Science.gov

Sample records for aladin sky atlas

  1. Aladin Lite: Lightweight sky atlas for browsers

    NASA Astrophysics Data System (ADS)

    Boch, Thomas

    2014-02-01

    Aladin Lite is a lightweight version of the Aladin tool, running in the browser and geared towards simple visualization of a sky region. It allows visualization of image surveys (JPEG multi-resolution HEALPix all-sky surveys) and permits superimposing tabular (VOTable) and footprints (STC-S) data. Aladin Lite is powered by HTML5 canvas technology and is easily embeddable on any web page and can also be controlled through a Javacript API.

  2. Aladin Lite: Embed your Sky in the Browser

    NASA Astrophysics Data System (ADS)

    Boch, T.; Fernique, P.

    2014-05-01

    I will introduce and describe Aladin Lite1, a lightweight interactive sky viewer running natively in the browser. The past five years have seen the emergence of powerful and complex web applications, thanks to major improvements in JavaScript engines and the advent of HTML5. At the same time, browser plugins Java applets, Flash, Silverlight) that were commonly used to run rich Internet applications are declining and are not well suited for mobile devices. The Aladin team took this opportunity to develop Aladin Lite, a lightweight version of Aladin geared towards simple visualization of a sky region. Relying on the widely supported HTML5 canvas element, it provides an intuitive user interface running on desktops and tablets. This first version allows one to interactively visualize multi-resolution HEALPix image and superimpose tabular data and footprints. Aladin Lite is easily embeddable on any web page and may be of interest for data providers which will be able to use it as an interactive previewer for their own image surveys, previously pre-processed as explained in details in the poster "Create & publish your Hierarchical Progressive Survey". I will present the main features of Aladin Lite as well as the JavaScript API which gives the building blocks to create rich interactions between a web page and Aladin Lite.

  3. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  4. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Toll, Velle; Pagh Nielsen, Kristian; Rontu, Laura; Masek, Jan

    2016-05-01

    The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational - High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of -11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical

  5. The ATLAS All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Denneau, L.

    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a small project with an ambitious goal: early warning of asteroid impacts on Earth. We aim to provide one day warning for the smallest "town-killer" 30-kiloton asteroids up to three weeks for a 100-megaton impactor. ATLAS will execute a wide-field all-sky survey with four visits per footprint per night down to a sensitivity limit of V=20, suitable for detection dangerous asteroids and enabling other exciting time-domain astronomy. ATLAS is currently under construction and expects to be fully operational in late 2015. We provide an overview of the ATLAS system and discuss how ATLAS can participate in the emerging community of time-domain astronomy.

  6. IRAS sky survey atlas: Explanatory supplement

    NASA Technical Reports Server (NTRS)

    Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; Mccallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.

    1994-01-01

    This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).

  7. The new World Atlas of Artificial Sky Brightness

    NASA Astrophysics Data System (ADS)

    Falchi, Fabio; Cinzano, Pierantonio; Kyba, Christopher C. M.; Portnov, Boris A.

    2015-08-01

    I present the main steps toward the completion of the new World Atlas of Artificial Sky Brightness (WA II) and some results. The computational technique has been updated, in comparison to the first World Atlas, to take into account both sources and sites elevation. The elevation data are from USGS GTOPO30 global digital elevation model, with the same pixel size as the WA II maps. The upward emission function used to compute the Atlas is a three parameters function. The parameters can be constrained to the database of Earth based night sky brightness measurements. In this way we can use the better fitting upward function for the final map’s calibration. We maintained constant atmosphere parameters over the entire Earth, identical to those used for the first Atlas (Garstang atmospheric clarity coefficient k=1, equivalent to a vertical extinction at sea level of 0.33 magnitude in the V band). This was done in order to avoid introducing a local bias due to different conditions that may confound the light pollution propagation effects. The radiance data used are those from Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) on board the Suomi NPP satellite. The use of this newly available radiance data allows for an increased real resolution, even while maintaining the same 30"x30" lat-lon pixel size. Anyway, a higher resolution is really appreciable only in the immediate proximity of sources of light pollution (e.g. inside a big city). The VIIRS DNB data used for the input data were chosen from the months ranging from May to September in order to avoid introducing bias from the variable snow coverage in mid to high northern latitudes. In the southern hemisphere this problem is far less pronounced. The WA II takes advantage of the now enormous database of Earth based sky brightness measurements obtained mainly with Sky Quality Meters, but also with CCD measurements.

  8. The new world atlas of artificial night sky brightness

    PubMed Central

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo

    2016-01-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  9. The new world atlas of artificial night sky brightness.

    PubMed

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-06-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582

  10. The new world atlas of artificial night sky brightness.

    PubMed

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-06-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.

  11. Status of the CDS Services, SIMBAD, VizieR and Aladin

    NASA Astrophysics Data System (ADS)

    Genova, Francoise; Allen, M. G.; Bienayme, O.; Boch, T.; Bonnarel, F.; Cambresy, L.; Derriere, S.; Dubois, P.; Fernique, P.; Landais, G.; Lesteven, S.; Loup, C.; Oberto, A.; Ochsenbein, F.; Schaaff, A.; Vollmer, B.; Wenger, M.; Louys, M.; Davoust, E.; Jasniewicz, G.

    2006-12-01

    Major evolutions have been implemented in the three main CDS databases in 2006. SIMBAD 4, a new version of SIMBAD developed with Java and PostgreSQL, has been released. Il is much more flexible than the previous version and offers in particular full search capabilities on all parameters. Wild card can also be used in object names, which should ease searching for a given object in the frequent case of 'fuzzy' nomenclature. New information is progressively added, in particular a set of multiwavelength magnitudes (in progress), and other information from the Dictionnary of Nomenclature such as the list of object types attached to each object name (available), or hierarchy and associations (in progress). A new version of VizieR, also in the open source PostgreSQL DBMS, has been completed, in order to simplify mirroring. The master database at CDS currently remains in the present Sybase implementation. A new simplified interface will be demonstrated, providing a more user-friendly navigation while retaining the multiple browsing capabilities. A new release of the Aladin Sky Atlas offers new capabilities, like the management of multipart FITS files and of data cubes, construction and execution of macros for processing a list of targets, and improved navigation within an image plane. This new version also allows easy and efficient manipulation of very large (>108 pixels) images, support for solar images display, and direct access to SExtractor to perform source extraction on displayed images.

  12. The Dunhuang Chinese sky: A comprehensive study of the oldest known star atlas

    NASA Astrophysics Data System (ADS)

    Bonnet-Bidaud, Jean-Marc; Praderie, Françoise; Whitfield, Susan

    2009-03-01

    This paper presents an analysis of the star atlas included in the medieval Chinese manuscript Or.8210/S.3326 discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now housed in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour-angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern Hemisphere, is up to now the oldest complete preserved star atlas known from any civilisation. It is also the earliest known pictorial representation of the quasi-totality of Chinese constellations. This paper describes the history of the physical object - a roll of thin paper drawn with ink. We analyse the stellar content of each map (1,339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps were drawn (1.5-4° for the brightest stars) and examine the type of projections used. We conclude that precise mathematical methods were used to produce the Atlas. We also discuss the dating of the manuscript and its possible author, and we confirm the date +649-684 (early Tang Dynasty) as most probable based on the available evidence. This is at variance with a prior estimate of around +940. Finally, we present a brief comparison with later sky maps, both from China and Europe.

  13. The Infrared Properties of Sources Matched in the WISE All-Sky and Herschel Atlas Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Eisenhardt, Peter; Amblard, Alexandre; Temi, Pasquale; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J.; Maddox, Steve J.; Hoyos, Carlos; Dye, Simon; Baes, Maarten; Bonfield, David; Bourne, Nathan; Bridge,Carrie

    2012-01-01

    We describe the infrared properties of sources detected over approx. 36 deg2 of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5(sigma) point-source depths of 34 and 0.048 mJy at 250 microns and 3.4 microns, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx. 630 deg-2. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 microns and that at 250 microns, with +/-50% scatter over approx. 1.5 orders of magnitude in luminosity, approx. 10(exp 9) - 10(exp 10.5) Stellar Luminosity. By contrast, the matched sources without previously measured redshifts (r > or approx. 20.5) have 250-350 microns flux density ratios that suggest either high-redshift galaxies (z > or approx. 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T < or approx. 20). Their small 3.4-250 microns flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx. 30%) in a 12 microns flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  14. THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE WISE ALL-SKY AND HERSCHEL ATLAS SURVEYS

    SciTech Connect

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Blain, Andrew W.; Dunne, Loretta; Maddox, Steve J.; Hoyos, Carlos; Bourne, Nathan; Smith, Daniel J. B.; Bonfield, David; Baes, Maarten; Bridge, Carrie; Buttiglione, Sara; De Zotti, Gianfranco; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; and others

    2012-05-01

    We describe the infrared properties of sources detected over {approx}36 deg{sup 2} of sky in the GAMA 15 hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (H-ATLAS) and Wide-field Infrared Survey (WISE). With 5{sigma} point-source depths of 34 and 0.048 mJy at 250 {mu}m and 3.4 {mu}m, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of {approx}630 deg{sup -2}. Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 {mu}m and that at 250 {mu}m, with {+-}50% scatter over {approx}1.5 orders of magnitude in luminosity, {approx}10{sup 9}-10{sup 10.5} L{sub Sun }. By contrast, the matched sources without previously measured redshifts (r {approx}> 20.5) have 250-350 {mu}m flux density ratios which suggest either high-redshift galaxies (z {approx}> 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T {approx}< 20). Their small 3.4-250 {mu}m flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large active galactic nucleus fraction ({approx}30%) in a 12 {mu}m flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample.

