Science.gov

Sample records for alachlor metolachlor atrazine

  1. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    USGS Publications Warehouse

    Fairchild, J.F.; Ruessler, D.S.; Carlson, A.R.

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  2. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Huang, L.Q.

    1989-03-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.

  3. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii.

    PubMed

    Munoz, Ana; Koskinen, William C; Cox, Lucía; Sadowsky, Michael J

    2011-01-26

    Metolachlor (2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds in a variety of crops. The S enantiomer, S-metolachlor, is the most effective form for weed control. Although the degradation of metolachlor in soils is thought to occur primarily by microbial activity, little is known about the microorganisms that carry out this process and the mechanisms by which this occurs. This study examined a silty-clay soil (a Luvisol) from Spain, with 10 and 2 year histories of metolachlor and S-metolachlor applications, respectively, for microorganisms that had the ability to degrade this herbicide. Tis paper reports the isolation and characterization of pure cultures of Candida xestobii and Bacillus simplex that have the ability to use metolachlor as a sole source of carbon for growth. Species assignment was confirmed by morphological and biochemical criteria and by sequence analysis of 18S and 16S rRNA, respectively. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses indicated that C. xestobii degraded 60% of the added metolachlor after 4 days of growth and converted up to 25% of the compound into CO(2) after 10 days. In contrast, B. simplex biodegraded 30% of metolachlor following 5 days of growth in minimal medium. In contrast, moreover, the yeast degraded other acetanilide compounds and 80% of acetochlor (2-chloro-N-ethoxymethyl-6'-ethylaceto-o-toluidide) and alachlor (2-chloro-2',6'-diethyl-N-methoxymethylacetanilide) were degraded after 15 and 41 h of growth, respectively. The results of these studies indicate that microorganisms comprising two main branches of the tree of life have acquired the ability to degrade the same novel chlorinated herbicide that has been recently added to the biosphere. PMID:21190381

  4. Metolachlor and alachlor breakdown product formation patterns in aquatic field mesocosms

    USGS Publications Warehouse

    Graham, W.H.; Graham, D.W.; DeNoyelles, F., Jr.; Smith, V.H.; Larive, C.K.; Thurman, E.M.

    1999-01-01

    The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyl)ethyl)acetamide] and alachlor [2-chloro-N-(2,6- diethylphenyl)-N-methoxymethyl)acetamide] in aquatic systems was investigated using outdoor tank mesocosms. Metolachlor and alachlor levels and their ethane sulfonic acid (ESA) and oxanillic acid breakdown products were monitored over time under five experimental treatments (each in quadruplicate). Background water conditions were identical in all treatments with each treatment differing based on the level and type(s) of herbicide present. Treatments included a noherbicide control, 10 ??g/L metolachlor, 25 ??g/L metolachlor, 25 ??g/L alachlor, and 25 ??g/L alachlor plus 25 ??g/L metolachlor in combination. The experiment was initiated by adding herbicide(s) to the units to the target concentrations; herbicide and breakdown product levels and other chemical parameters were then monitored for 85 days. In general, metolachlor half-lives were longer than alachlor half-lives under all treatments, although the differences were not statistically significant. Metolachlor half-lives (??95% confidence limits) ranged from 33.0 d (??14.1 d) to 46.2 d (??40.0 d), whereas alachlor half- lives ranged from 18.7 d (??3.5 d) to 21.0 d (??6.5 d) for different treatments. Formation patterns of ESA were similar in all treatments, whereas oxanillic acid formation differed for the two herbicides. Alachlor oxanillic acid was produced in larger quantities than metolachlor oxanillic acid and either ESA under equivalent conditions. Our results suggest that the transformation pathways for alachlor and metolachlor in aquatic systems are similar and resemble the acetochlor pathway in soils proposed by Feng (Pestic. Biochem. Physiol. 1991, 34, 136); however, the oxanillic acid branch of the pathway is favored for alachlor as compared with metolachlor.The transformation of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethy

  5. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.

    2001-01-01

    Alachlor and metolachlor are dechlorinated and transformed into their corresponding ethane sulfonic acid (ESA) metabolites in soil. In a field-disappearance study, it was shown that alachlor ESA was formed at a faster rate and at concentrations 2-4 times higher than metolachlor ESA, conforming with the observed longer disappearance half-life of metolachlor (15.5 d) in the field as compared to alachlor (8 d). Runoff data also showed higher concentrations of alachlor ESA as compared to metolachlor ESA, even though they were applied at the same levels. Data from soil cores showed transport of the ESA compounds in soil to as far down as 75-90 cm below the surface, at concentrations ranging from less than 0.5 ??g/L to about 50 ??g/L. In contrast, no parent herbicide was detected at these depths. This observation correlates with the higher log KOC values for alachlor (3.33) and metolachlor (3.01) relative to their corresponding ESA metabolites, alachlor ESA (2.26), and metolachlor ESA (2.29).

  6. Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds in a variety of crops. The S enantiomer of metolachlor, S-metolachlor, is the most effective form for weed control. While the ...

  7. Atrazine, alachlor, and cyanazine in a large agricultural river system

    USGS Publications Warehouse

    Schottler, S.P.; Eisenreich, Steven J.; Capel, P.D.

    1994-01-01

    Atrazine, alachlor, and cyanazine exhibited maximum concentrations of about 1000-6000 ng/L in the Minnesota River in 1990 and 1991, resulting from precipitation and runoff following the application period. Transport of these herbicides to the river occurs via overland flow or by infiltration to tile drainage networks. Suspended sediment, SO42-, and Cl- concentrations were used as indicators of transport mechanisms. The atrazine metabolite, DEA, was present in the river throughout the year. The ratio of DEA to atrazine concentration was used to calculate an apparent first-order soil conversion rate of atrazine to DEA. Half lives of 21-58 d were calculated for 1990 and 1991, respectively. The longer conversion rate in 1991 results from rapid flushing from the soil and minimum exposure to soil microorganisms. Total flux of herbicide to the river was 1-6.5 t, with over 60% of this loading occurring during the month of June. Loading to the river accounts for less than 1.5% of applied herbicide. ?? 1994 American Chemical Society.

  8. Potential impacts of seasonal variation on atrazine and metolachlor persistence in andisol soil.

    PubMed

    Jaikaew, Piyanuch; Boulange, Julien; Thuyet, Dang Quoc; Malhat, Farag; Ishihara, Satoru; Watanabe, Hirozumi

    2015-12-01

    To estimate the potential effect of seasonal variation on the fate of herbicides in andisol soil, atrazine and metolachlor residues were investigated through the summer and winter seasons during 2013 and 2014 under field condition. The computed half-lives of atrazine and metolachlor in soil changed significantly through the two seasons of the trial. The half-lives were shorter in summer season with 16.0 and 23.5 days for atrazine and metolachlor, respectively. In contrast, the half-lives were longer during the winter season with 32.7 and 51.8 days for atrazine and metolachlor, respectively. The analysis of soil water balance suggested that more pesticide was lost in deeper soil layers through infiltration in summer than in winter. In addition, during the summer season, metolachlor was more likely to leach into deeper soil layer than atrazine possibly due to high water solubility of metolachlor. PMID:26581606

  9. Relative mobilities of atrazine, atrazine degradates, metolachlor, and simazine in five soils from Iowa

    SciTech Connect

    Coats, J.R.; Kruger, E.L.; Beilei Zhu

    1995-12-31

    The relative mobilities of atrazine, deethylatrazine, deisopropylatrazine, didealkylatrazine, hydroxyatrazine, ammeline, metolachlor and simazine were determined in soils from five locations in Iowa by soil thin-layer chromatography (TLC). Surface (0 to 30 cm) and subsurface (65 to 90 cm) soils taken from Ames, Treynor, Fruitland, Nashua, and Chariton were used to make soil TLC plates. Uniformly ring-labeled {sup 14}C chemicals were spotted on plates which were then developed by ascending chromatography using water as the solvent. Preliminary results from Ames, Treynor, and Fruitland soils indicate four groups based on relative mobilities. Deethylatrazine was the most mobile compound studied. The intermediate mobility group included atrazine, didealkylatrazine, and deisopropylatrazine. The less mobile group included metolachlor and simazine, however, metolachlor was, in some soils, in the intermediate mobility group. The immobile group included ammeline and hydroxyatrazine. Additional results from Nashua and Chariton soils, as well as correlations of mobility with soil characteristics will also be presented.

  10. Field-scale mobility and persistence of commercial and stargh-encapusulated atrazine and alachlor

    SciTech Connect

    Gish, T.J.; Shirmohammadi, A.; Wienhold, B.J.

    1994-03-01

    Recent laboratory studies have shown that starch-encapsulation (SE) may reduce leachate losses of certain pesticides. This study compares field-scale mobility and persistence of SE-atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] and alachlor [2-chloro-N(2,6 diethylphenyl)-N-(methoxymethyl)acetamide] to that of a commerciall formulation (CF) of atrazine and alachlor. The research site consisted of four (0.25 ha) fields. Two fields were under no-tillage management (NT) and two were under conventional tillage (CT). One field in each tillage system received SE-formulated atritzine and alachlor, while the others received CF-atrazine and alachlor. Chemical movement and persistence was determined by analysis of surface samples ({approximately}3 cm) taken immediately after application and 1.1-m soil cores collected seven times over 2 yr. No significant difference in herbicide residue levels was observed between NT and CT, but there was a herbicide formulation effect. Soil residue analysis suggests that SE-atrazine was more persistent and less mobile than CF-atrazine. Starch- encapsulated-alachlor was slightly more persistent than CF-alachlor, but no differences in mobility between formulations was observed. The differential field behavior between SE-herbicides is attributed to the faster release of alachlor from the starch granules. Increased atrazine persistence was attributed to the reduction of leachate losses. The reduction in atrazine leaching is likely due to the slow release from the starch granules and subsequent diffusion into the son matrix where it is less subject to preferential flow processes. 20 refs., 6 figs., 1 tab.

  11. Comparision of atrazine and metolachlor affinity for bermudagrass ( Cynodon dactylon L.) and two soils.

    PubMed

    Dozier, M C; Senseman, S A; Hoffman, D W; Baumann, P A

    2002-10-01

    Given that bermudagrass is being used as one of the grasses of choice in grass filter strip plantings as an acceptable grass to reduce off-target losses of herbicides, laboratory experiments were conducted to determine and compare the relative affinity of bermudagrass, a Weswood soil, and a Houston Black soil for atrazine (6-chloro- N-ethyl- N-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor (2-chloro- N-(2-ethyl-6-methylphenyl)- N-(2-methoxy-1-methyethyl) acetamide). Experiments were also conducted to determine if the presence of one herbicide affects the relative affinity of the other compound to these sorbents. The experiments were carried out using radiolabeled atrazine and metolachlor. Results were reported in disintegrations min(-1) (dpms) and converted to K(d) to determine and compare relative affinity. Both K(d) values for relative affinity of atrazine (86.2) and metolachlor (131.5) to bermudagrass were significantly greater than those of the two soils, Weswood (atrazine, 20.0 and metolachlor, 28.4) and Houston Black (atrazine, 35.8 and metolachlor, 33.5). The two compounds were also mixed together to mimic the common practice of applying atrazine and metolachlor simultaneously as a tank mix. Relative affinity of atrazine to any of the sorbents was not affected by the presence of metolachlor. Similarly, when comparing the affinity of metolachlor alone to that of metolachlor with atrazine present in the solution, no significant differences were observed for bermudagrass or the Weswood soil. However, on the Houston Black soil, the presence of atrazine significantly increased the soil's affinity for metolachlor. PMID:12202924

  12. Managing metolachlor and atrazine leaching losses using lignite fly ash.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera

    2012-10-01

    Application of low cost amendment for pesticide retention in soil is an important area of research in environmental sciences. The present study reports the potential of coal fly ash (Inderprastha and Badarpur), a waste from thermal power stations, for retaining soil applied metolachlor and atrazine within the application zone. Both the fly ashes were highly effective in reducing the leaching losses of metolachlor and atrazine and at 2% and 5% fly ash amendment levels the herbicides were retained in the top 15 cm profile of the column. However, fly ashes varied in their capacity in reducing the downward mobility of herbicides, as the Inderprastha fly ash was more effective than the Badarpur fly ash. Although fly ash contained heavy metals like Cr, Cu or Pb, but they were not detected in the leachate. Also, concentration of other metals like Zn, Mn and Fe in leachate decreased after fly ash amendment. Results of this study have implications in reducing the leaching losses of these herbicides in agricultural soils. PMID:22854744

  13. Atrazine and alachlor transport in claypan soils as influenced by differential antecedent soil water content.

    PubMed

    Kazemi, H V; Anderson, S H; Goyne, K W; Gantzer, C J

    2008-01-01

    Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils. PMID:18574193

  14. Phytotoxicity of atrazine, s-metolachlor and permethrin to Typha latifolia (Linneaus) germination and seedling growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytotoxicity assessments were performed to compare responses of Typha latifolia (L.) seeds to atrazine (only) and atrazine + S-metolachlor exposure concentrations of 0.03, 0.3, 3, and 30 mg L-1, as well as permethrin exposure concentrations of 0.008, 0.08, 0.8, and 8 mg L-1. All atrazine + S-metol...

  15. Cytogenetic effects of alachlor and/or atrazine in vivo and in vitro

    SciTech Connect

    Meisner, L.F.; Roloff, B.D. ); Belluck, D.A. )

    1992-01-01

    The purpose of this study was to assess the cytogenetic effects of two commonly used herbicides, alachlor and atrazine, which are often found together in groundwater. Chromosome damage was examined in bone marrow cells of mice drinking water containing 20 ppm alachlor and/or 20 ppm atrazine, with an immunosuppressive dose of cyclophosphamide used as a positive control. Chromosome damage was also quantified in human lymphocytes. The in vitro study demonstrated dose related cytogenetic damage not associated with mitotic inhibition or cell death, with damage due to the alachlor-atrazine combination suggesting an additive model. The fact that the elevated mitotic index was associated with immune suppresion in the cyclophosphamide group suggests that death of cells with accumulated chromosomal aberrations resulted in increased bone marrow proliferation, so a higher fraction of cells examined were newer with less damage.

  16. Effect of crop competition and herbicides on yellow nutsedge (Cyperus esculentus L. ) and root absorption, translocation, and metabolism of alachlor and metolachlor by yellow nutsedge

    SciTech Connect

    Chamblee, R.W.

    1985-01-01

    Field studies were conducted in 1980, 1981, and 1982 to compare management programs involving different cultural practices, at-planting herbicides, and postemergence herbicides to reduce yellow nutsedge (Cyperus esculentus L.) populations, in a soybean (Glycine max (L.) Merr. Ransom)-corn (Zea mays L. Pioneer 3161 and Pioneer 3358) rotation. In laboratory studies, alachlor and metolachlor toxicity, absorption, translocation, and metabolism were investigated in different sized yellow nutsedge plants. Exposure to herbicides was restricted to plant roots. Plant sizes evaluated were 4 to 6, 10 to 15, and 18 to 22-cm tall at experiment initiation. Concentrations of greater than 0.1 ppm of both alachlor and metolachlor reduced small yellow nutsedge plant size by more than 50%. At concentrations greater than 0.2 ppm increased growth reduction was seen from metolachlor but not from alachlor. Ten to 15-cm plants exposed to 1.6 ppm of alachlor and metolachlor had plant size reductions of 48 and 62%, respectively, after 12 days. There was no difference in root absorption of /sup 14/C alachlor or /sup 14/C metolachlor from nutrient solutions. After 8 days, greater than 40, 58, and 76% of available /sup 14/C was absorbed by small, medium and large plants, respectively. After 4 and 8 days of exposure, small yellow nutsedge plants had translocated 2.6 times as much /sup 14/C metolachlor to plant shoots than /sup 14/C alachlor. Larger plants translocated the herbicides equally. Small sized plants treated with /sup 14/C metolachlor retained greater than 23% of the parent material.

  17. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  18. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado.

    PubMed

    Bridges, Melissa; Henry, W Brien; Shaner, Dale L; Khosla, R; Westra, Phil; Reich, Robin

    2008-01-01

    An area of interest in precision farming is variable-rate application of herbicides to optimize herbicide use efficiency and minimize negative off-site and non-target effects. Site-specific weed management based on field scale management zones derived from soil characteristics known to affect soil-applied herbicide efficacy could alleviate challenges posed by post-emergence precision weed management. Two commonly used soil-applied herbicides in dryland corn (Zea mays L.) production are atrazine and metolachlor. Accelerated dissipation of atrazine has been discovered recently in irrigated corn fields in eastern Colorado. The objectives of this study were (i) to compare the rates of dissipation of atrazine and metolachlor across different soil zones from three dryland no-tillage fields under laboratory incubation conditions and (ii) to determine if rapid dissipation of atrazine and/or metolachlor occurred in dryland soils. Herbicide dissipation was evaluated at time points between 0 and 35 d after soil treatment using a toluene extraction procedure with GC/MS analysis. Differential rates of atrazine and metolachlor dissipation occurred between two soil zones on two of three fields evaluated. Accelerated atrazine dissipation occurred in soil from all fields of this study, with half-lives ranging from 1.8 to 3.2 d in the laboratory. The rapid atrazine dissipation rates were likely attributed to the history of atrazine use on all fields investigated in this study. Metolachlor dissipation was not considered accelerated and exhibited half-lives ranging from 9.0 to 10.7 d in the laboratory. PMID:18948474

  19. Alachlor

    Integrated Risk Information System (IRIS)

    Alachlor ; CASRN 15972 - 60 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  20. Effect of meteorology and soil condition on metolachlor and atrazine volatilization over a 10 year period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 10-year study was conducted to focus on the impact of soil and climatic factors governing herbicide volatilization from an agricultural field. For the first 5 years, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro-N-ethyl-N’-(1-methyl...

  1. TRANSPORT AND FATE OF ATRAZINE AND METOLACHLOR IN A RIPARIAN WETLAND SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffer areas are widely touted for their ability to mitigate pollutants from agricultural fields. We are studying this abatement process for the pesticides atrazine and metolachlor, using a highly instrumented riparian wetland site located in Beltsville, Maryland. This site has clearly del...

  2. ATRAZINE AND METOLACHLOR IN SURFACE RUNOFF UNDER TYPICAL RAINFALL CONDITIONS IN SOUTHERN LOUISIANA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here runoff of atrazine and metolachlor from 0.21 ha plots laid out on Mississippi River alluvial soil. In the study, conducted over a three-season period characterized by rainfall close to the 30-year average, we have gathered data on persistence in the top 2.5 cm layer of soil and in t...

  3. Effects of Atrazine, Metolachlor, Carbaryl and Chlorothalonil on Benthic Microbes and Their Nutrient Dynamics

    PubMed Central

    Elias, Daniel; Bernot, Melody J.

    2014-01-01

    Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization

  4. Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms

    USGS Publications Warehouse

    Mazanti, L.; Rice, C.; Bialek, K.; Sparling, D.; Stevenson, C.; Johnson, W.E.; Kangas, P.; Rheinstein, J.

    2003-01-01

    Dissipation processes are described for a combination of commonly used pesticides--atrazine (6-chloro-4--ethylamino-6-isopropylamino-s-triazine), metolachlor (2-chloro-N-[2-ethyl-6-methyl-phenyl]-N-[2-methoxy-l-methylethyl] acetamide), and chlorpyrifos (O-O diethyl O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate)--in a laboratory and outdoor pond systems. Dosing rates and timing were designed to duplicate those common in the mid-Atlantic Coastal Plain, USA. Treatment ranged from 2 and 2.5 mg/L to 0.2 and 0.25 mg/L respectively for atrazine and metolachlor, and chlorpyrifos was added at 1.0 and 0.1 mg/L in the aquaria and at 0.1 mg/L in the outdoor macrocosms. Chlorpyrifos disappearance was rapid in all of the systems and followed a two-phase sequence. Initial half-lives varied from 0.16 da), to 0.38 day and showed similar rates in the aquaria and the outdoor systems. The second phase of the chlorpyrifos loss pattern was slower (18-20 days) in all the treatments except for the low herbicide treatment in the outdoor test, where it was 3.4 days. Compared to the outdoor system, herbicide losses were much slower in the aquaria, e.g., 150 days for atrazine and 55 days for metolachlor, and no appreciable loss of herbicide was apparent in the high-treated aquaria. In the outdoor systems, the half-lives for the low herbicide treatment were 27 days and 12 days, respectively, for atrazine and metolachlor, and 48 and 20 days, respectively for the high herbicide-treated pond. Very low levels of CIAT (6-amino-2-chloro-4-iso-propylamino-s-triazine) and CEAT (2-chloro-4-ethylamino-6-ethylamino-s-triazine), degradation products of atrazine, were observed in the outdoor studies.

  5. Transport of Alachlor, Atrazine, Dicamba, and Bromide through Silt and Loam Soils

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.

    2015-12-01

    The herbicides alachlor, atrazine, and dicamba, as well as bromide were applied to soils overlying the High Plains aquifer in Nebraska, to both macropore and non-macropore sites. Three of 6 study areas (exhibiting a high percentage of macropores) were used for analysis of chemical transport. Twelve intact soil cores (30 cm diameter; 40 cm height), were excavated (two each from 0-40 cm and 40-80 cm depths). The first three study areas and soil cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties; the remaining cores were treated the same as field macropore sites. Two undisturbed experimental field plots, each with a 1 m2 surface area, were established in each of the three macropore study areas. Each preferential plot was instrumented with suction lysimeters, tensiometers, and neutron access tubes - 10 cm increments to 80 cm - and planted in corn. Three study areas that did not exhibit macropores had alachlor, atrazine, and dicamba and bromide disked into the top 15 cm of soil; concentrations were tracked for 120 days - samples were collected on a grid, distributed within 3 plots measuring 50 m x 50 m each. Core samples were collected prior to and immediately after application, and then at 30, 60, and 120 days after application. Each lab core sample was in 15-cm lengths from 0-15 cm, 15-30 cm, 45-60 cm, and 75-90 cm. For areas exhibiting macropores, herbicides had begun to move between 10-15 days after application with concentrations peaking at various depths after heavy rainfall events. Field lysimeter samples showed increases in concentrations of herbicides at depths where laboratory data indicated greater percentages of preferential flowpaths. Concentrations of atrazine, alachlor and dicamba exceeding 0.30, 0.30, and 0.05 μg m1-1 respectively were observed with depth (10-30 cm and 50-70 cm) after two months following heavy rainfall events indicating that preferential flowpaths were a significant

  6. RESPONSES OF MOLECULAR INDICATORS OF EXPOSURE IN MESOCOSMS: COMMON CARP (CYPRINUS CARPIO) EXPOSED TO THE HERBICIDES ALACHLOR AND ATRAZINE

    EPA Science Inventory

    Common carp (Cyprinus carpio) were treated in aquatic mesocosms with a single pulse of the herbicides atrazine or alachlor to study the bioavailability and biological activity of these herbicides using molecular indicators: Liver vitellogenin gene expression in male fish for estr...

  7. Mineral contributions to atrazine and alachlor sorption in soil mixtures of variable organic carbon and clay content

    NASA Astrophysics Data System (ADS)

    Grundl, Tim; Small, Greg

    1993-09-01

    A sediment mixing approach was taken to systematically vary the organic carbon (oc) and clay content (cm) of a suite of organic-poor, clay-rich sediments. Organic carbon content ranged from 3.2% to 0.4% and clay content ranged from 24% to 51%. Atrazine and alachlor were shown to sorb to both natural organic carbon and clay minerals. Partition coefficients to natural organic carbon ( Koc) were found to be 217 and 412 L/kg organic carbon for atrazine and alachlor, respectively. Partition coefficients to the clay fraction were found to be 3.5 and 4.9 L/kg clay for atrazine and alachlor, respectively. When expressed in terms of surface area, the partition coefficients to clay for atrazine and alachlor were 1.80·10 -5 and 2.51·10 -5 L/m 2 clay, respectively. Critical cm/oc ratios at which mineral phase sorption accounts for 50% of the total are defined. Implications for the modelling of herbicide movement in the subsurface if mineral phase sorption is ignored is discussed.

  8. Adsorption-desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2013-02-01

    The effect of two fly ashes as soil amendment on the adsorption-desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K (f)) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils + fly ash mixtures than the metolachlor. The K (f) values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R > 0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific. PMID:22572800

  9. Atrazine and metolachlor occurrence in shallow ground water of the United States, 1993 to 1995: Relations to explanatory factors

    USGS Publications Warehouse

    Kolpin, D.W.; Barbash, J.E.; Gilliom, R.J.

    2002-01-01

    Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground-water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground-water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land-use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and

  10. Effect of fly ash amendment on metolachlor and atrazine degradation and microbial activity in two soils.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera; Singh, Shashi Bala

    2016-08-01

    The study reports the effect of Inderprastha (IP) and Badarpur (BP) fly ashes on degradation of metolachlor and atrazine in Inceptisol and Alfisol soils. Metolachlor dissipated at faster rate in Alfisol (t1/2 8.2-8.6 days) than in Inceptisol (t1/2 13.2-14.3 days). The fly ashes enhanced the persistence of metolachlor in both the soils; however, the extent of effect was more in Inceptisol (t1/2 16.6-33.8 days) than Alfisol (t1/2 8.4-12 days) and effect increased with fly ash dose. 2-Ethyl-6-methylacetanilide was detected as the only metabolite of metolachlor. Atrazine was more persistent in flooded soils (t1/2 10.8-20.3 days) than nonflooded soils (t1/2 3.7-12.6 days) and fly ash increased its persistence, but effect was more pronounced in the flooded Inceptisol (t1/2 23.7-31 days) and nonflooded Alfisol (t1/2 6.3-10.1 days). Increased herbicide sorption in the fly ash-amended soils might have contributed to the increased pesticide persistence. The IP fly ash inhibited microbial biomass carbon at 5 % amendment levels in both the soils, while BP fly ash slightly increased microbial biomass carbon (MBC) content. Dehydrogenase activity was inhibited by both fly ashes in both the soils with maximum inhibition observed in the IP fly ash-amended Alfisol. No significant effect of fly ash amendment was observed on the fluorescein diacetate activity. PMID:27456695

  11. Metolachlor

    Integrated Risk Information System (IRIS)

    Metolachlor ; CASRN 51218 - 45 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  12. Effects of an atrazine, metolachlor, and fipronil mixture on Hyalella azteca (Saussure) in a modified backwater wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the toxicity mitigation efficiency of a hydrologically modified backwater wetland amended with a mixture of three pesticides, atrazine, metolachlor, and fipronil, using 96 h survival bioassays with Hyalella azteca. Significant H. azteca 96 h mortality occurred within the first two hours...

  13. Relation of Landscape Position and Irrigation to Concentrations of Alachlor, Atrazine, and Selected Degradates in Regolith in Northeastern Nebraska

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Lewis, D.T.; McCallister, D.L.; Parkhurst, A.; Thurman, E.M.

    1996-01-01

    Concentrations of alachlor, its ethanesulfonic acid degradate, atrazine and its degradates, deethylatrazine and deisopropylatrazine, in the upper regolith and associated shallow aquifers were determined in relation to landscape position (floodplains, terraces, and uplands) and irrigation (nonirrigated and irrigated corn cropland) in 1992. Irrigated and nonirrigated sites were located on each landscape position. Samples were collected from three depths. Canonical discriminant and multivariate analyses were used to interpret data. Herbicides and their degradation products tended to be present in soils with high percent organic matter, low pH, and low sand content. Atrazine was present more frequently on the floodplain at all depths than the other compounds. Atrazine (maximum 17.5 ??g/kg) and ethanesulfonic acid (maximum 10 ??g/kg) were associated with landscape position, but not with irrigation. Alachlor (maximum 24 ??g/kg), deethylatrazine (maximum 1.5 ??g/kg), and deisopropylatrazine (maximum 3.5 ??g/kg) were not significantly associated with either landscape position or irrigation. Ground-water analytical results suggested that concentrations of these herbicides and degradates in ground water did not differ among landscape position or between irrigated and nonirrigated corn cropland.

  14. Runoff and drainage losses of atrazine, metribuzin, and metolachlor in three water management systems.

    PubMed

    Gaynor, J D; Tan, C S; Drury, C F; Welacky, T W; Ng, H Y F; Reynolds, W D

    2002-01-01

    Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport. PMID:11841063

  15. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.

    PubMed

    Bedmar, Francisco; Daniel, Peter E; Costa, José L; Giménez, Daniel

    2011-09-01

    Understanding herbicide sorption within soil profiles is the first step to predicting their behavior and leaching potential. Laboratory studies were conducted to determine the influence of surface and subsurface soil properties on acetochlor, atrazine, and S-metolachlor sorption. Soil samples were taken from horizons A, B, and C of two loamy soils of the humid pampas of Argentina under no-till management; horizon A was divided into two layers, A(0) (0-5 cm) and A(1) (5 cm to the full thickness of an A horizon). Sorption isotherms were determined from each sampled horizon using the batch equilibrium method and seven concentrations (0, 0.1, 0.5, 2.0, 5.0, 10.0, and 20.0 mg L(-1)). Sorption affinity of herbicides was approximated by the Freundlich equation. The sorption strength K(f) (mg(1 - 1/n) kg(-1) L(1/n) ) over the soils and horizons studied followed the order S-metolachlor (16.51-29.19) > atrazine (4.85-12.34) ≥ acetochlor (5.17-11.97), which was closely related to the hydrophobicity of herbicides expressed as octanol-water partition coefficient (K(OW) ). The K(f) values of the three herbicides were positively correlated with soil organic carbon, with a significance of p < 0.01. Values of K(f) for the three herbicides decreased with depth in the two soils, indicating greater sorption onto surficial soil horizons and possibly a delayed transport toward subsurface soils and subsequent pollution of groundwater. PMID:21692102

  16. Screening for the Pesticides Atrazine, Chlorpyrifos, Diazinon, Metolachlor, and Simazine in Selected Michigan Streams, March-November 2005

    USGS Publications Warehouse

    Fogarty, Lisa R.; Duris, Joseph W.

    2007-01-01

    From March through November 2005, the U.S. Geological Survey, in cooperation with the Michigan Department of Environmental Quality (MDEQ), did a statewide screening to aid in understanding the occurrence and distribution of selected pesticides in Michigan streams. Stream-water samples were collected from 23 sites throughout Michigan. In all, 320 water samples were analyzed by use of rapid immunoassay methods for the herbicides atrazine, metolachlor, and simazine and the insecticides chlorpyrifos and diazinon. On one occasion (June, 2005), atrazine concentrations exceeded the Michigan water-quality value (7.3 micrograms per liter) at the Black River in St. Clair County. Neither chlorpyrifos nor diazinon was detected during April through September. MDEQ detected chlorpyrifos in streams throughout the state in November. Herbicide concentrations were highest in samples influenced by intensive agriculture; however, median herbicide concentrations were similar among agricultural and urban sites. Concentrations of herbicides were very low to undetected in undeveloped areas. Seasonal patterns were also evident during the sampling period. Increased concentrations generally occurred in late spring to early summer. At 11 sites, daily sampling was done every day for 5 days following a rainfall after herbicide application in the area. Substantial changes in concentrations of herbicides - greater than tenfold from the previous day - were observed during the daily sampling. No consistent relation was found between concentration and streamflow. Results of this study may be used to aid in the development of a more comprehensive pesticide monitoring study for the State of Michigan.

  17. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2006-04-19

    This study evaluated the expression of human cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19 in rice plants (Oryza sativa cv. Nipponbare) introduced using the plasmid pIKBACH. The transgenic rice plants (pIKBACH rice plants) became more tolerant toward various herbicides than nontransgenic Nipponbare rice plants. Rice plants expressing pIKBACH grown in soil showed tolerance to the herbicides atrazine, metolachlor, and norflurazon and to a mixture of the three herbicides. The degradation of atrazine and metolachlor by pIKBACH rice plants was evaluated to confirm the metabolic activity of the introduced P450s. Although both pIKBACH and nontransgenic Nipponbare rice plants could decrease the amounts of the herbicides in plant tissue and culture medium, pIKBACH rice plants removed greater amounts in greenhouse experiments. The ability of pIKBACH rice plants to remove atrazine and metolachlor from soil was confirmed in large-scale experiments. The metabolism of herbicides by pIKBACH rice plants was enhanced by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, pIKBACH rice plants may become useful tools for the breeding of herbicide-tolerant crops and for phytoremediation of environmental pollution by organic chemicals. PMID:16608219

  18. Spatial variability of atrazine and metolachlor dissipation on dryland no-tillage crop fields in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An area of interest in precision farming is variable rate application of herbicides to optimize herbicide use efficiency and minimize negative off-site and non-target effects. Two commonly used soil applied herbicides in dryland corn production are atrazine (6-chloro-4-(ethylamino)-6-isopropylamin...

  19. Comparison of fate and transport of isoxaflutole to atrazine and metolachlor in 10 Iowa rivers

    USGS Publications Warehouse

    Meyer, M.T.; Scribner, E.A.; Kalkhoff, S.J.

    2007-01-01

    Isoxaflutole (IXF), a newer low application rate herbicide, was introduced for weed control in corn (Zea mays) to use as an alternative to widely applied herbicides such as atrazine. The transport of IXF in streamwater has not been well-studied. The fate and transport of IXF and two of its degradation products was studied in 10 Iowa rivers during 2004. IXF rapidly degrades to the herbicidally active diketonitrile (DKN), which degrades to a biologically inactive benzoic acid (BA) analogue. IXF was detected in only four, DKN in 56, and BA in 43 of 75 samples. The concentrations of DKN and BA were approximately 2 orders of magnitude less than those of the commonly detected triazine and acetamide herbicides and their degradation products. Concentrations of IXF, DKN, and BA were highest during the May through June postplanting period. The concentration ratio of BA/DKN was similar to the deethylatrazine/atrazine ratio with smaller ratios occurring during May and June. The relative temporal variation of DKN and BA was similar to that observed for atrazine and deethylatrazine. This study shows that low application rate herbicides can have similar temporal transport patterns in streamwater as compared to more widely applied herbicides but at lower concentrations.

  20. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera).

    PubMed

    Helmer, Stephanie Hedrei; Kerbaol, Anahi; Aras, Philippe; Jumarie, Catherine; Boily, Monique

    2015-06-01

    The decline in the population of pollinators is a worrying phenomenon worldwide. In North America, the extensive use of herbicides in maize and soya crops may affect the health of nontarget organisms like the honey bee. In this study, caged honey bees were exposed to realistic doses of atrazine, metolachlor, and glyphosate for 10 days via contaminated syrup. Peroxidation of lipids was evaluated using the thiobarbituric acid reactive substance (TBARS) test, and diet-derived antioxidants-carotenoids, all-trans-retinol (at-ROH) and α-tocopherol-were detected and quantified using reversed-phase HPLC techniques. Significant increases in syrup consumption were observed in honey bees exposed to metolachlor, and a lower TBARS value was recorded for the highest dose. No relationship was observed between the peroxidation of lipids and the levels of antioxidants. However, β-carotene, which was found to be the most abundant carotenoid, and at-ROH (derived from β-carotene) both decreased with increasing doses of atrazine and glyphosate. In contrast, metolachlor increased levels of at-ROH without any effects on β-carotene. These results show that the honey bee carotenoid-retinoid system may be altered by sublethal field-realistic doses of herbicides. PMID:24728576

  1. A High-Performance Liquid Chromatography-Based Screening Method for the Analysis of Atrazine, Alachlor, and Ten of Their Transformation Products

    USGS Publications Warehouse

    Schroyer, B.R.; Capel, P.D.

    1996-01-01

    A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.

  2. Does S-Metolachlor Affect the Performance of Pseudomonas sp. Strain ADP as Bioaugmentation Bacterium for Atrazine-Contaminated Soils?

    PubMed Central

    Viegas, Cristina A.; Costa, Catarina; André, Sandra; Viana, Paula; Ribeiro, Rui; Moreira-Santos, Matilde

    2012-01-01

    Atrazine (ATZ) and S-metolachlor (S-MET) are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g−1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD)), the presence of pure S-MET significantly affected neither bacteria survival (∼107 initial viable cells g−1 of soil) nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50×RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days) and extensively (>96%) removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil. PMID:22615921

  3. Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwestern Iowa, USA.

    PubMed

    Steinheimer, T R; Scoggin, K D

    2001-02-01

    The environmental fate and movement of herbicides widely used for weed control in corn are assessed for a deep loess soil in southwestern Iowa. Beginning in the early 1980s, the herbicide-based weed control program emphasized the application of atrazine (ATR) or cyanazine (CYN) and metolachlor (MET) for both broadleaf and grass control. Between 1992 and 1995, concentrations of ATR, desethylatrazine (DEA), desisopropylatrazine (DIA), CYN and MET were measured in rainwater, both shallow and deep vadose zone water, and well water. Results show that the frequency of herbicide detections and the range and distribution of occurrences are dependent upon both landscape position and temporal inputs of recharge water from rainfall. Generally, DIA was observed more frequently and in higher mean concentration in well water than DEA, while DEA was observed more frequently than DIA in vadose zone groundwater. A chromatographic analogy is suggested to explain the occurrence patterns observed for both parent herbicide and degradation products within the unsaturated zone water. Analysis of rainwater samples collected during this time also revealed low concentrations of ATR, CYN and MET, with the timing of the detections indicative of non-local transport. Results show that the deep loess soil conducts both water and agricultural chemicals relatively rapidly and as such represents a production system which is vulnerable to contamination of shallow groundwater by herbicide-derived chemicals. Results also illustrate the importance of including major herbicide degradation products in water resource impact assessment studies. PMID:11253005

  4. Atrazine

    Integrated Risk Information System (IRIS)

    Atrazine ; CASRN 1912 - 24 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  5. Compilation of atrazine and selected herbicide data from previous surface-water-quality investigations within the Big Blue River basin, Nebraska, 1983-92

    USGS Publications Warehouse

    Frankforter, J.D.

    1994-01-01

    Atrazine has been detected in the surface water of the Big Blue River Basin during every month of the year. Recent data (1983-92) documenting the occurrence of atrazine and related herbicides in the surface water of the basin are compiled in this report. In samples analyzed during these studies, atrazine was the herbicide detected most frequently within the basin. Of the 385 samples analyzed, 369 contained atrazine in detectable concentrations with detection levels varying from 0 to 0.1 micrograms per liter. The concentrations of atrazine within the samples varied from 0.5 to 166 micrograms per liter, with a median concentration of 2.7 micrograms per liter. Other herbicides frequently detected in the Big Blue River Basin were alachlor, cyanazine, metolachlor, and simazine, and two metabolites of atrazine, desethylatrazine and deisopropylatrazine. In the 226 samples which alachlor was detected, the concentrations of the herbicide ranged from 0.05 to 56 micrograms per liter, and the median concen- tration was 1.1 micrograms per liter. Cyanazine was detected in 210 of 365 samples collected with con- centrations that ranged from 0.05 to 8.6 micrograms per liter with a median concentration of 0.4 microgram per liter. The maximum concentrations of metolachlor and simazine were 26 and 35 micrograms per liter, respectively. The median concentrations of these herbicides were 1.0 and 0.1 micrograms per liter, respectively. The maximum concentration of desethylatrazine, was 3.7 micrograms per liter, with a median concentration of 1.0 microgram per liter. Deisopropylatrazine, was detected in 152 samples with maximum and median concentrations of 2.6 and 0.6 micrograms per liter, respectively.

  6. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate in ground water in Colorado

    USGS Publications Warehouse

    Rupert, Michael G.

    2003-01-01

    Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, metolachlor, and simazine. Maps were developed that the State of Colorado could use to predict the probability of detecting atrazine and desethyl-atrazine (a breakdown product of atrazine) in ground water in Colorado. These maps can be incorporated into the State Pesticide Management Plan and can help provide a sound hydrogeologic basis for atrazine management in Colorado. Maps showing the probability of detecting elevated nitrite plus nitrate as nitrogen (nitrate) concentrations in ground water in Colorado also were developed because nitrate is a contaminant of concern in many areas of Colorado. Maps showing the probability of detecting atrazine and(or) desethyl-atrazine (atrazine/DEA) at or greater than concentrations of 0.1 microgram per liter and nitrate concentrations in ground water greater than 5 milligrams per liter were developed as follows: (1) Ground-water quality data were overlaid with anthropogenic and hydrogeologic data using a geographic information system to produce a data set in which each well had corresponding data on atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well construction. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Relations were observed between ground-water quality and the percentage of land-cover categories within circular regions (buffers) around wells. Several buffer sizes were evaluated; the buffer size that provided the strongest relation was selected for use in the logistic regression models. (3) Relations between concentrations of atrazine/DEA and nitrate in ground water and atrazine use, fertilizer use, geology, hydrogeomorphic regions, land cover, precipitation, soils, and well-construction data were evaluated, and several preliminary multivariate models with various

  7. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate (NO2+NO3-N) in ground water in the Idaho part of the upper Snake River basin

    USGS Publications Warehouse

    Rupert, Michael G.

    1998-01-01

    Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, cyanazine, metolachlor, and simazine. This study developed maps that the Idaho State Department of Agriculture might use to predict the probability of detecting atrazine and desethyl-atrazine (a breakdown product of atrazine) in ground water in the Idaho part of the upper Snake River Basin. These maps can be incorporated in the State Pesticide Management Plan and help provide a sound hydrogeologic basis for atrazine management in the study area. Maps showing the probability of detecting atrazine/desethyl-atrazine in ground water were developed as follows: (1) Ground-water monitoring data were overlaid with hydrogeologic and anthropogenic data using a geographic information system to produce a data set in which each well had corresponding data on atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Individual (univariate) relations between atrazine/desethyl-atrazine in ground water and atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth data were evaluated to identify those independent variables significantly related to atrazine/ desethyl-atrazine detections. (3) Several preliminary multivariate models with various combinations of independent variables were constructed. (4) The multivariate models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected. (5) The multivariate models were entered into the geographic information system and the probability maps were constructed. Two models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected; one with and one without atrazine use. Correlations of the predicted probabilities of atrazine/desethyl-atrazine in ground water with

  8. METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACENTANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Introduction: Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide and acetamide herbicides currently registered for use in the U.S. are alachlor, acetochlor, metolachlor, propa...

  9. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE PESTICIDE TRANSFORMATION PRODUCTS

    EPA Science Inventory

    Acetanilide herbicides are frequently applied in the U.S. on crops (corn, soybeans, popcorn, etc.) to control broadleaf and annual weeds. The acetanilide herbicides currently registered for use in the U.S. are: alachlor, acetochlor, metolachlor, propachlor, dimethenamid and fluf...

  10. Occurrence of alachlor and its sulfonated metabolite in rivers and reservoirs of the midwestern United States: The importance of sulfonation in the transport of chloroacetanilide herbicides

    USGS Publications Warehouse

    Thurman, E.M.; Goolsby, D.A.; Aga, D.S.; Pomes, M.L.; Meyer, M.T.

    1996-01-01

    Alachlor and its metabolite, 2-[(2',6'-diethylphenyl)- (methoxymethyl)amino]-2-oxoethanesulfonate (ESA), were identified in 76 reservoirs in the midwestern United States using immunoassay, liquid chromatography, and gas chromatography/mass spectrometry. The median concentration of ESA (0.48 ??g/L) exceeded the median concentration of alachlor (<0.05 ??g/L), with highest values in the upper Midwest. ESA also was detected in the Mississippi River from the mouth to the headwaters at concentrations of 0.2-1.5 ??g/L, exceeding the concentration of alachlor. In a field runoff study, alachlor rapidly formed ESA. It is hypothesized that a glutathione conjugate forms, which later oxidizes in soil to ESA. The removal of the chlorine atom lessens the toxicity of the parent compound and increases runoff potential. It is hypothesized further that sulfonic acid metabolites of other chloroacetanilides, including acetochlor, butachlor, metolachlor, and propachlor, also occur in surface water.

  11. REMOVAL OF ALACHLOR FROM DRINKING WATER

    EPA Science Inventory

    Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...

  12. Biodegradation of alachlor by soil streptomycetes.

    PubMed

    Durães Sette, L; Mendonça Alves Da Costa, L A; Marsaioli, A J; Manfio, G P

    2004-06-01

    Streptomycetes resistant to the herbicide alachlor [2-chloro-2',6'-diethyl- N-(methoxymethyl) acetanilide] were used in degradation assays to characterize the products of alachlor biodegradation. Of six strains tested, Streptomyces sp. LS166, LS177, and LS182 were able to grow at an alachlor concentration of 144 mg l(-1) and degraded approximately 60-75% of the alachlor in 14 days, as evaluated by high performance liquid chromatography. The alachlor biodegradation products were identified by gas chromatography-mass spectrometry based on mass spectral data and fragmentation patterns. All compounds detected in these assays were similar for all streptomycetes strains tested, and involved dechlorination with subsequent N-dealkylation and cyclization of the remaining N-substituent with one of the ethyl groups to produce indole and quinoline derivatives. The enzymatic pathway used by Streptomyces sp. LS182 did not generate DEA (2',6'-diethylaniline), a carcinogenic derivative of alachlor reported in other studies. Given the high degradation rates observed here, the Streptomyces strains tested may be useful in the degradation/detoxification processes of alachlor. PMID:14727088

  13. DNA adduct formation by alachlor metabolites

    SciTech Connect

    Brown, M.A.; Kimmel, E.C.; Casida, J.E.

    1988-01-01

    The extent of DNA adduct formation by alachlor (ArN(CH/sub 2/OCH/sub 3/)C(O)CH/sub 2/Cl wherein Ar is 2,6-diethylphenyl) and its metabolites is used as a guide to deduce the causal agent(s) in the carcinogenicity of this major herbicide. (/sup 14/C-phenyl)Alachlor is compared to its two metabolic cleavage products, (/sup 14/C-phenyl) 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) (ArNHC(O)CH/sub 2/Cl) and (/sup 14/C-phenyl)2,6-diethylaniline (DEA) (ArNH/sub 2/), and to (/sup 14/C-methoxy)alachlor in various in vitro and in vivo systems. Horseradish peroxidase and hydrogen peroxide activate DEA, but not CEDPA or alachlor, for formation of adducts with calf thymus DNA, which probably involves 2,6-diethylnitrosobenzene (ArNO) as an intermediate. Mouse liver microsomes and NADPH are both required to enhance the binding from each labeled preparation to calf thymus DNA; 4-fold higher labeling is observed from (/sup 14/C-methoxy)- than from (/sup 14/C-phenyl)alachlor. This 4-fold preferential DNA labeling from the /sup 14/C-methoxy compound is likewise found in the liver of mice treated intraperitoneally. Mouse liver protein and hemoglobin are also labeled, in vivo, with (/sup 14/C-phenyl)alachlor, -CDEPA and -DEA, and, as with the DNA, the labeling of these proteins is 1.5- to 2-fold higher with (/sup 14/C-methoxy)alachlor.

  14. Herbicide transport trends in Goodwater Creek experimental watershed II: acetochlor, alachlor, metolachlor, and metribuzin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers in the Midwestern United States continue to be reliant on soil-applied herbicides for weed control in row crop production, and herbicide contamination of surface waters. Runoff-prone watersheds remain an environmental problem. The primary objective of this study was to analyze trends in conc...

  15. Metabolism of metolachlor by fungal cultures.

    PubMed

    Sanyal, D; Kulshrestha, G

    2002-01-30

    Metabolism of metolachlor was studied using a mixed fungal culture isolated from a metolachlor-acclimated field soil. The culture rapidly degraded metolachlor with a half-life of 3.5 days in broth. Aspergillus flavus and A. terricola purified from the mixed culture also metabolized metolachlor effectively. Five metabolites obtained were identified by co-chromatography on HPLC by comparing with authentic standards and by GC-MS. Hydrolytic dechlorination, N-dealkylation, and amide bond cleavage appeared to be the dominant transformations involved in the metabolism. Metabolites, 6-methyl 2-ethyl acetanilide and 6-methyl 2-ethyl aniline, identified in this study are new metabolites of metolachlor being reported from any mixed or pure microbial cultures. The mixed culture could degrade 99% of metolachlor at a fortification level as high as 100 microg mL(-)(1). PMID:11804520

  16. Occurrence of Atrazine and Related Compounds in Sediments of Upper Great Lakes.

    PubMed

    Guo, Jiehong; Li, Zhuona; Ranasinghe, Prabha; Bonina, Solidea; Hosseini, Soheil; Corcoran, Margaret B; Smalley, Colin; Kaliappan, Rajashankar; Wu, Yan; Chen, Da; Sandy, Andy L; Wang, Yawei; Rockne, Karl J; Sturchio, Neil C; Giesy, John P; Li, An

    2016-07-19

    Surface grab and core sediment samples were collected from Lakes Michigan, Superior, and Huron from 2010 to 2012, and concentrations of herbicides atrazine, simazine, and alachlor, as well as desethylatrazine (DEA), were determined. Concentrations of atrazine in surface grabs ranged from 0.01 to 1.7 ng/g dry weight and are significantly higher in the southern basin of Lake Michigan (latitude <44°) than other parts of the three lakes. The highest concentration of alachlor was found in sediments of Saginaw Bay in Lake Huron. The inventory and net fluxes of these herbicides were found to decline exponentially from the south to the north. The concentration ratio of DEA to atrazine (DEA/ATZ) increased with latitude, suggesting degradation of atrazine to DEA during atmospheric transport. DEA/ATZ also increased with sediment depth in the sediment cores. Diffusion of deposited herbicides from the upper sediment into deeper sediments has occurred, on the basis of the observed patterns of concentrations in dated sediment cores. Concentrations of atrazine in pore water were estimated and were higher than those reported for the bulk waters, suggesting the occurrence of solid-phase deposition of atrazine through the water column and that contaminated sediments act as a source releasing atrazine to the overlying water. PMID:27322944

  17. Metolachlor stereoisomers: Enantioseparation, identification and chiral stability.

    PubMed

    Xie, Jingqian; Zhang, Lijuan; Zhao, Lu; Tang, Qiaozhi; Liu, Kai; Liu, Weiping

    2016-09-01

    Metolachlor is a chiral herbicide consisting of four stereoisomers, which is typically used as a racemic mixture or is enriched with the herbicidally active 1'S-isomers. Because studies on the enantioselective behavior of phyto-biochemical processes and the environmental fate of metolachlor have become significant, a practical method for analyzing and separating metolachlor stereoisomers must be developed. In the present study, the enantiomeric separation of metolachlor was achieved using OD-H, AS-H, OJ-H and AY-H chiral columns. The effects of different organic modifiers in an n-hexane-based mobile phase were investigated, and various temperatures and flow rates, which may influence metolachlor separation, were also explored. The optimal resolution was obtained using an AY-H column with n-hexane/EtOH (96/4) as the mobile phase at a rate and temperature of 0.6mLmin(-1) and 25°C, respectively. The absolute configuration of the four stereoisomers was identified as αSS, αRS, αSR, αRR using computed and experimentally measured ECD and VCD spectra. Thermal interconversion and solvent stability experiments were also performed. Pure metolachlor stereoisomers in different organic solvents and water at 4°C or 30°C were stable. These results were used to establish a sound method for analyzing, preparing, characterizing, and preserving individual metolachlor stereoisomers in most natural environments. PMID:27544750

  18. Microorganisms capable of metabolizing the herbicide metolachlor.

    PubMed Central

    Saxena, A; Zhang, R W; Bollag, J M

    1987-01-01

    We screened several strains of microorganisms and microbial populations for their ability to mineralize or transform the herbicide metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetami de] because such cultures would potentially be useful in the cleanup of contaminated sites. Although we used various inocula and enrichment culture techniques, we were not able to isolate microorganisms that could mineralize metolachlor. However, strains of Bacillus circulans, Bacillus megaterium, Fusarium sp., Mucor racemosus, and an actinomycete were found to transform metolachlor. Several metabolites could be determined with high-performance liquid chromatography. The tolerance of the strains to high concentrations of metolachlor was also evaluated for the usefulness of the strains for decontamination. Tolerance of the actinomycete to metolachlor concentrations over 200 ppm (200 micrograms/ml) was low and could not be increased by doubling the sucrose concentration in the growth medium or by using a large biomass as inoculum. However, a Fusarium sp. could grow and transform metolachlor up to a concentration of 300 ppm. PMID:3105457

  19. The economics of atrazine.

    PubMed

    Ackerman, Frank

    2007-01-01

    It is often claimed that atrazine is of great economic benefit to corn growers, but support for this claim is limited. Some cost-benefit studies have assumed that atrazine boosts corn yields by 6%; an extensive review found a 3%-4% average yield increase; other research suggests only a 1% yield effect. Syngenta, the producer of atrazine, also makes mesotrione, an alternative herbicide that does about the same amount for corn yields as atrazine. Italy and Germany both banned atrazine in 1991, with no decrease in corn yields or harvested area. Even if atrazine leads to 6% more corn production, it is not certain that this would justify its continued use; a 1%, or perhaps zero, change does not warrant large-scale exposure of humans and the environment to this potentially hazardous chemical. PMID:18085057

  20. Implications of sampling frequency to herbicide conservation effects assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide losses from row crop agriculture represent potential human health hazards. In particular, atrazine concentrations in drinking water must not exceed its maximum contaminant level (MCL) of 3 'g/L. Atrazine, simazine, alachlor, acetochlor, metolachlor, and glyphosate were monitored along ti...

  1. ALACHLOR AND ATRAZINE BIODEGRADATION UNDER DENITRIFYING ELECTRON ACCEPTOR CONDITIONS. (R825549C037)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. 40 CFR 180.249 - Alachlor; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., calculated as alachlor in or on the following raw agricultural commodities. Commodity Parts per million Beans, dry 0.1 Beans, succulent lima 0.1 Cattle, fat 0.02 Cattle, meat byproducts 0.02 Cattle, meat 0.02...

  3. 40 CFR 180.249 - Alachlor; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., calculated as alachlor in or on the following raw agricultural commodities. Commodity Parts per million Beans, dry 0.1 Beans, succulent lima 0.1 Cattle, fat 0.02 Cattle, meat byproducts 0.02 Cattle, meat 0.02...

  4. 40 CFR 180.249 - Alachlor; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., calculated as alachlor in or on the following raw agricultural commodities. Commodity Parts per million Beans, dry 0.1 Beans, succulent lima 0.1 Cattle, fat 0.02 Cattle, meat byproducts 0.02 Cattle, meat 0.02...

  5. 40 CFR 180.249 - Alachlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., calculated as alachlor in or on the following raw agricultural commodities. Commodity Parts per million Beans, dry 0.1 Beans, succulent lima 0.1 Cattle, fat 0.02 Cattle, meat byproducts 0.02 Cattle, meat 0.02...

  6. Evaluation of mortality and cancer incidence among alachlor manufacturing workers.

    PubMed Central

    Acquavella, J F; Riordan, S G; Anne, M; Lynch, C F; Collins, J J; Ireland, B K; Heydens, W F

    1996-01-01

    Alachlor is the active ingredient in a family of preemergence herbicides. We assessed mortality rates from 1968 to 1993 and cancer incidence rates from 1969 to 1993 for manufacturing workers with potential alachlor exposure. For workers judged to have high alachlor exposure, mortality from all causes combined was lower than expected [23 observed, standardized mortality ratio (SMR) = 0.7, 95% CI, 0.4-1.0], cancer mortality was similar to expected (6 observed, SMR = 0.7, 95% CI, 0.3-1.6), and there were no cancer deaths among workers with 5 or more years high exposure and 15 or more years since first exposure (2.3 expected, SMR = 0, 95% CI, 0-1.6). Cancer incidence for workers with high exposure potential was similar to the state rate [18 observed, standardized incidence ratio (SIR) = 1.2, 95% CI, 0.7-2.0], especially for workers exposed for 5 or more years and with at least 15 years since first exposure (4 observed, SIR = 1.0, 95% CI, 0.3-2.7). The most common cancer for these latter workers was colorectal cancer (2 observed, SIR 3.9, 95% CI, 0.5-14.2 among workers). Despite the limitations of this study with respect to small size and exposure estimating, the findings are useful for evaluating potential alachlor-related health risks because past manufacturing exposures greatly exceeded those characteristic of agricultural operations. These findings suggest no appreciable effect of alachlor exposure on worker mortality or cancer incidence rates during the study period. PMID:8841758

  7. Metolachlor and its metabolites in tile drain and stream runoff in the canajoharie creek watershed

    USGS Publications Warehouse

    Phillips, P.J.; Wall, G.R.; Thurman, E.M.; Eckhardt, D.A.; Vanhoesen, J.

