition (ALD) techniques. Thin ALD-Al2O3 films are employed as buffer layers for the SD-TiO2 and ALD-TiO2 on H-diamond to suppress plasma discharge effect and to decrease leakage current density (J), respectively. The electrical properties of the resulting TiO2/Al2O3/H-diamond metal-oxide-semiconductor (MOS) capacitors, MOS field-effect transistors (MOSFETs), and MOSFET logic inverters are investigated. With the same thickness (4.0 nm) for ALD-Al2O3 buffer layer, the ALD-TiO2/ALD-Al2O3/H-diamond MOS capacitor shows a lower J and better capacitance-voltage characteristics than the SD-TiO2/ALD-Al2O3/H-diamond capacitor. The maximum capacitance of the ALD-TiO2/ALD-Al2O3/H-diamond capacitor and the k value of the ALD-TiO2/ALD-Al2O3 bilayer are 0.83 μF cm-2 and 27.2, respectively. Valence band offset between ALD-TiO2 and H-diamond is calculated to be 2.3 ± 0.2 eV based on the element binding energies measured using an X-ray photoelectron spectroscopy technique. Both the SD-TiO2/ALD-Al2O3/H-diamond and ALD-TiO2/ALD-Al2O3/H-diamond MOSFETs show p-type, pinch-off, and enhancement mode characteristics with on/off current ratios around 109. The subthreshold swings of them are 115 and as low as 79 mV dec-1, respectively. The ALD-TiO2/ALD-Al2O3/H-diamond MOSFET logic inverters, when coupled with load resistors, show distinct inversion characteristics with gains of 6.2-12.7.

  19. Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; Li, Xingcun; Chen, Qiang; Wang, Zhengduo

    2012-02-01

    Atomic layer deposition (ALD) technique is used in the preparation of organic/inorganic layers, which requires uniform surfaces with their thickness down to several nanometers. For film with such thickness, the growth mode defined as the arrangement of clusters on the surface during the growth is of significance. In this work, Al2O3 thin film was deposited on various interfacial species of pre-treated polyethylene terephthalate (PET, 12 μm) by plasma assisted atomic layer deposition (PA-ALD), where trimethyl aluminium was used as the Al precursor and O2 as the oxygen source. The interfacial species, -NH3, -OH, and -COOH as well as SiCHO (derived from monomer of HMDSO plasma), were grafted previously by plasma and chemical treatments. The growth mode of PA-ALD Al2O3 was then investigated in detail by combining results from in-situ diagnosis of spectroscopic ellipsometry (SE) and ex-situ characterization of as-deposited layers from the morphologies scanned by atomic force microscopy (AFM). In addition, the oxygen transmission rates (OTR) of the original and treated plastic films were measured. The possible reasons for the dependence of the OTR values on the surface species were explored.

  20. The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Schmidt, H.; Kowalsky, W.; Riedl, T.; Kahn, A.

    2010-06-01

    This paper reports on thin film gas-diffusion barriers consisting of Al2O3/ZrO2 nanolaminates (NL) grown by low-temperature (80 °C) atomic layer deposition. We show that reliable barriers with water vapor transmission rates of 3.2×10-4 g/(m2 day), measured at 80 °C and 80% relative humidity, can be realized with very thin layers down to 40 nm. We determine that ZrO2 acts as anticorrosion element in our NL. Furthermore, we demonstrate by x-ray photoemission spectroscopy that an aluminate phase is formed at the interfaces between Al2O3 and ZrO2 sublayers, which additionally improves the gas-diffusion barrier due to a densification of the layer system. These Al2O3/ZrO2 NLs prepared at low temperatures hold considerable promises for application in organic electronics and beyond.

  1. CoFe2/Al2O3/PMNPT multiferroic heterostructures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Grocke, Garrett; Yanguas-Gil, Angel; Wang, Xinjun; Gao, Yuan; Sun, Nianxiang; Howe, Brandon; Chen, Xing

    2016-05-01

    Multiferroic materials and applications allow electric bias control of magnetism or magnetic bias control of polarization, enabling fast, compact, energy-efficient devices in RF/microwave communication systems such as filters, shifters, and antennas; electronics devices such as inductors and capacitors; and other magnetic material related applications including sensors and memories. In this manuscript, we utilize atomic layer deposition technology to grow magnetic CoFe metallic thin films onto PMNPT, with a ˜110 Oe electric field induced ferromagnetic resonance field shift in the CoFe/Al2O3/PMNPT multiferroic heterostructure. Our work demonstrates an atomic layer deposition fabricated multiferroic heterostructure with significant tunability and shows that the unique thin film growth mechanism will benefit integrated multiferroic application in near future.

  2. Nucleation and growth mechanisms of Al2O3 atomic layer deposition on synthetic polycrystalline MoS2

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chiappe, D.; Meersschaut, J.; Conard, T.; Franquet, A.; Nuytten, T.; Mannarino, M.; Radu, I.; Vandervorst, W.; Delabie, A.

    2017-02-01

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are of great interest for applications in nano-electronic devices. Their incorporation requires the deposition of nm-thin and continuous high-k dielectric layers on the 2D TMDs. Atomic layer deposition (ALD) of high-k dielectric layers is well established on Si surfaces: the importance of a high nucleation density for rapid layer closure is well known and the nucleation mechanisms have been thoroughly investigated. In contrast, the nucleation of ALD on 2D TMD surfaces is less well understood and a quantitative analysis of the deposition process is lacking. Therefore, in this work, we investigate the growth of Al2O3 (using Al(CH3)3/H2O ALD) on MoS2 whereby we attempt to provide a complete insight into the use of several complementary characterization techniques, including X-ray photo-electron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To reveal the inherent reactivity of MoS2, we exclude the impact of surface contamination from a transfer process by direct Al2O3 deposition on synthetic MoS2 layers obtained by a high temperature sulfurization process. It is shown that Al2O3 ALD on the MoS2 surface is strongly inhibited at temperatures between 125°C and 300°C, with no growth occurring on MoS2 crystal basal planes and selective nucleation only at line defects or grain boundaries at MoS2 top surface. During further deposition, the as-formed Al2O3 nano-ribbons grow in both vertical and lateral directions. Eventually, a continuous Al2O3 film is obtained by lateral growth over the MoS2 crystal basal plane, with the point of layer closure determined by the grain size at the MoS2 top surface and the lateral growth rate. The created Al2O3/MoS2 interface consists mainly of van der Waals interactions. The nucleation is improved by contributions of reversible adsorption on the MoS2 basal planes by using low

  3. Nucleation and growth mechanisms of Al2O3 atomic layerdeposition on synthetic polycrystalline MoS2.

    PubMed

    Zhang, H; Chiappe, D; Meersschaut, J; Conard, T; Franquet, A; Nuytten, T; Mannarino, M; Radu, I; Vandervorst, W; Delabie, A

    2017-02-07

    Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are of great interest for applications in nano-electronic devices. Their incorporation requires the deposition of nm-thin and continuous high-k dielectric layers on the 2D TMDs. Atomic layer deposition (ALD) of high-k dielectric layers is well established on Si surfaces: the importance of a high nucleation density for rapid layer closure is well known and the nucleation mechanisms have been thoroughly investigated. In contrast, the nucleation of ALD on 2D TMD surfaces is less well understood and a quantitative analysis of the deposition process is lacking. Therefore, in this work, we investigate the growth of Al2O3 (using Al(CH3)3/H2O ALD) on MoS2 whereby we attempt to provide a complete insight into the use of several complementary characterization techniques, including X-ray photo-electron spectroscopy, elastic recoil detection analysis, scanning electron microscopy, and time-of-flight secondary ion mass spectrometry. To reveal the inherent reactivity of MoS2, we exclude the impact of surface contamination from a transfer process by direct Al2O3 deposition on synthetic MoS2 layers obtained by a high temperature sulfurization process. It is shown that Al2O3 ALD on the MoS2 surface is strongly inhibited at temperatures between 125°C and 300°C, with no growth occurring on MoS2 crystal basal planes and selective nucleation only at line defects or grain boundaries at MoS2 top surface. During further deposition, the as-formed Al2O3 nano-ribbons grow in both vertical and lateral directions. Eventually, a continuous Al2O3 film is obtained by lateral growth over the MoS2 crystal basal plane, with the point of layer closure determined by the grain size at the MoS2 top surface and the lateral growth rate. The created Al2O3/MoS2 interface consists mainly of van der Waals interactions. The nucleation is improved by contributions of reversible adsorption on the MoS2 basal planes by using low

  4. Characterization of SDC-Al2O3 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Raju, K. C. James; Reddy, C. Vishnuvardhan

    2012-06-01

    SDC20-Al2O3 materials were synthesized through the sol-gel method. Dense SDC20-Al2O3 ceramics were obtained through sintering the pellets at 1300°C. SDC20-Al2O3 materials were characterized by XRD, SEM and impedance spectroscopy. XRD measurements indicate that synthesized materials crystallized in cubic structure. Average crystallite size of the samples was in the range 11-12 nm. The relative density of SDC20-Al2O3 samples was over 95% of the theoretical density. Addition of Al2O3 promotes densification. Surface morphology was analyzed using SEM. The two-probe a.c. impedance spectroscopy was used to study the total ionic conductivity of doped and co-doped ceria in the temperature range 350-700°C. The SDC20-Al2O3 composition showed improved total ionic conductivity and minimum activation energy.

  5. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    PubMed Central

    Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.

    2013-01-01

    This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  6. Border trap reduction in Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, Kechao; Winter, Roy; Zhang, Liangliang; Droopad, Ravi; Eizenberg, Moshe; McIntyre, Paul C.

    2015-11-01

    The effect of Al2O3 atomic layer deposition (ALD) temperature on the border trap density (Nbt) of Al2O3/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces Nbt. The reduction of Nbt coincides with increased hydrogen incorporation in low temperature ALD-grown Al2O3 films during post-gate metal forming gas annealing. It is also found that large-dose (˜6000 L) exposure of the In0.53Ga0.47As (100) surface to TMA immediately after thermal desorption of a protective As2 capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al2O3/InGaAs samples made at low ALD temperatures.

  7. Temperature dependence of the dielectric response of anodized Al-Al2O3-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2003-03-01

    The temperature dependence of capacitance, CM, and conductance, GM, of Al-Al2O3-metal capacitors with Cu, Ag, and Au electrodes has been measured between 100 and 340 K at seven frequencies between 10 kHz and 1 MHz. Al2O3 films between 15 and 64 nm thick were formed by anodizing evaporated Al films in borate-glycol or borate-H2O electrolyte. The interface capacitance at the Al2O3-metal interface, CI, which is in series with the capacitance CD due to the Al2O3 dielectric, is determined from plots of 1/CM versus insulator thickness. CI is not fixed for a given metal-insulator interface but depends on the vacuum system used to deposit the metal electrode. CI is nearly temperature independent. When CI is taken into account the dielectric constant of Al2O3 determined from capacitance measurements is ˜8.3 at 295 K. The dielectric constant does not depend on anodizing electrolyte, insulator thickness, metal electrode, deposition conditions for the metal electrode or measurement frequency. By contrast, GM of Al-Al2O3-metal capacitors depends on both the deposition conditions of the metal and on the metal. For Al-Al2O3-Cu capacitors, GM is larger for capacitors with large values of 1/CI that result when Cu is evaporated in an oil-pumped vacuum system. For Al-Al2O3-Ag capacitors, GM does not depend on the Ag deposition conditions.

  8. Microstructure and Optical Properties of SS/Mo/Al2O3 Spectrally Selective Solar Absorber Coating

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Guo, Zhi-Ming; Geng, Qing-Fen; Ma, Peng-Jun; Liu, Gang

    2017-01-01

    Surface-textured Mo thin film is fabricated by magnetron sputtering through the adjustment of deposition parameters, which exhibits a high absorptance of 0.80 and a low emittance of 0.09. The single-layer Mo deposited on stainless steel (SS) is characterized by x-ray diffraction (XRD), ultra-high resolution scanning electron microscope, atomic force microscope and optical measurement. The controlled surface roughness combined with larger aspect ratio contributes much to the high absorptance and low emittance. Based on the SS/Mo coating, a spectrally selective coating (SS/Mo/Al2O3) is designed and fabricated. The coating shows an amorphous structure and exhibits an absorptance of 0.90 and an emittance of 0.08. Tauc-Lorentz and Drude free-electron models are used to modeling the optical properties of Al2O3 and Mo layers by phase-modulated spectroscopic ellipsometry.

  9. Microstructure and Optical Properties of SS/Mo/Al2O3 Spectrally Selective Solar Absorber Coating

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Hu; Guo, Zhi-Ming; Geng, Qing-Fen; Ma, Peng-Jun; Liu, Gang

    2016-11-01

    Surface-textured Mo thin film is fabricated by magnetron sputtering through the adjustment of deposition parameters, which exhibits a high absorptance of 0.80 and a low emittance of 0.09. The single-layer Mo deposited on stainless steel (SS) is characterized by x-ray diffraction (XRD), ultra-high resolution scanning electron microscope, atomic force microscope and optical measurement. The controlled surface roughness combined with larger aspect ratio contributes much to the high absorptance and low emittance. Based on the SS/Mo coating, a spectrally selective coating (SS/Mo/Al2O3) is designed and fabricated. The coating shows an amorphous structure and exhibits an absorptance of 0.90 and an emittance of 0.08. Tauc-Lorentz and Drude free-electron models are used to modeling the optical properties of Al2O3 and Mo layers by phase-modulated spectroscopic ellipsometry.

  10. Efficient photoelectrochemical water splitting using CuO nanorod/Al2O3 heterostructure photoelectrodes with different Al layer thicknesses

    NASA Astrophysics Data System (ADS)

    Ha, Jin-wook; Ryu, Hyukhyun; Lee, Won-Jae; Bae, Jong-Seong

    2017-08-01

    In this study, an efficient water splitting technique was investigated with CuO nanorod/Al2O3 heterostructure photoelectrodes. Cupric oxide (CuO) nanorods were grown on a fluorine-doped tin oxide (FTO) glass substrate by using modified-chemical bath deposition. In addition, Al thin films were deposited on the CuO nanorods using thermal evaporation, and then, aluminum oxide (Al2O3) layers were formed in open air to create the CuO nanorod/Al2O3 structure. In this study, the morphological, optical and structural properties of CuO nanorod/Al2O3 photoelectrodes were analyzed according to the various thicknesses of the Al layers, and the effects of the thickness on the photoelectrochemical (PEC) properties were mainly discussed. We obtained a maximum photocurrent value of -2.26 mA/cm2 (-0.55 V vs. SCE) and a theoretical solar-to-hydrogen (STH) conversion efficiency of 1.61% using the Al 30-nm thick sample, which had the largest amount of the Al2O3 layer, as confirmed by X-ray photoelectron spectroscopy (XPS).

  11. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  12. F2-Laser-Induced Modification of Aluminum Thin Films into Transparent Aluminum Oxide

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Iwai, Kazufumi; Nojiri, Hidetoshi; Inoue, Narumi

    2012-12-01

    A vacuum-UV F2 laser of 157 nm wavelength induced strong oxidation of 10-nm-thick Al thin films, forming transparent Al2O3 on silica glass. The laser-induced modification occurred at the surface of Al thin films; consequently, the thickness of the formed Al2O3 thin films increased linearly with increasing number of F2 laser photons. The formation of equivalent-phase Al2O3 thin films was confirmed by X-ray photoelectron spectroscopy. The oxidation reaction in the laser-induced modification of 10-nm-thick Al thin films was slower than that for 20- and 60-nm-thick Al thin films. Morphological changes leading to the crystallization of the Al2O3 thin films were also observed when the thickness of Al thin films increased from 10 to 20 and 60 nm.

  13. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  14. Thermally Annealed Iron (Oxide) Thin Film on an Alumina Barrier Layer, by XPS

    SciTech Connect

    Madaan, Nitesh; Kanyal, Supriya S.; Jensen, David S.; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-06

    Herein we show characterization of an Fe thin film on Al_2O_3 after thermal annealing under H_2 using Al Ka X-rays. The XPS survey spectrum, narrow Fe 2p scan, and valence band regions are presented. The survey spectrum shows aluminum signals due to exposure of the underlying Al_2O_3 film during Fe nanoparticle formation.

  15. Al2O3 on WSe2 by ozone based atomic layer deposition: Nucleation and interface study

    NASA Astrophysics Data System (ADS)

    Azcatl, Angelica; Wang, Qingxiao; Kim, Moon J.; Wallace, Robert M.

    2017-08-01

    In this work, the atomic layer deposition process using ozone and trimethylaluminum (TMA) for the deposition of Al2O3 films on WSe2 was investigated. It was found that the ozone-based atomic layer deposition enhanced the nucleation of Al2O3 in comparison to the water/TMA process. In addition, the chemistry at the Al2O3/WSe2 interface and the surface morphology of the Al2O3 films exhibited a dependence on the deposition temperature. A non-covalent functionalizing effect of ozone on WSe2 at low deposition temperatures 30 °C was identified which prevented the formation of pinholes in the Al2O3 films. These findings aim to provide an approach to obtain high-quality gate dielectrics on WSe2 for two-dimensional transistor applications.

  16. Millimeter distance effects of surface plasmon polaritons in electroformed Al-Al2O3-Ag diodes

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2017-02-01

    Electroforming of metal-insulator-metal diodes is a soft dielectric breakdown that changes the high resistance of as-prepared diodes to a low resistance state. Electroforming of Al-Al2O3-metal diodes with anodic Al2O3 results in voltage-controlled negative resistance in the current-voltage (I-V) characteristics, electroluminescence (EL), and electron emission into vacuum (EM). EL is due to electrons injected at the Al-Al2O3 interface combining with radiative defects in Al2O3. Surface plasmon polaritons (SPPs) are electromagnetic waves that can be excited by photons or electrons. SPPs are confined to a metal-dielectric interface, cause large electric fields in the metal and dielectric, and have ranges of micrometers. The temperature dependence of I-V curves, EL, and EM of a group of electroformed Al-Al2O3-Ag diodes with Al2O3 thicknesses between 12 nm and 20 nm, group A, was measured between 200 K and 300 K. After a sequence of temperature measurements, the Al-Al2O3-Ag diodes, the Al-Al2O3 regions between diodes, and portions of the Ag on the glass region that provides contacts to the diodes are darkened. The range of darkening is >7 mm in a diode with 12 nm of Al2O3 and 2.0-3.5 mm in diodes with Al2O3 thicknesses between 14 nm and 20 nm. Darkening is attributed to the occurrence of SPPs generated by EL photons at the Ag-Al2O3 and Al-Al2O3 interfaces. The results are compared to a second group of Al-Al2O3-Ag diodes with identical Al2O3 thicknesses, group B, that were prepared in the same way as the diodes of group A except for a difference in the deposition of Al films for the two groups. Al-Al2O3-Ag diodes of group B exhibit enhanced EL, which is attributed to spontaneous emission of recombination centers in Al2O3 being enhanced by large electromagnetic fields that are due to SPPs that are generated by EL photons.

  17. Unearthing [3-(Dimethylamino)propyl]aluminium(III) Complexes as Novel Atomic Layer Deposition (ALD) Precursors for Al2 O3 : Synthesis, Characterization and ALD Process Development.

    PubMed

    Mai, Lukas; Gebhard, Maximilian; de Los Arcos, Teresa; Giner, Ignacio; Mitschker, Felix; Winter, Manuela; Parala, Harish; Awakowicz, Peter; Grundmeier, Guido; Devi, Anjana

    2017-08-10

    Identification and synthesis of intramolecularly donor-stabilized aluminium(III) complexes, which contain a 3-(dimethylamino)propyl (DMP) ligand, as novel atomic layer deposition (ALD) precursors has enabled the development of new and promising ALD processes for Al2 O3 thin films at low temperatures. Key for this promising outcome is the nature of the ligand combination that leads to heteroleptic Al complexes encompassing optimal volatility, thermal stability and reactivity. The first ever example of the application of this family of Al precursors for ALD is reported here. The process shows typical ALD like growth characteristics yielding homogeneous, smooth and high purity Al2 O3 thin films that are comparable to Al2 O3 layers grown by well-established, but highly pyrophoric, trimethylaluminium (TMA)-based ALD processes. This is a significant development based on the fact that these compounds are non-pyrophoric in nature and therefore should be considered as an alternative to the industrial TMA-based Al2 O3 ALD process used in many technological fields of application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  19. Electrowetting properties of atomic layer deposited Al2O3 decorated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-01

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al2O3 as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al2O3 films of 10nm thickness were conformally deposited over silicon nanowires. Al2O3 dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  20. Growth of pentacene on α -Al2O3 (0001) studied by in situ optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Fu, X.; Hohage, M.; Zeppenfeld, P.; Sun, L. D.

    2017-09-01

    The growth of pentacene thin films on a sapphire α -Al2O3 (0001) surface was investigated in situ using differential reflectance spectroscopy (DRS). Two different film structures are observed depending on the substrate temperature. If pentacene is deposited at room temperature, a wetting layer consisting of flat-lying molecules is formed after which upright-standing molecular layers with a herringbone structure start to grow. At low substrate temperature of 100 K, the long molecular axis of the pentacene molecules remains parallel to the surface plane throughout the entire growth regime up to rather large thicknesses. Heating thin films deposited at 100 K to room temperature causes the pentacene molecules beyond the wetting layer to stand up and assemble into a herringbone structure. Another interesting observation is the dewetting of the first flat-lying monolayer upon exposure to air, leading to the condensation of islands consisting of upright-standing molecules. Our results emphasize the interplay between growth kinetics and thermodynamics and its influence on the molecular orientation in organic thin films.