  15. The Infrared Properties of Sources Matched in the Wise All-Sky and Herschel ATLAS Surveys

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Benford, Dominic J.; Gardner, Jonathan P.; Amblard, Alexandre; Fleuren, Simone; Blain, Andrew W.; Dunne, Loretta; Smith, Daniel J. B.; Maddox, Steve J.; Hoyos, Carlos; Auld, Robbie; Bales, Maarten; Bonfield, David; Bourne, Nathan; Bridge, Carrie; Buttiglione, Sara; Cava, Antonio; Clements, David; Cooray, Asantha; Dariush, Ali; deZotti, Gianfranco; Driver, Simon; Tsai, Chao-Wei; Wright, Edward L.; Yan, Lin

    2012-01-01

    We describe the infrared properties of sources detected over approx 36 sq deg of sky in the GAMA 15-hr equatorial field, using data from both the Herschel Astrophysical Terahertz Large-Area Survey (HATLAS) and Wide-field Infrared Survey (WISE). With 5sigma point-source depths of 34 and 0.048 mJy at 250 micron and 3.4 micron, respectively, we are able to identify 50.6% of the H-ATLAS sources in the WISE survey, corresponding to a surface density of approx 630 deg(exp -2). Approximately two-thirds of these sources have measured spectroscopic or optical/near-IR photometric redshifts of z < 1. For sources with spectroscopic redshifts at z < 0.3, we find a linear correlation between the infrared luminosity at 3.4 micron and that at 250 micron, with +/- 50% scatter over approx 1.5 orders of magnitude in luminosity, approx 10(exp 9) - 10(exp 10.5) Solar Luminosity By contrast, the matched sources without previously measured redshifts (r approx > 20.5) have 250-350 micron flux density ratios that suggest either high-redshift galaxies (z approx > 1.5) or optically faint low-redshift galaxies with unusually low temperatures (T approx < 20). Their small 3.4-250 micron flux ratios favor a high-redshift galaxy population, as only the most actively star-forming galaxies at low redshift (e.g., Arp 220) exhibit comparable flux density ratios. Furthermore, we find a relatively large AGN fraction (approx 30%) in a 12 micron flux-limited subsample of H-ATLAS sources, also consistent with there being a significant population of high-redshift sources in the no-redshift sample

  16. ALADIN: un sito dinamico per l'astrofotografia

    NASA Astrophysics Data System (ADS)

    Pupillo, Giuseppe

    2004-08-01

    In this paper we present the software ALADIN, a dynamic site (freeware) for the solution of some equations used in astronomical photography. For example, ALADIN allows us to evaluate the correct exposure for the main celestial objects and phenomena, the surface brightness of the objects, the field covered by the film or CCD, the atmospheric extinction on the UBVRI photometric system, the effects of a given error of polar alignment on the final image, the image size, and a lot of other useful parameters.

  17. A full-sky, high-resolution atlas of galactic 12 μm dust emission with WISE

    SciTech Connect

    Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu

    2014-01-20

    We describe our custom processing of the entire Wide-field Infrared Survey Explorer (WISE) 12 μm imaging data set, and present a high-resolution, full-sky map of diffuse Galactic dust emission that is free of compact sources and other contaminating artifacts. The principal distinctions between our resulting co-added images and the WISE Atlas stacks are our removal of compact sources, including their associated electronic and optical artifacts, and our preservation of spatial modes larger than 1.°5. We provide access to the resulting full-sky map via a set of 430 12.°5 × 12.°5 mosaics. These stacks have been smoothed to 15'' resolution and are accompanied by corresponding coverage maps, artifact images, and bit-masks for point sources, resolved compact sources, and other defects. When combined appropriately with other mid-infrared and far-infrared data sets, we expect our WISE 12 μm co-adds to form the basis for a full-sky dust extinction map with angular resolution several times better than Schlegel et al.

  18. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    PubMed Central

    Carvalhal, Sara; Ribeiro, Susana Abreu; Arocena, Miguel; Kasciukovic, Taciana; Temme, Achim; Koehler, Katrin; Huebner, Angela; Griffis, Eric R.

    2015-01-01

    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome. PMID:26246606

  19. wALADin Benzimidazoles Differentially Modulate the Function of Porphobilinogen Synthase Orthologs

    PubMed Central

    2015-01-01

    The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg2+, or K+ stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders. PMID:24568185

  20. Role of ALADIN in Human Adrenocortical Cells for Oxidative Stress Response and Steroidogenesis

    PubMed Central

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E.; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome. PMID:25867024

  1. Role of ALADIN in human adrenocortical cells for oxidative stress response and steroidogenesis.

    PubMed

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome.

  2. Implementing Ephemerides Facilities in the VizieR and Aladin Tools

    NASA Astrophysics Data System (ADS)

    Berthier, J.; Vachier, F.; Lainey, V.; Thuillot, W.; Arlot, J.-E.; Fernique, P.; Ochsenbein, F.; Genova, F.

    2006-04-01

    The Institut de mecanique celeste et de calcul des ephemerides (IMCCE, Paris Observatory) is willing to provide information on Solar System objects to the Astronomical Virtual Observatory. The first step is the interconnection of IMCCE ephemerides servers with the Vizier and Aladin tools of the Centre de donnees astronomiques de Strasbourg (CDS). The services have been made interoperable, using the International Virtual Observatory standard VOTable. A request related to the position of asteroids made by users of Aladin or Vizier is transmitted to the ephemerides servers of IMCCE and the answer is quickly and automatically returned. Equipped with this new facility, Aladin allows in particular users to explore photographic archives stored at CDS, observatory archives accessible through Aladin, or to process their own images, in order to identify asteroids. The ephemerides are obtained from a numerical integration using as initial conditions the orbital data extracted from the Lowell database of asteroids. This work is still in development but, at this stage, the method is well established and we intend to give access to this tool in a few months.

  3. The nuclear pore complex protein ALADIN is anchored via NDC1 but not via POM121 and GP210 in the nuclear envelope

    SciTech Connect

    Kind, Barbara; Koehler, Katrin; Lorenz, Mike; Huebner, Angela

    2009-12-11

    The nuclear pore complex (NPC) consists of {approx}30 different proteins and provides the only sites for macromolecular transport between cytoplasm and nucleus. ALADIN was discovered as a new member of the NPC. Mutations in ALADIN are known to cause triple A syndrome, a rare autosomal recessive disorder characterized by adrenal insufficiency, alacrima, and achalasia. The function and exact location of the nucleoporin ALADIN within the NPC multiprotein complex is still unclear. Using a siRNA-based approach we downregulated the three known membrane integrated nucleoporins NDC1, GP210, and POM121 in stably expressing GFP-ALADIN HeLa cells. We identified NDC1 but not GP210 and POM121 as the main anchor of ALADIN within the NPC. Solely the depletion of NDC1 caused mislocalization of ALADIN. Vice versa, the depletion of ALADIN led also to disappearance of NDC1 at the NPC. However, the downregulation of two further membrane-integral nucleoporins GP210 and POM121 had no effect on ALADIN localization. Furthermore, we could show a direct association of NDC1 and ALADIN in NPCs by fluorescence resonance energy transfer (FRET) measurements. Based on our findings we conclude that ALADIN is anchored in the nuclear envelope via NDC1 and that this interaction gets lost, if ALADIN is mutated. The loss of integration of ALADIN in the NPC is a main pathogenetic aspect for the development of the triple A syndrome and suggests that the interaction between ALADIN and NDC1 may be involved in the pathogenesis of the disease.

  4. A Photographic Atlas of Selected Regions of the Milky Way

    NASA Astrophysics Data System (ADS)

    Barnard, Edward Emerson; Orin Dobek, Foreword by Gerald

    2014-08-01

    Foreword Gerald Orin Dobek; Preface from the original Atlas; Introduction from the original Atlas; Bibliography from the original Atlas; Catalogue of 349 dark objects in the sky; Biography of Edward Emerson Barnard.

  5. Presentation of the acoustic and aerodynamic results of the Aladin 2 concept qualification testing

    NASA Technical Reports Server (NTRS)

    Collard, M.; Doyotte, C.; Sagner, M.

    1985-01-01

    Wind tunnel tests were conducted of a scale model of the Aladin 2 aircraft. The propulsion system configuration is described and the air flow caused by jet ejection is analyzed. Three dimensional flow studies in the vicinity of the engine installation were made. Diagrams of the leading and trailing edge flaps are provided. Graphs are developed to show the aerodynamic performance under conditions of various airspeed and flap deflection.