    1999-01-01

    Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid) can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200 1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were always below 0.6 ??g/L except during a November storm, when concentrations reached 0.85 ??g/L. Concentrations of metolachlor ESA in the stream were 2 45 times higher than those of metolachlor, reflecting the greater relative concentrations of metolachlor in surface water runoff than in tile drain runoff. These results are consistent with findings in other studies that acetanilide herbicide degredates are found in much higher concentrations than parent compounds in both surface water and groundwater.Water samples collected during April-November 1997 from tile drains beneath cultivated fields in central New York indicate that two metabolites of the herbicide metolachlor-metolachlor ESA (ethanesulfonic acid) and OA (oxanilic acid)-can persist in agricultural soils for 4 or more years after application and that fine-grained soils favor the transport of metolachlor ESA over metolachlor and metolachlor OA. Concentrations of metolachlor ESA from the tile drains ranged from 3.27 to 23.4 ??g/L (200-1800 times higher than those of metolachlor), metolachlor OA concentrations ranged from 1.14 to 13.5 ??g/L, and metolachlor concentrations ranged from less than 0.01 to 0.1 ??g/L. In the receiving stream, concentrations of metolachlor ESA were

  8. KINETICS OF ALACHLOR TRANSFORMATION AND IDENTIFICATION OF METABOLITES UNDER ANAEROBIC CONDITIONS. (R825549C037)

    EPA Science Inventory

    Alachlor is one of the two most commonly used herbicides in the United States. In the environment, little mineralization of this compound has been found to occur, and metabolites of alachlor may be formed and could accumulate. The objectives of this study were to determine the...

  9. Effect of meteorology and soil condition on metolachlor and atrazine volatilization over a 10 year period

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatilization of pesticides can detrimentally affect the environment by contaminating soil and surface waters far away from where the pesticides were applied. A 10-year study was conducted to focus on the impact of soil and climatic factors governing herbicide volatilization from an agricultural f...

  10. A reconnaissance study of herbicides and their metabolites in surface water of the midwestern united states using immunoassay and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Michael, Thurman E.; Goolsby, D.A.; Meyer, M.T.; Mills, M.S.; Pomes, M.L.

    1992-01-01

    Preemergent herbicides and their metabolites, particularly atrazine, deethylatrazine, and metolachlor, persisted from 1989 to 1990 in the majority of rivers and streams in the midwestern United States. In spring, after the application of herbicides, the concentrations of atrazine, alachlor, and simazine were frequently 3-10 times greater than the U.S. Environmental Protection Agency maximum contaminant level (MCL). The concentration of herbicides exceeded the MCLs both singly and in combination. Two major degradation products of atrazine (deisopropylatrazine and deethylatrazine) also were found in many of the streams. The order of persistence of the herbicides and their metabolites in surface water was atrazine > deethylatrazine > metolachlor > alachlor > deisopropylatrazine > cyanazine. Storm runoff collected at several sites exceeded the MCL multiple times during the summer months as a function of stream discharge, with increased concentrations during times of increased streamflow. It is proposed that metabolites of atrazine may be used as indicators of surface-water movement into adjacent alluvial aquifers.

  11. Chiral separation of metolachlor ethane sulfonic acid as a groundwater dating tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  12. Using chiral identification of metolachlor ethane sulfonic acid as a groundwater dating tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the hydrologic fate of metolachlor and its two predominant metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid, in groundwater and base flows of streams for several years. These two metabolites are excellent markers for groundwater processes related to...

  13. Atrazine remediation in wetland microcosms.

    PubMed

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column. PMID:11337869

  14. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods.

    PubMed

    Szewczyk, Rafał; Soboń, Adrian; Słaba, Mirosława; Długoński, Jerzy

    2015-06-30

    Alachlor is an herbicide that is widely used worldwide to protect plant crops against broadleaf weeds and annual grasses. However, due to its endocrine-disrupting activity, its application had been banned in the European Union. As described in our earlier work, Paecilomyces marquandii is a microscopic fungus capable of alachlor removal by N-acetyl oxidation. Our current work uses proteomics and metabolomics to gain a better understanding of alachlor biodegradation by the microscopic fungus P. marquandii. The data revealed that the addition of alachlor reduced the culture growth and glucose consumption rates. Moreover, the rates of glycolysis and the tricarboxylic acids (TCA) cycle increased during the initial stage of growth, and there was a shift toward the formation of supplementary materials (UDP-glucose/galactose) and reactive oxygen species (ROS) scavengers (ascorbate). Proteomic analysis revealed that the presence of xenobiotics resulted in a strong upregulation of enzymes related to energy, sugar metabolism and ROS production. However, the unique overexpression of cyanide hydratase in alachlor-containing cultures may implicate this enzyme as the key protein involved in the alachlor biodegradation pathway. The characterization of P. marquandii-mediated alachlor removal in terms of cell structure and function provides a deeper insight into the strategies of microorganisms toward xenobiotic biodegradation. PMID:25765177

  15. Herbicides and their metabolites in rainfall: Origin, transport, and deposition patterns across the midwestern and northeastern United States, 1990-1991

    USGS Publications Warehouse

    Goolsby, D.A.; Thurman, E.M.; Pomes, M.L.; Meyer, M.T.; Battaglin, W.A.

    1997-01-01

    Herbicides were detected in rainfall throughout the midwestern and northeastern United States during late spring and summer of 1990 and 1991. Herbicide concentrations exhibited distinct geographic and seasonal patterns. The highest concentrations occurred in midwestern cornbelt states following herbicide application to cropland. Volume-weighted concentrations of 0.2- 0.4??g/L for atrazine and alachlor were typical in this area during mid- April through mid-July, and weighted concentrations as large as 0.6-0.9 ??g/L occurred at several sites. Concentrations of 1-3 ??g/L were measured in a few individual samples. Atrazine was detected most often followed by alachlor, deethylatrazine, metolachlor, cyanazine, and deisopropyl-atrazine. The high ratio (~0.5) of deethylatrazine to atrazine in rainfall suggests atmospheric degradation of atrazine. Mass deposition of herbicides was greatest in areas where herbicide use was high and decreased with distance from the cornbelt. Estimated deposition rates for both atrazine and alachlor ranged from more than 240 ??g m-2 yr-1 for some areas in the midwestern states to less than 10 ??g m-2 yr-1 for the New England states. The estimated annual deposition of atrazine on the Great Lakes ranged from about 12 to 63 ??g m-2 yr-1. The total amounts of atrazine and alachlor deposited annually in rainfall in the study area represent about 0.6% of the atrazine and 0.4% of the alachlor applied annually to crops in the study area.

  16. Hydrologic data for a study of pre-Illinoian glacial till in Linn County, Iowa, water year 1991

    USGS Publications Warehouse

    Bowman, P.R.

    1992-01-01

    Herbicide concentrations in rainfall ranged from 0.05 to 1.3 micrograms per liter. Herbicides detected in the largest concentrations included alachlor, atrazine, and metolachlor. Metribuzin was the only herbicide detected in ground-water samples at a concentration of 0.10 micrograms per liter in water from one observation well.

  17. Herbicide interchange between a stream and the adjacent alluvial aquifer

    USGS Publications Warehouse

    Wang, W.; Squillace, P.

    1994-01-01

    Herbicide interchange between a stream and the adjacent alluvial aquifer and quantification of herbicide bank storage during high streamflow were investigated at a research site on the Cedar River flood plain, 10 km southeast of Cedar Rapids, Iowa. During high streamflow in March 1990, alachlor, atrazine, and metolachlor were detected at concentrations above background in water from wells as distant as 20, 50, and 10 m from the river's edge, respectively. During high streamflow in May 1990, alachlor, atrazine, cyanazine, and metolachlor were detected at concentrations above background as distant as 20, 50, 10, and 20 m from the river's edge, respectively. Herbicide bank storage took place during high streamflow when hydraulic gradients were from the river to the alluvial aquifer and the laterally infiltrating river water contained herbicide concentrations larger than background concentrations in the aquifer. The herbicide bank storage can be quantified by multiplying herbicide concentration by the "effective area" that a well represented and an assumed porosity of 0.25. During March 1990, herbicide bank storage values were calculated to be 1.7,79, and 4.0 mg/m for alachlor, atrazine, and metolachlor, respectively. During May 1990, values were 7.1, 54, 11, and 19 mg/m for alachlor, atrazine, cyanazine, and metolachlor, respectively. ?? 1994 American Chemical Society.

  18. Herbicide Losses in the Saint Joseph River Watershed: Impacts of Hydrology and Land Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide losses from row crop agriculture represent potential human health hazards, and are a major focus of the Conservation Effects Assessment Project (CEAP). Atrazine, simazine, alachlor, acetochlor, metolachlor, and glyphosate were monitored in tile-fed drainage ditches draining to a drinking ...

  19. Potentiation effect of metolachlor on toxicity of organochlorine and organophosphate insecticides in earthworm Eisenia andrei.

    PubMed

    Stepić, Sandra; Hackenberger, Branimir K; Velki, Mirna; Hackenberger, Davorka K; Lončarić, Zeljka

    2013-07-01

    Acetylcholinesterase, glutathione-S-transferase and catalase activities were determined in earthworms Eisenia andrei exposed to insecticides (endosulfan, temephos, malathion, pirimiphos-methyl) alone and in a binary combination with the herbicide metolachlor. Metolachlor individually was not acutely toxic, even at high concentrations applied; however, in the treated earthworms metolachlor enhanced the toxicity of endosulfan and temephos by significantly reducing the acetylcholinesterase activity. In binary combination with malathion and pirimiphos-methyl, metolachlor did not increase toxicity. The potentiation character of metolachlor is specific rather than general, and probably depends on the chemical structure of pesticides in the mixture. PMID:23666323

  20. Would banning atrazine benefit farmers?

    PubMed Central

    Ackerman, Frank; Whited, Melissa; Knight, Patrick

    2014-01-01

    Atrazine, an herbicide used on most of the US corn (maize) crop, is the subject of ongoing controversy, with increasing documentation of its potentially harmful health and environmental impacts. Supporters of atrazine often claim that it is of great value to farmers; most recently, Syngenta, the producer of atrazine, sponsored an “Atrazine Benefits Team” (ABT) of researchers who released a set of five papers in 2011, reporting huge economic benefits from atrazine use in US agriculture. A critical review of the ABT papers shows that they have underestimated the growing problem of atrazine-resistant weeds, offered only a partial review of the effectiveness of alternative herbicides, and ignored the promising option of non-chemical weed management techniques. In addition, the most complete economic analysis in the ABT papers implies that withdrawal of atrazine would lead to a decrease in corn yields of 4.4% and an increase in corn prices of 8.0%. The result would be an increase in corn growers’ revenues, equal to US$1.7 billion annually under ABT assumptions. Price impacts on consumers would be minimal: at current levels of ethanol production and use, gasoline prices would rise by no more than US$0.03 per gallon; beef prices would rise by an estimated US$0.01 for a 4-ounce hamburger and US$0.05 for an 8-ounce steak. Thus withdrawal of atrazine would boost farm revenues, while only changing consumer prices by pennies. PMID:24804340

  1. Would banning atrazine benefit farmers?

    PubMed

    Ackerman, Frank; Whited, Melissa; Knight, Patrick

    2014-01-01

    Atrazine, an herbicide used on most of the US corn (maize) crop, is the subject of ongoing controversy, with increasing documentation of its potentially harmful health and environmental impacts. Supporters of atrazine often claim that it is of great value to farmers; most recently, Syngenta, the producer of atrazine, sponsored an "Atrazine Benefits Team" (ABT) of researchers who released a set of five papers in 2011, reporting huge economic benefits from atrazine use in US agriculture. A critical review of the ABT papers shows that they have underestimated the growing problem of atrazine-resistant weeds, offered only a partial review of the effectiveness of alternative herbicides, and ignored the promising option of nonchemical weed management techniques. In addition, the most complete economic analysis in the ABT papers implies that withdrawal of atrazine would lead to a decrease in corn yields of 4.4% and an increase in corn prices of 8.0%. The result would be an increase in corn growers' revenues, equal to US$1.7 billion annually under ABT assumptions. Price impacts on consumers would be minimal: at current levels of ethanol production and use, gasoline prices would rise by no more than US$0.03 per gallon; beef prices would rise by an estimated US$0.01 for a 4-ounce hamburger and US$0.05 for an 8-ounce steak. Thus withdrawal of atrazine would boost farm revenues, while only changing consumer prices by pennies. PMID:24804340

  2. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  3. Biodegradation of Metolachlor by Soil Bacteria and Yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metolachlor (2-chloro-6’-ethyl-N-(2-methoxy-1-methylethyl) aceto-o-toluidide) is a pre-emergent chloroacetanilide herbicide used to control broadleaf and annual grassy weeds of corn, soybean, peanuts, sorghum, potatoes, cotton, and woody ornamental plants. It has been estimated that 15-24 and 20-24 ...

  4. Soil moisture and metolachlor volatilization observations over three years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatilization of pesticides from agricultural land is of a concern because of potentially detrimental environmental and ecological impacts. A 3-year study was conducted to focus on the impact of surface soil water on metolachlor volatilization from a single field with different surface soil water r...

  5. Dissipation and leaching of pyroxasulfone and s-metolachlor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyroxasulfone dissipation and mobility in the soil was evaluated and compared to S-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those of S...

  6. The Metolachlor Herbicide: An Exercise in Today's Stereochemistry

    ERIC Educational Resources Information Center

    Mannschreck, Albrecht; von Angerer, Erwin

    2009-01-01

    Metolachlor is one of the most widely used agents registered for the protection of many cultivated plants against weeds. Because of axial and central chirality, this molecule forms four stereoisomers, the investigation of which by [superscript 1]H NMR and chromatography is described. It is shown that the isomers do not interconvert at room…

  7. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  8. COMETABOLISM OF LOW CONCENTRATIONS OF PROPACHLOR, ALACHLOR, AND CYCLOATE IN SEWAGE AND LAKE WATER

    EPA Science Inventory

    Low concentrations of propachlor (2-chloro-N-isopropylacetanilide) and alachlor (2-chlor-2', 6'-diethyl-N-(methoxymethyl)acetanilide) were not mineralized, cycloate (S-ethyl-N-ethylthiocyclohexanecarbamate) was slowly or not mineralized, and aniline and cyclohexylamine were readi...

  9. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River

    USGS Publications Warehouse

    Clark, G.M.; Goolsby, D.A.

    2000-01-01

    Analyses of water samples collected from the Mississippi River at Baton Rouge, Louisiana, during 1991-1997 indicate that hundreds of metric tons of herbicides and herbicide metabolites are being discharged annually to the Gulf of Mexico. Atrazine, metolachlor, and the ethane-sulfonic acid metabolite of alachlor (alachlor ESA) were the most frequently detected herbicides and, in general, were present in the largest concentrations. Almost 80% of the annual herbicide load to the Gulf of Mexico occurred during the growing season from May to August. The concentrations and loads of alachlor in the Mississippi River decreased dramatically after 1993 in response to decreased use in the basin. In contrast, the concentrations and loads of acetochlor increased after 1994, reflecting its role as a replacement for alachlor. The peak annual herbicide load occurred in 1993, when approximately 640 metric tons (t) of atrazine, 320 t of cyanazine, 215 t of metolachlor, 53 t of simazine, and 50 t of alachlor were discharged to the Gulf of Mexico. The annual loads of atrazine and cyanazine were generally 1-2% of the amount annually applied in the Mississippi River drainage basin; the annual loads of acetochlor, alachlor, and metolachlor were generally less than 1%. Despite a reduction in atrazine use, historical data do not indicate a long-term downward trend in the atrazine load to the Gulf of Mexico. Although a relation (r2=0.62) exists between the atrazine load and stream discharge during May to August, variations in herbicide use and rainfall patterns within subbasins can have a large effect on herbicide loads in the Mississippi River Basin and probably explain a large part of the annual variation in atrazine load to the Gulf of Mexico. Copyright (C) 2000 Elsevier Science B.V.

  10. Degradation of alachlor using an enhanced sono-Fenton process with efficient Fenton's reagent dosages.

    PubMed

    Wang, Chikang; Liu, Zonghan

    2015-01-01

    In this study, an enhanced sono-Fenton process for the degradation of alachlor is presented. At high ultrasonic power, low pH, and in the presence of adequate Fenton's reagent dosages, alachlor degradation can reach nearly 100%. The toxicity of treated alachlor wastewater, which was measured by changes in cell viability, slightly decreased after the Fenton or ultrasound/H2O2 process and significantly decreased after the enhanced sono-Fenton process. A satisfactory relationship was observed between the total organic carbon removal and cell viability increment, indicating that alachlor mineralization is a key step in reducing the toxicity of the solution. The formation of alachlor degradation byproducts was observed during the oxidation process, in which the first step was the substitution of a chloride by a hydroxyl group. In conclusion, the enhanced sono-Fenton process was effective in the degradation and detoxification of alachlor within a short reaction time. Thus, the treated wastewater can then be passed through a biological treatment unit for further treatment. PMID:25996814

  11. Protocatechuic Acid Promoted Alachlor Degradation in Fe(III)/H2O2 Fenton System.

    PubMed

    Qin, Yaxin; Song, Fahui; Ai, Zhihui; Zhang, Pingping; Zhang, Lizhi

    2015-07-01

    In this study, we demonstrate that protocatechuic acid (PCA) can significantly promote the alachlor degradation in the Fe(III)/H2O2 Fenton oxidation system. It was found that the addition of protocatechuic acid could increase the alachlor degradation rate by 10 000 times in this Fenton oxidation system at pH = 3.6. This dramatic enhancement of alachlor degradation was attributed to the complexing and reduction abilities of protocatechuic ligand, which could form stable complexes with ferric ions to prevent their precipitation and also accelerate the Fe(III)/Fe(II) cycle to enhance the ·OH generation. Meanwhile, the Fe(III)/PCA/H2O2 system could also work well at near natural pH even in the case of PCA concentration as low as 0.1 mmol/L. More importantly, both alachlor and PCA could be effectively mineralized in this Fenton system, suggesting the environmental benignity of PCA/Fe(III)/H2O2 Fenton system. We employed gas chromatography-mass spectrometry to identify the degradation intermediates of alachlor and then proposed a possible alachlor degradation mechanism in this novel Fenton oxidation system. This study provides an efficient way to remove chloroacetanilide herbicides, and also shed new insight into the possible roles of widely existed phenolic acids in the conversion and the mineralization of organic contaminants in natural aquatic environment. PMID:26066010

  12. Occurrence and distribution of pesticides in streams of the Eastern Iowa Basins, 1996-98

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Kalkhoff, Stephen J.; Becher, Kent D.

    2001-01-01

    Occurrence of pesticide compounds varied by landform region. The triazine herbicides, atrazine and cyanazine and their degradates were present in significantly greater concentrations in the Southern Iowa Drift Plain (predominantly loess soils) than either the Des Moines Lobe or the Iowan Surface (predominantly till soils). Less atrazine and cyanazine are applied to till soils because of pH and organic carbon content. Alachlor, metolachlor, and acetochlor have often been used to offset triazine pesticide reductions in area with till soils.

  13. Cellular effects of metolachlor exposure on human liver (HepG2) cells.

    PubMed

    Hartnett, Sean; Musah, Sadiatu; Dhanwada, Kavita R

    2013-01-01

    Metolachlor is one of the most commonly used herbicides in the United States. Protein synthesis is inhibited when roots and shoots of susceptible plants absorb this synthetic herbicide. While quite effective in killing weeds, several studies have shown that exposure to metolachlor results in decreased cell proliferation, growth and reproductive ability of non-target organisms. However, the mode of metolachlor action in non-target organisms has not yet been elucidated. The current study assessed effects of metolachlor exposure on immortalized human liver (HepG2) cells. Results from cell proliferation assays showed that a 72-h exposure to 50 parts per billion (ppb) metolachlor significantly inhibited growth of these cells compared to untreated controls while a decrease in the cell division rate required exposure to 500 ppb metolachlor for 48 h. Flow cytometry analysis of cell cycle distribution revealed that 500 ppb metolachlor treatment resulted in fewer HepG2 cells in G2/M phase after 72 h. Real-time PCR analysis showed a significant decrease in the abundance of the cyclin A transcripts after 12h in cells exposed to 300 ppb metolachlor. These results suggest metolachlor may affect progression through the S phase of the cell cycle and entrance into the G2 phase. PMID:23084262

  14. Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria

    PubMed Central

    Seffernick, Jennifer L.; Johnson, Gilbert; Sadowsky, Michael J.; Wackett, Lawrence P.

    2000-01-01

    Bacterial atrazine catabolism is initiated by the enzyme atrazine chlorohydrolase (AtzA) in Pseudomonas sp. strain ADP. Other triazine herbicides are metabolized by bacteria, but the enzymological basis of this is unclear. Here we begin to address this by investigating the catalytic activity of AtzA by using substrate analogs. Purified AtzA from Pseudomonas sp. strain ADP catalyzed the hydrolysis of an atrazine analog that was substituted at the chlorine substituent by fluorine. AtzA did not catalyze the hydrolysis of atrazine analogs containing the pseudohalide azido, methoxy, and cyano groups or thiomethyl and amino groups. Atrazine analogs with a chlorine substituent at carbon 2 and N-alkyl groups, ranging in size from methyl to t-butyl, all underwent dechlorination by AtzA. AtzA catalyzed hydrolytic dechlorination when one nitrogen substituent was alkylated and the other was a free amino group. However, when both amino groups were unalkylated, no reaction occurred. Cell extracts were prepared from five strains capable of atrazine dechlorination and known to contain atzA or closely homologous gene sequences: Pseudomonas sp. strain ADP, Rhizobium strain PATR, Alcaligenes strain SG1, Agrobacterium radiobacter J14a, and Ralstonia picketti D. All showed identical substrate specificity to purified AtzA from Pseudomonas sp. strain ADP. Cell extracts from Clavibacter michiganensis ATZ1, which also contains a gene homologous to atzA, were able to transform atrazine analogs containing pseudohalide and thiomethyl groups, in addition to the substrates used by AtzA from Pseudomonas sp. strain ADP. This suggests that either (i) another enzyme(s) is present which confers the broader substrate range or (ii) the AtzA itself has a broader substrate range. PMID:11010866

  15. In vivo percutaneous absorption and skin decontamination of alachlor in rhesus monkey.

    PubMed

    Wester, R C; Melendres, J; Maibach, H I

    1992-05-01

    The objectives of this study were to determine the percutaneous absorption of alachlor relative to formulation dilution with water, and to determine the ability of soap and water, and of water only, to remove alachlor from skin, relative to time. Alachlor is a preemergence herbicide. The in vivo percutaneous absorption of alachlor in rhesus monkeys was 17.3 +/- 3.3, 15.3 +/- 3.9, and 21.4 +/- 14.2% for 24-h skin exposure to Lasso formulation diluted 1:20, 1:40, and 1:80, respectively. In vivo, there was no support for increased alachlor skin absorption with water dilution, as previously reported for in vitro absorption. The average in vivo absorption of 18% applied dose over 24 h (0.75%/h) was similar to the maximum in vitro rate of 0.8%/h using human skin and human plasma as receptor fluid. Dose accountability in vivo was 80.6-95.2%. [14C]Alachlor in Lasso diluted 1:20 with water was placed on rhesus monkeys at concentrations of 23 micrograms/10 microliters/cm2. Skin decontamination at 0 h with soap and water (50% Ivory liquid 1:1 v/v with water) removed 73 +/- 15.8% (n = 4) of the applied dose with the first wash; this increased to a total of 82.3 +/- 14.8% with two additional washes. Decontamination after 1 h removed 87.5 +/- 12.4% with three successive washes. After 3 h decontamination ability decreased, and after 24 h only 51.9 +/- 12.2% could be recovered with three successive washes. Using water only, at 0 h 36.6 +/- 12.3% alachlor was removed with the first wash and the total increased to 56.0 +/- 14.0% with two additional washes. At 24 h the total amount decreased to 28.7 +/- 12.2% for three successive washes. Alachlor as Lasso in field-use rate (11 micrograms/cm2) and undiluted (217 and 300 micrograms/cm2) proportions were left on rhesus monkey skin for 12 h and decontaminated with soap and water (10% Ivory liquid v/v with water). Continual successive washes (6-8 in sequence) recovered 80-90% of the skin-applied alachlor. These results suggest that simple

  16. Removal of alachlor from water by catalyzed ozonation on Cu/Al2O3 honeycomb

    PubMed Central

    2013-01-01

    Background The herbicide alachlor (2-chloro-2′6′-diethyl-N-methoxymethylacetanilide) has been known as a probable human carcinogen, and the MCL (minimum contamination level) for drinking water has been set at 2 μg L-1. Therefore, the advanced methods for effectively removing it from water are a matter of interest. Catalyzed ozonation is a promising method for refractory organics degradation. Cu/Al2O3 catalyzed ozonation for degrading an endocrine disruptor (alachlor) in water was investigated. Results Experimental results showed that the ozonation of alachlor can be effectively catalyzed and enhanced by Cu/Al2O3-honeycomb. The main intermediate products formed (aliphatic carboxylic acids) were mineralized to a large extent in the catalytic process. Conclusions This study has shown that Cu/Al2O3-honeycomb is a feasible and efficient catalyst in the ozonation of alachlor in water. Less intermediate oxidation product was produced in the catalytic process than in the uncatalytic one. Furthermore, the mineralization of alachlor could be enhanced by increasing the pH of the reaction solution. PMID:23977841

  17. METABOLISM OF ALACHLOR AND PROPACHLOR IN SUSPENSIONS OF PRETREATED SOILS AND IN SAMPLES FROM GROUND WATER AQUIFERS

    EPA Science Inventory

    Suspensions of soils treated in the field with alachlor (2-chloro-2',6'diethyl-N-(methoxymethyl)acetanilide) and propachlor (2-chlor-N-isopropylacetanilide) were tested for their ability to metabolize these herbicides. Less than 8% of (14)C ring-labeled alachlor was mineralized i...

  18. Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions

    USGS Publications Warehouse

    Graham, D.W.; Miley, M.K.; Denoyelles, F.; Smith, V.H.; Thurman, E.M.; Carter, R.

    2000-01-01

    Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications. Copyright (C) 2000 Elsevier Science Ltd.Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental

  19. Biodegradation of alachlor in liquid and soil cultures under variable carbon and nitrogen sources by bacterial consortium isolated from corn field soil

    PubMed Central

    2013-01-01

    Alachlor, an aniline herbicide widely used in corn production, is frequently detected in water resources. The main objectives of this research were focused on isolating bacterial consortium capable of alachlor biodegradation, assessing the effects of carbon and nitrogen sources on alachlor biodegradation and evaluating the feasibility of using bacterial consortium in soil culture. Kavar corn field soil with a long history of alachlor application in Fars province of Iran has been explored for their potential of alachlor biodegradation. The influence of different carbon compounds (glucose, sodium citrate, sucrose, starch and the combination of these compounds), the effect of nitrogen sources (ammonium nitrate and urea) and different pH (5.5-8.5) on alachlor removal efficiency by the bacterial consortium in liquid culture were investigated. After a multi-step enrichment program 100 days of acclimation, a culture with the high capability of alachlor degradation was obtained (63%). Glucose and sodium citrate had the highest alachlor reduction rate (85%). Alachlor reduction rate increased more rapidly by the addition of ammonium nitrate (94%) compare to urea. Based on the data obtained in the present study, pH of 7.5 is optimal for alachlor biodegradation. After 30 days of incubation, the percent of alachlor reduction were significantly enhanced in the inoculated soils (74%) as compared to uninoculated control soils (17.67%) at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with bacterial consortium may enhance the rate of alachlor degradation in a polluted soil. PMID:23452801

  20. Wet peroxide degradation of atrazine.

    PubMed

    Rodríguez, Eva M; Alvarez, Pedro M; Rivas, F Javier; Beltrán, Fernando J

    2004-01-01

    The high temperature (150-200 degrees C), high pressure (3.0-6.0 MPa) degradation of atrazine in aqueous solution has been studied. Under these extreme conditions atrazine steadily hydrolyses in the absence of oxidising agents. Additionally, oxygen partial pressure has been shown not to affect atrazine degradation rates. In no case mineralisation of the parent compound was observed. The addition of the free radical generator hydrogen peroxide to the reaction media significantly enhanced the depletion rate of atrazine. Moreover, partial mineralisation of the organics was observed when hydrogen peroxide was used. Again, oxygen presence did not influence the efficiency of the promoted reaction. Consecutive injections of hydrogen peroxide throughout the reaction period brought the total carbon content conversion to a maximum of 65-70% after 40 min of treatment (suggesting the total conversion of atrazine to cyanuric acid). Toxicity of the effluent measured in a luminometer decreased from 93% up to 23% of inhibition percentage. The process has been simulated by means of a semi-empirical model. PMID:14559259

  1. Interaction of flumioxazin with dimethenamid or metolachlor in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in various peanut growing regions of Texas and Georgia to study peanut response to flumioxazin alone or in combination with dimethenamid or metolachlor. In southern Texas during 1997, flumioxazin plus metolachlor resulted in greater than 45% peanut stunt, while flumioxaz...

  2. Metolachlor formulation and ground cover effects on cotton and weed growth - greenhouse experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metolachlor is an important tool for managing glyphosate-resistant pigweeds. Cover crop residues in conservation tillage impede the effectiveness of metolachlor. Greenhouse experiments were conducted to evaluate the influence of cover crops with the following ground covers: no cover, full cover, and...

  3. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  4. Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida.

    PubMed

    Chauhan, Ashvini; Pathak, Ashish; Ewida, Ayman Y I; Griffiths, Zabrenna; Stothard, Paul

    2016-06-01

    We recently isolated a Pseudomonas sp. strain W15Feb9B from Ochlockonee River, Florida and demonstrated potent biodegradative activity against two commonly used pesticides - Alachlor [(2-chloro-2',6'-diethylphenyl-N (methoxymethyl)acetanilide)] and Endosulfan [(6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,3,4-benzo(e)di-oxathiepin-3-oxide], respectively. To further identify the repertoire of metabolic functions possessed by strain W15Feb9B, a draft genome sequence was obtained, assembled, annotated and analyzed. The genome sequence of strain 2385 has been deposited in GenBank under accession number JTKF00000000; BioSample number SAMN03151543. The sequences obtained from strain 2385 assembled into 192 contigs with a genome size of 6,031,588, G + C content of 60.34, and 5512 total number of putative genes. RAST annotated a total of 542 subsystems in the genome of strain W15Feb9B along with the presence of 5360 coding sequences. A genome wide survey of strain W15Feb9B indicated that it has the potential to degrade several other pollutants including atrazine, caprolactam, dioxin, PAHs (such as naphthalene) and several chloroaromatic compounds. PMID:27330991

  5. Introduction of atrazine degrader to enhance rhizodegradation of atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introducing atrazine (ATR) degraders into riparian vegetative buffer strips (VBS) can be a promising bioremediation approach to accelerate the degradation of ATR and its degradation products deposited into VBS by surface runoff. A growth chamber study was conducted to investigated the synergistic ef...

  6. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae.

    PubMed

    Rattanawong, Kasidit; Kerdsomboon, Kittikhun; Auesukaree, Choowong

    2015-12-01

    Alachlor is a widely used pre-emergent chloroacetanilide herbicide which has been shown to have many harmful ecological and environmental effects. However, the mechanism of alachlor-induced oxidative stress is poorly understood. We found that, in Saccharomyces cerevisiae, the intracellular levels of reactive oxygen species (ROS) including superoxide anions were increased only after long-term exposure to alachlor, suggesting that alachlor is not a pro-oxidant. It is likely that alachlor-induced oxidative stress may result from protein denaturation because alachlor rapidly induced an increased protein aggregation, leading to upregulation of SSA4 and HSP82 genes encoding heat shock proteins (Hsp) of Hsp70 and Hsp90 family, respectively. Although only SOD1 encoding Cu/Zn-superoxide dismutase (SOD), but not SOD2 encoding Mn-SOD, is essential for alachlor tolerance, both SODs play a crucial role in reducing alachlor-induced ROS. We found that, after alachlor exposure, glutathione production was inhibited while its utilization was increased, suggesting the role of glutathione in protecting cells against alachlor, which becomes more important when lacking Cu/Zn-SOD. Based on our results, it seems that alachlor primarily causes damages to cellular macromolecules such as proteins, leading to an induction of endogenous oxidative stress, of which intracellular antioxidant defense systems are required for elimination. PMID:26518674

  7. RESPIRATION AND OSMOREGULATION OF THE ESTUARINE CRAB RHITHROPANOPEUS HARRISII (GOULD): EFFECTS OF THE HERBICIDE ALACHLOR

    EPA Science Inventory

    The effects of a sudden decrease in salinity and exposure to sublethal concentrations of the herbicide, Alachlor, on osmoregulation and respiration of the crab, Rhithropanopeus harrisii, were studied. 2. Crabs were hyperosmotic regulators at salinities below 24 ppt and became hyp...

  8. Influence of degradation and sorption processes on the persistence and movement of alachlor and dicamba in soils

    SciTech Connect

    Yen, P.Y.

    1992-01-01

    The impact of herbicide usage in agriculture on ground water quality is controlled by the interaction of herbicide degradation, sorption, and transport processes as the herbicide moves through the soil to ground water. The objectives of this thesis were to determine the influence of degradation and sorption processes on the fate of a non-ionic (alachlor) and a weak acid (dicamba) herbicide in four soils (Kim loam, Port Byron silt loam, Webster silty clay loam, and Estherville sandy loam) as a function of soil depth. Alachlor dissipated rapidly under field conditions in Kim soil. Although laboratory studied underestimated the rate of alachlor degradation compared to field conditions, they showed that microbial degradation rather than leaching below sampling depth was the major dissipation pathway of alachlor in soil. Laboratory studies are showed that soils obtained from lower depths had capacities to degrade alachlor, however, at slower rates than surface soils. Sorption of alachlor to soils was moderate (Freundlich sorption coefficient, K[sub f] = 0.7 to 7.3). Movement of alachlor in Kim soil under field conditions was overestimated by leachability indices calculated based on laboratory degradation and sorption studies. Leachability indices would classify alachlor as a [open quotes]leacher[close quotes] in Kim, Port Byron and Estherville soils. In the case of Webster soil, alachlor would be classified as transitional between a [open quotes]leacher[close quotes] and [open quotes]nonleacher[close quotes]. Field dissipation experiments are currently being conducted to evaluate potential leachability of dicamba in the three Minnesota soils. Laboratory studies showed that degradation of dicamba in the four soils was slow (50% dissipation time, DT[sub 50] > 70 days) due to a long lag phase. Soils below 15 cm depth demonstrated slower dicamba degradation capacities than the surface soils. Sorption of dicamba to these soils was minimal (K[sub f] = 0.004 to 0.50).

  9. Metabolism and persistence of atrazine in several field soils with different atrazine application histories.

    PubMed

    Jablonowski, Nicolai D; Hamacher, Georg; Martinazzo, Rosane; Langen, Ulrike; Köppchen, Stephan; Hofmann, Diana; Burauel, Peter

    2010-12-22

    To assess the potential occurrence of accelerated herbicide degradation in soils, the mineralization and persistence of (14)C-labeled and nonlabeled atrazine was evaluated over 3 months in two soils from Belgium (BS, atrazine-treated 1973-2008; BC, nontreated) and two soils from Germany (CK, atrazine-treated 1986-1989; CM, nontreated). Prior to the experiment, accelerated solvent extraction of bulk field soils revealed atrazine (8.3 and 15.2 μg kg(-1)) in BS and CK soils and a number of metabolites directly after field sampling, even in BC and CM soils without previous atrazine treatment, by means of LC-MS/MS analyses. For atrazine degradation studies, all soils were incubated under different moisture conditions (50% maximum soil water-holding capacity (WHC(max))/slurried conditions). At the end of the incubation, the (14)C-atrazine mineralization was high in BS soil (81 and 83%) and also unexpectedly high in BC soil (40 and 81%), at 50% WHC(max) and slurried conditions, respectively. In CK soil, the (14)C-atrazine mineralization was higher (10 and 6%) than in CM soil (4.7 and 2.7%), but was not stimulated by slurried conditions. The results revealed that atrazine application history dramatically influences its degradation and mineralization. For the incubation period, the amount of extractable atrazine, composed of residues from freshly applied atrazine and residues from former field applications, remained significantly greater (statistical significance = 99.5 and 99.95%) for BS and CK soils, respectively, than the amount of extractable atrazine in the bulk field soils. This suggests that (i) mostly freshly applied atrazine is accessible for a complex microbial community, (ii) the applied atrazine is not completely mineralized and remains extractable even in adapted soils, and (iii) the microbial atrazine-mineralizing capacity strongly depends on atrazine application history and appears to be conserved on long time scales after the last application. PMID:21121649

  10. SCREENING RHIZOSPHERE SOIL SAMPLES FOR THE ABILITY TO MINERALIZE ELEVATED CONCENTRATIONS OF ATRAZINE AND METOLACHLOR. (R825549C045)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Utilizing Vegetative Buffer Strips to Remove Dissolved and Sediment-Bound Atrazine, Metolachlor and Glyphosate from Surface Water Runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple species vegetative buffer strips (VBS) have been recommended as a cost-effective approach to mitigate herbicide transport in surface runoff derived from agronomic operations. However, the effect of buffer designs and species composition on reducing herbicide transport has not been well doc...

  12. UTILIZING VEGETATIVE BUFFER STRIPS TO REMOVE DISSOLVED AND SEDIMENT-BOUND ATRAZINE, METOLACHLOR AND GLYPHOSATE FROM SURFACE RUNOFF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple species vegetative buffer strips (VBS) have been recommended as a cost-effective approach to mitigate herbicide transport in surface runoff derived from agronomic operations. However, the effect of buffer designs and species composition on reducing herbicide transport has not been well docu...

  13. Atrazine Resistance in Chenopodium album

    PubMed Central

    Bettini, Priscilla; McNally, Sheila; Sevignac, Mireille; Darmency, Henri; Gasquez, Jacques; Dron, Michel

    1987-01-01

    In Chenopodium album two different levels of atrazine resistance have been found according to following criteria: lethal dose and leaf fluorescence curve. The intermediate (I) phenotype is represented by a low level of resistance and a typical I fluorescence curve. It arose at high frequency, within one generation, after self-pollination of particular plants displaying a susceptible (S) phenotype. The resistance phenotype (Ri) has a high level of resistance and presents a typical resistant fluorescence curve. It appeared after self-pollination of chemically treated I plants. The I, Ri, and also R (resistant plants found in atrazine treated fields) phenotypes contain a serine to glycine mutation at amino acid position 264 in the chloroplast psbA gene product. The steady state level of the psbA gene transcript is not modified between S, I, Ri, and R phenotypes. Images Fig. 4 PMID:16665624

  14. Accelerated degradation of 14C-atrazine in an atrazine adapted field soil from Belgium

    NASA Astrophysics Data System (ADS)

    Hamacher, Georg; Jablonowski, Nicolai David; Martinazzo, Rosane; Accinelli, Cesare; Köppchen, Stephan; Langen, Ulrike; Linden, Andreas; Krause, Martina; Burauel, Peter

    2010-05-01

    Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is one of the most widely used herbicides in the world. Atrazine is considered to be mobile in soil and has often been characterized as a rather recalcitrant compound in the environment. In the present study the accelerated atrazine degradation in an agriculturally used soil was examined. Soil samples were collected from a Belgian field which was used for corn-plantations and was regularly treated with atrazine during the last 30 years. The experiment was conducted under controlled laboratory conditions (GLP) using 14C-labelled and unlabelled atrazine in accordance to the reported field application dose of 1 mg kg-1. Triplicates of treated subsamples were incubated at 50% WHCmax and under slurry conditions (1:4 soil:solution ratio, using distilled water) in the dark at 20° C. Control samples were collected at an adjacent pear orchard where no atrazine or other triazine pesticides application was reported. After 92 days of incubation, the mineralized amount of atrazine reached 83% of the initially applied 14C-activity in the atrazine treated soil for the slurry setup. A maximum of atrazine mineralization was observed in the treated field soil between 6 and 7 days of incubation for both, 50% WHCmax and slurry setups. The total 14C-atrazine mineralization was equally high for 50% WHCmax in the atrazine treated soil. After an extended lag-phase in comparison to the treated soil the overall mineralization of 14C-atrazine of 81% was observed in the atrazine untreated soil under slurry conditions. This observation might be due to a possible cross adaption of the microflora. These results could be attributed to an atrazine drift during application since the control samples were taken in an adjacent pear orchard with no atrazine application history. These results demonstrate an adaption of the microflora to mineralize atrazine rapidly. The formation of desorbable metabolites as well as the formation of

  15. Sorption and dissipation of aged metolachlor residues in eroded and rehabilitated soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To accurately determine availability for offsite transport, sorption and dissipation of aged metolachlor were characterized in rehabilitated and eroded prairie soils using sequential batch slurry and accelerated solvent extraction (ASE). In the eroded upper slope, soil-landscape rehabilitation more ...

  16. Photodegradation of metolachlor applying UV and UV/H2O2.

    PubMed

    Wu, Changlong; Shemer, Hilla; Linden, Karl G

    2007-05-16

    Metolachlor is one of the most widely used herbicides in the world for controlling weeds. It has been detected in both ground and surface waters in the United States, and there are rising concerns in regard to its health risks and in developing effective treatment processes for its removal from water. Degradation of metolachlor via ultraviolet (UV) photolysis and an UV/hydrogen peroxide advanced oxidation process (AOP) was studied. The quantum yield of metolachlor at 254 nm was found to be 0.302 +/- 0.001 mol E-1 through direct UV photolysis in the range of pH 6-8. The second-order rate constant of the reaction between metolachlor and hydroxyl radical was determined to be 9.07 (+/-0.21) x 10(9) M-1 s-1 by using a competition kinetics model that utilized nitrobenzene as a reference compound. In addition, these parameters were successfully applied in modeling the kinetics of elimination of metolachlor using an UV/H2O2 process in both laboratory and natural waters. The formation of several photolysis byproducts was identified using gas chromatography/mass spectrometry, and a scheme for the metolachlor photodegradation pathway is proposed. PMID:17447786

  17. Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water.

    PubMed

    Novick, N J; Alexander, M

    1985-04-01

    Low concentrations of propachlor (2-chloro-N-isopropylacetanilide) and alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] were not mineralized, cycloate (S-ethyl-N-ethylthiocyclohexanecarbamate) was slowly or not mineralized, and aniline and cyclohexylamine were readily mineralized in sewage and lake water. Propachlor, alachlor, and cycloate were extensively metabolized, but the products were organic. Little conversion of propachlor and alachlor was evident in sterilized sewage or lake water. The cometabolism of propachlor was essentially linear with time in lake water and was well fit by zero-order kinetics in short periods and by first-order kinetics in longer periods in sewage. The rate of cometabolism in sewage was directly proportional to propachlor concentration at levels from 63 pg/ml to more than 100 ng/ml. Glucose but not aniline increased the yield of products formed during propachlor cometabolism in sewage. No microorganism able to use propachlor as a sole source of carbon and energy was isolated, but bacteria isolated from sewage and lake water metabolized this chemical. During the metabolism of this herbicide by two of the bacteria, none of the carbon was assimilated. Our data indicate that cometabolism of these pesticides takes place at concentrations of synthetic compounds that commonly occur in natural waters. PMID:4004208

  18. Cometabolism of low concentrations of propachlor, alachlor, and cycloate in sewage and lake water.

    PubMed Central

    Novick, N J; Alexander, M

    1985-01-01

    Low concentrations of propachlor (2-chloro-N-isopropylacetanilide) and alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] were not mineralized, cycloate (S-ethyl-N-ethylthiocyclohexanecarbamate) was slowly or not mineralized, and aniline and cyclohexylamine were readily mineralized in sewage and lake water. Propachlor, alachlor, and cycloate were extensively metabolized, but the products were organic. Little conversion of propachlor and alachlor was evident in sterilized sewage or lake water. The cometabolism of propachlor was essentially linear with time in lake water and was well fit by zero-order kinetics in short periods and by first-order kinetics in longer periods in sewage. The rate of cometabolism in sewage was directly proportional to propachlor concentration at levels from 63 pg/ml to more than 100 ng/ml. Glucose but not aniline increased the yield of products formed during propachlor cometabolism in sewage. No microorganism able to use propachlor as a sole source of carbon and energy was isolated, but bacteria isolated from sewage and lake water metabolized this chemical. During the metabolism of this herbicide by two of the bacteria, none of the carbon was assimilated. Our data indicate that cometabolism of these pesticides takes place at concentrations of synthetic compounds that commonly occur in natural waters. PMID:4004208

  19. How Rapidly Does Enhanced Atrazine Degradation Develop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced atrazine degradation has been documented in multiple fields in Colorado. A random survey of 70 fields in eastern Colorado showed that approximately 30% had enhanced atrazine degradation. However, the enhanced degradation is not necessarily long term. Twenty-five fields were tested in 200...

  20. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  1. Herbicides and nitrates in the Iowa River alluvial aquifer prior to changing land use, Iowa County, Iowa, 1996

    USGS Publications Warehouse

    Savoca, Mark E.; Tobias, Jennifer L.; Sadorf, Eric M.; Birkenholtz, Trevor L.

    1997-01-01

    Four herbicides (alachlor, atrazine, cyanazine, and metolachlor) and one nutrient (nitrate) were selected for study on the basis of frequent usage in Iowa and high detection rates in ground water (Detroy and Kuzniar, 1988). Alachlor was not detected at concentrations greater than the method detection limit (MDL). Atrazine was detected at concentrations greater than the MDL in samples from 48 percent of the 23 wells, cyanazine from 13 percent, metolachlor from 26 percent, and nitrate from 91 percent. None of the four herbicides were detected at concentrations greater than the respective U.S. Environmental Protection Agency's (USEPA) Maximum Contaminant Level (MCL) for drinking water. Thirteen percent of the samples had nitrate concentrations above the USEPA's MCL of 10 mg/L (milligrams per liter). Relations between constituent concentration and well depth were observed for specific constituents at individual well nests.

  2. Pesticides in ground water: Do atrazine metabolites matter?

    USGS Publications Warehouse

    Liu, S.; Yen, S.T.; Kolpin, D.W.

    1996-01-01

    Atrazine and atrazine-residue (atrazine + two metabolites - deethylatrazine and deisopropylatrazine) concentrations were examined to determine if consideration of these atrazine metabolites substantially adds to our understanding of the distribution of this pesticide in groundwater of the midcontinental United States. The mean of atrazine.residue concentrations was 53 percent greater than that of atrazine alone for those observations above the detection limit (> 0.05 μg/l). Furthermore, a censored regression analysis using atrazine-residue concentrations revealed significant factors not identified when only atrazine concentrations were used. Thus, knowledge of concentrations of these atrazine metabolites is required to obtain a true estimation of risk of using these aquifers as sources for drinking water, and such knowledge also provides information that ultimately may be important for future management policies designed to reduce atrazine concentrations in ground water.

  3. Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination.

    PubMed

    Chen, Qinglin; Yang, Baoshan; Wang, Hui; He, Fei; Gao, Yongchao; Scheel, Ryan A

    2015-01-01

    Intensive use of atrazine and extensive dispersal of lead (Pb) have occurred in farmland with chemical agriculture development. However, the toxicological effect of their presence on soil microorganism remains unknown. The objective of this study was to investigate the impacts of atrazine or Pb on the soil microbiota, soil net nitrogen mineralization, and atrazine residues over a 28-day microcosm incubation. The Shannon-Wiener diversity index, typical microbe species, and a Neighbor-joining tree of typical species from sequencing denaturing gradient gel electrophoresis (DGGE) bands were determined across periodical sampling times. The results showed that the existence of atrazine or Pb (especially high concentration) in soils reduced microbial diversity (the lowest H value is 2.23) compared to the control (H = 2.59) after a 28-day incubation. The species richness reduced little (from 17~19 species to 16~17 species) over the research time. But soil microbial community was significantly affected by the incubation time after the exposure to atrazine or Pb. The combination of atrazine and Pb had a significant inhibition effect on soil net nitrogen nitrification. Atrazine and Pb significantly stimulated soil cumulative net nitrogen mineralization and nitrification. Pb (300 and 600 mg kg(-1)) accelerated the level of atrazine dissipation. The exposure might stimulate the significant growth of the autochthonous soil degraders which may use atrazine as C source and accelerate the dissipation of atrazine in soils. PMID:25106517

  4. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. PMID:20022076

  5. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment.

    PubMed

    Satapanajaru, T; Comfort, S D; Shea, P J

    2003-01-01

    Pesticide-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of zerovalent iron (Fe(0)) to dechlorinate metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl ethyl) acetamide] in the presence of aluminum and iron salts. By treating aqueous solutions of metolachlor with Fe(0), we found destruction kinetics were greatly enhanced when Al, Fe(II), or Fe(II) salts were added, with the following order of destruction kinetics observed: Al2(SO4)3 > AlCl3 > Fe2(SO4)3 > FeCl3. A common observation was the formation of green rusts, mixed Fe(II)-Fe(III) hydroxides with interlayer anions that impart a greenish-blue color. Central to the mechanism responsible for enhanced metolachlor loss may be the role these salts play in facilitating Fe(II) release. By tracking Al and Fe(II) in a Fe(0) + Al2(SO4)3 treatment of metolachlor, we observed that Al was readily sorbed by the corroding iron with a corresponding release of Fe(II). The manufacturing process used to produce the Fe(0) also profoundly affected destruction rates. Metolachlor destruction rates with salt-amended Fe(0) were greater with annealed iron (indirectly heated under a reducing atmosphere) than unannealed iron. Moreover, the optimum pH for metolachlor dechlorination in water and soil differed between iron sources (pH 3 for unannealed, pH 5 for annealed). Our results indicate that metolachlor destruction by Fe(0) treatment may be enhanced by adding Fe or Al salts and creating pH and redox conditions favoring the formation of green rusts. PMID:14535314

  6. Use of diatom motility features as endpoints of metolachlor toxicity.

    PubMed

    Coquillé, Nathalie; Jan, Gwilherm; Moreira, Aurélie; Morin, Soizic

    2015-01-01

    Many recent ecotoxicological studies suggest a relationship between freshwater contamination and increasing abundances of motile diatoms (potentially able to move). The capacity to escape would present advantages to species in polluted environments. However, actual motility as a response to toxicants had not been described and required experimental validation. We designed a specific experiment to assess how a field-isolated diatom (Gomphonema gracile) distributes energy to in situ resistance (increased population growth or photosynthesis) and escape (behavioral changes), when exposed to increasing concentrations of the herbicide metolachlor. We report here the dose-time dependent responses of G. gracile populations. They coped with low contamination by resisting in situ, with early hormetic responses highlighted by stimulation of chlorophyll-a fluorescence. At a higher dose, harmful impacts were observed on growth after a few days, but an earlier behavioral response suggested that higher motility (percentage of motile individuals and mean distance crossed) could be involved in escape. Our findings bring new arguments to support the implementation of real measurements instead of motility traits in toxicity assessment. Specifically, motion descriptors have been used as early-warning indicators of contamination in our study. Further works should address the reliability of these endpoints in more complex conditions (interspecific variability, behavior in the field). PMID:25481786

  7. Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability.

    PubMed

    Torres, Ricardo A; Mosteo, Rosa; Pétrier, Christian; Pulgarin, Cesar

    2009-03-01

    This work presents the application of experimental design for the ultrasonic degradation of alachlor which is pesticide classified as priority substance by the European Commission within the scope of the Water Framework Directive. The effect of electrical power (20-80W), pH (3-10) and substrate concentration (10-50mgL(-1)) was evaluated. For a confidential level of 90%, pH showed a low effect on the initial degradation rate of alachlor; whereas electrical power, pollutant concentration and the interaction of these two parameters were significant. A reduced model taking into account the significant variables and interactions between variables has shown a good correlation with the experimental results. Additional experiments conducted in natural and deionised water indicated that the alachlor degradation by ultrasound is practically unaffected by the presence of potential *OH radical scavengers: bicarbonate, sulphate, chloride and oxalic acid. In both cases, alachlor was readily eliminated ( approximately 75min). However, after 4h of treatment only 20% of the initial TOC was removed, showing that alachlor by-products are recalcitrant to the ultrasonic action. Biodegradability test (BOD5/COD) carried out during the course of the treatment indicated that the ultrasonic system noticeably increases the biodegradability of the initial solution. PMID:18930694

  8. Contribution of hydroxylated atrazine degradation products to the total atrazine load in midwestern streams

    USGS Publications Warehouse

    Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.

    1998-01-01

    The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at

  9. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene.

    PubMed

    Vail, Andrew W; Wang, Ping; Uefuji, Hirotaka; Samac, Deborah A; Vance, Carroll P; Wackett, Lawrence P; Sadowsky, Michael J

    2015-06-01

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and groundwater in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradation pathway of Pseudomonas sp. strain ADP, which is initiated by atzA, encoding atrazine chlorohydrolase. Here we explored the use of enhanced expression of a modified bacterial atrazine chlorohydrolase, p-AtzA, in transgenic grasses (tall fescue, perennial ryegrass, and switchgrass) and the legume alfalfa for the biodegradation of atrazine. Enhanced expression of p-AtzA was obtained by using combinations of the badnavirus promoter, the maize alcohol dehydrogenase first intron, and the maize ubiquitin promoter. For alfalfa, we used the first intron of the 5'-untranslated region tobacco alcohol dehydrogenase gene and the cassava vein mosaic virus promoter. Resistance of plants to atrazine in agar-based and hydroponic growth assays was correlated with in vivo levels of gene expression and atrazine degradation. The in planta expression of p-atzA enabled transgenic tall fescue to transform atrazine into hydroxyatrazine and other metabolites. Results of our studies highlight the potential use of transgenic plants for bioremediating atrazine in the environment. PMID:25432082

  10. Direct aqueous injection LC-ESI/MS/MS analysis of water for 11 chloro- and thiomethyltriazines and metolachlor and its ethanesulfonic and oxanilic acid degradates.

    PubMed

    Huang, Sung-Ben; Mayer, Thomas J; Yokley, Robert A

    2008-04-23

    A multianalyte method is reported for the determination of atrazine, simazine, propazine, and their respective dealkylated chlorotriazine metabolites; ametryn and prometryn and their respective dealkylated thiomethyltriazine metabolites; and S-metolachlor and its ethanesulfonic and oxanilic acid degradates in deionized, ground, surface, and finished drinking water. Water samples are analyzed using direct aqueous injection (DAI) liquid chromatography-electrospray ionization/mass spectrometry/mass spectrometry (LC-ESI/MS/MS). No preanalysis sample manipulation is required other than transfer of a small portion of sample to an injection vial. The lower limit of the method validation is 0.050 microg/L (ppb) for all analytes except 2,4-diamino-6-chloro- s-triazine (didealkylatrazine, DDA, or G-28273). For this compound the LLMV is 0.50 microg/L (ppb). The overall mean procedural recoveries (and percent relative standard deviations) for all water types for all analytes ranged from 95 to 101% (4.5-11%). The method validation was conducted under U.S. EPA FIFRA Good Laboratory Practice Guidelines 40 CFR 160. PMID:18373350

  11. Metolachlor dissipation following fall and spring application to eroded and rehabilitated landscapes of the US Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate the effects of landscape position and soil properties on the rate of metolachlor dissipation and weed control efficacy of fall- and spring-applied metolachlor in eroded and rehabilitated landforms in the midwestern United States. Soil-landscape rehabilitation result...

  12. Adsorption of atrazine on soils: model study.

    PubMed

    Kovaios, Ilias D; Paraskeva, Christakis A; Koutsoukos, Petros G; Payatakes, Alkiviades Ch

    2006-07-01

    The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8atrazine uptake on silica gel particles were best fitted with the Freundlich model. An increase of the ionic strength of the electrolytic solution induced an increase of the surface concentration of atrazine on silica gel, indicating significant electrostatic interactions between atrazine and silica gel particles, possibly through interaction with the surface silanol groups of the solid substrate. Increase of the pH value of the electrolyte solution from 6 to 9 considerably decreased the amount of atrazine adsorbed on the silica gel substrate. Decrease of the solution pH from 6 to 3 had only a slight effect on the surface concentration of the adsorbed atrazine. The adsorption of atrazine on silica gel increased when the temperature was decreased from 40 to 25 degrees C, an indication that the adsorption is exothermic. The calculated enthalpy of adsorption ( approximately 10 kJ/mol) indicates that the uptake at the solid-liquid equilibrium pH (6.1) was largely due to physisorption. PMID:16556447

  13. Residual tembotrione and atrazine in carrot.

    PubMed

    Bontempo, Amanda F; Carneiro, Gabriella D P; Guimarães, Fernanda A R; Dos Reis, Marcelo R; Silva, Daniel V; Rocha, Bruno H; Souza, Matheus F; Sediyama, Tocio

    2016-07-01

    Carrot (Daucus carota L.) is a vegetable crop that is grown throughout the year across various regions of Brazil in rotation or in succession to other cultures. Herbicide residual effect has emerged as a concern, because of the possibility of carryover. Thus, the objective of this study was to evaluate the effect of tembotrione and atrazine residues - in mixture and isolated - on carrot planted in succession to corn. The experiment was designed in randomized blocks with five replications. Treatments consisted of tembotrione (50.4 g ha(-1)), tembotrione (100.8 g ha(-1)), tembotrione + atrazine (50.4 g ha(-1)+ 2 L ha(-1)), tembotrione + atrazine (100.8 g ha(-1)+ 2 L ha(-1)), and atrazine (2.00 L ha(-1)) applied eight months before carrot seeding, plus a control treatment with no herbicide application. Investigated variables were shoot dry mass, productivity, and classification of carrot roots. The presence of atrazine and tembotrione decreased dry mass in the area, and only tembotrione reduced total root productivity. Thus, there is a carryover effect to tembotrione application that reduces the dry matter accumulation of shoot and total productivity, and an atrazine + tembotrione (100.8 g ha(-1)) mixture reduces the total productivity after application of these herbicides to soil. PMID:27052932

  14. Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of atrazine and other s-triazine herbicides to control weeds in agricultural production fields has impacted surface and ground water in the United States and elsewhere. We previously reported the cloning, sequencing, and expression of six genes involved in the atrazine biodegradat...