  1. Interface of atomic layer deposited Al2O3 on H-terminated silicon

    NASA Astrophysics Data System (ADS)

    Gao, K. Y.; Speck, F.; Emtsev, K.; Seyller, Th.; Ley, L.; Oswald, M.; Hansch, W.

    2006-07-01

    Al2O3 films 1 to 20 nm thick were deposited as alternative high- gate dielectric on hydrogen-terminated silicon by Atomic Layer Deposition (ALD) and characterized by Synchrotron X-ray Photoelectron Spec-troscopy (SXPS), Fourier Transform Infrared (FTIR) absorption spectroscopy and admittance measure-ments. The SXPS results indicate that about 60% of the original Si-H surface bonds are preserved at the Al2O3/Si interface and this is confirmed by monitoring the Si-H stretching modes by FTIR spectroscopy in the Attenuated Total Reflection (ATR) mode both before and after ALD of Al2O3. The remaining 40% of Si-H bonds are replaced by Si-O bonds as verified by SXPS. In addition, a fraction of a monolayer of SiO2 forms on top of the Al2O3 dielectric during deposition. The presence of OH-groups at a level of 3% of the total oxygen content was detected throughout the Al2O3 layer through a chemically shifted O 1s component in SXPS. Admittance measurements give a dielectric constant of 9.12, but a relatively high density of interface traps between 1011 and 1012 cm-2 eV-1.

  2. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    NASA Astrophysics Data System (ADS)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  3. Rapid fabrication of Al2O3 encapsulations for organic electronic devices

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Ali, Junaid; Mehdi, Syed Murtuza; Choi, Kyung-Hyun; An, Young Jin

    2015-10-01

    Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al2O3 encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al2O3 encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (Ra) of 9.66 nm have been effectively covered by Al2O3 encapsulation having Ra of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al2O3 films. Electrical current-voltage (I-V) measurements confirmed that the Al2O3 encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al2O3 encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one week. The performance of encapsulated device had been promising after being subjected to bending test for 100 cycles and the variations in its stability were of minor concern confirming the mechanical robustness and flexibility of the devices.

  4. Electrochemical synthesis of polypyrrole-Al2O3 composite coating on 316 stainless steel for corrosion protection

    NASA Astrophysics Data System (ADS)

    Yan, Qun; Li, Chuanxian; Huang, Tingting; Yang, Fei

    2017-03-01

    Polypyrrole (PPy)-Al2O3 composite coating was electrochemically deposited on 316 stainless steel (316 SS) by cyclic voltammetry technique. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) were employed to understand the morphology and composition of the PPy-Al2O3 coated SS. The corrosion protection ability of the PPy-Al2O3 coating was studied using open circuit potential (Eocp)-time measurements, polarization curves, and electrochemical impedance spectroscopy (EIS) after the electrodes had been immersed in a 3.5 wt% NaCl solution as the corrosive media. The results showed that PPy-Al2O3 composite coatings have a homogeneous and smooth surface without detectable cracks. Anodic polarization analysis revealed that the hybrid films provided an exceptional barrier and corrosion protection in comparison with PPy coating. The EIS studies indicated that the charge transfer resistance increases with the presence of PPy-Al2O3. PPy-Al2O3 composite coating provides better corrosion protection and can be considered as a coating material to protect 316SS. With increase in Al2O3/Py mole ratio, PPy-Al2O3 coatings tend to exhibit a better corrosion resistance ability.

  5. Al-Al2O3-Pd junction hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Okuyama, K.; Takinami, N.; Chiba, Y.; Ohshima, S.; Kambe, S.

    1994-07-01

    Al-Al2O3-Pd MIM (metal insulator metal) junctions fabricated on a glass substrate were tested as hydrogen sensors. The I-V (current versus voltage) characteristics of the junctions were measured at room temperature in a vacuum of 10-5 Torr and in H2 gas of 10-2-100 Torr. A significant increase in the current was observed upon introduction of H2 gas. This phenomenon is believed to occur due to the work function lowering of the hydrogen-absorbed Pd top electrode. The rise time was on the order of minutes, while the recovery time when hydrogen was purged was more than 20 h. However, when the junction was placed in an oxidizing ambient such as air, the recovery time was drastically reduced to the order of minutes, indicating that the device is operative as a hydrogen sensor in the atmospheric ambient. Hydrogen adsorption and desorption behavior of the Pd film was also investigated using a Pd coated quartz microbalance, and the results explained the current response of the Pd MIM junction to hydrogen in the presence of oxygen.

  6. Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell.

    PubMed

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to the recently published article '20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%' (Huang et al., 2017) [1]. This paper is about passivated emitter and rear cell (PERC) structures and it describes the quality of the Al2O3 rear-surface passivation layer deposited by atomic layer deposition (ALD), in relation to the processing parameters (e.g. pre-clean treatment, deposition temperature, growth per cycle, and film thickness) and to the cell efficiency loss mechanisms. This dataset is made public in order to contribute to the limited available public data on industrial PERC cells, to be used by other researchers.

  7. Epitaxial Graphene Surface Preparation for Atomic Layer Deposition of Al2O3

    DTIC Science & Technology

    2011-06-01

    j dielectrics such as Al2O3 , HfO2, Ta2O5, and TiO2 , are important for the realization of graphene-based top-gated electronic devices including field... ALD pulse sequencing of NO2-trimethylaluminum (TMA); 16 oxidation of electron beam evaporated metallic Al, Hf, Ti, Ta;17,18 and spin- coating of a... ALD of Al2O3 films in promoting uni- form, high quality oxide deposition. Initial treatments resulted in partial coverage, while the optimized treatment

  8. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  9. Synthesis and thermal characterization of Al2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ismardi, A.; Rosadi, O. M.; Kirom, M. R.; Syarif, D. G.

    2016-11-01

    Al2O3 nanoparticle has been successfully synthesized using sol gel method from AlCl3. The obtained nanoparticles was then characterized for grain size measurement, the size of nanoparticles was 6 nm by using surface area meter (SAM) and Transmission Electron Microscopy (TEM). The crystallinity property of the product was then checked with XRD spectroscopy, the result shows that the diffraction peaks were match with the 10-0425 JCPDS database. Thermal property of the Al2O3 nanoparticles was then studied by mixing it with engine base fluid as nanofluid. The usage of nanofluid was expected to be heat absorber and woulo increase cooling process in cooling machine. The results showed that cooling time increases when the concentration of nanofluid was increased. Finally, it is concluded that thermal property of Al2O3 was studied and applicable to be mixed with engine coolant of cooler machine to reduce cooling time process.

  10. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    PubMed Central

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD. PMID:28405059

  11. Equation of state of α-Al2O3

    NASA Astrophysics Data System (ADS)

    Dewaele, A.; Torrent, M.

    2013-08-01

    The ambient temperature equation of state of ruby in the corundum phase (α-Al2O3) has been measured up to 165 GPa in a diamond anvil cell, using a soft pressure transmitting medium. No clear sign of phase transformation or amorphization has been observed in this range, which could affect its luminescence signal. The equation of state of α-Al2O3 has also been calculated within density functional theory, with two different approximations of the exchange-correlation energy (local density and generalized gradient). With suitable correction, these equations of state are predictive within ΔP/P=2.5%.

  12. Structural study of radiolytic catalysts Ni-Ce/Al2O3 and Ni-Pt/Al2O3

    NASA Astrophysics Data System (ADS)

    Seridi, F.; Chettibi, S.; Keghouche, N.; Beaunier, P.; Belloni, J.

    2017-01-01

    Ni-Ce and Ni-Pt bimetallic catalysts supported over α-Al2O3 are synthesized by using co-impregnation method, and then reduced, each via radiolytic process or thermal H2-treatment. For Ni-Ce/Al2O3, the structural study reveals that Ce is alloyed with Ni as Ce2Ni7 nanoparticles in the radiation-reduced catalysts, while it segregates to the surface in the form of CeO2 in the H2-reduced catalysts. For Ni-Pt/Al2O3 radiolytic catalysts, Ni, Pt, NiPt and Ni3Pt nanoparticles, which size is 3.5 nm, are observed. When the radiation-reduced samples are tested in the benzene hydrogenation, they both display high conversion rate. However, the Ni-Pt/Al2O3 is more efficient than Ni-Ce/Al2O3. The performance of the catalysts is correlated with the high dispersion of the metal and the presence of intermetallic Ni-Pt and Ni-Ce phases. It is compared to that of other radiolytic monometallic/oxide catalysts of the literature.

  13. Effect of Ti, Nb, and Ti + Nb Coatings on the Bond Strength-Structure Relationship in Al/Al2O3 Joints

    NASA Astrophysics Data System (ADS)

    Ksiazek, Marzanna; Richert, Maria; Tchorz, Aam; Boron, Lukasz

    2012-05-01

    There is a growing interest in metal-ceramic bonding for wide range of applications in electronic devices and high technology industry for fabrication of metal matrix composites and bonding of ceramic components to metals. The object of the work was to study the effect of Ti, Nb, and Ti + Nb thin films deposited by PVD method on alumina substrates on structure and bond strength properties of Al/Al2O3 joints. The joints were fabricated using the results of a wetting experiment and the sessile drop method at a temperature of 1223 K in a vacuum of 0.2 MPa for 30 min of contact. The structure of the metal/ceramic interface was investigated using scanning electron microscopy. The elemental distribution at the metal-ceramic interface was analyzed using energy dispersive x-ray spectroscopy. Transmission electron microscopy was also used to investigate some aspects of the metal/ceramic interface. The bond strength properties of joints were measured using shear test. The shear strength results demonstrated significant improvement of shear strength of Al/Al2O3 joints due to the application of Ti + Nb thin film on alumina substrate. Microstructural investigations of the interface indicated that Al/coating/Al2O3 couples have diffusion transition interface which influences the strengthening of these joints. A conclusion could be drawn that the presence of thin film layers changes the character of interaction and leads to the formation of new reaction products in the bonding layer.

  14. Self limiting atomic layer deposition of Al2O3 on perovskite surfaces: a reality?

    NASA Astrophysics Data System (ADS)

    Choudhury, Devika; Rajaraman, Gopalan; Sarkar, Shaibal K.

    2016-03-01

    The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface.The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface. Electronic supplementary information (ESI) available: Additional QCM results, FTIR spectra and DFT results. See DOI: 10.1039/c5nr06974b

  15. Atomic layer deposition of Al(2)O(3) and ZnO at atmospheric pressure in a flow tube reactor.

    PubMed

    Jur, Jesse S; Parsons, Gregory N

    2011-02-01

    Improving nanoscale thin film deposition techniques such as atomic layer deposition (ALD) to permit operation at ambient pressure is important for high-throughput roll-to-roll processing of emerging flexible substrates, including polymer sheets and textiles. We present and investigate a novel reactor design for inorganic materials growth by ALD at atmospheric pressure. The reactor uses a custom "pressure boost" approach for delivery of low vapor pressure ALD precursors that controls precursor dose independent of reactor pressure. Analysis of continuum gas flow in the reactor shows key relations among reactor pressure, inert gas flow rate, and species diffusion that define conditions needed to efficiently remove product and adsorbed reactive species from the substrate surface during the inert gas purge cycle. Experimental results, including in situ quartz crystal microbalance (QCM) characterization and film thickness measurements for deposition of ZnO and Al(2)O(3) are presented and analyzed as a function of pressure and gas flow rates at 100 °C. At atmospheric pressure and high gas flow, ZnO deposition can proceed at the same mass uptake and growth rate as observed during more typical low pressure ALD. However, under the same high pressure and flow conditions the mass uptake and growth rate for Al(2)O(3) is a factor of ∼1.5-2 larger than at low pressure. Under these conditions, Al(2)O(3) growth at atmospheric pressure in a "flow-through" geometry on complex high surface area textile materials is sufficiently uniform to yield functional uniform coatings.

  16. Nanoclusters of MoO3-x embedded in an Al2O3 matrix engineered for customizable mesoscale resistivity and high dielectric strength

    NASA Astrophysics Data System (ADS)

    Tong, William M.; Brodie, Alan D.; Mane, Anil U.; Sun, Fuge; Kidwingira, Françoise; McCord, Mark A.; Bevis, Christopher F.; Elam, Jeffrey W.

    2013-06-01

    We have synthesized a material consisting of conducting metal oxide (MoO3-x) nanoclusters embedded in a high-dielectric-strength insulator (Al2O3) matrix. The resistivity of this material can be customized by varying the concentration of the MoO3-x nanoclusters. The Al2O3 protects the MoO3-x from stoichiometry change, thus conserving the number of carriers and maintaining a high dielectric strength. This composite material is grown by atomic layer deposition, a thin film deposition technique suitable for coating 3D structures. We applied these atomic layer deposition composite films to our 3D electron-optical micro electrical mechanical systems devices and greatly improved their performance.

  17. New battery strategies with a polymer/Al2O3 separator

    NASA Astrophysics Data System (ADS)

    Park, Kyusung; Cho, Joon Hee; Shanmuganathan, Kadhiravan; Song, Jie; Peng, Jing; Gobet, Mallory; Greenbaum, Steven; Ellison, Christopher J.; Goodenough, John B.

    2014-10-01

    A low-cost, thin, flexible, and mechanically robust alkali-ion electrolyte separator is shown to allow fabrication of a safe rechargeable alkali-ion battery with alternative cathode strategies. A Na-ion battery with an insertion host as cathode and a Li-ion battery with a redox flow-through cathode are demonstrated to cycle without significant fade. The separator membrane is a composite of Al2O3 particles and cross-linked ethylene-oxide chains; it can be fabricated at low cost into a large-area thin membrane that blocks dendrites from an alkali-metal anode. To block a soluble ferrocene redox molecule from crossing from the cathode side to the anode in a Li-ion battery with a redox-flow cathode, a thin mixed Li+/electronic-conducting film has been added to the cathode side of the composite separator. An osmosis issue was minimized by balancing concentrations of solutes on the two sides of the separator where the cathode side contains a soluble redox molecule.

  18. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    PubMed

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Atomic layer deposition TiO2-Al2O3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  20. ALD TiO2-Al2O3 Stack: An Improved Gate Dielectrics on Ga-polar GaN MOSCAPs

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO2-Al2O3 nano-stack thin films deposited on Ga2O3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO2, 7.1 nm Al2O3 and 2 nm Ga2O3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectron spectroscopy (XPS) depth profile, was negligible for GaN pretreated bymore » thermal oxidation in O2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO2-Al2O3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al2O3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 1011 cm-2. The gate leakage current density (J=2.81× 10-8 A/cm2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO2/Al2O3 for serving as the gate oxide on Ga2O3/GaN based MOS devices.« less

  1. High temperature thin film strain gauges

    NASA Astrophysics Data System (ADS)

    Kayser, P.; Godefroy, J. C.; Leca, L.

    The development of thin-film resistance strain gauges suitable for dynamic stress measurements up to 900 C and intended for blade vibration measurements is reported. The strain gauge is deposited by RF sputtering on nickel-base superalloys and consists of an NiCoCrAlY coating, an Al2O3 insulating layer, a sensing layer (NiCr, PdCr), an intermediate splicing layer (Pt), and a protective film (Al2O3 or SiO2). The electrical and mechanical properties of the sensing layers and preliminary results on the thermal stability of the gauges are discussed.

  2. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.

    PubMed

    Maikap, Siddheswar; Panja, Rajeswar; Jana, Debanjan

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >10(6) cycles are observed with read voltages of -1, 1, and 4 V. However, read endurance is failed with read voltages of -1.5, -2, and -4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >10(3) s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future.

  3. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture

    PubMed Central

    2014-01-01

    A novel idea by using copper (Cu) pillar is proposed in this study, which can replace the through-silicon-vias (TSV) technique in future three-dimensional (3D) architecture. The Cu pillar formation under external bias in an Al/Cu/Al2O3/TiN structure is simple and low cost. The Cu pillar is formed in the Al2O3 film under a small operation voltage of <5 V and a high-current-carrying conductor of >70 mA is obtained. More than 100 devices have shown tight distribution of the Cu pillars in Al2O3 film for high current compliance (CC) of 70 mA. Robust read pulse endurances of >106 cycles are observed with read voltages of −1, 1, and 4 V. However, read endurance is failed with read voltages of −1.5, −2, and −4 V. By decreasing negative read voltage, the read endurance is getting worst, which is owing to ruptured Cu pillar. Surface roughness and TiO x N y on TiN bottom electrode are observed by atomic force microscope and transmission electron microscope, respectively. The Al/Cu/Al2O3/TiN memory device shows good bipolar resistive switching behavior at a CC of 500 μA under small operating voltage of ±1 V and good data retention characteristics of >103 s with acceptable resistance ratio of >10 is also obtained. This suggests that high-current operation will help to form Cu pillar and lower-current operation will have bipolar resistive switching memory. Therefore, this new Cu/Al2O3/TiN structure will be benefited for 3D architecture in the future. PMID:25136279

  4. Effect of Al2O3 on dielectric behavior of LiClO4/PVA polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Naik, Jagadish; Bhajantri, R. F.; Sheela, T.; Hebbar, Vidyashree

    2017-05-01

    The dielectric properties of lithium per chlorate (LiClO4)/polyvinylalcohol (PVA) solid polymer electrolyte dispersed with alumina (Al2O3) nanoparticles have been investigated in this work. Free standing films of Al2O3/LiClO4/PVA were prepared using solution casting method. FTIR results confirm the successful dispersion of Al2O3 in LiClO4/PVA polymer matrix. The variation in dielectric constant follows Non-Debye type behavior. The interfacial polarization phenomenon is the main reason for lower frequency regime variation in dielectric properties. The inertial properties of the dipoles play vital role in higher frequency regime. The composites with 5wt% Al2O3doped LiClO4/PVA show highest conductivity, can be used as an electrolyte with certain attainable modifications.

  5. Epitaxial growth and electrochemical transfer of graphene on Ir(111)/α-Al2O3(0001) substrates

    NASA Astrophysics Data System (ADS)

    Koh, Shinji; Saito, Yuta; Kodama, Hideyuki; Sawabe, Atsuhito

    2016-07-01

    Low-pressure chemical vapor deposition growth of graphene on Iridium (Ir) layers epitaxially deposited on α-Al2O3 (0001) substrates was investigated. The X-ray diffraction, Raman and reflection high energy electron diffraction characterizations revealed that graphene films were epitaxially grown on Ir(111) layers, and the in-plane epitaxial relationship between graphene, Ir(111), and α-Al2O3(0001) was graphene ⟨ 1 1 ¯ 00 ⟩//Ir⟨ 11 2 ¯ ⟩//α-Al2O3⟨ 11 2 ¯ 0 ⟩. The graphene on Ir(111) was electrochemically transferred onto SiO2/Si substrates. We also demonstrated the reuse of the Ir(111)/α-Al2O3(0001) substrates in multiple growth and transfer cycles.

  6. Hybrid visible-light responsive Al2O3 particles

    NASA Astrophysics Data System (ADS)

    Ðorđević, Vesna; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, S. Phillip; Sredojević, Dušan N.; Švrakić, Nenad; Belić, Milivoj; Nedeljković, Jovan M.

    2017-10-01

    Detailed study of Al2O3, an insulator with the band gap of about 8.7 eV, and its different organic/inorganic charge transfer complexes with visible-light photo activity is presented. In particular, prepared Al2O3 particles of the size 0.1-0.3 μm are coated with several organic complexes - the specific details for catecholate- and salicylate-type of ligands are described below - and the light absorption properties and photocatalytic activity of such hybrids are scrutinized and compared with those of other organic/inorganic hybrid materials previously studied. In addition, the obtained experimental results are supported with quantum chemical calculations based on density functional theory.

  7. What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface

    PubMed Central

    Du, J. L.; Fang, Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, P. P.; Bai, Q.

    2016-01-01

    Nb films are deposited on single crystal Al2O3 (110) and MgO(111) substrates by e-beam evaporation technique. Structure of Nb films and orientation relationships (ORs) of Nb/Al2O3 and Nb/MgO interface are studied and compared by the combination of experiments and simulations. The experiments show that the Nb films obtain strong (110) texture, and the Nb film on Al2O3(110) substrate shows a higher crystalline quality than that on MgO(111) substrate. First principle calculations show that both the lattice mismatch and the strength of interface bonding play major roles in determining the crystalline perfection of Nb films and ORs between Nb films and single crystal ceramic substrates. The fundamental mechanisms for forming the interfacial configuration in terms of the lattice mismatch and the strength of interface bonding are discussed. PMID:27698458

  8. What determines the interfacial configuration of Nb/Al2O3 and Nb/MgO interface

    NASA Astrophysics Data System (ADS)

    Du, J. L.; Fang, Y.; Fu, E. G.; Ding, X.; Yu, K. Y.; Wang, Y. G.; Wang, Y. Q.; Baldwin, J. K.; Wang, P. P.; Bai, Q.