  6. Sensitivity study with respect to the domain size with ALADIN-Climate

    NASA Astrophysics Data System (ADS)

    Boros-Törék, Orsolya; Krüzselyi, Ilona; Szépszó, Gabriella

    2015-04-01

    The ALADIN-Climate regional climate model was adapted by the Hungarian Meteorological Service (HMS) in 2005, and it has been used to estimate climate change impacts over the territory of the Carpathian Basin. During these experiments it was proved that the applied 10 km-resolution integration domain was too small, and near its boundary artificial noises arose because the edges cross mountainous areas. Therefore, two new areas were tested in a sensitivity study to find a more appropriate domain for the future runs. Although the size of new integration area is limited by the computational capacity of HMS, both test domains cover the Central-European region containing the whole Danube catchment, with their boundaries far from highly elevated orographic features. The bigger domain includes the smaller one and is extended towards South, West and East. As test period, 1971-1980 years were selected. Lateral boundary conditions were supplied by the 0.44-degree (~50 km) resolution ALADIN simulation (conducted in EURO-CORDEX) driven with global ARPEGE fields. Basically three meteorological variables were examined: sea level pressure, 2-m temperature and rainfall. The evaluation was concentrating on their seasonal and annual means, while in case of precipitation daily data was also used: due to high spatial and temporal variability of precipitation, its modelling is difficult task, therefore, additional indices were calculated. During the validation the model results were compared to two different observational gridded datasets: for the Carpathian Basin the homogenized CARPATCLIM is applied and for continent-scale investigations E-OBS is considered as reference. The obtained results suggest: (1) ALADIN works acceptably over both domains, and although it provides some similar results (e.g., temperature underestimation and precipitation overestimation over major part of the domain and year) as in the earlier experiments, the largest errors derived from the boundary conditions

  7. The Millennium Star Atlas

    NASA Astrophysics Data System (ADS)

    Sinnott, R. W.

    1997-08-01

    Derived from Hipparcos and Tycho observations, the Millennium Star Atlas is a set of 1548 charts covering the entire sky to about magnitude 11. It stands apart from all previous printed atlases in completeness to magnitude 10 and in uniformity around the sky. The generous chart scale has made possible a number of innovations never before seen in a star atlas: arrows on high-proper-motion stars, double-star ticks conveying separation and position angle for a specific modern epoch, distance labels for nearby stars, and variable stars coded by amplitude, period, and type. Among the nonstellar objects plotted, more than 8000 galaxies are shown with aspect ratio and orientation.

  8. Sky cover

    NASA Astrophysics Data System (ADS)

    Gerth, Jordan J.

    Of all of the standard meteorological parameters collected and observed daily, sky cover is not only one of the most complex, but the one that is fairly ambiguously defined and difficult to quantify. Despite that, the implications of how cloud fraction and sky cover are understood not only impact daily weather forecasts, but also present challenges to assessing the state of the earth's climate system. Part of the reason for this is the lack of observational methods for verifying the skill of clouds represented and parameterized in numerical models. While human observers record sky cover as part of routine duties, the spatial coverage of such observations in the United States is relatively sparse. There is greater spatial coverage of automated observations, and essentially complete coverage from geostationary weather satellites that observe the Americas. A good analysis of sky cover reconciles differences between manual observations, automated observations, and satellite observations, through an algorithm that accounts for the strengths and weaknesses of each dataset. This work describes the decision structure for trusting and weighting these similar observations. Some of the issues addressed include: human and instrument error resulting from approximations and estimations, a deficiency in high cloud detectability using surface-based ceilometers, poorly resolved low cloud using infrared channels on space-based radiometers during overnight hours, and decreased confidence in satellite-detected cloud during stray light periods. Using the blended sky cover analysis as the best representation of cloudiness, it is possible to compare the analysis to numerical model fields in order to assess the performance of the model and the parameterizations therein, as well as confirm or uncover additional relationships between sky cover and pertinent fields using an optimization methodology. The optimizer minimizes an affine expression of adjusted fields to the "truth" sky cover

  9. Spaceborne lasers development for ALADIN instrument on board ADM-Aeolus ESA mission

    NASA Astrophysics Data System (ADS)

    Cosentino, Alberto; D'Ottavi, Alessandro; Bravetti, Paolo; Suetta, Enrico

    2015-09-01

    ALADIN TXA is the first in the world All-Solid-State, Compact, Transmitterlaser Assembly for the first in the world Doppler Wind Lidar inside the ESA Aeolus mission. Its optical architecture is that of a MOPA, medium energy, pulsed, frequency tripled, tunable, almost single transverse and single longitudinal mode Nd:YAG lasers with 50 Hz PRF and a three years in-orbit lifetime. A brief resume of the design, together with the qualification approach and the main experimental results obtained with the two flight models are presented. The main technological challenges faced during the program development and the lesson learnt for future space All-Solid-State lasers will complete the paper.

  10. Fading Skies

    ERIC Educational Resources Information Center

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  11. ESA Sky

    NASA Astrophysics Data System (ADS)

    Merin, Bruno

    2015-12-01

    The ESAC Science Data Centre, ESDC, is working on a science-driven discovery portal for all its astronomy missions with the provisional name Multi-Mission Interface. The first public release of this service will be demonstrated, featuring an interface for sky exploration and for single and multiple target searches. It requires no prior knowledge of any of the missions involved. From a technical point of view, the system offers all-sky projections of full mission datasets using a new-generation HEALPix projection called HiPS; detailed geometrical footprints to access individual observations at the mission archives using VO-TAP queries; and direct access to the underlying mission-specific science archives. A first public release is scheduled before the end of 2015 and will give users worldwide simplified access to high-level science-ready data products from all ESA Astronomy missions plus a number of ESA-produced source catalogues. A demo will accompany the presentation.

  12. The ADS All Sky Survey

    NASA Astrophysics Data System (ADS)

    Goodman, Alyssa

    images can be extracted from articles, we will attempt to "astroreference" those images in order allow for their overlay on the sky. "Astroreferencing" is the analog of "georeferencing," where coordinate information is used to overlay information on maps. Our first pass at astroreferencing will be made using the astrometry.net program, in collaboration with one of its creators. If enough optically-visible stars are present in an image, astrometry.net can place it where it goes on the sky. Only a small fraction of ADS holdings contain images solvable by astrometry.net, but for the articles which do, reviving the data in this way holds tremendous value-especially in the case of historically important observations. Lastly, we will also astroreference images by text-mining to extract "metadata" buried in the figure captions and text. As it is built, the ADSASS will effectively create dynamic data layers of astrotags and astroreferenced images. Users will be able to explore these layers using a wide variety of free all-sky data viewers. Our group and our collaborators have been involved in the development of the WorldWide Telescope and Aladin programs, so we will use those to develop examples of how we intend for the ADSASS to be used. But, we plan to ensure that the data feed represented by the ADSASS will be ingestible by any program capable of understanding sky coordinates and all-sky views. Our proposal can only give a glimpse into the wealth of science it will enable, which includes everything from observation-planning to data discovery to studying the sky distributions of classes of objects. Just as it would have been hard to predict the full and amazing impact of GIS and GPS on society, it is similarly hard to gauge the full impact of the NASA ADSASS. The ADS on its own is already the envy of other sciences as a unified research tool, with the advent of the ADSASS, NASA will have led the way to the future once again.

  13. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations.

    PubMed

    Ansmann, Albert; Wandinger, Ulla; Le Rille, Olivier; Lajas, Dulce; Straume, Anne Grete

    2007-09-10

    The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic+statistical) error of 10%-15%, 15%-30%, and 20%-35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50 to 200 Mm(-1); 700-shot averaging (50 km horizontal resolution) is required. Vertical signal resolution is 500 m in the lower troposphere and 1000 m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm(-1) and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%-35% relative uncertainty and a horizontal resolution of 10 km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%-30%. Vertical resolution is 2000 m.

  14. From Idea to Virtual Reality: ALADIN - The Adult Learning Documentation and Information Network. Report of a CONFINTEA V Workshop and Its Follow-Up.

    ERIC Educational Resources Information Center

    Giere, Ursula, Ed.; Imel, Susan, Ed.

    This publication contains the story of how the idea for a network conceived through CONFINTEA V became a [virtual] reality in ALADIN, the Adult Learning Documentation and Information Network. Part I contains 15 papers delivered as a part of the CONFINTEA workshop, "Global Community of Adult Learning through Information and Documentation:…

  15. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-09-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  16. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  17. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-08-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  18. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-10-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  19. Infrared sky noise study

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.

    1972-01-01

    The hardware and techniques to measure and compare sky noise at several sites were studied, and a device was developed that would maximize its output and minimize its output for modulation. The instrument and its functions are described. The nature of sky emissions and the fluctuation, gaseous sources of sky noise, and aerosol sources are discussed. It is concluded that sky noise really exists, and the spatial distribution of the sky noise sources are such that observed noise values are linear functions of chopping stroke.

  20. The Herschel ATLAS

    NASA Technical Reports Server (NTRS)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; Negrello, M.; Serjeant, S.; Thompson, M. A.; Van Kampen, E.; Amblard, A.; Andreani, P.; Baes, M.; Beelen, A.; Bendo, G. J.; Bertoldi, F.; Benford, D.; Bock, J.

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  1. AQA - Air Quality model for Austria: comparison of ALADIN and ALARO forecasts with observed meteorological profiles and PM10 predictions with CAMx

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Kaiser, A.