  15. Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene.

    PubMed

    Wang, Lin; Samac, Deborah A; Shapir, Nir; Wackett, Lawrence P; Vance, Carroll P; Olszewski, Neil E; Sadowsky, Michael J

    2005-09-01

    Atrazine is one of the most widely used herbicides in the USA. Atrazine chlorohydrolase (AtzA), the first enzyme in a six-step pathway leading to the mineralization of atrazine in Gram-negative soil bacteria, catalyses the hydrolytic dechlorination and detoxification of atrazine to hydroxyatrazine. In this study, we investigated the potential use of transgenic plants expressing atzA to take up, dechlorinate and detoxify atrazine. Alfalfa, Arabidopsis thaliana and tobacco were transformed with a modified bacterial atzA gene, p-atzA, under the control of the cassava vein mosaic virus promoter. All transgenic plant species actively expressed p-atzA and grew over a wide range of atrazine concentrations. Thin layer chromatography analyses indicated that in planta expression of p-atzA resulted in the production of hydroxyatrazine. Hydroponically grown transgenic tobacco and alfalfa dechlorinated atrazine to hydroxyatrazine in leaves, stems and roots. Moreover, p-atzA was found to be useful as a conditional-positive selection system to isolate alfalfa and Arabidopsis transformants following Agrobacterium-mediated transformation. Our work suggests that the in planta expression of p-atzA may be useful for the development of plants for the phytoremediation of atrazine-contaminated soils and soil water, and as a marker gene to select for the integration of exogenous DNA into the plant genome. PMID:17173634

  16. Atrazine removal from aqueous solutions using submerged biological aerated filter

    PubMed Central

    2013-01-01

    Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF) was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs). The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD) removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99%) in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent. PMID:24499572

  17. Atrazine removal from aqueous solutions using submerged biological aerated filter.

    PubMed

    Baghapour, Mohammad Ali; Nasseri, Simin; Derakhshan, Zahra

    2013-01-01

    Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF) was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs). The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD) removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99%) in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent. PMID:24499572

  18. Assessment of human exposure to atrazine through the determination of free atrazine in urine

    SciTech Connect

    Catenacci, G. ); Maroni, M. ); Cottica, D. ); Pozzoli, L.

    1990-01-01

    Studies on metabolism and excretion of atrazine in man are not available in the literature. The present study has investigated human exposure to atrazine during its industrial production by means of assessment of ambient exposure and determination of free atrazine in urine. Four workers exposed to atrazine during its manufacture and packaging in a production plant, volunteered for the study. Atrazine was determined in airborne dust of the working environment obtained by personal sampling, on skin pads according to the WHO standard method, and on the skin of the hands of the workers by means of a washing procedure. Urine was collected before, during, and after exposure. A 24 hr collection before the first workshift, all the urine voided during the monitoring period, subdivided in 8 hr fractions; and one or more 12 hr samples after the end of the exposure period were collected.

  19. Factors Affecting Atrazine Concentration and Quantitative Determination in Chlorinated Water

    EPA Science Inventory

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be obser...

  20. Determination of alachlor and its sulfonic acid metabolite in water by solid-phase extraction and enzyme-linked immunosorbent assay

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Pomes, M.L.

    1994-01-01

    Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.

  1. Simulated fate and transport of metolachlor in the unsaturated zone, Maryland, USA

    USGS Publications Warehouse

    Bayless, E.R.; Capel, P.D.; Barbash, J.E.; Webb, R.M.T.; Hancock, T.L.C.; Lampe, D.C.

    2008-01-01

    An unsaturated-zone transport model was used to examine the transport and fate of metolachlor applied to an agricultural site in Maryland, USA. The study site was instrumented to collect data on soil-water content, soil-water potential, ground water levels, major ions, pesticides, and nutrients from the unsaturated zone during 2002-2004. The data set was enhanced with site-specific information describing weather, soils, and agricultural practices. The Root Zone Water Quality Model was used to simulate physical, chemical, and biological processes occurring in the unsaturated zone. Model calibration to bromide tracer concentrations indicated flow occurred through the soil matix. Simulated recharge rates were within the measured range of values. The pesticide transport model was calibrated to the intensive data collection period (2002-2004), and the calibrated model was then used to simulate the period 1984 through 2004 to examine the impact of sustained agricultural management practices on the concentrations of metolachlor and its degradates at the study site. Simulation results indicated that metolachlor degrades rapidly in the root zone but that the degradates are transported to depth in measurable quantities. Simulations indicated that degradate transport is strongly related to the duration of sustained use of metolachlor and the extent of biodegradation. 

  2. Enantiomeric separation of metolachlor and its metabolites using LC-MS and CZE

    USGS Publications Warehouse

    Klein, C. John; Schneider, R.J.; Meyer, M.T.; Aga, D.S.

    2006-01-01

    The stereoisomers of metolachlor and its two polar metabolites [ethane sulfonic acid (ESA) and oxanilic acid (OXA)] were separated using liquid chromatography-mass spectrometry (LC-MS) and capillary zone electrophoresis (CZE), respectively. The separation of metolachlor enantiomers was achieved using a LC-MS equipped with a chiral stationary phase based on cellulose tris(3,5-dimethylphenyl carbamate) and an atmospheric pressure chemical ionization source operated under positive ion mode. The enantiomers of ESA and OXA were separated using CZE with gamma-cyclodextrin (??-CD) as chiral selector. Various CZE conditions were investigated to achieve the best resolution of the ESA and OXA enantiomers. The optimum background CZE electrolyte was found to consist of borate buffer (pH = 9) containing 20% methanol (v/v) and 2.5% ??-CD (w/v). Maximum resolution of ESA and OXA enantiomers was achieved using a capillary temperature of 15??C and applied voltage of 30 kV. The applicability of the LC-MS and CZE methods was demonstrated successfully on the enantiomeric analysis of metolachlor and its metabolites in samples from a soil and water degradation study that was set up to probe the stereoselectivity of metolachlor biodegradation. These techniques allow the enantiomeric ratios of the target analytes to be followed over time during the degradation process and thus will prove useful in determining the role of chirality in pesticide degradation and metabolite formation. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Weed management in transplanted lettuce with Pendimethalin and S-metolachlor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few herbicides are available for use in lettuce and hand weeding is required for commercially acceptable weed control. More effective herbicides are needed. Here we report field evaluations of pendimethalin and S-metolachlor for weed control in transplanted lettuce. Pendimethalin was evaluated PRE a...

  4. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry.

    PubMed

    Juneau, P; Dewez, D; Matsui, S; Kim, S G; Popovic, R

    2001-11-01

    In this study, the pulse-amplitude-modulation (PAM)-fluorometric method was used to evaluate the difference in the sensitivity to mercury (Hg) and metolachlor of six algal species: Ankistrodesmus falcatus, Selenastrum capricornutum, Chlorella vulgaris, Nannoplankton (PLS), Microcystis aeruginosa and Pediastrum biwae. We found that the fluorescence parameters (phiM, the maximal photosystem II (PSII) quantum yield, phi'M, the operational PSII quantum yield at steady state of electron transport, Q(P), the photochemical quenching value, and Q(N), the non-photochemical quenching value) were appropriate indicators for inhibitory effects of mercury but only phi'M and Q(N) were useful for metolachlor. The examined algal species showed very different levels of sensitivity to the effect of Hg and of metolachlor. The most sensitive species to Hg and metolachlor were respectively M. aeruginosa and A. falcatus, while the least sensitive were C. vulgaris and P. biwae. We interpreted these differences by the action mode of pollutants and by the different metabolism properties and morphological characteristics between algal species. These results related to fluorescence parameters may offer useful tool to be used in bioassay for different pollutants. Heterogeneous algal sensitivity to the same pollutant suggests the need to use a battery of species to evaluate the effects of mixtures of pollutants in aquatic systems. PMID:11680755

  5. Assessment of best management practice effects on metolachlor mitigation in an agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake watershed in the Mississippi Delta is a 915 ha intensively cultivated watershed (49-78% in row crop production) that was monitored for the herbicide metolachlor from 1998-2009. As part of the USDA Conservation Effects Assessment Program (CEAP), the watershed was assessed for the effecti...

  6. Rapid assay for detecting enhanced atrazine degradation in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine is widely used to control broadleaf weeds and grasses in corn, sorghum and sugarcane. Atrazine is reported to have an average half-life of 6 days and farmers expect to achieve full season weed control with a single application. However, reports of enhanced atrazine degradation in soil fro...

  7. Detecting and Confirming Accelerated Atrazine Degradation in Illinois Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract: Enhanced degradation of atrazine has been documented in many parts of the world where the herbicide has been extensively used. Atrazine is widely used in corn in Illinois, but enhanced degradation in the field has not been documented. In this study, the dissipation of atrazine...

  8. Biological Remediation of Groundwater Containing both Nitrate and Atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its high usage, mobility and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in-sit...

  9. Determining potential for microbial atrazine degradation in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting agricultural watersheds. Previous studies found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degr...

  10. The occurrence and transport of agricultural pesticides in the Tuttle Creek lake-stream system, Kansas and Nebraska

    USGS Publications Warehouse

    Bevans, Hugh E.; Fromm, Carla Hyde; Watkins, Sharon A.

    1995-01-01

    Median monthly atrazine concentrations detected in surface-water samples from the Big Blue River basin (1977-86) exceeded the U.S. Environmental Protection Agency health-advisory level (3.0 micrograms per liter) during May through September. Herbicide loads transported from the basin in 1986, expressed in tons and in percentage of amount applied, were alachlor (1.2 tons, 0.23 percent), atrazine (19 tons, 2.2 percent), and metolachlor (2.2 tons, 2.7 percent).

  11. Atrazine tolerance mechanism(s) in photoautotrophic potato cells

    SciTech Connect

    Smeda, R.J.; Hasegawa, P.M.; Weller, S.C. )

    1989-04-01

    A photoautotrophic potato cell line (variant) was isolated and is capable of sustained growth in media containing in the herbicide atrazine at concentration up to 100 x greater than the lethal concentration for the unselected (wild type) cell line (1.0 {mu}M). Fresh weight doubling times of variant cells in the presence or absence of 1.0 {mu}M atrazine were identical to wild type cells grown in the absence of atrazine. Maintenance of variant cells up to 10 passages in the absence of atrazine resulted in a reduction in the concentration of atrazine necessary to inhibit fresh weight gain by 99% (ID{sub 99}) from 100 to 80 {mu}M. Comparison of {sup 14}C-atrazine uptake indicated wild type cells accumulated up to 2.5-fold more atrazine than varient cells within 72h of exposure but no differences were detected thereafter. Electron transport of both isolated chloroplasts and intact cells were significantly inhibited in the wild type cell line by 1.0 {mu}M atrazine but unaffected in the variant cell line by atrazine concentrations up to 10 {mu}M. After 30 days in the presence of 1.0 {mu}M atrazine, wild type cells did not significantly metabolize atrazine, however, variant cells reduced atrazine concentrations to <0.05 {mu}M regardless if the initial atrazine concentration was 1.0 or 10.0 {mu}M. Both metabolism of atrazine and alterations within the chloroplast (potentially a reduction in atrazine binding affinity) appear to be important components of tolerance within variant cells.

  12. Degradation and mineralization of atrazine by a soil bacterial isolate.

    PubMed Central

    Radosevich, M; Traina, S J; Hao, Y L; Tuovinen, O H

    1995-01-01

    An atrazine-degrading bacterial culture was isolated from an agricultural soil previously impacted by herbicide spills. The organism was capable of using atrazine under aerobic conditions as the sole source of C and N. Cyanuric acid could replace atrazine as the sole source of N, indicating that the organism was capable of ring cleavage. Ring cleavage was confirmed in 14CO2 evolution experiments with [U-14C-ring]atrazine. Between 40 and 50% of ring-14C was mineralized to 14CO2. [14C]biuret and [14C]urea were detected in spent culture media. Cellular assimilation of 14C was negligible, in keeping with the fully oxidized valence of the ring carbon. Chloride release was stoichiometric. The formation of ammonium during atrazine degradation was below the stoichiometric amount, suggesting a deficit due to cellular assimilation and metabolite-N accumulation. With excess glucose and with atrazine as the sole N source, free ammonium was not detected, suggesting assimilation into biomass. The organism degraded atrazine anaerobically in media which contained (i) atrazine only, (ii) atrazine and glucose, and (iii) atrazine, glucose, and nitrate. To date, this is the first report of a pure bacterial isolate with the ability to cleave the s-triazine ring structure of atrazine. It was also concluded that this bacterium was capable of dealkylation, dechlorination, and deamination in addition to ring cleavage. PMID:7887609

  13. Sorption and transport of atrazine in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Hakan Akyol, Nihat

    2014-05-01

    Sorption and transport of atrazine in an agricultural soil Atrazine is one of the most commonly used herbicides in large quantity worldwide. The objective of this study was to perform some batch and column experiments to examine the transport of atrazine in an agricultural soil from Turkey. Batch experiments indicated that sorption isotherm was nonlinear with a freundlich isotherm over a range of concentration (0.2-10 mg/L) examined. Column experiments showed that transport of atrazine in the soil was moderately retarded compared to non-reactive tracer (R = 2.9-4.0). The degree of retardation decreased with increasing atrazine concentration and residance time had negligable impact on degree of sorption. Flow interruption tests in the column experiments indicated that the rate-limited desorption of atrazine mainly controlled the non-ideal transport of atrazine due to the presence of organic matter fraction (0.83 %) in the soil. Sorption and desorption behavior of atrazine in such soils could have important impacts for risk assessment of atrazine-contaminated soil and should be taken into account in the regulation, management, and remediation of atrazine-contaminated sites. Keywords: Atrazine, Agricultural soil, Batch, Column, Desorption, Rate-limited desorption, Sorption, Transport.

  14. Spectroscopic investigations of the chiral interactions of metolachlor and its (S)-isomer with lipase and phosphatase.

    PubMed

    Wen, Yue Z; Yuan, Yu L; Chen, Hui; Wang, He L; Liu, Hui J; Kang, Xiao D; Fu, Liu S

    2010-04-01

    Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] is a chiral acetanilide herbicide. We investigated its enantioselective interactions, and that of its (S)-isomer, with Penicillium expansum alkaline lipase and phosphatase. UV differential spectroscopy and fluorescence spectrophotometry studies were conducted in phosphate buffered solution at pH 7. Chiral differences in the UV absorption and fluorescence spectra of lipase and phosphatase with metolachlor and its (S)-isomer were detected. The results showed that the interactions of metolachlor and its (S)-isomer with lipase and phosphatase occur statically through complex formation, and enantioselectivity was clearly observed. In addition, both UV absorption and fluorescence spectrophotometry showed that the (S)-isomer interacted more strongly with lipase and phosphatase than metolachlor. PMID:20390958

  15. LAKE MICHIGAN MASS BALANCE ATRAZINE DATA

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  16. POTENTIAL DEVELOPMENTAL EFFECTS OF ATRAZINE ON AMPHIBIANS

    EPA Science Inventory

    Recent research has generated conflicting results on the effects of atrazine on gonadal developmental (e.g., male hermaphroditism) in amphibians and how these effects influence secondary sexual characteristics (e.g., laryngeal muscle mass). The SAP is being asked to consider the...

  17. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR ATRAZINE

    EPA Science Inventory

    The Health and Environmental Effects Profile for atrazine was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste to support listings of hazardous constituents of a wide range of...

  18. Changes in herbicide concentrations in Midwestern streams in relation to changes in use, 1989-1998

    USGS Publications Warehouse

    Scribner, E.A.; Battaglin, W.A.; Goolsby, D.A.; Thurman, E.M.

    2000-01-01

    Water samples were collected from Midwestern streams in 1994-1995 and 1998 as part of a study to help determine if changes in herbicide use resulted in changes in herbicide concentrations since a previous reconnaissance study in 1989-1990. Sites were sampled during the first significant runoff period after the application of pre-emergent herbicides in 1989-1990, 1994-1995, and 1998. Samples were analyzed for selected herbicides, two atrazine metabolites, three cyanazine metabolites, and one alachlor metabolite. In the Midwestern USA, alachlor use was much greater in 1989 than in 1995, whereas acetochlor was not used in 1989 but was commonly used in 1995. The use of atrazine, cyanazine, and metolachlor was approximately the same in 1989 and 1995. The median concentrations of atrazine, alachlor, cyanazine, and metolachlor were substantially higher in 1989-1990 than in 1994-1995 or 1998. The median acetochlor concentration was higher in 1998 than in 1994 or 1995. Copyright (C) 2000 Elsevier Science B.V.

  19. Atrazine reduces reproduction in fathead minnow (Pimephales promelas)

    USGS Publications Warehouse

    Tillitt, D.E.; Papoulias, D.M.; Whyte, J.J.; Richter, C.A.

    2010-01-01

    Atrazine, the widely used herbicide, has shown to affect the hypothalamus-pituitary-gonad axis in certain vertebrate species, but few studies have examined reproductive effects of this chemical on fish. Our study was designed to evaluate a population endpoint (egg production) in conjunction with histological (e.g., gonad development) and biochemical (e.g., hormone production) phenotypes associated with atrazine exposure in fathead minnows. Adult virgin breeding groups of 1 male and 2 females were exposed to nominal concentrations of 0, 0.5, 5.0, and 50 ??g/L of atrazine in a flow-through diluter for 14 or 30 days. Total egg production was lower (19-39%) in all atrazine-exposed groups as compared to the controls. The decreases in cumulative egg production of atrazine treated fish were significant by 17-20 days of exposure. Reductions in egg production in atrazine treatment groups were most attributable to reduced numbers of spawning events with increased atrazine exposure concentrations. Gonad abnormalities were observed in both male and female fish of atrazine-exposed fish. Our results also indicate that atrazine reduces egg production through alteration of final maturation of oocytes. The reproductive effects observed in this study warrant further investigation and evaluation of the potential risks posed by atrazine, particularly feral populations of fish from streams in agricultural areas with high use of this herbicide. ?? 2010.

  20. Infiltration and adsorption of dissolved atrazine and atrazine metabolites in buffalograss filter strips.

    PubMed

    Krutz, L J; Senseman, S A; Dozier, M C; Hoffman, D W; Tierney, D P

    2003-01-01

    Vegetated filter strips (VFS) potentially reduce the off-site movement of herbicides from adjacent agricultural fields by increasing herbicide mass infiltrated (Minf) and mass adsorbed (Mas) compared with bare field soil. However, there are conflicting reports in the literature concerning the contribution of Mas to the VFS herbicide trapping efficiency (TE). Moreover, no study has evaluated TE among atrazine (6-chloro-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) and atrazine metabolites. This study was conducted to compare TE, Minf, and Mas among atrazine, diaminoatrazine (DA, 6-chloro[1,3,5]triazine-2,4-diamine), deisopropylatrazine (DIA, 6-chloro-N-ethyl-[1,3,5]triazine-2,4-diamine), desethylatrazine (DEA, 6-chloro-N-isopropyl-[1,3,5]triazine-2,4-diamine), and hydroxyatrazine (HA, 6-hydroxy-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) in a buffalograss VFS. Runoff was applied as a point source upslope of a 1- x 3-m microwatershed plot at a rate of 750 L h(-1). The point source was fortified at 0.1 microg mL(-1) atrazine, DA, DIA, DEA, and HA. After crossing the length of the plot, water samples were collected at 5-min intervals. Water samples were extracted by solid phase extraction and analyzed by high performance liquid chromatography (HPLC) photodiode array detection. During the 60-min simulation, TE was significantly greater for atrazine (22.2%) compared with atrazine metabolites (19.0%). Approximately 67 and 33% of the TE was attributed to Minf and Mas, respectively. These results demonstrate that herbicide adsorption to the VFS grass, grass thatch, and/or soil surface is an important retention mechanism, especially under saturated conditions. Values for Mas were significantly higher for atrazine compared with atrazine's metabolites. The Mas data indicate that atrazine was preferentially retained by the VFS grass, grass thatch, and/or soil surface compared with atrazine's metabolites. PMID:14674556

  1. Ammonia impacts on atrazine leaching through undisturbed soil columns

    SciTech Connect

    Liu, Z.; Clay, S.A.; Clay, D.E.

    1995-11-01

    Ammonia-based fertilizers such as anhydrous ammonia, aqua ammonia, and urea, initially increase soil pH, reducing atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) sorption and increasing atrazine desorption. Increased amounts of atrazine in soil solution may increase atrazine`s leaching potential. This laboratory study investigated atrazine leaching behavior when ammonia and atrazine applications overlap. Nondisturbed 15-cm diam. by 15-cm depth soil columns were excavated from a Brandt silty clay loam (fine silty, Pachic Udic Haploboroll) and a Ves clay loam (fine silty, mixed mesic Typic Hapludalf). Concentrated NH{sub 4}OH was applied to the soil surface at 0 or 220 kg N ha{sup -1}. Immediately after fertilizer application, 1.9 kg atrazine (spiked with ring-labeled {sup 14}C-atrazine) ha{sup -1} was applied. One day after chemical application, soil columns were leached with 5.4 L of water. The ammonia application increased leachate and surface soil pH by about 2.5 and 3.5 pH units, respectively. The amount of {sup 14}C collected in leachate from ammonia-treated columns was 60 and 30% greater for the Brandt and Ves soils, respectively, compared with untreated columns. Less {sup 14}C remained in the surface of the ammonia-treated columns than in the surface of the untreated columns. These data indicate that the interaction between ammonia-based fertilizers and atrazine must be considered when evaluating atrazine movement through soil. Applications of atrazine and ammonia-based fertilizers that increase pH should be physically separated to limit the leaching potential of atrazine. 13 refs., 3 figs., 3 tabs.

  2. Atrazine degradation by bioaugmented sediment from constructed wetlands.

    PubMed

    Runes, H B; Jenkins, J J; Bottomley, P J

    2001-10-01

    The potential to establish pesticide biodegradation in constructed wetland sediment was investigated. Under microcosm conditions, bioaugmentation of sediment with small quantities of an atrazine spill-site soil (1:100 w/w) resulted in the mineralization of 25-30% of 14C ethyl atrazine (1-10 microg g(-1) sediment) as 14CO2 under both unsaturated and water-saturated conditions; atrazine and its common metabolites were almost undetectable after 30 days incubation. By comparison, unbioaugmented sediment supplemented with organic amendments (cellulose or cattail leaves) mineralized only 2-3% of 14C ethyl atrazine, and extractable atrazine and its common metabolites comprised approximately 70% of the original application. The population density of atrazine-degrading microorganisms in unbioaugmented sediment was increased from approximately 10(2)/g to 10(4)/g by bioaugmentation (1:100 w/w), and increased by another 60-fold (6.0x10(5) g(-1)) after incubation with 10 microg g(-1) of atrazine. A high population of atrazine degraders (approximately 10(6) g(-1)) and enhanced rates of atrazine mineralization also developed in bioaugmented sediment after incubation in flooded mesocosms planted with cattails (Typha latifolia) and supplemented with atrazine (3.2 mg l(-1), 1 microg g(-1) sediment). In the absence of atrazine, neither the population of atrazine degraders, nor the atrazine mineralizing potential of bioaugmented sediment increased, regardless of the presence or absence of cattails. Bioaugmentation might be a simple method to promote pesticide degradation in nursery run-off channeled through constructed wetlands, if persistence of degraders in the absence of pesticide is not a serious constraint. PMID:11759697

  3. Biological remediation of groundwater containing both nitrate and atrazine.

    PubMed

    Hunter, William J; Shaner, Dale L

    2010-01-01

    Due to its high usage, mobility, and recalcitrant nature, atrazine is a common groundwater contaminant. Moreover, groundwaters that are contaminated with atrazine often contain nitrate as well. Nitrate interferes with the biological degradation of atrazine and makes it more difficult to use in situ biological methods to remediate atrazine contaminated groundwater. To solve this problem we used two reactors in sequence as models of in situ biobarriers; the first was a vegetable-oil-based denitrifying biobarrier and the second an aerobic reactor that oxygenated the denitrifying reactor's effluent. The reactors were inoculated with an atrazine-degrading microbial consortium and supplied with water containing 5 mg l(-1) nitrate-N and 3 mg l(-1) atrazine. Our hypothesis was that the denitrifying barrier would remove nitrate from the flowing water and that the downstream reaction would remove atrazine. Our hypothesis proved correct; the two reactor system removed 99.9% of the atrazine during the final 30 weeks of the study. The denitrifying barrier removed approximately 98% of the nitrate and approximately 30% of the atrazine while the aerobic reactor removed approximately 70% of the initial atrazine. The system continued to work when the amount of nitrate-N in the influent water was increased to 50 mg l(-1). A mercury poisoning study blocked the degradation of atrazine indicating that biological processes were involved. An in situ denitrifying barrier coupled with an air injection system or other oxygenation process might be used to remove both nitrate and atrazine from contaminated groundwater or to protect groundwater from an atrazine spill. PMID:19756863

  4. Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Pflieger, Maryline; Monod, Anne; Wortham, Henri

    To better understand the atmospheric behaviour of pesticides, heterogeneous ozonolysis of three herbicides (alachlor, terbuthylazine and trifluralin) adsorbed on silica particles were performed in a flow reactor. The experimental setup used in this study and previously validated ( Pflieger et al., 2009) has been specially developed to investigate extremely slow reactivity. The pesticides were adsorbed on particles using a gas/solid adsorption equilibrium, in order to simulate atmospheric conditions. After exposure to ozone concentrations ranging from 5 to 41 ppm during 90 min to 6 h, the kinetics were calculated by comparing the initial and the remaining amounts of pesticides adsorbed on silica particles. This work offers the first results of heterogeneous ozonolysis of alachlor and trifluralin adsorbed on mineral particles. Although alachlor and terbuthylazine were expected to react with ozone, no degradation was observed which leads to a lifetime higher than 8 months towards ozonolysis (for 40 ppb of O 3). A significant degradation of trifluralin adsorbed on silica particles by heterogeneous ozonolysis was observed. The experimental data could be fit by both the Langmuir-Rideal and the Langmuir-Hinshelwood models resulting in atmospheric lifetimes (towards heterogeneous ozonolysis) of 40 and 32 days respectively (for 40 ppb of O 3). These results are discussed and compared to other studies.

  5. Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes.

    PubMed

    Xin, Yanjun; Liu, Huiling; Han, Lei; Zhou, Yabin

    2011-09-15

    Wormhole-shaped TiO(2)/Ti (WT) and nanotube-shaped TiO(2)/Ti (TNT) photoelectrodes were prepared by anodic oxidation method. The morphology and structure were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It was found that both crystal types of WT and TNT photoelectrodes were composed of anatase and rutile TiO(2) phases; however TNT photoelectrodes had highly ordered nanostructure. The photoelectrochemical (PECH) and photoelectrocatalytic (PEC) properties of WT and TNT photoelectrodes were investigated by photocurrent transient, open-circuit potential and degradation rate of alachlor under the artificial solar light illumination. All results showed that TNT photoelectrodes prepared in NaF-Na(2)SO(4) solution have more excellent photoelectron properties than WT photoelectrodes prepared in H(2)SO(4) solution. The photocatalytic (PC) and PEC experiments of alachlor showed that PC and PEC activities of TNT photoelectrodes were superior to WT photoelectrodes. At applied bias potentials the degradation rate of alachlor at TNT photoelectrodes increased significantly to 94.5%. The higher PC and PEC performance of TNT photoelectrodes were ascribed to the long-range ordered structure and short-orientation diffusion distance of photogenerated carries. PMID:21802202

  6. Dechlorination of Atrazine by a Rhizobium sp. Isolate

    PubMed Central

    Bouquard, C.; Ouazzani, J.; Prome, J.; Michel-Briand, Y.; Plesiat, P.

    1997-01-01

    A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP. PMID:16535552

  7. Enhanced microbial degradation of deethylatrazine in atrazine-history soils

    SciTech Connect

    Kruger, E.L.; Chaplin, J.A.; Anderson, T.A.

    1995-12-01

    Persistence and degradation of deethylatrazine, the primary metabolite of atrazine, was measured in soil with atrazine history (15 consecutive years of atrazine application) and no atrazine history (no atrazine application for 15 consecutive years). Uniformly ring-labeled {sup 14}C-deethylatrazine was applied to surface and subsurface soils for metabolism studies. After 60 d of incubation, mineralization of deethylatrazine to {sup 14}CO{sub 2} in the atrazine-history surface soil was twice that in the no-history surface soils (34% and 17% of the applied {sup 14}C, respectively). In surface soils, 25% of the applied {sup 14}C remained as deethylatrazine in the atrazine-history soil, compared with 35% in the no-history soil. Microbial plate counts indicated an increase in numbers of bacteria and fungi in soils incubated with deethylatrazine compared to control soils. Total microbial biomass of soils incubated with deethylatrazine, as determined by CO{sub 2} efflux using an infrared (IR) gas analyzer, showed no significant difference between atrazine-history, and no-history soil, but did show an increase above untreated control soils. Prior to treating soils with deethylatrazine, specific deethylatrazine degraders were quantified using a {sup 14}C-most-probable-number procedure. Deethylatrazine degraders were more numerous in atrazine-history surface soil compared to no-history surface soil. After incubation of soils with deethylatrazine, deethylatrazine degraders were more numerous in both history soils as compared to control soils. From these studies, it appears that deethylatrazine is degraded microbially to a greater extent in soils that have had long-term exposure to atrazine at field application rates compared to soils with no long-term exposure. Decreased persistence of this major metabolite of atrazine in atrazine-history soils is important in that there will be less available for movement in surface runoff and to groundwater.

  8. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes)

    USGS Publications Warehouse

    Papoulias, Diana M.; Tillitt, Donald E.; Talyknia, Melaniya G.; Whyte, Jeffrey J.; Richter, Catherine A.

    2014-01-01

    Atrazine is an effective broadleaf herbicide and the second most heavily used herbicide in the United States. Effects along the hypothalamus–pituitary–gonad axis in a number of vertebrate taxa have been demonstrated. Seasonally elevated concentrations of atrazine in surface waters may adversely affect fishes, but only a few studies have examined reproductive effects of this chemical. The present study was designed to evaluate a population endpoint (egg production) in conjunction with histological (reproductive stage, gonad pathology) and biochemical (aromatase activity, sex hormone production) phenotypes associated with atrazine exposure in Japanese medaka. Adult virgin breeding groups of one male and four females were exposed to nominal concentrations of 0, 0.5, 5.0, and 50 μg/L (0, 2.3, 23.2, 231 nM) of atrazine in a flow-through diluter for 14 or 38 days. Total egg production was lower (36–42%) in all atrazine-exposed groups as compared to the controls. The decreases in cumulative egg production of atrazine-treated fish were significant by exposure day 24. Reductions in total egg production in atrazine treatment groups were most attributable to a reduced number of eggs ovulated by females in atrazine-treated tanks. Additionally, males exposed to atrazine had a greater number of abnormal germ cells. There was no effect of atrazine on gonadosomatic index, aromatase protein, or whole body 17 β-estradiol or testosterone. Our results suggest that atrazine reduces egg production through alteration of final maturation of oocytes. The reduced egg production observed in this study was very similar to our previously reported results for fathead minnow. This study provides further information with which to evaluate atrazine's risk to fish populations.

  9. Bioavailability of organoclay formulations of atrazine in soil.

    PubMed

    Trigo, Carmen; Koskinen, William C; Celis, Rafael; Sadowsky, Michael J; Hermosín, María C; Cornejo, Juan

    2010-11-24

    Pesticide formulations based on organoclays have been proposed to prolong the efficacy and reduce the environmental impact of pesticides in soil. This research addressed the question of whether atrazine in organoclay-based formulations is irreversibly sorbed or is bioavailable for bacterial degradation in soil. Different cations of l-carnitine (CAR), tyramine (TYRAM), hexadimethrine (HEXADIM), phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), and Fe(III) were incorporated into Na-rich Wyoming montmorillonite (SWy-2) and Ca-rich Arizona montmorillonite (SAz-1) at 100% of the cation exchange capacity (CEC) of the clays as a strategy to enhance the affinity of the clay minerals for atrazine. A Buse loam soil from Becker, MN, was treated with three organoclay-based formulations of 14C-atrazine or free herbicide and incubated for 2 weeks. To determine the bioavailability of 14C-atrazine, the soil was inoculated with Pseudomonas sp. strain ADP, which rapidly mineralizes atrazine. At day 0, and after a 2 week incubation, mineralization and the amount of 14C-atrazine residues distributed between the aqueous-extractable, methanol-extractable, and bound fractions in the soil were determined to characterize the availability of nonaged and aged atrazine residues. By the end of the 2 week incubation, the microorganisms had mineralized >80% of the initial readily available (water-extractable) and >70% of the less readily available (methanol-extractable) 14C-atrazine in the soil. Bound residues increased from <4% at day 0 to ∼17% after the 2 week incubation for both the formulated and free forms of atrazine. The results of these incubation experiments show that the bioavailabilities of atrazine were similar in the case of the organoclay formulations and as free atrazine. This indicated that whereas more atrazine was sorbed and less likely to be transported in soil, when formulated as organoclay complexes, it was ultimately accessible to degrading bacteria, so

  10. Single-step uncalcined N-TiO2 synthesis, characterizations and its applications on alachlor photocatalytic degradations

    NASA Astrophysics Data System (ADS)

    Suwannaruang, Totsaporn; Wantala, Kitirote

    2016-09-01

    The aims of this research were to synthesize nitrogen doped TiO2 (N-TiO2) photocatalysts produced by hydrothermal technique and to test the degradation performance of alachlor by photocatalytic process under UV irradiations in the effect of aging temperature and time in the preparation process. The characterizations of synthesized TiO2 such as specific surface area, particle size, phase structure and elements were analyzed by using the Brunauer-Emmett-Teller (BET) technique, Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD) and Energy Dispersive X-ray spectrometer (EDX), respectively. The Central Composite Design (CCD) was used to design the experiment to determine the optimal condition, main effects and their interactions by using specific surface area, percent alachlor removal and observed first-order rate constant as responses. The kinetic reactions of alachlor degradation were explained by using Langmuir-Hinshelwood expression to confirm the reaction took place on the surface of photocatalyst. The results showed that the effect of aging temperatures was significant on surface area, whereas aging time was insignificant. Additionally, the square term of aging temperature and interaction term were shown significant on the specific surface area as well. The highest specific surface area from response surface at aging temperature between 150-175 °C and aging time between 6-13 h was found in a range of 100-106 m2/g. The average particle size of TiO2 was similar to crystallite size. Therefore, it can be concluded that one particle has only one crystal. The element analysis has shown 10% of nitrogen in TiO2 structure that the energy band-gap about 2.95 eV was found. Although, the effects of aging temperature and time on percent alachlor removal and observed first-order rate constants were insignificant, both terms were significant in term of the square for alachlor photocatalytic degradation. The optimal condition of both responses was achieved at an

  11. Electronic structure of herbicides: Atrazine and bromoxynil

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Kovač, Branka

    2011-06-01

    The electronic structures of herbicides atrazine and bromoxynil have been investigated by UV photoelectron spectroscopy (UPS), quantum chemical calculations and comparison with X-ray diffraction, molecular docking and molecular dynamics studies. Their electronic and molecular structures are discussed in the context of their biological activity. This is the first report which correlates the molecular mechanism of biological activity of these herbicides with their experimentally determined electronic and molecular structures.

  12. Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal.

    PubMed

    Dutta, Anirban; Singh, Neera

    2015-03-01

    Bentonite clay was modified using quaternary ammonium cations, viz. phenyltrimethylammonium (PTMA), hexadecyltrimethylammonium (HDTMA), trioctylmethylammonium (TOMA) [100 % of cation exchange capacity of clay], and stearylkonium (SK) [100 % (SK-I) and 250 % (SK-II) of cation exchange capacity of clay]. The organoclays were characterized using X-ray diffraction (XRD), infrared (IR) spectroscopy, and scanning electron microscopy (SEM). Atrazine adsorption on modified clays was studied using a batch method. Bentonite clay was a poor adsorbent of atrazine as 9.4 % adsorption was observed at 1 μg mL(-1) atrazine concentration. Modification of clay by PTMA cation did not improve atrazine adsorption capacity. However, atrazine adsorption in HDTMA-, TOMA-, and SK-bentonites varied between 49 and 72.4 % and data fitted well to the Freundlich adsorption isotherm (R > 0.96). Adsorption of atrazine in organoclays was nonlinear and slope (1/n) values were <1. The product of Freundlich adsorption constants, K f(1/n) in HDTMA-, TOMA-, and SK-I-bentonites was 239.2, 302.4, and 256.6, respectively, while increasing the SK cation loading in the clay (SK-II) decreased atrazine adsorption [K f(1/n) - 196.4]. Desorption of atrazine from organoclays showed hysteresis and TOMA- and SK-I-bentonites were the best organoclays to retain the adsorbed atrazine. Organoclays showed better atrazine removal from wastewater than an aqueous solution. The synthesized organoclays may find application in soil and water decontamination and as a carrier for atrazine-controlled released formulations. PMID:25273519

  13. Assessment of Bioavailability of Soil-Sorbed Atrazine

    PubMed Central

    Park, Jeong-Hun; Feng, Yucheng; Ji, Pingsheng; Voice, Thomas C.; Boyd, Stephen A.

    2003-01-01

    Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration

  14. Derived Reference Doses (RfDs) for the environmental degradates of the herbicides alachlor and acetochlor: results of an independent expert panel deliberation.

    PubMed

    Gadagbui, Bernard; Maier, Andrew; Dourson, Michael; Parker, Ann; Willis, Alison; Christopher, John P; Hicks, Lebelle; Ramasamy, Santhini; Roberts, Stephen M

    2010-01-01

    An independent peer expert panel was convened under the auspices of the Alliance for Risk Assessment (ARA) to review toxicology data and derive oral Reference Doses (RfDs) for four environmental degradates of the acetanilide herbicides, alachlor and acetochlor. The degradates included in this evaluation were (1) alachlor tertiary-ethanesulfonic acid (ESA), (2) alachlor tertiary-oxanilic acid (OXA), (3) acetochlor ESA, and (4) acetochlor OXA. Each degradate was judged to have sufficient data for developing low to medium confidence RfD, with use of an additional uncertainty factor (UF) to cover data gaps. Body weight decreases were identified as the most sensitive treatment-related adverse effect for RfD development. A composite UF of 1000 (10 for human variability in sensitivity, 10 for interspecies differences in sensitivity, and 10 for subchronic to chronic and database deficiency combined; i.e., 10(A)x10(H)x10(S&D)) for each degradate was considered reasonable, while noting that an argument could be made for an UF of 3000 (10(A)x10(H)x30(S&D)). Based on the available data, an oral RfD of 0.2 mg/kg-day is recommended for both acetochlor ESA and acetochlor OXA and an oral RfD of 0.8 mg/kg-day is recommended for both alachlor ESA and alachlor OXA. PMID:20206657

  15. Occurrence of herbicides, nitrite plus nitrate, and selected trace elements in ground water from northwestern and northeastern Missouri, July 1991 and 1992

    USGS Publications Warehouse

    Wilkison, Donald H.; Maley, Randall D.

    1994-01-01

    The U.S. Geological Survey and the Missouri Department of Health collected water samples for analysis of nitrite plus nitrate and herbicides from rural domestic wells in northwestern and northeastern Missouri in 1991 and 1992. In July 1991, samples were collected from 130 wells in Caldwell, Clinton, Daviess, Gentry, and Nodaway Counties in northwestern Missouri. Nitrite plus nitrate concentrations as nitrogen ranged from less than 0.05 to 63 milligrams per liter. Nitrite plus nitrate concentrations exceeded the State drinking-water standard of 10 milligrams per liter in water samples from 28 wells. One or more of the herbicides--alachlor, atrazine, cyanazine; metribuzin, metolachlor, and trifluralin--were detected at concentrations greater than or equal to 0.05 micrograms per liter in 19 samples. Atrazine was detected in water samples from 16 wells. In July 1992, water samples were collected from 147 wells in Audrain, Clark, Lewis, Monroe, Scotland, and Shelby Counties in northeastern Missouri. Nitrite plus nitrate as nitrogen concentrations in samples ranged from less than 0.05 to 60 milligrams per liter and exceeded 10 milligrams per liter in samples from 28 wells. One or more of the herbicides-alachlor, atrazine, cyanazine, metribuzin, and metolachlor-were detected at concentrations greater than 0.10 microgram per liter in water samples from 19 of the wells sampled. Atrazine was detected in water from 18 wells.

  16. Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates.

    PubMed

    Rebich, R A; Coupe, R H; Thurman, E M

    2004-04-01

    The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor

  17. Herbicide concentrations in the Mississippi River Basin - The importance of chloroacetanilide herbicide degradates

    USGS Publications Warehouse

    Rebich, R.A.; Coupe, R.H.; Thurman, E.M.

    2004-01-01

    The proportion of chloroacetanilide herbicide degradates, specifically the ethane sulfonic (ESA) and oxanilic (OA) acids, averaged 70% of the total herbicide concentration in samples from the Upper Mississippi River. In samples from the Missouri River and the Ohio River, the proportion of chloroacetanilide degradates in the total herbicide concentration was much less, 24% and 41%, respectively. The amount of tile drainage throughout the Mississippi River Basin appeared to be related to the occurrence and distribution of chloroacetanilide degradates in water samples. Pesticide concentrations in streams of the Mississippi River Basin have been well characterized. However, recent research demonstrates that in order to more fully understand the fate and transport of pesticides, the major pesticide degradates need to be included in the analysis. From March 1999 through May 2001, water samples from four major junctures of the Mississippi River Basin were collected and analyzed for a suite of herbicides and their degradate compounds. Each sampling site was selected to represent a major part of the Mississippi River: upper and lower Mississippi, Missouri and Ohio Rivers. Each basin has unique landscape variables, geology, hydrology, precipitation, and land use, which is reflected in the pesticide content at the most downstream sample site near the mouth of the Mississippi River. Atrazine was the most frequently detected herbicide (detected in 97% of the samples), followed by metolachlor (60%), and acetochlor (31%). The most frequently detected degradates were metolachlor ESA (69%), followed by deethylatrazine (62%), metolachlor OA (37%), and alachlor ESA (37%). Metolachlor ESA was detected more frequently than its parent compound (69 vs. 60%), as was alachlor ESA (37 vs. 9%). After an improvement was made in the analytical method, metolachlor ESA was detected in every sample, metolachlor OA in 89% of the samples, alachlor ESA in 84%, acetochlor ESA in 71%, and acetochlor

  18. Herbicide solubilization in micelle-clay composites as a basis for controlled release sulfentrazone and metolachlor formulations.

    PubMed

    Ziv, Dana; Mishael, Yael G

    2008-10-01

    Sulfentrazone and metolachlor have been detected in groundwater due to extensive leaching. To reduce herbicide leaching and increase weed control, we have developed, designed, and tested controlled release formulations (CRFs) for both herbicides based on their solubilizion in cationic micelles and adsorption of the mixed micelles (surfactant and herbicide) on a clay mineral, montmorillonite. A better understanding of solubilizing anionic (sulfentrazone) and nonionic (metolachlor) organic molecules in cationic micelles was reached. The percent of active ingredient in the formulations was much higher than previously designed CRFs due to the enhanced solubilization of the herbicides in the micelles and due to their adsorption on the clay. Both CRFs demonstrated controlled release (compared to the commercial formulations) when applied to a thin soil layer. A bioassay in soil columns determined that the new sulfentrazone and metolachlor CRFs significantly improve weed control and reduce leaching (for the latter) in comparison with the commercial formulations. PMID:18781765

  19. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Hall, Kathleen E; Cox, Lucia; Koskinen, William C

    2016-04-27

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes and, in turn, the amount of pesticide readily availability for transport and biodegradation. Sorption-desorption processes are affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time, or aging. Changes in sorption-desorption of metolachlor with aging in soil amended with three macadamia nut shell biochars aged 0 (BCmac-fr), 1 year (BCmac-1yr), and 2 years (BCmac-2yr) and two wood biochars aged 0 (BCwood-fr) and 5 years (BCwood-5yr) were determined. Apparent sorption coefficient (Kd-app) values increased with incubation time to a greater extent in amended soil as compared to unamended soils; Kd-app increased by 1.2-fold for the unamended soil, 2.0-fold for BCwood-fr, 1.4-fold for BCwood-5yr, 2.4-fold for BCmac-fr, 2.5-fold for BCmac-1yr, and 1.9-fold for BCmac-4yr. The increase in calculated Kd-app value was the result of a 15% decrease in the metolachlor solution concentration extractable with CaCl2 solution with incubation time in soil as compared to a 50% decrease in amended soil with very little change in the sorbed concentration. Differences could possibly be due to diffusion to less accessible or stronger binding sites with time, a faster rate of degradation (in solution and on labile sites) than desorption, or a combination of the two in the amended soils. These data show that transport models would overpredict the depth of movement of metolachlor in soil if effects of aging or biochar amendments are not considered. PMID:27050383

  20. EFFECT OF ATRAZINE ON OVARIAN FUNCTION IN THE RAT

    EPA Science Inventory

    The effect of the chlorotriazine herbicide, atrazine, on ovarian function was studied in Long-Evans hooded (LE-hooded) and SpragucDawley (SD) rats. Atrazine was administered by gavage for 21 d to females displaying regular 4-d estrous cycles. In both sfrains, 75 mg/kg/d disrupted...

  1. Response of reservoir atrazine concentrations following regulatory and management changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the early 1990s, atrazine concentrations in United States drinking water supplies exceeding the drinking water standard of 3 parts per billion (ppb) have been identified as a costly and major water quality concern. Atrazine levels in Columbus, Ohio tap water reached 8.74 ppb in the early 1990s...

  2. LAKE MICHIGAN MASS BALANCE PROJECT: ATRAZINE MODELLING RESULTS

    EPA Science Inventory

    The triazine herbicide, atrazine, is used worldwide to control broadleaf and grassy weeds in agricultural regions. Atrazine is extensively used for corn crops in the midwestern US, the Great Lakes region, and in the Lake Michigan basin and has been cited as an emerging pollutant ...

  3. ATRAZINE EFFECTS ON EARLY PREGNANCY AND IMPLANATION IN THE RAT

    EPA Science Inventory

    Atrazine Effects on Early Pregnancy and Implantation in the Rat.
    A.M. Cummings, B.E. Rhodes*, and R.L. Cooper*.
    Reproductive Toxicology Division, NHEERL, USEPA, Research Triangle Park, NC
    Atrazine (ATR), an herbicide, can induce mammary tumors in rats. ATR can also sup...

  4. Using less atrazine in sweet corn: challenges to overcome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the near future, growers may see further restrictions on their most widely used weed control tactic - atrazine. Studies were conducted throughout the major processing sweet corn growing areas in North America to determine the impact of using less atrazine postemergence on sweet corn production. I...

  5. Alternatives to atrazine for weed management in processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed man...

  6. DEVELOPMENTAL TOXICITY OF ATRAZINE METABOLITES IN FISCHER 344 RATS

    EPA Science Inventory

    Previously we have shown that atrazine, a commonly used herbicide, causes full-litter resorption (FLR) in Fischer 344 rats at 50 mg/kg. In this study, we tested four atrazine metabolites for their potential to cause FLR and developmental toxicity. Desethylatrazine (DEA), desis...

  7. EFFECTS OF ATRAZINE ON STEROID PRODUCTION IN RAT GRANULOSA CELLS

    EPA Science Inventory

    Atrazine is one of the most widely used herbicides in the United States. Introduced in the 1950s, atrazine is a broad spectrum herbicide with current total annual use of approximately 76 million pounds of active ingredient. Frogs exhibit gonadal malformations and/or variations ...

  8. The structure of the hexameric atrazine chlorohydrolase AtzA

    PubMed Central

    Peat, T. S.; Newman, J.; Balotra, S.; Lucent, D.; Warden, A. C.; Scott, C.

    2015-01-01

    Atrazine chlorohydrolase (AtzA) was discovered and purified in the early 1990s from soil that had been exposed to the widely used herbicide atrazine. It was subsequently found that this enzyme catalyzes the first and necessary step in the breakdown of atrazine by the soil organism Pseudomonas sp. strain ADP. Although it has taken 20 years, a crystal structure of the full hexameric form of AtzA has now been obtained. AtzA is less well adapted to its physiological role (i.e. atrazine dechlorination) than the alternative metal-dependent atrazine chlorohydrolase (TrzN), with a substrate-binding pocket that is under considerable strain and for which the substrate is a poor fit. PMID:25760618

  9. Atrazine Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1989-01-01

    The herbicide atrazine (2chloro4ethylamino6isopropylamino1,3,5triazine) is the most heavily used agricultural pesticide in North America. Domestically, more than 50 million kg are applied yearly to more than 25 million ha, primarily to control weeds in corn and sorghum crops. Atrazine residues have been detected in runoff from treated fields in lakes and streams at phytotoxic levels. Birds and mammals were comparatively resistant, with a low probability for atrazine accumulation and retention. Data are lacking on indirect effects of atrazine on wildlife granivores and insectivores. Direct effects to aquatic fauna occur at 94 micrograms/l, and higher; however, indirect effects may occur at 20 micrograms/l, and higher, partly through reduction of the food supply of herbivores, and partly through loss of macrophyte habitat. Ecological and toxicological aspects of atrazine in the environment are briefly reviewed, with special emphasis on fishery and wildlife resources.

  10. Accurate mass analysis of ethanesulfonic acid degradates of acetochlor and alachlor using high-performance liquid chromatography and time-of-flight mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Parry, R.

    2002-01-01

    Degradates of acetochlor and alachlor (ethanesulfonic acids, ESAs) were analyzed in both standards and in a groundwater sample using high-performance liquid chromatography-time-of-flight mass spectrometry with electrospray ionization. The negative pseudomolecular ion of the secondary amide of acetochlor ESA and alachlor ESA gave average masses of 256.0750??0.0049 amu and 270.0786??0.0064 amu respectively. Acetochlor and alachlor ESA gave similar masses of 314.1098??0.0061 amu and 314.1153??0.0048 amu; however, they could not be distinguished by accurate mass because they have the same empirical formula. On the other hand, they may be distinguished using positive-ion electrospray because of different fragmentation spectra, which did not occur using negative-ion electrospray.

  11. Introduction of Atrazine-Degrading Pseudomonas SP. Strain ADP to Enhance Phytoremediation of Atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine (ATR) has been widely applied in the US Midwestern states. Public health and ecological concerns have been raised about contamination of surface and ground water by ATR and its chlorinated metabolites, due to their toxicity and potential carcinogenic or endocrinology effects. Phytoremediati...

  12. INTRODUCTION OF ATRAZINE-DEGRADING PSEUDOMONAS SP. STRAIN ADP TO ENHANCE PHYTOREMEDIATION OF ATRAZINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine (ATR) has been widely applied in the US and Mid Western states. Recently, public health and ecological concerns have been raised about contamination of surface and ground water by ATR and its chlorinated metabolites, due to their toxicity and potential carcinogenic or endocrinology effects....

  13. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA

    USGS Publications Warehouse

    Hancock, T.C.; Sandstrom, M.W.; Vogel, J.R.; Webb, R.M.T.; Bayless, E.R.; Barbash, J.E.

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to > 0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0–4.9 μmol m−2 yr−1) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM).

  14. Pesticide fate and transport throughout unsaturated zones in five agricultural settings, USA.

    PubMed

    Hancock, Tracy C; Sandstrom, Mark W; Vogel, Jason R; Webb, Richard M T; Bayless, E Randall; Barbash, Jack E

    2008-01-01

    Pesticide transport through the unsaturated zone is a function of chemical and soil characteristics, application, and water recharge rate. The fate and transport of 82 pesticides and degradates were investigated at five different agricultural sites. Atrazine and metolachlor, as well as several of the degradates of atrazine, metolachlor, acetochlor, and alachlor, were frequently detected in soil water during the 2004 growing season, and degradates were generally more abundant than parent compounds. Metolachlor and atrazine were applied at a Nebraska site the same year as sampling, and focused recharge coupled with the short time since application resulted in their movement in the unsaturated zone 9 m below the surface. At other sites where the herbicides were applied 1 to 2 yr before sampling, only degradates were found in soil water. Transformations of herbicides were evident with depth and during the 4-mo sampling time and reflected the faster degradation of metolachlor oxanilic acid and persistence of metolachor ethanesulfonic acid. The fraction of metolachlor ethanesulfonic acid relative to metolachlor and metolachlor oxanilic acid increased from 0.3 to >0.9 at a site in Maryland where the unsaturated zone was 5 m deep and from 0.3 to 0.5 at the shallowest depth. The flux of pesticide degradates from the deepest sites to the shallow ground water was greatest (3.0-4.9 micromol m(-2) yr(-1)) where upland recharge or focused flow moved the most water through the unsaturated zone. Flux estimates based on estimated recharge rates and measured concentrations were in agreement with fluxes estimated using an unsaturated-zone computer model (LEACHM). PMID:18453430

  15. EFFECTS OF ATRAZINE AND AN ATRAZINE METABOLITE MIXTURE ON DIFFERENTIATED MAMMARY EPITHELIAL CELL MILK PROTEIN PRODUCTION IN CULTURE

    EPA Science Inventory

    Effects of Atrazine and an Atrazine Metabolite Mixture on Differentiated Mammary Epithelial Cell Milk Protein Production in Culture

    E.P. Hines, R. Barbee, M. Blanton, M.S. Pooler, and S.E. Fenton. US EPA, ORD/NHEERL, RTD, RTP, NC, 27711, USA.

    Previous studies have ...

  16. PITUITARY AND ADRENAL HORMONE RELEASE FOLLOWING in vitro EXPOSURE TO ATRAZINE AND ITS METABOLITE DEISOPROPYL-ATRAZINE (DIA)

    EPA Science Inventory

    Atrazine (ATR) is one of the most widely used herbicides in the United States, with current total annual use of approximately 76 million pounds of active ingredient. Previous work in our laboratory has shown that ATR and its metabolite deisopropyl-atrazine (DIA) induce a dose-dep...

  17. Bacterial chemotaxis to atrazine and related s-triazines.

    PubMed

    Liu, Xianxian; Parales, Rebecca E

    2009-09-01

    Pseudomonas sp. strain ADP utilizes the human-made s-triazine herbicide atrazine as the sole nitrogen source. The results reported here demonstrate that atrazine and the atrazine degradation intermediates N-isopropylammelide and cyanuric acid are chemoattractants for strain ADP. In addition, the nonmetabolized s-triazine ametryn was also an attractant. The chemotactic response to these s-triazines was not specifically induced during growth with atrazine, and atrazine metabolism was not required for the chemotactic response. A cured variant of strain ADP (ADP M13-2) was attracted to s-triazines, indicating that the atrazine catabolic plasmid pADP-1 is not necessary for the chemotactic response and that atrazine degradation and chemotaxis are not genetically linked. These results indicate that atrazine and related s-triazines are detected by one or more chromosomally encoded chemoreceptors in Pseudomonas sp. strain ADP. We demonstrated that Escherichia coli is attracted to the s-triazine compounds N-isopropylammelide and cyanuric acid, and an E. coli mutant lacking Tap (the pyrimidine chemoreceptor) was unable to respond to s-triazines. These data indicate that pyrimidines and triazines are detected by the same chemoreceptor (Tap) in E. coli. We showed that Pseudomonas sp. strain ADP is attracted to pyrimidines, which are the naturally occurring structures closest to triazines, and propose that chemotaxis toward s-triazines may be due to fortuitous recognition by a pyrimidine chemoreceptor in Pseudomonas sp. strain ADP. In competition assays, the presence of atrazine inhibited chemotaxis of Pseudomonas sp. strain ADP to cytosine, and cytosine inhibited chemotaxis to atrazine, suggesting that pyrimidines and s-triazines are detected by the same chemoreceptor. PMID:19581468

  18. Bacterial Chemotaxis to Atrazine and Related s-Triazines▿

    PubMed Central

    Liu, Xianxian; Parales, Rebecca E.