    2016-10-01

    Nb films are deposited on single crystal Al2O3 (110) and MgO(111) substrates by e-beam evaporation technique. Structure of Nb films and orientation relationships (ORs) of Nb/Al2O3 and Nb/MgO interface are studied and compared by the combination of experiments and simulations. The experiments show that the Nb films obtain strong (110) texture, and the Nb film on Al2O3(110) substrate shows a higher crystalline quality than that on MgO(111) substrate. First principle calculations show that both the lattice mismatch and the strength of interface bonding play major roles in determining the crystalline perfection of Nb films and ORs between Nb films and single crystal ceramic substrates. The fundamental mechanisms for forming the interfacial configuration in terms of the lattice mismatch and the strength of interface bonding are discussed.

  9. Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang

    2015-01-01

    Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.

  10. Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties

    NASA Astrophysics Data System (ADS)

    Testoni, G. E.; Chiappim, W.; Pessoa, R. S.; Fraga, M. A.; Miyakawa, W.; Sakane, K. K.; Galvão, N. K. A. M.; Vieira, L.; Maciel, H. S.

    2016-09-01

    TiO2/Al2O3 nanolaminates are being investigated to obtain unique materials with chemical, physical, optical, electrical and mechanical properties for a broad range of applications that include electronic and energy storage devices. Here, we discuss the properties of TiO2/Al2O3 nanolaminate structures constructed on silicon (1 0 0) and glass substrates using atomic layer deposition (ALD) by alternatively depositing a TiO2 sublayer and Al2O3 partial-monolayer using TTIP-H2O and TMA-H2O precursors, respectively. The Al2O3 is formed by a single TMA-H2O cycle, so it is a partial-monolayer because of steric hindrance of the precursors, while the TiO2 sublayer is formed by several TTIP-H2O cycles. Overall, each nanolaminate incorporates a certain number of Al2O3 partial-monolayers with this number varying from 10-90 in the TiO2/Al2O3 nanolaminate grown during 2700 total reaction cycles of TiO2 at a temperature of 250 °C. The fundamental properties of the TiO2/Al2O3 nanolaminates, namely film thickness, chemical composition, microstructure and morphology were examined in order to better understand the influence of the number of Al2O3 partial-monolayers on the crystallization mechanism of TiO2. In addition, some optical, electrical and mechanical properties were determined and correlated with fundamental characteristics. The results show clearly the effect of Al2O3 partial-monolayers as an internal barrier, which promotes structural inhomogeneity in the film and influences the fundamental properties of the nanolaminate. These properties are correlated with gas phase analysis that evidenced the poisoning effect of trimethylaluminum (TMA) pulse during the TiO2 layer growth, perturbing the growth per cycle and consequently the overall film thickness. It was shown that the changes in the fundamental properties of TiO2/Al2O3 nanolaminates had little influence on optical properties such as band gap and transmittance. However, in contrast, electrical properties as resistivity

  11. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  12. Structural and phase transition of α-Al2O3 powders obtained by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Bharthasaradhi, R.; Nehru, L. C.

    2016-01-01

    Aluminium oxide has been synthesized by co-precipitation technique at different annealing temperature. Powder XRD confirms the formation of α-Al2O3 with rhombohedral crystal structure having lattice constant a = 4.76 Å and b = 12.99 Å by the Scherer formula, the average crystallite size is estimated to be 66 nm. The scanning electron microscope results expose the fact that the α-Al2O3 nanomaterials are seemingly porous in nature and highly agglomerated. Chemical composition of aluminium oxide is confirmed by energy dispersive spectroscopy. The molecular functional group is confirmed by FTIR. Optical absorption of α-Al2O3 has been studied in the UV-vis region and its direct band gap is estimated to be 5.97 eV. This study involves the structural and phase transition of Al2O3 and also indicates that α-Al2O3 has considerable properties, deserving further investigation for the energetic materials with excellent properties for the possibility of using thin-layer α-Al2O3 as a thermo luminescence material.

  13. Formation of Al2O3-graphite core shells versus growth time by using thermal chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Chang-duk; Park, Chinho

    2016-09-01

    Al2O3-graphite core shells were synthesized on Al2O3 nanopowders by using a thermal chemical vapor deposition technique with C2H2, H2, and Ar gases, and the effects of the growth time on the formation of the core shells were investigated. The crystalline quality of the Al2O3-graphite core shells increased with increasing growth time. The C-Al chemical bonding at 283 eV was confirmed by using X-ray photoelectron spectroscopy (XPS), and thus the thin Al layers on Al2O3 cores, which formed through a reduction process, played an important role in the fabrication of the graphene shells. The characteristics of an electrode composed of Al2O3-graphite core-shell ink on a glass substrate were investigated. This study demonstrated a very effective and simple method for the synthesis of Al2O3-graphite core shells, and the technique developed in this study may be applicable to the synthesis of various metal-graphite core shells.

  14. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    PubMed

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  15. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm-1, above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m2 K GW-1, and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  16. Exploring metalorganic chemical vapor deposition of Si-alloyed Al2O3 dielectrics using disilane

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Keller, Stacia; Koksaldi, Onur S.; Gupta, Chirag; DenBaars, Steven P.; Mishra, Umesh K.

    2017-04-01

    The alloying of Al2O3 films with Si is a promising route to improve gate dielectric properties in Si- and wide-bandgap- based MOS devices. Here we present a comprehensive investigation of alloyed film growth by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, disilane, and oxygen precursors over a variety of temperature and flow conditions. Binary growth rates of Al2O3 and SiO2 were evaluated to explain the aggregate growth kinetics of Si-alloyed Al2O3 films, and refractive indices were used to monitor Si incorporation efficiencies. The temperature dependence of the reaction rate of disilane with oxygen was found to be similar to that of trimethylaluminum and oxygen, leading to well-behaved deposition behavior in the kinetic and mass-transport controlled growth regimes. Compositional predictability and stability was achieved over a wider growth space with disilane-based growths as compared to previous work, which used silane as the Si precursor instead. In situ (Al,Si)O/n-GaN MOS gate stacks were grown and showed increasing reduction of net positive fixed charges with higher Si composition.

  17. Diffusion processes in Al2O3 scales - Void growth, grain growth, and scale growth

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Gibala, R.

    1983-01-01

    The internal microstructure and growth kinetics of Al2O3 scales on Ni-15Cr-13Al (wt percent) are investigated by TEM and analyzed in relation to models of diffusivity. Polished arc-melted specimens were oxidized in 1-atm air at 1100 C for 0.1, 1.0, and 20 hours and ion-thinned for TEM at 100 kV. The frequency distribution of void size and grain size is determined for different oxidation times and scale depths. The kinetics of microvoid growth and of grain and scale growth are plotted and related via simplified models to lattice and grain-boundary oxygen diffusivity, respectively. Good agreement is found between model predictions and data obtained by Oishi and Kingery (1960) on oxygen diffusion in bulk Al2O3. The further implications and limitations of these findings are discssed.

  18. Band Offset Measurements in Atomic-Layer-Deposited Al2O3/Zn0.8Al0.2O Heterojunction Studied by X-ray Photoelectron Spectroscopy.

    PubMed

    Yan, Baojun; Liu, Shulin; Heng, Yuekun; Yang, Yuzhen; Yu, Yang; Wen, Kaile

    2017-12-01

    Pure aluminum oxide (Al2O3) and zinc aluminum oxide (Zn x Al1-x O) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps (E g ) of the Zn x Al1-x O (0.2 ≤ x ≤ 1) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited Al2O3/Zn0.8Al0.2O heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (ΔE V) and conduction band offset (ΔE C) for the interface of the Al2O3/Zn0.8Al0.2O heterojunction have been constructed. An accurate value of ΔE V = 0.82 ± 0.12 eV was obtained from various combinations of core levels of heterojunction with varied Al2O3 thickness. Given the experimental E g of 6.8 eV for Al2O3 and 5.29 eV for Zn0.8Al0.2O, a type-I heterojunction with a ΔE C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of Al2O3/Zn0.8Al0.2O heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

  19. Band Offset Measurements in Atomic-Layer-Deposited Al2O3/Zn0.8Al0.2O Heterojunction Studied by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Heng, Yuekun; Yang, Yuzhen; Yu, Yang; Wen, Kaile

    2017-05-01

    Pure aluminum oxide (Al2O3) and zinc aluminum oxide (Zn x Al1- x O) thin films were deposited by atomic layer deposition (ALD). The microstructure and optical band gaps ( E g ) of the Zn x Al1- x O (0.2 ≤ x ≤ 1) films were studied by X-ray diffractometer and Tauc method. The band offsets and alignment of atomic-layer-deposited Al2O3/Zn0.8Al0.2O heterojunction were investigated in detail using charge-corrected X-ray photoelectron spectroscopy. In this work, different methodologies were adopted to recover the actual position of the core levels in insulator materials which were easily affected by differential charging phenomena. Valence band offset (Δ E V) and conduction band offset (Δ E C) for the interface of the Al2O3/Zn0.8Al0.2O heterojunction have been constructed. An accurate value of Δ E V = 0.82 ± 0.12 eV was obtained from various combinations of core levels of heterojunction with varied Al2O3 thickness. Given the experimental E g of 6.8 eV for Al2O3 and 5.29 eV for Zn0.8Al0.2O, a type-I heterojunction with a Δ E C of 0.69 ± 0.12 eV was found. The precise determination of the band alignment of Al2O3/Zn0.8Al0.2O heterojunction is of particular importance for gaining insight to the design of various electronic devices based on such heterointerface.

  20. Al2O3-based nanofluids: a review.

    PubMed

    Sridhara, Veeranna; Satapathy, Lakshmi Narayan

    2011-07-16

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%.

  1. Al2O3-based nanofluids: a review

    PubMed Central

    2011-01-01

    Ultrahigh performance cooling is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in heat transfer fluids such as water, oil, diesel, ethylene glycol, etc. Innovative heat transfer fluids are produced by suspending metallic or nonmetallic nanometer-sized solid particles. Experiments have shown that nanofluids have substantial higher thermal conductivities compared to the base fluids. These suspended nanoparticles can change the transport and thermal properties of the base fluid. As can be seen from the literature, extensive research has been carried out in alumina-water and CuO-water systems besides few reports in Cu-water-, TiO2-, zirconia-, diamond-, SiC-, Fe3O4-, Ag-, Au-, and CNT-based systems. The aim of this review is to summarize recent developments in research on the stability of nanofluids, enhancement of thermal conductivities, viscosity, and heat transfer characteristics of alumina (Al2O3)-based nanofluids. The Al2O3 nanoparticles varied in the range of 13 to 302 nm to prepare nanofluids, and the observed enhancement in the thermal conductivity is 2% to 36%. PMID:21762528

  2. Thermal stability of surface and interface structure of atomic layer deposited Al2O3 on H-terminated silicon

    NASA Astrophysics Data System (ADS)

    Gao, K. Y.; Speck, F.; Emtsev, K.; Seyller, Th.; Ley, L.

    2007-11-01

    Using the atomic layer deposition technique, 1.2nm Al2O3 films were deposited as high-k gate dielectric layer on hydrogen-terminated silicon and annealed in vacuum and pure hydrogen in order to elucidate the effects of growth and annealing on the structure of film, interface, and surface. As analytical tools, high resolution core level spectroscopy using synchrotron radiation as variable photon source and Fourier Transform Infrared absorption spectroscopy in the attenuated total refraction mode were employed. For Al2O3 on H-terminated Si(111) and (100) surfaces the Si-H bonds are preserved at the interface, while Si-O-Al bonds provide the atomically abrupt interface between Al2O3 and Si. The chemical and structural integrity of the interface is maintained upon annealing except for a gradual loss of Si-H bonds. Growth of a SiO2 layer is observed after annealing, that is unambiguously located at the Al2O3 surface and not at the interface. Stress-induced emission of Si atoms from the interface is identified as the source of SiO2 based on a substantial broadening of the Si 2p core lines. A thermally induced reaction between Si and Al2O3 to form volatile SiO and Al2O is suggested to be responsible for the significant thickness reduction of Al2O3 that accompanies annealing at temperatures of 750°C. Conclusions for the likely effects of forming gas anneals on Al2O3/Si are drawn from this work.

  3. A short-time fading study of Al2O3:C

    NASA Astrophysics Data System (ADS)

    Nascimento, L. F.; Vanhavere, F.; Silva, E. H.; Deene, Y. De

    2015-01-01

    This paper studies the short-time fading from Al2O3:C by measuring optically stimulated luminescence (OSL) signals (Total OSL: TOSL, and Peak OSL: POSL) from droplets and Luxel™ pellets. The influence of various bleaching regimes (blue, green and white) and light power is compared. The fading effect is the decay of the OSL signal in the dark at room temperature. Al2O3:C detectors were submitted to various bleaching regimes, irradiated with a reference dose and read out after different time spans. Investigations were carried out using 2 mm size droplet detectors, made of thin Al2O3:C powder mixed with a photocured polymer. Tests were compared to Luxel™-type detectors (Landauer Inc.). Short-time post-irradiation fading is present in OSL results (TOSL and POSL) droplets for time spans up to 200 s. The effect of short-time fading can be lowered/removed when treating the detectors with high-power and/or long time bleaching regimes; this result was observed in both TOSL and POSL from droplets and Luxel™.

  4. Enhanced thermal stability of carbon nanotubes by plasma surface modification in Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Cho, Hoonsung; Shi, Donglu; Guo, Yan; Lian, Jie; Ren, Zhifeng; Poudel, Bed; Song, Yi; Abot, Jandro L.; Singh, Dileep; Routbort, Jules; Wang, Lumin; Ewing, Rodney C.

    2008-10-01

    A plasma polymerization method was employed to deposit an ultrathin pyrrole film of 3 nm onto the surfaces of single wall carbon nanotubes (SWCNTs) and Al2O3 nanoparticles for developing high-strength nanocomposites. The surfaces of plasma coated SWCNTs and Al2O3 nanoparticles were studied by high resolution transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectroscopy. After sintering the SWCNTs-Al2O3 composites at different temperatures (maximum of 1200 °C), the thermal stability of plasma-coated SWCNTs was significantly increased, compared to their uncoated counterparts. After hot-press sintering, the SWCNTs without plasma coating were essentially decomposed into amorphous clusters in the composites, leading to degraded mechanical properties. However, under the same sintering conditions, the plasma surface modified SWCNTs were well preserved and distributed in the composite matrices. The effects of plasma surface coating on the thermal stability of SWCNTs and mechanical behavior of the nanocomposites are discussed.

  5. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    NASA Astrophysics Data System (ADS)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  6. Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men

    2016-10-01

    Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).

  7. Direct Growth of Al2O3 on Black Phosphorus by Plasma-Enhanced Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Wu, B. B.; Zheng, H. M.; Ding, Y. Q.; Liu, W. J.; Lu, H. L.; Zhou, P.; Chen, L.; Sun, Q. Q.; Ding, S. J.; Zhang, David W.

    2017-04-01

    Growing high-quality and uniform dielectric on black phosphorus is challenging since it is easy to react with O2 or H2O in ambient. In this work, we have directly grown Al2O3 on BP using plasma-enhanced atomic layer deposition (PEALD). The surface roughness of BP with covered Al2O3 film can reduce significantly, which is due to the removal of oxidized bubble in BP surface by oxygen plasma. It was also found there is an interfacial layer of PO x in between amorphous Al2O3 film and crystallized BP, which is verified by both X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) measurements. By increasing temperature, the PO x can be converted into fully oxidized P2O5.

  8. Impurity Enhancement of Al_2O_3/Al Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John R.; Zhang, Wenqing; Evans, Anthony

    2003-03-01

    Our first-principles computations indicate that the clean Al_2O_3/Al interface is relatively weak - weaker than bulk Al. Fracture experiments reveal that the interface is relatively strong with observed failure in bulk Al, however. This paradox is resolved via doping effects of the common impurity C. We have found that only 1/3 of a monolayer of carbon segregated to the interface can increase the work of separation by a factor of 3. The resulting strong interface is consistent with fracture experiments. It arises due to void formation in the interface, which provides low-strain sites for the carbon to segregate to. The degree of void formation is consistent with the relatively high heat of oxide formation of Al.

  9. Characterization of ultrafast microstructuring of alumina (Al2O3)

    NASA Astrophysics Data System (ADS)

    Perrie, Walter; Rushton, Anne; Gill, Matthew; Fox, Peter; O'Neill, William

    2005-03-01

    Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth ~ 1.1 Jcm-2 and at low fluence ~ 3 Jcm-2, independent of machined depth, there appears to remain a ~ 2μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ~ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ~ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.

  10. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  11. Characteristics of ethylene glycol-Al2O3 nanofluids prepared by utilizing Al2O3 nanoparticles synthesized from local bauxite

    NASA Astrophysics Data System (ADS)

    Syarif, D. G.

    2016-11-01

    Nanoparticles of Al2O3 have been synthesized from local bauxite mineral, and ethylene glycol (EG)-Al2O3 nanofluids have been prepared. Powder Al(OOH) was extracted from local bauxite using bayer process, and heated at 600°C for 3 hours to get Al2O3 nanoparticles. XRD analyses showed that the Al2O3 nanoparticles crystallizes in γ-Al2O3 with crystallite size of 4.12 nm. The specific surface area of the ACO3 nanoparticles was 296.72 m2/gr. Viscosity of the EG-Al2O3 nanofluids was temperature dependent, and decreased with increasing temperature. The viscosity of the nanofluids increased with the concentration of the Al2O3 nanoparticles. Meanwhile, Critical Heat Flux (CHF) enhancement of the nanofluids increased with the concentration of the Al2O3 nanoparticles. The largest CHF enhancement was 54% at Al2O3 concentration of 0.095 vol %.

  12. Ultrathin ALD-Al2O3 layers for Ge(001) gate stacks: Local composition evolution and dielectric properties

    NASA Astrophysics Data System (ADS)

    Swaminathan, Shankar; Sun, Yun; Pianetta, Piero; McIntyre, Paul C.

    2011-11-01

    Correlations among physical and electrical properties of atomic layer deposited (ALD)-Al2O3 on H2O-prepulsed Ge(100) have been investigated to evaluate Al2O3 as an ultrathin interface passivation layer for higher-k/Al2O3/Ge gate stacks. In situ XPS in the ALD environment provides insights into the local composition evolution during the initial stages of ALD, evidencing (a) an incubation regime that may limit the minimum achievable capacitance equivalent thickness (CET) of these gate stacks, and (b) residual hydroxyl incorporation in the film consistent with the observed dielectric constant ˜7.2. Thickness scaling of the CET is consistent with a nearly abrupt interface as measured by synchrotron radiation photoemission spectroscopy (SRPES). SRPES studies also reveal that forming gas anneal provides passivation through monolayer-level formation of stoichiometric GeO2, suggesting a complex chemical interaction involving residual -OH groups in the as-grown ALD-Al2O3. Valence and conduction band offsets of prepulsed ALD-Al2O3 with respect to Ge are calculated to be 3.3 ± 0.1 and 2.6 ± 0.3 eV, indicating that these layers offer an effective barrier to hole and electron injection.

  13. Synergistic effect of PEG and hydrosol treatments of solution on preparing Al2O3 coating by cathode plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Liu, Chenxu; Zhang, Jin; He, Yedong; Zhang, Shuguang; Wang, Peng; Lian, Yong; Deng, Shunjie

    2017-03-01

    Al2O3 coatings were prepared by cathode plasma electrolytic deposition (CPED) in the solutions containing Al(NO3)3 · 9H2O, polyethylene glycol (PEG) and hydrosol treated at different conditions. It was found that the deposition efficiency of Al2O3 coatings could be improved by adding PEG in Al(NO3)3 solution and hydrosol treatment of the Al(NO3)3 solution respectively, while the deposition efficiency was synergistically enhanced by both together. It was proved that Al2O3 gel was formed in the solution after hydrosol treatment. Therefore, there is a synergistic effect of PEG and Al2O3 gel on preparing Al2O3 coating by CPED. Such synergistic effect can be mainly attributed to the formation of thin gas sheath on the cathode surface under the action of PEG and Al2O3 gel together. Consequently, at 120 V, the over-potential in the gas sheath is decreased, while the over-potential in Al2O3 coating is increased. At the same time, the current density of the cathode is decreased, so a thick Al2O3 coating can be prepared by CPED in an effective way.

  14. Nitridation of Al2O3 surfaces: chemical and structural change triggered by oxygen desorption.

    PubMed

    Akiyama, Toru; Saito, Yasutaka; Nakamura, Kohji; Ito, Tomonori

    2013-01-11

    We present theoretical investigations that clarify elemental nitridation processes of corundum Al2O3(0001) and (1102) surfaces. The calculations within the density functional theory framework reveal that the structures with substitutional N atoms beneath the surface are stabilized under nitridation conditions. We also find that the desorption of O atoms at the topmost layer induces outward diffusion of O atoms as well as inward diffusion of N atoms, leading to the transformation into AlN films. The kinetic Monte Carlo simulations in conjunction with density functional theory results indeed observe a dependence of these chemical and structural changes on temperature and pressure.

  15. Microstructural development of protective Al2O3 scales

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1984-01-01

    Microstructural characteristics of Al2O3 scales grown as protective coatings on NiCrAl alloys used in jet engines are described. The alloys were pure or doped with 0.3 percent Zr or Y and oxidized in 1 atm air at 1100 C for 0.1, 1 or 20.0 hr. The scales were then examined under a microscope. Transient epitaxial scales, formed during the 0.1 hr treatment and containing Ni, Cr and Al, consisted of a mosaic of subgrains and precipitates of different phases. The Y and Zr dopants had no effect on the nucleation site locations. The appearance of intergranular porosity at 0.1 hr was exacerbated after the 1 hr treatment. A bimodal void distribution appeared after 20 hr, when no porosity was evident. The detection of local areas of preferred orientation is taken as a spur to further studies of scale growth to gain control of the grain size or even to produce single crystal scales.