    2009-09-01

    In AQA, Air Quality model for Austria, the regional weather forecast model ALADIN-Austria of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollutants over Austria. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005. In the current model version AQA uses the operational meteorological forecasts conducted with ALADIN which has a horizontal resolution of 9.7 km. Since 2008 the higher resolved ALARO is also available at the ZAMG. It has a horizontal resolution of 4.9 km and models the PBL with more vertical layers than ALADIN. ALARO also uses more complex algorithms to calculate precipitation, radiation and TKE. Another advantage of ALARO concerning the chemical modelling with CAMx is that additionally to the higher resolved meteorological forecasts it is possible to use finer emission inventories which are available for Austria. From 2006 to 2007 a SODAR-RASS of the ZAMG was operated in the north-eastern Austrian flat lands (Kittsee). In this study the measured vertical profiles of wind and temperature are compared with the model predictions. The evaluation is conducted for an episode in January 2007 when high PM10 concentrations were measured at the air quality station Kittsee. Analysis of the RASS-temperature-profiles show that during this episode a strong nocturnal inversion developed at the investigated area. The ability of the models ALADIN and ALARO to predict this complex meteorological condition is investigated. Both models are also used as meteorological driver for the chemical dispersion model CAMx and the results of predicted PM10 concentrations are compared to air quality measurements.

  2. Sky monitoring with LOBSTER

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Tichy, V.

    2014-12-01

    The X--ray sky monitoring represents valuable energy spectral extension to optical sky monitoring. Lobster--Eye all--sky monitors are able to provide relatively high sensitivity and good time resolution in the soft X--ray energy range up to 10 keV. The fine time resolution can be used to alert optical robotic telescopes for follow--up and multispectral analyzes in the visible light.

  3. Assessment of future scenarios for wind erosion sensitivity changes based on ALADIN and REMO regional climate model simulation data

    NASA Astrophysics Data System (ADS)

    Mezősi, Gábor; Blanka, Viktória; Bata, Teodóra; Ladányi, Zsuzsanna; Kemény, Gábor; Meyer, Burghard C.

    2016-07-01

    The changes in rate and pattern of wind erosion sensitivity due to climate change were investigated for 2021-2050 and 2071-2100 compared to the reference period (1961-1990) in Hungary. The sensitivities of the main influencing factors (soil texture, vegetation cover and climate factor) were evaluated by fuzzy method and a combined wind erosion sensitivity map was compiled. The climate factor, as the driving factor of the changes, was assessed based on observed data for the reference period, while REMO and ALADIN regional climate model simulation data for the future periods. The changes in wind erosion sensitivity were evaluated on potentially affected agricultural land use types, and hot spot areas were allocated. Based on the results, 5-6% of the total agricultural areas were high sensitive areas in the reference period. In the 21st century slight or moderate changes of wind erosion sensitivity can be expected, and mostly `pastures', `complex cultivation patterns', and `land principally occupied by agriculture with significant areas of natural vegetation' are affected. The applied combination of multi-indicator approach and fuzzy analysis provides novelty in the field of land sensitivity assessment. The method is suitable for regional scale analysis of wind erosion sensitivity changes and supports regional planning by allocating priority areas where changes in agro-technics or land use have to be considered.

  4. Under Summer Skies

    ERIC Educational Resources Information Center

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  5. ATLAS: Big Data in a Small Package

    NASA Astrophysics Data System (ADS)

    Denneau, Larry; Tonry, John

    2015-08-01

    For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.

  6. WISE Eyes the Whole Sky

    NASA Video Gallery

    This animation shows the progress of the WISE all-sky survey over time. WISE, or NASA's Wide-field Infrared Survey Explorer, is perched up in the sky like a wise, old owl, scanning the whole sky on...

  7. Statistical adaptation of ALADIN RCM outputs over the French alpine massifs - application to future climate and snow cover

    NASA Astrophysics Data System (ADS)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Dombrowski-Etchevers, I.; Déqué, M.

    2012-01-01

    In this study, snowpack scenarios are modelled across the French Alps using dynamically downscaled variables from the ALADIN Regional Climate Model (RCM) for the control period (1961-1990) and three emission scenarios (SRES B1, A1B and A2) by the mid- and late of the 21st century (2021-2050 and 2071-2100). These variables are statistically adapted to the different elevations, aspects and slopes of the alpine massifs. For this purpose, we use a simple analogue criterion with ERA40 series as well as an existing detailed climatology of the French Alps (Durand et al., 2009a) that provides complete meteorological fields from the SAFRAN analysis model. The resulting scenarios of precipitation, temperature, wind, cloudiness, longwave and shortwave radiation, and humidity are used to run the physical snow model CROCUS and simulate snowpack evolution over the massifs studied. The seasonal and regional characteristics of the simulated climate and snow cover changes are explored, as is the influence of the scenarios on these changes. Preliminary results suggest that the Snow Water Equivalent (SWE) of the snowpack will decrease dramatically in the next century, especially in the Southern and Extreme Southern part of the Alps. This decrease seems to result primarily from a general warming throughout the year, and possibly a deficit of precipitation in the autumn. The magnitude of the snow cover decline follows a marked altitudinal gradient, with the highest altitudes being less exposed to climate change. Scenario A2, with its high concentrations of greenhouse gases, results in a SWE reduction roughly twice as large as in the low-emission scenario B1 by the end of the century. This study needs to be completed using simulations from other RCMs, since a multi-model approach is essential for uncertainty analysis.

  8. Statistical adaptation of ALADIN RCM outputs over the French Alps - application to future climate and snow cover

    NASA Astrophysics Data System (ADS)

    Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Dombrowski-Etchevers, I.; Déqué, M.; Castebrunet, H.

    2012-07-01

    In this study, snowpack scenarios are modelled across the French Alps using dynamically downscaled variables from the ALADIN Regional Climate Model (RCM) for the control period (1961-1990) and three emission scenarios (SRES B1, A1B and A2) for the mid- and late 21st century (2021-2050 and 2071-2100). These variables are statistically adapted to the different elevations, aspects and slopes of the Alpine massifs. For this purpose, we use a simple analogue criterion with ERA40 series as well as an existing detailed climatology of the French Alps (Durand et al., 2009a) that provides complete meteorological fields from the SAFRAN analysis model. The resulting scenarios of precipitation, temperature, wind, cloudiness, longwave and shortwave radiation, and humidity are used to run the physical snow model CROCUS and simulate snowpack evolution over the massifs studied. The seasonal and regional characteristics of the simulated climate and snow cover changes are explored, as is the influence of the scenarios on these changes. Preliminary results suggest that the snow water equivalent (SWE) of the snowpack will decrease dramatically in the next century, especially in the Southern and Extreme Southern parts of the Alps. This decrease seems to result primarily from a general warming throughout the year, and possibly a deficit of precipitation in the autumn. The magnitude of the snow cover decline follows a marked altitudinal gradient, with the highest altitudes being less exposed to climate change. Scenario A2, with its high concentrations of greenhouse gases, results in a SWE reduction roughly twice as large as in the low-emission scenario B1 by the end of the century. This study needs to be completed using simulations from other RCMs, since a multi-model approach is essential for uncertainty analysis.

  9. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  10. Sloan digital sky survey

    SciTech Connect

    Kent, S.M.; Stoughton, C.; Newberg, H.; Loveday, J.; Petravick, D.; Gurbani, V.; Berman, E.; Sergey, G.; Lupton, R.

    1994-04-01

    The Sloan Digital Sky Survey will produce a detailed digital photometric map of half the northern sky to about 23 magnitude using a special purpose wide field 2.5 meter telescope. From this map we will select {approximately} 10{sup 6} galaxies and 10{sup 5} quasars, and obtain high resolution spectra using the same telescope. The imaging catalog will contain 10{sup 8} galaxies, a similar number of stars, and 10{sup 6} quasar candidates.

  11. ATLAS discovery of an optical transient

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-08-01

    We report the following transient found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  12. Three-dimensional dust aerosol distribution and extinction climatology over northern Africa simulated with the ALADIN numerical prediction model from 2006 to 2010

    NASA Astrophysics Data System (ADS)

    Mokhtari, M.; Tulet, P.; Fischer, C.; Bouteloup, Y.; Bouyssel, F.; Brachemi, O.

    2015-08-01

    The seasonal cycle and optical properties of mineral dust aerosols in northern Africa were simulated for the period from 2006 to 2010 using the numerical atmospheric model ALADIN (Aire Limitée Adaptation dynamique Développement InterNational) coupled to the surface scheme SURFEX (SURFace EXternalisée). The particularity of the simulations is that the major physical processes responsible for dust emission and transport, as well as radiative effects, are taken into account on short timescales and at mesoscale resolution. The aim of these simulations is to quantify the dust emission and deposition, locate the major areas of dust emission and establish a climatology of aerosol optical properties in northern Africa. The mean monthly aerosol optical thickness (AOT) simulated by ALADIN is compared with the AOTs derived from the standard Dark Target (DT) and Deep Blue (DB) algorithms of the Aqua-MODIS (MODerate resolution Imaging Spectroradiometer) products over northern Africa and with a set of sun photometer measurements located at Banizoumbou, Cinzana, Soroa, Mbour and Cape Verde. The vertical distribution of dust aerosol represented by extinction profiles is also analysed using CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. The annual dust emission simulated by ALADIN over northern Africa is 878 Tg year-1. The Bodélé Depression appears to be the main area of dust emission in northern Africa, with an average estimate of about 21.6 Tg year-1. The simulated AOTs are in good agreement with satellite and sun photometer observations. The positions of the maxima of the modelled AOTs over northern Africa match the observed positions, and the ALADIN simulations satisfactorily reproduce the various dust events over the 2006-2010 period. The AOT climatology proposed in this paper provides a solid database of optical properties and consolidates the existing climatology over this region derived from satellites, the AERONET network and regional climate

  13. Angles in the Sky?

    NASA Astrophysics Data System (ADS)

    Behr, Bradford

    2005-09-01

    Tycho Brahe lived and worked in the late 1500s before the telescope was invented. He made highly accurate observations of the positions of planets, stars, and comets using large angle-measuring devices of his own design. You can use his techniques to observe the sky as well. For example, the degree, a common unit of measurement in astronomy, can be measured by holding your fist at arm's length up to the sky. Open your fist and observe the distance across the sky covered by the width of your pinky fingernail. That is, roughly, a degree! After some practice, and knowing that one degree equals four minutes, you can measure elapsed time by measuring the angle of the distance that the Moon appears to have moved and multiplying that number by four. You can also figure distances and sizes of things. These are not precise measurements, but rough estimates that can give you a "close-enough" answer.