    2009-01-01

    Pseudomonas sp. strain ADP utilizes the human-made s-triazine herbicide atrazine as the sole nitrogen source. The results reported here demonstrate that atrazine and the atrazine degradation intermediates N-isopropylammelide and cyanuric acid are chemoattractants for strain ADP. In addition, the nonmetabolized s-triazine ametryn was also an attractant. The chemotactic response to these s-triazines was not specifically induced during growth with atrazine, and atrazine metabolism was not required for the chemotactic response. A cured variant of strain ADP (ADP M13-2) was attracted to s-triazines, indicating that the atrazine catabolic plasmid pADP-1 is not necessary for the chemotactic response and that atrazine degradation and chemotaxis are not genetically linked. These results indicate that atrazine and related s-triazines are detected by one or more chromosomally encoded chemoreceptors in Pseudomonas sp. strain ADP. We demonstrated that Escherichia coli is attracted to the s-triazine compounds N-isopropylammelide and cyanuric acid, and an E. coli mutant lacking Tap (the pyrimidine chemoreceptor) was unable to respond to s-triazines. These data indicate that pyrimidines and triazines are detected by the same chemoreceptor (Tap) in E. coli. We showed that Pseudomonas sp. strain ADP is attracted to pyrimidines, which are the naturally occurring structures closest to triazines, and propose that chemotaxis toward s-triazines may be due to fortuitous recognition by a pyrimidine chemoreceptor in Pseudomonas sp. strain ADP. In competition assays, the presence of atrazine inhibited chemotaxis of Pseudomonas sp. strain ADP to cytosine, and cytosine inhibited chemotaxis to atrazine, suggesting that pyrimidines and s-triazines are detected by the same chemoreceptor. PMID:19581468

  19. DEGRADATION OF ATRAZINE, METOLACHLOR, AND PENDIMETHALIN IN PESTICIDE-CONTAMINATED SOILS: EFFECTS OF AGED RESIDUES ON SOIL RESPIRATION AND PLANT SURVIVAL. (R825549C045)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Use of enzyme immunoassay for large water-quality surveys of major herbicides

    SciTech Connect

    Thurman, E.M.; Aga, D.S.; Zimmerman, L.R.; Goolsby, D.A.

    1996-10-01

    Commercially available enzyme-linked immunosorbent assay (ELISA) was used for the determination of major herbicides in several large water-quality surveys of surface water, rainwater, and ground water throughout the United States. The ELISA results were compared with gas chromatography/mass spectrometry (GC/MS) for accuracy and cross reactivity. In total, five compounds were analyzed: alachlor, atrazine, cyanazine, metolachlor, and (2,4-dichlorophenoxy) acetic acid (2,4-D). Results indicated that the ELISA and GC/MS results were comparable for cyanazine and metolachlor. The atrazine ELISA correlated well with GC/MS for surface- and ground-water samples from the central United States but did not correlate with samples from Texas where the cotton triazine, prometryn, is used. Results using the alachlor ELISA were poor because of cross reactivity with the metabolite, alachlor ethane-sulfonic acid. The ELISA for (2,4-dichlorophenoxy) acetic acid was insensitive at concentrations that occur in most surface water.

  1. Herbicide concentrations in and loads transported by the Conestoga River and Pequea Creek, Lancaster County, Pennsylvania, 1992-95

    USGS Publications Warehouse

    Reed, Lloyd A.; Koerkle, Edward H.; Takita, Charles S.

    1997-01-01

    Water samples were collected from four streams in Lancaster County from 1992 through 1995 and analyzed for selected herbicides. Samples were collected from the Little Conestoga Creek near Churchtown, Mill Creek (a tributary to the Conestoga River) at Elshelman Mill Road near Lyndon, the Conestoga River at Conestoga, and Pequea Creek at Martic Forge. Most samples were collected from stormflow that occurred during the growing season. Samples were analyzed for alachlor, aldrin, atrazine, chlordane, cyanazine, dieldrin, malathion, metolachlor, propazine, simazine, and toxaphene. Most samples had detectable concentrations of alachlor, atrazine, metolachlor, and simazine, and the loads of these constituents that were transported during each of the 4 years were computed. Of the samples collected from each of the streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek?10, 12, 15, and 18 percent, respectively, had atrazine concentrations greater than 3.0 micrograms per liter, the U.S. Environmental Protection Agency maximum contaminant level. Loads of atrazine, metolochlor, and simazine were greater than loads of any other herbicides. The largest loads were transported during 1994. Loads of atrazine transported by the four streams during periods of storm- flow from May to September 1994 totaled 3.46, 28.3, 263, and 46.8 pounds, respectively. The total loads of atrazine transported by the four streams?Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek?during calendar year 1994 were 6.48, 54.1, 498, and 102 pounds, respectively. A little less than half the atrazine load transported by each stream?45, 39, 42, and 42 percent, respectively?was transported during storms that occurred from May through September. Average annual yields of atrazine for the period 1992-95 were 0.59, 0.64, 0.68, and 0.51 pounds per square mile from the Little Conestoga Creek, Mill Creek, Conestoga River, and Pequea Creek, respectively. Average annual yields of

  2. Effects of atrazine on periphyton under grazing pressure.

    PubMed

    Muñoz, I; Real, M; Guasch, H; Navarro, E; Sabater, S

    2001-11-12

    An experiment was carried out using indoor experimental channels to assess the long-term effect (18 days) of herbivores (Physella acuta, Gastropoda) on periphyton communities exposed to low levels of atrazine (14 microg l(-1)). We hypothesized that herbivorism modifies the response of periphyton to atrazine. Carbon incorporation, chlorophyll-a content, biovolume and algal taxonomic composition in the channels that contained atrazine were not significantly different from the control channels (not receiving atrazine). In channels with grazers and atrazine, there was a significant reduction of carbon incorporation and algal density. In this treatment, physiognomic forms and algal composition were significantly different from the others. The biomass of grazers (measured as change in dry mass) was not significantly affected by the addition of atrazine. Grazers maintained low levels of periphyton biomass, enhancing algal cell exposition to toxicant and inhibiting any adaptation of the algae to the toxic exposure. The increase in atrazine toxicity with grazing not only affected the metabolism, but also the structure of the algal community, which suggests that effects were not transient but permanent. PMID:11595312

  3. Separation-free electrochemical immunosensor for rapid determination of atrazine.

    PubMed

    Keay, R W; McNeil, C J

    1998-10-15

    A separation-free electrochemical immunoassay method for the detection of the pesticide atrazine is described. The method developed is a competitive ELISA incorporating disposable screen printed horseradish peroxidase modified electrodes as the detector element in conjunction with single-use atrazine immuno-membranes. Screen printed carbon electrodes were prepared using carbon ink incorporating horseradish peroxidase. A monoclonal antibody for atrazine was immobilised onto Biodyne C membranes which were, in turn, placed over the electrode surface. The assay was based on competition for available binding sites between free atrazine and an atrazine-glucose oxidase conjugate prepared 'in-house'. In the presence of glucose, H2O2 formed by the conjugate was reduced by enzyme-channelling via the HRP electrode. The HRP was in turn re-reduced by a direct electron transfer mechanism at a potential of +50 mV Vs Ag/AgCl. Any H2O2 formed in the bulk solution by unbound atrazine-GOD conjugate was scavenged by excess catalase thus removing the requirement for a washing step. The performance of the method was compared with a commercial immunoassay kit for atrazine. PMID:9839385

  4. Effect of prairie grass on the dissipation, movement, and bioavailability of selected herbicides in prepared soil columns.

    PubMed

    Belden, Jason B; Phillips, Todd A; Coats, Joel R

    2004-01-01

    Phytoremediation of pesticide-contaminated sites using a prairie grass mixture (big bluestem, yellow indiangrass, and switch grass) has been suggested as a low-cost in situ remediation strategy. In this study, the proposed phytoremediation technique was applied to artificially prepared soil columns that were fortified with high concentrations of four herbicides (atrazine, alachlor, metolachlor, and pendimethalin). The fate and toxicity of the herbicides were compared with results from soil columns lacking vegetation. After either 150 or 240 d of phytoremediation, soils were watered with 7.5 cm of water, and leachate was collected. Columns were then divided into three sections (top, middle, bottom). For each section of the column, chemical analysis (ethyl acetate and water extractions), earthworm accumulation tests, and lettuce seedling growth tests were performed. The leachate was chemically analyzed and tested for chronic toxicity to algae. Atrazine and alachlor degraded rapidly in the column, and the total amount recoverable was less than 2% of applied. After 250 d, vegetation reduced the total recoverable amounts of metolachlor and pendimethalin by 78 and 39%, respectively. Metolachlor was the only compound found in leachate, and the amounts recovered were reduced 5- to 20-fold by vegetation. Vegetation decreased the bioavailability of pendimethalin as measured by 8-d, earthworm bioaccumulation factors (BAFs) and lettuce seedling growth assays. Decreases in mobility and bioavailability indicate that this technique may stabilize pesticide residues in addition to increasing dissipation rates. PMID:14768876

  5. Uptake, translocation, and metabolism of oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor) and their influence on metolachlor metabolism

    SciTech Connect

    Yenne, S.P.; Hatzios, K.K.; Meredith, S.A. )

    1990-10-01

    The uptake, translocation, and metabolism of the oxime ether safeners oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor (L.) Moench, var. Funk G-522-DR) were investigated. Following application of ({sup 14}C)oxabetrinil and ({sup 14}C)CGA-133205 to imbibed seeds, it appears that the safeners are conferring protection to grain sorghum by increasing the rate of metolachlor metabolism.

  6. Runoff and Leaching of Metolachlor from Mississippi River Alluvial Soil during Seasons of Average and Below-Average Rainfall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...

  7. Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples

    USGS Publications Warehouse

    Schraer, S.M.; Shaw, D.R.; Boyette, M.; Coupe, R.H.; Thurman, E.M.

    2000-01-01

    Enzyme-linked immunosorbent assay (ELISA) data from surface water reconnaissance were compared to data from samples analyzed by gas chromatography for the pesticide residues cyanazine (2-[[4-chloro-6-(ethylamino)-l,3,5-triazin-2-yl]amino]-2-methylpropanenitrile ) and metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide). When ELISA analyses were duplicated, cyanazine and metolachlor detection was found to have highly reproducible results; adjusted R2s were 0.97 and 0.94, respectively. When ELISA results for cyanazine were regressed against gas chromatography results, the models effectively predicted cyanazine concentrations from ELISA analyses (adjusted R2s ranging from 0.76 to 0.81). The intercepts and slopes for these models were not different from 0 and 1, respectively. This indicates that cyanazine analysis by ELISA is expected to give the same results as analysis by gas chromatography. However, regressing ELISA analyses for metolachlor against gas chromatography data provided more variable results (adjusted R2s ranged from 0.67 to 0.94). Regression models for metolachlor analyses had two of three intercepts that were not different from 0. Slopes for all metolachlor regression models were significantly different from 1. This indicates that as metolachlor concentrations increase, ELISA will over- or under-estimate metolachlor concentration, depending on the method of comparison. ELISA can be effectively used to detect cyanazine and metolachlor in surface water samples. However, when detections of metolachlor have significant consequences or implications it may be necessary to use other analytical methods.

  8. Determination of diphenamide, napropamide and metolachlor in tobacco by gel permeation chromatographic clean-up and high performance liquid chromatography.

    PubMed

    Liu, Hongxia; Dang, Yuanlin; Zhang, Shusheng; Liu, Huimin; Qu, Lingbo; Liao, Xincheng; Zhao, Yufen; Wu, Yangjie

    2005-05-01

    Diphenamide, napropamide and metolachlor (FIG. 1) are selective, pre-emergence arylamide herbicides used to control the growth of annual grasses and broadleaf weeds in a variety of fields, e.g. fruit trees, nuts, corns, green crops, etc. They possess high activity and moderate toxicity. For food and environment safety, the detailed investigations on their residues and metabolism are very important. Diphenamide, napropamide and metolachlor in the pesticide products, serum, urine, soil, environmental water, fruits and wine have been widely analyzed by ELISA, fluorescence, phosphorescence, capillary electrophoresis, high performance liquid chromatography (HPLC), gas chromatography(GC) and GC mass spectrometry (GC-MS). However, to our knowledge, simultaneous residue analysis of diphenamide, napropamide and metolachlor in tobacco samples has not been extensively documented. Tobacco is greatly consumed by smokers throughout the world. The pesticide residue in tobaccos might be potentially harmful to smokers' health. With this in mind the residue determination and control of diphenamide, napropamide and metolachlor in the tobacco leaves are very important for tobacco products and consumers. For these three herbicides, the tolerable maximum residue limits (MRLs) have been limited ranging from 0.05 (for tobacco products) to 5 mg/kg (for tobacco leaves) in different European countries. For the complex tobacco samples, the GC and HPLC with UV detection suffer from matrix interference making quantification and identification of these herbicides difficult. In such cases the removal of the matrix effects and identification of the target compounds are of great importance. The present work reports the extraction and clean up procedures, as well as, the chromatographic conditions developed for the simultaneous determination of diphenamide, napropamide and metolachlor residues in the fluecured tobacco leaves, from the different sources using HPLC-UV method. PMID:16477944

  9. Atrazine dissipation in s-Triazine-adapted and Non-adapted soil from Coloroado and Mississippi: Implications of enhanced degradation on atrazine fate and transport parameters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modelers and regulatory agencies typically use default atrazine half-life values of 60 to 120 d to predict the herbicide’s transport; however, if atrazine persistence is reduced in soils exhibiting enhanced degradation, but modelers continue to use historic atrazine persistence estimates, then accur...

  10. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)

    PubMed Central

    Hayes, Tyrone B.; Khoury, Vicky; Narayan, Anne; Nazir, Mariam; Park, Andrew; Brown, Travis; Adame, Lillian; Chan, Elton; Buchholz, Daniel; Stueve, Theresa; Gallipeau, Sherrie

    2010-01-01

    The herbicide atrazine is one of the most commonly applied pesticides in the world. As a result, atrazine is the most commonly detected pesticide contaminant of ground, surface, and drinking water. Atrazine is also a potent endocrine disruptor that is active at low, ecologically relevant concentrations. Previous studies showed that atrazine adversely affects amphibian larval development. The present study demonstrates the reproductive consequences of atrazine exposure in adult amphibians. Atrazine-exposed males were both demasculinized (chemically castrated) and completely feminized as adults. Ten percent of the exposed genetic males developed into functional females that copulated with unexposed males and produced viable eggs. Atrazine-exposed males suffered from depressed testosterone, decreased breeding gland size, demasculinized/feminized laryngeal development, suppressed mating behavior, reduced spermatogenesis, and decreased fertility. These data are consistent with effects of atrazine observed in other vertebrate classes. The present findings exemplify the role that atrazine and other endocrine-disrupting pesticides likely play in global amphibian declines. PMID:20194757

  11. Herbicides in the Pecatonica, Trempealeau, and Yahara Rivers in Wisconsin, May 1997-July 1998

    USGS Publications Warehouse

    Graczyk, David J.; Vanden Brook, James P.; Rheineck, Bruce D.

    1999-01-01

    In 1997, Wisconsin farmers applied 8.7 million pounds of herbicides on corn. The five most commonly applied herbicides (in lb (pounds) of active ingredient per acre) on corn in 1997 were atrazine, metolachlor, acetochlor, alachlor and cyanazine. A 1996 study by the U.S. Geological Survey (USGS) and the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP) found that the most heavily applied agricultural herbicides were detected more frequently and at higher concentrations in the Pecatonica and Yahara Rivers in southern Wisconsin than the less heavily applied herbicides (Graczyk and Vanden Brook, 1997). The calculated herbicide loads a from May 15 to July 15, 1996 at the Pecatonica River ranged from 47.2 lb of alachlor to 484 lb of atrazine. For the Yahara River, loads ranged from 36.1 lb of alachlor to 289 lb of atrazine. The yields b (load per square mile) for atrazine were similar in the two water- sheds. This result was unexpected because the use of atrazine is prohibited on 94 percent of the Yahara River Watershed, but on only 4 percent of the Pecatonica River watershed. The unexpected atrazine result led to a continuation of the study in 1997 and 1998, when samples were collected again at the two sites sampled in 1996, and at a site in the upper third of the Yahara River Watershed that is entirely under atrazine use prohibition. For comparison purposes, a site in west-central Wisconsin also was sampled to determine herbicide loads and yields in another geographic area in the state

  12. Linking Watershed Atrazine and PCB Loads to Lake Michigan

    EPA Science Inventory

    An introduction, overview, and results of mathematical modeling in Lake Michigan. The presentation focuses on model mass balances and forecasts for atrazine and PCBs. The mass balance provides an overview of the sources, interactions, movement, behavior, and fate of contaminant...

  13. Atrazine degradation in a small stream in Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1993-01-01

    A study was conducted during 1990 through an 11.2-km reach of Roberts Creek in northeastern Iowa to determine the fate of atrazine in a surface water environment Water samples were collected at ~1-month intervals from April through November during stable low to medium flow conditions and analyzed for atrazine and two of its initial biotic degradation products, desethylatrazine and deisopropylatrazine. Samples were collected on the basis of a Lagrangian model of streamflow in order to sample the same parcel of water as it moved downstream. Atrazine concentrations substantially decreased (roughly 25-60%) between water entering and exiting the study reach during four of the seven sampling periods. During these same four sampling periods, the concentrations of the two biotic atrazine degradation products were constant or decreasing downstream, suggesting an abiotic degradation process.

  14. Synthetic organic agrochemicals in the lower Mississippi River and its major tributaries: Distribution, transport and fate

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1992-01-01

    The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2',6'-diethylacetanilide, 2-hydroxy-2',6'-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products were generated from point and non-point sources. Seasonal variations and hydrologic conditions controlled the loads of these compounds in the Mississippi River. Cross-channel mixing was slow downstream from major river confluences, possibly requiring several hundred kilometers of downriver transit for completion. The annual transport of these compounds into the Gulf of Mexico was estimated to be < 2% of the annual application of each herbicide in the Midwest.The Mississippi River and its major tributaries transport herbicides and their degradation products from agricultural areas in the mid-western U.S.A. These compounds include atrazine and its degradation products (desethyl- and desisopropylatrazine), simazine, cyanazine, metolachlor, and alachlor and its degradation products (2-chloro-2???,6???-diethylacetanilide, 2-hydroxy-2???,6???-diethylacetanilide and 2,6-diethylaniline). These compounds were identified and confirmed by gas chromatography-ion trap mass spectrometry. Loads of these compounds were determined during five sampling trips in 1987-1989. Stream loads of these compounds indicated that atrazine and metolachlor were relatively conservative in downstream transport. Alachlor and its degradation products

  15. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  16. Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography.

    PubMed

    Chen, Chi-Zen; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Huang, Jenn-Wen; Jen, Jen-Fon

    2011-08-10

    In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium. PMID:21707080

  17. Molecular Basis of a Bacterial Consortium: Interspecies Catabolism of Atrazine

    PubMed Central

    de Souza, Mervyn L.; Newcombe, David; Alvey, Sam; Crowley, David E.; Hay, Anthony; Sadowsky, Michael J.; Wackett, Lawrence P.

    1998-01-01

    Pseudomonas sp. strain ADP contains the genes, atzA, -B, and -C, that encode three enzymes which metabolize atrazine to cyanuric acid. Atrazine-catabolizing pure cultures isolated from around the world contain genes homologous to atzA, -B, and -C. The present study was conducted to determine whether the same genes are present in an atrazine-catabolizing bacterial consortium and how the genes and metabolism are subdivided among member species. The consortium contained four or more bacterial species, but two members, Clavibacter michiganese ATZ1 and Pseudomonas sp. strain CN1, collectively mineralized atrazine. C. michiganese ATZ1 released chloride from atrazine, produced hydroxyatrazine, and contained a homolog to the atzA gene that encoded atrazine chlorohydrolase. C. michiganese ATZ1 stoichiometrically metabolized hydroxyatrazine to N-ethylammelide and contained genes homologous to atzB and atzC, suggesting that either a functional AtzB or -C catalyzed N-isopropylamine release from hydroxyatrazine. C. michiganese ATZ1 grew on isopropylamine as its sole carbon and nitrogen source, explaining the ability of the consortium to use atrazine as the sole carbon and nitrogen source. A second consortium member, Pseudomonas sp. strain CN1, metabolized the N-ethylammelide produced by C. michiganese ATZ1 to transiently form cyanuric acid, a reaction catalyzed by AtzC. A gene homologous to the atzC gene of Pseudomonas sp. strain ADP was present, as demonstrated by Southern hybridization and PCR. Pseudomonas sp. strain CN1, but not C. michiganese, metabolized cyanuric acid. The consortium metabolized atrazine faster than did C. michiganese individually. Additionally, the consortium metabolized a much broader set of triazine ring compounds than did previously described pure cultures in which the atzABC genes had been identified. These data begin to elucidate the genetic and metabolic bases of catabolism by multimember consortia. PMID:16349478

  18. Assessing atrazine persistence in soil following a severe drought

    SciTech Connect

    Leavitt, R.A.; Kells, J.J.; Bunkelmann, J.R.; Hollingworth, R.M. )

    1991-01-01

    Much of the corn production region in the US, including Michigan, experienced a severe drought during the 1988 growing season. The very little rainfall coupled with temperatures above normal created extremely dry soil conditions during the period when soil moisture is usually adequate in Michigan raised concern about herbicide carryover. Atrazine (2-chloro-40(ethylamino)-6-(isopropylamino)-s-triazine) is the most widely used herbicide with potential to persist in sufficient quantity to injure sensitive rotational crops. Atrazine is degraded in soil by both chemical hydrolysis and microbial breakdown with these processes occurring much more rapidly under conditions of adequate soil moisture and relatively warm temperature. It is generally accepted that the risk of atrazine carryover is greater following a year of low rainfall, since microbial activity is favored by adequate soil moisture. The 1988 drought created a critical need for an assessment of atrazine concentration in soil to advise producers on crop management options related to atrazine sensitive crops. The objectives of this study were to assess: (1) atrazine residue levels in Michigan soils following the 1988 drought, and (2) the suitability of the immunoassay technique over a wide variety of soils.

  19. Factors affecting atrazine concentration and quantitative determination in chlorinated water.

    PubMed

    Wulfeck-Kleier, Karen A; Ybarra, Michael D; Speth, Thomas F; Magnuson, Matthew L

    2010-01-29

    Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be observed. Some transformation products detected through the use of high performance liquid chromatography-electrospray mass spectrometry are consistent with the formation of N-chloro atrazine. The effects of applied chlorine, pH, and reaction time on the transformation reaction were studied to help understand the practical implications of the transformation on the accurate determination of atrazine in drinking waters. The errors in the determination of atrazine are a function of the type of dechlorinating agent applied during sample preparation and the analytical instrumentation utilized. When a reductive dechlorinating agent, such as sodium sulfite or ascorbic acid is used, the quantification of the atrazine can be inaccurate, ranging from 2-fold at pH 7.5 to 30-fold at pH 6.0. The results suggest HPLC/UV and ammonium chloride quenching may be best for accurate quantification. Hence, the results also appear to have implications for both compliance monitoring and health effects studies that utilize gas chromatography analysis with sodium sulfite or ascorbic acid as the quenching agent. PMID:20022012

  20. Modeling the environmental fate of atrazine

    SciTech Connect

    Devillers, J.; Bintein, S.; Domine, D.

    1996-10-01

    Modeling the environmental distribution of organic pollutants from their physicochemical properties is essential for hazard assessment. For this purpose, biosphere is generally divided into a given number of compartments (e.g., air, water, soil) and the physical, chemical, and biological processes involved in the environmental fate of pollutants are defined in terms of mathematical equations. Models are then computed so that an easy and rapid handling is offered. Based on this strategy, CHEMFRANCE, a regional fugacity level III model allowing to calculate the environmental distribution of organic chemicals in France or any user-defined region is well suited for rapid screening analyses. In this study, CHEMFRANCE was used for modeling the environmental fate of atrazine. The simulations were compared with field and laboratory results recorded in Europe and North-America.

  1. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  2. DISTRIBUTION OF ATRAZINE IN PC12 CELLS AND MODULATION OF CATECHOLAMINE SYNTHESIS

    EPA Science Inventory

    Previously, we reported that atrazine disrupts ovarian function by altering hypothalamic catecholamine (CA) concentrations and the consequent regulation of pituitary LH release and prolactin secretion in the young female rat. We also showed that atrazine directly interacts with t...

  3. GESTATIONAL ATRAZINE EXPOSURE IN THE RAT: EFFECTS ON MAMMARY GLAND DEVELOPMENT AND FUNCTION IN MULTIPLE GENERATIONS

    EPA Science Inventory

    The chlorotriazine herbicides currently represent the most heavily used of all agricultural pesticides, with atrazine being the most common of these chemicals. Rodent toxicology studies indicate that atrazine can disrupt endocrine function and among its effects is an increased in...

  4. Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation

    SciTech Connect

    Wang, D.; Shin, J.J.; Cheney, M.; Sposito, G.; Spiro, T.

    1999-09-16

    The herbicide atrazine is widely distributed in the environment, and its reactivity with soil minerals is an important issue. We have studied atrazine degradation on the surface of synthetic {delta}-MnO{sub 2}(birnessite) using UV resonance raman spectroscopy and gas chromatography. The products are mainly mono and didealkyl atrazine. Atrazine disappearance is rapid {tau}1/2 {approx} 5 h at 30C and independent of whether O{sub 2} is present or not.

  5. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  6. Significance of atrazine as a tank-mix partner with tembotrione

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manufacturers of several postemergence corn herbicides recommend tank-mixing the herbicide with atrazine to improve performance; however, regulatory changes in atrazine use are possible. The objective of this work was to quantify the effect of postemergence atrazine on effectiveness of tembotrione i...

  7. Waste Foundry Sand Soil Amendment to Reduce Atrazine Loading to Surface Runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments was conducted to evaluate the potential for surface applied foundry sand (FS) waste material to reduce atrazine in runoff water from fields having atrazine-based weed management. In the first experiment, the ability of several FSs to remove atrazine from the water column was ...

  8. Spatial Distribution of Enhanced Atrazine Degradation across Northeastern Colorado Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to 1) assess the spatial distribution of enhanced atrazine degradation ...

  9. Atrazine Biodegradation in a Cisne Soil Exposed to a Major Spill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional soil tests, culture-based microbial methods, and the novel method of 15N-DNA stable isotope probing (SIP) were employed to illustrate atrazine biodegradation as related to the physiochemical properties of an atrazine-exposed Cisne soil. This soil exhibited enhanced atrazine degradation...

  10. 76 FR 56754 - Petition Requesting Ban on Use and Production of Atrazine; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... AGENCY Petition Requesting Ban on Use and Production of Atrazine; Notice of Availability AGENCY... the environmental advocacy group Save the Frogs that EPA ban the use and production of atrazine. DATES... environmental advocacy group Save the Frogs requesting that EPA ban the use and production of atrazine....

  11. Selection and analysis of sites highly vulnerable to groundwater contamination in southwestern Michigan. Final technical report, 1 April 1991-31 March 1992

    SciTech Connect

    Ervin, J.L.; Lusch, D.P.

    1992-04-01

    An ongoing study in central Cass County has demonstrated extensive nitrate contamination of the glacial drift aquifer in the Donnell Lake watershed. In addition, about 20% of 121 wells sampled showed detectable herbicides (atrazine, alachlor/metolachlor, and/or alachlor soil metabolite). Monthly monitoring of these wells in 1991 demonstrated stable water quality in the deeper wells, with some shallow wells showing from 30 to 300% increases in nitrate concentration over the summer. One well showed an 80% decrease in nitrate concentration. Herbicide concentrations were quite stable and consistent with previous findings. Generally the deeper wells (over 50 feet) demonstrated less contamination, but one 80 foot deep well demonstrated substantial nitrate and herbicide concentrations.

  12. Kinetics and spectroscopic observations of atrazine dealkylation on manganese oxides

    SciTech Connect

    Malengreau, N.; Sposito, G.; Cheney, M.A.; Crowley, D.E.

    1997-12-31

    Abiotic transformations of organic pollutants are often neglected in remediation scenarios but nonetheless can contribute significantly to detoxification. Mn oxide minerals are capable of degrading organic pollutants adsorbed to their surfaces by both redox and proton-promoted mechanisms. Concurrently with calorimetric, gas-pressure, chromatographic, and ESR methods, we used ICP, DRS, DRIFT, and FTIR spectroscopies to investigate atrazine degradation on three Mn oxides. We found that N-dealkylation can occur abiotically, leading to the formation of deethylatrazine and deisopropylatrazine. The Mn extractability after degradation of atrazine was highly dependent on the Mn oxide. Extractable Mn increased with time for cryptomelane, was constant for pyrolusite, and remained very low for birnessite. The extractable Mn is Mn(II). UV signatures of atrazine by-products were different from one another and were used to trace degradation products at the Mn oxide surface. Mechanistic interpretation of the in situ reaction kinetics and thermodynamics will be discussed.

  13. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    PubMed

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine. PMID:26832879

  14. Photoacoustic characteristics of leaves of atrazine-resistant weed mutants.

    PubMed

    Havaux, M

    1989-07-01

    The photosynthetic characteristics of leaves of atrazine-resistant and-susceptible biotypes of several weed species (Solanum nigrum, Senecio vulgaris, Epilobium ciliatum and Chenopodium album) were compared using the photoacoustic method. Analysis of the dependence of the photoacoustic signal of the modulation frequency indicated that, in Solanum, Epilobium and Senecio, the relative quantum yield of O2 evolution ϕ (estimated by the ratio of the amplitude of the O2 signal, AOX, to that of the photothermal signal, APT) was substantially reduced in the atrazine-resistant mutant, without any changes in the O2 diffusion characteristics of the leaves. In contrast, in Chenopodium, atrazine-resistance was associated with a concomitant change in ϕ and in the leaf diffusion parameters. This latter change suggests that the leaf internal anatomy was modified in the resistant Chenopodium. Measurements of the Emerson enhancement indicated that the reduction of ϕ observed in the atrazine-resistant mutants was caused by a marked decrease in the photochemical potential of PS II (β). The study of the light intensity dependence of the AOX/APT ratio showed that saturation of O2 evolution occurred at the same light level (around 2000 μmol m(-2) s(-1)) in both types of plants. However, the relative maximal rate of O2 evolution was slightly lower (-10%) in the atrazine-resistant biotype as compared to the wild type. Reduced ϕ and light-saturated rate of O2 evolution were also measured in atrazine-resistant weed biotypes using a conventional Clark-type O2 electrode. PMID:24424493

  15. Comparing the sensitivity of geographically distinct Lemna minor populations to atrazine.

    PubMed

    Dalton, Rebecca L; Nussbaumer, Christina; Pick, Frances R; Boutin, Céline

    2013-05-01

    The objectives of this study were to compare the sensitivities of field populations and a laboratory culture of a duckweed species (Lemna minor) to the herbicide atrazine using three different endpoints and to determine whether sensitivity to atrazine was affected by past exposure to the herbicide. L. minor cultures were purchased commercially or collected from field sites within an agricultural watershed and exposed to atrazine for 7 days under greenhouse conditions. Populations differed significantly in their sensitivity to atrazine. Biomass was more sensitive than frond number, while chlorophyll fluorescence was not a sensitive endpoint. Overall, the sensitivity of the various populations to atrazine was not strongly related to measures of past exposure to agriculture stressors. Positive correlations between biomass twenty-five percent inhibition concentrations (IC25s), biomass estimated marginal means and in-stream atrazine concentrations were observed, providing evidence that atrazine exposure is linked to a decrease in sensitivity to atrazine. However, IC25s generated for each population were similar, ranging from 19 to 40 and 57 to 92 μg/L atrazine for biomass and frond data respectively, and likely do not represent biologically significant differences in atrazine sensitivity. Given the small range in sensitivity observed between populations, commercial laboratory cultures appear to provide a good estimate of the sensitivity of field populations of L. minor to atrazine and should continue to be used in regulatory phytotoxicity testing. PMID:23535915

  16. Estimation of the Potential for Atrazine Transport in a Silt Loam Soil

    USGS Publications Warehouse

    Eckhardt, D.A.V.; Wagenet, R.J.

    1996-01-01

    The transport potential of the herbicide atrazine (2-chloro-4-ethyl-6-isopropyl-s-triazine) through a 1-meter-thick root zone of corn (Zea mays L.) in a silty-loam soil in Kansas was estimated for a 22-year period (1972-93) using the one-dimensional water-flow and solute-transport model LEACHM. Results demonstrate that, for this soil, atrazine transport is directly related to the amount and timing of rain that follows spring applications of atrazine. Two other critical transport factors were important in wet years - [1] variability in atrazine application rate, and [2] atrazine degradation rates below the root zone. Results demonstrate that the coincidence of heavy rain soon after atrazine application can cause herbicide to move below the rooting zone into depths at which biodegradation rates are assumed to be low but are often unknown. Atrazine that reaches below the rooting zone and persists in the underlying soil can subsequently be transported into ground water as soil water drains, typically after the growing season. A frequency analysis of atrazine concentrations in subsurface drainage, combined with field data, demonstrates the relative importance of critical transport factors and confirms a need for definitive estimates of atrazine-degradation rates below the root zone. The analysis indicates that periodic leaching of atrazine can be expected for this soil when rainfall that exceeds 20 cm/mo coincides with atrazine presence in soil.

  17. Atrazine binds to F1F0-ATP synthase and inhibits mitochondrial function in sperm.

    PubMed

    Hase, Yasuyoshi; Tatsuno, Michiko; Nishi, Takeyuki; Kataoka, Kosuke; Kabe, Yasuaki; Yamaguchi, Yuki; Ozawa, Nobuaki; Natori, Michiya; Handa, Hiroshi; Watanabe, Hajime

    2008-02-01

    Atrazine is a widely used triazine herbicide. Although controversy still exists, a number of recent studies have described its adverse effects on various animals including humans. Of particular interest is its effects on reproductive capacity. In this study, we investigated the mechanisms underlying the adverse effects of atrazine, with a focus on its effects on sperm. Here we show evidence that mitochondrial F(1)F(0)-ATP synthase is a molecular target of atrazine. A series of experiments with sperm and isolated mitochondria suggest that atrazine inhibits mitochondrial function through F(1)F(0)-ATP synthase. Moreover, affinity purification using atrazine as a ligand demonstrates that F(1)F(0)-ATP synthase is a major atrazine-binding protein in cells. The inhibitory activity against mitochondria and F(1)F(0)-ATP synthase is not limited to atrazine but is likely to be applicable to other triazine-based compounds. Thus, our findings may have wide relevance to pharmacology and toxicology. PMID:18060860

  18. A Qualitative Meta-Analysis Reveals Consistent Effects of Atrazine on Freshwater Fish and Amphibians

    PubMed Central

    Rohr, Jason R.; McCoy, Krista A.

    2010-01-01

    Objective The biological effects of the herbicide atrazine on freshwater vertebrates are highly controversial. In an effort to resolve the controversy, we conducted a qualitative meta-analysis on the effects of ecologically relevant atrazine concentrations on amphibian and fish survival, behavior, metamorphic traits, infections, and immune, endocrine, and reproductive systems. Data sources We used published, peer-reviewed research and applied strict quality criteria for inclusion of studies in the meta-analysis. Data synthesis We found little evidence that atrazine consistently caused direct mortality of fish or amphibians, but we found evidence that it can have indirect and sublethal effects. The relationship between atrazine concentration and timing of amphibian metamorphosis was regularly nonmonotonic, indicating that atrazine can both accelerate and delay metamorphosis. Atrazine reduced size at or near metamorphosis in 15 of 17 studies and 14 of 14 species. Atrazine elevated amphibian and fish activity in 12 of 13 studies, reduced antipredator behaviors in 6 of 7 studies, and reduced olfactory abilities for fish but not for amphibians. Atrazine was associated with a reduction in 33 of 43 immune function end points and with an increase in 13 of 16 infection end points. Atrazine altered at least one aspect of gonadal morphology in 7 of 10 studies and consistently affected gonadal function, altering spermatogenesis in 2 of 2 studies and sex hormone concentrations in 6 of 7 studies. Atrazine did not affect vitellogenin in 5 studies and increased aromatase in only 1 of 6 studies. Effects of atrazine on fish and amphibian reproductive success, sex ratios, gene frequencies, populations, and communities remain uncertain. Conclusions Although there is much left to learn about the effects of atrazine, we identified several consistent effects of atrazine that must be weighed against any of its benefits and the costs and benefits of alternatives to atrazine use. PMID

  19. Agricultural chemicals in ground and surface water in a small watershed in Clayton County, Iowa, 1988-91

    USGS Publications Warehouse

    Kalkhoff, S.J.; Schaap, B.D.

    1995-01-01

    Nitrogen was present in all water samples from Deer Creek. Nitrate concentrations ranged from 0.70 to 17 mg/L. Alachlor was detected in 11 percent of the samples, atrazine in 69 percent, cyanazine in 19 percent, and metolachlor in 33 percent. Alachlor concentrations ranged from less than 0.10 to 0.53 ug/L, atrazine ranged from less than 0.10 to 55 ug/L, cyanazine ranged from less than 0.10 to 12 ug/L, and metolachlor ranged from less than 0.10 to 69 ug/L. Herbicide detections occurred most frequently in late spring and early summer during or just following chemical application. Overland flow is an important source of nitrogen and herbicides to Deer Creek. Substantial amounts of agricultural chemicals are transported from the watershed. As much as 4,700 pounds, or 6.7 pounds per acre, of nitrogen were estimated to be transported from the watershed in 1 year. Nitrogen loads transported from the Deer Creek watershed were less during dry years than during years with average or greater than average rainfall.

  20. ATRAZINE DISRUPTS THE HYPOTHALAMIC CONTROL OF PITUITARY-OVARIAN FUNCTION

    EPA Science Inventory

    The chloro-S-triazine herbicides (i.e., atrazine, simazine, cyanazine) constitute the largest group of herbicides sold in the United States. Despite their extensive usage, relatively little is known about the possible human-health effects and mechanism(s) of action of these compo...

  1. LAKE MICHIGAN MASS BALANCE: ATRAZINE MODELING AND LOADS

    EPA Science Inventory

    The Lake Michigan Mass Balance Study measured PCBs, mercury, trans-nonachlor, and atrazine in rivers, the atmosphere, sediments, lake water, and the food chain. A mathematical model will predict what effect reducing pollution will have on the lake, and its large fish (lake trout ...

  2. ATRAZINE DISPOSITION IN PREGNANT AND LACTATING LONG-EVANS RATS

    EPA Science Inventory

    Atrazine (ATR) is a widely used herbicide shown to delay early mammary development in female offspring of gestationally exposed rats. The effects of ATR can be induced by in utero exposure and/or suckling from a dam exposed during late pregnancy, but ATR is reported to have a hal...

  3. Fast atrazine photodegradation in water by pulsed light technology.

    PubMed

    Baranda, Ana Beatriz; Barranco, Alejandro; de Marañón, Iñigo Martínez

    2012-03-01

    Pulsed light technology consists of a successive repetition of short duration (325μs) and high power flashes emitted by xenon lamps. These flashlamps radiate a broadband emission light (approx. 200-1000 nm) with a considerable amount of light in the short-wave UV spectrum. In the present work, this technology was tested as a new tool for the degradation of the herbicide atrazine in water. To evaluate the presence and evolution with time of this herbicide, as well as the formation of derivatives, liquid chromatography-mass spectrometry (electrospray ionization) ion trap operating in positive mode was used. The degradation process followed first-order kinetics. Fluences about 1.8-2.3 J/cm(2) induced 50% reduction of atrazine concentration independently of its initial concentration in the range 1-1000 μg/L. Remaining concentrations of atrazine, below the current legal limit for pesticides, were achieved in a short period of time. While atrazine was degraded, no chlorinated photoproducts were formed and ten dehalogenated derivatives were detected. The molecular structures for some of these derivatives could be suggested, being hydroxyatrazine the main photoproduct identified. The different formation profiles of photoproducts suggested that the degradation pathway may include several successive and competitive steps, with subsequent degradation processes taking part from the already formed degradation products. According to the degradation efficiency, the short treatment time and the lack of chloroderivatives, this new technology could be considered as an alternative for water treatment. PMID:22153354

  4. SORPTION OF VINCLOZOLIN AND ATRAZINE ON FOUR GEOSORBENTS

    EPA Science Inventory

    The objectives of this study were to evaluate the magnitude and kinetics of vinclozolin and atrazine sorption on one surface soil and three freshwater sediments using batch and column techniques. Data from miscible displacement column studies were analyzed using a two-domain, fir...

  5. Bioavailability of organoclay formulations of atrazine in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide formulations based on organoclays have been proposed to prolong the efficacy and reduce the environmental impact of pesticides in soil. This research addressed the question of whether organoclay-based formulations of atrazine are irreversibly sorbed or are bioavailable for bacterial degrad...

  6. Toxoxity characteristics of the 2-chlorotriazines atrazine and simazine

    SciTech Connect

    Hauswirth, J.W.

    1996-10-01

    Atrazine and simazine are herbicides used broadly in agriculture to control annual grasses and broadleaf weeds. An extensive database on the toxicity of these triazines has been developed to support their use in agriculture. Atrazine and simazine have very low levels of acute toxicity with oral LD{sub 50}s of >3000 mg/kg in rats. A total of 37 mutagenicity studies have been conducted on atrazine and 34 on simazine. A weight-of-the-evidence evaluation of the mutagenicity data leads to the conclusion that neither triazine possesses genotoxic activity. Oncogenicity studies in three strains of mice are negative for both atrazine and simazine. Neither triazine is oncogenic to male Sprague-Dawley (SD) rats or to male and female Fischer 344 rats. However, in female SD rats both triazines induce the early occurrence and/or increased incidence of mammary gland tumors. Results of additional studies suggest that endocrinologic changes related to triazine administration are likely responsible for the mammary gland effects in female SD rats and that a threshold exists for these effects.

  7. Atrazine Remediation with Soybean Oil Based Biobarriers: Laboratory Studies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US almost 35 million kg of atrazine (2-chloro-4-ethylamino-6-isopropylamino s-triazine) are used annually making it the most extensively used agricultural herbicide. This high usage associated with its high mobility in many soils and recalcitrant nature in deeper soils and aquifers makes it ...

  8. THE LOADINGS, TRANSPORT, AND FATE OF ATRAZINE IN LAKE MICHIGAN

    EPA Science Inventory

    A lake wide atrazine model was developed to gain insight into the transport and fate of the herbicide in Lake Michigan. An important part of the analysis was the preparation of historical loading estimates from both tributaries and the atmosphere. Historical tributary loading est...

  9. Enhanced Atrazine Degradation and Implications for Weed Control in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced atrazine degradation is the phenomenon whereby the herbicide is rapidly biodegraded by a population of soil bacteria that has developed the ability to use the pesticide as a nutrient source because of previous exposure to it or other s-triazine herbicides. This phenomenon has been reported...

  10. Glufosinate and Ammonium Sulfate Inhibits Atrazine Degradation in Adapted Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-application of glufosinate with nitrogen fertilizers may alter atrazine co-metabolism, thereby extending the herbicide’s residual weed control in adapted soils. The objective of this study was to assess the effects of glufosinate, ammonium sulfate, and the combination of glufosinate and ammo...

  11. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  12. Significance of Atrazine in Weed Management Systems of Sweet Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of weed management systems being used by sweet corn growers, including the role of atrazine in these systems, is poorly characterized. Management records of 175 fields throughout the major sweet corn production areas of the Midwest were surveyed from 2005 to 2007. Seventy-four percent of s...

  13. Stimulated Rhizodegradation of Atrazine by Selected Plant Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of vegetative buffer strips (VBS) in removing herbicides from surface runoff is related to the ability of plant species to promote rapid herbicide degradation. A growth chamber study was conducted to investigate the rhizodegradation of 14C-atrazine and the relationship of degradation w...

  14. Veterinary antibiotic effects on atrazine degradation and soil microorganisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Veterinary antibiotics (VAs) in manure applied to agricultural lands may change agrichemical degradation by altering soil microbial community structure or function. The objectives of this study were to investigate the influence of two VAs, sulfamethazine (SMZ) and oxytetracycline (OTC), on atrazine ...

  15. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids

    NASA Astrophysics Data System (ADS)

    Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole

    2016-07-01

    The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor > 2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (> 80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow

  16. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone.

    PubMed

    Nousiainen, Aura O; Björklöf, Katarina; Sagarkar, Sneha; Nielsen, Jeppe Lund; Kapley, Atya; Jørgensen, Kirsten S

    2015-12-01

    Strategies for bioremediation of atrazine, a pesticide commonly polluting groundwater in low concentrations, were studied in two boreal nonagricultural soils. Atrazine was not mineralized in soil without bioremediation treatments. In biostimulation treatment with molasses, up to 52% of atrazine was mineralized at 10 °C, even though the degradation gene copy numbers did not increase. Incubations with radioactively labeled atrazine followed by microautoradiographic analysis revealed that bioremediation strategies increased the relative proportion of active degraders from 0.3 up to 1.9% of the total bacterial count. These results indicate that atrazine degradation might not solely be facilitated by atzA/trzN-atzB genes. In combined biostimulation treatment using citrate or molasses and augmentation with Pseudomonas citronellolis ADP or Arthrobacter aurescens strain TC1, up to 76% of atrazine was mineralized at 30 °C, and the atrazine degradation gene numbers increased up to 10(7) copies g(-1) soil. Clone libraries from passive samplers in groundwater monitoring wells revealed the presence of phylogenetic groups formerly shown to include atrazine degraders, and the presence of atrazine degradation genes atzA and atzB. These results show that the mineralization of low concentrations of atrazine in the groundwater zone at low temperatures is possible by bioremediation treatments. PMID:26239066

  17. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils.

    PubMed

    Fang, Hua; Lian, Jianjun; Wang, Huifang; Cai, Lin; Yu, Yunlong

    2015-04-01

    Substantial application of the herbicide atrazine in agriculture leads to persistent contamination, which may damage the succeeding crops and pose potential threats to soil ecology and environmental health. Here, the degradation characteristics of atrazine and dynamic change of soil bacterial community structure and function as well as their relations were studied during three repeated treatments at the recommended, double, and five-fold doses. The results showed that the degradation half-life of atrazine obviously decreased with increased treatment frequency. Soil microbial functional diversity displayed a variation trend of suppression-recovery-stimulation, which was associated with increased degradation rate of atrazine. 16S amplicon sequencing was conducted to explore bacterial community structure and correlate the genus to potential atrazine degradation. A total of seven potentially atrazine-degrading bacterial genera were found including Nocardioides, Arthrobacter, Bradyrhizobium, Burkholderia, Methylobacterium, Mycobacterium, and Clostridium. These bacterial genera showed almost complete atrazine degradation pathways including dechlorination, dealkylation, hydroxylation, and ring cleavage. Furthermore, the relative abundance of four of them (i.e., Nocardioides, Arthrobacter, Methylobacterium, and Bradyrhizobium) increased with treatment frequency and atrazine concentration, suggesting that they may participate in atrazine degradation during repeated treatments. Our findings reveal the potential relationship between atrazine degradation and soil bacterial community structure in repeatedly treated soils. PMID:25603295

  18. Atrazine soil core residue analysis from an agricultural field 21 years after its ban.

    PubMed

    Vonberg, David; Hofmann, Diana; Vanderborght, Jan; Lelickens, Anna; Köppchen, Stephan; Pütz, Thomas; Burauel, Peter; Vereecken, Harry

    2014-07-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) groundwater monitoring in the Zwischenscholle aquifer in western Germany revealed concentrations exceeding the threshold value of 0.1 μg L and increasing concentration trends even 20 yr after its ban. Accordingly, the hypothesis was raised that a continued release of bound atrazine residues from the soil into the Zwischenscholle aquifer in combination with the low atrazine degradation in groundwater contributes to elevated atrazine in groundwater. Three soil cores reaching down to the groundwater table were taken from an agricultural field where atrazine had been applied before its ban in 1991. Atrazine residues were extracted from eight soil layers down to 300 cm using accelerated solvent extraction and analyzed using liquid chromatography-tandem mass spectrometry. Extracted atrazine concentrations ranged between 0.2 and 0.01 μg kg for topsoil and subsoil, respectively. The extracted mass from the soil profiles represented 0.07% of the applied mass, with 0.01% remaining in the top layer. A complete and instantaneous remobilization of atrazine residues and vertical mixing with the groundwater body below would lead to atrazine groundwater concentrations of 0.068 μg L. Considering the area where atrazine was applied in the region and assuming instantaneous lateral mixing in the Zwischenscholle aquifer would result in a mean groundwater concentration of 0.002 μg L. A conservative estimation suggests an atrazine half-life value of about 2 yr for the soil zone, which significantly exceeds highest atrazine half-lives found in the literature (433 d for subsurface soils). The long-term environmental behavior of atrazine and its metabolites thus needs to be reconsidered. PMID:25603092

  19. Comparison of Metolachlor Leaching Predicted by Upscaled One-dimensional Point Models With That Predicted by a Semi-distributed Watershed Model

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wieczorek, M. E.; Linard, J. I.

    2006-12-01

    Understanding how metolachlor, commonly applied to corn fields prior to planting, and other pesticides may leach to shallow ground water under agricultural fields is a primary goal of the U.S. Geological Survey's National Water Quality Assessment Program (NAWQA). Two modeling approaches were used to predict leaching of metolachlor and its degradates in the 33-km2 Morgan Creek watershed on the Delmarva Peninsula. In particular, the overall patterns and timing of leaching predicted with an ensemble of one-dimensional Leaching Estimation and Chemistry models (LEACHM) are compared with those predicted by the Water, Energy, and Biogeochemical MODel (WEBMOD), a semi- distributed TOPMODEL-based watershed model. Both modeling approaches predict that leaching will be inversely proportional to the residence time of the herbicides in the unsaturated zone. Degradation of metolachlor is increased and leaching is reduced where the unsaturated zone is thicker, recharge rates are slower, or evapotranspiration rates are higher. Over a period of 10 years, fields subject to corn-soy crop rotations would receive five applications of metolachor at a rate of 1.36 kg/ha. Upscaled results of the one-dimensional LEACHM point models predict approximately 0.5 percent of the 15 metric tons of applied metolachlor to leach to shallow ground water, the majority in the form of its degradates metolachlor oxynilic acid and metolachlor ethanesulfonic acid. The semi-distributed watershed model, WEBMOD, predicts a greater percentage of the applied parent product to leach to shallow ground water because its coarse discretization of soil horizons results in a much greater effective dispersivity.

  20. Dairy-manure derived biochar effectively sorbs lead and atrazine.

    PubMed

    Cao, Xinde; Ma, Lena; Gao, Bin; Harris, Willie

    2009-05-01

    Biochar (BC) produced from agricultural crop residues has proven effective in sorbing organic contaminants. This study evaluated the ability of dairy-manure derived biochar to sorb heavy metal Pb and organic contaminant atrazine. Two biochar samples were prepared by heating dairy manure at low temperature of 200 degrees C (BC200) and 350 degrees C (BC350). The untreated manure (BC25) and a commercial activated C (AC) were included as controls. Sorption of Pb by biochar followed a dual Langmuir-Langmuir model, attributing to Pb precipitation (84-87%) and surface sorption (13-16%). Chemical speciation, X-ray diffraction, and infrared spectroscopy indicated that Pb was precipitated as beta-Pb9(PO4)6 in BC25 and BC200 treatment, and as Pb3(CO3)2(OH)2 in BC350. Lead sorption by AC obeyed a single Langmuir model, attributing mainly to surface sorption probably via coordination of Pb d-electron to C==C (pi-electron) and --0--Pb bonds. The biochar was 6 times more effective in Pb sorption than AC, with BC200 being the most effective (up to 680 mmol Pb kg(-1)). The biochar also effectively sorbed atrazine where atrazine was partitioned into its organic phase, whereas atrazine uptake by AC occurred via surface sorption. When Pb and atrazine coexisted, little competition occurred between the two for sorption on biochar, while strong competition was observed on AC. Results from this study indicated that dairy manure can be converted into value-added biochar as effective sorbent for metal and/or organic contaminants. PMID:19534148

  1. EVALUATION OF PITUITARY AND ADRENAL HORMONE RELEASE FOLLOWING EXPOSURE TO ATRAZINE AND ITS METABOLITE DEISOPROPYL-ATRAZINE (DIA), USING TISSUE PERIFUSION

    EPA Science Inventory

    Atrazine (ATR) is one of the most widely used herbicides in the United States, with current total annual use of approximately 76 million pounds of active ingredient. Previous work in our laboratory has shown that ATR and its metabolite deisopropyl-atrazine (DIA) induce a dose-dep...

  2. Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Gad-Allah, Tarek A.; Ibrahim, Hanan S.; Saleh, Tamer S.

    2011-01-01

    The adsorption behavior of Atrazine on zeolites, prepared from Egyptian kaolin, has been studied in order to consider the application of these types of zeolites in water purification. The batch mode has been employed, using atrazine solution of concentration ranging from 2 to 10 mg /l. The adsorption capacity and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. It was found that, under the studies concentrations, the percent of adsorbed atrazine on both zeolites match to Langmuir and Freundlich adsorption models. The constants of each model were calculated to assess the adsorption behavior of atrazine on each type of zeolite. According to the equilibrium studies, adsorption of atrazine on zeolite X at lower concentrations is much better than that on zeolite A. The application of Dublin-Kaganer-Radushkevich model revealed physisorption endothermic adsorption process for both zeolites. These results show that natural zeolites hold great potential to remove hazardous materials such as atrazine from water.

  3. Effect of surfactants at low concentrations on the sorption of atrazine by natural sediment.

    PubMed

    Tao, Qing H; Wang, Dong S; Tang, Hong X

    2006-07-01

    A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments. PMID:16929634

  4. Tests of the pesticide root zone model and the aggregate model for transport and transformation of aldicarb, metolachlor, and bromide

    SciTech Connect

    Parrish, R.S.; Smith, C.N.; Fong, F.K.

    1992-01-01

    Mathematical models are widely used to predict leaching of pesticides and nutrients in agricultural systems. The work was conducted to investigate the predictive capability of the Pesticide Root Zone Model (PRZM) and the Aggregate Model (AGGR) for the pesticides aldicarb (2-methyl-2-(methylthio)propionaldehyde-O-(methyl-carbamoyl)oxime), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide) and for a bromide tracer. Model predictions were compared with data collected from 1984 to 1987 in the Dougherty Plain area of southwestern Georgia. Field data were used to estimate mean concentrations of pesticide and bromide residues in the soil profile on various dates after application in each of four growing seasons. Both models tended to predict rates of movement of bromide tracer compounds in excess of that observed. For metolachlor, a pesticide with a soprption-partition coefficient that is higher than for other compounds in the study, both models provided reasonably accurate predictions within the upper 30-cm zone. For the pesticide aldicarb, results were more variable.

  5. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine towards maize plants

    NASA Astrophysics Data System (ADS)

    Oliveira, Halley; Stolf-Moreira, Renata; Martinez, Cláudia; Sousa, Gustavo; Grillo, Renato; de Jesus, Marcelo; Fraceto, Leonardo

    2015-10-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were ten-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL-1), maize plants presented 15 and 21 % decreases in maximum quantum yield of photosystem II and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected four and eight days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a ten-fold lower concentration (0.1 mg mL-1), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth.

  6. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants.

    PubMed

    Oliveira, Halley C; Stolf-Moreira, Renata; Martinez, Cláudia B R; Sousa, Gustavo F M; Grillo, Renato; de Jesus, Marcelo B; Fraceto, Leonardo F

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were 10-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL(-1)), maize plants presented 15 and 21% decreases in maximum quantum yield of photosystem II (PSII) and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected 4 and 8 days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a 10-fold lower concentration (0.1 mg mL(-1)), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth

  7. Effect of cow slurry amendment on atrazine dissipation and bacterial community structure in an agricultural Andisol.

    PubMed

    Briceño, G; Jorquera, M A; Demanet, R; Mora, M L; Durán, N; Palma, G

    2010-06-15

    Atrazine is a commonly used herbicide for maize production in Chile, but it has recently been shown to be ineffective in soils that receive applications of cow slurries generated from the dairy industry. This effect may be caused either by the sorption of the pesticide to organic matter or more rapid degradation in slurry-amended soils. The objectives of this study were to evaluate the effects of cow slurry on atrazine dissipation, the formation of atrazine metabolites and the modification of bacterial community in Andisol. The cow slurry was applied at doses of 100,000-300,000 Lha(-1). After 4 weeks, atrazine was applied to the slurry-amended soils at concentrations of 1-3 mg kg(-1). The amounts of atrazine and its metabolites were determined by high performance liquid chromatography (HPLC). The soil microbial community was monitored by measurement of CO(2) evolution and changes in bacterial community using PCR-DGGE of 16S rRNA genes. The results show that cow slurry applications had no effect on atrazine dissipation, which had a half-life of 15-19 days. The atrazine metabolites were detected after 20 days and were significantly higher in soils amended with the slurry at both 20 and 40 days after application of the herbicide. Respiration rates were elevated after 10 days in all soils with atrazine addition. Both the atrazine and slurry amendments altered the bacterial community structures, indicated by the appearance of specific bands in the DGGE gels after 10 days. Cloning and sequencing of the 16S rRNA genes from the DGGE gels showed that the bands represented various genera of beta-proteobacteria that appeared in response to atrazine. According to our results, further field studies are required to explain the lower effectiveness of atrazine in weed control. These studies may include the effect of dissolved organic carbon on the atrazine mobility. PMID:20388570

  8. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants

    PubMed Central

    Oliveira, Halley C.; Stolf-Moreira, Renata; Martinez, Cláudia B. R.; Sousa, Gustavo F. M.; Grillo, Renato; de Jesus, Marcelo B.; Fraceto, Leonardo F.