  16. The thermodynamic properties of hydrated -Al2O3 nanoparticles

    SciTech Connect

    Spencer, Elinor; Huang, Baiyu; Parker, Stewart F.; Kolesnikov, Alexander I; Ross, Dr. Nancy; Woodfield, Brian

    2013-01-01

    In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated -Al2O3 ( -alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (Cp) data presented herein provide further critical insights into the much-debated chemical composition of -alumina nanoparticles. Furthermore, the isochoric heat capacity (Cv) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four -alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated -alumina nanoparticles.

  17. Unraveling the Origin of Structural Disorder in High Temperature Transition Al2O3: Structure of θ-Al2O3

    SciTech Connect

    Kovarik, Libor; Bowden, Mark E.; Shi, Dachuan; Washton, Nancy M.; Anderson, Amity; Hu, Jian Z.; Lee, Jaekyoung; Szanyi, Janos; Kwak, Ja Hun; Peden, Charles HF

    2015-09-22

    The crystallography of transition Al2O3 has been extensively studied in the past due to the advantageous properties of the oxide in catalytic and a range of other technological applications. However, existing crystallographic models are insufficient to describe the structure of many important Al2O3 polymorphs due to their highly disordered nature. In this work, we investigate structure and disorder in high-temperature treated transition Al2O3, and provide a structural description for θ-Al2O3 by using a suite of complementary imaging, spectroscopy and quantum calculation techniques. Contrary to current understanding, our high-resolution imaging shows that θ-Al2O3 is a disordered composite phase of at least two different end members. By correlating imaging and spectroscopy results with DFT calculations, we propose a model that describes θ-Al2O3 as a disordered intergrowth of two crystallographic variants at the unit cell level. One variant is based on β-Ga2O3, and the other on a monoclinic phase that is closely-related to δ-Al2O3. The overall findings and interpretations afford new insight into the origin of poor crystallinity in transition Al2O3, and also provide new perspectives on structural complexity that can emerge from intergrowth of closely related structural polymorphs.

  18. The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition.

    PubMed

    Wang, Zi-Yi; Zhang, Rong-Jun; Lu, Hong-Liang; Chen, Xin; Sun, Yan; Zhang, Yun; Wei, Yan-Feng; Xu, Ji-Ping; Wang, Song-You; Zheng, Yu-Xiang; Chen, Liang-Yao

    2015-01-01

    The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing.

  19. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y.

    2013-08-01

    In order to search a gate dielectric with high permittivity on hydrogenated-diamond (H-diamond), LaAlO3 films with thin Al2O3 buffer layers are fabricated on the H-diamond epilayers by sputtering-deposition (SD) and atomic layer deposition (ALD) techniques, respectively. Interfacial band configuration and electrical properties of the SD-LaAlO3/ALD-Al2O3/H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) with gate lengths of 10, 20, and 30 μm have been investigated. The valence and conduction band offsets of the SD-LaAlO3/ALD-Al2O3 structure are measured by X-ray photoelectron spectroscopy to be 1.1 ± 0.2 and 1.6 ± 0.2 eV, respectively. The valence band discontinuity between H-diamond and LaAlO3 is evaluated to be 4.0 ± 0.2 eV, showing that the MOS structure acts as the gate which controls a hole carrier density. The leakage current density of the SD-LaAlO3/ALD-Al2O3/H-diamond MOS diode is smaller than 10-8 A cm-2 at gate bias from -4 to 2 V. The capacitance-voltage curve in the depletion mode shows sharp dependence, small flat band voltage, and small hysteresis shift, which implies low positive and trapped charge densities. The MOSFETs show p-type channel and complete normally off characteristics with threshold voltages changing from -3.6 ± 0.1 to -5.0 ± 0.1 V dependent on the gate length. The drain current maximum and the extrinsic transconductance of the MOSFET with gate length of 10 μm are -7.5 mA mm-1 and 2.3 ± 0.1 mS mm-1, respectively. The enhancement mode SD-LaAlO3/ALD-Al2O3/H-diamond MOSFET is concluded to be suitable for the applications of high power and high frequency electrical devices.

  20. Modulus, strength and thermal exposure studies of FP-Al2O3/aluminum and FP-Al2O3/magnesium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1981-01-01

    The mechanical properties of FP-Al2O3 fiber reinforced composites prepared by liquid infiltration techniques are improved. A strengthening addition, magnesium, was incorporated with the aluminum-lithium matrix alloy usually selected for these composites because of its good wetting characteristics. This ternary composite, FP-Al2O3/Al-(2-3)Li-(3-5)Mg, showed improved transverse strength compared with FP-Al2O3/Al-(2-3)Li composites. The lower axial strengths found for the FP-Al2O3/Al-(2-3)Li-(3-5)Mg composites were attributed to fabrication related defects. Another technique was the use of Ti/B coated FP-Al2O3 fibers in the composites. This coating is readily wet by molten aluminum and permitted the use of more conventional aluminum alloys in the composites. However, the anticipated improvements in the axial and transverse strengths were not obtained due to poor bonding between the fiber coating and the matrix. A third approach studied to improve the strengths of FP-Al2O3 reinforced composites was the use of magnesium alloys as matrix materials. While these alloys wet fibers satisfactorily, the result indicated that the magnesium alloy composites used offered no axial strength or modulus advantage over FP-Al2O3/Al-(2-3)Li composites.

  1. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  2. The MgO-Al2O3-SiO2 system - Free energy of pyrope and Al2O3-enstatite. [in earth mantle formation

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    The model of fictive ideal components is used to determine Gibbs free energies of formation of pyrope and Al2O3-enstatite from the experimental data on coexisting garnet and orthopyroxene and orthopyroxene and spinel in the temperature range 1200-1600 K. It is noted that Al2O3 forms an ideal solution with MgSiO3. These thermochemical data are found to be consistent with the Al2O3 isopleths that could be drawn using most recent experimental data and with the reversed experimental data on the garnet-spinel field boundary.

  3. The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Sims, Jeffrey J.; Giorgi, Javier B.; Albert, Jacques; Barry, Seán T.

    2015-10-01

    The combined effect of nanoscale dielectric and metallic layers prepared by atomic layer deposition (ALD) and chemical vapor deposition (CVD) on the refractometric properties of tilted optical fiber Bragg gratings (TFBG) is studied. A high index intermediate layer made up of either 50 nm or 100 nm layers of Al2O3 (refractive index near 1.62) was deposited by ALD and followed by thin gold layers (30-65 nm) deposited from a known single-source gold (I) iminopyrrolidinate CVD precursor. The fabricated devices were immersed in different surrounding refractive indices (SRI) and the spectral transmission response of the TFBGs was measured. Preliminary results indicate that the addition of the dielectric Al2O3 pre-coating enhances the SRI sensitivity by up to 75% but this enhancement is highly dependent on the polarization and dielectric thickness. In fact, the sensitivity decreases by up to 50% for certain cases. These effects are discussed with support from TFBG simulations and models, by quantifying the penetration of the evanescently coupled light out of the fiber through the various coating layers. Additional characterization studies have been carried out on these samples to further correlate the optical behaviour of the coated TFBGs with the physical properties of the gold and Al2O3 layers, using atomic force microscopy x-ray photoelectron spectroscopy and an ensemble of other optical and x-ray absorption spectroscopy techniques. The purity, roughness, and morphology of gold thin films deposited by CVD onto the dielectric-TFBG surface are also provided.

  4. Electrodeposition of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2016-09-01

    Electrodeposition is one of the most technologically feasible and economically superior technique for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. This layer offers protection against oxidation thus prevents the formation of a native oxide layer. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters on surface morphology and wear behavior was studied. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate followed by the bath temperature. The decrease in wear rate was observed with the increased current density and temperature.

  5. Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface.

    PubMed

    Chen, Meixue; Yan, Lizhu; He, Hong; Chang, Qingyun; Yu, Yunbo; Qu, Jiuhui

    2007-05-01

    Bactericidal action of Al(2)O(3), Ag/Al(2)O(3) and AgCl/Al(2)O(3) on pure culture of Escherichia coli K 12 was studied. Ag/Al(2)O(3) and AgCl/Al(2)O(3) demonstrated a stronger bactericidal activity than Al(2)O(3). The colony-forming ability of E. coli was completely lost in 0.5 min on both of Ag/Al(2)O(3) and AgCl/Al(2)O(3) at room temperature in air. The configuration of the bacteria on the catalyst surface was observed using scanning electron microscopy (SEM). Reactive oxygen species (ROS) play an important role in the expression of the bactericidal activity on the surface of catalysts by assay with O(2)/N(2) bubbling and scavenger for ROS. Furthermore, the formation of CO(2) as an oxidation product could be detected by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and be deduced by total carbon analysis. These results strongly support that the bactericidal process on the surface of Ag/Al(2)O(3) and AgCl/Al(2)O(3) was caused by the catalytic oxidation.

  6. Enhancement of the maximum energy density in atomic layer deposited oxide based thin film capacitors

    NASA Astrophysics Data System (ADS)

    Spahr, Holger; Nowak, Christine; Hirschberg, Felix; Reinker, Johannes; Kowalsky, Wolfgang; Hente, Dirk; Johannes, Hans-Hermann

    2013-07-01

    Thin film capacitors on areas up to 6 mm2 have been measured regarding capacitance density, relative permittivity, and electrical breakdown. The maximum storable energy density of the thin film capacitors will be discussed as a parameter to evaluate the thin film capacitors applicability. Therefore the measurements of the layer thickness, capacitance density, and the breakdown voltage were combined to achieve the maximum storable areal and volume energy density depending on the dielectric layer thickness. Thickness dependent volume energy densities of up to 50 J/cm3 for pure Al2O3 and 60 J/cm3 for Al2O3/TiO2 nanolaminates were reached.

  7. Self-assembly of Al2O3 nanodots on SiO2 using two-step controlled annealing technique for long retention nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Chen, Jing Hao; Yoo, Won Jong; Chan, Daniel S. H.; Tang, Lei-Jun

    2005-02-01

    A self-assembly of high-density Al2O3 nanodots (NDs) on SiO2 has been demonstrated by employing a two-step controlled annealing method. Results show that the conglomeration of Al is impeded by oxygen and the size and density of Al2O3 NDs can be controlled by the initial Al film thickness and annealing temperature. Memory devices with Al2O3 NDs fabricated using this technique show improved retention properties compared to those with Al2O3 continuous films. A comparison of temperature dependency shows that the good retention property originates from the suppression of lateral migration of electrons via Frenkel-Poole tunneling.

  8. ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries

    PubMed Central

    2017-01-01

    The utilization of the anodic TiO2 nanotube layers, with uniform Al2O3 coatings of different thicknesses (prepared by atomic layer deposition, ALD), as the new electrode material for lithium-ion batteries (LIBs), is reported herein. Electrodes with very thin Al2O3 coatings (∼1 nm) show a superior electrochemical performance for use in LIBs compared to that of the uncoated TiO2 nanotube layers. A more than 2 times higher areal capacity is received on these coated TiO2 nanotube layers (∼75 vs 200 μAh/cm2) as well as higher rate capability and coulombic efficiency of the charging and discharging reactions. Reasons for this can be attributed to an increased mechanical stability of the TiO2 nanotube layers upon Al2O3 coating, as well as to an enhanced diffusion of the Li+ ions within the coated nanotube layers. In contrast, thicker ALD Al2O3 coatings result in a blocking of the electrode surface and therefore an areal capacity decrease. PMID:28691112

  9. ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries.

    PubMed

    Sopha, Hanna; Salian, Girish D; Zazpe, Raul; Prikryl, Jan; Hromadko, Ludek; Djenizian, Thierry; Macak, Jan M

    2017-06-30

    The utilization of the anodic TiO2 nanotube layers, with uniform Al2O3 coatings of different thicknesses (prepared by atomic layer deposition, ALD), as the new electrode material for lithium-ion batteries (LIBs), is reported herein. Electrodes with very thin Al2O3 coatings (∼1 nm) show a superior electrochemical performance for use in LIBs compared to that of the uncoated TiO2 nanotube layers. A more than 2 times higher areal capacity is received on these coated TiO2 nanotube layers (∼75 vs 200 μAh/cm(2)) as well as higher rate capability and coulombic efficiency of the charging and discharging reactions. Reasons for this can be attributed to an increased mechanical stability of the TiO2 nanotube layers upon Al2O3 coating, as well as to an enhanced diffusion of the Li(+) ions within the coated nanotube layers. In contrast, thicker ALD Al2O3 coatings result in a blocking of the electrode surface and therefore an areal capacity decrease.

  10. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  11. Stability of Al2O3 and Al2O3/a-SiNx:H stacks for surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dingemans, G.; Engelhart, P.; Seguin, R.; Einsele, F.; Hoex, B.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2009-12-01

    The thermal and ultraviolet (UV) stability of crystalline silicon (c-Si) surface passivation provided by atomic layer deposited Al2O3 was compared with results for thermal SiO2. For Al2O3 and Al2O3/a-SiNx:H stacks on 2 Ω cm n-type c-Si, ultralow surface recombination velocities of Seff<3 cm/s were obtained and the passivation proved sufficiently stable (Seff<14 cm/s) against a high temperature "firing" process (>800 °C) used for screen printed c-Si solar cells. Effusion measurements revealed the loss of hydrogen and oxygen during firing through the detection of H2 and H2O. Al2O3 also demonstrated UV stability with the surface passivation improving during UV irradiation.

  12. Low-temperature roll-to-roll atmospheric atomic layer deposition of Al₂O₃ thin films.

    PubMed

    Ali, Kamran; Choi, Kyung-Hyun

    2014-12-02

    The Al2O3 thin films deposition through conventional ALD systems is a well-established process. The process under low temperatures has been studied by few research groups. In this paper, we report on the detailed study of low-temperature Al2O3 thin films deposited via a unique in-house built system of roll-to-roll atmospheric atomic layer deposition (R2R-AALD) using a multiple-slit gas source head. Al2O3 thin films have been grown on polyethylene terephthalate substrates under a very low-temperature zone of room temperature to 50 °C and working pressure of 750 Torr, which is very near to atmospheric pressure (760 Torr). Al2O3 thin films with superior properties were achieved in the temperature range of the ALD window. An appreciable growth rate of 0.97 Å/cycle was observed for the films deposited at 40 °C. The films have good morphological features with a very low average arithmetic roughness (Ra) of 0.90 nm. The films also showed good chemical, electrical, and optical characteristics. It was observed that the film characteristics improve with the increase in deposition temperature to the range of the ALD window. The fabrication of Al2O3 films was confirmed by X-ray photoelectron spectroscopy (XPS) analysis with the appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74, 119, and 531 eV, respectively. The chemical composition was also supported by the Fourier transform infrared spectroscopy (FTIR). The fabricated Al2O3 films demonstrate good insulating properties and optical transmittance of more than 85% in the visible region. The results state that Al2O3 thin films can be effectively fabricated through the R2R-AALD system at temperatures as low as 40 °C.

  13. Analyzing the anodic reactions for iron surface with a porous Al2O3 cluster with the scanning vibrating electrode

    NASA Astrophysics Data System (ADS)

    Eliyan, Faysal Fayez

    2017-09-01

    The Scanning Vibrating Electrode Technique (SVET) was used to analyze the anodic reactions inside and around a porous Al2O3 cluster embedded onto an iron foil. The tests were carried out at -0.7 V vs. Saturated Calomel Electrode, in naturally aerated solutions of 0.1, 0.2, 0.35, and 0.5 M bicarbonate concentration. During 10 h of testing, the SVET showed evidence for a formation of a passive film in and around the cluster, in the scanning area shown in the graphical abstract. In the dilute 0.1 and 0.2 M solutions, the passive films formed slower than those in 0.35 and 0.5 M solutions. In the SVET maps, the passive films showed that they could suppress dissolution to currents comparable to those of slower dissolution under the porous Al2O3 cluster.

  14. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  15. In situ studies of butyronitrile adsorption and hydrogenation on Pt/Al2O3 using attenuated total reflection infrared spectroscopy.

    PubMed

    Ortiz-Hernandez, Ivelisse; Williams, Christopher T

    2007-03-13

    The adsorption and hydrogenation of butyronitrile (BN) in hexane on a 5% Pt/Al2O3 catalyst has been studied using in situ attenuated total reflection infrared (ATR-IR) spectroscopy. ATR-IR measurements were conducted on thin ( approximately 10 mum) films of catalyst deposited on Ge wave guides. Multivariate analysis involving classical lease-squares (CLS) and partial least-squares (PLS) modeling was used to aid in the interpretation of the spectroscopic data. During the adsorption of BN over a concentration range from 4 to 40 mM in hexane, no clear evidence for adsorbed N-bound end-on species could be detected. However, a feature at approximately 1635-1640 cm-1 indicated the presence of an adsorbed imine species, with the C=N group existing in a tilted configuration involving a strong degree of pi interaction with the surface. This assignment is bolstered by the detection of N-H stretching bands that are consistent with imine vibrations. This imine-type intermediate is very prominent and shows transient behavior in the presence of solution-phase hydrogen, suggesting that, once formed, it can be converted into amine products that adsorb on the catalyst surface. Evidence for amine formation was observed in the form of N-H stretching and NH2 bending vibrations, with assignments confirmed through comparison studies of butylamine adsorption under identical conditions. Comparisons between Pt/Al2O3 and Al2O3 suggest that there may be some adsorption of these amines on the support surface. The mechanistic implications with regard to heterogeneous nitrile hydrogenation on transition metals under mild conditions are briefly discussed in light of these findings.

  16. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Yi; Mao, Ming-Hua

    2016-08-01

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al2O3 thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al2O3 passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated and passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al2O3 protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.

  17. One-nanometer-precision control of Al(2)O(3) nanoshells through a solution-based synthesis route.

    PubMed

    Zhang, Wei; Chi, Zi-Xiang; Mao, Wen-Xin; Lv, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2014-11-17

    Forming uniform metal oxide nanocoatings is a well-known challenge in the construction of core-shell type nanomaterials. Herein, by using buffer solution as a specific reaction medium, we demonstrate the possibility to grow thin nanoshells of metal oxides, typically Al2 O3 , on different kinds of core materials, forming a uniform surface-coating layer with thicknesses achieving one nanometer precision. The application of this methodology for the surface modification of LiCoO2 shows that a thin nanoshell of Al2 O3 can be readily tuned on the surface for an optimized battery performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. All-Aluminum Thin Film Transistor Fabrication at Room Temperature

    PubMed Central

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-01-01

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm2/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials. PMID:28772579

  19. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Daicho, Akira; Saito, Tatsuya; Kurihara, Shinichiro; Hiraiwa, Atsushi; Kawarada, Hiroshi

    2014-06-01

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450 °C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al2O3 film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al2O3 deposition by ALD with H2O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500 °C by the passivation with thick Al2O3 film thicker than 38 nm deposited by ALD at 450 °C. After the annealing at 550 °C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al2O3 films formed from 200 to 400 °C by air annealing at 550 °C for 1 h. On the other hand, the patterns were no longer observed at 450 °C deposition. Thus, this 450 °C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  20. Electrochemical promotion of propane oxidation on Pt deposited on a dense β"-Al2O3 ceramic Ag+ conductor

    NASA Astrophysics Data System (ADS)

    Tsampas, Michail; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini; Vernoux, Philippe

    2013-08-01

    A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a β"-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

  1. Formation and stability of crystalline and amorphous Al2O3 layers deposited on Ga2O3 nanowires by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Katz, M. B.; Twigg, M. E.; Prokes, S. M.

    2016-09-01

    Although the crystalline α and γ phases are the most stable forms of alumina, small-diameter (<6 nm) nanoparticles are known to be completely amorphous, due to the surface energy being correspondingly lower for the less stable non-crystalline phase. Al2O3 films with a thickness of 5 nm grown by low temperature (200 °C) atomic layer deposition (ALD) on small-diameter (<20 nm) Ga2O3 nanowires (NWs), however, are identified by transmission electron microscopy as belonging to the α, γ, and possibly θ crystalline phases of Al2O3, while films deposited on larger diameter (>20 nm) NWs are found to be amorphous. Indeed, until recently, all Al2O3, films deposited by low-temperature ALD using trimethylaluminum and water have been reported to be amorphous, regardless of film thickness or substrate. The formation of a crystalline ALD film can be understood in terms of the energetics of misfit dislocations that maintain the registry between the ALD film and the NW substrate, as well as the influence of strain and surface energy. The decreasing energy of co-axial misfit dislocations with NW diameter results in a corresponding decrease in the contribution of the Al2O3/Ga2O3 interface to the free energy, while the interfacial energy for an amorphous film is independent of the NW diameter. Therefore, for NW cores of sufficiently small diameter, the free energy contribution of the Al2O3/Ga2O3 interface is smaller for crystalline films than for amorphous films, thereby favoring the formation of crystalline films for small-diameter NWs. For ALD Al2O3 films of 10 nm thickness deposited on small-diameter Ga2O3 NWs, however, only the first 5 nm of the ALD film is found to be crystalline, possibly due to well-established kinetic limitations to low temperature epitaxial growth.