  14. Dark-Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  15. Sloan Digital Sky Survey

    SciTech Connect

    Kent, S.M.

    1993-11-01

    The Solan Digital Sky Survey is a project which will produce a detailed digital phometric map of half the northern sky to about 23 magnitude using a special purpose wide field telescope of 2.5 meter aperture. This map will be used to select about a million galaxies and 100,000 quasars, for which high resolution spectra will be obtained using the same telescope. A catalog will be produced of all the detected objects, about 100 million galaxies and a similar number of stars, and a million quasar candidates.

  16. The Big Sky inside

    ERIC Educational Resources Information Center

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  17. A night sky model.

    NASA Astrophysics Data System (ADS)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  18. Dark Sky Scotland

    NASA Astrophysics Data System (ADS)

    Hillier, D.

    2008-06-01

    Dark Sky Scotland (DSS) 2006-2008 is a nationwide programme of public and educational astronomy events. It demonstrates successful national partnerships with non-astronomy organisations and effective ways of delivering events in remote rural communities. DSS is looking for international partners for IYA2009.

  19. The Infrared Sky.

    ERIC Educational Resources Information Center

    Habing, Harm J.; Neugebauer, Gerry

    1984-01-01

    The Infrared Astronomical Satellite (IRAS) is a survey instrument that has provided an overall view of the infrared sky and identified objects that merit further investigation. A description of the IRAS and examples of the types of astronomical data collected are presented. (JN)

  20. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space…

  1. Discovering the Sky.

    ERIC Educational Resources Information Center

    Weedman, Daniel W.

    1997-01-01

    An astronomer gives teachers tips on learning how to look at the night sky then on passing along personal instruction to students. Presents ideas for finding information through astronomers at colleges, science museums, planetariums, research observatories, and on the World Wide Web. Contains a resource list and foldout poster of galaxies with…

  2. September in the Skies

    ERIC Educational Resources Information Center

    Riddle, Bob

    2004-01-01

    This school year begins with no planets visible in the evenings, and it will remain this way until November when Mercury returns to the evening skies. For a period of several days, starting on September 8, you can follow the waning crescent Moon in the early morning as it passes Saturn, Venus, the bright star Regulus, and Mercury. On the morning…

  3. ATLAS: Forecasting Falling Rocks

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Tonry, John L.; Denneau, Larry; Stalder, Brian; Sherstyuk, Andrei

    2016-10-01

    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a new asteroid survey aimed at detecting small (10-100 meter) asteroids inbound for impact with Earth. Relative to the larger objects targeted by most surveys, these small asteroids pose very different threats to our planet. Large asteroids can be seen at great distances and measured over many years, resulting in precise orbits that enable long-term impact predictions. If an impact were predicted, a costly deflection mission would be warranted to avert global catastrophe -- but a large asteroid impact is very unlikely in the next century. By contrast, impacts from small asteroids are inevitable. Such objects can be detected only during close encounters with Earth -- encounters too brief to yield long-term predictions. Only a few days' warning could be expected for an impactor in the 10-100 meter range, but fortunately the impact of such an asteroid would cause only regional damage. As in the case of a hurricane, a quixotic attempt to deflect or destroy it would be more expensive than the damage from its impact. A better response is to save human lives by evacuating the impact zone, and then rebuild. Only a few days warning are needed for this purpose, and ATLAS is unique among asteroid surveys in being optimized to provide it. While the optimization has many facets, the most important is rapidly surveying the entire accessible sky. A small asteroid could come from any direction and go from invisibility to impact in less than a week: ATLAS must look everywhere, all the time. Sky coverage is more important than exquisite sensitivity to faint objects, because asteroids inbound for impact will eventually become quite bright. This makes ATLAS complementary to other surveys, which scan the sky at a more leisurely pace but are able to detect asteroids at greater distances. We report on ATLAS' first year of survey operations, including the maturing of robotic observation and detection strategies, and asteroid and

  4. The AKARI far-infrared all-sky survey maps

    NASA Astrophysics Data System (ADS)

    Doi, Yasuo; Takita, Satoshi; Ootsubo, Takafumi; Arimatsu, Ko; Tanaka, Masahiro; Kitamura, Yoshimi; Kawada, Mitsunobu; Matsuura, Shuji; Nakagawa, Takao; Morishima, Takahiro; Hattori, Makoto; Komugi, Shinya; White, Glenn J.; Ikeda, Norio; Kato, Daisuke; Chinone, Yuji; Etxaluze, Mireya; Cypriano, Elysandra F.

    2015-06-01

    We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese AKARI satellite. The survey covers > 99% of the sky in four photometric bands centred at 65 μm, 90 μm, 140 μm, and 160 μm, with spatial resolutions ranging from 1' to 1{^''.}5. These data provide crucial information on the investigation and characterisation of the properties of dusty material in the interstellar medium (ISM), since a significant portion of its energy is emitted between ˜ 50 and 200 μm. The large-scale distribution of interstellar clouds, their thermal dust temperatures, and their column densities can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use in the astronomical community.

  5. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  6. Dark Skies Rangers

    NASA Astrophysics Data System (ADS)

    Doran, Rosa

    2015-08-01

    Creating awareness about the importance of the protection of our dark skies is the main goal of the Dark Skies Rangers project, a joint effort from the NOAO and the Galileo Teacher Training Program. Hundreds of schools and thousands of students have been reached by this program. We will focus in particular on the experience being developed in Portugal where several municipalities have now received street light auditing produced by students with suggestions on how to enhance the energy efficiency of illumination of specific urban areas. In the International Year of Light we are investing our efforts in exporting the successful Portuguese experience to other countries. The recipe is simple: train teachers, engage students, foster the participation of local community and involve local authorities in the process. In this symposium we hope to draft the cookbook for the near future.

  7. Optical infrared sky survey

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1978-01-01

    A description is presented of a photographic survey of the northern sky currently underway at Steward Observatory. The survey is being conducted at a principal bandpass of 8000-9000 A supplemented by a V bandpass. The survey is the first of its type conducted using a small (20-in. aperture) wide-field telescope, a very large-format (146 mm) image intensifier with a red-extended, multialkali photocathode. The output phosphor of the intensifier is photographed with IIaD emulsion on film. One of the goals of the survey is to catalog red stellar objects on the photographs and to examine in detail regions of the sky which are obscured by hydrogen emission on conventional photographs.

  8. Point Source All Sky

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds.

  9. Sacred Sky and Cyberspace

    NASA Astrophysics Data System (ADS)

    Clynes, F.

    2011-06-01

    The concept of the sacred world beyond the stars found expression in the works of Plato, into Gnosticism and was incorporated into Christianity where medieval images of the cosmos pictured the heavenly domain as beyond the stars. Today cyberspace literature abounds with descriptions of a transmundane space, a great Beyond. This talk looks at current views of cyberspace and asks if they are a re-packaging of the age-old concept of a sacred sky in a secular and technological format?

  10. SkyMapper and Supernovae

    NASA Astrophysics Data System (ADS)

    Scalzo, R.

    The SkyMapper Southern Sky Survey will be a wide-area digital survey of the southern sky, run from the robotic 1.3-m SkyMapper telescope at Siding Spring Observatory near Coonabarabran, NSW, Australia. The survey will include a supernova search run during poor seeing time, run as a rolling search to produce high-quality light curves for Hubble diagram cosmology. The search is currently taking data in science verification mode. I will briefly describe SkyMapper and then give an overview of su- pernova search activities, including pipeline design, operations, and interaction with the community.

  11. Digital Optical Sky Surveys

    SciTech Connect

    Kron, R.G.

    1995-08-01

    Cameras containing arrays of charge-coupled devices---or which are otherwise capable of sustained high data rates---enable optical sky surveys that compete in efficiency with photographic surveys in terms of area of sky covered per unit observing time. There are gains in performance as well as efficiency: stellar photometry is more straightforward because of the higher dynamic range of CCDs, and the low noise of CCDs allows narrow-band surveys to be undertaken. The small dead-time between exposures allows surveys for rapid variability as well as near-simultaneous color measurements. The most important new prospect may be real-time analysis for identification of sources changing either in position or in brightness. These gains come only after substantial investment in analysis tools and data handling and storage systems. To illustrate some of this potential, this review will focus on a number of sky surveys with CCDs that are either under way or in advanced implementation stages. {copyright} {ital 1995} {ital Astronomical} {ital Society} {ital of} {ital the} {ital Pacific}.