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were 10-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL−1), maize plants presented 15 and 21% decreases in maximum quantum yield of photosystem II (PSII) and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected 4 and 8 days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a 10-fold lower concentration (0.1 mg mL−1), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth

  9. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against Atrazine

    PubMed Central

    Williams, Ryan M.; Crihfield, Cassandra L.; Gattu, Srikanth; Holland, Lisa A.; Sooter, Letha J.

    2014-01-01

    Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples. PMID:25196435

  10. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants

    PubMed Central

    Oliveira, Halley Caixeta; Stolf-Moreira, Renata; Martinez, Cláudia Bueno Reis; Grillo, Renato; de Jesus, Marcelo Bispo; Fraceto, Leonardo Fernandes

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 1012 particles mL-1 and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL-1 resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits. PMID:26186597

  11. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain.

    PubMed Central

    Yanze-Kontchou, C; Gschwind, N

    1994-01-01

    Strain YAYA6 was isolated from a mixed microbial community that was growing on atrazine as a sole carbon source and formed quantitative amounts of chloride and nitrate. This strain was identified as a member of the true pseudomonad group (RNA group I) and was given the designation DMS 93-99. The growth yield when atrazine was the sole carbon and nitrogen source was 80 g (dry weight) of cells per mol of atrazine, and the cell doubling time was around 11 h. Approximately 20% of [U-ring 14C]atrazine was mineralized during primary degradation of atrazine. After atrazine disappeared from the culture supernatant, mineralization continued until the level of mineralization was more than 50%. Under different experimental conditions 10% of the atrazine supplied initially was converted to cyanuric acid and < 1% was converted to other s-triazines after prolonged incubation. Degradation proceeded via dechlorination and N-dealkylation. Atrazine was degraded until the concentration was circa 0.1 milligrams/liter. We obtained evidence showing that strain YAYA6 has specific uptake mechanisms for atrazine but less specific degradation mechanisms for s-triazines. PMID:7811069

  12. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants.

    PubMed

    Oliveira, Halley Caixeta; Stolf-Moreira, Renata; Martinez, Cláudia Bueno Reis; Grillo, Renato; de Jesus, Marcelo Bispo; Fraceto, Leonardo Fernandes

    2015-01-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been recently developed as a modified release system for atrazine, an herbicide that can have harmful effects in the environment. Here, the post-emergence herbicidal activity of PCL nanocapsules containing atrazine was evaluated using mustard (Brassica juncea) as target plant species model. Characterization of atrazine-loaded PCL nanocapsules by nanoparticle tracking analysis indicated a concentration of 7.5 x 10(12) particles mL(-1) and an average size distribution of 240.7 nm. The treatment of mustard plants with nanocapsules carrying atrazine at 1 mg mL(-1) resulted in a decrease of net photosynthesis and PSII maximum quantum yield, and an increase of leaf lipid peroxidation, leading to shoot growth inhibition and the development of severe symptoms. Time course analysis until 72 h after treatments showed that nanoencapsulation of atrazine enhanced the herbicidal activity in comparison with a commercial atrazine formulation. In contrast to the commercial formulation, ten-fold dilution of the atrazine-containing nanocapsules did not compromise the herbicidal activity. No effects were observed when plants were treated with nanocapsules without herbicide compared to control leaves sprayed with water. Overall, these results demonstrated that atrazine-containing PCL nanocapsules provide very effective post-emergence herbicidal activity. More importantly, the use of nanoencapsulated atrazine enables the application of lower dosages of the herbicide, without any loss of efficiency, which could provide environmental benefits. PMID:26186597

  13. Weed Management and Crop Response with Glyphosate, S-metolachlor, Trifloxysulfuron, Prometryn, and MSMA in Glyphosate-Resistant Cotton (Gossypium hirsutum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies were conducted in five states at six locations from 2002 through 2003 to evaluate weed control and cotton response to EPOST, POST, and LAYBY systems utilizing glyphosate-TM (trimethylsulfonium salt), s-metolachlor, trifloxysulfuron, prometryn, and MSMA. Early-season cotton injury and ...

  14. Degradation of atrazine in soil through induced photocatalytic processes

    SciTech Connect

    Pelizzetti, E. ); Carlin, V.; Maurino, V.; Minero, C.; Dolci, M. ); Marchesini, A. )

    1990-08-01

    The authors observed photocatalytic degradation of atrazine in the presence of semiconductor metal oxide particulates (TiO{sub 2}, ZnO) suspended in aqueous solution under simulated sunlight irradiation. The half-life for the process is ca. 5 and 80 min for TiO{sub 2} and ZnO, respectively (at an initial atrazine concentration of 25 mg/liter with 0.5 g of semiconductor per liter and with a photon flux of 3 {times} 10{sup {minus}5} einstein/min, and over a cell cross section of 4 cm{sup 2}). The authors investigated the catalytic activity of different soils. The weak photocatalytic activity of the soils (2 g/liter) is dramatically increased by the addition of 0.5 g of the semiconductor per liter. Half-lives are 10 to 40 minutes, depending on the nature of the soil.

  15. Recovery of duckweed from time-varying exposure to atrazine.

    PubMed

    Brain, Richard A; Hosmer, Alan J; Desjardins, Debbie; Kendall, Timothy Z; Krueger, Henry O; Wall, Steven B

    2012-05-01

    The purpose of the present study was to evaluate the recovery of duckweed (Lemna gibba L. G3) after being removed from multiple duration exposures to the herbicide atrazine. Consequently, L. gibba were exposed under various scenarios to atrazine at nominal concentrations ranging from 5 to 160 µg/L and durations of 1, 3, 5, 7, 9, and 14 d under static-renewal test conditions. Exposures were followed by a recovery phase in untreated media for either 7 or 14 d. The 3-, 5-, 7-, 9-, and 14-d median effective concentration (EC50) values were >137, >137, 124, >77, and >75 µg/L, respectively, based on mean growth rate. No clear effect trends were apparent between exposure duration and the magnitude of effective concentrations (EC50s or EC10s). No phytocidal effects of chlorosis or necrosis were identified for any treatment scenario. Nearly all L. gibba plants transferred from treatment groups of different exposure scenarios to media without atrazine during the recovery phase had growth rates that demonstrated immediate recovery, indicating effects were phytostatic in nature and reversible. Only the 1- and 5-d exposure scenarios had growth rates indicating marginally prolonged recovery at the higher concentrations (160 µg/L; additionally, at 40 µg/L for the 5-d exposure). Time to recovery, therefore, was found to be largely independent of exposure duration except at the highest concentrations assessed. Based on growth rate by interval, all treatments demonstrated recovery by the final assessment interval (days 5-7), indicating complete recovery in all exposure scenarios by 7 d, consistent with the mode of action of atrazine. PMID:22431202

  16. PRELIMINARY OBSERVATIONS OF ATRAZINE-INDUCED EFFECTS UPON GONADAL DIFFERENTIATION IN RIVULUS MARMORATUS, A NATURALLY HERMAPHRODITIC FISH

    EPA Science Inventory

    The commonly used agricultural herbicide atrazine has been recognized as an endocrine disrupting chemical. In amphibians and reptiles, atrazine has been reported to alter sexual differentiation and induce secondary sexual characteristics that have been attributed to enhanced arom...

  17. POTENTIAL ROLE OF TUBERO-INFUNDIBULAR DOPAMINERGIC NEURONS IN THE DISRUPTION OF PITUITARY HORMONE SECRETION BY ATRAZINE

    EPA Science Inventory

    Previously, we demonstrated that atrazine suppressed the ovulatory surge of luteininzing hormone and disrupted estrous cycles in the female rat. We also reported that this disruption of ovulation is likely the result of atrazine's effect on hypothalamic gonadotropin hormone rele...

  18. Contribution of subsoil and aquifer microorganisms to ground-water quality. Technical report, 1 July 1988-30 June 1989. (Final)

    SciTech Connect

    Turco, R.F.; Konopka, A.E.

    1989-06-01

    Little information about the microbiology of the subsurface environment is available. The study was conducted to better understand the microbiology and microbial processes that occur in the subsurface under a typical midwestern agricultural soil. A 26-meter bore was installed in November of 1988. Sterile collections of soils were made at 17 different depths. A physical as well as biological investigation of the subsurface materials was conducted. Among the measured parameters were particle-size analysis, carbon, carbonates, nitrogen, phosphorus, potassium, and water-holding capacity. The level of three pesticides, atrazine, metolachlor, and alachlor, was determined. Microbial biomass was assessed using direct counts, phospholipid content, and plate counts. The ability of microbial populations resident in the strata to use glucose, phenol, aniline, (14)C-ring labeled 2-methyl-6-ethyl-aniline, (14)C-ring labeled metolachlor, (14)C-carbonyl labeled metolachlor, and atrazine was assessed. Physical analysis indicated that the site contained up to 17 different strata. The site materials were primarily glacial tills with high carbonate content. Microbial numbers and activity in the tills was much lower than either in the surface materials or the aquifer located at 25 m.

  19. Polyelectrolytes Ability in Reducing Atrazine Concentration in Water: Surface Effects

    PubMed Central

    Heijman, S. G. J.; Lopes, S. I. C.; Rietveld, L. C.

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism. PMID:25197693

  20. Atrazine and total triazines: Exposure patterns in midwestern surface waters

    SciTech Connect

    Richards, R.P.; Baker, D.B.

    1996-10-01

    Distributions of atrazine and total triazine exposures for aquatic organisms in the midwestern United States and Canada were characterized using the most complete datasets available, with attention to the sampling pattern used in obtaining the data. Distributions were established form stantaneous concentrations and for 96-hour and 21-day running averages. Time weighting and annualization were important to avoid distorted estimates of exposure concentrations; failure to use appropriate procedures can lead to order-of-magnitude errors in estimates of benchmarks such as the 90th percentile concentration. Atrazine and total triazine concentrations are characterized by strong seasonality, with elevated concentrations for a period of 6 to 10 weeks following application in May or June. Concentrations decline during July, August, and September, and for the rest of the year are near detection limit. Concentrations in running water are strongly influenced by storm runoff, with much higher concentrations during run off than during low-flow periods between run off events. Thus aquatic organisms in running waters experience pulsed exposures interspersed with recovery periods. 90th percentile concentrations were calculated for a number of rivers, streams, lakes, and reservoirs for comparison with ecological effects data. Total triazine concentrations are only slightly higher than atrazine concentrations in those waters for which comparisons were possible.

  1. Polyelectrolytes ability in reducing atrazine concentration in water: surface effects.

    PubMed

    Mohd Amin, Mohamad Faiz; Heijman, S G J; Lopes, S I C; Rietveld, L C

    2014-01-01

    This paper reports on the direct ability of two positively charged organic polyelectrolytes (natural-based and synthetic) to reduce the atrazine concentration in water. The adsorption study was set up using multiple glass vessels with different polymer dosing levels followed by ultrafiltration with a 1 kDa membrane. The addition of polymers exhibited a capability in reducing the atrazine concentration up to a maximum of 60% in surface-to-volume ratio experiments. In the beginning, the theoretical L-type of the isotherm of Giles' classification was expected with an increase in the dosage of the polymer. However, in this study, the conventional type of isotherm was not observed. It was found that the adsorption of the cationic polymer on the negatively charged glass surface was necessary and influential for the removal of atrazine. Surface-to-volume ratio adsorption experiments were performed to elucidate the mechanisms and the polymer configuration. The glass surface area was determined to be a limiting parameter in the adsorption mechanism. PMID:25197693

  2. Modelling the effect of exposing algae to pulses of S-metolachlor: How to include a delay to the onset of the effect and in the recovery.

    PubMed

    Copin, Pierre-Jean; Perronet, Léa; Chèvre, Nathalie

    2016-01-15

    In agriculture, herbicides are applied to improve crop productivity. During and after rain event, herbicides can be transported by surface runoff in streams and rivers. As a result, the exposure pattern in creeks is time-varying, i.e., a repeated pollution of aquatic system. In previous studies, we developed a model to assess the effects of pulse exposure patterns on algae. This model was validated for triazines and phenylureas, which are substances that induce effects directly after exposure with no delay in recovery. However, other herbicides display a mode of action characterized by a time-dependency effect and a delay in recovery. In this study, we therefore investigate whether this previous model could be used to assess the effects of pulse exposure by herbicides with time delay in effect and recovery. The current study focuses on the herbicide S-metolachlor. We showed that the effect of the herbicide begins only after 20 h of exposure for the alga Scenedesmus vacuolatus based on both the optical density and algal cells size measurements. Furthermore, the duration of delay of the recovery for algae previously exposed to S-metolachlor was 20 h and did not depend on the pulse exposure duration or the height of the peak concentration. By accounting for these specific effects, the measured and predicted effects were similar when pulse exposure of S-metolachlor is tested on the alga S. vacuolatus. However, the sensitivity of the alga is greatly modified after being previously exposed to a pulse of S-metolachlor. In the case of scenarios composed of several pulses, this sensitivity should be considered in the modelling. Therefore, modelling the effects of any pulse scenario of S-metolachlor on an alga is feasible but requires the determination of the effect trigger, the delay in recovery and the possible change in the sensitivity of the alga to the substance. PMID:26410701

  3. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    SciTech Connect

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-09-15

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 {mu}M concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion.

  4. In vitro Atrazine Exposure Affects the Phenotypic and Functional Maturation of Dendritic Cells

    PubMed Central

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-01-01

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration-range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1µM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion. PMID:17662328

  5. Experimental and modeling of the unsaturated transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids.

    PubMed

    Sidoli, Pauline; Lassabatere, Laurent; Angulo-Jaramillo, Rafael; Baran, Nicole

    2016-07-01

    The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow

  6. Herbicides in ground water beneath Nebraska's Management Systems Evaluation Area.

    PubMed

    Spalding, Roy F; Exner, Mary E; Snow, Daniel D; Cassada, David A; Burbach, Mark E; Monson, Stephen J

    2003-01-01

    Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor

  7. Response of ligninolytic macrofungi to the herbicide atrazine: dose-response bioassays.

    PubMed

    Cupul, Wilberth Chan; Abarca, Gabriela Heredia; Vázquez, Refugio Rodríguez; Salmones, Dulce; Hernández, Rigoberto Gaitán; Gutiérrez, Enrique Alarcón

    2014-01-01

    The effect of atrazine concentrations on mycelial growth and ligninolytic enzyme activities of eight native ligninolytic macrofungi isolated in Veracruz, México, were evaluated in a semi-solid culture medium. Inhibition of mycelial growth and growth rates were significantly affected (p=0.05) by atrazine concentrations (468, 937, 1875, and 3750 mg/l). In accordance with the median effective concentration (EC50), Pleurotus sp. strain 1 proved to be the most tolerant isolate to atrazine (EC50=2281.0 mg/l), although its enzyme activity was not the highest. Pycnoporus sanguineus strain 2, Daedalea elegans and Trametes maxima showed high laccase activity (62.7, 31.9, 29.3 U mg/protein, respectively) without atrazine (control); however, this activity significantly increased (p<0.05) (to 191.1, 83.5 and 120.6 U mg/protein, respectively) owing to the effect of atrazine (937 mg/l) in the culture medium. Pleurotus sp. strain 2 and Cymatoderma elegans significantly increased (p<0.05) their manganese peroxidase (MnP) activities under atrazine stress at 468 mg/l. The isolates with high EC50 (Pleurotus sp. strain 1) and high enzymatic activity (P. sanguineus strain 2 and T. maxima) could be considered for future studies on atrazine mycodegradation. Furthermore, this study confirms that atrazine can increase laccase and MnP activities in ligninolytic macrofungi. PMID:25576420

  8. Enhanced Atrazine National Attenuation in Agricultural Soil Exposed to a Major spill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional soil tests, culture-based microbial methods, and the novel method of 15N-DNA stable isotope probing (SIP) were employed to illustrate atrazine biodegradation as related to the physiochemical properties of a Cisne soil from a major atrazine spill site. When compared to five reference so...

  9. Atrazine fate and transport within the coastal zone in southeastern Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbicide transport from crop-land to coastal waters may adversely impact water quality. This work examined potential atrazine impact from use on a farm field adjacent to the Jobos Bay National Estuarine Research Reserve on Puerto Rico’s southeastern coast. Atrazine application was linked to residu...

  10. Model Forecasts of Atrazine in Lake Michigan in Response to Various Sensitivity and Potential Management Scenarios

    EPA Science Inventory

    For more than forty years, the herbicide atrazine has been used on corn crops in the Lake Michigan basin to control weeds. It is usually applied to farm fields in the spring before or after the corn crop emerges. A version of the WASP4 mass balance model, LM2-Atrazine, was used...

  11. Simulations of Flow Circulations and Atrazine Concentrations in a Midwest U.S. Reservoir

    NASA Astrophysics Data System (ADS)

    Zhao, Xianggui; Gu, Roy R.; Guo, Chuling; Wang, Kui; Li, Shijie

    Atrazine is the most commonly used herbicide in the spring for pre-emergent weed control in the corn cropping area in the Midwestern United States. A frequent high level of herbicide concentrations in reservoirs is a great concern for public health and aquatic ecosystems. In this study, a two-dimensional hydrodynamics and toxic contaminant transport model was applied to Saylorville Reservoir, Iowa, USA. The model simulates physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. Model results were validated by measured temperatures and atrazine concentrations. Simulated flow velocities, water temperatures, and chemical concentrations demonstrated that the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the simulated fate and transport of atrazine showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A thorough understanding of the fate and transport of atrazine in the reservoir can assist in developing operation and pollution prevention strategies with respect to timing, amount, and depth of withdrawal. The responses of atrazine transport to various boundary conditions provide useful information in assessing environmental impact of alternative upstream watershed management practices on the quality of reservoir water.

  12. Predicting Atrazine Levels in Water Utility Intake Water for MCL Compliance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To protect human health, atrazine concentrations in drinking water must not exceed its maximum contaminant level (MCL) of 3 ug/L. The United States Environmental Protection Agency (USEPA) mandates that municipal water providers sample quarterly to determine MCL compliance. Atrazine levels were mon...

  13. Effect of dairy manure rate and the stabilization time of amended soils on atrazine degradation.

    PubMed

    Aguilera, Paula; Briceño, Gabriela; Candia, Maribel; Mora, Maria de la Luz; Demanet, Rolando; Palma, Graciela

    2009-10-01

    The application rate of liquid cow manure (LCM) in the field and the stabilization time of amended soils before application of pre-plant herbicides are factors that determine their efficiency. This study includes evaluation of residual atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil and amended soils with equivalent rate of 100,000; 200,000; and 300,000 L ha(-1) of LCM and the effect of pre-incubation time of amended soils on atrazine degradation. The study was carried out under controlled conditions using an Andisol with previous historical application of atrazine. The respiratory activity and fluorescein diacetate (FDA) studies indicated that the time necessary for stabilization of amended soils is over 20-30 d. During the measurement of respiratory and FDA activity, no significant differences were observed when atrazine was applied. The half-life of atrazine ranged from 5 to 8d and the relative distribution of degradation products seem to be affected by the application of LCM. The pre-incubation time of amended soil and LCM dose would not affect atrazine degradation rate, when the soil has a history of herbicide application. However, repeated applications of LCM in a long period of time could change the soil pH and increase the content of dissolved organic carbon (DOC) which could further contribute to a faster degradation of atrazine. Both effects would reduce the effectiveness of atrazine in weed control. PMID:19744695

  14. Effects of Atrazine on Reproductive Health of Nondiabetic and Diabetic Male Rats

    PubMed Central

    Jestadi, Dinesh Babu; Phaniendra, Alugoju; Babji, Undru; Shanmuganathan, Bhavatharini

    2014-01-01

    The aim of the present study was to investigate the effects of low dose of atrazine on reproductive system of male Wistar rats. 16 rats were divided into four groups of four animals each. Group I (nondiabetic) and group III (diabetic) animals served as controls that received safflower oil (300 μL/kg bw/day), respectively. Group II (nondiabetic) and group IV (diabetic) animals received atrazine (300 μg/kg bw/day). Nonsignificant decrease in the activities of antioxidant and steroidogenic enzymes and sperm parameters suggests that atrazine did not produce any effect on reproductive system of rats. Histological findings also revealed that atrazine at a dose of 300 μg/kg bw did not produce any testicular toxic effects in nondiabetic and diabetic atrazine treated rats. Low dose of atrazine did not show reproductive toxicity in rats. To know the effects of atrazine in diabetic rats further studies have to be carried out with increased concentration of atrazine.

  15. Effects of Photosystem II Interfering Herbicides Atrazine and Bentazon on the Soybean Transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine and bentazon are both photosystem II inhibiting herbicides that interfere with photosynthetic electron transport provoking oxidative stress. While atrazine is lethal to soybean, bentazon does not kill soybeans because of the capability of soybeans to metabolize the herbicide. Gene expressio...

  16. Atrazine promotes RM1 prostate cancer cell proliferation by activating STAT3 signaling.

    PubMed

    Hu, Kebang; Tian, Yong; Du, Yanwei; Huang, Liandi; Chen, Junyu; Li, Na; Liu, Wei; Liang, Zuowen; Zhao, Lijing

    2016-05-01

    Atrazine, a widely used pesticide, is frequently detected in soil and surface water, which alarms epidemiologists and medical professionals because of its potential deleterious effects on health. Indeed, atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. Both animal and human studies have suggested that atrazine is possibly carcinogenic, although discrepant results have been reported. In this study, RM1 cells were used to explore the atrazine effects on prostate cancer. Proliferation, migration and invasion of RM1 cells were assessed by colony formation, wound-healing and invasion assays, respectively, after in vitro exposure to atrazine. In addition, an RM1 cell xenograft model was generated to evaluate the effects of atrazine in vivo. To explore the molecular mechanisms, qRT‑PCR, immunohistochemistry, and western blot analyses were employed to detect mRNA and protein levels of STAT3 signaling and cell cycle related proteins, including p53, p21, cyclin B1 and cyclin D1. Interestingly, RM1 cell proliferation was increased after treatment with atrazine, concomitantly with STAT3 signaling activation. These results suggest that atrazine promotes RM1 cell growth in vitro and in vivo by activating STAT3 signaling. PMID:26984284

  17. Efficacy of Topramezone and Tembotrione Herbicides in Sweet Corn: Effect of Atrazine Rate, Adjuvants, and Timing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments determined the effect of soil residual tankmix, atrazine rate, and adjuvant on control of wild proso millet and other broad leaf weeds with topramezone and tembotrione. Topramezone (18 g ai/ha) and tembotrione (92 g/ha) were applied as a tankmix with dimethenamid-P plus atrazine (0.95 + ...

  18. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana

    USGS Publications Warehouse

    Bayless, E.R.

    2001-01-01

    The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.

  19. Microwave green synthesis of biopolymer-stabilized silver nanoparticles and their adsorption behavior for atrazine

    NASA Astrophysics Data System (ADS)

    Pal, Jolly; Deb, Manas Kanti; Sircar, Jayanta Kumar; Agnihotri, Pradeep Kumar

    2015-06-01

    The application of silver nanoparticles for the removal of atrazine has been investigated. The silver nanoparticles beads were used as an adsorbent in the present study. Silver nanoparticles were prepared in the laboratory by a microwave irradiation method. The effect of initial concentration on the removal of atrazine was studied by varying the initial concentration of atrazine from 5 to 30 ppm. It was found that the percent removal of atrazine decreases on increasing the initial atrazine concentrations. A contact time of 14 h was found to be sufficient for maximum removal and was recorded as the equilibration time. The pH 6.0 ± 0.6 for atrazine was found most favorable and at this pH the percentage removal is high at room temperature (27 °C). Batch experiments demonstrated that a 2 gm adsorbent dosage is capable of removing maximum amount of atrazine from aqueous solution. Resulting data at room temperature were analyzed by the Freundlich and Langmuir models using linearized equations. Resultant data were analyzed by pseudo-first-order and pseudo-second-order rate equations. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. Findings of the present study revealed that silver nanoparticles beads can be an effective adsorbent for the removal of atrazine from aqueous solution.

  20. Conservation program (EQIP) reduces atrazine in Columbus, OH drinking water supply reservoir

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation dollars applied in the Upper Big Walnut Creek Watershed have achieved a significant reduction in the atrazine levels in Hover Reservoir, a major drinking water source for Columbus, Ohio. During the 1990s, atrazine levels in this reservoir periodically exceeded the health advisory limit ...

  1. Ecology of Atrazine Natural Attenuation in Soil From a Major Spill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradation of atrazine was examined in soil from a recent major atrazine spill site in Illinois. The site had been excavated to a depth of 2 meters and the soil stored under cover for future land application (land farming), a form of remediation by natural attenuation. We examined some of the ...

  2. DISTRIBUTION OF 14C-ATRAZINE FOLLOWING AN ACUTE LACTATIONAL EXPOSURE IN THE WISTAR RAT.

    EPA Science Inventory

    The purpose of the present study was to examine the distribution of atrazine in the lactating dam and suckling neonate following an acute exposure to either 2 or 4 mg/kg 14C-atrazine (14C-ATR) by gavage. 14C-ATR was administered to the nursing dam on postnatal day 3 by oral gavag...

  3. Soybean Oil Based Biobarriers Remove Atrazine from Contaminated Water: Laboratory Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US almost 35 million kg of atrazine are used annually. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes atrazine a frequent groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil, inoculated...

  4. Identification of an atrazine-degrading benzoxazinoid in Eastern gamagrass (tripsacum dactyloides)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was part of a broader effort to identify and characterize promising atrazine-degrading phytochemicals in Eastern gamagrass (Tripsacum dactyloides; EG) roots for the purpose of mitigating atrazine transport from agroecosystems. The objective of this study was to isolate and identify atrazi...

  5. Atrazine in Source Water Intended for Artificial Ground-Water Recharge, South-Central Kansas

    USGS Publications Warehouse

    Christensen, Victoria G.; Ziegler, Andrew C.

    1998-01-01

    Atrazine, an herbicide commonly applied to row crops, is of concern because of potential effects on water quality. This fact sheet describes atrazine in water from the Little Arkansas River in south-central Kansas. The river is being evaluated as a source of artificial recharge into the Equus Beds aquifer, which provides water for the city of Wichita.

  6. Cloning and expression of an atrazine inducible cytochrome P450 from Chironomus tentans (Diptera: Chironomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies performed in our lab have measured the effect of atrazine exposure on cytochrome P450-dependent monooxygenase activity and have found increased activity in midge larvae (Chironomus tentans) as a result of atrazine exposure (1-10 ppm). Here we report the cloning and expression of a ...

  7. Perturbation of Organogenesis by the Herbicide Atrazine in the Amphibian Xenopus laevis

    PubMed Central

    Lenkowski, Jenny R.; Reed, J. Michael; Deininger, Lisa; McLaughlin, Kelly A.

    2008-01-01

    Background Exposure to anthropogenic chemicals during development can disrupt the morphogenesis of organ systems. Use of the herbicide atrazine has been debated in recent years because of its implicated, but poorly characterized, effects on vertebrates. Previous studies primarily examined the effects of atrazine exposure during metamorphosis or early developmental stages of amphibians. Objectives We sought to identify and characterize the susceptibility during the often-overlooked developmental stage of organ morphogenesis. Methods We used a static renewal experimental treatment to investigate the effects of 10, 25, and 35 mg/L atrazine from early organ morphogenesis through the onset of tadpole feeding in the aquatic amphibian model system, Xenopus laevis. We quantified malformations of the body axis, heart, and intestine, as well as apoptosis in the midbrain and pronephric kidney. Results We found a significant dose-dependent increase in the percentage of atrazine-exposed tadpoles with malformations of multiple tissues including the main body axis, circulatory system, kidney, and digestive system. Incidence of apoptotic cells also increased in the both midbrain and kidney of atrazine-exposed tadpoles. Conclusions Our results demonstrate that acute atrazine exposure (10–35 mg/L for ≤ 48 hr) during early organ morphogenesis disrupts proper organ development in an amphibian model system. The concurrent atrazine-induced apoptosis in the pronephric kidney and midbrain begins to elucidate a mechanism by which atrazine may disrupt developmental processes in nontarget organisms. PMID:18288322

  8. EFFECTS OF ATRAZINE ON THE REPRODUCTIVE SUCCESS IN THE MARINE FISH, CUNNER(TAUTOGOLABRUS ADSPERSUS)

    EPA Science Inventory

    Atrazine, the most widely used herbicide in the world, leaches into ground water and surface runoff after agricultural and forestry applications. It has been detected in concentrations in the ppb range in ground water, surface waters, rivers, streams, and precipitation. Atrazin...

  9. THE ENDOCRINE PROFILE OF INTACT FEMALE RATS ON THE DAY OF PROESTRUS FOLLOWING EXPOSURE TO ATRAZINE

    EPA Science Inventory

    The Endocrine Profile of Intact Female Rats on the Day of Proestrus Following Exposure to Atrazine.
    RL Cooper, A Buckalew, SC Laws and TE Stoker
    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The chlorotriazine herbicide, atrazine, has been sho...

  10. Effect of compost age and composition on the atrazine removal from solution

    USGS Publications Warehouse

    Tsui, L.; Roy, W.R.

    2007-01-01

    Compost samples from two composting facilities, the Urbana (Illinois) Landscape Recycling Center (ULRC) and Illinois State University (ISU), were selected to examine the effect of compost age on atrazine removal from solution. The ULRC samples were made from yard waste without an additional nitrogen source. The ISU samples were made from yard waste or sawdust with the addition of manure. The 6-month-old ULRC compost had the greater capacity to remove atrazine from solution, which we attributed to its greater organic carbon content. The addition of nitrate into ULRC compost could influence the extent of atrazine removal, but did not have a significant impact on atrazine removal when applied to ISU compost, probably because manure was added to the yard waste to produce the compost. For both ULRC and ISU samples, the presence of sodium azide inhibited atrazine removal, suggesting that microbial activity contributed to the atrazine removal. Metabolic analysis demonstrated that hydroxyatrazine was the major identified metabolite that accumulated in solution before significant ring mineralization could occur. When compared with the ISU compost, the ULRC compost sample had a greater capacity to remove atrazine from solution during the 120 days of study because of the larger humic acid content. The experimental results suggested that less-mature compost may be better suited for environmental applications such as removing atrazine from tile-drainage waters. ?? 2006 Elsevier B.V. All rights reserved.

  11. EFFECTS OF ATRAZINE ON MICROCOMS DEVELOPED FROM FOUR NATURAL PLANKTON COMMUNITIES

    EPA Science Inventory

    Comparisons were made among Leffler microcosms developed from four different natural communities and exposed to 0, 20, 100,200,500,1,000, and 5,000 ug/L atrazine, a commonly used herbicide. Atrazine reduced net primary productivity, pH, and net productivity/-respiration ratios in...

  12. Metabolic ability and individual characteristics of an atrazine-degrading consortium DNC5.

    PubMed

    Zhang, Ying; Cao, Bo; Jiang, Zhao; Dong, Xiaonan; Hu, Miao; Wang, Zhigang

    2012-10-30

    A stable four-member bacterial consortium, DNC5 that was capable of metabolizing atrazine was isolated from corn-planted soil. The main objective of this paper is to characterize the individual metabolic characteristics and the mutualism of the cultivable members in the consortium DNC5. Substrates utilizing character of each community member indicate that the primary organism in this consortium is Arthrobacter sp. DNS10, which was the only strain capable of mineralizing atrazine to cyanuric acid. Two secondary strains (Bacillus subtilis DNS4 and Variovorax sp. DNS12) utilized cyanuric acid during the atrazine degradation process. Meanwhile, we found that a metabolite (isopropylamine) inhibited the atrazine degrading species Arthrobacter sp. DNS10. The last strain (Arthrobacter sp. DNS9) of this consortium played a role in reducing this inhibition by utilizing isopropylamine for its growth. Altogether this is a new combination of isolates in an atrazine degrading consortium. The growth and the degradation rate of consortium DNC5 were faster than that of the single strain DNS10. The high degradation ability of the consortium showed good potential for atrazine biodegradation. This study will contribute toward a better understanding about metabolic activities of atrazine degrading consortium, which are generally considered to be responsible for atrazine mineralization in the natural environment. PMID:22981745

  13. Interactions of earthworms with Atrazine-degrading bacteria in an agricultural soil.

    PubMed

    Kersanté, Anne; Martin-Laurent, Fabrice; Soulas, Guy; Binet, Françoise

    2006-08-01

    In the last 10 years, accelerated mineralization of Atrazine (2-chloro-ethylamino-6-isopropylamino-s-triazine) has been evidenced in agricultural soils repeatedly treated with this herbicide. Here, we report on the interaction between earthworms, considered as soil engineers, and the Atrazine-degrading community. The impact of earthworm macrofauna on Atrazine mineralization was assessed in representative soil microsites of earthworm activities (gut contents, casts, burrow linings). Soil with or without earthworms, namely the anecic species Lumbricus terrestris and the endogenic species Aporrectodea caliginosa, was either inoculated or not inoculated with Pseudomonas sp. ADP, an Atrazine-degrading strain, and was either treated or not treated with Atrazine. The structure of the bacterial community, the Atrazine-degrading activity and the abundance of atzA, B and C sequences in soil microsites were investigated. Atrazine mineralization was found to be reduced in representative soil microsites of earthworm activities. Earthworms significantly affected the structure of soil bacterial communities. They also reduced the size of the inoculated population of Pseudomonas sp. ADP, thereby contributing to the diminution of the Atrazine-degrading genetic potential in representative soil microsites of earthworm activities. This study illustrates the regulation produced by the earthworms on functional bacterial communities involved in the fate of organic pollutants in soils. PMID:16867138

  14. Occurrence of atrazine and degradates as contaminants of subsurface drainage and shallow groundwater

    SciTech Connect

    Jayachandran, K.; Steinheimer, T.R.; Moorman, T.B.

    1994-03-01

    Atrazine is a commonly used herbicide in corn (Zea mays L.) growing areas of the USA. Because of its heavy usage, moderate persistence, and mobility in soil, monitoring of atrazine movement under field conditions is essential to assess its potential to contaminate groundwater. Concentrations of atrazine, deisopropylatrazine (DIA), and deethlatraaine (DEA) were measured in subsurface drainage and shallow groundwater beneath continuous, no-till corn. Water samples were collected from the subsurface drain (tile) outlets and suction lysimeters in the growing seasons of 1990 and 1991, and analyzed for atrazine and two principle degradates won solid-phase extraction and HPLC. In 1990, atrazine concentration ranged from 1.3 to 5.1{mu}g L{sup -1} in tile-drain water and from 0.5 to 20.5 {mu}g L{sup -1} in lysimeter water. In general, concentrations of parent and degradates in solution were atrazine > DEA > DIA. Lesser levels of atrazine were measured in 1991 from Plots 2 and 4; however, greater concentrations of atrazine (6.0-8.4 {mu}g L{sup -1}) were measured from plot 5. Throughout the two growing seasons, atrazine concentration in Plot 5 tile-drain water was greater than that of Plots 2 and 4, suggesting a preferential movement of atrazine. Concentrations of DIA and DEA ranged from 0.1 to 2.2 and 0.9 to 3.2 {mu}g L{sup -1} respectively, indicating that the degradation products by themselves or in combination with parent atrazine can exceed the maximum contaminant level (mcl) of 3 {mu}g L{sup -1} even though atrazine by itself may be <3 {mu}g L{sup -1}. The deethylatrazine-to-atrazine ratio (DAR) is an indicator of residence time in soil during transport of atrazine to groundwater. In Plots 2 and 4, DAR values for tile-drain water ranged from 0.43 to 2.70 and 0.50 to 2.66 respectively. By comparison, a DAR of 0.38 to 0.60 was observed in Plot 5, suggesting less residence time in the soil. 38 refs., 5 figs., 4 tabs.

  15. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    SciTech Connect

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward c

  16. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    PubMed

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants. PMID:26467569

  17. Atrazine reduces reproduction in fathead minnow (Pimephales promelas): raw data report

    USGS Publications Warehouse

    Tillitt, Donald E.; Papoulias, Diana M.; Whyte, Jeffrey J.; Richter, Catherine A.

    2014-01-01

    The herbicide, atrazine, routinely is observed in surface and groundwaters, particularly in the “corn belt” region, a high-use area of the United States. Atrazine has demonstrated effects on reproduction in mammals and amphibians, but the characterization of endocrine-related effects in fish has received only limited attention. Peak concentrations of atrazine in surface water of streams from these agricultural areas coincide with annual spawning events of native fishes. Consequently, there was an unacceptable level of uncertainty in our understanding of the risks associated with the periods of greatest atrazine exposure and greatest vulnerability of certain species of fishes. For this reason, a study of the effects of atrazine on fathead minnow reproduction was undertaken (Tillitt and others, 2010). This report provides the raw data from that study.

  18. Pesticides and their metabolites in wells of Suffolk County, New York, 1998

    USGS Publications Warehouse

    Phillips, Patrick J.; Eckhardt, D.A.; Terracciano, S.A.; Rosenmann, Larry

    1999-01-01

    Five insecticide residues and 20 herbicide residues were detected in water samples collected from 50 shallow wells screened in the surficial sand and gravel aquifer in Suffolk County, Long Island in areas with known or suspected residues. Laboratory analytical methods with extremely low detection limits - from 0.001 to 0.2 ?g/L (micrograms per liter) - were used to analyze the samples for 60 pesticide residues. Forty-four of the samples contained at least one pesticide residue, and some samples contained as many as 11 different pesticides or pesticide metabolites. Only four water- quality standards were exceeded in the samples collected in this study. Dieldrin exceeded the New York State Class GA standard (0.004 ?g/L) in samples from eight wells. The Federal and New York State Maximum Contaminant Level for simazine (4 ?g/L) was exceeded in samples from two wells, and the State Class GA standard for simazine (0.5 ?g/L) was exceeded in samples from six wells. Federal water-quality standards have not been established for many of the compounds detected in this study, including herbicide metabolites. Maximum concentrations of four herbicide metabolites -metolachlor ESA (ethanesulfonic acid), metolachlor OA (oxanilic acid), and the alachlor metabolites alachlor ESA and alachlor OA -exceeded 20 ?g/L. The maximum concentration of one herbicide (tebuthiuron) exceeded 10 ?g/L, and the maximum concentration of three herbicides (simazine, metolachlor, and atrazine) and one herbicide metabolite (deisopropylatrazine) ranged from 1 to 10 ?g/L. The herbicide metolachlor, which is used on potato fields in Suffolk County, and its metabolites (metolachlor ESA and metolachlor OA) were most frequently detected in samples from agricultural areas. The herbicides simazine and tebuthiuron, which were used in utility rights-of-way, and the simazine metabolite deisopropylatrazine were detected at concentrations greater than 0.05 ?g/L most frequently in samples from residential and mixed land

  19. Acute Atrazine Exposure has Lasting Effects on Chemosensory Responses to Food Odors in Crayfish (Orconectes virilis).

    PubMed

    Belanger, Rachelle M; Mooney, Lauren N; Nguyen, Hung M; Abraham, Noor K; Peters, Tyler J; Kana, Maria A; May, Lauren A

    2016-02-01

    The herbicide atrazine is known to impact negatively olfactory-mediated behaviors in aquatic animals. We have shown that atrazine exposure has deleterious effects on olfactory-mediated behavioral responses to food odors in crayfish; however, recovery of chemosensory abilities post-atrazine exposure has not been investigated. We examined whether crayfish (Orconectes virilis) recovered chemosensory abilities after a 96-h exposure to sublethal, environmentally relevant concentrations of 80 ppb (µg/L) atrazine. Following treatment, we analyzed the ability of the crayfish to locate a food source using a Y-maze with one arm containing fish-flavored gelatin and the other containing unflavored gelatin. We compared the time spent in the food arm of the Y-maze, near the food source, as well as moving and walking speed of control and atrazine-treated crayfish. We also compared the number of crayfish that handled the food source and the amount of food consumed. Following 24-, 48-, and 72-h recovery periods in fresh water, behavioral trials were repeated to determine if there was any observable recovery of chemosensory-mediated behaviors. Atrazine-treated crayfish spent less time in the food arm, at the odor source, and were less successful at finding the food odor source than control crayfish for all times tested. Additionally, atrazine-treated crayfish consumed less fish-flavored than control crayfish; however, treatment did not affect locomotion. Overall, we found that crayfish are not able to recover chemosensory abilities 72 h post-atrazine exposure. Because crayfish rely heavily on their chemosensory abilities to acquire food, the negative impacts of atrazine exposure could affect population size in areas where atrazine is heavily applied. PMID:26487338

  20. Atrazine and its metabolites as indicators of stream-aquifer interaction in Kansas, USA

    USGS Publications Warehouse

    Townsend, M.A.; Young, D.P.

    2000-01-01

    A survey of atrazine and its metabolites in Kansas ground water indicated that ground-water quality was impacted by stream-aquifer interaction between rivers in the Kansas River basin and their adjacent alluvial aquifers. Atrazine was detected in 19 of the 78 samples. The most common metabolite, deethylatrazine, was detected in 25 samples, 18 of which also had atrazine. The deethylatrazine/atrazine ratio (DAR) of < 1.0 indicates rapid movement of agricultural chemicals to ground water. In this study, 12 of 18 samples had DAR values < 1.0, suggesting rapid recharge to the aquifers. Hydroxyatrazine is seldom detected in ground water. In this study hydroxyatrazine was detected primarily in wells sited in alluvium of rivers. These rivers contain atrazine in varying concentrations. Results of the study suggest that stream-aquifer interaction is a process contributing to the presence of both atrazine and its metabolites in ground water in these areas.A survey of atrazine and its metabolites in Kansas ground water indicated that ground water quality was impacted by stream-aquifer interaction between rivers in the Kansas River basin and their adjacent alluvial aquifers. Atrazine was detected in 19 of the 78 samples. The most common metabolite, deethylatrazine, was detected in 25 samples, 18 of which also had atrazine. The deethylatrazine/attrazine ratio (DAR) of < 1.0 indicates rapid movement of agricultural chemicals to ground water. In this study, 12 of 18 samples had DAR values < 1.0, suggesting rapid recharge to the aquifers. Hydroxyatrazine is seldom detected in ground water. In this study hydroxyatrazine was detected primarily in wells sited in alluvium of rivers. These rivers contain atrazine in varying concentration. Results of the study suggest that stream-aquifer interaction is a process contributing to the presence of both attrazine and its metabolites in ground water in these areas.

  1. Distinct detoxification mechanisms confer resistance to mesotrione and atrazine in a population of waterhemp.

    PubMed

    Ma, Rong; Kaundun, Shiv S; Tranel, Patrick J; Riggins, Chance W; McGinness, Daniel L; Hager, Aaron G; Hawkes, Tim; McIndoe, Eddie; Riechers, Dean E

    2013-09-01

    Previous research reported the first case of resistance to mesotrione and other 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides in a waterhemp (Amaranthus tuberculatus) population designated MCR (for McLean County mesotrione- and atrazine-resistant). Herein, experiments were conducted to determine if target site or nontarget site mechanisms confer mesotrione resistance in MCR. Additionally, the basis for atrazine resistance was investigated in MCR and an atrazine-resistant but mesotrione-sensitive population (ACR for Adams County mesotrione-sensitive but atrazine-resistant). A standard sensitive population (WCS for Wayne County herbicide-sensitive) was also used for comparison. Mesotrione resistance was not due to an alteration in HPPD sequence, HPPD expression, or reduced herbicide absorption. Metabolism studies using whole plants and excised leaves revealed that the time for 50% of absorbed mesotrione to degrade in MCR was significantly shorter than in ACR and WCS, which correlated with previous phenotypic responses to mesotrione and the quantity of the metabolite 4-hydroxy-mesotrione in excised leaves. The cytochrome P450 monooxygenase inhibitors malathion and tetcyclacis significantly reduced mesotrione metabolism in MCR and corn (Zea mays) excised leaves but not in ACR. Furthermore, malathion increased mesotrione activity in MCR seedlings in greenhouse studies. These results indicate that enhanced oxidative metabolism contributes significantly to mesotrione resistance in MCR. Sequence analysis of atrazine-resistant (MCR and ACR) and atrazine-sensitive (WCS) waterhemp populations detected no differences in the psbA gene. The times for 50% of absorbed atrazine to degrade in corn, MCR, and ACR leaves were shorter than in WCS, and a polar metabolite of atrazine was detected in corn, MCR, and ACR that cochromatographed with a synthetic atrazine-glutathione conjugate. Thus, elevated rates of metabolism via distinct detoxification mechanisms contribute to

  2. Herbicide and degradate flux in the Yazoo River Basin

    USGS Publications Warehouse

    Coupe, R.H.; Welch, H.L.; Pell, A.B.; Thurman, E.M.

    2005-01-01

    During 1996-1997, water samples were collected from five sites in the Yazoo River Basin and analysed for 14 herbicides and nine degradates. These included acetochlor, alachlor, atrazine, cyanazine, fluometuron, metolachlor, metribuzin, molinate, norflurazon, prometryn, propanil, propazine, simazine, trifluralin, three degradates of fluometuron, two degradates of atrazine, one degradate of cyanazine, norflurazon, prometryn, and propanil. Fluxes generally were higher in 1997 than in 1996 due to a greater rainfall in 1997 than 1996. Fluxes were much larger from streams in the alluvial plain (an area of very productive farmland) than from the Skuna River in the bluff hills (an area of small farms, pasture, and forest). Adding the flux of the atrazine degradates to the atrazine flux increased the total atrazine flux by an average of 14.5%. The fluometuron degradates added about 10% to the total fluometuron flux, and adding the norflurazon degradate flux to the norflurazon flux increased the flux by 82% in 1996 and by 171% in 1997. ?? 2005 Taylor & Francis.

  3. Competitive fluorescence assay for specific recognition of atrazine by magnetic molecularly imprinted polymer based on Fe3O4-chitosan.

    PubMed

    Liu, Guangyang; Li, Tengfei; Yang, Xin; She, Yongxin; Wang, Miao; Wang, Jing; Zhang, Min; Wang, Shanshan; Jin, Fen; Jin, Maojun; Shao, Hua; Jiang, Zejun; Yu, Hailong

    2016-02-10

    A novel fluorescence sensing strategy for determination of atrazine in tap water involving direct competition between atrazine and 5-(4,6-dichlorotriazinyl) aminofluorescein (5-DTAF), and which exploits magnetic molecularly imprinted polymer (MMIP), has been developed. The MMIP, based on Fe3O4-chitosan nanoparticles, was synthesized to recognize specific binding sites of atrazine. The recognition capability and selectivity of the MMIP for atrazine and other triazine herbicides was investigated. Under optimal conditions, the competitive reaction between 5-DTAF and atrazine was performed to permit quantitation. Fluorescence intensity changes at 515 nm was linearly related to the logarithm of the atrazine concentration for the range 2.32-185.4 μM. The detection limit for atrazine was 0.86μM (S/N=3) and recoveries were 77.6-115% in spiked tap water samples. PMID:26686107

  4. Determinants of atrazine contamination in the homes of commercial pesticide applicators across time.

    PubMed

    Lozier, Matthew J; Curwin, Brian; Nishioka, Marcia G; Sanderson, Wayne

    2012-01-01

    Twenty-nine commercial pesticide applicator households in eastern Iowa were enrolled to investigate in-home contamination of atrazine, the most commonly used corn herbicide in the Unites States. From each home, four vacuum dust samples were collected during atrazine application season (Visit 1) and again 6 months later during winter months (Visit 2). Samples were taken from the following locations: primary entryway for pesticide applicator, living room, master bedroom, and kitchen. The applicator completed an atrazine handling log and household questionnaire with spouse. Of the 230 dust samples, only 2 were below the level of detection, 2 ng of atrazine per gram (ng/g) of fine dust (dust particle size 5-150 μm). Dust levels were standardized to chemical loading. During application season the entryway (2.68 ng/cm(2)) and kitchen (0.47 ng/cm(2)) had the highest geometric mean atrazine chemical loading. The entryway chemical loading during Visit 2 was the second highest aggregate (0.55 ng/cm(2)). Aggregate concentrations were significantly higher at Visit 1 compared with Visit 2 when paired by location (p≤0.02). Analysis showed that job (application, mixing/loading, or both) was not associated with in-home atrazine contamination. Linear regression showed a strong positive association between atrazine handling (number of acres applied with atrazine, number of days atrazine handled, and pounds of atrazine handled) and aggregate dust chemical loading from both visits (p = 0.06, 0.03, and 0.10, respectively). Frequency of vacuuming was inversely associated with Visit 2 concentrations (p = 0.10) and showed a weaker association with Visit 1 (p = 0.30). Removing shoes outside the home was associated with lower atrazine chemical loading (p = 0.03), and applicators changing work clothes in the master bedroom had significantly increased atrazine chemical loading in master bedrooms (p = 0.01). Changes in hygiene practices for commercial pesticide applicators could

  5. Atrazine-Induced Aromatase Expression Is SF-1 Dependent: Implications for Endocrine Disruption in Wildlife and Reproductive Cancers in Humans

    PubMed Central

    Fan, WuQiang; Yanase, Toshihiko; Morinaga, Hidetaka; Gondo, Shigeki; Okabe, Taijiro; Nomura, Masatoshi; Komatsu, Tomoko; Morohashi, Ken-Ichirou; Hayes, Tyrone B.; Takayanagi, Ryoichi; Nawata, Hajime

    2007-01-01

    Background Atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. The mechanism involves the inhibition of phosphodiesterase and subsequent elevation of cAMP. Methods We compared steroidogenic factor 1 (SF-1) expression in atrazine responsive and non-responsive cell lines and transfected SF-1 into nonresponsive cell lines to assess SF-1’s role in atrazine-induced aromatase. We used a luciferase reporter driven by the SF-1–dependent aromatase promoter (ArPII) to examine activation of this promoter by atrazine and the related simazine. We mutated the SF-1 binding site to confirm the role of SF-1. We also examined effects of 55 other chemicals. Finally, we examined the ability of atrazine and simazine to bind to SF-1 and enhance SF-1 binding to ArPII. Results Atrazine-responsive adrenal carcinoma cells (H295R) expressed 54 times more SF-1 than nonresponsive ovarian granulosa KGN cells. Exogenous SF-1 conveyed atrazine-responsiveness to otherwise nonresponsive KGN and NIH/3T3 cells. Atrazine induced binding of SF-1 to chromatin and mutation of the SF-1 binding site in ArPII eliminated SF-1 binding and atrazine-responsiveness in H295R cells. Out of 55 chemicals examined, only atrazine, simazine, and benzopyrene induced luciferase via ArPII. Atrazine bound directly to SF-1, showing that atrazine is a ligand for this “orphan” receptor. Conclusion The current findings are consistent with atrazine’s endocrine-disrupting effects in fish, amphibians, and reptiles; the induction of mammary and prostate cancer in laboratory rodents; and correlations between atrazine and similar reproductive cancers in humans. This study highlights the importance of atrazine as a risk factor in endocrine disruption in wildlife and reproductive cancers in laboratory rodents and humans. PMID:17520059

  6. An altered Q sub B polypeptide as the basis for atrazine resistance in photoautotrophic potato cells

    SciTech Connect

    Smeda, R.J.; Hasegawa, P.M.; Weller, S.C. )

    1990-05-01

    A photoautotrophic potato cell line (variant) was isolated and is capable of sustained growth in media containing the herbicide atrazine at concentrations up to 100-fold greater than the lethal concentration (1.0 {mu}M) for the unselected (wild type) cell line. The basis for atrazine resistance could not be identified by differential uptake or metabolism. Photosynthetic electron transport rates for both intact cell and isolated thylakoid membranes from chloroplasts were unaffected in variant cells at atrazine concentrations up to 100-fold greater than for wild type cells. Photoaffinity labeling of isolated thylakoid membranes from both cell lines with {sup 14}C-azidoatrazine revealed an altered Q{sub B} polypeptide in variant cells resulting in low or no affinity for atrazine. A portion of the chloroplast psbA gene, encoding the Q{sub B} polypeptide, was sequenced for both cell lines. The basis for atrazine resistance in variant cells was identified as a single base change resulting in the alteration of serine to threonine at position 264 of the Q{sub B} polypeptide. In addition to atrazine resistance, variant cells exhibit enhanced tolerance to the herbicides DCMU and metribuzin, but greater sensitivity to bentazon. No reductions in variant cell growth and photosynthetic efficiency in the absence of atrazine were observed.

  7. Wire-cylinder dielectric barrier discharge induced degradation of aqueous atrazine.

    PubMed

    Zhu, Dan; Jiang, Lin; Liu, Run-Long; Chen, Pei; Lang, Lin; Feng, Jing-Wei; Yuan, Shou-Jun; Zhao, Da-Yong

    2014-12-01

    The wire-cylinder dielectric barrier discharge reactor was adopted for removal of aqueous atrazine. The effect of different parameters on the degradation efficiency of atrazine was investigated, and the degradation mechanism of atrazine was studied. The experimental results showed that when the discharge power was 50 W and the air flow rate was 140 L h(-1), 93.7% of atrazine was degraded after 18 min of discharge time. The concentrations of generated O3 and H2O2 increased with increasing discharge time. The pH decreased from 6.80 to 2.50, 12.7% of TOC was removed after 18 min. The concentrations of generated Cl(-) and NO3(-) increased significantly during the degradation process of atrazine, and the decreasing toxicity trend was observed for the treated atrazine solution. The degradation byproducts of atrazine were identified using liquid chromatography-time-of-flight mass spectrometry (LC-TOF-MS), which might be formed mainly in dechlorination hydroxylation, alkyl oxidation, dechlorination hydroxylation combined with alkyl oxidation and demethylation oxidation reactions. PMID:25268075

  8. Preparation and characterization of a lipoid adsorption material and its atrazine removal performance.

    PubMed

    Chen, Zhiqiang; Wen, Qinxue; Lian, Jiaxiang; Ren, Nanqi

    2011-01-01

    A novel adsorbent named lipoid adsorption material (LAM), with a hydrophobic nucleolus (triolein) and a hydrophilic membrane structure (polyamide), was synthesized to remove hydrophobic organic chemicals (HOCs) from solution. Triolein, a type of lipoid, was entrapped by the polyamide membrane through an interfacial polymerization reaction. The method of preparation and the structure of the LAM were investigated and subsequent experiments were conducted to determine the characteristics of atrazine (a type of HOC) removal from wastewater using LAM as the adsorbent. The results showed that LAM had a regular structure compared with the prepolymer, where compact particles were linked with each other and openings were present in the structure of the LAM in which the fat drops formed from triolein were entrapped. In contrast to the atrazine adsorption behavior of powdered activated carbon (PAC), LAM showed a persistent adsorption capacity for atrazine when initial concentrations of 0.57, 1.12, 8.31 and 19.01 mg/L were present, and the equilibrium time was 12 hr. Using an 8 mg/L initial concentration of atrazine as an indicator of HOCs in aqueous solution, experiments on the adsorption capacity of the LAM showed 69.3% removal within 6-12 hr contact time, which was close to the 75.5% removal of atrazine by PAC. Results indicated that LAM has two atrazine removal mechanisms, namely the bioaccumulation of atrazine by the nucleous material and physical adsorption to the LAM membrane. Bioaccumulation was the main removal mechanism. PMID:22128536

  9. Twenty years of long-term Atrazine monitoring in a shallow aquifer in Western Germany (Invited)

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Vonberg, D.; Putz, T.; Vanderborght, J.

    2013-12-01

    Atrazine, one of the most frequent applied pesticides worldwide, was banned in Germany in 1991 due to exceeded threshold values in ground- and drinking waters. Monitoring of atrazine was hence introduced in the Zwischenscholle aquifer, exposed to intensive agricultural land use and susceptible to contaminants due to a shallow water table. In total 60 observation wells were monitored since 1991, of which 11 are sampled monthly today. Descriptive statistics of monitoring data were derived using the 'regression on order statistics' (ROS) data censoring approach, estimating values for nondetects. The monitoring data shows that even 20 years after the ban of atrazine, the concentrations in groundwater are on a constant level without any considerable decrease. The spatial distribution of atrazine concentrations is highly heterogeneous with observation wells exhibiting constantly concentrations above the threshold on the one hand and observation wells where concentrations are frequently below the limit of quantification (LOQ) on the other hand. A deethylatrazine-to-atrazine ratio (DAR) was used to distinguish between diffuse - and point-source contamination, with a global mean value of 0.84 indicating mainly diffuse contamination. Principle Component Analysis (PCA) was applied to the monitoring dataset and relationships of triazine compounds became obvious. Accordingly the metabolite desisopropylatrazine was exclusively associated with the occurrence of the parent compound simazine and not atrazine, whereas deethylatrazine was clearly related to atrazine.

  10. Adsorption and desorption of atrazine and deethylatrazine by low organic carbon geologic materials

    SciTech Connect

    Roy, W.R.; Krapac, I.G.