  2. Dynamics of Na + in a single crystal of Naβ″Al 2O 3

    NASA Astrophysics Data System (ADS)

    Fanjat, N.; Lucazeau, G.; Bates, J.; Dianoux, A. J.

    1989-01-01

    A single crystal of Naβ″ Al 2O 3 has been used to measure quasi-elastic neutron scattering spectra at 227 and 377°C. Fitted data are presented with a new model and the results are compared to those obtained with NaβAl 2O 3.

  3. Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing

    DTIC Science & Technology

    2015-12-01

    ARL-TN-0720 ● DEC 2015 US Army Research Laboratory Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing...Laboratory Synthesis of Al2O3-Coated Fe3O4 Nanoparticles for Thermomagnetic Processing by Victoria L Blair Weapons and Materials Research...

  4. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yuping; Meng, Yang; Shen, Yonghua; Chen, Weiwei; Cheng, Huanwu; Wang, Lu

    2017-10-01

    A novel room-temperature aqueous plasma electrolysis technique has been developed in order to prepared Al2O3 nano-coating on each fiber within a carbon fiber bundle. The microstructure and formation mechanism of the Al2O3 nano-coating were systematically investigated. The oxidation resistance and tensile strength of the Al2O3-coated carbon fiber was measured at elevated temperatures. It showed that the dense Al2O3 nano-coating was relatively uniformly deposited with 80-120 nm in thickness. The Al2O3 nano-coating effectively protected the carbon fiber, evidenced by the slower oxidation rate and significant increase of the burn-out temperature from 800 °C to 950 °C. Although the bare carbon fiber remained ∼25 wt.% after oxidation at 700 °C for 20 min, a full destruction was observed, evidenced by the ∼0 GPa of the tensile strength, compared to ∼1.3 GPa of the Al2O3-coated carbon fiber due to the effective protection from the Al2O3 nano-coating. The formation mechanism of the Al2O3 nano-coating on carbon fiber was schematically established mainly based on the physic-chemical effect in the cathodic plasma arc zone.

  5. Sonochemical asymmetric hydrogenation of isophorone on proline modified Pd/Al2O3 catalysts.

    PubMed

    Mhadgut, Shilpa C; Bucsi, Imre; Török, Marianna; Török, Béla

    2004-04-21

    The sonochemical asymmetric hydrogenation of isophorone (3,3,5-trimethyl-2-cyclohexenone) by proline-modified Pd/Al2O3 catalysts is described; presonication of a commercial Pd/Al2O3-proline catalytic system resulted in highly enhanced enantioselectivities (up to 85% ee).

  6. Metastability in the MgAl2O4-Al2O3 System

    DOE PAGES

    Wilkerson, Kelley R.; Smith, Jeffrey D.; Hemrick, James G.

    2014-07-22

    Aluminum oxide must take a spinel form ( γ-Al2O3) at elevated temperatures in order for extensive solid solution to form between MgAl2O4 and α-Al2O3. The solvus line between MgAl2O4 and Al2O3 has been defined at 79.6 wt% Al2O3 at 1500°C, 83.0 wt% Al2O3 at 1600°C, and 86.5 wt% Al2O3 at 1700°C. A metastable region has been defined at temperatures up to 1700°C which could have significant implications for material processing and properties. Additionally, initial processing could have major implications on final chemistry. The spinel solid solution region has been extended to form an infinite solid solution with Al2O3 at elevatedmore » temperatures. A minimum in melting at 1975°C and a chemistry of 96 wt% Al2O3 rather than a eutectic is present, resulting in no eutectic crystal formation during solidification.« less

  7. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  8. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  9. Effect of Al2O3 Concentration on Density and Structure of (CaO-SiO2)-xAl2O3 Slag

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Kim, Hyelim; Lee, Chi-Hoon; Cho, Won-Seung; Lee, Chi-Hwan; Lee, Joonho

    2017-03-01

    The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.

  10. Influence of Al2O3 sol concentration on the microstructure and mechanical properties of Cu-Al2O3 composite coatings

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tang, Ying; Gao, Wei

    2015-03-01

    Copper (Cu) is widely used as electrical conducting and contacting material. However, Cu is soft and does not have good mechanical properties. In order to improve the hardness and wear resistance of Cu, sol-enhanced Cu-Al2O3 nanocomposite coatings were electroplated by adding a transparent Al oxide (Al2O3) sol into the traditional electroplating Cu solution. It was found that the microstructure and mechanical properties of the nanocomposite coatings were largely influenced by the Al2O3 sol concentration. The results show that the Al2O3 nanoparticle reinforced the composite coatings, resulting in significantly improved hardness and wear resistance in comparison with the pure Cu coatings. The coating prepared at the sol concentration of 3.93 mol/L had the best microhardness and wear resistance. The microhardness has been improved by 20% from 145.5 HV (Vickers hardness number) of pure Cu coating to 173.3 HV of Cu-Al2O3 composite coatings. The wear resistance was also improved by 84%, with the wear volume loss dropped from 3.2 × 10-3 mm3 of Cu coating to 0.52 × 10-3 mm3 of composite coatings. Adding excessive sol to the electrolyte deteriorated the properties.

  11. Effect of Al2O3 Concentration on Density and Structure of (CaO-SiO2)-xAl2O3 Slag

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Kim, Hyelim; Lee, Chi-Hoon; Cho, Won-Seung; Lee, Chi-Hwan; Lee, Joonho

    2017-06-01

    The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.

  12. Reduction of native oxides on InAs by atomic layer deposited Al2O3 and HfO2

    NASA Astrophysics Data System (ADS)

    Timm, R.; Fian, A.; Hjort, M.; Thelander, C.; Lind, E.; Andersen, J. N.; Wernersson, L.-E.; Mikkelsen, A.

    2010-09-01

    Thin high-κ oxide films on InAs, formed by atomic layer deposition, are the key to achieve high-speed metal-oxide-semiconductor devices. We have studied the native oxide and the interface between InAs and 2 nm thick Al2O3 or HfO2 layers using synchrotron x-ray photoemission spectroscopy. Both films lead to a strong oxide reduction, obtaining less than 10% of the native As-oxides and between 10% and 50% of the native In-oxides, depending on the deposition temperature. The ratio of native In- to As-oxides is determined to be 2:1. The exact composition and the influence of different oxidation states and suboxides is discussed in detail.

  13. Performance and retention characteristics of nanocrystalline Si floating gate memory with an Al2O3 tunnel layer fabricated by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyuan; Wang, Wen; Yang, Huafeng; Jiang, Xiaofan; Yu, Jie; Qin, Hua; Xu, Ling; Chen, Kunji; Huang, Xinfan; Li, Wei; Xu, Jun; Feng, Duan

    2016-02-01

    The down-scaling of nanocrystal Si (nc-Si) floating gate memory must overcome the challenge of leakage current induced by the conventional ultra-thin tunnel layer. We demonstrate that an improved memory performance based on the Al/SiNx/nc-Si/Al2O3/Si structure can be achieved by adopting the Al2O3 tunnel layer fabricated by plasma-enhanced atomic layer deposition. A larger memory window of 7.9 V and better retention characteristics of 4.7 V after 105 s can be obtained compared with the devices containing a conventional SiO2 tunnel layer of equivalent thickness. The capacitance-voltage characteristic reveals that the Al2O3 tunnel layer has a smaller electron barrier height, which ensures that more electrons are injected into the nc-Si dots through the Al2O3/Si interface. The analysis of the conductance-voltage and high-resolution cross-section transmission microscopy reveals that the smaller nc-Si dots dominate in the charge injection in the nc-Si floating gate MOS device with an Al2O3 tunnel layer. With an increase of the nc-Si size, both nc-Si and the interface contribute to the charge storage capacity and retention. The introduction of the Al2O3 tunnel layer in nc-Si floating gate memory provides a method to achieve an improved performance of nc-Si floating gate memory.

  14. Properties of slow traps of ALD Al2O3/GeOx/Ge nMOSFETs with plasma post oxidation

    NASA Astrophysics Data System (ADS)

    Ke, M.; Yu, X.; Chang, C.; Takenaka, M.; Takagi, S.

    2016-07-01

    The realization of Ge gate stacks with a small amount of slow trap density as well as thin equivalent oxide thickness and low interface state density (Dit) is a crucial issue for Ge CMOS. In this study, we examine the properties of slow traps, particularly the location of slow traps, of Al2O3/GeOx/n-Ge and HfO2/Al2O3/GeOx/n-Ge MOS interfaces with changing the process and structural parameters, formed by atomic layer deposition (ALD) of Al2O3 and HfO2/Al2O3 combined with plasma post oxidation. It is found that the slow traps can locate in the GeOx interfacial layer, not in the ALD Al2O3 layer. Furthermore, we study the time dependence of channel currents in the Ge n-MOSFETs with 5-nm-thick Al2O3/GeOx/Ge gate stacks, with changing the thickness of GeOx, in order to further clarify the position of slow traps. The time dependence of the current drift and the effective time constant of slow traps do not change among the MOSFETs with the different thickness GeOx, demonstrating that the slow traps mainly exist near the interfaces between Ge and GeOx.

  15. High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing

    PubMed Central

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro

    2015-01-01

    Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5. PMID:26468639

  16. High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing.

    PubMed

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro

    2015-10-15

    Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young's modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using (27)Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta(5+) ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5.

  17. First principles study of adsorption and dissociation of H2, O2, and CO on α-Al2O3 (0001) supported Pt-Co alloy

    NASA Astrophysics Data System (ADS)

    Dhilip Kumar, T. J.; Zhou, C.; Naduvalath, B.

    2007-03-01

    Recently, there has been several investigations carried out to improve the electro-catalytic activity of Pt and Pt based alloys for the oxygen reduction reaction in fuel cell electrodes. In particular, Pt-Co alloy systems have been often employed. To gain physical insight into the catalytic properties of these systems we have performed a systematic study of the electronic structures, bonding and growth patterns of nanoclusters of Pt-Co alloy using first principles density functional calculations. The 3:1 ratio of Pt-Co alloy has been constructed as nanoclusters and thin film supported on α-Al2O3. The geometry optimized tetrahedron, and the square planar structures of Pt3Co are placed over the slabs of six layers α-Al2O3 (0001) surface. Activity of H2, O2 and CO on these structures from various approaches has been explored. In all our calculations the non-locality in the exchange correlation functional is taken into account by considering spin polarized generalized gradient approximation as proposed by Perdue and Wang. Brillouin zone integrations have been performed using Monkhorst-Pack grids with (2 X 2 X 1) k-point meshes. The electronic structures of these systems have been analyzed by computing the electronic density of states.

  18. Substrate reactivity as the origin of Fermi level pinning at the Cu2O/ALD-Al2O3 interface

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Bayer, Thorsten J. M.; Yanagi, Hiroshi; Kiazadeh, Asal; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-04-01

    The reduction of a Cu2O layer on copper by exposure to TMA during the atomic layer deposition of Al2O3 has recently been reported. (Gharachorlou et al 2015 ACS Appl. Mater. Interfaces 7 16428-16439). The study presented here analyzes a similar process, leading to the reduction of a homogeneous Cu2O thin film, which allows for additional observations. Angle-resolved in situ x-ray photoelectron spectroscopy confirms the localization of metallic copper at the interface. The evaluation of binding energy shifts reveals the formation of a Cu2O/Cu Schottky barrier, which gives rise to Fermi level pinning in Cu2O. An initial enhancement of the ALD growth per cycle (GPC) is only observed for bulk Cu2O samples and is thus related to lattice oxygen, originating from regions lying deeper than just the first few layers of the surface. The oxygen out-take from the substrate is limited to the first few cycles, which is found to be due to a saturated copper reduction, rather than the oxygen diffusion barrier of Al2O3.

  19. High Elastic Moduli of a 54Al2O3-46Ta2O5 Glass Fabricated via Containerless Processing

    NASA Astrophysics Data System (ADS)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki; Yanaba, Yutaka; Mizoguchi, Teruyasu; Umada, Takumi; Okamura, Kohei; Kato, Katsuyoshi; Watanabe, Yasuhiro

    2015-10-01

    Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta5+ ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5.

  20. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  1. Epitaxially grown crystalline Al2O3 interlayer on β-Ga2O3(010) and its suppressed interface state density

    NASA Astrophysics Data System (ADS)

    Kamimura, Takafumi; Krishnamurthy, Daivasigamani; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2016-12-01

    Al2O3 films were deposited on β-Ga2O3(010) and β-Ga2O3 (\\bar{2}01) substrates by atomic layer deposition at 250 °C, and their interface state densities (D it) at shallow energies were evaluated using a high-low capacitance-voltage (C-V) method. Al2O3/β-Ga2O3(010) showed lower D it values (5.9 × 1010 to 9.3 × 1011 cm-2 eV-1) than Al2O3/β-Ga2O3 (\\bar{2}01) (2.0 × 1011 to 2.0 × 1012 cm-2 eV-1) in an energy range of -0.8 to -0.1 eV. Cross-sectional transmission electron microscopy analysis indicated the formation of a uniform amorphous Al2O3 layer on the β-Ga2O3 (\\bar{2}01) substrate. In contrast, a crystalline Al2O3 interlayer with a thickness of 3.2 ± 0.7 nm with an amorphous Al2O3 top layer was formed on the β-Ga2O3(010) substrate, which effectively decreased D it. Moreover, thicker interlayers showing lower D it values at deep state levels were formed at deposition temperatures higher than 100 °C, which were evaluated by shifts in the C-V curves.

  2. Thermal Properties in the MgAl2O4-Al2O3 System

    SciTech Connect

    Wilkerson, Dr. Kelley R.; Smith, Jeffrey D; Hemrick, James Gordon

    2013-01-01

    Compositional effects on the thermal diffusivity in the MgAl2O4-Al2O3 system were studied. The lowest thermal diffusivity, 0.0258 +/-5% cm/s, was measured between 79.8 and 83.9 wt% Al2O3 quenched from various temperatures between 1500 and 1700C. All of the chemistries in this range extend past the solvus, but still form a singe super-saturated spinel solid solution, regardless of quenching tempeature. A super-saturated metastable solid solution region was observed at 1500, 1600, and 1700C extending to 83.9, 85.2, and 87.1 wt% Al2O3, respectively. Beyond 83.9% Al2O3 a significant increase in thermal diffusivity, 11.7%, was observed and its attributed to precipiation of Al2O3 through spinodal decomposition.

  3. Interface behavior of Al2O3/Ti joints produced by liquid state bonding.

    PubMed

    Lemus-Ruiz, J; Guevara-Laureano, A O; Zarate-Medina, J; Arellano-Lara, A; Ceja-Cárdenas, L

    2015-04-01

    In this work we study brazing of Al2O3 to Ti with biocompatibility properties, using a Au-foil as joining element. Al2O3 was produced by sintering of powder at 1550°C. Al2O3 samples were coated with a 2 and 4μm thick of Mo layer and then stacked with Ti. Al2O3-Mo/Au/Ti combinations were joined at 1100°C in vacuum. Successful joining of Mo-Al2O3 to Ti was observed. Interface shows the formation of a homogeneous diffusion zone. Mo diffused inside Au forming a concentration line. Ti3Au and TiAu phases were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Reactive-environment, hollow cathode sputtering: Basic characteristics and application to Al2O3, doped ZnO, and In2O3:Mo

    NASA Astrophysics Data System (ADS)

    Delahoy, A. E.; Guo, S. Y.; Paduraru, C.; Belkind, A.

    2004-07-01

    A method for thin-film deposition has been studied. The method is based on metal sputtering in a hollow cathode configuration with supply of a reactive gas in the vicinity of the substrate. The working gas and entrained sputtered atoms exit the cathode through an elongated slot. The reactive gas is thereby largely prevented from reaching the target. The basic operation of the cathode was studied using a Cu target and pulsed power excitation. These studies included the dependence of deposition rate on power, pressure, and flow rate, film thickness profiles, and film resistivity as a function of substrate conditions. Modeling was conducted to calculate the gas velocity distribution and pressure inside the cavity. Al2O3 films were prepared in a reactive environment of oxygen by sputtering an Al target. It was demonstrated that only a very small amount of oxygen passing through the cathode will oxidize (poison) the target, whereas large quantities of oxygen supplied externally to the cathode need not affect the target at all. A very stable discharge and ease of Al2O3 formation were realized in this latter mode. The method was applied to the preparation of transparent, conductive films of ZnO doped with either Al or B. High deposition rates were achieved, and, at appropriate oxygen flow rates, low film resistivities. High-mobility In2O3:Mo transparent conductors were also prepared, with resistivities as low as 1.9×10-4 Ω cm. Scaling relations for hollow cathodes, and deposition efficiency, and process comparisons between magnetron sputtering and linear, reactive-environment, hollow cathode sputtering are presented. .

  5. Influence of processing and annealing steps on electrical properties of InAlN/GaN high electron mobility transistor with Al 2O 3 gate insulation and passivation

    NASA Astrophysics Data System (ADS)

    Čičo, K.; Gregušová, D.; Kuzmík, J.; Jurkovič, M.; Alexewicz, A.; di Forte Poisson, M.-A.; Pogany, D.; Strasser, G.; Delage, S.; Fröhlich, K.

    2012-01-01

    We report on preparation and electrical characterization of InAlN/AlN/GaN metal-oxide-semiconductor high electron mobility transistors (MOS HEMTs) with Al 2O 3 gate insulation and surface passivation. About 12 nm thin high- κ dielectric film was deposited by MOCVD. Before and after the dielectric deposition, the samples were treated by different processing steps. We monitored and analyzed the steps by sequential device testing. It was found that both intentional (ex situ) and unintentional (in situ before Al 2O 3 growth) InAlN surface oxidation increases the channel sheet resistance and causes a current collapse. Post deposition annealing decreases the sheet resistance of the MOS HEMT devices and effectively suppresses the current collapse. Transistors dimensions were source-to-drain distance 8 μm and gate width 2 μm. A maximum transconductance of 110 mS/mm, a drain current of ˜0.6 A/mm ( V GS = 1 V) and a gate leakage current reduction from 4 to 6 orders of magnitude compared to Schottky barrier (SB) HEMTs was achieved for MOS HEMT with 1 h annealing at 700 °C in forming gas ambient. Moreover, InAlN/GaN MOS HEMTs with deposited Al 2O 3 dielectric film were found highly thermally stable by resisting 5 h 700 °C annealing.

  6. Uniaxial magnetic anisotropy in Pd/Fe bilayers on Al2O3 (0001) induced by oblique deposition

    NASA Astrophysics Data System (ADS)

    Chi, Chiao-Sung; Wang, Bo-Yao; Pong, Way-Faung; Ho, Tsung-Ying; Tsai, Cheng-Jui; Lo, Fang-Yuh; Chern, Ming-Yau; Lin, Wen-Chin

    2012-06-01

    This study reports the preparation of self-organized 1-dimensional magnetic structures of Fe on Al2O3 (0001) by oblique deposition. The x-ray diffraction (XRD) results in this study show the preferred (110) texture of the Fe films. XRD and extended x-ray adsorption fine structure measurements indicate larger oblique deposition angle (65°) leads to more disorder in the Fe crystalline structure. After capping with a Pd overlayer, the Pd/Fe/Al2O3 (0001) still exhibits uniaxial magnetic anisotropy induced by the underlying 1-dimensional Fe nanostructure. This uniaxial magnetic anisotropy changes with the variation in Fe thickness and oblique deposition angle. These results clearly indicate the feasibility of manipulating uniaxial magnetic anisotropy and crystalline order through the oblique deposition of magnetic materials.

  7. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates

    PubMed Central

    Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    Summary The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300–1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450–1000 nm. PMID:24367740

  8. Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates.

    PubMed

    López, Gema; Ortega, Pablo R; Voz, Cristóbal; Martín, Isidro; Colina, Mónica; Morales, Anna B; Orpella, Albert; Alcubilla, Ramón

    2013-01-01

    The aim of this work is to study the surface passivation of aluminum oxide/amorphous silicon carbide (Al2O3/a-SiCx) stacks on both p-type and n-type crystalline silicon (c-Si) substrates as well as the optical characterization of these stacks. Al2O3 films of different thicknesses were deposited by thermal atomic layer deposition (ALD) at 200 °C and were complemented with a layer of a-SiCx deposited by plasma-enhanced chemical vapor deposition (PECVD) to form anti-reflection coating (ARC) stacks with a total thickness of 75 nm. A comparative study has been carried out on polished and randomly textured wafers. We have experimentally determined the optimum thickness of the stack for photovoltaic applications by minimizing the reflection losses over a wide wavelength range (300-1200 nm) without compromising the outstanding passivation properties of the Al2O3 films. The upper limit of the surface recombination velocity (S eff,max) was evaluated at a carrier injection level corresponding to 1-sun illumination, which led to values below 10 cm/s. Reflectance values below 2% were measured on textured samples over the wavelength range of 450-1000 nm.

  9. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates

    NASA Astrophysics Data System (ADS)

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-03-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  10. Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study.