  12. ATLAS discovery of bright nuclear transient flux in NGC4708 : ATLAS16bdg

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.; Wright, D.; Young, D. R.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2016-06-01

    ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  13. ATLAS discovery of a probable SN in 2MASX J17093078+2136344 (ATLAS16bcb)

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  14. Under the Same Sky

    NASA Astrophysics Data System (ADS)

    Ratajczak, Milena

    2016-07-01

    Sharing the same sky provides the unique opportunity to use it as a tool to inspire pupils and encourage them to develop an interest in science and technology. Excitement of space can also serve as introduction to the idea of global citizenship and tolerance. A wide spectrum of educational activities dedicated to children and teenagers, especially those from less privileged backgrounds, carried out under several projects in Poland will be presented. We will also introduce the way we follow to support teachers and educators in discovering our wonderful cosmos.

  15. Bargaining for Open Skies

    NASA Technical Reports Server (NTRS)

    Wojahn, Oliver W.

    2001-01-01

    In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.

  16. Ring Around the Sky

    NASA Astrophysics Data System (ADS)

    Croswell, Ken

    2005-07-01

    Gould's Belt, the most prominent starry feature in the Sun's neighborhood, is a zone of large supergiant stars including the Orion constellation; the bright stars of Canis Major, the Southern Cross, Centaurus, and Lupus; and the brightest stars of the Pupis, Vela, and Carina constellations. Its most prominent feature is its 20-degree tilt to the plane of the Milky Way. Gould's Belt was first noticed in 1847 by Englishman John F. W. Herschel while observing from the Cape of Good Hope in South Africa. Later, Benjamin A. Gould, the first American to earn a doctoral degree in astronomy and the founder of The Astronomical Journal, traced the belt around the entire sky. More recent studies of Gould's Belt show evidence of more than just superstars. When massive stars like those in Gould's Belt explode, they leave behind pulsars and black holes. In the 1990's several dozen gamma-ray sources were discovered to track along the path of Gould's Belt around the sky, possible evidence of the explosion of brilliant stars at an earlier time. X-ray studies suggest that the belt may actually be a disk.

  17. A Violet Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    These clouds from Sol 15 have a new look. As water ice clouds cover the sky, the sky takes on a more bluish cast. This is because small particles (perhaps a tenth the size of the martian dust, or one-thousandth the thickness of a human hair) are bright in blue light, but almost invisible in red light. Thus, scientists expect that the ice particles in the clouds are very small. The clouds were imaged by the Imager for Mars Pathfinder (IMP).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  18. Fire in the Sky

    NASA Astrophysics Data System (ADS)

    Olson, Roberta J. M.; Pasachoff, Jay M.

    1999-11-01

    Fire in the Sky collects many representations of comets and meteors in Britain during the eighteen and nineteenth century when a large number of works inspired by these celestial objects were produced. Over 100 photographs--and two sections of luscious color plates--beautifully portray the inspired output of some of the world's most talented artists, fully capturing the phenomenon that obsessed not only a nation but an era as well. Olson and Pasachoff reveal the many different ways that comets and meteors have appeared in paintings and literature and link these works to the achievements of British science in the wake of Newton and Halley. They also examine the different symbolism that writers and artists have attached to these spectacular objects. Throughout, Fire in the Sky conveys how the development of new technologies, and the burgeoning interest of the general public in science and art, dovetailed with an interest in nature and a strong literary tradition of comet and meteor symbolism. Beautifully illustrated and packed with engaging stories, this book will delight anyone with an interest in the art and astronomy of comets.

  19. The Other Dark Sky

    NASA Astrophysics Data System (ADS)

    Pazmino, John

    In previous demonstrations of New York's elimination of luminous graffiti from its skies, I focused attention on large-scale projects in the showcase districts of Manhattan. Although these works earned passionate respect in the dark sky movement, they by the same token were disheartening. New York was in some quarters of the movement regarded more as an unachievable Shangri-La than as a role model to emulate. This presentation focuses on scenes of light abatement efforts in parts of New York which resemble other towns in scale and density. I photographed these scenes along a certain bus route in Brooklyn on my way home from work during October 2001. This route circulates through various "bedroom communities," each similar to a mid-size to large town elsewhere in the United States. The sujbects included individual structures - stores, banks, schools - and streetscapes mimicking downtowns. The latter protrayed a mix of atrocious and excellent lighting practice, being that these streets are in transition by the routine process of replacement and renovation. The fixtures used - box lamps, fluted or Fresnel globes, subdued headsigns, indirect lighting - are casually obtainable by property managers at local outlets for lighting apparatus. They are routinely offered to the property managers by storefront designers, security services, contractors, and the community improvement or betterment councils.

  20. ATLAS discoveries of optical transients : 6 supernova candidates

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  1. ATLAS discoveries of optical transients : 4 supernova candidates

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala and is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  2. ATLAS: Big Data in a Small Package?

    NASA Astrophysics Data System (ADS)

    Denneau, Larry

    2016-01-01

    For even small astronomy projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (Tonry 2011) will survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards - two 0.5 m F/2.0 telescopes - each night the ATLAS system will measure nearly 109 astronomical sources to a photometric accuracy of <5%, totaling 1012 individual observations over its initial 3-year mission. This ever-growing dataset must be searched in real-time for moving objects and transients then archived for further analysis, and alerts for newly discovered near-Earth asteroids (NEAs) disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many `rifle shot' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of low-Earth orbit (LEO) and geosynchronous orbit (GEO) satellites ATLAS will see each night. Additional interrogation will identify interesting phenomena from millions of transient sources per night beyond the solar system. The data processing and storage requirements for ATLAS demand a `big data' approach typical of commercial internet enterprises. We describe our experience in deploying a nimble, scalable and reliable data processing infrastructure, and suggest ATLAS as steppingstone to data processing capability needed as we enter the era of LSST.

  3. Preserving our sky heritage

    NASA Astrophysics Data System (ADS)

    Bonavitacola, Michel; Le Gué, Alain

    2011-06-01

    We briefly relate the story of the fight against light pollution in France and make a projection into the future. Following the steps of Jean Kovalevsky who was the initiator of the protection of the astronomical sites in France, a few French amateur astronomers began the fight against light pollution in the 1990s. After a first conference for the night environmental protection in 1995 in Rodez, the second conference in 1998 creates the national association which will become in 2007 the National association for the Protection of the Sky and the Night Environment (ANPCEN). In 2008 light pollution is formally identified, by law, as a problem. Since 2005 the LICORNESS association continues to promote research on the impacts of light on the biotopes while protecting the astronomical sites.

  4. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  5. Measuring Anthropogenic Sky Glow Using a Natural Sky Brightness Model

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.

    2013-11-01

    Anthropogenic sky glow (a result of light pollution) combines with the natural background brightness of the night sky when viewed by an observer on the earth's surface. In order to measure the anthropogenic component accurately, the natural component must be identified and subtracted. A model of the moonless natural sky brightness in the V-band was constructed from existing data on the Zodiacal Light, an airglow model based on the van Rhijn function, and a model of integrated starlight (including diffuse galactic light) constructed from images made with the same equipment used for sky brightness observations. The model also incorporates effective extinction by the atmosphere and is improved at high zenith angles (>80°) by the addition of atmospheric diffuse light. The model may be projected onto local horizon coordinates for a given observation at a resolution of 0.05° over the hemisphere of the sky, allowing it to be accurately registered with data images obtained from any site. Zodiacal Light and integrated starlight models compare favorably with observations from remote dark sky sites, matching within ± 8 nL over 95% of the sky. The natural airglow may be only approximately modeled, errors of up to ± 25 nL are seen when the airglow is rapidly changing or has considerable character (banding); ± 8 nL precision may be expected under favorable conditions. When subtracted from all-sky brightness data images, the model significantly improves estimates of sky glow from anthropogenic sources, especially at sites that experience slight to moderate light pollution.

  6. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  7. Impacts of the direct radiative effect of aerosols in numerical weather prediction over Europe using the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Toll, V.; Gleeson, E.; Nielsen, K. P.; Männik, A.; Mašek, J.; Rontu, L.; Post, P.

    2016-05-01

    Aerosol feedbacks are becoming more accepted as physical mechanisms that should be included in numerical weather prediction models in order to improve the accuracy of the weather forecasts. The default set-up in the Aire Limitee Adaptation dynamique Developpement INternational (ALADIN) - High Resolution Limited Area Model (HIRLAM) numerical weather prediction system includes monthly aerosol climatologies to account for the average direct radiative effect of aerosols. This effect was studied using the default aerosol climatology in the system and compared to experiments run using the more up-to-date Max-Planck-Institute Aerosol Climatology version 1 (MACv1), and time-varying aerosol data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis aerosol dataset. Accounting for the direct radiative effect using monthly aerosol climatologies or near real-time aerosol distributions improved the accuracy of the simulated radiative fluxes and temperature and humidity forecasts in the lower troposphere. However, the dependency of forecast meteorological conditions on the aerosol dataset itself was found to be weak.

  8. The Invisible Sky

    NASA Astrophysics Data System (ADS)

    Aschenbach, Bernd; Hahn, Hermann-Michael; Trümper, Joachim; Jenkner, H.

    The x-ray satellite ROSAT, launched in 1990, has made a new universe visible. It has discovered over 120,000 x-ray sources and allowed us for the first time to look in new ways at stellar explosions, galactic collisions, extremely compact pulsars, black holes, and quasars that shine 10,000 times more strongly than the brightest galaxy. It has detected x-rays from Comet Hyakutake and from the Moon. ROSAT is one of the most successful scientific instruments ever launched. In The Invisible Sky, two of the scientists who were instrumental in the design and launching of the satellite team up with a well-known science journalist to chronicle the beginnings, early failures, planning and construction, and deployment of this most famous of x-ray observatories. They describe the cutting-edge science being done with it and show many of the most spectacular color images it has generated. This beautifully illustrated book is the first to describe for lay readers one of the most rmearkable instruments in modern astronomy.