    1994-05-01

    The adsorption and desorption of atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) and a primary metabolite, deethylatrazine (2-amino-4-chloro-6-isopropylamino-s-triazine; DEA), by low organic C ({le} 3.3 g kg{sup -1}) materials were measured by batch-equilibrium techniques. The adsorbents were samples of glacial outwash sand, till, and stream sediments. The adsorption of both atrazine and DEA conformed to linear isotherms. The adsorption of atrazine by most of the absorbents yielded apparent K, values that were in excess of those based on surface agricultural soils. Adsorption correlated with only the pH of the sand-water suspensions. The desorption of atrazine was hysteretic under the conditions of the measurement. DEA had a lower affinity for the same adsorbents; the mean ratio of Kd values of DEA to those of atrazine was 0.37 {+-} 0.20. DEA adsorption did not correlate with organic C, surface area, clay content of the adsorbents, or with the pH of the suspensions. DEA adsorption, unlike atrazine, tended to be reversible. There was a linear relationship between the adsorption constants of atrazine and those of DEA. 40 refs., 8 figs., 3 tabs.

  11. Atrazine Affects Phosphoprotein and Protein Expression in MCF-10A Human Breast Epithelial Cells

    PubMed Central

    Huang, Peixin; Yang, John; Song, Qisheng; Sheehan, David

    2014-01-01

    Atrazine, a member of the 2-chloro-s-triazine family of herbicides, is the most widely used pesticide in the world and often detected in agriculture watersheds. Although it was generally considered as an endocrine disruptor, posing a potential threat to human health, the molecular mechanisms of atrazine effects remain unclear. Using two-dimensional gel electrophoresis, we identified a panel of differentially expressed phosphoproteins and total proteins in human breast epithelial MCF-10A cells after being exposed to environmentally relevant concentrations of atrazine. Atrazine treatments for 6 h resulted in differential expression of 4 phosphoproteins and 8 total-proteins as compared to the control cells (>1.5-fold, p < 0.05). MALDI-TOF MS/MS analysis revealed that the differentially expressed proteins belong to various cellular compartments (nucleus, cytosol, membrane) and varied in function, including those regulating the stress response such as peroxiredoxin I, HSP70 and HSP27; structural proteins such as tropomyosin and profilin 1; and oncogenesis proteins such as ANP32A. Six of the 12 identified proteins were verified by quantitative PCR for their transcript levels. The most up-regulated phosphoprotein by atrazine treatment, ANP32A, was further analyzed for its expression, distribution and cellular localization using Western blot and immunocytochemical approaches. The results revealed that ANP32 expression after atrazine treatment increased dose and time dependently and was primarily located in the nucleus. This study may provide new evidence on the potential toxicity of atrazine in human cells. PMID:25275270

  12. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA

    PubMed Central

    Sengupta, Namrata; Litoff, Elizabeth J.; Baldwin, William S.

    2015-01-01

    HR96 is a CAR/PXR/VDR ortholog in invertebrates, and a promiscuous endo- and xenobiotic nuclear receptor involved in acclimation to toxicants. Daphnia HR96 is activated by chemicals such as atrazine and linoleic acid (LA) (n-6 fatty acid), and inhibited by triclosan and docosahexaenoic acid (DHA)(n-3 fatty acid). We hypothesized that inhibitors of HR96 may block the protective responses of HR96 based on previously performed luciferase assays. Therefore, we performed acute toxicity tests with two-chemical mixtures containing a HR96 inhibitor (DHA or triclosan) and a HR96 activator (LA or atrazine). Surprisingly, results demonstrate that triclosan and DHA are less toxic when co-treated with 20–80 μM atrazine. Atrazine provides concentration-dependent protection as lower concentrations have no effect and higher concentrations cause toxicity. LA, a weaker HR96 activator, did not provide protection from triclosan or DHA. Atrazine’s protective effects are presumably due to its ability to activate HR96 or other toxicologically relevant transcription factors and induce protective enzymes. Atrazine did not significantly induce glucosyltransferase, a crucial enzyme in triclosan detoxification. However, atrazine did increase antioxidant activities, crucial pathways in triclosan’s toxicity, as measured through GST activity and the TROLOX equivalence assay. The increase in antioxidant capacity is consistent with atrazine providing protection from a wide range of toxicants that induce ROS, including triclosan and unsaturated fatty acids predisposed to lipid peroxidation. PMID:25747156

  13. Adsorption and desorption of atrazine and deethylatrazine by low organic carbon geologic materials

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.

    1994-01-01

    The adsorption and desorption of atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) and a primary metabolite, deethylatrazine (2- amino-4-chloro-6-isopropylamino-s-triazine; DEA), by low organic C (??? 3.3 g kg-1) materials were measured by batch-equilibrium techniques. The adsorbents were samples of glacial outwash sand, till, and stream sediments. The adsorption of both atrazine and DEA conformed to linear isotherms. The adsorption of atrazine by most of the adsorbents yielded apparent K(oc) values that were in excess of those based on surface agricultural soils. Adsorption correlated with only the pH of the sand-water suspensions. The desorption of atrazine was hysteretic under the conditions of the measurement. DEA had a lower affinity for the same adsorbents; the mean ratio of K(d) values of DEA to those of atrazine was 0.37 ?? 0.20. DEA adsorption did not correlate with organic C, surface area, clay content of the adsorbents, or with the pH of the suspensions. DEA adsorption, unlike atrazine, tended to be reversible. There was a linear relationship between the adsorption constants of atrazine and those of DEA.

  14. Response of multiple herbicide resistant strain of diazotrophic cyanobacterium, Anabaena variabilis, exposed to atrazine and DCMU.

    PubMed

    Singh, Surendra; Datta, Pallavi; Tirkey, Archna

    2011-04-01

    Effect of two photosynthetic inhibitor herbicides, atrazine (both purified and formulated) and [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] (DCMU), on the growth, macromolecular contents, heterocyst frequency, photosynthetic O2 evolution and dark O2 uptake of wild type and multiple herbicide resistant (MHR) strain of diazotrophic cyanobacterium A. variabilis was studied. Cyanobacterial strains showed gradual inhibition in growth with increasing dosage of herbicides. Both wild type and MHR strain tolerated < 6.0 mg L(-1) of atrazine (purified), < 2.0 mg L(-1) of atrazine (formulated) and < 0.4 mg L(-1) of DCMU indicating similar level of herbicide tolerance. Atrazine (pure) (8.0 mg L(-1)) and 4.0 mg L(-1) of atrazine (formulated) were growth inhibitory concentrations (lethal) for both wild type and MHR strain indicating formulated atrazine was more toxic than the purified form. Comparatively lower concentrations of DCMU were found to be lethal for wild type and MHR strain, respectively. Thus, between the two herbicides tested DCMU was more growth toxic than atrazine. At sublethal dosages of herbicides, photosynthetic O2 evolution showed highest inhibition followed by chlorophyll a, phycobhiliproteins and heterocyst differentiation as compared to carotenoid, protein and respiratory O2 uptake. PMID:21614895

  15. Atrazine and metribuzin sorption in soils of the Argentinean humid pampas.

    PubMed

    Daniel, Peter E; Bedmar, Francisco; Costa, José L; Aparicio, Virginia C

    2002-12-01

    Laboratory studies were conducted to determine the influence of surface and subsurface properties of three representative soils of the humid pampas of Argentina on atrazine and metribuzin sorption. Atrazine and metribuzin sorption isotherms were constructed for each soil at four depths. Sorption affinity of herbicides was approximated by the Freundlich constant (K(f)), distribution coefficient (Kd), and the normalized Kd based on organic carbon content (K(oc)). Multiple regression of the sorption constants against selected soil properties indicated that organic carbon content (OC) and silt were related positively and negatively, respectively, to atrazine K(f) coefficient (r2 = 0.93), while Kd coefficient of atrazine was related positively to organic carbon content and negatively to both silt and cation exchange capacity (CEC) (r2 = 0.96). For metribuzin, only organic matter content was related positively to Kr coefficient (r2 = 0.51). Lower K(f) values for atrazine were obtained for all soils with increasing depth, indicating lesser sorption at greater depths. Metribuzin sorption was quite similar across all depths. Sorption constant K(f) of atrazine ranged from 2.06 to 7.82, while metribuzin K(f) values ranged from 1.8 to 3.52 and were lower than atrazine for all soils and depths, indicating a greater leaching potential across the soil profile. PMID:12463550

  16. Transcriptome analysis of Glomus mosseae/Medicago sativa mycorrhiza on atrazine stress

    PubMed Central

    Song, Fuqiang; Li, Jize; Fan, Xiaoxu; Zhang, Quan; Chang, Wei; Yang, Fengshan; Geng, Gui

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. In this study effect of Glomus mosseae/Medicago sativa mycorrhiza on atrazine degradation was investigated. It was observed that the atrazine degradation rates with any addition level in mycorrhizal treatments were all significantly higher than those in non- mycorrhizal treatments. When atrazine was applied at 20 mg kg−1, the removal efficiency was up to 74.65%. Therefore, G. mosseae can be considered as ideal inhabitants of technical installations to facilitate phytoremediation. Furthermore, a total of 10.4 Gb was used for de novo transcriptome assembly, resulting in a comprehensive data set for the identification of genes corresponding to atrazine stress in the AM association. After comparative analysis with edgeR, a total of 2,060 differential expressed genes were identified, including 570 up-regulated genes and 1490 down-regulated genes. After excluding ‘function unknown’ and ‘general function predictions only’ genes, 172 up-regulated genes were obtained. The differentially expressed genes in AM association with and without atrazine stress were associated with molecular processes/other proteins, zinc finger protein, intracellular/extracellular enzymes, structural proteins, anti-stress/anti-disease protein, electron transport-related protein, and plant growth associated protein. Our results not only prove AMF has important ecological significance on atrazine degradation but also provide evidence for the molecular mechanisms of atrazine degradation by AMF. PMID:26833403

  17. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms

    USGS Publications Warehouse

    Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Solomon, K.R.

    2005-01-01

    The potential effects of atrazine on gonadal development in metamorphs and subadults of the African clawed frog (Xenopus laevis) were studied under conditions of natural photoperiod and temperatures in outdoor microcosms from August 2002 to June 2003 in South Africa. Triplicate 1100 L microcosms for each nominal concentration of 0.0, 1, 10, and 25 ??g of atrazine/L were used. Measured atrazine concentrations varied <25% throughout the study, and no atrazine was detected in the control microcosms. Tadpoles developed well at all concentrations. On the basis of histological examination of testes of recently metamorphosed stage 66 frogs, 57% of the individuals in the reference group exhibited testicular oocytes as compared with 57, 59, and 39% of the 1, 10, and 25 ??g/L atrazine groups, respectively. The average prevalence of testicular oocytes for all of the treatments including the controls was 54% in a single testis, while, in 35% of individuals, testicular oocytes were observed in both testes. The number of testicular oocytes per individual ranged from 0 to 58 with means of 9.5, 9.8, 8.5, and 11.1 for the 0.0, 1, 10, and 25 ??g of atrazine/L groups, respectively. Ten months after metamorphosis, another subset of juveniles was examined, and the maximum number of testicular oocytes observed was five in one animal. The presence of testicular oocytes was not related to exposure to atrazine and may be a natural phenomenon during ontogeny. ?? 2005 American Chemical Society.

  18. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    PubMed

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine. PMID:26724435

  19. Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1991

    USGS Publications Warehouse

    Kalkhoff, S.J.; Kuzniar, R.L.

    1994-01-01

    Stream discharge, specific conductance, pH, and water temperature were monitored continuously, and monthly water-quality samples were collected at a site on Roberts Creek and at Big Spring. Nitrite plus nitrate as nitrogen concentrations in 27 samples from Roberts Creek at the point where it leaves the study area ranged from 1.8 to 22 mg/L. Herbicide concentrations in 26 samples from the Roberts Creek site ranged from less than 0.10 μg/L (micrograms per liter) to 43 μg/L. Alachlor was detected in 42 percent of the samples; atrazine in 92 percent; and cyanazine and metolachlor in 35 percent of the samples. The total suspended-sediment load discharged in Roberts Creek was about 160,000 tons. At Big Spring, the ground-water discharge point, the daily mean specific conductance ranged from 414 to 788 microsiemens per centimeter at 25 degrees Celsius, the daily median pH ranged from 6.7 to 7.1, and the daily mean water temperature ranged from 8.5 to 13.0 degrees Celsius. Concentrations of nitrite plus nitrate as nitrogen in 23 samples ranged from 4.2 to 17 mg/L. The total measured suspended-sediment discharged from Big Spring was about 17,000 tons. Alachlor was detected in 26 percent; atrazine in 100 percent; cyanazine in 26 percent, and metolachlor in 9 percent of the samples. The maximum atrazine concentration was 16 μg/L.

  20. Reproductive and developmental effects of atrazine on the estuarine meiobenthic copepod Amphiascus tenuiremis.

    PubMed

    Bejarano, Adriana C; Chandler, G Thomas

    2003-12-01

    Atrazine is one of the most widely used herbicides in the United States. Atrazine concentrations in coastal environments chronically range from 90 ng/L to 46 microg/L, with rare but measured concentrations near 60 microg/L at edge-of-field conditions. Chronic atrazine effects on estuarine benthos exposed to environmentally relevant concentrations are unknown. The purpose of this research was to assess atrazine reproductive and developmental effects over multiple-generation exposures of the copepod Amphiascus tenuiremis. Copepods were chronically exposed to two environmentally relevant nominal atrazine concentrations (2.5 and 25 microg/L, and to an environmentally unrealistic concentration (250 microg/L). Chronic exposures were performed using a 96-well microplate life cycle bioassay. Individual stage I copepodites (C1, n = 60/treatment) were reared through two generations (F0 and F1) to sexual maturity and individually mated in microwells containing 200 microl of atrazine solution. Copepod survival across all treatments and generations was >95%. Atrazine did not affect development to reproductive maturity, time to egg extrusion, or time to egg hatch (p > 0.05). However, reproductive failures increased across generations with increasing atrazine concentrations. Reproductive failures in the 0-, 2.5-, 25-, and 250-microg/L atrazine treatments were 11, 11, 20, and 24% for the F0 and 4, 9, 26, and 38% for the F1, respectively. Compared to controls, total nauplii production per female was reduced by approximately 22% in F0 females exposed to 250 microg/L atrazine (p < 0.05), and by approximately 23%, approximately 27%, and approximately 32% in F1 females exposed to 2.5-, 25-, and 250-microg/L atrazine treatments, respectively (p < 0.05). The combined effect of reproductive failure and reduced offspring production significantly reduced total population growth in the F1 generation (p < 0.05) even at atrazine concentrations lower than that considered safe for seawater

  1. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, northern Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Ator, Scott; Denver, Judith

    2012-01-01

    Groundwater transport often complicates understanding of surface-water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late-winter or spring base-flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base-flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base-flow flux of alachlor and metolachlor is <3% of the total base-flow flux of those compounds plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications is typically highest in well-drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base-flow nitrate flux represents 70% of total nitrogen flux in headwater streams.

  2. Effects of Short Term Exposure of Atrazine on the Liver and Kidney of Normal and Diabetic Rats

    PubMed Central

    Jestadi, Dinesh Babu; Phaniendra, Alugoju; Babji, Undru; Srinu, Thupakula; Shanmuganathan, Bhavatharini

    2014-01-01

    The present study evaluates the effects of short term (15 days) exposure of low dose (300 μg kg−1) of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) on antioxidant status and markers of liver and kidney damage in normal (nondiabetic) and diabetic male Wistar rats. Rats were divided into four groups: Group I as normal control, Group II as atrazine treated, Group III as diabetic control, and Group IV as atrazine treated diabetic rats. Atrazine administration resulted in increased MDA concentration as well as increased activities of SOD, CAT, and GPx in both liver and kidney of atrazine treated and atrazine treated diabetic rats. However, GSH level was decreased in both liver and kidney of atrazine treated and atrazine treated diabetic rats. Atrazine administration led to significant increase in liver damage biomarkers such as AST, ALT, and ALP as well as kidney damage biomarkers such as creatinine and urea in both normal and diabetic rats, but this increase was more pronounced in diabetic rats when compared to normal rats. In conclusion, the results of the present study demonstrate that short term exposure of atrazine at a dose of 300 μg kg−1 could potentially induce oxidative damage in liver and kidney of both normal and diabetic rats. PMID:25349608

  3. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples

  4. Molecular characterization of atrazine resistance in common ragweed (Ambrosia artemisiifolia L.).

    PubMed

    Cseh, A; Cernak, I; Taller, J

    2009-01-01

    Common ragweed (Ambrosia artemisiifolia L.) is the most frequent weed in the Carpathian Basin and is spreading fast in other parts of Europe. In recent years, besides the wild type, a mutant genotype resistant to atrazine herbicides has evolved and is now widespread in many areas. The present study demonstrates that the atrazine resistance of ragweed is maternally inherited, and is caused by a point mutation in the psbA chloroplast gene. The promoter 5'-untranslated region and the open reading frame regions of the gene were analysed, and a homology search was performed. Both the atrazine-resistant and susceptible types of cpDNA were present in atrazine-resistant plants, while the mixed presence of both genotypes in the same plant, known as heteroplasmy, was not unequivocally detectable in susceptible plants. PMID:19875882

  5. Performance evaluation of waste activated carbon on atrazine removal from contaminated water.

    PubMed

    Ghosh, Pranab Kumar; Philip, Ligy

    2005-01-01

    In this study, the potential of spent activated carbon from water purifier (Aqua Guard, India) for the removal of atrazine (2 chloro-4 ethylamino-6-isopropylamino-1, 3, 5 triazine) from wastewaters was evaluated. Different grades of spent activated carbon were prepared by various pretreatments. Based on kinetic and equilibrium study results, spent activated carbon with a grain size of 0.3-0.5 mm and washed with distilled water (designated as WAC) was selected for fixed column studies. Batch adsorption equilibrium data followed both Freundlich and Langmuir isotherm. Fixed bed adsorption column with spent activated carbon as adsorbent was used as a polishing unit for the removal of atrazine from the effluent of an upflow anaerobic sludge blanket (UASB) reactor treating atrazine bearing domestic wastewater. Growth of bacteria on the surface of WAC was observed during column study and bacterial activity enhanced the effectiveness of adsorbent on atrazine removal from wastewater. PMID:15913015

  6. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine in Arabidopsis thaliana.

    PubMed

    Sulmon, Cécile; Gouesbet, Gwenola; Binet, Françoise; Martin-Laurent, Fabrice; El Amrani, Abdelhak; Couée, Ivan

    2007-01-01

    Growth in the presence of sucrose was shown to confer to Arabidopsis thaliana (thale cress or mustard weed) seedlings, under conditions of in vitro culture, a high level of tolerance to the herbicide atrazine and to other photosynthesis inhibitors. This tolerance was associated with root-to-shoot transfer and accumulation of atrazine in shoots, which resulted in significant decrease of herbicide levels in the growth medium. In soil microcosms, application of exogenous sucrose was found to confer tolerance and capacity to accumulate atrazine in Arabidopsis thaliana plants grown on atrazine-contaminated soil, and resulted in enhanced decontamination of the soil. Application of sucrose to plants grown on herbicide-polluted soil, which increases plant tolerance and xenobiotic absorption, thus appears to be potentially useful for phytoremediation. PMID:16769161

  7. Atrazine removal by covalent bonding to piperazine functionalized PolyHIPEs.

    PubMed

    Pulko, Irena; Kolar, Mitja; Krajnc, Peter

    2007-11-01

    The removal of atrazine from water by a solid phase extraction technique using insoluble polymers is described. Porous crosslinked polymers bearing piperazine moieties were prepared in a one step reaction from the precursor 4-nitrophenylacrylate incorporating polymers (PolyHIPE type prepared by the polymerization of the continuous phase of a high internal phase emulsion and polymer beads prepared by suspension polymerization). Polymers were applied to sequester atrazine from aqueous solutions with a concentration of 33 ppb and irreversible covalent bonding to the polymers was achieved. GC/MS/MS was used to monitor the dynamics of atrazine uptake and it was found that almost complete removal of atrazine was accomplished with an excess of polymer after 48 hours at room temperature. For comparison, polymer beads of identical chemistry but lower porosity were also used and showed significantly slower action (near complete removal after 72 hours). PMID:17662371

  8. Determination of growth rate depression of some green algae by atrazine

    SciTech Connect

    Hersh, C.M.; Crumpton, W.G.

    1987-12-01

    A common contaminant of surface waters of agricultural regions is the triazine herbicide, atrazine (2-chloro-4-ethylamino-6-isoproplyamino-s-triazine). Atrazine effectively inhibits growth and photosynthesis of most plants, including freshwater algae. Both depression of growth rate and reduced yield have been used as parameters in studies of the effects of atrazine on algal growth. Considerable variation exists among algal toxicity methods despite attempts at standardization. Experimental endpoints range from percent inhibitions to EC50s. Algae from two different Iowa springs were the subjects of a study of naturally occurring atrazine tolerance. The authors report here the results of two aspects of that study: development of a quick method of assessing toxin effects on algal growth, and investigation of a ecologically meaningful endpoint for toxin-growth experiments.

  9. Characterization of an atrazine molecularly imprinted polymer prepared by a cooling method

    NASA Astrophysics Data System (ADS)

    Royani, Idha; Widayani, Abdullah, Mikrajuddin; Khairurrijal

    2014-03-01

    A molecularly imprinted polymer (MIP) for atrazine was successfully prepared. Atrazine molecules as templates were incorporated into the pre-polymerization solution containing a functional monomer (methacrylic acid), a cross-linker (ethylene glycol dimethacrylate), and an initiator (benzoyl peroxide). The placement of a tube containing the pre-polymerization solution into a freezer was done to replace nitrogen pouring into the pre-polymerization solution. The sensing characteristic of the obtained MIP was examined and it was found that the amount of atrazine bound to the cavities in the MIP increases with increasing the initial concentration of atrazine. From Scatchard plots, it was found that the equilibrium dissociation constant KD and the apparent maximum number of binding sites Bmax, which are written as (KD, Bmax), are (6.4 μM, 13.41 mmol/g) and (6.5 μM, 4.55 mmol/g) for the 10 and 30 mg of MIP, respectively.

  10. European Union bans atrazine, while the United States negotiates continued use.

    PubMed

    Sass, Jennifer Beth; Colangelo, Aaron

    2006-01-01

    Atrazine is a common agricultural herbicide with endocrine disruptor activity. There is evidence that it interferes with reproduction and development, and may cause cancer. Although the U.S. Environmental Protection Agency (EPA) approved its continued use in October 2003, that same month the European Union (EU) announced a ban of atrazine because of ubiquitous and unpreventable water contamination. The authors reviewed regulatory procedures and government documents, and report efforts by the manufacturer of atrazine, Syngenta, to influence the U.S. atrazine assessment, by submitting flawed scientific data as evidence of no harm, and by meeting repeatedly and privately with EPA to negotiate the government's regulatory approach. Many of the details of these negotiations continue to be withheld from the public, despite EPA regulations and federal open-government laws that require such decisions to be made in the open. PMID:16967834

  11. Potiential role of the adrenal axis on the reproductive effects of Atrazine

    EPA Science Inventory

    We and others reported that atrazine (ATR) disrupts the regulation of the ovulatory luteinizing hormone (LH) surge and the hormonal control of other reproductive functions in the rat. In addition, administration of ATR or the intermediate metabolite deisopropylatrazine (DIA) stim...

  12. TREATMENT TECHNOLOGY FOR PESTICIDE MANUFACTURING EFFLUENTS: ATRAZINE, MANEB, MSMA, AND ORYZALIN

    EPA Science Inventory

    The report gives results of laboratory and pilot studies of the treatability of wastewaters generated by the manufacture of the pesticides maneb, oryzalin, atrazine, and MSMA. Wastewaters were characterized for pesticide content, routine parameters, and toxicity to fish, algae, a...

  13. INFILTRATION OF ATRAZINE AND METABOLOTES FROM A STREAM TO AN ALLUVIAL AQUIFER

    EPA Science Inventory

    The infiltration of atrazine, deethylatrazine, and deisopropylatrazine from Walnut Creek, a tributary stream, to the alluvial valley aquifer along the South Skunk River in central Iowa occurred where the stream transects the river's flood plain. A preliminary estimate indicated t...

  14. VOLUNTEER POTATO CONTROL IN SWEET CORN WITH ATRAZINE AND MESOTRIONE COMBINATIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesotrione applied postemergence (POST) to volunteer potato, reduces new tuber production more than other POST applied herbicides. Increased control of some broadleaf weeds has been reported with atrazine and mesotrione combinations versus either herbicide applied alone. Studies were conducted in ...

  15. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  16. Pesticides in ground water in selected agricultural land-use areas and hydrogeologic settings in Pennsylvania, 2003-07

    USGS Publications Warehouse

    Loper, Connie A.; Breen, Kevin J.; Zimmerman, Tammy M.; Clune, John W.

    2009-01-01

    absence of bacteria only for the 10 wells representing the Blue Ridge crystalline and Triassic Lowland siliciclastic setting. Results of Spearman’s rank test showed strong positive correlations in the Devonian-Silurian carbonate setting between 1) the number of pesticides above the MRLs and nitrate concentration, and 2) concentrations of atrazine and nitrate. Atrazine concentration and nitrate concentration also showed a statistically significant positive correlation in the Great Valley siliciclastic setting. An additional component of baseline monitoring was to evaluate changes in pesticide concentration in water from wells representing hydrogeologic settings most vulnerable to contamination from pesticides. In 2003, 16 wells originally sampled in the 1990s were resampled—4 each in the Appalachian Mountain carbonate, Triassic Lowland siliciclastic, Great Valley carbonate, and Piedmont carbonate settings. Nine of these wells, where pesticide concentrations from 1993 and 2003 were analyzed at the NWQL, were chosen for a paired-sample analysis using concentrations of atrazine and metolachlor. A statistically significant decrease in atrazine concentration was identified using the Wilcoxon signed-rank test (p = 0.004); significant temporal changes in metolachlor concentrations were not observed (p = 0.625). Monitoring in three areas of special ground-water protection, where selected pesticide concentrations in well water were at or above the PPGWS action levels, was done at wells BE 1370 (Berks County, Oley Township), BA 437 (Blair County, North Woodbury Township), and LN 1842 (Lancaster County, Earl Township). Co-occurrence of pesticide-degradation products with parent compounds was documented for the first time in ground-water samples collected from these three wells. Degradation products of atrazine, cyanazine, acetochlor, alachlor, and metolachlor were commonly at larger concentrations than the parent compound in the same water sample. Pesticide occurrence in water

  17. Chemical fate and transport of atrazine in soil gravel materials at agrichemical distribution facilities

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.; Chou, S.-F.J.

    1999-01-01

    The gravel commonly used to cover parking lots and roadways at retail agrichemical facilities may contain relatively large concentrations of pesticides that resulted from past management problems. These pesticides may threaten groundwater quality. Previous studies, however, suggested that the pesticides had not moved from the gravel in several sample profiles. Excavations at a closed facility revealed tremendous variability in pesticide distribution within the site. Pesticides were present below the gravel in two profiles, but the mechanism(s) for their movement were not clear. The objectives of this study were to investigate how the physical and chemical properties of the gravel influence the environmental fate of atrazine. All of the gravel samples collected and characterized contained atrazine and sufficient organic C to adsorb significant amounts of atrazine, thus retarding its movement through the gravel. Laboratory column leaching experiments, however, suggested that much of the atrazine should leach from the gravel within a year or two. A field-scale test plot was constructed to study how atrazine moves through the gravel under controlled conditions. Atrazine was "spilled" in the test plot. Atrazine moved from the gravel both vertically and horizontally. It appears that formulated product spilled on gravel will leach. A single discrete spill can give rise to phantom spills whose occurrence and distribution is not related to any specific pesticide-management practice. The apparent lack of atrazine leaching from gravel appeared to be a transient phenomenon and/or the result of sampling limitations in previous studies. The contaminated gravel clearly poses a risk to groundwater quality.

  18. Demasculinization and feminization of male gonads by atrazine: Consistent effects across vertebrate classes

    PubMed Central

    Hayes, Tyrone B.; Anderson, Lloyd L.; Beasley, Val R.; de Solla, Shane R.; Iguchi, Taisen; Ingraham, Holly; Kestemont, Patrick; Kniewald, Jasna; Kniewald, Zlatko; Langlois, Valerie S.; Luque, Enrique H.; McCoy, Krista A.; Muñoz-de-Toro, Mónica; Oka, Tomohiro; Oliveira, Cleida A.; Orton, Frances; Ruby, Sylvia; Suzawa, Miyuki; Tavera-Mendoza, Luz E.; Trudeau, Vance L.; Victor-Costa, Anna Bolivar; Willingham, Emily

    2015-01-01

    Atrazine is the most commonly detected pesticide contaminant of ground water, surface water, and precipitation. Atrazine is also an endocrine disruptor that, among other effects, alters male reproductive tissues when animals are exposed during development. Here, we apply the nine so-called “Hill criteria” (Strength, Consistency, Specificity, Temporality, Biological Gradient, Plausibility, Coherence, Experiment, and Analogy) for establishing cause–effect relationships to examine the evidence for atrazine as an endocrine disruptor that demasculinizes and feminizes the gonads of male vertebrates. We present experimental evidence that the effects of atrazine on male development are consistent across all vertebrate classes examined and we present a state of the art summary of the mechanisms by which atrazine acts as an endocrine disruptor to produce these effects. Atrazine demasculinizes male gonads producing testicular lesions associated with reduced germ cell numbers in teleost fish, amphibians, reptiles, and mammals, and induces partial and/or complete feminization in fish, amphibians, and reptiles. These effects are strong (statistically significant), consistent across vertebrate classes, and specific. Reductions in androgen levels and the induction of estrogen synthesis – demonstrated in fish, amphibians, reptiles, and mammals – represent plausible and coherent mechanisms that explain these effects. Biological gradients are observed in several of the cited studies, although threshold doses and patterns vary among species. Given that the effects on the male gonads described in all of these experimental studies occurred only after atrazine exposure, temporality is also met here. Thus the case for atrazine as an endocrine disruptor that demasculinizes and feminizes male vertebrates meets all nine of the “Hill criteria”. PMID:21419222

  19. Prediction of the Fate and Transport Processes of Atrazine in a Reservoir

    NASA Astrophysics Data System (ADS)

    Chung, Se-Woong; Gu, Roy R.

    2009-07-01

    The fate and transport processes of a toxic chemical such as atrazine, an herbicide, in a reservoir are significantly influenced by hydrodynamic regimes of the reservoir. The two-dimensional (2D) laterally-integrated hydrodynamics and mass transport model, CE-QUAL-W2, was enhanced by incorporating a submodel for toxic contaminants and applied to Saylorville Reservoir, Iowa. The submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The simulation results from the enhanced 2D reservoir model were validated by measured temperatures and atrazine concentrations in the reservoir. Although a strong thermal stratification was not identified from both observed and predicted water temperatures, the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the results showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A good agreement between predicted and observed times and magnitudes of peak concentrations was obtained. The use of time-variable decay rates of atrazine led to more accurate prediction of atrazine concentrations, while the use of a constant half-life (60 days) over the entire period resulted in a 40% overestimation of peak concentrations. The results provide a better understanding of the fate and transport of atrazine in the reservoir and information useful in the development of reservoir operation strategies with respect to timing, amount, and depth of withdrawal.

  20. Atrazine exposure causes mitochondrial toxicity in liver and muscle cell lines

    PubMed Central

    Sagarkar, Sneha; Gandhi, Deepa; Devi, S. Saravana; Sakharkar, Amul; Kapley, Atya

    2016-01-01

    Objective: Chronic exposure to atrazine and other pesticides is reported to cause metabolic disorders, yet information on effects of atrazine on expression of genes relevant to mitochondrial function is largely missing. In the present study, therefore, we investigated the expression of a battery of nuclear- and mitochondrial-encoded genes involved in oxidative phosphorylation (OXPHOS) in human liver (HepG2) and rat muscle (L6) cell lines due to short-term atrazine exposure. Materials and Methods: We have determined the EC50 values of atrazine for cytotoxicity and mitochondrial toxicity (mitotoxicity) in terms of adenosine triphosphate (ATP) content in HepG2 and L6 cells. Further, the mRNA expression of nuclear- and mitochondrial-encoded genes was analyzed using quantitative real-time polymerase chain reaction. Results: The EC50 value of atrazine for mitotoxicity in HepG2 and L6 cells was found to be about 0.162 and 0.089 mM, respectively. Mitochondrial toxicity was indicated by reduction in ATP content following atrazine exposure. Atrazine exposure resulted in down-regulation of many OXPHOS subunits expression and affected biogenesis factors’ expression. Most prominently, superoxide dismutase (SOD) and sirtuin 3 (SIRT3) expressions were up-regulated in HepG2 cells, whereas SIRT3 expression was alleviated in L6 cells, without significant changes in SOD levels. Mitochondrial transcription factor A (TFAM) and SIRT1 expression were significantly down-regulated in both cell lines. Conclusion: Results suggest that TFAM and SIRT1 could be involved in atrazine-induced mitochondrial dysfunction, and further studies can be taken up to understand the mechanism of mitochondrial toxicity. Further study can also be taken up to explore the possibility of target genes as biomarkers of pesticide toxicity. PMID:27114639

  1. Atrazine Acts as an Endocrine Disrupter by Inhibiting cAMP-specific Phosphodiesterase-4

    PubMed Central

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana; Stojilkovic, Stanko S.; Kovacevic, Radmila

    2014-01-01

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazine did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. PMID:23022511

  2. Photocatalytic degradation of atrazine using TiO{sub 2}-impregnated mesh

    SciTech Connect

    Kiserow, D.J.; Pugh, K.C.

    1994-10-01

    TiO{sub 2} photocatalysis is investigated is a potential means for the disposal of pesticide rinsate waste at agrochemical dealerships. The focus is an evaluation of parameters that affect the rate and mechanism of atrazine degradation using formulated atrazine (ca. 20-25 ppm), TiO{sub 2} mesh, a high-pressure mercury-vapor lamp, and solar irradiation. The UV transmission of a variety of transparent materials was measured and atrazine photocatalysis was carried out using several materials as reactor covers. The pseudo-first-order rate constants were calculated and compared to determine which cover results in the most efficient atrazine degradation. A clear acrylic gave results nearly identical to Pyrex and was chosen for future photocatalytic experiments. UV intensity and photocatalytic rate were studied as a function of different numbers of layers of TiO{sub 2} mesh. It was found that five layers give the optimum rate of degradation without employing excess mesh. In order to assess the general effect of impurities present in water on the rate of atrazine degradation, water from five different sources was obtained and each sample was analyzed for purity and used to prepare aqueous atrazine for photocatalytic degradation. The results show that contaminants specific to different locations are likely to inhibit the rate of photocatalysis to different degrees. While working to maximize the rate of atrazine degradation, studies are concurrently in progress to elucidate the mechanism of degradation for the experimental conditions employed herein. Initial results indicate that the overall degradation of atrazine to the reported end product, cyanuric acid, occurs by two distinct pathways of similar importance.

  3. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.

    PubMed

    Cao, Xinde; Ma, Lena; Liang, Yuan; Gao, Bin; Harris, Willie

    2011-06-01

    Biochar produced from waste biomass is increasingly being recognized as a green, cost-effective amendment for environmental remediation. This work was to determine the ability of biochar to immobilize heavy metal Pb and organic pesticide atrazine in contaminated soils. Biochar prepared from dairy manure was incubated with contaminated soils at rates of 0, 2.5, and 5.0% by weight for 210 d. A commercial activated carbon (AC) was included as a comparison. The AC was effective in immobilizing atrazine, but was ineffective for Pb. However, biochar was effective in immobilizing both atrazine and Pb and the effectiveness was enhanced with increasing incubation time and biochar rates. After 210 d, soils treated with the highest rate of 5.0% biochar showed more than 57% and 66% reduction in Pb and atrazine concentrations in 0.01 M CaCl(2) extraction, respectively. Lead and atrazine concentrations in the toxicity characteristic leaching procedure solutions were reduced by 70-89% and 53-77%, respectively. Uptake of Pb and atrazine by earthworms (Eisenia fetida) was reduced by up to 79% and 73%. Phosphorus originally contained in biochar reacted with soil Pb to form insoluble hydroxypyromorphite Pb(5)(PO(4))(3)(OH), as determined by X-ray diffraction, which was presumably responsible for soil Pb immobilization, whereas atrazine stabilization may result from its adsorption by biochar demonstrated by the significant exponential decrease of extractable atrazine with increasing organic C in biochar (r(2) > 0.97, p < 0.05). The results highlighted the potential of dairy-manure biochar as a unique amendment for immobilization of both heavy metal and organic contaminants in cocontaminated soils. PMID:21542567

  4. Atrazine and Breast Cancer: A Framework Assessment of the Toxicological and Epidemiological Evidence

    PubMed Central

    Simpkins, James W.; Swenberg, James A.; Weiss, Noel; Brusick, David; Eldridge, J. Charles; Stevens, James T.; Handa, Robert J.; Hovey, Russell C.; Plant, Tony M.; Pastoor, Timothy P.; Breckenridge, Charles B.

    2011-01-01

    The causal relationship between atrazine exposure and the occurrence of breast cancer in women was evaluated using the framework developed by Adami et al. (2011) wherein biological plausibility and epidemiological evidence were combined to conclude that a causal relationship between atrazine exposure and breast cancer is “unlikely”. Carcinogenicity studies in female Sprague-Dawley (SD) but not Fischer-344 rats indicate that high doses of atrazine caused a decreased latency and an increased incidence of combined adenocarcinoma and fibroadenoma mammary tumors. There were no effects of atrazine on any other tumor type in male or female SD or Fischer-344 rats or in three strains of mice. Seven key events that precede tumor expression in female SD rats were identified. Atrazine induces mammary tumors in aging female SD rats by suppressing the luteinizing hormone surge, thereby supporting a state of persistent estrus and prolonged exposure to endogenous estrogen and prolactin. This endocrine mode of action has low biological plausibility for women because women who undergo reproductive senescence have low rather than elevated levels of estrogen and prolactin. Four alternative modes of action (genotoxicity, estrogenicity, upregulation of aromatase gene expression or delayed mammary gland development) were considered and none could account for the tumor response in SD rats. Epidemiological studies provide no support for a causal relationship between atrazine exposure and breast cancer. This conclusion is consistent with International Agency for Research on Cancer’s classification of atrazine as “unclassifiable as to carcinogenicity” and the United States Environmental Protection Agency's classification of atrazine as “not likely to be carcinogenic.” PMID:21768606

  5. Exposure to Atrazine and Selected Non-Persistent Pesticides among Corn Farmers during a Growing Season

    PubMed Central

    Bakke, Berit; De Roos, Anneclaire J.; Barr, Dana B.; Stewart, Patricia A.; Blair, Aaron; Freeman, Laura Beane; Lynch, Charles F.; Allen, Ruth H.; Alavanja, Michael C.R.; Vermeulen, Roel

    2011-01-01

    Objectives The aim was to develop quantitative estimates of farmers’ pesticide exposure to atrazine and to provide an overview of background levels of selected non-persistent pesticides among corn farmers in a longitudinal molecular epidemiologic study. Methods The study population consisted of 30 Agricultural Health Study farmers from Iowa and 10 nonfarming controls. Farmers completed daily and weekly diaries from March to November in 2002 and 2003 on pesticide use and other exposure determinants. Urine samples were collected at 10 timepoints relative to atrazine application and other farming activities. Pesticide exposure was assessed using urinary metabolites and diaries. Results The analytical limit of detection (LOD) ranged between 0.1–0.2 μg/l for all pesticide analytes except for isazaphos (1.5 μg/l) and diazinon (0.7 μg/l). Farmers had higher geometric mean urinary atrazine mercapturate (AZM) values than controls during planting (1.1 vs. atrazine applied (p=0.015). Interestingly, farmers had a larger proportion of samples above the limit of detection than controls even after exclusion of observations with an atrazine application within 7 days before urine collection (38% vs. 6%, p<0.0001). A similar pattern was observed for 2,4-D and acetochlor (92% vs. 47%, p<0.0001 and 45% vs. 4%, p<0.0001, respectively). Conclusion Urinary AZM levels in farmers were largely driven by recent application of atrazine. Therefore, the amount of atrazine applied is likely to provide valid surrogates of atrazine exposure in epidemiologic studies. Elevated background levels of non-persistent pesticides, especially 2,4-D, indicate importance in epidemiologic studies of capturing pesticide exposures that might not be directly related to the actual application. PMID:19052531

  6. Assessing aquifer contamination risk using immunoassay: trace analysis of atrazine in unsaturated zone sediments

    USGS Publications Warehouse

    Juracek, K.E.; Thurman, E.M.

    1997-01-01

    The vulnerability of a shallow aquifer in south-central Kansas to contamination by atrazine (2-chloro-4-ethylamino-6-isopropylamines-triazine) was assessed by analyzing unsaturated zone soil and sediment samples from about 60 dryland and irrigated sites using an ultrasensitive immunoassay (detection level of 0.02 µg/kg) with verification by gas chromatography/mass spectrometry (GC/MS). Samples were collected at depths of 0 to 1.2 m (i.e., the root zone), 1.2 to 1.8 m, and 1.8 to 3.0 m during two time periods-prior to planting and after harvest of crops. About 75% of the samples contained detectable concentrations of parent atrazine. At the shallow sampling depth, atrazine concentrations ranged from 0.5 to approximately 12 µg/kg. Atrazine concentrations at the intermediate (1.2-1.8 m) depth generally were <1.0 µg/kg, with most of the concentrations <0.10 µg/kg, which suggests substantial degradation of parent atrazine in the root zone. Likewise, atrazine concentrations front the deepest (1.8-3.0 m) depth ranged from <0.02 to 0.33 µg/kg. The metabolite deethylatrazine (2-amino-4-chloro-6- isopropylamine-s-triazine) was detected by GC/MS only in 2 of 60 samples with concentrations of 1.4 and 1.5 µg/kg. The reconnaissance survey shows that, in spite of atrazine use ranging from 1 to 5 or more years, there does not appear to he a significant buildup of parent compound below the root zone. Therefore, the unsaturated zone does not appear to be a major storage compartment of atrazine contamination for the underlying shallow aquifer.

  7. Effects of atrazine on growth and sex differentiation, in juveniles of the freshwater crayfish Cherax quadricarinatus.

    PubMed

    Mac Loughlin, Camila; Canosa, Ivana S; Silveyra, Gabriela R; López Greco, Laura S; Rodríguez, Enrique M

    2016-09-01

    The effect of the herbicide atrazine was assayed in early juveniles of the redclaw crayfish Cherax quadricarinatus. Four cohorts of juveniles (a total of 280 animals) were exposed for 4 wk to each one of three atrazine concentrations (0.1, 0.5 and 2.5mg/L) or a control (0mg/L), from a commercial formulation having 90% of active principle. At the end of the exposure, no significant (p>0.05) differences in either mortality or molting were noted. However, the weight gain and the protein content of abdominal muscle decreased significantly (p<0.05) in the highest atrazine concentration as compared to control, indicating that atrazine acted as a relevant stressor, although at a concentration higher than those reported in the environment. Besides, the proportion of females increased progressively as the atrazine concentration increases, being significantly (p<0.05) higher than that of controls at the highest concentration assayed. Both macroscopic and histological analysis revealed a normal architecture of gonopores and gonads in both control and exposed animals. The obtained results strongly suggest that atrazine could be causing an endocrine disruption on the hormonal system responsible for the sexual differentiation of the studied species, increasing the proportion of female proportion without disturbing the gonad structure. PMID:27213565

  8. Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster.

    PubMed

    Marcus, Sarah R; Fiumera, Anthony C

    2016-01-01

    Atrazine is the one of the most widely used herbicides in the United States and non-target organisms may encounter it in the environment. Atrazine is known to affect male reproduction in both vertebrates and invertebrates but less is known about its effects on other fitness traits. Here we assessed the effects of five different chronic exposure levels on a variety of fitness traits in Drosophila melanogaster. We measured male and female longevity, development time, proportion pupated, proportion emerged, body size, female mating rate, fertility and fecundity. Atrazine exposure decreased the proportion pupated, the proportion emerged and adult survival. Development time was also affected by atrazine and exposed flies pupated and emerged earlier than controls. Although development time was accelerated, body size was actually larger in some of the exposures. Atrazine exposure had no effect on female mating rate and the effects on female fertility and fecundity were only observed in one of the two independent experimental blocks. Many of the traits showed non-monotonic dose response curves, where the intermediate concentrations showed the largest effects. Overall this study shows that atrazine influences a variety of life history traits in the model genetic system, D. melanogaster, and future studies should aim to identify the molecular mechanisms of toxicity. PMID:27317622

  9. Degradation of atrazine in two soils as a function of concentration

    SciTech Connect

    Gan, J.; Becker, R.L.; Buhler, D.D.; Koskinen, W.C.

    1996-09-01

    Dissipation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) in a Webster clay loam soil (fine loamy, mixed, mesic Typic Haplaquoll), and Estherville sandy loam (sandy, mixed, mesic typic Hapludoll) was determined over a concentration range of 5 to 5000 mg kg{sup -1} in field and laboratory experiments. Over the first 6 mo in the clay loam soil, the persistance of atrazine (based on percent of applied) was greater for the high-rate treatments than the low-rate treatments. However, in the laboratory, there was no effect of concentration on dissipation; the amount of atrazine degraded increased proportionally with the increase of concentration. In the sandy loam, persistance was greater at high concentration in both field and laboratory studies. Mineralization was the most important pathway for the dissipation of atrazine at all concentrations in the clay loam soil and from 5 to 500 mg kg{sup -1} may have increased soil microbial growth and activity and thus increased the degradation of atrazine based on the increase in soil respiration in the clay loam soil. Degradation pathways in both soils apparently were not influenced by concentration. Ring cleavage and hydrolysis were the major metabolic pathways in both soils, with dealkylation of less importance. Addition of a dairy manure amendment increased the rate of atrazine mineralization, while corn mean decreased and (NH{sub 4}){sub 2}HPO{sub 4} amendments prevented mineralization. 41 refs., 6 figs., 4 tabs.

  10. Treatment of atrazine in nursery irrigation runoff by a constructed wetland.

    PubMed

    Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D

    2003-02-01

    To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain. PMID:12688688

  11. Atrazine Contamination in Water and the Impact on Amphibian Populations: A Bioassay That Measures Water Quality

    NASA Astrophysics Data System (ADS)

    Hayes, T. B.

    2001-12-01

    In recent laboratory studies, we showed that atrazine, a common herbicide, can inhibit metamorphosis, produce hermaphrodites, and inhibit male development in amphibians. In part, these effects are due to a decrease in androgen levels. These effects occur at ecologically relevant low doses (0.1 ppb), and the effective levels are below the current drinking level standard and below contaminant levels found even in rainfall in some areas. Thus, the impact of this widespread compound on free-ranging amphibians is a concern. We undertook a large-scale study to examine atrazine levels in a variety of habitats (temporary pools, rivers, lakes and ponds, and field runoff) across the US where atrazine is used and areas that report no atrazine use. Also, we collected amphibians at each site to examine them for developmental abnormalities. These ongoing studies will help determine the extent of atrazine contamination and its potential impact on amphibian populations. The concern for atrazine's impact is increased, because the mechanism through which the compound produces this effect (inhibition of androgen production) is commonly observed in fish, reptiles and mammals in addition to amphibians, although amphibians appear to sensitive at much lower doses. Thus, effects on amphibians may indicate a much broader impact.

  12. Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster

    PubMed Central

    Vogel, Andrea; Jocque, Harper; Sirot, Laura K.; Fiumera, Anthony C.

    2014-01-01

    Atrazine is a commonly utilized herbicide to control broadleaf weeds in the agricultural setting. It can, however, have negative effects on male reproductive performance in a variety of vertebrate species. Much less is known, however, about the effects of atrazine on invertebrates. In this study, we investigated the effects of several different concentrations of larval atrazine exposure on measures of reproductive performance in adult male Drosophila melanogaster. Atrazine exposure had significant effects on a male’s mating ability and the number of eggs his partner lays when he was successful at mating. Exposed males also sired a smaller proportion of the offspring under competitive conditions when they were the first male to mate to a doubly mated female. Atrazine exposure had no measurable effect on a male’s ability to prevent a mated female from mating to another male or on the proportion of offspring sired when the exposed males were the second male to mate. Exposure upregulated expression of one male reproductive gene, ovulin, but had no effect on expression of another, sex peptide. Exposed males produced and transferred more sex peptide protein to the female during mating but ovulin protein levels were not affected. In general, we observed non-monotonic responses such that the intermediate exposure levels showed the largest reduction in male reproductive performance. This study suggests that atrazine exposure affects male reproductive performance in insects and future studies should aim to understand the molecular mechanisms underlying the fitness effects of exposure. PMID:25445663

  13. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    PubMed

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another. PMID:26273756

  14. Groundwater as a nonpoint source of atrazine and deethylatrazine in a river during base flow conditions

    USGS Publications Warehouse

    Squillace, Paul J.; Thurman, E.M.; Furlong, Edward T.

    1993-01-01

    Alluvial groundwater adjacent to the main stem river is the principal nonpoint source of atrazine and deethylatrazine in the Cedar River of Iowa after the river has been in base flow conditions for 5 days. Between two sites along a 116-km reach of the Cedar River, tributaries contributed about 25% of the increase in the atrazine and deethylatrazine load, whereas groundwater from the alluvial aquifer contributed at least 75% of the increase in load. Within the study area, tributaries aggregate almost all of the discharge from tile drains, and yet the tributaries still only contribute 25% of the increase in loads in the main stem river. At an unfamned study site adjacent to the Cedar River, the sources of atrazine and deethylatrazine in the alluvial groundwater are bank storage of river water and groundwater recharge from areas distant from the river. Atrazine and deethylatrazine associated with bank storage water will provide larger concentrations to the river during early base flow conditions. After the depletion of bank storage, stable and smaller concentrations of atrazine and deethylatrazine, originating from groundwater recharge, continue to be discharged from the alluvial aquifer to the river; thus these results indicate that alluvial aquifers are an important nonpoint source of atrazine and deethylatrazine in rivers during base flow.

  15. Movement of atrazine and deethylatrazine through a midwestern reservoir

    USGS Publications Warehouse

    Fallon, J.D.; Tierney, D.P.; Thurman, E.M.

    2002-01-01

    The three-dimensional visualization of atrazine and deethylatrazine in a reservoir was determined by five "snapshots" over a one-year period using immunoassay analyses, confirmed by gas chromatography-mass spectrometry and visualized with a three-dimensional computer program. The surveys were conducted in Perry Lake in Kansas and showed that spring runoff laden with triazine herbicides entered the reservoir and did not mix immediately. Concentrations varied threefold between the inlet and the public water supply intakes located at the opposite end of the reservoir. The concentration range in the outflow varied much less than the concentration in the reservoir because of mixing throughout the season near the dam and outflow. A major conclusion from the study was that multiple analyses by a low-cost immunoassay technique coupled with computer visualization software gave a good three-dimensional view of the mass of herbicide present in a drinking water reservoir.

  16. Degradation of atrazine and 2, 4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro

    SciTech Connect

    Donnelly, P.K.; Crawford, D.L. ); Entry, J.A. )

    1993-08-01

    Atrazine is a chlorinated aromatic hydrocarbon with an extremely low rated of degradation, especially in cold, dry climates. Biodegradation of the herbicide 2,4-D is known to occur in warm, moist soil, but it is dependent on environmental conditions and soil characteristics. This study examines the biodegradation of Atrazine and 2,4-D under various physiological conditions. Both mycorrhizal and nonmycorrhizal fungi were used. Phanerochaete chrysosporium was the best 2,4-D-degrading organism, but it was not able to mineralize atrazine. The ericoid mycorrhizal fungi degraded atrazine most effectively. 28 refs., 4 tabs.

  17. Persistence of 14C-labeled atrazine and its residues in a field lysimeter soil after 22 years.

    PubMed

    Jablonowski, Nicolai D; Köppchen, Stephan; Hofmann, Diana; Schäffer, Andreas; Burauel, Peter

    2009-07-01

    Twenty-two years after the last application of ring-14C-labeled atrazine at customary rate (1.7 kg ha(-1)) on an agriculturally used outdoor lysimeter, atrazine is still detectable by means of accelerated solvent extraction and LC-MS/MS analysis. Extractions of the 0-10 cm soil layer yielded 60% of the residual 14C-activity. The extracts contained atrazine (1.0 microg kg(-1)) and 2-hydroxy-atrazine (42.5 microg kg(-1)). Extractions of the material of the lowest layer 55-60 cm consisting of fine gravel yielded 93% of residual 14C-activity, of which 3.4 microg kg(-1) was detected as atrazine and 17.7 microg kg(-1) was 2-hydroxy-atrazine. The detection of atrazine in the lowest layer was of almost four times higher mass than in the upper soil layer. These findings highlight the fact that atrazine is unexpectedly persistent in soil. The overall persistence of atrazine in the environment might represent a potential risk for successive groundwater contamination by leaching even after 22 years of environmental exposure. PMID:19264386

  18. Simulated ground-water flow and water quality of the Mississippi River alluvium near Burlington, Iowa, 1999

    USGS Publications Warehouse

    Boyd, Robert A.

    2001-01-01

    Water samples collected from the alluvium indicated ground water can be classified as a calcium-magnesium-bicarbonate type. Reducing conditions likely occur in some localized areas of the alluvium, as suggested by relatively large concentrations of dissolved iron (4,390 micrograms per liter) and manganese (2, 430 micrograms per liter) in some ground-water samples. Nitrite plus nitrate was detected at concentrations greater than or equal to 8 milligrams per liter in three samples collected from observation wells completed in close proximity to cropland; the nitrite plus nitrate concentration in one groundwater sample exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for nitrate in drinking water (10 milligrams per liter as N). Triazine herbicides (atrazine, cyanazine, propazine, simazine, and selected degradation products) and chloroacetanilide herbicides (acetochlor, alachlor, and metolachlor) were detected in some water samples. A greater number of herbicide compounds were detected in surface-water samples than in ground-water samples. Herbicide concentrations typically were at least an order of magnitude greater in surfacewater samples than in ground-water samples. The Maximum Contaminant Level for alachlor (2 micrograms per liter) was exceeded in a sample from Dry Branch Creek at Tama Road and for atrazine (3 micrograms per liter) was exceeded in samples collected from Dry Branch Creek at Tama Road and the county drainage ditch at Tama Road.

  19. Antioxidant Attenuation of Atrazine Induced Histopathological Changes in Testicular Tissue of Goat In Vitro

    PubMed Central

    Sharma, R. K.; Fulia, Anju; Chauhan, P. K.

    2012-01-01

    During the present investigation the effect of α-tocopherol (100 μmolL-1) in prevention of testicular toxicity induced by atrazine in goat Capra hircus have been analyzed. Vitamin E (α-tocopherol) at dose level 100 μmolL-1 provides attenuation over the histopathological changes generated by pesticide atrazine (100 nmolml-1). Small pieces (approximately 1mm3) of testicular tissue were divided into three groups (one control group + two experimental groups). Experimental group (A) was supplemented with 100 nmolml-1 concentration of atrazine and experimental group (B) was supplemented with 100 nmolml-1 atrazine and 100 μmolL-1 concentrations of vitamin E (α-Tocopherol) and harvesting was carried out after 1, 4 and 8 hrs of exposure. Control was run along with all the experimental groups. In the experimental group (A) treated with atrazine at dose level 100 nmolml-1, revealed histomorphological alterations in the seminiferous tubule. After one hour of exposure duration small vacuoles in cytoplasm of the Sertoli cells and spermatogonia were observed. Chromolysis at pycnosis were also noticed in the spermatogonia and spermatids. In the experimental group (B) exposed with atrazine and simultaneously supplemented with Vitamin E also showed degeneration but it was milder as compared with experimental group treated with atrazine without antioxidant. Atrazine exposure induced a decline in diameter of spermatocytes from 10.51 ± 0.2052 μm in control to 7.915 ± 0.2972, 7.5 ± 0.211 and 7.14 ± 0.225 μm after exposure of 1, 4 and 8 hrs respectively but in case of atrazine supplemented with vitamin E [experimental group (B)], there was less decline in cell diameter that was 8.5 ± 0.1865, 8.1 ± 0.1201 and 7.8 ± 0.2066μm after exposure of 1, 4 and 8 hrs respectively. The result demonstrated that vitamin E delays the degenerative changes induced by atrazine. PMID:23293464

  20. Herbicide transport in rivers: Importance of hydrology and geochemistry in nonpoint-source contamination

    USGS Publications Warehouse

    Squillace, P.J.; Thurman, E.M.