    PubMed

    Zhu, Hui; McDonnell, Stephen; Qin, Xiaoye; Azcatl, Angelica; Cheng, Lanxia; Addou, Rafik; Kim, Jiyoung; Ye, Peide D; Wallace, Robert M

    2015-06-17

    In situ "half cycle" atomic layer deposition (ALD) of Al2O3 was carried out on black phosphorus ("black-P") surfaces with modified phosphorus oxide concentrations. X-ray photoelectron spectroscopy is employed to investigate the interfacial chemistry and the nucleation of the Al2O3 on black-P surfaces. This work suggests that exposing a sample that is initially free of phosphorus oxide to the ALD precursors does not result in detectable oxidation. However, when the phosphorus oxide is formed on the surface prior to deposition, the black-P can react with both the surface adventitious oxygen contamination and the H2O precursor at a deposition temperature of 200 °C. As a result, the concentration of the phosphorus oxide increases after both annealing and the atomic layer deposition process. The nucleation rate of Al2O3 on black-P is correlated with the amount of oxygen on samples prior to the deposition. The growth of Al2O3 follows a "substrate inhibited growth" behavior where an incubation period is required. Ex situ atomic force microscopy is also used to investigate the deposited Al2O3 morphologies on black-P where the Al2O3 tends to form islands on the exfoliated black-P samples. Therefore, surface functionalization may be needed to get a conformal coverage of Al2O3 on the phosphorus oxide free samples.

  11. Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates.

    PubMed

    Ma, Lingwei; Huang, Yu; Hou, Mengjing; Li, Jianghao; Zhang, Zhengjun

    2016-12-01

    High-temperature surface-enhanced Raman scattering (SERS) sensing is significant for practical detections, and pinhole-containing (PC) metal@oxide structures possessing both enhanced thermal stability and superior SERS sensitivity are served as promising SERS sensors at extreme sensing conditions. Through tuning the Al2O3 precursors' exposure time during atomic layer deposition (ALD), Al2O3 shells with different amount of pinholes were covered over Ag nanorods (Ag NRs). By virtue of these unique PC Ag@Al2O3 nanostructures, herein we provide an excellent platform to investigate the relationship between the pinhole rate of Al2O3 shells and the melting behavior, high-temperature SERS performances of these core-shell nanostructures. Pinhole effect on the melting procedures of PC Ag@Al2O3 substrates was characterized in situ via their reflectivity variations during heating, and the specific melting point was quantitatively estimated. It is found that the melting point of PC Ag@Al2O3 raised along with the decrement of pinhole rate, and substrates with less pinholes exhibited better thermal stability but sacrificed SERS efficiency. This work achieved highly reliable and precise control of the pinholes over Al2O3 shells, offering sensitive SERS substrates with intensified thermal stability and superior SERS performances at extreme sensing conditions.

  12. Pt-Al2O3 nanocoatings for high temperature concentrated solar thermal power applications

    NASA Astrophysics Data System (ADS)

    Nuru, Zebib. Y.; Arendse, C. J.; Nemutudi, R.; Nemraoui, O.; Maaza, M.

    2012-05-01

    Nano-phased structures based on metal-dielectric composites, also called cermets (ceramic-metal), are considered among the most effective spectral selective solar absorbers. For high temperature applications (stable up to 650 °C) noble metal nanoparticles and refractory oxide host matrices are ideal as per their high temperature chemical inertness and stability: Pt/Al2O3 cermet nano-composites are a representative family. This contribution reports on the optical properties of Pt/Al2O3 cermet nano-composites deposited in a multilayered tandem structure. The radio-frequency sputtering optimized Pt/Al2O3 solar absorbers consist of stainless steel substrate/ Mo coating layer/ Pt-Al2O3/ protective Al2O3 layer and stainless steel substrate/ Mo coating layer /Pt-Al2O3 for different composition and thickness of the Pt-Al2O3 cermet coatings. The microstructure, morphology, theoretical modeling and optical properties of the coatings were analyzed by the x-ray diffraction, atomic force, microscopy, effective medium approximation and UV-vis specular and diffuse reflectance.

  13. Resistance switching of epitaxial VO2/Al2O3 heterostructure at room temperature induced by organic liquids

    NASA Astrophysics Data System (ADS)

    Yang, Mengmeng; Yang, Yuanjun; Hong, Bin; Huang, Haoliang; Hu, Sixia; Dong, Yongqi; Wang, Haibo; He, Hao; Zhao, Jiyin; Liu, Xuguang; Luo, Zhenlin; Li, Xiaoguang; Zhang, Haibin; Gao, Chen

    2015-03-01

    We studied using organic liquids (cyclohexane, n-butanol, and ethylene glycol) to modulate the transport properties at room temperature of an epitaxial VO2 film on a VO2/Al2O3 heterostructure. The resistance of the VO2 film increased when coated with cyclohexane or n-butanol, with maximum changes of 31% and 3.8%, respectively. In contrast, it decreased when coated with ethylene glycol, with a maximum change of -7.7%. In all cases, the resistance recovered to its original value after removing the organic liquid. This organic-liquid-induced reversible resistance switching suggests that VO2 films can be used as organic molecular sensors.

  14. Thermoluminescence studies of γ-irradiated Al2O3:Ce3+ phosphor

    NASA Astrophysics Data System (ADS)

    Reddy, S. Satyanarayana; Nagabhushana, K. R.; Singh, Fouran

    2016-07-01

    Pure and Ce3+ doped Al2O3 phosphors were synthesized by solution combustion method. The synthesized samples were characterized by X-ray diffraction (XRD) and its shows α-phase of Al2O3. Crystallite size was estimated by Williamson-Hall (W-H) method and found to be 49, 59 and 84 nm for pure, 0.1 mol% and 1 mol% Ce3+ doped Al2O3 respectively. Trace elemental analysis of undoped Al2O3 shows impurities viz. Fe, Cr, Mn, Mg, Ti, etc. Photoluminescence (PL) spectra of Al2O3:Ce3+ shows emission at 367 nm and excitation peak at 273 nm, which are corresponding to 5D → 4F and 4F → 5D transitions respectively. PL intensity decreases with concentration up to 0.4 mol%, beyond this mol% PL intensity increases with doping concentration up to 2 mol%. Thermoluminescence (TL) studies of γ-rayed pure and Ce3+ doped Al2O3 have been studied. Two well resolved TL glow peaks at 457.5 K and 622 K were observed in pure Al2O3. Additional glow peak at 566 K was observed in Al2O3:Ce3+. Maximum TL intensity was observed for Al2O3:Ce3+ (0.1 mol%) beyond this TL intensity decreases with increasing Ce3+ concentration. Computerized glow curve deconvolution (CGCD) method was used to resolve the multiple peaks and to calculate TL kinetic parameters. Thermoluminescence emission (TLE) spectra of pure Al2O3 glow peaks (457.5 K and 622 K) shows sharp emission at 694 nm and two small humps at 672 nm and 709 nm. The sharp peak at 696 nm corresponds to Cr3+ impurity of 2Eg → 4A2g transition of R lines and 713 nm hump is undoubtedly belongs to Cr3+ emission of near neighbor pairs. The emission at 672 nm is characteristic of Mn4+ impurity ions of 2E → 4A2 transition. TLE of Al2O3:Ce3+ (0.1 mol%) shows additional broad emission at 412 nm corresponds to F-centers. Linearity is observed in the dose range 20-500 Gy in Al2O3:Ce3+ (1 mol%).

  15. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Astrophysics Data System (ADS)

    Dellacorte, Christopher; Steinetz, Bruce

    1994-04-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  16. Tribological evaluation of an Al2O3-SiO2 ceramic fiber candidate for high temperature sliding seals

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce

    1994-01-01

    A test program to determine the relative sliding durability of an alumina-silica candidate ceramic fiber for high temperature sliding seal applications is described. Pin-on-disk tests were used to evaluate the potential seal material by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. Test variables studied included ambient temperatures from 25 to 900 C, loads from 1.3 to 21.2 N, and sliding velocities from 0.025 to 0.25 m/sec. In addition, the effects of fiber diameter and elastic modulus on friction and wear were measured. Thin gold films deposited on the superalloy disk surface were evaluated in an effort to reduce friction and wear of the fibers. In most cases, wear increased with test temperature. Friction ranged from 0.36 at 500 C and low velocity (0.025 m/sec) to over 1.1 at 900 C and high velocity (0.25 m/sec). The gold films resulted in satisfactory lubrication of the fibers at 25 C. At elevated temperatures diffusion of substrate elements degraded the films. These results indicate that the alumina-silica (Al2O3-SiO2) fiber is a good candidate material system for high temperature sliding seal applications. More work is needed to reduce friction.

  17. Influence of Al2O3 layer thickness on high-temperature stability of TiAlN/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Gao, C. K.; Yan, J. Y.; Dong, L.; Li, D. J.

    2013-11-01

    TiAlN/Al2O3 multilayers which have constant TiAlN layer thickness (10 nm) and various Al2O3 layer thicknesses ranging from 0.5 nm to 4.5 nm were synthesized on alumina substrate by magnetron sputtering. The effects of annealing on the mechanical and structural properties of the multilayers were investigated using X-ray diffractometry (XRD), X-ray reflection (XRR), X-ray photoelectron spectroscopy (XPS), and Nanoindenter. It was found that the hardness for the multilayers with Al2O3 layer thickness from 0.5 nm to 4.5 nm was much higher than TiAlN or Al2O3 monolayer and their hardness values were over 36 GPa. The annealed multilayers displayed high-temperature stable hardness and elastic modulus. The hardness increases from 36 GPa of as-deposited to 39 GPa of annealed multilayer at 700 °C in the case of lO=1.2 nm. It also indicates the highest elastic modulus of 560 GPa after 700 °C annealing. The multilayers had polycrystallines of TiAlN(1 1 1) and TiAlN(2 2 2) textures. Compared with as-deposited multilayers, the annealed multilayers exhibited unchanged textures. The interface and layered structure also showed good high-temperature stability.

  18. Energy band alignment of high-k oxide heterostructures at MoS2/Al2O3 and MoS2/ZrO2 interfaces

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangram K.; Xiao, Bo; Pradhan, Aswini K.

    2016-09-01

    Substrate-induced electron energy band alignments of ultrathin molybdenum disulfide (MoS2) films are investigated using photoemission spectroscopy. Thin layer MoS2/Al2O3 and MoS2/ZrO2 interfaces show valence band offset (VBO) values of 3.21 eV and 2.77 eV, respectively. The corresponding conduction-band offset (CBO) values are 3.63 eV and 1.27 eV. Similarly, the calculated VBO and CBO values for an ultrathin layer of MoS2/SiO2 are estimated to be 4.25 and 2.91 eV, respectively. However, a very thick layer of MoS2 on Al2O3 and ZrO2 layers increases the CBO and VBO values by 0.31 eV and 0.2 eV, respectively, due to the shifting of the Mo 4dz2 band toward the Fermi level. The atomic force microscopy images show that the films are atomically smooth and favor the formation of a high-quality interface between the substrate and the film. The investigated luminescence spectra reveal that the MoS2 films show very strong interactions with different high-k surfaces, whereas the Raman spectrum is only weakly influenced by the different dielectric substrates. This interesting finding encourages the application of high-k oxide insulators as gate materials in MoS2-based complementary metal-oxide semiconductors and other electronic devices.

  19. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores.

    PubMed

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

  20. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F. A.; Abdelkareem, Mohamed A. A.

    2016-12-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al2O3 and TiO2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al2O3 and TiO2 nanoparticles had sizes of 8-12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35-51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al2O3 and TiO2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  1. Proactive control of the metal-ceramic interface behavior of thermal barrier coatings using an artificial alpha-Al2O 3 layer

    NASA Astrophysics Data System (ADS)

    Su, Yi-Feng

    The reliability and life of thermal barrier coatings (TBCs) used in the hottest sections of advanced aircraft engines and power generation systems are largely dictated by: (1) the ability of a metallic bond coating to form an adherent thermally grown oxide (TGO) at the metal-ceramic interface and (2) the rate at which the TGO grows upon oxidation. It is postulated that a thin alpha-Al2O3 layer, if it could be directly deposited on a Ni-based alloy, will guide the alloy surface to form a TGO that is more tenacious and slower growing than what is attainable with state-of-the-art bond coatings. A chemical vapor deposition (CVD) process was used to directly deposit an alpha-Al2O3 layer on the surface of a single crystal Ni-bases superalloy. The layer was 150 nm thick, and consisted of small columnar grains (˜100 to 200 nm) with alpha-Al2O 3 as the major phase with a minute amount of theta-Al2O 3. Within 0.5 h of oxidation at 1150°C, the resulting TGO formed on the alloy surface underwent significant lateral grain growth. Consequently, within this time scale, the columnar nature of the TGO became well established. After 50 h, a network of ridges was clearly observed on the TGO surface instead of equiaxed grains typically observed on uncoated alloy surface. Comparison of the TGO morphologies observed with and without the CVD-Al2O 3 layer suggested that the transient oxidation of the alloy surface was considerably reduced. The alloy coated with the CVD-Al2O 3 layer also produced a much more adherent and slow growing TGO in comparison to that formed on the uncoated alloy surface. The CVD-Al2O 3 layer also improved its spallation resistance. Without the CVD-Al 2O3 layer, more than 50% of the TGO spalled off the alloy surface after 500 h in oxidation with significant wrinkling of the TGO that remained on the alloy surface. In contrast, the TGO remained intact with the CVD-Al2O3 layer after the 500 h exposure. Furthermore, the CVD layer significantly reduced the degree of

  2. Impact of interface controlling layer of Al2O3 for improving the retention behaviors of In-Ga-Zn oxide-based ferroelectric memory transistor

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Jung, Soon-Won; Byun, Chun-Won; Park, Sang-Hee Ko; Hwang, Chi-Sun; Lee, Gwang-Geun; Tokumitsu, Eisuke; Ishiwara, Hiroshi

    2010-06-01

    We characterized the nonvolatile memory thin-film transistors, which was composed of an amorphous indium-gallium-zinc oxide (α-IGZO) active channel and a ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator, and investigated the impact of an interface controlling layer. Excellent device performances, such as the field-effect mobility of 60.9 cm2 V-1 s-1, the subthreshold swing of 120 mV/dec, and the memory window of 6.4 V at ±12 V programming, were confirmed for the device without any interface layer. However, the memory retention time was very short. The retention behaviors could be dramatically improved when 4 nm thick Al2O3 layer was introduced between the P(VDF-TrFE) and α-IGZO.

  3. Laser induced damage threshold and optical properties of TiO2 and Al2O3 coatings prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jensen, Lars O.; Mädebach, Heinrich; Maula, Jarmo; Gürtler, Karlheinz; Ristau, Detlev

    2012-11-01

    Atomic Layer Deposition (ALD) allows for the deposition of homogeneous and conformal coatings with superior microstructural properties and well controllable thickness. As a consequence, ALD-processes have moved into the focus of optical thin film research during the last decade. In contrast to this, only a relatively small number of investigations in the power handling capability of ALD-coatings have been reported until now. The present contribution summarizes results of a study dedicated to the optical properties of single layers and high reflecting coating systems of TiO2 and Al2O3 deposited by ALD. Besides Laser Induced Damage Threshold (LIDT) values, the spectral characteristics as well the absorption and scatter losses are discussed.

  4. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  5. Potential of HfN, ZrN, and TiH as hot carrier absorber and Al2O3/Ge quantum well/Al2O3 and Al2O3/PbS quantum dots/Al2O3 as energy selective contacts

    NASA Astrophysics Data System (ADS)

    Shrestha, Santosh; Chung, Simon; Liao, Yuanxun; Wang, Pei; Cao, Wenkai; Wen, Xiaoming; Gupta, Neeti; Conibeer, Gavin

    2017-08-01

    The hot carrier (HC) solar cell is one of the most promising advanced photovoltaic concepts. It aims to minimise two major losses in single junction solar cells due to sub-band gap loss and thermalisation of above band gap photons by using a small bandgap absorber, and, importantly, collecting the photo-generated carriers before they thermalise. In this paper we will present recent development of the two critical components of the HC solar cell, i.e., the absorber and energy selective contacts (ESCs). For absorber, fabrication and carrier cooling rates in potential bulk materials — hafnium nitride, zirconium nitride, and titanium hydride are presented. Results of ESCs employing double barrier resonant tunneling structures Al2O3/Ge quantum well (QW)/Al2O3 and Al2O3/PbS quantum dots (QDs)/Al2O3 are also presented. These results are expected to guide further development of practical HC solar cell devices.

  6. Microstructure and Mechanical Properties of Al2O3 / A336 Compsite by Low Pressure Infiltratrion

    DTIC Science & Technology

    2011-08-01

    clear and bonds directly with matrix and fiber. It is confirmed by the presence of the γ-Al2O3, MgO from diffraction peaks in the XRD pattern (Fig 4...and EDS (Fig. 3(b),(c)). It suggests that γ-Al2O3, MgO can be produced as results of the interfacial reaction between the Al liquid and the SiO2...results of the reaction between the α-Al2O3 and the MgO , i.e. α-Al2O3+ MgO →MgAl2O4, It was noticed that MgAl2O4 improve wettability, but decrease

  7. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  8. Production of hydrogen by autothermal reforming of propane over Ni/delta-Al2O3.

    PubMed

    Lee, Hae Ri; Lee, Kwi Yeon; Park, Nam Cook; Shin, Jae Soon; Moon, Dong Ju; Lee, Byung Gwon; Kim, Young Chul

    2006-11-01

    The performance of Ni/delta-Al2O3 catalyst in propane autothermal reforming (ATR) for hydrogen production was investigated in the present study. The catalysts were characterized using XRD, TEM, and SEM. The activity of the Ni/delta-Al2O3 catalyst manufactured by the water-alcohol method was better than those of the catalysts manufactured by the impregnation and chemical reduction methods. The Ni/delta-Al2O3 catalysts were modified by the addition of promoters such as Mg, La, Ce, and Co, in order to improve their stability and yield. Hydrogen production was the largest for the Ni-Co-CeO2/Al2O3, catalyst.

  9. Controlled synthesis of α-Al2O3 via the hydrothermal-pyrolysis method

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wu, Kunyao; Cao, Jing; Wang, Yongfeng

    2017-06-01

    Taking aluminum sulfate and urea as the raw materials produce α-Al2O3 by employing the hydrothermal-pyrolysis method. The study analyzes the characterization of the products by XRD and SEM, The results indicate as follows: after 6 hours’ hydrothermal reaction in the 120°C water, with the aluminum sulfate and urea as the raw materials, spherical α-Al2O3 can be obtained through calcination at 1200°C.

  10. Tb3+ ion doping into Al2O3: Solubility limit and luminescence properties

    NASA Astrophysics Data System (ADS)

    Onishi, Yuya; Nakamura, Toshihiro; Adachi, Sadao

    2016-11-01

    Tb3+-activated Al2O3 phosphors with a molar ratio of \\text{Al}:\\text{Tb} = (1 - x):x are synthesized by metal organic decomposition (x = 0-0.15) and subsequent calcination at T c = 200-1200 °C for 1 h in air. The material properties of the synthesized phosphors are investigated by X-ray diffraction (XRD), photoluminescence (PL) analyses, PL excitation spectroscopy, and luminescence lifetime measurements. At x = 0.015, the metastable phase of γ-Al2O3 is obtained by calcination at T c ˜ 300-1050 °C and a mixture of γ, θ, and α phases at T c ˜ 1050-1150 °C. The high-temperature stable phase of α-Al2O3 is obtained only at T c ≥ 1150 °C. Below T c ˜ 300 °C, the XRD data suggest the formation of boehmite (AlOOH). The solubility limit of Tb3+ in α-Al2O3 is also clearly determined to be x ˜ 0.015 (1.5%). The PL decay time of the Tb3+ green emission in α-Al2O3 is ˜1.1 ms for x < 0.015 and slowly decreases with further increase in x (Tb3+). The schematic energy-level diagram of Tb3+ in α-Al2O3 is proposed for a better understanding of the present phosphor system. Finally, the temperature dependence of the PL intensity is examined between T = 20 and 450 K, yielding quenching energies of E q ˜ 0.28 eV (α-Al2O3 and γ-Al2O3).

  11. Epitaxial graphene surface preparation for atomic layer deposition of Al2O3

    NASA Astrophysics Data System (ADS)

    Garces, N. Y.; Wheeler, V. D.; Hite, J. K.; Jernigan, G. G.; Tedesco, J. L.; Nepal, Neeraj; Eddy, C. R.; Gaskill, D. K.

    2011-06-01

    Atomic layer deposition was employed to deposit relatively thick (˜30 nm) aluminum oxide (Al2O3) using trimethylaluminum and triply-distilled H2O precursors onto epitaxial graphene grown on the Si-face of silicon carbide. Ex situ surface conditioning by a simple wet chemistry treatment was used to render the otherwise chemically inert graphene surface more amenable to dielectric deposition. The obtained films show excellent morphology and uniformity over large (˜64 mm2) areas (i.e., the entire sample area), as determined by atomic force microscopy and scanning electron microscopy. X-ray photoelectron spectroscopy revealed a nearly stoichiometric film with reduced impurity content. Moreover, from capacitance-voltage measurements a dielectric constant of ˜7.6 was extracted and a positive Dirac voltage shift of ˜1.0 V was observed. The graphene mobility, as determined by van der Pauw Hall measurements, was not affected by the sequence of surface pretreatment and dielectric deposition.

  12. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-09

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations.

  13. Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2015-05-01

    Ion conduction and relaxation in PEO-LiTFSI-Al2O3 polymer nanocomposite electrolytes have been studied for different concentrations of Al2O3 nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al2O3. The maximum ionic conductivity ˜3.3 × 10-4 S cm-1 has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al2O3 nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al2O3 concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al2O3 in these electrolytes.