  9. Digital all-sky polarization imaging of partly cloudy skies.

    PubMed

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  10. Citizen science provides valuable data for monitoring global night sky luminance.

    PubMed

    Kyba, Christopher C M; Wagner, Janna M; Kuechly, Helga U; Walker, Constance E; Elvidge, Christopher D; Falchi, Fabio; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz

    2013-01-01

    The skyglow produced by artificial lights at night is one of the most dramatic anthropogenic modifications of Earth's biosphere. The GLOBE at Night citizen science project allows individual observers to quantify skyglow using star maps showing different levels of light pollution. We show that aggregated GLOBE at Night data depend strongly on artificial skyglow, and could be used to track lighting changes worldwide. Naked eye time series can be expected to be very stable, due to the slow pace of human eye evolution. The standard deviation of an individual GLOBE at Night observation is found to be 1.2 stellar magnitudes. Zenith skyglow estimates from the "First World Atlas of Artificial Night Sky Brightness" are tested using a subset of the GLOBE at Night data. Although we find the World Atlas overestimates sky brightness in the very center of large cities, its predictions for Milky Way visibility are accurate. PMID:23677222

  11. Citizen Science Provides Valuable Data for Monitoring Global Night Sky Luminance

    PubMed Central

    Kyba, Christopher C. M.; Wagner, Janna M.; Kuechly, Helga U.; Walker, Constance E.; Elvidge, Christopher D.; Falchi, Fabio; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz

    2013-01-01

    The skyglow produced by artificial lights at night is one of the most dramatic anthropogenic modifications of Earth's biosphere. The GLOBE at Night citizen science project allows individual observers to quantify skyglow using star maps showing different levels of light pollution. We show that aggregated GLOBE at Night data depend strongly on artificial skyglow, and could be used to track lighting changes worldwide. Naked eye time series can be expected to be very stable, due to the slow pace of human eye evolution. The standard deviation of an individual GLOBE at Night observation is found to be 1.2 stellar magnitudes. Zenith skyglow estimates from the “First World Atlas of Artificial Night Sky Brightness” are tested using a subset of the GLOBE at Night data. Although we find the World Atlas overestimates sky brightness in the very center of large cities, its predictions for Milky Way visibility are accurate. PMID:23677222

  12. The Color of the Sky

    NASA Astrophysics Data System (ADS)

    Zagury, Frederic

    2012-10-01

    The color of the sky in day-time and at twilight is studied by means of spectroscopy, which provides an unambiguous way to understand and quantify why a sky is blue, pink, or red. The colors a daylight sky can take primarily owe to Rayleigh extinction and ozone absorption. Spectra of the sky illuminated by the sun can generally be represented by a generic analytical expression which involves the Rayleigh function R ≈ 1/λ^4 e(?a/λ^4), ozone absorption, and, to a lesser extend, aerosol extinction. This study is based on a representative sample of spectra selected from a few hundred observations taken in different places, times, and dates, with a portable fiber spectrometer.

  13. Sky Cover from MFRSR Observations

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

    2011-07-01

    The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  14. Sky cover from MFRSR observations

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J. C.; Berg, L. K.; Flynn, C.; Long, C. N.

    2011-07-01

    The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  15. THEMIS / All-Sky Imagers

    NASA Video Gallery

    A collection of ground-based All-Sky Imagers (ASI) make up another important component of the THEMIS mission. It is sometimes referred to as the sixth THEMIS satellite. Imagery from each camera is ...

  16. Pi in the Sky

    NASA Astrophysics Data System (ADS)

    O'Brien, W. P.

    2008-12-01

    Pi In The Sky (PITS) consists of a loose collection of virtual globe (VG) activities with a slight mathematical twist, wherein students search for interesting circular structures on the surface of Earth (Moon or other planets) and measure the circumference C and diameter D of each structure, using the built-in VG measure tool, in order to determine experimental values of pi from the C/D ratios. Examples of man-made circular structures visible using VG browsers include Fermilab and l"Arc de Triomphe roundabout; quasi-circular natural structures include certain volcano calderas and impact craters. Since a circle is but a special case of an ellipse, a natural extension of the activity involves making similar measurements of perimeter P, semi-major axis a, and semi-minor axis b of a visible elliptical structure (such as one of the thousands of elliptical Carolina bays, enigmatic depressions on the Atlantic Coast of North America) and solving for pi using Ramanujan's first approximation for the dependence of the perimeter of an ellipse on a and b. PITS exercises can be adapted to a wide range of student ages and teaching goals. For instance, K-6 students could measure C and D of the huge irrigation circles near Circle, Texas, to discover pi in the same way they might infer pi from measurements of coffee-can lids in math class. Middle school and high school students could move beyond man-made circles to consider the near-circularity of certain volcano calderas and impact craters in earth science units, make measurements for Olympus Mons on Mars or Crater Kepler on the moon in astronomy units, or search for circularity among Arctic thermokarst lakes as an introduction to climate change in tundra environments in environmental science units; such studies might ignite student curiosity about planetary processes. High school students of analytic geometry could examine several elliptical Carolina bays and calculate not only values of pi (as noted above) but also determine the

  17. Dark Sky Protection and Education - Izera Dark Sky Park

    NASA Astrophysics Data System (ADS)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  18. Night sky luminance under clear sky conditions: Theory vs. experiment

    NASA Astrophysics Data System (ADS)

    Kocifaj, Miroslav

    2014-05-01

    Sky glow is caused by both natural phenomena and factors of anthropogenic origin, and of the latter ground-based light sources are the most important contributors for they emit the spatially linked spectral radiant intensity distribution of artificial light sources, which are further modulated by local atmospheric optics and perceived as the diffuse light of a night sky. In other words, sky glow is closely related to a city's shape and pattern of luminaire distribution, in practical effect an almost arbitrary deployment of random orientation of heterogeneous electrical light sources. Thus the luminance gradation function measured in a suburban zone or near the edges of a city is linked to the City Pattern or vice versa. It is shown that clear sky luminance/radiance data recorded in an urban area can be used to retrieve the bulk luminous/radiant intensity distribution if some a-priori information on atmospheric aerosols is available. For instance, the single scattering albedo of aerosol particles is required under low turbidity conditions, as demonstrated on a targeted experiment in the city of Frýdek-Mistek. One of the main advantages of the retrieval method presented in this paper is that the single scattering approximation is satisfactorily accurate in characterizing the light field near the ground because the dominant contribution to the sky glow has originated from beams propagated along short optical paths.

  19. The Transient Radio Sky

    NASA Astrophysics Data System (ADS)

    Keane, E. F.

    2010-11-01

    The high time-resolution radio sky represents unexplored astronomical territory where the discovery potential is high. In this thesis I have studied the transient radio sky, focusing on millisecond scales. As such, this work is concerned primarily with neutron stars, the mostpopulous member of the radio transient parameter space. In particular, I have studied the well known radio pulsars and the recently identified group of neutron stars which show erratic radio emission, known as RRATs, which show radio bursts every few minutes to every few hours. When RRATs burst onto the scene in 2006, it was thought that they represented a previously unknown, distinct class of sporadically emitting sources. The difficulty in their identification implies a large underlying population, perhaps larger than the radio pulsars. The first question investigated in this thesis was whether the large projected population of RRATs posed a problem, i.e. could the observed supernova rate account for so many sources. In addition to pulsars and RRATs, the various other known neutron star manifestations were considered, leading to the conclusion that distinct populations would result in a `birthrate problem'. Evolution between the classes could solve this problem -- the RRATs are not a distinct population ofneutron stars.Alternatively, perhaps the large projected population of RRATs is an overestimate. To obtain an improved estimate, the best approach is to find more sources. The Parkes Multi-beam Pulsar Survey, wherein the RRATs were initially identified, offered an opportunity to do just this. Abouthalf of the RRATs showing bursts during the survey were thought to have been missed, due to the deleterious effects of impulsive terrestrial interference signals. To remove these unwanted signals, so that we could identify the previously shrouded RRATs, we developed newinterference mitigation software and processing techniques. Having done this, the survey was completely re-processed, resulting in

  20. Exmoor - Europe's first International Dark Sky Reserve

    NASA Astrophysics Data System (ADS)

    Owens, S.

    2011-12-01

    On 2011 October 9 Exmoor National Park in the southwest of England was designated as Europe's first International Dark Sky Reserve by the International Dark Skies Association. This is a huge achievement, and follows three years of work by park authorities, local astronomers, lighting engineers and the resident community. Exmoor Dark Sky Reserve follows in the footsteps of Galloway Forest Dark Sky Park, set up in 2009, and Sark Dark Sky Island, established in January 2011.

  1. Hemispherical sky simulator for daylighting model studies

    NASA Astrophysics Data System (ADS)

    Selkowitz, S.

    1981-07-01

    The design of a 24 foot diameter hemispherical sky simulator is described. A facility in which large models is tested, which is suitable for research, teaching, and design which could provide a uniform sky, an overcast sky, and several clear sky luminance distributions, as well as accommodating an artificial sun was produced. Initial operating experience with the facility is described, the sky simulator capabilities are reviewed, and its strengths and weaknesses relative to outdoor modelling tests are discussed.