    1992-01-01

    Alachlor, atrazine, cyanazine, metolachlor, and metribuzin were measured at six sites during 1984 and 1985 in large subbasins within the Cedar River, IA. A computer model separated the Cedar River discharge hydrograph into groundwater and overland-flow components. The concentration of herbicides in the river when groundwater was the major flow component was less than 1.0 μg/L and averaged 0.2 μg/L. The maximum concentrations of herbicides occurred when overland flow was the major component of river discharge, exceeding 50 pg/L for total herbicides. About 6% of the annual river load of atrazine was transported with the groundwater component, while 94% was transported with overland flow. From 1.5 to 5% of the atrazine applied during the year was transported from the basin. Atrazine concentrations in the river in- creased according to the discharge divided by the drainage area. This correlation indicates that rivers with large normalized 2-year peak flows have the potential to transport large concentrations of herbicides. A diagrammatic model of nonpoint-source transport of herbicides was developed that suggests that sorbed transport from fields occurs during episodes of overland flow with rapid dissolution of herbicides downstream. 

  1. Effects of Prenatal Exposure to a Low Dose Atrazine Metabolite Mixture on pubertal timing and prostrate Development of Male Long Evans Rats.

    EPA Science Inventory

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and d...

  2. Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: Consequences on groundwater quality in an alluvial aquifer (Ain Plain, France)

    NASA Astrophysics Data System (ADS)

    Baran, Nicole; Gourcy, Laurence

    2013-11-01

    This study characterizes the transfer of S-metolachlor (SMOC) and its metabolites, metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA) to the alluvial aquifer. Sorption and mineralization of SMOC and its two ionic metabolites were characterized for cultivated soils and solids from the vadose (unsaturated) zone in the Ain Plain (France). Under sterile soil conditions, the absence of mineralization confirms the importance of biotic processes in SMOC degradation. There is some adsorption and mineralization of the parent molecule and its metabolites in the unsaturated zone, though less than in soils. For soils, the MESA adsorption constant is statistically higher than that of MOXA and the sorption constants of the two metabolites are significantly lower than that of SMOC. After 246 days, for soils, maximums of 26% of the SMOC, 30% of the MESA and 38% of the MOXA were mineralized. This partly explains the presence of these metabolites in the groundwater at concentrations generally higher than those of the parent molecule for MESA, although there is no statistical difference in the mineralization of the 3 molecules. The laboratory results make it possible to explain the field observations made during 27 months of groundwater quality monitoring (monthly sampling frequency). The evolution of both metabolite concentrations in the groundwater is directly related to recharge dynamics; there is a positive correlation between concentrations and the groundwater level. The observed lag of several months between the signals of the parent molecule and those of the metabolites is probably due to greater sorption of the parent molecule than of its metabolites and/or to degradation kinetics.

  3. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    SciTech Connect

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B. . E-mail: jbarnett@hsc.wvu.edu

    2007-06-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells.

  4. Behavior of atrazine in limited irrigation cropping systems in colorado: prior use is important.

    PubMed

    Shaner, Dale L; Wiles, Lori; Hansen, Neil

    2009-01-01

    Glyphosate-resistant (GR) corn may be a major component of new cropping systems to optimize the use of limited irrigation water supply while sustaining production. Because atrazine is an important tool for residual weed control in GR corn, we examined atrazine binding to soil, dissipation, movement, and early season weed control in limited and full irrigation cropping systems. These systems included continuous corn under conventional tillage and full irrigation (CCC-FI) and under no-tillage and deficit irrigation (CCC-DI), a sunflower-wheat-corn rotation under no-tillage and deficit irrigation (SWC-DI), and a wheat-fallow-wheat-corn rotation under no tillage and natural precipitation (WFWC-NP). Crop rotation and herbicide use history influenced atrazine behavior more than amount or type of irrigation. Atrazine dissipated more rapidly in the top 30 cm of soil in the CCC-FI and CCC-DI plots (half-life [T(1/2)] = 3-12 d), which had received previous applications of the herbicide, compared with the SWC-DI and WFWC-NP plots, which had no history of atrazine use (T(1/2) = 15-22 d). Laboratory assays indicated that the different rates of degradation were at least partly due to differences in microbial degradation in the soil. Atrazine moved the most in the top 30 cm in the SWC-DI and WFWC-NP plots. This greater movement is probably due to the slower rate of atrazine degradation. Studies of the behavior of pre-emergence herbicides in new limited irrigation cropping systems must consider all characteristics of the systems, not just amount and timing of irrigation. PMID:19643751

  5. Development and Application of Watershed Regressions for Pesticides (WARP) for Estimating Atrazine Concentration Distributions in Streams

    USGS Publications Warehouse

    Larson, Steven J.; Crawford, Charles G.; Gilliom, Robert J.

    2004-01-01

    Regression models were developed for predicting atrazine concentration distributions in rivers and streams, using the Watershed Regressions for Pesticides (WARP) methodology. Separate regression equations were derived for each of nine percentiles of the annual distribution of atrazine concentrations and for the annual time-weighted mean atrazine concentration. In addition, seasonal models were developed for two specific periods of the year--the high season, when the highest atrazine concentrations are expected in streams, and the low season, when concentrations are expected to be low or undetectable. Various nationally available watershed parameters were used as explanatory variables, including atrazine use intensity, soil characteristics, hydrologic parameters, climate and weather variables, land use, and agricultural management practices. Concentration data from 112 river and stream stations sampled as part of the U.S. Geological Survey's National Water-Quality Assessment and National Stream Quality Accounting Network Programs were used for computing the concentration percentiles and mean concentrations used as the response variables in regression models. Tobit regression methods, using maximum likelihood estimation, were used for developing the models because some of the concentration values used for the response variables were censored (reported as less than a detection threshold). Data from 26 stations not used for model development were used for model validation. The annual models accounted for 62 to 77 percent of the variability in concentrations among the 112 model development stations. Atrazine use intensity (the amount of atrazine used in the watershed divided by watershed area) was the most important explanatory variable in all models, but additional watershed parameters significantly increased the amount of variability explained by the models. Predicted concentrations from all 10 models were within a factor of 10 of the observed concentrations at most

  6. Degradation of atrazine by Frankia alni ACN14a: gene regulation, dealkylation, and dechlorination.

    PubMed

    Rehan, Medhat; Kluge, Martin; Fränzle, Stefan; Kellner, Harald; Ullrich, René; Hofrichter, Martin

    2014-07-01

    Atrazine is transformed to N-isopropylammelide through hydroxyatrazine as an intermediate as indicated by high-performance liquid chromatography/mass spectroscopy in culture filtrates of Frankia alni ACN14a and Frankia sp. EuI1c. Both Frankia strains have the ability to degrade atrazine via dechlorination and dealkylation and, subsequently, may be using it as a nitrogen and carbon source as detected here by increasing their growth patterns. Bioinformatic analysis of the Frankia genomes revealed that a potential gene cluster involved in atrazine decomposition contains three genes, namely, trzN (FRAAL1474 and FraEuI1c_5874), atzB (FRAAL1473 and FraEuI1c_5875), and atzR (FRAAL1471). The relative messenger RNA gene expression of the former genes was examined by qRT-PCR. The LysR-type transcriptional regulator atzR (FRAAL1471), which is expected to control the cluster expression, showed a 13-fold increase in the expression level under atrazine stress. Moreover, the putative adenosine aminohydrolase 3 atzB (FRAAL1473), which is expected to dealkylate the N-ethyl group of atrazine, showed also an increased expression by factor 16 with increased exposure. Eventually, the trzN (FRAAL1474) gene, which is predicted to encode a putative amidohydrolase catalyzing atrazine dechlorination, exhibited 31-fold increased expression. To our best knowledge, this is the first report about adenosine aminohydrolase 3 function in the dealkylation of the N-ethyl group from atrazine. PMID:24676750

  7. Water quality survey of Mississippi's Upper Pearl River.

    PubMed

    Tagert, Mary Love M; Massey, Joseph H; Shaw, David R

    2014-05-15

    Surface water samples were collected from May 2002 through May 2003 at seven locations within the Upper Pearl River Basin (UPRB) in east-central Mississippi to assess levels of pesticide impairment in the watershed. Depth-integrated samples were collected at three sites from September 2001 through January 2003 for total dissolved solid (TDS) analysis. Samples were extracted via Solid Phase Extraction (SPE) and analyzed for fifteen pesticides: triclopyr, 2,4-D, tebuthiuron, simazine, atrazine, metribuzin, alachlor, metolachlor, cyanazine, norflurazon, hexazinone, pendimethalin, diuron, fluometuron, and the dichlorodiphenyltrichloroethane (DDT) degradation product p,p'-DDE. Of the analyzed compounds, hexazinone was detected in 94% of the samples, followed by metolachlor (76%), tebuthiuron (48%), and atrazine (47%). Metribuzin was detected in 6% of the samples and was the least detected compound of those analyzed. Sediment concentrations ranged from 20.64 mg/L at Burnside to 42.20mg/L at Carthage, which also had the highest cumulative total sediment concentration at 4,009 mg/L. PMID:24631619

  8. Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites.

    PubMed

    Kolekar, Parag D; Phugare, Swapnil S; Jadhav, Jyoti P

    2014-02-01

    Atrazine is a persistent organic pollutant in the environment which affects not only terrestrial and aquatic biota but also human health. Since its removal from the environment is needed, atrazine biodegradation is achieved in the present study using the bacterium Rhodococcus sp. BCH2 isolated from soil, long-term treated with atrazine. The bacterium was capable of degrading about 75 % atrazine in liquid medium having pH 7 under aerobic and dark condition within 7 days. The degradation ability of the bacterium at various temperatures (20-60 °C), pH (range 3-11), carbon (glucose, fructose, sucrose, starch, lactose, and maltose), and nitrogen (ammonium molybdate, sodium nitrate, potassium nitrate, and urea) sources were studied for triumph optimum atrazine degradation. The results indicate that atrazine degradation at higher concentrations (100 ppm) was pH and temperature dependent. However, glucose and potassium nitrate were optimum carbon and nitrogen source, respectively. Atrazine biodegradation analysis was carried out by using high-performance thin-layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and liquid chromatography quadrupole time-of-flight (LC/Q-TOF-MS) techniques. LC/Q-TOF-MS analysis revealed formation of various intermediate metabolites including hydroxyatrazine, N-isopropylammelide, deisopropylhydroxyatrazine, deethylatrazine, deisopropylatrazine, and deisopropyldeethylatrazine which was helpful to propose biochemical degradation pathway of atrazine. Furthermore, the toxicological studies of atrazine and its biodegraded metabolites were executed on earthworm Eisenia foetida as a model organism with respect to enzymatic (SOD and Catalase) antioxidant defense mechanism and lipid peroxidation studies. These results suggest innocuous degradation of atrazine by Rhodococcus sp. BCH2 in nontoxic form. Therefore the Rhodococcus sp.BCH2 could prove a valuable source for the eco-friendly biodegradation of atrazine pesticide. PMID

  9. Biodegradation of Atrazine by Agrobacterium radiobacter J14a and Use of This Strain in Bioremediation of Contaminated Soil

    PubMed Central

    Struthers, J. K.; Jayachandran, K.; Moorman, T. B.

    1998-01-01

    We examined the ability of a soil bacterium, Agrobacterium radiobacter J14a, to degrade the herbicide atrazine under a variety of cultural conditions, and we used this bacterium to increase the biodegradation of atrazine in soils from agricultural chemical distribution sites. J14a cells grown in nitrogen-free medium with citrate and sucrose as carbon sources mineralized 94% of 50 μg of [14C-U-ring]atrazine ml−1 in 72 h with a concurrent increase in the population size from 7.9 × 105 to 5.0 × 107 cells ml−1. Under these conditions cells mineralized the [ethyl-14C]atrazine and incorporated approximately 30% of the 14C into the J14a biomass. Cells grown in medium without additional carbon and nitrogen sources degraded atrazine, but the cell numbers did not increase. Metabolites produced by J14a during atrazine degradation include hydroxyatrazine, deethylatrazine, and deethyl-hydroxyatrazine. The addition of 105 J14a cells g−1 into soil with a low indigenous population of atrazine degraders treated with 50 and 200 μg of atrazine g−1 soil resulted in two to five times higher mineralization than in the noninoculated soil. Sucrose addition did not result in significantly faster mineralization rates or shorten degradation lag times. However, J14a introduction (105 cells g−1) into another soil with a larger indigenous atrazine-mineralizing population reduced the atrazine degradation lag times below those in noninoculated treatments but did not generally increase total atrazine mineralization. PMID:9726884

  10. Photocatalytic oxidation of pesticides by solar-irradiated TiO[sub 2] systems

    SciTech Connect

    Sullivan, J.M.; Grinstead, J.H. Jr.

    1992-01-01

    Research at the Tennessee Valley Authority's National Fertilizer and Environmental Research Center has been directed toward the development of passive basin type solar evaporators as a simple means of reducing the volume of fertilizer and pesticide contaminated rinsewater generated at fertilizer and agrichemical dealerships. In conjunction with this work, investigations are also devoted to TiO[sub 2] catalyzed solar photooxidation as a potential procedure for destroying pesticides in dilute aqueous systems. Initial tests in which dilute samples of the herbicides; Bicep (atrazine and metolachlor), Lasso (alachlor), and Sencor (metribuzin); were recirculated continuously over TiO[sub 2] impregnated fiberglass gauze, under solar irradiation, gave promising results. In the case of metribuzin, solar irradiation induced oxidation appeared effective at concentrations as high as 600 ppM. Catalytic efficiency did not appear greatly affected by using tap water rather than distilled water to dilute the pesticides. Two solar reactor designs will be discussed.

  11. Photocatalytic oxidation of pesticides by solar-irradiated TiO{sub 2} systems

    SciTech Connect

    Sullivan, J.M.; Grinstead, J.H. Jr.

    1992-12-01

    Research at the Tennessee Valley Authority`s National Fertilizer and Environmental Research Center has been directed toward the development of passive basin type solar evaporators as a simple means of reducing the volume of fertilizer and pesticide contaminated rinsewater generated at fertilizer and agrichemical dealerships. In conjunction with this work, investigations are also devoted to TiO{sub 2} catalyzed solar photooxidation as a potential procedure for destroying pesticides in dilute aqueous systems. Initial tests in which dilute samples of the herbicides; Bicep (atrazine and metolachlor), Lasso (alachlor), and Sencor (metribuzin); were recirculated continuously over TiO{sub 2} impregnated fiberglass gauze, under solar irradiation, gave promising results. In the case of metribuzin, solar irradiation induced oxidation appeared effective at concentrations as high as 600 ppM. Catalytic efficiency did not appear greatly affected by using tap water rather than distilled water to dilute the pesticides. Two solar reactor designs will be discussed.

  12. Are shifts in herbicide use reflected in concentration changes in Midwestern rivers?

    USGS Publications Warehouse

    Battaglin, W.A.; Goolsby, D.A.

    1999-01-01

    In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or 'peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated basin. Changing agricultural practices, reductions in recommended and permitted herbicide applications, shifts to new herbicides, and greater environmental awareness in the agricultural community have resulted in changes to herbicide use patterns. In the Midwestern United States, alachlor use was much larger in 1989 than in 1995, while acetochlor was not used in 1989, and commonly used in 1995. Use of atrazine, cyanazine, and metolachlor was about the same in 1989 and 1995. Herbicide concentrations were measured in samples from 53 Midwestern rivers during the first major runoff event that occurred after herbicide application (postapplication) in 1989, 1990, 1994, and 1995. The median concentrations of atrazine, alachlor, cyanazine, metribuzin, metolachlor, propazine, and simazine all were significantly higher in 1989/90 than in 1994/95. The median acetochlor concentration was higher in 1995 than in 1994. Estimated daily yields for all herbicides and degradation products measured, with the exception of acetochlor, were higher in 1989/90 than in 1994/95. The differences in concentration and yield do not always parallel changes in herbicide use, suggesting that other changes in herbicide or crop management are affecting concentrations in Midwestern rivers during runoff events.In many Midwestern rivers, elevated concentrations of herbicides occur during runoff events for 1-3 months following application. The highest or `peak' herbicide concentration often occurs during one of these runoff events. Herbicide concentrations in rivers are affected by a number of factors, including herbicide use patterns within the associated

  13. Distribution of major herbicides in ground water of the United States

    USGS Publications Warehouse

    Barbash, Jack E.; Thelin, Gail P.; Kolpin, Dana W.; Gilliom, Robert J.

    1999-01-01

    Frequencies of detection at or above 0.01 microgram per liter in shallow ground water beneath agricultural areas during the NAWQA study were significantly correlated with agricultural use in those areas for atrazine, cyanazine, alachlor, and metolachlor (P<0.05; Spearman rank correlations), but not for simazine (P>0.05). In urban areas, overall frequencies of detection of these five herbicides in shallow ground water were positively correlated with their total nonagricultural use nationwide (P=0.026; simple linear correlation). Multivariate statistical analysis indicated that frequencies of detection in shallow ground water beneath agricultural areas were positively correlated with half-lives for transformation in aerobic soil and agricultural use of the comp

  14. Occurrence of active and inactive herbicide ingredients at selected sites in Iowa

    USGS Publications Warehouse

    Wang, W.; Liszewski, M.; Buchmiller, R.; Cherryholmes, K.

    1995-01-01

    Herbicides were detected in 50% of water samples, ranging from 78% of water samples from the Ames site to 25% from the Walnut Creek site. Among herbicides detected, listed in decreasing order of frequency, were atrazine > alachlor > cyanazine > metolachlor > metribuzin. Volatile organic compounds were detected in 11% of water samples. Among the compounds detected, listed in decreasing order of frequency, were xylene > toluene > acetone. One sample contained a detectable amount of aliphatic compound(s), with the empirical formula of C8H18. Results from the Deer Creek site showed that herbicides were detected primarily in the top layer (1.2 m), whereas xylene and other alkylbenzenes were detected at 2.1 m or deeper. Apparently, physico-chemical and other factors are separating herbicides and volatile organic compounds in the shallow unsaturated zone.

  15. Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation

    PubMed Central

    Govantes, Fernando; Porrúa, Odil; García‐González, Vicente; Santero, Eduardo

    2009-01-01

    Summary Atrazine is an herbicide of the s‐triazine family that is used primarily as a nitrogen source by degrading microorganisms. While many catabolic pathways for xenobiotics are subjected to catabolic repression by preferential carbon sources, atrazine utilization is repressed in the presence of preferential nitrogen sources. This phenomenon appears to restrict atrazine elimination in nitrogen‐fertilized soils by indigenous organisms or in bioaugmentation approaches. The mechanisms of nitrogen control have been investigated in the model strain Pseudomonas sp. ADP. Expression of atzA, atzB ad atzC, involved in the conversion of atrazine in cyanuric acid, is constitutive. The atzDEF operon, encoding the enzymes responsible for cyanuric acid mineralization, is a target for general nitrogen control. Regulation of atzDEF involves a complex interplay between the global regulatory elements of general nitrogen control and the pathway‐specific LysR‐type regulator AtzR. In addition, indirect evidence suggests that atrazine transport may also be a target for nitrogen regulation in this strain. The knowledge about regulatory mechanisms may allow the design of rational bioremediation strategies such as biostimulation using carbon sources or the use of mutant strains impaired in the assimilation of nitrogen sources for bioaugmentation. PMID:21261912

  16. Environmentally Realistic Exposure to the Herbicide Atrazine Alters Some Sexually Selected Traits in Male Guppies

    PubMed Central

    Shenoy, Kausalya

    2012-01-01

    Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments) and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species. PMID:22312428

  17. Risk-Cost-Benefit Analysis Of Atrazine In Drinking Water From Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Aklilu, T. A.; Jagath, K. J.; Arthur, C. J.

    2004-12-01

    This study provides a new methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector and a more holistic insight to pesticide management issues. Regression models are developed to predict the stream atrazine concentrations and finished water atrazine concentration at high-risk community water supplies in the US using surface water. The predicted finished water atrazine concentrations are then used in health risk assessment. The computed health risks are compared with the total surplus in the US corn market for different atrazine application rates using the demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums (preferences) for chemical-free to reduced chemical corn provided interesting results on the potential for future pesticide and land use management. This is an interdisciplinary work that has attempted to integrate and consider the interaction between weed sciences, economics, water quality, human health risk and human reaction to changes in different pesticide use scenarios. The results showed that this methodology provides a scientific framework for future decision-making and policy evaluation in pesticide management, especially when better regional and national data are available.

  18. Electrocatalytic hydrodehalogenation of atrazine in aqueous solution by Cu@Pd/Ti catalyst.

    PubMed

    Chen, Ya-Li; Xiong, Lu; Song, Xiang-Ning; Wang, Wei-Kang; Huang, Yu-Xi; Yu, Han-Qing

    2015-04-01

    Electrocatalytic hydrodehalogenation is a cost-effective approach to degrade halogenated organic pollutants in groundwater, and Pd-based catalysts have been found to be an efficient cathode material for this purpose. In this work, a novel Cu@Pd bimetallic catalyst loaded on Ti plate was prepared via combined electrodeposition and galvanic replacement for electrocatalytic hydrodehalogenation of atrazine, a typical halogenated pollutant. The obtained bimetallic catalyst with uniformly dispersed Pd nanoparticles possessed a large electrochemically active surface area of 572 cm2. The Cu@Pd/Ti cathode exhibited a higher electrocatalytic efficiency towards atrazine reduction than the individual Pd/Ti or Cu/Ti cathodes, and achieved up to 91.5% within 120 min under a current density of 1 mA cm(-2). Such an electrocatalytic reduction followed pseudo-first-order kinetics with a rate constant of 0.0214 min(-1). Atrazine was selectively transformed to dechlorinated atrazine, and its degradation pathway was identified. Current density was found to have a critical influence on the atrazine reduction due to the competitive hydrogen evolution reaction at a higher current density. The fabricated bimetallic catalyst also exhibited a good stability. This work provides an efficient and stable electrocatalyst for chlorinated contaminate removal and groundwater remediation. PMID:25697805

  19. Immobilization of rapeseed press-cake in an alginate matrix for the sorption of atrazine.

    PubMed

    Breguet, V; Boucher, J; Pesquet, F; Vojinovic, V; von Stockar, U; Marison, I W

    2008-03-01

    Due to residual oil retained within it, rapeseed press-cake has been shown to be effective for the removal of atrazine from water through an absorption mechanism. However, it is difficult to put this into practice due to the hygroscopic nature of the press-cake resulting in considerable swelling, together with the formation of a thick paste which hinders phase separation. In order to overcome this, press-cake has been immobilized in an alginate matrix. The kinetics and sorption efficiency of this immobilized press-cake to absorb the model pesticide atrazine, has been studied. The results show that the rate of atrazine removal is slower than for free press-cake, although the total amount of atrazine removed is the same (K(pc/w)=0.25). Phase separation was greatly simplified. The alginate immobilized press-cake could be dried, in order to reduce volume and weight, with no adverse effect on atrazine removal kinetics or sorption properties. PMID:18022667

  20. Atrazine concentrations in near-surface aquifers: A censored regression approach

    USGS Publications Warehouse

    Liu, S.; Yen, S.T.; Kolpin, D.W.

    1996-01-01

    In 1991, the U.S. Geological Survey (USGS) conducted a study to investigate the occurrence of atrazine (2-chloro-4-ethylamino-6- isopropylamino-s-triazine) and other agricultural chemicals in near-surface aquifers in the midcontinental USA. Because about 83% of the atrazine concentrations from the USGS study were censored, standard statistical estimation procedures could not be used. To determine factors that affect atrazine concentrations in groundwater while accommodating the high degree of data censoring. Tobit models were used (normal homoscedastic, normal heteroscedastic, lognormal homoscedastic, and lognormal heteroscedastic). Empirical results suggest that the lognormal heteroscedastic Tobit model is the model of choice for this type of study. This model determined the following factors to have the strongest effect on atrazine concentrations in groundwater: percent of pasture within 3.2 km, percent of forest within 3.2 km (2 mi), mean open interval of the well, primary water use of a well, aquifer class (unconsolidated or bedrock), aquifer type (unconfined or confined), existence of a stream within 30 m (100 ft), existence of a stream within 30 m to 0.4 km (0.25 mi), and existence of a stream within 0.4 to 3.2 km. Examining the elasticities of the continuous explanatory factors provides further insight into their effects on atrazine concentrations in groundwater. This study documents a viable statistical method that can be used to accommodate the complicating presence of censured data, a feature that commonly occurs in environmental data.

  1. Fate and significance of major degradation products of atrazine in the soil environment

    SciTech Connect

    Coats, J.R.; Kruger, E.L.; Baluch, H.U.

    1995-12-01

    Complete metabolism studies using radiotracers were performed in the laboratory to determine the fate of atrazine and major degradation products, deethylatrazine, deisopropylatrazine, and hydroxyatrazine, in soil as affected by soil type, soil moisture, soil depth, and previous long-term atrazine history. Several soil factors have been shown to significantly affect the fate of these compounds in soil. Persistence of the 4 compounds was significantly increased in subsurface soils. Hydroxyatrazine was the most persistent of the 4 compounds in surface and subsurface soil. Desiopropylatrazine was the most susceptible to mineralization in both surface and subsurface soil. A higher amount of bound residues were formed in deisopropylatrazine-treated soils. Soil moisture significantly affects the persistence of atrazine, deethylatrazine and deisopropylatrazine with decreased persistence under saturated soil moisture conditions. Persistence of deethylatrazine was positively correlated with percent clay and negatively correlated with percent organic matter. In soils with long-term atrazine history, deethylatrazine undergoes enhanced degradation. In soil column studies, the relative movement of deethylatrazine was greater than that of atrazine.

  2. Atrazine-induced changes in the myocardial structure of peripubertal rats.

    PubMed

    Rajkovic, Vesna; Kovac, Renata; Koledin, Ivana; Matavulj, Milica

    2014-04-01

    The aim of the present study was to investigate the effect of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) on the left ventricle myocardium in juvenile/peripubertal male Wistar rats. Atrazine was administered orally at 50 or 200 mg/kg of body weight dose for 28 consecutive days. In order to assess possible structural alterations, tissue sections were examined histologically and then subjected to quantification analysis using stereological methods. The tissue specimens were routinely processed and stained with Mallory trichrome method in order to clearly distinguish muscle cells from the connective tissue components. A toluidine blue staining method was additionally used for the demonstration of mast cells. Statistically significant increase in length density and numerical density of capillaries were found at both the investigated doses of atrazine compared with the control. The increase in surface density and volume density of capillaries found at lower dosage of atrazine was significant in comparison with the control. The extensive mast cell degranulation was noted on the histological examination at both doses of the applied chemical. No significant changes were demonstrated for the stereological parameters of cardiomyocytes. Based on the available published data and the present results, it can be concluded that atrazine promoted angiogenesis in the rat myocardium, which might be partially mediated by mast cells. PMID:22903171

  3. The combined effects of atrazine and lead (Pb): relative microbial activities and herbicide dissipation.

    PubMed

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei

    2014-04-01

    The experiment was conducted to investigate the effects of single and combined pollution from different concentrations of atrazine (field rate, FR, 2.0 mg kg(-1) and 5 times FR, 10 mg kg(-1)) and lead (Pb) (300 mg kg(-1) and 600 mg kg(-1)) on enzyme activity, basal soil respiration (BSR), and net nitrogen (N) mineralization (NNM) in soil after exposure for 0, 7, 14, 21, and 28 days. In addition, residual atrazine was measured in the samples of combined contamination. Results showed that the notable effects of either or both contaminants on the microbial activity and biological processes. Enzyme activity data demonstrated that the order of sensitivity to contamination was urease>invertase>catalase. BSR was strongly stimulated by atrazine/Pb at the early exposure (0-7 days for single contaminant and 7-14 days for combined contaminants). The stimulation effects on BSR were higher at low concentrations of the contamination (FR and Pb300). The combined treatments of 5FR+Pb600 inhibit BSR and NNM. Overall, the parameters associated with N cycling (urease and NNM) were more sensitive than others. Both Pb concentrations (300 and 600 mg/kg) had little influence on the dissipation of high concentrations of atrazine (5FR) during the 28-day-incubation. This study has provided useful information on potential ecotoxicology effects of combined contamination of atrazine and Pb on relative microbial biological process. PMID:24580827

  4. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  5. Atrazine Molecular Imprinted Polymers: Comparative Analysis by Far-Infrared and Ultraviolet Induced Polymerization

    PubMed Central

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982

  6. Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation

    SciTech Connect

    Wang, D.; Spiro, T.G.; Shin, J.Y.; Cheney, M.A.; Sposito, G.

    1999-09-15

    The herbicide atrazine is widely distributed in the environment, and its reactivity with soil minerals is an important issue. The authors have studied atrazine degradation on the surface of synthetic hydrous (10% H{sub 2}O) {delta}-MnO{sub 2} (birnessite) using UV resonance Raman spectroscopy and gas chromatography. The products are mainly mono- and didealkyl atrazine. Atrazine disappearance is rapid, independent of whether O{sub 2} is present or not. MnO{sub 2} reduction is a minor reaction, and the alkyl chains are converted mainly to the alkenes, in a nonredox process. A novel dealkylation mechanism is proposed involving proton transfer to Mn(IV)-stabilized oxo and imido bonds. When O{sub 2} is present, olefin oxidation and ring mineralization are also observed as secondary reactions in addition to those discussed above. Thus {delta}-MnO{sub 2}, a common soil constituent, is found to promote efficient N-dealkylation of the herbicide atrazine at 30 C, via a nonoxidative mechanism.

  7. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1). PMID:22339031

  8. Cyanazine, Atrazine, and Their Metabolites as Geochemical Indicators of Contaminant Transport in the Mississippi River

    USGS Publications Warehouse

    Meyer, M.T.; Thurman, E.M.; Goolsby, D.A.

    1996-01-01

    The geochemical transport of cyanazine and its metabolite cyanazine amide (CAM) was compared to atrazine and its metabolite deethylatrazine (DEA) at three sites in the Mississippi River basin during 1992 and six sites during 1993. The floods of 1993 caused an uninterrupted exponential decline in herbicide concentrations; whereas, in 1992 herbicide concentrations varied mostly in response to two discrete discharge pulses in the spring and midsummer and were stable during an extended period of summer low-flow. Concentration half-lives calculated from the 1993 data for atrazine were approximately twice those of cyanazine at all sites. The half-life for atrazine and cyanazine was shortest, 22 and 14 days, respectively at the Mississippi River at Clinton, Ill. - the farthest upstream site - and longest, 42 and 22 days, respectively, at the Baton Rouge, La. site - the farthest downstream site. The concentration of CAM exceeded the concentration of DEA through September at all sites where the mean ratio of atrazine-to-cyanazine (ACR) was less than 4.0. The ratio of CAM-to-cyanazine (CAMCR) increased from 0.2 to more than 1.0 and the ratio of DEA-to-atrazine (DAR) increased from less than 0.1 to 0.3 from application in May through early to mid-July. Temporal changes in the CAMCR were used to identify pre- and post-application "slugs" of water transported along the reaches of the Mississippi River.

  9. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions. PMID:25303664

  10. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  11. Atrazine molecular imprinted polymers: comparative analysis by far-infrared and ultraviolet induced polymerization.

    PubMed

    Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping

    2014-01-01

    Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIP(uv) possessed specific binding to atrazine compared with their MIP(FIR) radiation counterparts. Scatchard plot's of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high- and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%-94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%-97.1% and 94.4%-101.9%, for both MIPs, respectively. PMID:24398982

  12. Understanding the Effects of Atrazine on Steroidogenesis in rat granulosa and H295R adrenal cortical carcinoma cells

    EPA Science Inventory

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was introduced in the 1950s as a broad spectrum herbicide, and remains one of the most widely used herbicides in the United States. Several studies have suggested that atrazine modifies steroidogenesis and may disrupt r...

  13. ATRAZINE ECOLOGICAL EFFECTS ASSESSMENT FOR OPP LEVEL OF CONCERN AND OW WATER QUALITY CRITERION FOR AQUATIC LIFE

    EPA Science Inventory

    Atrazine is a relatively water-soluble and persistent herbicide that can reach concentrations of possible ecological concern for aquatic plants in vulnerable watersheds in regions with high agricultural usage of atrazine. As a consequence, the U.S. EPA Office of Water is current...

  14. Predicting where enhanced atrazine degradation will occur based on soil pH and herbicide use history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil bacteria on all continents except Antartica have developed the ability to rapidly degrade the herbicide atrazine, a phenomenon referred to as enhanced degradation. The agronomic significance of enhanced degradation is the potential for reduced residual weed control with atrazine in Corn, Sorgh...

  15. Monitoring of atrazine in the mainstream, major tributaries and streams of the Chesapeake Bay watershed: Ecological significance

    SciTech Connect

    Hall, L.W. Jr.; Anderson, R.D.

    1996-10-01

    The goal of this study was to provide exposure data for the atrazine in the mainstream tributaries of the Chesapeake Bay watershed. In 1995, ten stations were sampled four times per year. Atrazine was also measured at 4 hour intervals for 72 hours at all stream sites during one rain event during the spring. Results are described.

  16. Seasonal atrazine contamination of drinking water in pig-breeding farm surroundings in agricultural and industrial areas of Croatia.

    PubMed

    Gojmerac, T; Kartal, B; Bilandzic, N; Roic, B; Rajkovic-Janje, R

    1996-02-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) a s-triazine herbicide, has been widely used in Croatian agriculture. Due to atrazine extensive use and its biodegradation in nature within at least one year (Klassen and Kodoum 1979), atrazine residues are found in ground, surface, drain and drinking water (Vidacek et al. 1994; Gojmerac et al. 1994). Groundwater downgradient from atrazine treated fields may show seasonal concentration peaks which could exceed the safe level (Wehtje et al. 1983). Therefore, the use of atrazine includes permanent control of its residues in water, particularly in relation to its use as a herbicidal chemical and groundwater contamination (Graham 1991). Furthermore, the presence of atrazine in the environment and its possible ingestion via the water, food and feed chain, may present a risk for the animal and human health. The analysis of atrazine residues in soil can be performed by either colorimetry or high performance liquid chromatography (HPLC) (Vickrey et al. 1980), and in water, soil and food by immunoassay in comparison with HPLC or gas chromatography/mass spectrometry (GS-MS) (Bushway et al. 1988; Bushway et al. 1989; Bushway et al. 1992; Thurman et al. 1990). We describe the use of enzyme-linked immunosorbent assay (ELISA) for one-year seasonal monitoring of atrazine residues in drinking water from two differently situated pig-breeding farms (agricultural and industrial areas) in Croatia. Results obtained by ELISA were compared to those produced by HPLC. PMID:8720093

  17. Biomarker Analysis of American Toad (Anaxyrus Americanus) and Grey Tree Frog (Hyla Versicolor) Tadpoles Following Exposure to Atrazine

    EPA Science Inventory

    To better understand the mode of action of atrazine in amphibians, we utilized mass spectrometry-based metabolomics to investigate the biochemical changes in two species of larval amphibians exposed to atrazine. Our objectives were to 1) Use changes in endogenous metabolites to f...

  18. Enhanced Degradation and Soil Depth Effects on the Fate of Atrazine and Major Metabolites in Colorado and Mississippi Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report’s aim is to inform modelers of the differences in atrazine fate between s-triazine-adapted and non-adapted soils as a function of depth in the profile, and to recommend input values for pesticide process sub-modules. The specific objectives of this study were to estimate the atrazine-mi...

  19. Analysis of atrazine and four degradation products in the pore water of the vadose zone, central Indiana

    USGS Publications Warehouse

    Panshin, S.Y.; Carter, D.S.; Bayless, E.R.

    2000-01-01

    A new method is described for the analysis of atrazine and four of its degradation products (desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine) in water. This method uses solid- phase extraction on a graphitized carbon black cartridge, derivatization of the eluate with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and analysis by gas chromatography/mass spectrometry (GC/MS). This method was used to analyze lysimeter samples collected from a field in central Indiana in 1994 and 1995. Atrazine and its degradation products were transported rapidly through the vadose zone. Maximum values of atrazine ranged from 2.61 to 8.44 ??g/L and occurred from 15 to 57 days after application. Maximum concentrations of the degradation products occurred from 11 to 140 days after atrazine application. The degradation products were more persistent than atrazine in pore water. Desethylatrazine was the dominant degradation product detected in the first year, and didealkylatrazine was the dominant degradation product detected in the second year. Concentrations of atrazine and the degradation products sorbed onto soil were estimated; maximum concentrations ranged from 7.3 to 24 ??g/kg for atrazine and were less than 5 ??g/kg for all degradation products. Degradation of atrazine and transport of all five compounds were simulated by the vadose zone flow model LEACHM. LEACHM was run as a Darcian-flow model and as a non-Darcian-flow model.

  20. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides

    USGS Publications Warehouse

    Fairchild, J.F.; Ruessler, D.S.; Haverland, P.S.; Carlson, A.R.

    1997-01-01

    Aquatic plant toxicity tests are frequently conducted in environmental risk assessments to determine the potential impacts of contaminants on primary producers. An examination of published plant toxicity data demonstrates that wide differences in sensitivity can occur across phylogenetic groups of plants. Yet relatively few studies have been conducted with the specific intent to compare the relative sensitivity of various aquatic plant species to contaminants. We compared the relative sensitivity of the algae Selenestrum capricornutum and the floating vascular plant Lemna minor to 16 herbicides (atrazine, metribuzin, simazine, cyanazine, alachlor, metolachlor, chlorsulfuron, metsulfuron, triallate, EPTC, trifluralin, diquat, paraquat, dicamba, bromoxynil, and 2,4-D). The herbicides studied represented nine chemical classes and several modes of action and were chosen to represent major current uses in the United States. Both plant species were generally sensitive to the triazines (atrazine, metribuzin, simazine, and cyanazine), sulfonureas (metsulfuron and chlorsulfuron), pyridines (diquat and paraquat), dinitroaniline (trifluralin), and acetanilide (alachlor and metolachlor) herbicides. Neither plant species was uniformly more sensitive than the other across the broad range of herbicides tested. Lemna was more sensitive to the sulfonureas (metsulfuron and chlorsulfuron) and the pyridines (diquat and parequat) than Selenastrum. However Selenastrum was more sensitive than Lemna to one of two thiocarbamates (triallate) and one of the triazines (cyanazine). Neither species was sensitive to selective broadleaf herbicides including bromoxynil, EPTC, dicamba, or 2,4-D. Results were not always predictable in spite of obvious differences in herbicide modes of action and plant phylogeny. Major departures in sensitivity of Selenastrum occurred between chemicals within individual classes of the triazine, acetanilide, and thiocarbamate herbicides. Results indicate that neither

  1. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study.

    PubMed

    Esperanza, Marta; Seoane, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles

    2016-06-01

    Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells. PMID:26950638

  2. IMPACT OF NON-IDEAL SORPTION ON LOW-CONCENTRATION TAILING BEHAVIOR FOR ATRAZINE TRANSPORT IN TWO NATURAL POROUS MEDIA

    PubMed Central

    Kempf, A.

    2011-01-01

    The impact of nonideal sorption on atrazine transport was investigated for two sandy porous media with 0.38 and 0.03% organic-carbon contents. In contrast to prior investigations, effluent atrazine concentrations were monitored over a range of five orders of magnitude to examine long-term elution behavior. As characterized by batch experiments, atrazine experienced nonlinear sorption for both media. The results of the column experiments showed that atrazine exhibited extensive elution tailing (delayed approach to relative concentration of zero). This non-ideal transport was more pronounced for the medium with higher organic-carbon content. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous distribution function was used to successfully simulate atrazine transport. PMID:19699507

  3. Atrazine and Pregnancy Outcomes: A Systematic Review of Epidemiologic Evidence

    PubMed Central

    Goodman, Michael; Mandel, Jack S; DeSesso, John M; Scialli, Anthony R

    2014-01-01

    Atrazine (ATR) is a commonly used agricultural herbicide that has been the subject of epidemiologic studies assessing its relation to reproductive health problems. This review evaluates both the consistency and the quality of epidemiologic evidence testing the hypothesis that ATR exposure, at usually encountered levels, is a risk factor for birth defects, small for gestational age birth weight, prematurity, miscarriages, and problems of fetal growth and development. We followed the current methodological guidelines for systematic reviews by using two independent researchers to identify, retrieve, and evaluate the relevant epidemiologic literature on the relation of ATR to various adverse outcomes of birth and pregnancy. Each eligible paper was summarized with respect to its methods and results with particular attention to study design and exposure assessment, which have been cited as the main areas of weakness in ATR research. As a quantitative meta-analysis was not feasible, the study results were categorized qualitatively as positive, null, or mixed. The literature on ATR and pregnancy-related health outcomes is growing rapidly, but the quality of the data is poor with most papers using aggregate rather than individual-level information. Without good quality data, the results are difficult to assess; however, it is worth noting that none of the outcome categories demonstrated consistent positive associations across studies. Considering the poor quality of the data and the lack of robust findings across studies, conclusions about a causal link between ATR and adverse pregnancy outcomes are not warranted. PMID:24797711

  4. Model simulation of atrazine exposure to aquatic nontarget organisms

    SciTech Connect

    Williams, W.M.; Cheplick, J.M.; Balu, K.

    1996-10-01

    Pesticide fate and transport models have been identified by a number of regulatory work groups, including the Aquatic Risk Assessment and Mitigation Dialogue Group (ARAMDG) and the FIFRA Exposure Modeling Work Group (EMWG), as potential valuable tools in improving regulatory decisions for pesticide registration. To date, models uses have been limited to preliminary screening evaluations because the predictive capabilities of candidate models have not been adequately characterized and because procedures for scenario identification have not been tested. This paper presents an overview of a comprehensive modeling study that was conducted to evaluate exposure concentrations of atrazine to nontarget organisms and their ecosystems that may result from usage patterns of the herbicide throughout the United States. Simulations were conducted using the Pesticide Root Zone Model (PRZM-2.3) and the Riverine Environments Water Quality Model (RIVWQ-2.0). Included are procedures used for scenario identification, model comparisons to field runoff and aquatic monitoring studies, and the statistical compilation of results for risk assessment use.

  5. Atrazine adsorption and colloid-facilitated transport through the unsaturated zone

    USGS Publications Warehouse

    Sprague, L.A.; Herman, J.S.; Hornberger, G.M.; Mills, A.L.

    2000-01-01

    One explanation for unexpectedly widespread ground water contamination from atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) may be the occurence of colloid-facilitated transport, whereby the dissolved herbicide becomes adsorbed to mobile colloids that migrate through preferential flow-paths in the soil zone and into the ground water. The objectives of this study were to determine the extent of adsorpton of atrazine to bulk soil and to soil colloids and to determine the extent of colloid-facilitated transport of atrazine at a field site in Virginia during simulated rainfall events. Equilibrium batch adsorption experiments were performed over a concentration range of 0.05 to 10.0 mg atrazine L-1 on bulk soil samples and on colloidal suspensions of 75 mg L-1, a concentration comparable with those observed at the field site. Linear partition coefficients ranged from 0.496 to 2.48 L kg-1 for the bulk soil and from 70.8 to 832 L kg-1 for the soil colloids. In the field, gravity lysimeters were insured at a depth of 25 cm below the surface of six 0.25-m2 undisturbed plots. Mass recovery of surface-applied atrazine in the lysimeters was not significantly affected by rainfall rate and was, on average, 2.7% for plots receiving 25 mm h-1 simulated rainfall and 3.6% for plots receiving 50 mm h-1 simulated rainfall. Of the total atrazine collected in the lysimeters, the fraction that was colloid-associated ranged from 4.9 to 30% (mean of 15%), indicating that a measurable portion of mobile atrazine is transported via association with colloids.One explanation for unexpectedly widespread ground water contamination from atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) may be the occurrence of colloid-facilitated transport, whereby the dissolved herbicide becomes adsorbed to mobile colloids that migrate through preferential flow-paths in the soil zone and into the ground water. The objectives of this study were to determine the extent of adsorption of

  6. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    PubMed Central

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process. PMID:24302716

  7. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States.

    PubMed

    Stackelberg, Paul E; Barbash, Jack E; Gilliom, Robert J; Stone, Wesley W; Wolock, David M

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro--(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities among

  8. Distinct Detoxification Mechanisms Confer Resistance to Mesotrione and Atrazine in a Population of Waterhemp1[C][W][OPEN

    PubMed Central

    Ma, Rong; Kaundun, Shiv S.; Tranel, Patrick J.; Riggins, Chance W.; McGinness, Daniel L.; Hager, Aaron G.; Hawkes, Tim; McIndoe, Eddie; Riechers, Dean E.

    2013-01-01

    Previous research reported the first case of resistance to mesotrione and other 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides in a waterhemp (Amaranthus tuberculatus) population designated MCR (for McLean County mesotrione- and atrazine-resistant). Herein, experiments were conducted to determine if target site or nontarget site mechanisms confer mesotrione resistance in MCR. Additionally, the basis for atrazine resistance was investigated in MCR and an atrazine-resistant but mesotrione-sensitive population (ACR for Adams County mesotrione-sensitive but atrazine-resistant). A standard sensitive population (WCS for Wayne County herbicide-sensitive) was also used for comparison. Mesotrione resistance was not due to an alteration in HPPD sequence, HPPD expression, or reduced herbicide absorption. Metabolism studies using whole plants and excised leaves revealed that the time for 50% of absorbed mesotrione to degrade in MCR was significantly shorter than in ACR and WCS, which correlated with previous phenotypic responses to mesotrione and the quantity of the metabolite 4-hydroxy-mesotrione in excised leaves. The cytochrome P450 monooxygenase inhibitors malathion and tetcyclacis significantly reduced mesotrione metabolism in MCR and corn (Zea mays) excised leaves but not in ACR. Furthermore, malathion increased mesotrione activity in MCR seedlings in greenhouse studies. These results indicate that enhanced oxidative metabolism contributes significantly to mesotrione resistance in MCR. Sequence analysis of atrazine-resistant (MCR and ACR) and atrazine-sensitive (WCS) waterhemp populations detected no differences in the psbA gene. The times for 50% of absorbed atrazine to degrade in corn, MCR, and ACR leaves were shorter than in WCS, and a polar metabolite of atrazine was detected in corn, MCR, and ACR that cochromatographed with a synthetic atrazine-glutathione conjugate. Thus, elevated rates of metabolism via distinct detoxification mechanisms contribute to

  9. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States

    USGS Publications Warehouse

    Stackelberg, Paul E.; Barbash, Jack E.; Gilliom, Robert J.; Stone, Wesley W.; Wolock, David M.

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro-N-(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L-1. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities

  10. Inductive effects of environmental concentration of atrazine on Escherichia coli and Enterococcus faecalis.

    PubMed

    Koutsotoli, A D; Dimou, D S; Alamanos, Y P; Maipa, V E

    2005-01-01

    Atrazine solutions (0.1, 1, 10 and 100 microg/L) inoculated with Escherichia coli and Enterococcus faecalis under natural conditions significantly increased (p < or = 0.05) the population levels of both test bacteria; it indicates the ability of bacterial cells to degrade atrazine and to use the original compound or its degradation products as nutrient(s). In some cases, alterations in the morphology of the colonies were also observed on selective solid media. Biochemical differentiation was also found and, on the other hand, a loss of culturability was recorded; this suggests that bacteria have entered in a viable but nonculturable state. A re-appearance of the colonies occurred after inoculation on tryptone-soy agar with atrazine. PMID:16408845

  11. Growth, fecundity and glycogen utilization in Lymnaea palustris exposed to atrazine and hexachlorobenzene in freshwater mesocosms

    SciTech Connect

    Baturo, W.; Lagadic, L.; Caquet, T.

    1995-03-01

    Freshwater mesocosms were used to study the long-term sublethal effects of atrazine and hexachlorobenzene (HCB) on a basommatophoran gastropod, Lymnaea palustris (Mueller). Growth, fecundity, and biochemical parameters related to polysaccharide metabolism of pesticide-exposed snails were compared with those of control animals maintained in untreated mesocosms. HCB inhibited body growth and stimulated egg production, whereas atrazine had no relevant effect on these physiological parameters. Also, HCB stimulated the activity of polysaccharide-hydrolyzing enzymes, suggesting that changes in the metabolism of reserve polysaccharides (glycogen) may be involved in the inhibition of growth and increase of fecundity. In contrast, atrazine had no effect on the metabolism of polysaccharides. It is concluded that the effects of HCB are related to its neurotoxicity that would have affected the neurohormonal control of growth and reproduction of exposed snails. It is suggested that polysaccharide-hydrolyzing enzymes may be used as biomarkers to predict the effects of neurotoxic pesticides on freshwater snail populations.

  12. Atrazine mineralization potential of alluvial-aquifer sediments under aerobic conditions

    USGS Publications Warehouse

    McMahon, P.B.; Chapelle, F.H.; Jagucki, M.L.

    1992-01-01

    Microorganisms in aerobic incubations of alluvialaquifer sediment mineralized 9-14% of added [U-14C]-D-glucose in 24 h, compared with 17 m). Although first-order rate constants for 14CO2 production from the atrazine ethyl-2 carbon were low (<4.5 ?? 10-5-5.4 ?? 10-4 day-1), they may be significant in the time frame of groundwater flow. Laboratory-measured rate constants were similar to field-estimated rate constants [(3.2 ??1.4) ?? 10-4 day-1] required to mineralize the atrazine ethyl carbon in groundwater prior to its discharge into an adjacent river. These results are consistent with the occurrence of detectable levels of deethylatrazine, but not atrazine, in groundwater from monitoring wells at the river.

  13. Enhanced adsorption of atrazine from aqueous solution by molecularly imprinted TiO2 film

    NASA Astrophysics Data System (ADS)

    Zhang, Chunjing; Yan, Jinlong; Zhang, Chunxiao; Yang, Zhengpeng

    2012-07-01

    TiO2 film imprinted by atrazine molecule at the surface of quartz crystal was prepared using molecular imprinting and surface sol-gel process. The molecularly imprinted TiO2 film was characterized by scanning electron microscopy and cyclic voltammetry, and the atrazine adsorption was investigated by quartz crystal microbalance (QCM) technique. In comparison with non-imprinted TiO2 film, the molecularly imprinted TiO2 film exhibits high selectivity for atrazine, better reversibility and a much higher adsorption capacity for the target molecule, the adsorption equilibrium constant estimated from the in situ frequency measurement is about 6.7 × 104 M-1, which is thirteen times higher than that obtained on non-imprinted TiO2 film.

  14. Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation.

    PubMed

    Roustan, A; Aye, M; De Meo, M; Di Giorgio, C

    2014-08-01

    The photo-inducible cytogenetic toxicity of glyphosate, atrazine, aminomethyl phosphoric acid (AMPA), desethyl-atrazine (DEA), and their various mixtures was assessed by the in vitro micronucleus assay on CHO-K1 cells. Results demonstrated that the cytogenetic potentials of pesticides greatly depended on their physico-chemical environment. The mixture made with the four pesticides exhibited the most potent cytogenetic toxicity, which was 20-fold higher than those of the most active compound AMPA, and 100-fold increased after light-irradiation. Intracellular ROS assessment suggested the involvement of oxidative stress in the genotoxic impact of pesticides and pesticide mixtures. This study established that enhanced cytogenetic activities could be observed in pesticide mixtures containing glyphosate, atrazine, and their degradation products AMPA and DEA. It highlighted the importance of cocktail effects in environmental matrices, and pointed out the limits of usual testing strategies based on individual molecules, to efficiently estimate environmental risks. PMID:24875917

  15. Histopathological effects of atrazine on gills of Caspian kutum Rutilus frisii kutum fingerlings.

    PubMed

    Khoshnood, Zahra; Jamili, Shahla; Khodabandeh, Saber

    2015-04-01

    The use of chemical pesticides has increased environmental pollution and affects fishes as non-target organisms. To investigate the toxic effects of the widely used herbicide atrazine on Caspian kutum Rutilus frisii kutum fingerlings, fish were exposed to a sublethal concentration of half LC50 for 96 h. The main alterations visible in the gill tissue were detachment of the epithelium of the lamellae, necrosis, lamellar fusion, hyperplasia, club shaped lamellae, collapse of the lamellae, shrinkage and curling of the lamellae, and ultrastructural alterations such as necrosis of the apical microridges of the pavement cells. Results also showed that the gill ionocytes were fewer in number and larger in size in the atrazine-exposed fish. Atrazine appears to be highly toxic to Caspian kutum fingerlings even at a sublethal concentration (12.47 mg l(-1)) and acute exposure. This toxicity could affect gill respiration and ion regulation function of fingerlings by damaging tissue, pavement cells, and ionocytes. PMID:25850400

  16. Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil.

    PubMed

    Smith, Daniel; Alvey, Sam; Crowley, David E

    2005-07-01

    Atrazine degradation previously has been shown to be carried out by individual bacterial species or by relatively simple consortia that have been isolated using enrichment cultures. Here, the degradative pathway for atrazine was examined for a complex 8-membered enrichment culture. The species composition of the culture was determined by PCR-DGGE. The bacterial species included Agrobacterium tumefaciens, Caulobacter crescentus, Pseudomonas putida, Sphingomonas yaniokuyae, Nocardia sp., Rhizobium sp., Flavobacterium oryzihabitans, and Variovorax paradoxus. All of the isolates were screened for the presence of known genes that function for atrazine degradation including atzA,-B,-C,-D,-E,-F and trzD,-N. Dechlorination of atrazine, which was obligatory for complete mineralization, was carried out exclusively by Nocardia sp., which contained the trzN gene. Following dechlorination, the resulting product, hydroxyatrazine was further degraded via two separate pathways. In one pathway Nocardia converted hydroxyatrazine to N-ethylammelide via an unidentified gene product. In the second pathway, hydroxyatrazine generated by Nocardia sp. was hydrolyzed to N-isopropylammelide by Rhizobium sp., which contained the atzB gene. Each member of the enrichment culture contained atzC, which is responsible for ring cleavage, but none of the isolates carried the atzD,-E, or -F genes. Each member further contained either trzD or exhibited urease activity. The enrichment culture was destabilized by loss of Nocardia sp. when grown on ethylamine, ethylammelide, and cyanuric acid, after which the consortium was no longer able to degrade atrazine. The analysis of this enrichment culture highlights the broad level bacterial community interactions that may be involved in atrazine degradation in nature. PMID:16329946

  17. Effect of liquid cow manure on andisol properties and atrazine adsorption.

    PubMed

    Briceño, Gabriela; Demanet, Rolando; de la Luz Mora, María; Palma, Graciela

    2008-01-01

    Application of animal manure amendments to agricultural soils is a common practice to improve soil fertility through the addition of essential plant nutrients. This practice may increase the potential for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1, 3, 5-triazine) leaching due to competition for adsorption sites between the pesticide and dissolved organic carbon (DOC) added through manure. We evaluated the influence of liquid cow manure (LCM) application on soil properties, atrazine adsorption, and the physicochemical controlling mechanisms in an Andisol. The LCM was applied at rates equivalent to 0, 100,000, 200,000, and 300,000 L ha(-1), resulting in treatments S-0, S-100, S-200, and S-300, respectively. The LCM application increased DOC and pH of the soils immediately on addition, but pH returned to S-0 values 30 d after application. The LCM application did not modify atrazine adsorption with the two lowest application rates (S-100 and S-200), but atrazine adsorption was decreased in S-300 (K(f) = 0.96) compared with the control (S-0) (K(f) = 1.19), possibly due to the competitive adsorption of DOC with the pesticide. The Fourier-transformed infrared analysis showed that LCM increased aliphaticity and presence of N-containing groups and polysaccharide-like groups in amended soils; however, these properties did not modify the atrazine interaction in the studied amended soils. Interestingly the addition of DOC to soil at the high application rate (S-300) reduced atrazine adsorption in this rich OM Andisol despite the LCM not raising the concentration of stable organic matter. The application of high rates of liquid manure containing DOC incurs an increased risk of pesticide leaching. PMID:18574184

  18. Modeling the potential effects of atrazine on aquatic communities in midwestern streams.

    PubMed

    Bartell, Steven M; Brain, Richard A; Hendley, Paul; Nair, Shyam K

    2013-10-01

    The comprehensive aquatic systems model for atrazine (CASM(ATZ)) estimates the potential toxic effects of atrazine on populations of aquatic plants and consumers in a generic lower-order midwestern stream. The CASM(ATZ) simulates the daily production of 20 periphyton and 6 aquatic vascular plant species. The modeled consumer community consists of 17 functionally defined species of zooplankton, benthic invertebrates, bacteria, and fish. Daily values of population biomass (grams of carbon per square meter) are calculated as nonlinear functions of population bioenergetics, physical-chemical environmental parameters, grazing/predator-prey interactions, and population-specific direct and indirect responses to atrazine. The CASM(ATZ) uses Monte Carlo methods to characterize the implications of phenotypic variability, environmental variability, and uncertainty associated with atrazine toxicity data in estimating the potential impacts of time-varying atrazine exposures on population biomass and community structure. Comparisons of modeled biomass values for plants and consumers with published data indicate that the generic reference simulation realistically describes ecological production in lower-order midwestern streams. Probabilistic assessments were conducted using the CASM(ATZ) to evaluate potential modeled changes in plant community structure resulting from measured atrazine exposure profiles in 3 midwestern US streams representing watersheds highly vulnerable to runoff. Deviation in the median values of maximum 30-d average Steinhaus similarity index ranged from 0.09% to 2.52% from the reference simulation. The CASM(ATZ) could therefore be used for the purposes of risk assessment by comparison of site monitoring-based model output to a biologically relevant Steinhaus similarity index level of concern. Used as a generic screening technology or in site-specific applications, the CASM(AT) provides an effective, coherent, and transparent modeling framework for assessing

  19. Atrazine and Cancer Incidence Among Pesticide Applicators in the Agricultural Health Study (1994–2007)

    PubMed Central

    Rusiecki, Jennifer A.; Hoppin, Jane A.; Lubin, Jay H.; Koutros, Stella; Andreotti, Gabriella; Zahm, Shelia Hoar; Hines, Cynthia J.; Coble, Joseph B.; Barone-Adesi, Francesco; Sloan, Jennifer; Sandler, Dale P.; Blair, Aaron; Alavanja, Michael C.R.