  14. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates.

    PubMed

    Yan, Baojun; Liu, Shulin; Heng, Yuekun

    2015-01-01

    Microchannel plate (MCP) as a key part is a kind of electron multiplied device applied in many scientific fields. Oxide thin films such as zinc oxide doped with aluminum oxide (ZnO:Al2O3) as conductive layer and pure aluminum oxide (Al2O3) as secondary electron emission (SEE) layer were prepared in the pores of MCP via atomic layer deposition (ALD) which is a method that can precisely control thin film thickness on a substrate with a high aspect ratio structure. In this paper, nano-oxide thin films ZnO:Al2O3 and Al2O3 were prepared onto varied kinds of substrates by ALD technique, and the morphology, element distribution, structure, and surface chemical states of samples were systematically investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS), respectively. Finally, electrical properties of an MCP device as a function of nano-oxide thin film thickness were firstly studied, and the electrical measurement results showed that the average gain of MCP was greater than 2,000 at DC 800 V with nano-oxide thin film thickness approximately 122 nm. During electrical measurement, current jitter was observed, and possible reasons were preliminarily proposed to explain the observed experimental phenomenon.

  15. Refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point: temperature cross-sensitivity

    NASA Astrophysics Data System (ADS)

    Śmietana, Mateusz; Dominik, Magdalena; Mikulic, Predrag; Bock, Wojtek J.

    2017-04-01

    In this work is discussed an effect of nanocoating long-period grating (LPG) with an aluminum oxide (Al2O3) on its refractive index (RI) and temperature (T) sensitivity. For comparison two LPGs, namely one before and after the nanocoating process were optimized towards working at dispersion turning point (DTP) of higher order cladding modes. The DTP was reached with two methods, i.e., by wet etching of LPG's cladding and by optimized deposition of Al2O3 thin overlay using atomic layer deposition (ALD) method. For both the cases we show significant increase in RI sensitivity at DTP. When Al2O3 is deposited the RI sensitivity reaches 9270 nm/RIU for traced only one resonance out of the pair and RI in range 1.33-1.34 RIU, what is over 4-fold higher than for the bare LPG. Moreover, T sensitivity for both the structures was compared and the one for Al2O3-coated sample was found to be only up to 12% higher than for the bare sample. Higher RI sensitivity and low temperature cross-sensitivity effects allow for more accurate RI measurements than in case of bare LPGs. The Al2O3-nanocoated LPGs can further find applications in label-free biosensing, due to their optimized sensitivity in RI in range close that of water.

  16. FAST TRACK COMMUNICATION: Self-patterned aluminium interconnects and ring electrodes for arrays of microcavity plasma devices encapsulated in Al2O3

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Park, S.-J.; Eden, J. G.

    2008-01-01

    Automatic formation of Al interconnects and ring electrodes, fully encapsulated by alumina, in planar arrays of Al2O3/Al/Al2O3 microcavity plasma devices has been accomplished by electrochemical processing of Al foil. Following the fabrication of cylindrical microcavities (50-350 µm in diameter) in 127 µm thick Al foil, virtually complete anodization of the foil yields azimuthally symmetric Al electrodes surrounding each cavity and interconnects between adjacent microcavities that are produced and simultaneously buried within a transparent Al2O3 film without the need for conventional patterning techniques. The diameter and pitch of the microcavities prior to anodization, as well as the anodization process parameters, determine which of the microcavity plasma devices in a one- or two-dimensional array are connected electrically. Data presented for 200 µm diameter cavities with a pitch of 150-225 µm illustrate the patterning of the interconnects and electrode connectivity after 4-10 h of anodization in oxalic acid. Self-patterned, linear arrays comprising 25 dielectric barrier devices have been excited by a sinusoidal or bipolar pulse voltage waveform and operated in 400-700 Torr of rare gas. Owing to the electrochemical conversion of most of the Al foil into Al2O3, the self-formed arrays exhibit an areal capacitance ~82% lower than that characteristic of previous Al/Al2O3 device arrays (Park et al 2006 J. Appl. Phys. 99 026107).

  17. Interaction of Al(2)O(3) nanoparticles with Escherichia coli and their cell envelope biomolecules.

    PubMed

    Ansari, M A; Khan, H M; Khan, A A; Cameotra, S S; Saquib, Q; Musarrat, J

    2014-04-01

    The aim of this study is to investigate the antibacterial activity of aluminium oxide nanoparticles (Al2 O3 NPs) against multidrug-resistant clinical isolates of Escherichia coli and their interaction with cell envelope biomolecules. Al2 O3 NPs were characterized by scanning electron microscope (SEM), high-resolution transmission electron microscope (HR-TEM) and X-ray diffraction (XRD) analyses. Antibacterial activity and interaction of Al2 O3 NPs with E. coli and its surface biomolecules were assessed by spectrophotometry, SEM, HR-TEM and attenuated total reflectance/Fourier transform infrared (ATR-FTIR). Of the 80 isolates tested, about 64 (80%) were found to be extended spectrum β-lactamase (ESBL) positive and 16 (20%) were non-ESBL producers. Al2 O3 NPs at 1000 μg ml(-1) significantly inhibited the bacterial growth. SEM and HR-TEM analyses revealed the attachment of NPs to the surface of cell membrane and also their presence inside the cells due to formation of irregular-shaped pits and perforation on the surfaces of bacterial cells. The intracellular Al2 O3 NPs might have interacted with cellular biomolecules and caused adverse effects eventually triggering the cell death. ATR-FTIR studies suggested the interaction of lipopolysaccharide (LPS) and L-α-Phosphatidyl-ethanolamine (PE) with Al2 O3 NPs. Infrared (IR) spectral changes revealed that the LPS could bind to Al2 O3 NPs through hydrogen binding and ligand exchange. The Al2 O3 NPs-induced structural changes in phospholipids may lead to the loss of amphiphilic properties, destruction of the membrane and cell leaking. The penetration and accumulation of NPs inside the bacterial cell cause pit formation, perforation and disorganization and thus drastically disturb its proper function. The cell surface biomolecular changes revealed by ATR-FTIR spectra provide a better understanding of the cytotoxicity of Al2 O3 NPs. Al2 O3 NPs may serve as broad-spectrum bactericidal agents to control the emergent

  18. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    PubMed Central

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  19. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers.

    PubMed

    Zazpe, Raul; Prikryl, Jan; Gärtnerova, Viera; Nechvilova, Katerina; Benes, Ludvik; Strizik, Lukas; Jäger, Ales; Bosund, Markus; Sopha, Hanna; Macak, Jan M

    2017-04-04

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions.

  20. Internal photoemission in Ag-Al2O3-Al junctions

    NASA Technical Reports Server (NTRS)

    Guedes, J. M. P.; Slayman, C. W.; Gustafson, T. K.; Jain, R. K.

    1979-01-01

    The magnitude of the photon-induced current in Ag-Al2O3-Al metal-oxide-metal junctions has been studied as a function of photon energy and angle of incident radiation. Photocurrents were theoretically analyzed on the basis of a modified vacuum photoemission model (Jain, 1975; Slayman et al., to be published). Optical constants previously reported in the literature (Irani et al., 1971; Ehnrereich et al., 1963) were used to calculate the true spatial generation rate in Ag and Al as a function of the angle, polarization of incident radiation, and film thickness. Results were found to be in very good agreement with experimentally determined values for a tunable dye laser with a KDP doubling crystal pumped by a Q-switched Nd:YAG laser with a LiIO3 doubling crystal. The system provided risetimes of 50 ns or less and peak powers of 10 W. Under short circuit conditions, the photoresponse to incident power was linear up to available power densities of 10 kW/sq cm. Quantum efficiencies of about 0.1% at zero-bias, near 3.8 eV under P polarization, were typically observed.

  1. Supermagnetism in discontinuous CoFe/Al2O3 multilayers

    NASA Astrophysics Data System (ADS)

    Bedanta, Subhankar; Kleemann, Wolfgang

    2012-06-01

    An ensemble of nanoparticles in which the interparticle magnetic interactions are sufficiently weak shows superparamagnetic (SPM) behavior as described by the Néel-Brown model. On the contrary, when inter-particle interactions are non-negligible, the system eventually shows collective behavior, which overcomes the individual anisotropy properties of the particles. At sufficiently strong interactions a magnetic nanoparticle ensemble can show superspin glass (SSG) properties similar to those of atomic spin glass systems in bulk. With further increase in concentration, but still below physical percolation, sufficiently strong interactions can be experienced to form a superferromagnetic (SFM) state. SFM domains in a non-percolated nanoparticle assembly are expected to be similar to conventional FM domains in a continuous film, with the decisive difference that the atomic spins are replaced by the superspins of the single-domain nanoparticles. In this article, we show that by varying the nominal thickness tn of the magnetic component in granular multilayers [Co80Fe20(tn)/Al2O3(3nm)]10 different types of "supermagnetism", such as superparamagnetism, superspin glass and superferromagnetism can be observed.

  2. Al2 O3 Underlayer Prepared by Atomic Layer Deposition for Efficient Perovskite Solar Cells.

    PubMed

    Zhang, Jinbao; Hultqvist, Adam; Zhang, Tian; Jiang, Liangcong; Ruan, Changqing; Yang, Li; Cheng, Yibing; Edoff, Marika; Johansson, Erik M J

    2017-10-09

    Perovskite solar cells, as an emergent technology for solar energy conversion, have attracted much attention in the solar cell community by demonstrating impressive enhancement in power conversion efficiencies. However, the high temperature and manually processed TiO2 underlayer prepared by spray pyrolysis significantly limit the large-scale application and device reproducibility of perovskite solar cells. In this study, lowtemperature atomic layer deposition (ALD) is used to prepare a compact Al2 O3 underlayer for perovskite solar cells. The thickness of the Al2 O3 layer can be controlled well by adjusting the deposition cycles during the ALD process. An optimal Al2 O3 layer effectively blocks electron recombination at the perovskite/fluorine-doped tin oxide interface and sufficiently transports electrons through tunneling. Perovskite solar cells fabricated with an Al2 O3 layer demonstrated a highest efficiency of 16.2 % for the sample with 50 ALD cycles (ca. 5 nm), which is a significant improvement over underlayer-free PSCs, which have a maximum efficiency of 11.0 %. Detailed characterization confirms that the thickness of the Al2 O3 underlayer significantly influences the charge transfer resistance and electron recombination processes in the devices. Furthermore, this work shows the feasibility of using a high band-gap semiconductor such as Al2 O3 as the underlayer in perovskite solar cells and opens up pathways to use ALD Al2 O3 underlayers for flexible solar cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-09-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high- k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high- k multilayer stack.

  4. Studies on oxidation and deuterium permeation behavior of a low temperature α-Al2O3-forming Fesbnd Crsbnd Al ferritic steel

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Ping; Zhao, Si-Xiang; Liu, Feng; Li, Xiao-Chun; Zhao, Ming-Zhong; Wang, Jing; Lu, Tao; Hong, Suk-Ho; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-08-01

    To evaluate the capability of Fesbnd Crsbnd Al ferritic steels as tritium permeation barrier in fusion systems, the oxidation behavior together with the permeation behavior of a Fesbnd Crsbnd Al steel was investigated. Gas driven permeation experiments were performed. The permeability of the oxidized Fesbnd Crsbnd Al steel was obtained and a reduced activation ferritic/martensitic steel CLF-1 was used as a comparison. In order to characterize the oxide layer, SEM, XPS, TEM, HRTEM were used. Al2O3 was detected in the oxide film by XPS, and HRTEM showed that Al2O3 in the α phase was found. The formation of α-Al2O3 layer at a relatively low temperature may result from the formation of Cr2O3 nuclei.

  5. Resistive Switching in Al/Al2O3/TiO2/Al/PES Flexible Device for Nonvolatile Memory Application.

    PubMed

    Lin, Chun-Chieh; Lee, Wang-Ying; Lee, Han-Tang

    2016-05-01

    Resistive switching memory devices with superior properties are possibly used in next-generation nonvolatile memory to replace the flash memory. In addition, flexible electronics has also attracted much attention because of its light-weight and flexibility. Therefore, an Al/Al2O3/TiO2/Al/PES flexible resistive switching memory is employed in this study. The resistive switching characteristics and stability of the flexible device are improved by inserting the Al2O3 film. The resistive switching of the flexible device can be repeated over hundreds of times after the bending test. A possible resistive switching model of the flexible device is also proposed. In addition, the non-volatility of the flexible device is demonstrated. Based on our research results, the proposed Al2O3/TiO2-based resistive switching memory is possibly used in next-generation flexible electronics and nonvolatile memory applications.

  6. Plasma-Assisted Atomic Layer Growth of High-Quality Aluminum Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Jeong, Chang-Wook; Lee, Jang-Sik; Joo, Seung-Ki

    2001-01-01

    Thin aluminum oxide (Al2O3) films were grown by the plasma-assisted atomic layer controlled deposition (PAALD) method using Dimethylethylamine alane [(CH3)2(C2H5)N:AlH3] (DMEAA). Al was deposited by the PAALD method, then the Al films were oxidized into Al2O3 by plasma oxidation in the same chamber without breaking the vacuum. Al2O3 thin films of 15 nm thickness were prepared by repetition of this process. Thus prepared Al2O3 thin films exhibited a refractive index of 1.68. The thickness and the refractive index fluctuation of the film over a 4 inch wafer were ±2.3% and ±1.9%, respectively, for the deposited films. The leakage current density and breakdown field were measured to be about 10-8 A/cm2 at 1 MV/cm and 7 MV/cm, respectively. Considerable improvement of the electrical properties was realized by the post oxygen-plasma annealing at 200°C.

  7. A study on Si / Al 2 O 3 paramagnetic point defects

    NASA Astrophysics Data System (ADS)

    Kühnhold-Pospischil, S.; Saint-Cast, P.; Hofmann, M.; Weber, S.; Jakes, P.; Eichel, R.-A.; Granwehr, J.

    2016-11-01

    In this contribution, negative charges and electronic traps related to the Si / Al 2 O 3 interface were measured and related to paramagnetic point defects and molecular vibrations. To this end, contactless capacitance voltage measurements, X-band electron paramagnetic resonance (EPR), and infrared spectroscopy were carried out, and their results were compared. A change in the negative charge density and electron trap density at the Si / Al 2 O 3 interface was achieved by adding a thermally grown SiO 2 layer with varying thicknesses and conducting an additional temperature treatment. Using EPR, five paramagnetic moments were detected in Si / ( SiO 2 ) / Al 2 O 3 samples with g values of g 1 = 2.0081 ± 0.0002 , g 2 = 2.0054 ± 0.0002 , g 3 = 2.0003 ± 0.0002 , g 4 = 2.0026 ± 0.0002 , and g 5 = 2.0029 ± 0.0002 . Variation of the Al 2 O 3 layer thickness shows that paramagnetic species associated with g1, g2, and g3 are located at the Si / Al 2 O 3 interface, and those with g4 and g5 are located within the bulk Al 2 O 3 . Furthermore, g1, g2, and g3 were shown to originate from oxygen plasma exposure during Al 2 O 3 deposition. Comparing the g values and their location within the Si / Al 2 O 3 system, g1 and g3 can be attributed to P b 0 centers, g3 to Si dangling bonds (Si-dbs), and g4 and g5 to rotating methyl radicals. All paramagnetic moments observed in this contribution disappear after a 5-min temperature treatment at 450 ° C . The deposition of an additional thermal SiO 2 layer between the Si and the Al 2 O 3 decreases the negative fixed charge density and defect density by about one order of magnitude. In this contribution, these changes can be correlated with a decrease in amplitude of the Si-db signal. P b 0 and the methyl radical signals were less affected by this additional SiO 2 layer. Based on these observations, microscopic models for the negative fixed charge density ( Q tot ) and the interface trap density ( D it ) and the connection between these

  8. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    PubMed

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites.

  9. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites

    PubMed Central

    Mirjalili, F.; Chuah, L.; Salahi, E.

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt. PMID:24688421

  10. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    SciTech Connect

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Szanyi, Janos

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoretical DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.

  11. Directionally solidified Al2O3/GAP eutectic ceramics by micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Cao, Xue; Su, Haijun; Guo, Fengwei; Tan, Xi; Cao, Lamei

    2016-11-01

    We reported a novel route to prepare directionally solidified (DS) Al2O3/GAP eutectic ceramics by micro-pulling-down (μ-PD) method. The eutectic crystallizations, microstructure characters and evolutions, and their mechanical properties were investigated in detail. The results showed that the Al2O3/GAP eutectic composites can be successfully fabricated through μ-PD method, possessed smooth surface, full density and large crystal size (the maximal size: φ90 mm × 20 mm). At the process of Diameter, the as-solidified Al2O3/GAP eutectic presented a combination of "Chinese script" and elongated colony microstructure with complex regular structure. Inside the colonies, the rod-type or lamellar-type eutectic microstructures with ultra-fine GAP surrounded by the Al2O3 matrix were observed. At an appropriate solidificational rate, the binary eutectic exhibited a typical DS irregular eutectic structure of "chinese script" consisting of interpenetrating network of α-Al2O3 and GAP phases without any other phases. Therefore, the interphase spacing was refined to 1-2 µm and the irregular microstructure led to an outstanding vickers hardness of 17.04 GPa and fracture toughness of 6.3 MPa × m1/2 at room temperature.

  12. Raman spectroscopic study of Ni/Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Aminzadeh, A.; Sarikhani-fard, H.

    1999-07-01

    In this article a preliminary Raman spectroscopic study of Ni/Al 2O 3 catalyst of the type used for the steam reformation of methane is reported. With several prepared samples of this catalyst and using FT-Raman and conventional dispersive Raman technique, it is shown how Raman spectroscopy can be used to monitor the exact conditions during the preparation of the catalyst. Raman data shows that despite a strong fluorescence background, some useful information can be obtained. According to these data, when the calcination temperature is raised above 1000°C, the gamma alumina ( γ-Al 2O 3) is converted to alpha alumina ( α-Al 2O 3) as it is expected. It further shows that Ni is not present as NiO: it is probably embedded in the crystal structure of γ-Al 2O 3 as NiAl 2O 4 (the spinel structure) or constituted as a solid solution with Al 2O 3.

  13. Photochemistry of the α-Al2O3-PETN interface

    DOE PAGES

    Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; ...

    2016-02-29

    Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12) and a wide band gap aluminum oxide (α-Al2O3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surfacePETN transitions. We predict the low energy α-Al2O3 F0-centerPETN transition, producing the excited triplet state, and α-Al2O3 F-0-centerPETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN atmore » the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less

  14. Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites.

    PubMed

    Mirjalili, F; Chuah, L; Salahi, E

    2014-01-01

    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.

  15. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  16. Growth of single-crystalline zirconium diboride thin film on sapphire

    NASA Astrophysics Data System (ADS)

    Bera, Sambhunath; Sumiyoshi, Yuichiro; Yamada-Takamura, Yukiko

    2009-09-01

    Conducting and reflecting thin film of ZrB2, which has lattice mismatch of only 0.6% to GaN, was grown epitaxially on sapphire substrate [α-Al2O3(0001)] via thermal decomposition of Zr(BH4)4. In situ reflection high energy electron diffraction and ex situ x-ray diffraction analyses indicate that the epitaxial relationship is singular, i.e., ZrB2[0001]∥Al2O3[0001] and ZrB2[112¯0]∥Al2O3[101¯0]. X-ray photoelectron spectroscopy and scanning tunneling microscopy revealed that the oxide-free surface could be recovered by heating the film at approximately 750 °C under ultrahigh vacuum, which demonstrates its suitability as a template for the growth of nitride semiconductors.

  17. In situ Formed α-Al2O3 Nanocrystals Repaired the Preexisting Microcracks in Plasma-Sprayed Al2O3 Coating via Stress-Induced Phase Transformation

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Feng, Jingwei; Rong, Jian; Liu, Chenguang; Tao, Shunyan; Ding, Chuanxian

    2016-02-01

    In the present study, the phase composition and generation mechanism of the nanocrystals located in the microcracks of plasma-sprayed Al2O3 coating were reevaluated. The Al2O3 coatings were investigated using transmission electron microscopy and x-ray diffraction. We supply the detailed explanations to support the new viewpoint that in situ formation of α-Al2O3 nanocrystals in the preexisting microcracks of the as-sprayed Al2O3 coating may be due to the stress-induced phase transformation. Owing to the partially coherent relationship, the phase interfaces between the α-Al2O3 nanocrystals with the preferred orientation and the γ-Al2O3 matrix may possess better bonding strength. The α-Al2O3 nanocrystals could repair the microcracks in the coating, which further strengthens grain boundaries. Grain boundary strengthening is beneficial to the coating fracture toughness enhancement.

  18. Anchorage of γ-Al2O3 nanoparticles on nitrogen-doped multiwalled carbon nanotubes

    DOE PAGES

    Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.; ...

    2016-06-07

    Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al2O3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al2O3. Extensive characterization of the resulting γ-Al2O3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.

  19. Growth, Quantitative Growth Analysis, and Applications of Graphene on γ-Al2O3 catalysts

    PubMed Central

    Park, Jaehyun; Lee, Joohwi; Choi, Jung-Hae; Hwang, Do Kyung; Song, Yong-Won

    2015-01-01

    The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a ‘graphene sticker’ into an ultrafast mode-locked laser. PMID:26137994

  20. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric.