    2011-01-01

    Background: Atrazine is a triazine herbicide used widely in the United States. Although it is an animal carcinogen, the mechanism in rodents does not appear to operate in humans. Few epidemiologic studies have provided evidence for an association. Methods: The Agricultural Health Study (AHS) is a prospective cohort that includes 57,310 licensed pesticide applicators. In this report, we extend a previous AHS analysis of cancer risk associated with self-reported atrazine use with six additional years of follow-up and more than twice as many cancer cases. Using Poisson regression, we calculated relative risk estimates and 95% confidence intervals for lifetime use of atrazine and intensity-weighted lifetime days, which accounts for factors that impact exposure. Results: Overall, 36,357 (68%) of applicators reported using atrazine, among whom there were 3,146 cancer cases. There was no increase among atrazine users in overall cancer risk or at most cancer sites in the higher exposure categories compared with the lowest. Based on 29 exposed cases of thyroid cancer, there was a statistically significant risk in the second and fourth quartiles of intensity-weighted lifetime days. There was a similar pattern for lifetime days, but neither the risk estimates nor the trend were statistically significant and for neither metric was the trend monotonic. Conclusions: Overall, there was no consistent evidence of an association between atrazine use and any cancer site. There was a suggestion of increased risk of thyroid cancer, but these results are based on relatively small numbers and minimal supporting evidence. PMID:21622085

  20. Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio).

    PubMed

    Dong, Xiaoli; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Xie, Hui; Hou, Xinxin; Jia, Wentao

    2009-10-01

    In this study, the effects of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in males and females of adult zebrafish (Danio rerio) were studied. The liver microsomal cytochrome P450 content, NADPH-P450 reductase, aminopyrine N-demethylase (APND), and erythromycin N-demethylase (ERND) activity were measured. Zebrafish were exposed to control and 3 treatments (0.01, 0.1, and 1 mg L(-1)) of atrazine for 5, 10, 15, 20, and 25 days. The results indicated that, within the range of test atrazine concentrations, either P450 content or P450 isozyme activities could be induced by atrazine. Compared to controls, P450 content was significantly increased at all atrazine concentrations at days 10, 15, and 20; thereafter, at day 25, all concentrations decreased to approximately the control levels, both in males and females. In addition, the strongest induction of P450 content was observed on day 15 in males and day 10 in females at treatment concentrations of 1 mg L(-1). NADPH-P450 reductase activities showed mild increase in males; however, the females exhibited significant induction on days 15, 20, and 25; especially, at concentrations of 0.01 mg L(-1), the induction level was consistently increased during the experiment. The inducements of APND and ERND in males were mainly observed on the days 5, 10, and 15, which showed less distinct induction, while significant induction was observed in cases of treatments during all days in females. In conclusion, atrazine induces P450 enzymes in zebrafish, and the effects may function as significant toxicity mechanisms in zebrafish. Additionally, it also confirms the importance of using a combined multi-time and multi-index diagnostic method to enhance the sensitivity and effectiveness of the indices adopted. PMID:19647285

  1. Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization.

    PubMed Central

    de Souza, M L; Sadowsky, M J; Wackett, L P

    1996-01-01

    Pseudomonas sp. strain ADP metabolizes atrazine to carbon dioxide and ammonia via the intermediate hydroxyatrazine. The genetic potential to produce hydroxyatrazine was previously attributed to a 1.9-kb AvaI DNA fragment from strain ADP (M. L. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373-3378, 1995). In this study, sequence analysis of the 1.9-kb AvaI fragment indicated that a single open reading frame, atzA, encoded an activity transforming atrazine to hydroxyatrazine. The open reading frame for the chlorohydrolase was determined by sequencing to be 1,419 nucleotides and encodes a 473-amino-acid protein with a predicted subunit molecular weight of 52,421. The deduced amino acid sequence matched the first 10 amino acids determined by protein microsequencing. The protein AtzA was purified to homogeneity by ammonium sulfate precipitation and anion-exchange chromatography. The subunit and holoenzyme molecular weights were 60,000 and 245,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. The purified enzyme in H2(18)O yielded [18O]hydroxyatrazine, indicating that AtzA is a chlorohydrolase and not an oxygenase. The most related protein sequence in GenBank was that of TrzA, 41% identity, from Rhodococcus corallinus NRRL B-15444R. TrzA catalyzes the deamination of melamine and the dechlorination of deethylatrazine and desisopropylatrazine but is not active with atrazine. AtzA catalyzes the dechlorination of atrazine, simazine, and desethylatrazine but is not active with melamine, terbutylazine, or desethyldesisopropylatrazine. Our results indicate that AtzA is a novel atrazine-dechlorinating enzyme with fairly restricted substrate specificity and contributes to the microbial hydrolysis of atrazine to hydroxyatrazine in soils and groundwater. PMID:8759853

  2. TREATING SOIL SOLUTION SAMPLERS TO PREVENT MICROBIAL REMOVAL OF ANALYTES

    EPA Science Inventory

    Soil microorganisms colonizing soil water sampling devices (lysimeters) reduced concentrations of biodegradable organic chemicals, including 2,4-dichlorophenoxy-acetic acid methyl ester, alachlor, methyl m-chlorobenzoate, and metolachlor as water entered through porous ceramic cu...

  3. Atrazine and Diuron partitioning within a soil-water-surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  4. Method for Estimating Annual Atrazine Use for Counties in the Conterminous United States, 1992-2007

    USGS Publications Warehouse

    Thelin, Gail P.; Stone, Wesley W.

    2010-01-01

    A method was developed to estimate annual atrazine use during 1992 to 2007 on sixteen crops and four agricultural land uses. For each year, atrazine use was estimated for all counties in the conterminous United States (except California) by combining (1) proprietary data from the Doane Marketing Research-Kynetec (DMRK) AgroTrak database on the mass of atrazine applied to agricultural crops, (2) county harvested crop acreage, by county, from the 1992, 1997, 2002, and 2007 Censuses of Agriculture, and (3) annual harvested crop acreage from National Agriculture Statistics Service (NASS) for non-Census years. DMRK estimates of pesticide use on individual crops were derived from surveys of major field crops and selected specialty crops in multicounty areas referred to as Crop Reporting Districts (CRD). The CRD-level atrazine-use estimates were disaggregated to obtain county-level application rates by dividing the mass (pounds) of pesticides applied to a crop by the acreage of that crop in the CRD to yield a rate per harvested acre. When atrazine-use estimates were not available for a CRD, crop, or year, an estimated rate was developed following a hierarchy of decision rules that checked first for the availability of a crop application rate from surveyed atrazine application rate(s) for adjacent CRDs for a specific year, and second, the rates from surveyed CRDs within for U.S. Department of Agriculture Farm Production Regions for a specific year or multiple years. The estimation method applied linear interpolation to estimate crop acreage for years when harvested acres for a crop and county were not reported in either the Census of Agriculture or the NASS database, but were reported by these data sources for other years for that crop and county. Data for atrazine use for the counties in California was obtained from farmers' reports of pesticide use collected and published by the California Department of Pesticide Regulation-Pesticide Use Reporting (DPR-PUR) because these

  5. Update of Watershed Regressions for Pesticides (WARP) for Predicting Atrazine Concentration in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2009-01-01

    Regression models for predicting atrazine concentrations in streams were updated by incorporating refined annual atrazine-use estimates and by adding an explanatory variable representing annual precipitation characteristics. The updated Watershed Regressions for Pesticides (WARP) models enable improved predictions of specific pesticide-concentration statistics for unmonitored streams. for unmonitored streams. Separate WARP regression models were derived for selected percentiles (5th, 10th, 15th, 25th, 50th, 75th, 85th, 90th and 95th), annual mean, annual maximum, and annual maximum moving-average (21-, 60-, and 90-day durations) concentration statistics. Development of the regression models involved the same model-development data, model-validation data, and regression methods as those used in the original development of WARP. The original WARP models were based on atrazine-use estimates from either 1992 or 1997. This update of the WARP models incorporates annual atrazine-use estimates. In addition, annual precipitation data were evaluated as potential explanatory variables. as potential explanatory variables. The updated WARP models include the same five explanatory variables and transformations that were used in the original WARP models, including the new annual atrazine-use data. The models also include a sixth explanatory variable, total precipitation during May and June of the year of sampling. The updated WARP models account for as much as 82 percent of the variability in the concentration statistics among the 112 sites used for model development, whereas previous WARP models accounted for no more than 77 percent. Concentration statistics predicted by the 95th percentile, annual mean, annual maximum and annual maximum moving-average concentration models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports

  6. Persistence and movement of atrazine in a salt marsh sediment microecosystem

    SciTech Connect

    Isensee, A.R.

    1987-09-01

    Pesticides enter salt marshes in runoff from agricultural lands or through direct or near-by application. Concern has been raised that the tidal action in the salt marsh that functions to trap sediment and nutrients may also function to concentrate pesticides to harmful levels. Studies have been conducted to evaluate the effect of pesticides on representative species of salt marsh ecosystems. This paper describes the use of a modified salt marsh microecosystem to evaluate persistence and movement of atrazine in salt marsh sediment under simulated tidal flux and continuous flooding conditions. Atrazine persistence was also compared under normal field conditions.

  7. Sensitive detection of atrazine in tap water using TELISA.

    PubMed

    Qie, Zhiwei; Bai, Jialei; Xie, Bin; Yuan, Lin; Song, Nan; Peng, Yuan; Fan, Xianjun; Zhou, Huanying; Chen, Fengchun; Li, Shuang; Ning, Baoan; Gao, Zhixian

    2015-08-01

    A highly sensitive flow injection analysis (FIA)-based thermal enzyme-linked immunoassay, TELISA, was developed for the rapid detection of atrazine (ATZ) in tap water. ATZ and β-lactamase-labeled ATZ were employed in a competitive immunoassay using a monoclonal antibody (mAb). After the off-column liquid-phase competition, the mAb was captured on the Protein G Sepharose™ 4 Fast Flow (PGSFF) column support material. Injected β-lactamase substrate ampicillin was degraded by the column-bound ATZ-β-lactamase, generating a detectable heat signal. Several assay parameters were optimized, including substrate concentration, flow rates and regeneration conditions, as well as the mAb and ATZ-β dilution ratios and concentrations. The assay linear range was 0.73-4.83 ng mL(-1) with a detection limit of 0.66 ng mL(-1). An entire heat signal requires 10 min for generation, and the cycle time is less than 40 min. The results were reproducible and stable. ATZ-spiked tap water samples exhibited a recovery rate of 103%-116%, which correlated with the UHPLC-MS/MS measurements. We attributed this significant increase in sensitivity over our previously published work to the following factors: (i) the capture of already-formed immune complexes on the column via immobilized Protein G, which eliminated chemical immobilization of the antibody; (ii) off-column preincubation allows the formation of immune complexes under nearly ideal conditions; and (iii) multiple buffers can be used to, in one case, enhance immune-complex formation and in the other to maximize enzymatic activity. Furthermore, the scheme creates a universal assay platform in which sensing is performed in the off-column incubation and detection after capture in the enzyme thermistor (ET) detector, which opens up the possibility of detecting any antigen for which antibodies were available. PMID:26061585

  8. Veterinary Antibiotic Effects on Atrazine Degradation and Soil Microorganisms.

    PubMed

    Nordenholt, Rebecca M; Goyne, Keith W; Kremer, Robert J; Lin, Chung-Ho; Lerch, Robert N; Veum, Kristen S

    2016-03-01

    Veterinary antibiotics (VAs) in manure applied to agricultural lands may change agrichemical degradation by altering soil microbial community structure or function. The objectives of this study were to investigate the influence of two VAs, sulfamethazine (SMZ) and oxytetracycline (OTC), on atrazine (ATZ) degradation, soil microbial enzymatic activity, and phospholipid fatty acid (PLFA) markers. Sandy loam soil with and without 5% swine manure (w/w) was amended with 0 or 500 μg kgC radiolabeled ATZ and with 0, 100, or 1000 μg kg SMZ or OTC and incubated at 25°C in the dark for 96 d. The half-life of ATZ was not significantly affected by VA treatment in the presence or absence of manure; however, the VAs significantly ( < 0.05) inhibited ATZ mineralization in soil without manure (25-50% reduction). Manure amendment decreased ATZ degradation by 22%, reduced ATZ mineralization by 50%, and increased the half-life of ATZ by >10 d. The VAs had limited adverse effects on the microbial enzymes β-glucosidase and dehydrogenase in soils with and without manure. In contrast, manure application stimulated dehydrogenase activity and altered chlorinated ATZ metabolite profiles. Concentrations of PLFA markers were reduced by additions of ATZ, manure, OTC, and SMZ; adverse additive effects of combined treatments were noted for arbuscular mycorrhizal fungi and actinobacteria. In this work, the VAs did not influence persistence of the ATZ parent compound or chlorinated ATZ metabolite formation and degradation. However, reduced CO evolved from VA-treated soil suggests an inhibition to the degradation of other ATZ metabolites due to an altered soil microbial community structure. PMID:27065404

  9. Distribution of aged atrazine related 14C-residues in natural soil following incubation with the earthworm Apporectodea caliginosa.

    NASA Astrophysics Data System (ADS)

    Andreou, K.; Jablonowski, N.; Jones, K.; Burauel, P.; Semple, K.

    2009-04-01

    The distribution and localisation of atrazine related 14C-residues into the different physical fractions of soil may reveal information on processes taking place in soil. Soils amended with 14C-atrazine, were aged for 22 years under environmental conditions in a lysimeter in Germany. The soil was sampled and subjected to physical and chemical fractionation before and after incubation for 7 days with the earthworm Apporectodea caliginosa. No significant change in the soil physical and chemical fractionation of the atrazine related 14C-residues and organic carbon was observed in this study due to the activity of the A. caliginosa. The smaller size soil fractions (Microaggregates and Colloids) were highly enriched with aged atrazine 14C-residues equivalents and organic carbon. Also the humic acid extracted using a simple alkaline extraction have were also enriched with aged atrazine 14C-residues equivalents. The low organic carbon content of the soil, the absence of relatively fresh organic matter and the long ageing time might explain the limited bioavailability of the atrazine related 14C-residues to the earthworm. This finding is of particular importance given that the soil used here was aged under natural environmental conditions compared to laboratory studies. Earthworms are important species in soil ecology and thus, the question of the bioavailability of aged pesticide residues to such organism is critical. The bioavalability of the atrazine 14C-residues equivalent was absent in the current study illustrating that those aged residues posed minimal risk to earthworms.

  10. Distribution of aged atrazine related 14C-residues in natural soil following incubation with the earthworm Apporectodea caliginosa

    NASA Astrophysics Data System (ADS)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    The distribution and localisation of atrazine related 14C-residues into the different physical fractions of soil may reveal information on processes taking place in soil. Soils amended with 14C-atrazine, were aged for 22 years under environmental conditions in a lysimeter in Germany. The soil was sampled and subjected to physical and chemical fractionation before and after incubation for 7 days with the earthworm Apporectodea caliginosa. No significant change in the soil physical and chemical fractionation of the atrazine related 14C-residues and organic carbon was observed in this study due to the activity of the A. caliginosa. The smaller size soil fractions (Microaggregates and Colloids) were highly enriched with aged atrazine 14C-residues equivalents and organic carbon. Also the humic acid extracted using a simple alkaline extraction have were also enriched with aged atrazine 14C-residues equivalents. The low organic carbon content of the soil, the absence of relatively fresh organic matter and the long ageing time might explain the limited bioavailability of the atrazine related 14C-residues to the earthworm. This finding is of particular importance given that the soil used here was aged under natural environmental conditions compared to laboratory studies. Earthworms are important species in soil ecology and thus, the question of the bioavailability of aged pesticide residues to such organism is critical. The bioavalability of the atrazine 14C-residues equivalent was absent in the current study illustrating that those aged residues posed minimal risk to earthworms.

  11. The possible role of hydroxylation in the detoxification of atrazine in mature vetiver (Chrysopogon zizanioides Nash) grown in hydroponics.

    PubMed

    Marcacci, Sylvie; Raventon, Muriel; Ravanel, Patrick; Schwitzguébel, Jean-Paul

    2005-01-01

    The resistance mechanism of vetiver (Chrysopogon zizanioides) to atrazine was investigated to evaluate its potential for phytoremediation of environment contaminated with the herbicide. Plants known to metabolise atrazine rely on hydroxylation mediated by benzoxazinones, conjugation catalyzed by glutathione-S-transferases and dealkylation probably mediated by cytochromes P450. All three possibilities were explored in mature vetiver grown in hydroponics during this research project. Here we report on the chemical role of benzoxazinones in the transformation of atrazine. Fresh vetiver roots and leaves were cut to extract and study their content in benzoxazinones known to hydroxylate atrazine, such as 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA), 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and their mono- and di-glucosylated forms. Identification of benzoxazinones was performed by thin layer chromatography (TLC) and comparison of retention factors (Rf) and UV spectra with standards: although some products exhibited the same Rf as standards, UV spectra were different. Furthermore, in vitro hydroxylation of atrazine could not be detected in the presence of vetiver extracts. Finally, vetiver organs exposed to [14C]-atrazine did not produce any significant amount of hydroxylated products, such as hydroxyatrazine (HATR), hydroxy-deethylatrazine (HDEA), and hydroxy-deisopropylatrazine (HDIA). Altogether, these metabolic features suggest that hydroxylation was not a major metabolic pathway of atrazine in vetiver. PMID:16042344

  12. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture.

    PubMed

    Mofeed, Jelan; Mosleh, Yahia Y

    2013-09-01

    Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid and atrazine (25, 50 and 100 µg L(-1)) on growth and oxidative stress on Scenedesmus obliquus (microalgae) after exposure for 24, 48, and 96 h. In addition, residues of fenhexamid and atrazine were determined in the culture medium after 96 h; 52%, 44% and 43% of fenhexamid remained in the medium for the lowest, middle and highest concentrations, respectively. Atrazine concentration decreased significantly in the medium with time. The reduction was faster with the lowest concentration (-53%), than in the highest concentration (-46%), while it was intermediate with 50 µg L(-1) (-47%). The antioxidative enzyme activities were used as biomarkers to evaluate the toxic effects of fenhexamid and atrazine on the microalgae. Enzymatic activities were measured in the presence of each compound alone after 24, 48 and 96 h and also in mixture after 24h exposure. The results showed that fenhexamid and atrazine induced antioxidative enzyme activities (GST, CAT and GR) at different concentrations. Catalase activities (CAT) in both pesticides treated-algae were significantly increased. Additionally, an increase in gulathione-S-transferase (GST) was observed in algae after 24, 48 and 96 h of exposure to both fenhexamid and atrazine. Antioxidative enzymes in fenhexamid and atrazine mixture treatment showed an antagonistic interaction after 24h of exposure in algae. PMID:23796667

  13. Role of eaq⁻, ·OH and H· in radiolytic degradation of atrazine: a kinetic and mechanistic approach.

    PubMed

    Khan, Javed Ali; Shah, Noor S; Nawaz, Shah; Ismail, M; Rehman, Faiza; Khan, Hasan M

    2015-05-15

    The degradation of atrazine was investigated in aqueous solution by gamma-ray irradiation. 8.11 μM initial atrazine concentration could be completely removed in N₂ saturated solution by applying 3500 Gy radiation dose at a dose rate of 296 Gy h(-1). Significant removal of atrazine (i.e., 39.4%) was observed at an absorbed dose of 1184 Gy in air saturated solution and the removal efficiency was promoted to 50.5 and 65.4% in the presence of N₂O and N₂ gases, respectively. The relative contributions of hydrated electron, hydroxyl radical and hydrogen radical toward atrazine degradation were determined as ratio of observed dose constant (kobs) and found to be 5: 3: 1 for keaq(-): k·OH: kH·, respectively. The degradation efficiency of atrazine was 69.5, 55.6 and 37.3% at pH 12.1, 1.7 and 5.7, respectively. A degradation mechanism was proposed based on the identified degradation by-products by gas chromatography-mass spectrometry. Taking the relative contributions of oxidative and reductive species to atrazine degradation into account, reductive pathway proved to be a better approach for the radiolytic treatment of atrazine contaminated water. PMID:25725267

  14. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate plus nitrate as nitrogen in ground water in the Idaho part of the western Snake River Plain

    USGS Publications Warehouse

    Donato, Mary M.

    2000-01-01

    As ground water continues to provide an ever-growing proportion of Idaho?s drinking water, concerns about the quality of that resource are increasing. Pesticides (most commonly, atrazine/desethyl-atrazine, hereafter referred to as atrazine) and nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) have been detected in many aquifers in the State. To provide a sound hydrogeologic basis for atrazine and nitrate management in southern Idaho—the largest region of land and water use in the State—the U.S. Geological Survey produced maps showing the probability of detecting these contaminants in ground water in the upper Snake River Basin (published in a 1998 report) and the western Snake River Plain (published in this report). The atrazine probability map for the western Snake River Plain was constructed by overlaying ground-water quality data with hydrogeologic and anthropogenic data in a geographic information system (GIS). A data set was produced in which each well had corresponding information on land use, geology, precipitation, soil characteristics, regional depth to ground water, well depth, water level, and atrazine use. These data were analyzed by logistic regression using a statistical software package. Several preliminary multivariate models were developed and those that best predicted the detection of atrazine were selected. The multivariate models then were entered into a GIS and the probability maps were produced. Land use, precipitation, soil hydrologic group, and well depth were significantly correlated with atrazine detections in the western Snake River Plain. These variables also were important in the 1998 probability study of the upper Snake River Basin. The effectiveness of the probability models for atrazine might be improved if more detailed data were available for atrazine application. A preliminary atrazine probability map for the entire Snake River Plain in Idaho, based on a data set representing that region, also was produced

  15. Effects of the herbicides prosulfuron and metolachlor on fluxes of CO2, N2O, and CH4 in a fertilized Colorado grassland soil

    USGS Publications Warehouse

    Kinney, C.A.; Mosier, A.R.; Ferrer, I.; Furlong, E.T.; Mandernack, K.W.

    2004-01-01

    The effect that pesticides have on trace gas production and consumption in agricultural soils is often overlooked. Independent field and laboratory experiments were used to measure the effects that the commonly used herbicides prosulfuron and metolachlor have on trace gas fluxes (CO2, N2O, and CH4) from fertilized soil of the Colorado shortgrass steppe. Separate sample plots (1 m2) on tilled and no-till soil at the sites included the following treatments: 1) a control without fertilizer or herbicide, 2) a fertilized (NH4NO3 equivalent to 244 kg ha-1) control without herbicide, 3) and fertilized plots amended with an herbicide (prosulfuron equivalent to 0.46 kg ha-1 57% by weight active ingredient or metolachlor equivalent to 5.7 L ha-1, 82.4% by weight active ingredient). During an initial study of one year duration, measurement of gas exchange revealed that prosulfuron-amendment stimulated N2O emissions and CH4 consumption by as much as 1600% and 1300% during a single measurement, respectively. During a second set of flux measurements beginning in August 2001, more frequent weekly measurements were made during a twelve week period. From this second study an increased N2O efflux and CH4 uptake occurred after a 7-week lag period that persisted for about 5 weeks. These changes in gas flux amounted to an overall increase of 41% and 30% for N2O emission and CH4 consumption, respectively. The co-occurrence of stimulated N2O and CH4 fluxes suggests a similar cause that is related to prosulfuron degradation. Evidence suggested that prosulfuron degradation stimulated microbial activity responsible for trace gas flux. Ultimately, prosulfuron-amendment led to an ???50% reduction in the global warming potential from N2O and CH4 fluxes at this field site, which is equivalent to a reduction of the global warming potential of 0.18 mols CO2 m-2 d-1 from these gases. Metolachlor application did not significantly affect the trace gas fluxes measured. These results demonstrate the

  16. Antigen--antibody interactions in the reverse micellar system: quenching of the fluorescence of fluorescein-labeled atrazine by antibodies against atrazine.

    PubMed

    Matveeva, E G; Melik-Nubarov, N S; Miethe, P; Levashov, A V

    1996-02-01

    This work presents a new method for performing homogeneous fluoroimmunoassay in apolar organic media, quenching fluoroimmunoassay (QFIA). This method is based on utilization of the reverse micellar system of Aerosol OT (AOT) in n-octane as a medium for the analysis of compounds with low water solubility. It is shown using the system for determination of a hydrophobic pesticide atrazine as an example. The conjugate of atrazine with fluorescein (FA) serves as a label for fluorescence detection of antigen-antibody interaction in the reverse micellar system. The fluorescence quantum yield of this compound drastically depends on the micro-environment of the label in the reverse micelle system. Specifically, the binding of this conjugate with the antibodies solubilized in the reverse micelles results in fluorescence quenching. We found that quenching efficiency depends on the properties of the reverse micellar system (surfactant concentration, hydration degree w0, w0 = [water]/[surfactant], etc.). The optimal conditions for quenching of FA fluorescence by antibodies in reverse micelles of AOT in n-octane are low surfactant concentration and hydration degree, allowing one to get large reversed micelles (w0 = 15-20) capable of retaining solubilized antibodies. Addition of free atrazine results in displacement of the conjugate and restoration of its fluorescence. The sensitivity of the analysis to atrazine is only 10 times less than that of the commonly used method of homogeneous immunoassay, polarization fluoroimmunoassay, in aqueous solution using the same antibodies and conjugate. The advantage of QFIA in reverse micelles is that the analyte can be added when dissolved in nonpolar organic solvent. PMID:8742075

  17. New procedures for simultaneous determination of mesotrione and atrazine in water and soil. Comparison of the degradation processes of mesotrione and atrazine.

    PubMed

    Barchanska, Hanna; Rusek, Małgorzata; Szatkowska, Anna

    2012-01-01

    A method for the determination of residues of mesotrione, atrazine and its degradation products: deethylatrazine, hydroxyatrazine, deisopropylatrazine, desethyldesisopropylatrazine in a variety of water and soil matrices has been developed. Mesotrione is a new selective herbicide for use in corn, which has been substituted for atrazine, which has been banned in European Union countries since 2007. Although atrazine has not been used for three vegetative periods, it is still detected in the environment. The analysis was conducted by means of ultra-high-pressure liquid chromatography with ultraviolet detection and liquid chromatography with diode array detection. The procedures for analyte separation from water and soil matrices were also established. The optimal conditions for solid-phase extraction (SPE) were determined. The recoveries were compared with that obtained by means of SPE. Method fortification recoveries from water samples averaged 78-97% and for soil 80-97% depending on the analyte and type of sample. The limits of detection were 0.04-0.61 μg/L for water samples and for soil samples 0.02-0.88 μg/g. The soil samples were collected in spring 2009 from three different fields with water samples being made from effluents from these fields. Samples collection was conducted in the day of mesotrione (Callisto 100SC) application and then done weekly, until the mesotrione concentration was below the limit of quantification. The results enabled the monitoring of mesotrione degradation in soil and its permeability into surface waters; simultaneously, the same studies were conducted for atrazine. PMID:21416215

  18. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells

    PubMed Central

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague–Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  19. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    PubMed

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-01-01

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo. PMID:26114388

  20. Microscopic examination on cytological changes in Allium cepa and shift in phytoplankton population at different doses of Atrazine

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Finger, Kristen; Usnick, Samantha; Rogers, William J.; Das, A. B.; Smith, Don W.

    2010-06-01

    Atrazine is a wide-range herbicide. For over 50 years, atrazine has been used as a selective broadleaf herbicide in many capacities, from pre-plant to pre-emergence to post-emergence, depending on the crop and application. Currently, 96% of all atrazine used is for commercial applications in fields for the control of broadleaf and grassy weeds in crops such as sorghum, corn, sugarcane, pineapple and for the control of undesirable weeds in rangeland. Many panhandle wells have also detected atrazine in samples taken. The concern for the public is the long-term effect of atrazine with its increasing popularity, and the impact on public health. We investigated the effect of different concentrations of atrazine on Allium cepa (onion), a standard plant test system. We established a control with the Allium bulbs grown on hydroponics culture. Varying concentrations of atrazine was used on the standard plant test system, Allium cepa grown hydroponically. The mitotic indices varied and with higher doses, we observed various chromosomal abnormalities including sticky bridges, early and late separations, and lag chromosomes with higher doses of treatments. In the second part of the experiment, 0.1ppb, 1ppb, 10ppb, and 100ppb concentrations of atrazine were applied to established phytoplankton cultures from the Lake Tanglewood, Texas. Study with a Sedgwick-Rafter counter, a BX-40 Olympus microscope with DP-70 camera revealed a gradual shift in the phytoplankton community from obligatory to facultative autotroph and finally to a parasitic planktonic community. This explains the periodic fish kill in the lakes after applications of atrazine in crop fields.

  1. Atrazine in municipal drinking water and risk of low birth weight, preterm delivery, and small-for-gestational-age status

    PubMed Central

    Villanueva, C; Durand, G; Coutte, M; Chevrier, C; Cordier, S

    2005-01-01

    Background: Atrazine is a herbicide used extensively worldwide. Bioassays have shown that it is embryotoxic and embryolethal. Evidence of adverse reproductive outcomes from exposure in the general population is sparse. Aims: To evaluate the association between atrazine levels in municipal drinking water and the following adverse reproductive outcomes: increased risk of preterm delivery, low birth weight (LBW), and small-for-gestational-age (SGA) status. Methods: A total of 3510 births that took place from 1 October 1997, to 30 September 1998 were analysed. Atrazine measurements were available for 2661 samples from water treatment plants over the past decade. A seasonal pattern was identified, with atrazine peaking from May to September. The geometric mean of the atrazine level for this period was calculated for each water distribution unit and merged with the individual data by municipality of residence. Results: Atrazine levels in water were not associated with an increased risk of LBW or SGA status and were slightly associated with prematurity. There was an increased risk of SGA status in cases in which the third trimester overlapped in whole or in part with the May–September period, compared with those in which the third trimester occurred totally from October to April (OR = 1.37, 95% CI 1.04 to 1.81). If the entire third trimester took place from May to September, the OR was 1.54 (95% CI 1.11 to 2.13). Conclusions: Low levels of atrazine, a narrow exposure range, and limitations in the exposure assessment partly explain the lack of associations with atrazine. Findings point to the third trimester of pregnancy as the potential vulnerable period for an increased risk of SGA birth. Exposures other than atrazine and also seasonal factors may explain the increased risk. PMID:15901888

  2. Evaluation of the Agronomic Performance of Atrazine-Tolerant Transgenic japonica Rice Parental Lines for Utilization in Hybrid Seed Production

    PubMed Central

    Li, Yanlan; Li, Yanan; Wang, Shengjun; Su, Jinping; Liu, Xuejun; Chen, Defu; Chen, Xiwen

    2014-01-01

    Currently, the purity of hybrid seed is a crucial limiting factor when developing hybrid japonica rice (Oryza sativa L.). To chemically control hybrid seed purity, we transferred an improved atrazine chlorohydrolase gene (atzA) from Pseudomonas ADP into hybrid japonica parental lines (two maintainers, one restorer), and Nipponbare, by using Agrobacterium-mediated transformation. We subsequently selected several transgenic lines from each genotype by using PCR, RT-PCR, and germination analysis. In the presence of the investigated atrazine concentrations, particularly 150 µM atrazine, almost all of the transgenic lines produced significantly larger seedlings, with similar or higher germination percentages, than did the respective controls. Although the seedlings of transgenic lines were taller and gained more root biomass compared to the respective control plants, their growth was nevertheless inhibited by atrazine treatment compared to that without treatment. When grown in soil containing 2 mg/kg or 5 mg/kg atrazine, the transgenic lines were taller, and had higher total chlorophyll contents than did the respective controls; moreover, three of the strongest transgenic lines completely recovered after 45 days of growth. After treatment with 2 mg/kg or 5 mg/kg of atrazine, the atrazine residue remaining in the soil was 2.9–7.0% or 0.8–8.7% respectively, for transgenic lines, and 44.0–59.2% or 28.1–30.8%, respectively, for control plants. Spraying plants at the vegetative growth stage with 0.15% atrazine effectively killed control plants, but not transgenic lines. Our results indicate that transgenic atzA rice plants show tolerance to atrazine, and may be used as parental lines in future hybrid seed production. PMID:25275554

  3. Effects of the exposure to atrazine on bone development of Podocnemis expansa (Testudines, Podocnemididae).

    PubMed

    Mendonça, Juliana dos Santos; Vieira, Lucélia Gonçalves; Valdes, Sady Alexis Chavauty; Vilca, Franz Zirena; Tornisielo, Valdemar Luiz; Santos, André Luiz Quagliatto

    2016-04-01

    The use of pesticides is a widely spread practice in Brazilian agriculture, and dispersion of these substances is an important factor for the fauna and flora. Atrazine is an endocrine disruptor in the xenoestrogen class that is used worldwide in agricultural practices. In Brazil, its use is permitted in several crops. Podocnemis expansa is a representative of the Testudines order that is the largest freshwater reptile of South America. Its distribution enables it to get in contact with molecules that are commonly used as pesticides, which may cause deleterious effects in target populations. In order to evaluate the possible effects of the exposure to atrazine on bone ontogeny of this species, eggs were artificially incubated in sand moistened with water contaminated with atrazine at concentrations equal to 0, 2, 20 or 200 μg/L. Embryos were collected throughout incubation and submitted to diaphanization of soft tissues with potassium hydroxide (KOH); bones were stained with Alizarin red S and cartilages by Alcian blue. Embryos were evaluated for the presence of abnormalities during the different stages of pre-natal development of skeletal elements. No effect of atrazine was observed on bone development during the embryonic phase in P. expansa individuals, in the conditions of this study. PMID:26850621

  4. Effect of Biochar on Bioavailability of Atrazine and Metribuzin in Two Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of Biochar on Bioavailability of Atrazine and Metribuzin in Two Soils Biochar is a fine-grained, carbon enriched product created when biomass (e.g. wood waste, manures) is burned at relatively low temperatures and under an anoxic atmosphere. Biochar is being added to soil help retain nutri...

  5. Risk-cost-benefit analysis of atrazine in drinking water from agricultural activities and policy implications

    NASA Astrophysics Data System (ADS)

    Tesfamichael, Aklilu A.; Caplan, Arthur J.; Kaluarachchi, Jagath J.

    2005-05-01

    This study provides an improved methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector by incorporating public attitude to pesticide management in the analysis. Regression models are developed to predict finished water atrazine concentration in high-risk community water supplies in the United States. The predicted finished water atrazine concentrations are then used in a health risk assessment. The computed health risks are compared with the total economic surplus in the U.S. corn market for different atrazine application rates using estimated demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums for chemical-free and reduced-chemical corn indicate that if the society is willing to pay a price premium, risks can be reduced without a large reduction in the total economic surplus and net benefits may be higher. The results also show that this methodology provides an improved scientific framework for future decision making and policy evaluation in pesticide management.

  6. Dissipation of atrazine, enrofloxacin, and sulfamethazine in wood chip bioreactors and impact on denitrification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may impact denitrification. The degradation of 5 mg L-1 atrazine, enrofloxa...

  7. Effect of dissolved organic matter from treated effluents on sorption of atrazine and prometryn by soils

    SciTech Connect

    Seol, Y.; Lee, L.S.

    2000-01-02

    The apparent enhanced transport of soil-applied atrazine following irrigation of treated effluents has been hypothesized to be from complexation of atrazine with effluent-borne dissolved organic matter (DOM). Under long-term effluent irrigation, even small DOM-induced decreases in pesticide sorption can result in significant enhanced pesticide movement due to cumulative effects. The effect of atrazine and prometryn association with DOM extracted from municipal wastewater (MW), swine-derived lagoon wastewater (SW), and dissolved Aldrich humic acid (HA) on sorption by two soils was measured in batch equilibration studies. Individual association of pesticides to DOM, sorption of DOM to soil, and pesticide sorption by soil were also quantified. Pesticide association to DOM normalized to organic carbon (OC) ranged from 30 to 1000 L/kg OC. DOM sorption by soil ranged from 1.5 to 10 L/kg with a silt loam having a higher affinity for the DOM than the sandy loam. DOM up to 150 mg OC/L did not significantly suppress sorption by soils of either atrazine or prometryne in agreement with predictions using the independently measured binary distribution coefficients in a model that assumed linear equilibrium behavior among pesticide, soil, and DOM. A sensitivity analysis was performed using the same model to identify what combination of soil, pesticide, and DOC variables may suppress sorption, resulting in facilitated transport. Results from the sensitivity analysis are presented and the potential for effluent properties other than DOM to facilitate pesticide transport is discussed.

  8. ATRAZINE STIMULATES THE RELEASE OF ACTH AND ADRENAL STEROIDS IN MALE WISTAR RATS

    EPA Science Inventory

    Previously, we reported that atrazine (ATR) alters steroidogenesis in male Wistar rats resulting in increased serum corticosterone (C), progesterone (P), androgens and estrogens. The observation of increased C following single or multiple doses of ATR (up to 21 days of dosing) su...

  9. PREGNANCY LOSS AND DELAYED PARTURITION CAUSED BY ATRAZINE AND ITS METABOLITES IN F344 RATS

    EPA Science Inventory

    Previously we reported that atrazine (ATR), a widely used herbicide, caused pregnancy loss (i.e., full-litter resorption) and, in surviving litters, delayed parturition in the rat. In this study we compared the dose-response relationships for ATR and four metabolites. Hydroxyatr...

  10. DEVELOPMENTAL ATRAZINE EXPOSURE SUPPRESSES IMMUNE FUNCTION IN MALE, BUT NOT FEMALE SPRAGUE-DAWLEY RATS

    EPA Science Inventory

    Developmental Atrazine Exposure Suppresses Immune Function in Male, but not Female Sprague-Dawley Rats

    Andrew A. Rooney,*,1 Raymond A. Matulka,? and Robert Luebke?

    *College of Veterinary Medicine, Anatomy, Physiological Sciences and Radiology, NCSU, Raleigh, North...

  11. MEASURED CONCENTRATIONS OF HERBICIDES AND MODEL PREDICTIONS OF ATRAZINE FATE IN THE PATUXENT RIVER ESTUARY

    EPA Science Inventory

    McConnell, Laura L., Jennifer A. Harman-Fetcho and James D. Hagy, III. 2004. Measured Concentrations of Herbicides and Model Predictions of Atrazine Fate in the Patuxent River Estuary. J. Environ. Qual. 33(2):594-604. (ERL,GB X1051).

    The environmental fate of herbicides i...

  12. Effects of the herbicide atrazine on Ambystoma tigrinum metamorphosis: duration, larval growth, and hormonal response

    USGS Publications Warehouse

    Larson, D.L.; McDonald, S.; Fivizanni, A.J.; Newton, W.E.; Hamilton, S.J.

    1998-01-01

    We exposed larval tiger salamanders (Ambystoma tigrinum) reared in the laboratory from eggs collected from a prairie wetland in North Dakota to three concentrations of atrazine (0, 75, and 250 i??g/L) in a static renewal test to determine the pesticide's effect on (1) plasma corticosterone and thyroxine concentrations, (2) larval size, and (3) days-to-stage at stages 2 and 4 of metamorphic climax. We found significant effects of atrazine on each of these response variables. Plasma thyroxine was elevated in both atrazine-exposed groups compared to the control group; plasma corticosterone was depressed in the 75 i??g/L treatment compared with both the control and 250 i??g/L treatment. Larvae exposed to 75 i??g/L atrazine reached stage 4 later, but at a size and weight comparable to the control group. By contrast, larvae in the 250 i??g/L treatment progressed to stage 4 at the same time but at a smaller size and lower weight than larvae in the control group. These results indicate that the herbicide has the potential to influence tiger salamander life history. We present a model consistent with our results, whereby corticosterone and thyroxine interact to regulate metamorphosis of tiger salamanders based on nutrient assimilation and adult fitness

  13. THE EFFECTS OF ATRAZINE METABOLITES ON PUBERTY AND THYROID FUNCTION IN THE MALE WISTAR RAT

    EPA Science Inventory

    The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Stoker, T.E1., Guidici, D.L.2, Laws, S.C.2 and Cooper, R.L.2 Gamete and Early Embryo Biology Branch and 2 Endocrinology Branch, Reproductive Toxicology Division, National Health and Envir...

  14. Behavior of Atrazine In Limited Irrigation Cropping Systems in Colorado: Prior Use Is Important

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Irrigation Water Optimization Project was begun in 2005 at Colorado State University to develop cropping systems to optimize use of limited irrigation water supply while sustaining production. Corn is a major component of many of these cropping systems and atrazine is used to provide residual w...

  15. The Effect Of Cropping And Herbicide Use History On Atrazine Efficacy And Dissipation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that atrazine dissipates rapidly in fields in Colorado where the herbicide has been used continuously for 3 or more years. A small plot study with four replications was done in two locations in 2007 as part of a larger project on irrigation water optimization. Three cro...

  16. DETECTION OF A CRITICAL PERIOD NECESSARY FOR ATRAZINE-INDUCED MAMMARY GLAND DELAYS IN RATS

    EPA Science Inventory

    Detection of a Critical Period Necessary for Atrazine-Induced Mammary Gland Delays in Rats.

    Jennifer L. Rayner1 and Suzanne E. Fenton2

    1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 Reproductive Toxicology Division, USEPA, NHEERL/ORD, R...

  17. ADVERSE EFFECTS OF PRENATAL EXPOSURE TO ATRAZINE DURING A CRITICAL PERIOD OF MAMMARY GLAND GROWTH

    EPA Science Inventory

    Prenatal exposure to 100 mg/kg atrazine (ATR) was previously shown to delay mammary gland (MG) development in the female offspring of Long Evans (LE) rats. To determine if the fetal MG was most sensitive to ATR effects during specific periods of development, timed-pregnant dams ...

  18. LATE GESTATIONAL ATRAZINE EXPOSURE DECREASES MATERNAL BEHAVIOR IN LONG-EVANS RATS

    EPA Science Inventory

    Late Gestational Atrazine Exposure Alters Maternal Nursing Behavior in Rats

    Jennifer L. Rayner1 and Suzanne E. Fenton2

    1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 USEPA/ ORD/NHEERL/Reproductive Toxicology Division, RTP, NC.

    At...

  19. Isolation and purification of {sup 14}C-atrazine metabolites from field grown sugarcane and sorghum

    SciTech Connect

    Ash, S.G.; Larson, J.D.; Talaat, R.E.

    1996-10-01

    Sugarcane and sorghum plants were grown in separate field plots and treated with [2,4,6-{sup 14}C]-Atrazine (according to standard agricultural practices and at levels approximating the maximum usage rate) in partial fulfillment of EPA registration requirements. Sugarcane leaves were collected just before the final (fourth) test material application and at final harvest; canes were collected only at final harvest. Atrazine and a total of 20 metabolites of atrazine, accounting for 45.1% of the total radioactive residues, were isolated and characterized from prefourth application sugarcane leaves. Sorghum forage samples were collected 30 days after treatment (30 DAT), and at silage stage; mature fodder and grain were collected at final harvest. Two additional metabolites of atrazine were isolated and characterized from 30 DAT sorghum. Flowcharts describing the extraction and fractionation procedures used for isolation and purification of selected metabolites will be presented. The mass spectra as well as proposed metabolic pathways for these metabolites will be presented in an accompanying abstract.

  20. 76 FR 25281 - Atrazine, Chloroneb, Chlorpyrifos, Clofencet, Endosulfan, et al.; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...EPA is proposing to revoke certain tolerances in follow-up to canceled uses for chlorpyrifos, chloroneb, clofencet, endosulfan, ethyl parathion, methidathion, methyl parathion, and N,N-diethyl-2-(4- methylbenzyloxy)ethylamine, modify certain tolerances for atrazine, establish tolerances for endosulfan, and make minor revisions to tolerance expressions for a few of the aforementioned pesticide......

  1. Effects of atrazine on the oxidative damage of kidney in Wister rats

    PubMed Central

    Liu, Wei; Du, Yanwei; Liu, Jian; Wang, Hebin; Sun, Daguang; Liang, Dongmei; Zhao, Lijing; Shang, Jincheng

    2014-01-01

    The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to human health. In this experiment, 4 weeks old female Wister rats were treated by 0, 5, 25 and 125 mg/kg atrazine respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in kidney tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the Blood urea nitrogen (BUN) and creatinine (CREA) levels in serum were increased, the contents of nitric oxide (NO) and malondialdehyde (MDA) in the kidney tissue homogenates were increased, the over-expressed Nrf2 transferred into the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as heme oxygenase-1 (HO1) and NAD(P)H quinone oxidoreductase (NQO1) and the expression of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). PMID:25419354

  2. The herbicide atrazine induces hyperactivity and compromises tadpole detection of predator chemical cues.

    PubMed

    Ehrsam, Mackenzie; Knutie, Sarah A; Rohr, Jason R

    2016-09-01

    The ability to detect chemical cues is often critical for freshwater organisms to avoid predation and find food and mates. In particular, reduced activity and avoidance of chemical cues signaling predation risk are generally adaptive behaviors that reduce prey encounter rates with predators. The present study examined the effects of the common herbicide atrazine on the ability of Cuban tree frog (Osteopilus septentrionalis) tadpoles to detect and respond to chemical cues from larval dragonfly (Libellulidae sp.) predators. Tadpoles exposed to an estimated environmental concentration of atrazine (calculated using US Environmental Protection Agency software; measured concentration, 178 μg/L) were significantly hyperactive relative to those exposed to solvent control. In addition, control tadpoles significantly avoided predator chemical cues, but tadpoles exposed to atrazine did not. These results are consistent with previous studies that have demonstrated that ecologically relevant concentrations of atrazine can induce hyperactivity and impair the olfactory abilities of other freshwater vertebrates. The authors call for additional studies examining the role of chemical contaminants in disrupting chemical communication and the quantification of subsequent impacts on the fitness and population dynamics of wildlife. Environ Toxicol Chem 2016;35:2239-2244. © 2016 SETAC. PMID:26799769

  3. Sugarcane Soils Exhibit Enhanced Atrazine Degradation And Cross Adaptation To Other Triazines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports of reduced residual weed control with atrazine in Florida and Hawaii soils indicate that enhanced triazine degradation may be occurring across the entire United States sugarcane production region. A previously developed triazine degradation assay was used to determine if Florida and Hawaii ...

  4. Species-dependent effects of biochar amendment on bioaccumulation of atrazine in earthworms.

    PubMed

    Wang, Fang; Ji, Rong; Jiang, Zhongwei; Chen, Wei

    2014-03-01

    We observed that at a contamination level of 4.25 mg-atrazine/kg-soil, the biota-soil accumulation factor (BSAF) for the anecic M. guillelmi is approximately 5 times that for the epigeic E. foetida. This is attributable to the fact that bio-uptake by E. foetida is mainly through dermal absorption, whereas bio-uptake by M. guillelmi is largely affected by the gut processes, through which the physical grinding and surfactant-like materials facilitate the desorption of atrazine from soil. Strikingly, biochar amendment resulted in much greater reduction in BSAF for M. guillelmi than for E. foetida. At a biochar dose of 0.5% (wt:wt) the difference in BSAF between the two species became much smaller, and at a dose of 2% no statistical difference was observed. A likely explanation is that gut processes by M. guillelmi were much less effective in extracting atrazine from the biochar (the predominant phase wherein atrazine resided) than from soil particles. PMID:24406324

  5. Herbicide transport in Goodwater Creek experimental watershed: I. long-term research on atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrazine [6-chloro-N2-ethyl-N4-(1-methylethyl)-1,3,5-triazine-2,4-diamine] continues to be the herbicide of greatest concern relative to contamination of surface waters in the United States. However, a lack of long-term data hampers the interpretation of cause-effect relationships and the detection ...

  6. EFFECT OF ATRAZINE ON IMPLANTATION AND EARLY PREGNANCY IN FOUR STRAINS OF RATS

    EPA Science Inventory

    Atrazine (ATR) is an herbicide that has been shown to have adverse reproductive effects including alterations in levels of pituitary hormones such as prolactin (prl) and luteinizing hormone (LH). Since prl's action to promote progesterone secretion is essential for the initiatio...

  7. NONYLPHENOL AND ATRAZINE INDUCE INVERSE EFFECTS ON MAMMARY GLAND DEVELOPMENT IN FEMALE RATS EXPOSED IN UTERO

    EPA Science Inventory

    Nonylphenol and Atrazine Induce Inverse Effects on Mammary Gland Development in Female Rats Exposed In Utero.
    HJ Moon1, SY Han1, CC Davis2, and SE Fenton2
    1 Department of Toxicology, NITR, Korea FDA, 5Nokbun-Dong, Eunpyung-Gu, Seoul, Korea and 2 Reproductive Toxicology Divi...

  8. A REGIONAL ATMOSPHERIC FATE AND TRANSPORT MODEL FOR ATRAZINE, PART I: DEVELOPMENT AND IMPLEMENTATION

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system is adapted to simulate the regional transport and fate of atrazine, one of the most widely used herbicides in the United States. Model chemistry and deposition are modified, and a gas-to-particle partitioning algorithm...

  9. Implementation of Contour Vegetative Buffers for Mitigating of Atrazine in Ground Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of vegetative buffer strips (VBS) in intercepting herbicides from surface runoff is well established. However, effect of VBS on fate of the atrazine in ground water has not been widely studied. An established, well calibrated paired watershed consisting of 1) a corn-soybean/tree-grass ...

  10. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Bi-Yi; Cao, Yang; Qi, Fei-Fei; Li, Xiao-Qing; Xu, Qian

    2015-05-01

    A functionalized nylon6/polypyrrole core-shell nanofibers mat (PA6/PPy NFM) was prepared via situ polymerization on nylon6 electrospun nanofibers mat (PA6 NFM) template and used as an adsorbent to remove atrazine from aqueous solutions. The core-shell structure of PA6/PPy NFM can be clearly proved under scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The effects of initial solution pH and ionic strength, as well as the comparison of the adsorption capacity of functionalized (PA6/PPy NFM) and non-functionalized (PA6 NFM) adsorbent, were examined to reveal the possible adsorption mechanism. The results indicated that π-π interaction and electrostatic interaction should play a key role in the adsorption process. The kinetics and thermodynamics studies also further elucidated the detailed adsorption characteristics of atrazine removal by PA6/PPy NFM. The adsorption of atrazine could be well described by the pseudo-second-order equation. The adsorption equilibrium data was well fitted with the Freundlich isotherm model with a maximum adsorption capacity value of 14.8 mg/g. In addition, the increase of adsorption rate caused by a temperature increase could be felicitously explained by the endothermic reaction. The desorption results showed that the adsorption capacity remained almost unchanged after six adsorption/desorption cycles. These results suggest that PA6/PPy NFM could be employed as an efficient adsorbent for removing atrazine from contaminated water sources.

  11. IMMUNOASSAY METHODS FOR MEASURING ATRAZINE AND 3,5,6-TRICHLORO-2-PYRIDINOL IN FOODS

    EPA Science Inventory

    This chapter describes the use of enzyme-linked immunosorbent assay (ELISA) methods for the analysis of two potential environmental contaminants in food sample media, atrazine and 3,5,6-trichloro-2-pyridinol (3,5,6-TCP). Two different immunoassay formats are employed: a magnetic...

  12. Control of Volunteer Potato (Solanum tuberosum) in Sweet Corn with Mesotrione Unaffected by Atrazine or Tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volunteer potato is a major weed pest of sweet corn in regions where winter soil temperatures fail to kill tubers left in the ground after harvest. Studies were conducted in 2004 to 2005 to determine the effect of combining atrazine with mesotrione applied postemergence (POST) on volunteer potato co...

  13. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff often contains pollutants with potential antagonistic impacts on periphyton, such as nutrients and atrazine. The individual influence of these pollutants on periphyton has been extensively studied, but their impact when introduced in a more realistic scenario of multiple agricult...

  14. Effect of scale on the behavior of atrazine in surface waters

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    2001-01-01

    Field runoff is an important transport mechanism by which agricultural pesticides, including atrazine, move into the hydrologic environment. Atrazine is chosen because it is widely used, is transported in runoff relatively easily, is widely observed in surface waters, and has relatively little loss in the stream network. Data on runoff of atrazine from experimental plot and field studies is combined with annual estimates of load in numerous streams and rivers, resulting in a data set with 408 observations that span 14 orders of magnitude in area. The load as a percent of use (LAPU) on an annual basis is the parameter that is compared among the studies. There is no difference in the mean or range of LAPU values for areas from the size of experimental field plots (???0.000023 ha) and small watersheds (<100 000 ha). The relatively invariant LAPU value observed across a large range of watershed areas implies that the characteristics of atrazine itself (application method and chemical properties) are important in determining the extent of runoff. The variable influences on the extent of runoff from individual watershed characteristics and weather events are superimposed on the relatively invariant LAPU value observed across the range of watershed areas. The results from this study establish the direct relevance for agricultural field plot studies to watershed studies across the full range of scale.

  15. Market-level assessment of the economic benefits of atrazine in the United States

    PubMed Central

    Mitchell, Paul D

    2014-01-01

    BACKGROUND Atrazine and other triazine herbicides are widely used in US maize and sorghum production, yet the most recent market-level assessment of the economic benefits of atrazine is for market conditions prevalent in the early 1990s, before commercialization of transgenic crops. Grain markets have changed substantially since that time; for example, the size of the US maize market increased by 170% from 1990–1992 to 2007–2009. This paper reports a current assessment of the economic benefits of atrazine. RESULTS Yield increases and cost changes implied by triazine herbicides are projected to reduce maize prices by 7–8% and sorghum prices by 19–20%. Projected consumer benefits from lower prices range from $US 3.6 to 4.4 × 109 annually, with the net projected economic benefit for triazine herbicides to the US economy ranging from $US 2.9 to 3.4 × 109 annually because lower prices imply reduced producer income. Productivity gains from triazine herbicides maintain an estimated 270 000–390 000 ha of land in non-crop uses that generate environmental benefits not accounted for in this analysis. CONCLUSION Even in the current era, with transgenic varieties dominating crop production, atrazine and the other triazine herbicides continue to be a key part of maize and sorghum production and generate substantial economic benefits. © 2013 The Authors. PestManagement Science published by JohnWiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:24318916

  16. MATERNAL ATRAZINE (ATR) ALTERS HYPOTHALAMIC DOPAMINE (HYP-DA) AND SERUM PROLACTIN (SPRL) IN MALE PUPS

    EPA Science Inventory

    Maternal Atrazine (ATR) alters hypothalamic dopamine (HYP-DA) and serum prolactin (sPRL) in male pups. 1Christopher Langdale, 2Tammy Stoker and 2Ralph Cooper. 1 Dept. of Cell Biology, North Carolina State University College of Veterinary Medicine, Raleigh, NC. 2 Endocrinology ...

  17. A REGIONAL ATMOSPHERIC FATE AND TRANSPORT MODEL FOR ATRAZINE PART II: EVALUATION

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has been adapted to simulate the fate and transport of atrazine. The simulation spans April to mid-July 1995 for a domain encompassing the United States and southern Canada east of the Rocky Mountains. Model results ...

  18. Introduction of biological agents into vegetative buffer to enhance rhizodegradation of atrazine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introducing atrazine (ATR) degraders into riparian vegetative buffer strips (VBS) can be a promising bioremediation approach to accelerate the degradation of ATR and its degradation products deposited into VBS by surface runoff. A growth chamber study was conducted to investigated the synergistic ef...

  19. DOSE ADDITIVITY OF ATRAZINE AND BROMODICHLOROMETHANE IN CAUSING PREGNANCY LOSS IN F344 RATS

    EPA Science Inventory

    DOSE ADDITIVITY OF ATRAZINE AND BROMODICHLOROMETHANE IN CAUSING
    PREGNANCY LOSS IN F344 RATS.

    AUTHORS (ALL): Narotsky, Michael G1; Best, Deborah S1; Bielmeier, Susan R2; Cooper, Ralph L1
    SPONSOR NAME: James E Andrews

    INSTITUTIONS (ALL):
    1. Reproductive Toxi...

  20. Results of the Lake Michigan Mass Balance Project: Atrazine Modeling Report

    EPA Science Inventory

    This report covers an overview of chemical properties, measurements in air and water, model construct and assumptions, and results of mathematical mass balance modeling of the herbicide atrazine in the Lake Michigan basin. Within the context of the mass balance, an overview of a...