    PubMed

    Ki Min, Bok; Kim, Seong K; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-11-04

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer.

  1. Electrical Double Layer Capacitance in a Graphene-embedded Al2O3 Gate Dielectric

    PubMed Central

    Ki Min, Bok; Kim, Seong K.; Jun Kim, Seong; Ho Kim, Sung; Kang, Min-A; Park, Chong-Yun; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok

    2015-01-01

    Graphene heterostructures are of considerable interest as a new class of electronic devices with exceptional performance in a broad range of applications has been realized. Here, we propose a graphene-embedded Al2O3 gate dielectric with a relatively high dielectric constant of 15.5, which is about 2 times that of Al2O3, having a low leakage current with insertion of tri-layer graphene. In this system, the enhanced capacitance of the hybrid structure can be understood by the formation of a space charge layer at the graphene/Al2O3 interface. The electrical properties of the interface can be further explained by the electrical double layer (EDL) model dominated by the diffuse layer. PMID:26530817

  2. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  3. Electrical conductivity studies on CuBr containing Al2O3 particles

    NASA Technical Reports Server (NTRS)

    Dubec, P. M.; Wagner, J. B., Jr.

    1984-01-01

    The conductivity of CuBr was studied and the role of a second phase, Al2O3, dispersed in CuBr was tested. CuBr melts at 493 C and exhibits three phases in the solid state. CuBr is a good ionic conductor with a transport number for copper ions of virtually unity with weighed proportions of the appropriate chemicals used. The CuBr materials were heated above melting point of CuBr, and the samples were sandwiched between copper electrodes. The ac conductivity, was determined at 1 kHz between 25 and 440 C depending on the sample. It was shown that at low temperatures, the conductivity for CuBr (Al2O3) increased by as much as 100, whereas in the beta phase the conductivity of CuBr containing Al2O3 decreased. The electrical conductivity studies are in agreement with earlier data.

  4. Process Capability Analysis of Vacuum Moulding for Development of Al-Al2O3 MMC

    NASA Astrophysics Data System (ADS)

    Singh, R.

    2013-01-01

    The purpose of the present study is to investigate process capability of vacuum moulding (VM) for development of Al-Al2O3 metal matrix composite (MMC). Starting from the identification of component, prototypes were prepared (with three different input parameters namely: vacuum pressure; component volume and sand grit size to give output in form of dimensional accuracy). Measurements on the coordinate measuring machine helped in calculating the dimensional tolerances of the Al-Al2O3 MMC prepared. Some important mechanical properties were also compared to verify the suitability of the components. Final components produced are acceptable as per ISO standard UNI EN 20286-I (1995). The results of study suggest that VM process lies in ±4.5 sigma (σ) limit as regard to dimensional accuracy of Al-Al2O3 MMC is concerned. This process ensures rapid production of pre-series technological prototypes and proof of concept at less production cost and time.

  5. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI

    NASA Technical Reports Server (NTRS)

    Shahi, K.; Wagner, J. B., Jr.

    1981-01-01

    Ionic and electronic conductivities, and thermoelectric power have been measured for AgI and AgI containing a dispersion of submicron size Al2O3 particles. While the dispersion of Al2O3 enhances the ionic conductivity significantly, it does not affect the electronic properties of the matrix. The enhancement is a strong function of the size and concentration of the dispersoid. Various models have been tested to account for the enhanced conduction. However, the complex behavior of the present results points out the need for more sophisticated theoretical models. Ionic conduction and thermoelectric power data suggest that the dispersed Al2O3 generates an excess of cation vacancies and thereby enhances the conductivity and suppresses the thermoelectric power of the matrix. The individual heats of transport of cation interstitials and vacancies have been estimated and compared to their respective migration energies.

  6. Vanadium oxides on aluminum oxide supports. 2. Structure, vibrational properties, and reducibility of V2O5 clusters on alpha-Al2O3(0001).

    PubMed

    Brázdová, Veronika; Ganduglia-Pirovano, M Verónica; Sauer, Joachim

    2005-12-15

    The structure, stability, and vibrational properties of isolated V2O5 clusters on the Al2O3(0001) surface have been studied by density functional theory and statistical thermodynamics. The most stable structure does not possess vanadyl oxygen atoms. The positions of the oxygen atoms are in registry with those of the alumina support, and both vanadium atoms occupy octahedral sites. Another structure with one vanadyl oxygen atom is only 0.12 eV less stable. Infrared spectra are calculated for the two structures. The highest frequency at 922 cm(-1) belongs to a V-O stretch in the V-O-Al interface bonds, which supports the assignment of such a mode to the band observed around 941 cm(-1) for vanadia particles on alumina. Removal of a bridging oxygen atom from the most stable cluster at the V-O-Al interface bond costs 2.79 eV. Removal of a (vanadyl) oxygen atom from a thin vanadia film on alpha-Al2O3 costs 1.3 eV more, but removal from a V2O5(001) single-crystal surface costs 0.9 eV less. Similar to the V2O5(001) surface, the facile reduction is due to substantial structure relaxations that involve formation of an additional V-O-V bond and yield a pair of V(IV)(d1) sites instead of a V(III)(d2)/V(V)(d0) pair.

  7. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution.

    PubMed

    Zhao, Di; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Wang, Deping

    2009-05-01

    The effect of replacing varying amounts (0-2.5 mol.%) of B2O3 with Al2O3 in a borate glass on (1) the conversion of the glass to HA in an aqueous phosphate solution and (2) the compressive strength of the as-formed HA product was investigated. Samples of each glass (10 x 10 x 8 mm) were placed in 0.25 M K2HPO4 solution at 60 degrees C, and the conversion kinetics to HA were determined from the weight loss of the glass and the pH of the solution. The structure and composition of the solid reaction products were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. While the conversion rate of the glass to HA decreased considerably with increasing Al2O3 content, the microstructure of the HA product became denser and the compressive strength of the HA product increased. The addition of SiO2 to the Al2O3-containing borate glass reversed the deterioration of the conversion rate, and produced a further improvement in the strength of the HA product. The compressive strength of the HA formed from the borate glass with 2.5 mol.% Al2O3 and 5 mol.% SiO2 was 11.1 +/- 0.2 MPa, which is equal to the highest strengths reported for trabecular bone. The results indicated that simultaneous additions of Al2O3 and SiO2 could be used to control the bioactivity of the borate glass and to enhance the mechanical strength of the HA product. Furthermore, the HA product formed from the glass containing both SiO2 and Al2O3 could be applied to bone repair.

  8. Reactive Plasma Nitriding of AL2O3 Powder in Thermal Spray

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    Among advanced ceramics, aluminum nitride (AlN) had attracted much attention in the field of electrical and structural applications due to its outstanding properties. However, it is difficult to fabricate AlN coating by conventional thermal spray processes directly. Due to the thermal decomposition of feedstock AlN powder during spraying without a stable melting phase (which is required for deposition in thermal spray). Reactive plasma spraying (RPS) has been considered as a promising technology for in-situ formation of AlN thermally sprayed coatings. In this study the possibility of fabrication of AlN coating by reactive plasma nitriding of alumina (Al2O3) powder using N2/H2 plasma was investigated. It was possible to fabricate a cubic-AlN (c-AlN) based coating and the fabricated coating consists of c-AlN, α-Al2O3, Al5O6N and γ-Al2O3. It was difficult to understand the nitriding process from the fabricated coatings. Therefore, the Al2O3 powders were sprayed and collected in water. The microstructure observation of the collected powder and its cross section indicate that the reaction started from the surface. Thus, the sprayed particles were melted and reacted in high temperature reactive plasma and formed aluminum oxynitride which has cubic structure and easily nitride to c-AlN. During the coatings process the particles collide, flatten, and rapidly solidified on a substrate surface. The rapid solidification on the substrate surface due to the high quenching rate of the plasma flame prevents AlN crystal growth to form the hexagonal phase. Therefore, it was possible to fabricate c-AlN/Al2O3 based coatings through reactive plasma nitriding reaction of Al2O3 powder in thermal spray.

  9. Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms

    NASA Astrophysics Data System (ADS)

    Gosteva, I.; Morgalev, Yu; Morgaleva, T.; Morgalev, S.

    2015-11-01

    Environmental toxicity of aqueous disperse systems of nanoparticles of binary compounds of titanium dioxides (with particle size Δ50=5 nm, Δ50=50 nm, Δ50=90 nm), aluminum oxide alpha-forms (Δ50=7 nm and Δ50=70 nm) and macro forms (TiO2 Δ50=350 nm, Al2O3 A50=4000 nm) were studied using biological testing methods. The bioassay was performed using a set of test organisms representing the major trophic levels. We found the dependence of the toxic effect concentration degree of nTiO2 and nAl2O3 on the fluorescence of the bacterial biosensor "Ekolyum", the chemotactic response of ciliates Paramecium caudatum, the growth of unicellular algae Chlorella vulgaris Beijer and mortality of entomostracans Daphnia magna Straus. We revealed the selective dependence of nTiO2 and nAl2O3 toxicity on the size, concentration and chemical nature of nanoparticles. The minimal concentration causing an organism's response on nTiO2 and nAl2O3 effect depends on the type of the test- organism and the test reaction under study. We specified L(E)C50 and acute toxicity categories for all the studied nanoparticles. We determined that nTiO2 (Δ50=5 nm) belong to the category «Acute toxicity 1», nTiO2 (A50=90 nm) and nAl2O3 (Δ50=70 nm) - to the category «Acute toxicity 2», nAl2O3 (Δ50=7 nm) - to the category «Acute toxicity 3». No acute toxicity was registered for nTiO2 (Δ50=50 nm) and macro form TiO2.

  10. Study of LDPE/Al2O3 composite material as substrate for microstrip antenna

    NASA Astrophysics Data System (ADS)

    Sarmah, Debashis; Bhattacharyya, N. S.; Bhattacharyya, S.; Gogoi, J. P.

    2013-01-01

    Low density polyethylene (LDPE)/Alumina (Al2O3) composite systems have been studied as an alternate substrate for microstrip patch antennas (MPA). Morphological, thermal and microwave characterizations of the composites are carried out for different volume fractions of Al2O3 in the LDPE matrix. The size and the distribution of alumina particles are quite uniform in the composite. Enhancement of thermal and microwave properties of the composite over the parent polymer is observed. Simple rectangular MPA in X-band is fabricated on the composite material to verify its applicability as substrates for MPA. A return loss of ~ -26dB is observed at the design frequency.

  11. Study of the KNO3-Al2O3 system by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Amirov, A. M.; Gafurov, M. M.; Rabadanov, K. Sh.

    2016-09-01

    The structural and the thermodynamic properties of potassium nitrate KNO3 and its composites with nanosized aluminum oxide Al2O3 have been studied by differential scanning calorimetry. It has been found that an amorphous phase forms in composites (1- x)KNO3- x Al2O3. The thermal effect corresponding to this phase has been observed at 316°C. It has been found that the phase transition heats of potassium nitrate decreased as the aluminum oxide fraction increased.

  12. High Temperature Aerogels in the Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.

    2008-01-01

    Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.

  13. Surface passivation of gallium nitride by ultrathin RF-magnetron sputtered Al2O3 gate.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2013-08-14

    An ultrathin RF-magnetron sputtered Al2O3 gate on GaN subjected to postdeposition annealing at 800 °C in O2 ambient was systematically investigated. A cross-sectional energy-filtered transmission electron microscopy revealed formation of crystalline Al2O3 gate, which was supported by X-ray diffraction analysis. Various current conduction mechanisms contributing to leakage current of the investigated sample were discussed and correlated with metal-oxide-semiconductor characteristics of this sample.

  14. Uptake of hydrogen peroxide on the surface of Al2O3 and Fe2O3

    NASA Astrophysics Data System (ADS)

    Romanias, Manolis N.; El Zein, Atallah; Bedjanian, Yuri

    2013-10-01

    The heterogeneous interaction of H2O2 with solid films of Al2O3 and Fe2O3 was investigated under dark conditions and in presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H2O2 ([H2O2]0 = (0.15-16.6) × 1012 molecule cm-3), irradiance intensity (JNO2=0.002-0.012s), relative humidity (RH = 0.003-73%) and temperature (T = 268-320 K). Deactivation of mineral surfaces upon exposure to H2O2 was observed and only initial uptake coefficients of H2O2 were quantified, given by the following expressions: γ0 (Al2O3) = 1.10 × 10-3/(1 + RH0.93) and γ0 (Fe2O3) = 1.05 × 10-3/(1 + RH0.73) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 280 K. The initial uptake coefficients were found to be independent of the UV irradiation intensity and concentration of H2O2. Temperature dependence of γ0 measured at RH = 0.3% corresponded to almost temperature independent values of γ0 at lower temperatures of the study (268-280 K) and to rather rapid decrease of γ0 with increase of temperature above 290 K, according to the following expressions: γ0 (Al2O3) = 8.7 × 10-4/(1 + 5.0 × 1013exp(-9700 T-1)) and γ0 (Fe2O3) = 9.3 × 10-4/(1 + 3.6 × 1014exp(-10300 T-1)). The present experimental data support current considerations that uptake of H2O2 on mineral aerosol is potentially an important atmospheric process which should be accounted for in the atmospheric models.

  15. A comparison of the doppler-broadened positron annihilation spectra of neutron irradiated Al 2O 3 and MgAl 2O 3

    NASA Astrophysics Data System (ADS)

    Jones, P. L.; Schaffer, J. P.; Cocks, F. H.; Clinard, F. W.; Hurley, G. F.

    1985-01-01

    Radiation damage studies of oxides and ceramics have become of increasing importance due to the projected use of these materials in thermonuclear fusion reactors as electronic insulators and first wall materials. In addition these materials are important in RAD waste disposal. As part of a study of the defect structure in radiation damaged ceramics Doppler-broadened positron annihilation spectra have been obtained for a series of single crystal sapphire (α-Al 2O 3) and polycrystal (1:1) and (1:2) magnesium aluminate spinel (MgO·Al 2O 3 and MgO-2Al 2O 3) samples. These samples were irradiated in EBR-II to a fluence of 3 × 10 25 n/m 2 (E > 0.1 MeV) at 740°C, and 2 × 10 26 n/m 2 (E > 0.1 MeV) at ~ 550°C respectively. Positron annihilation spectra lineshapes for the irradiated, annealed, and as-received samples of both materials were compared using S parameter analysis. These calculations were made on deconvoluted gamma ray spectra that were free of any instrumental broadening effects. In this way, absolute S parameter changes could be calculated. The observed changes in the S parameter are consistent with independent volume swelling measurements for both the α-A1 2O 3 and the (1:2) MgAl 2O 4 samples. However, the change in S parameter measured for the (1:1) spinel is contrary to the measured volume change. This apparent anomaly indicates a predominence of interstitial as opposed to vacancy type defects in this material.

  16. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  17. Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Huilei; Chen, Jiatang; Rao, Guiying; Deng, Wei; Li, Ying

    2017-05-01

    In this work, anatase nanorods (ANR) of TiO2 with active facet {100} as the major facet were successfully synthesized, and reducing the ANR by NaBH4 led to the formation of gray colored oxygen deficient TiO2-x (ReANR). On the surface of ReANR, a thin layer of Al2O3 was deposited using atomic layer deposition (ALD), and the thickness of Al2O3 varied by the number of ALD cycles (1, 2, 5, 10, 50, 100, or 200). The growth rate of Al2O3 was determined to be 0.25 Å per cycle based on high-resolution TEM analysis, and the XRD result showed the amorphous structure of Al2O3. All the synthesized photocatalysts (ANR, ReANR, and Al2O3 coated ReANR) were tested for CO2 photocatalytic reduction in the presence of water vapor, with CO detected as the major reduction product and CH4 as the minor product. Compared with ANR, ReANR had more than 50% higher CO production and more than ten times higher CH4 production due to the oxygen vacancies that possibly enhanced CO2 adsorption and activation. By applying less than 5 cycles of ALD, the Al2O3 coated ReANR had enhanced overall production of CO and CH4 than uncoated ReANR, with 2 cycles being the optimum, about 40% higher overall production than ReANR. Whereas, both CO and CH4 production decreased with increasing number of ALD cycles when more than 5 cycles were applied. Photoluminescence (PL) analysis showed an ultrathin layer of Al2O3 (2 cycles of ALD) coating on the ReANR was able to reduce the charge carrier recombination rate, likely because of the passivation of surface states. On the other hand, a relatively thick layer of Al2O3 may act as an insulation layer to prohibit electron migration to the catalyst surface. This work gives valuable insights on the application of ALD coating on photocatalysts to promote CO2 photoreduction to fuels.

  18. High-k ZrO2/Al2O3 bilayer on hydrogenated diamond: Band configuration, breakdown field, and electrical properties of field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, J. W.; Liao, M. Y.; Imura, M.; Koide, Y.

    2016-09-01

    A band configuration of a high-k ZrO2/Al2O3 bilayer on hydrogenated diamond (H-diamond), a breakdown field (EB) of the ZrO2/Al2O3 bilayer, and an effect of gate-drain distance (dG-D) on electrical properties of ZrO2/Al2O3/H-diamond metal-insulator-semiconductor field-effect transistors (MISFETs) have been investigated. The Al2O3 and ZrO2 layers are successively deposited on H-diamond by atomic layer deposition (ALD) and sputtering-deposition (SD) techniques, respectively. The thin ALD-Al2O3 buffer layer with 4.0 nm thickness plays a role in protecting the H-diamond surface from being damaged by the plasma discharge during SD-ZrO2 deposition. The ZrO2/Al2O3 heterojunction has a type I band structure with valence and conduction band offsets of 0.6 ± 0.2 and 1.0 ± 0.2 eV, respectively. The valence band offset between ZrO2 and H-diamond is deduced to be 2.3 ± 0.2 eV. The EB of the ZrO2/Al2O3 bilayer is measured to be 5.2 MV cm-1, which is larger than that of the single ZrO2 layer due to the existence of the ALD-Al2O3 buffer layer. The dependence of dG-D on drain-source current maximum (IDS,max), on-resistance (RON), threshold voltage (VTH), and extrinsic transconductance maximum (gm,max) of the MISFETs has been investigated. With increasing dG-D from 4 to 18 μm, the absolute IDS,max decreases from 72.7 to 40.1 mA mm-1, and the RON increases linearly from 83.3 ± 5 to 158.7 ± 5 Ω mm. Variation of VTH values of around 1.0 V is observed, and the gm,max is in the range between 8.0 ± 0.1 and 13.1 ± 0.1 mS mm-1.

  19. n-MoS2/p-Si Solar Cells with Al2O3 Passivation for Enhanced Photogeneration.

    PubMed

    Rehman, Atteq Ur; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Hussain, Sajjad; Bhopal, Muhammad Fahad; Lee, Sang Hee; Eom, Jonghwa; Seo, Yongho; Jung, Jongwan; Lee, Soo Hong

    2016-11-02

    Molybdenum disulfide (MoS2) has recently emerged as a promising candidate for fabricating ultrathin-film photovoltaic devices. These devices exhibit excellent photovoltaic performance, superior flexibility, and low production cost. Layered MoS2 deposited on p-Si establishes a built-in electric field at MoS2/Si interface that helps in photogenerated carrier separation for photovoltaic operation. We propose an Al2O3-based passivation at the MoS2 surface to improve the photovoltaic performance of bulklike MoS2/Si solar cells. Interestingly, it was observed that Al2O3 passivation enhances the built-in field by reduction of interface trap density at surface. Our device exhibits an improved power conversion efficiency (PCE) of 5.6%, which to our knowledge is the highest efficiency among all bulklike MoS2-based photovoltaic cells. The demonstrated results hold the promise for integration of bulklike MoS2 films with Si-based electronics to develop highly efficient photovoltaic cells.

  20. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  1. Hydrothermal extraction and gasification of low rank coal with catalyst Al2O3 and Pd/Al2O3

    NASA Astrophysics Data System (ADS)

    Fachruzzaki, Handayani, Ismi; Mursito, Anggoro Tri

    2017-01-01

    Increasing coal quality is very important in order to utilize low-rank coal. This research is attempted to increase the quality of low-rank coal using hydrothermal process with hot compressed water (HCW) at 200 °C and 3 MPa. The product from this process were solid residue and liquid filtrate with organic component. Product from gasification of the filtrate was synthetic gas. The result showed that higher water flow rate could increase organic component in the filtrate. When a catalyst was used, the extraction process was faster, the organic component in the filtrate was increased while its content was decreased in the residue. Fourier transform infrared spectroscopy (FTIR) analysis indicated that coal extraction using HCW was more effective with catalyst Pd/Al2O3. Increasing the process temperature will increase the amounts CO and H2 gas. In this research, highest net heating value at 800°C using K2CO3 solution and Pd/Al2O3 catalyst was 17,774.36 kJ/kg. The highest cold gas efficiency was 91.29% and the best carbon conversion was 34.78%.

  2. Effect of Heat Treatment on the Microstructure and Microhardness of Nanostructural Al2O3 Coatings

    NASA Astrophysics Data System (ADS)

    Kovaleva, M.; Tyurin, Yu.; Vasilik, N.; Kolisnichenko, O.; Prozorova, M.; Arseenko, M.; Sirota, V.; Pavlenko, I.

    2014-10-01

    Nanostructural Al2O3 coatings were formed on a steel substrate surface using a multichamber detonation sprayer. The Al2