  2. Dark Skies are a Universal Resource. So are Quiet Skies!

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  3. Dark Skies Rangers - Fighting light pollution and simulating dark skies

    NASA Astrophysics Data System (ADS)

    Doran, Rosa; Correia, Nelson; Guerra, Rita; Costa, Ana

    2015-03-01

    Dark Skies Rangers is an awareness program aimed at students of all ages to stimulate them to make an audit of light pollution in their school/district. The young light pollution fighters evaluate the level of light pollution, how much energy is being wasted, and produce a report to be delivered to the local authorities. They are also advised to promote a light pollution awareness campaign to the local community targeting not only the dark skies but also other implications such as effects in our health, to the flora and fauna, etc.

  4. LSST Site: Sky Brightness Data

    NASA Astrophysics Data System (ADS)

    Burke, Jamison; Claver, Charles

    2015-01-01

    The Large Synoptic Survey Telescope (LSST) is an upcoming robotic survey telescope. At the telescope site on Cerro Pachon in Chile there are currently three photodiodes and a Canon camera with a fisheye lens, and both the photodiodes and Canon monitor the night sky continuously. The NIST-calibrated photodiodes directly measure the flux from the sky, and the sky brightness can also be obtained from the Canon images via digital aperture photometry. Organizing and combining the two data sets gives nightly information of the development of sky brightness across a swath of the electromagnetic spectrum, from blue to near infrared light, and this is useful for accurately predicting the performance of the LSST. It also provides data for models of moonlight and twilight sky brightness. Code to accomplish this organization and combination was successfully written in Python, but due to the backlog of data not all of the nights were processed by the end of the summer.Burke was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  5. Atlas Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are the Anti-Atlas Mountains, part of the Atlas Mountain range in southern Morocco, Africa. The region contains some of the world's largest and most diverse mineral resources, most of which are still untouched. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on June 22, 2001. This is a false-color composite image made using shortwave infrared, infrared, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch.

  6. Sky subtraction with fiber spectrographs

    NASA Astrophysics Data System (ADS)

    Lissandrini, C.; Cristiani, S.; La Franca, F.

    1994-11-01

    The sky-subtraction performance of multifiber spectrographs is discussed, analyzing in detail the case of the OPTOPUS system at the 3.6-m European Space Observatory (ESO) telescope at La Silla. A standard technique, based on flat fields obtained with a uniformly illuminated screen on the dome, provides poor results. A new method has been developed, using the (O I) emission line at 5577 A as a calibrator of the fiber transmittance, taking into account the diffuse light and the influence of each fiber on the adjacent ones, and correcting for the effects of the image distortions on the sky sampling. In this way the accuracy of the sky subtraction improves from 2%-8% to 1.3%-1.6%.

  7. Dark sky enters the lexicon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    “Basketbrawl,” “cloud music,” “humblebrag,” and “occupy Wall Street.” These are some of the catchwords and phrases that lexicographer Grant Barrett included in a year-end newspaper column, “Which words will live on?,” in the New York Times on 31 December 2011. Among the couple dozen examples of new language was “dark sky.” Barrett wrote that it “designates a place free of nighttime light pollution. For example, the island of Sark in the English Channel is a dark-sky island.”

  8. The solan digital sky suvey

    SciTech Connect

    Nash, T.

    1996-01-01

    A description is provided for the planned Sloan Digital Sky Survey (SDSS) designed to replace and supplement the Palomar Sky Survey used broadly in cosmology for the past four decades. The SDSS will employ CCD detectors to achieve orders of magnitude increases sensitivity over photographic plates used in the Palomar survey. Described herein are plans for and expected results to be gained from the survey. Detailed descriptions of the design and construction of the SDSS Telescope at Apache Point Observatory, NM. and the spectrographs to be used are also provided.

  9. Red Sky with Red Mesa

    ScienceCinema

    None

    2016-07-12

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  10. Red Sky with Red Mesa

    SciTech Connect

    2011-04-14

    The Red Sky/Red Mesa supercomputing platform dramatically reduces the time required to simulate complex fuel models, from 4-6 months to just 4 weeks, allowing researchers to accelerate the pace at which they can address these complex problems. Its speed also reduces the need for laboratory and field testing, allowing for energy reduction far beyond data center walls.

  11. Color of the Night Sky

    NASA Astrophysics Data System (ADS)

    Walker, G.

    2013-12-01

    (Abstract only) The author presents the results of all-night monitoring of the sky brightness in BVRI filters. The measuring equipment used was Unihendron SQM's and knightware software. Results from four observatories are presented, along with implications of twilight flats.

  12. The "All Sky Camera Network"

    ERIC Educational Resources Information Center

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites. Meteorites have great…

  13. Digital Sky Surveys from the Ground: Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Shanks, T.

    I first review the status of Digital Sky Surveys. The focus will be on extragalactic surveys with an area of more than 100 deg2. The Sloan Digital Sky Survey is the archetype of such imaging surveys and it is its great success that has prompted great activity in this field. The latest surveys explore wider, fainter and higher resolution and also a longer wavelength range than SDSS. Many of these surveys overlap particularly in the S Hemisphere where we now have Pan-STARRS, DES and the ESO VST surveys, and our aim here is to compare their properties. Since there is no dedicated article on the VST ATLAS in this symposium, we shall especially review the properties of this particular survey. This easily fits onto our other main focus which is to compare overlapping Southern Surveys and see how they best fit with the available NIR imaging data. We conclude that the Southern Hemisphere will soon overtake the North in terms of multiwavelength imaging. However we note that the South has more limited opportunities for spectroscopic follow-up and this weakness will persist during the LSST era. Some new perspectives are offered on this and other aspects of survey astronomy.

  14. Eyeing the Sky's Water Vapor

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, and many like it, are one way NASA's Phoenix Mars Lander is measuring trace amounts of water vapor in the atmosphere over far-northern Mars. Phoenix's Surface Stereo Imager (SSI) uses solar filters, or filters designed to image the sun, to make these images. The camera is aimed at the sky for long exposures.

    SSI took this image as a test on June 9, 2008, which was the Phoenix mission's 15th Martian day, or sol, since landing, at 5:20 p.m. local solar time. The camera was pointed about 38 degrees above the horizon. The white dots in the sky are detector dark current that will be removed during image processing and analysis.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space

  15. Simplified night sky display system

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P. (Inventor)

    2008-01-01

    A portable structure, simply constructed with inexpensive and generally lightweight materials, for displaying a selected portion of the night sky and selected planets, satellites, comets and other astronomically observable objects that are visually perceptible within that portion of the night sky. The structure includes a computer having stored signals representing the observable objects, an image projector that converts and projects the stored signals as visually perceptible images, a first curvilinear light-reflecting surface to receive and reflect the visually perceptible images, and a second curvilinear surface to receive and display the visually perceptible images reflected from the first surface. The images may be motionless or may move with passage of time. In one embodiment, the structure includes an inflatable screen surface that receives gas in an enclosed volume, supports itself without further mechanical support, and optionally self-regulates pressure of the received gas within the enclosed volume.

  16. The Citizen Sky Planetarium Trailer

    NASA Astrophysics Data System (ADS)

    Turner, R.; Price, A.; Wyatt, R.

    2012-06-01

    (Abstract only) Citizen Sky is a multi-year, citizen science project focusing on the bright variable star e Aurigae. We have developed a six-minute video presentation describing eclipsing binary stars, light curves, and the Citizen Sky project. Designed like a short movie trailer, the video can be shown at planetariums before their regular, feature shows or integrated into a longer presentation. The trailer is available in a wide range of formats for viewing on laptops all the way up to state-of-the-art planetariums. The show is narrated by Timothy Ferris and was produced by the Morrison Planetarium and Visualization Studio at the California Academy of Sciences. This project has been made possible by the National Science Foundation.

  17. A New Sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  18. The Alphabet and the Sky

    NASA Astrophysics Data System (ADS)

    Lebeuf, A.

    2011-06-01

    Since the beginning of the 17th century the letters of the Greek alphabet are used to identify the stars of constellation by order of magnitude. This was simply a practical means of astronomical classification. In several instances the Bible uses such metaphors as "The sky rolled up like a scroll". The idea of associating letters of different alphabets with stars, constellations and the sky in general can be found to day in the marginal subculture. The persistence of such an association of writing with astronomy or cosmology is at least of interest for cultural reasons, but the problem might be of good interest as well for the history of astronomy and cosmology. I present here two examples of this tradition in works of art. The first a painted representation of the Revelation of Saint John in the Orthodox church tradition, and the other in the construction of the late bronze age sacred well at Santa Cristina in Sardinia, Italy.

  19. Astronomy Education Under Dark Skies

    NASA Astrophysics Data System (ADS)

    Cecylia Molenda-Zakowicz, Joanna

    2015-08-01

    We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.

  20. Explanatory Supplement to the WISE All-Sky Release Products

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) surveyed the entire sky at 3.4, 4.6, 12 and 22 microns in 2010, achieving 5-sigma point source sensitivities per band better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Data Release, conducted on March 14, 2012, incorporates all data taken during the full cryogenic mission phase, 7 January 2010 to 6 August 20l0,that were processed with improved calibrations and reduction algorithms. Release data products include: (1) an Atlas of 18,240 match-filtered, calibrated and coadded image sets; (2) a Source Catalog containing positions and four-band photometry for over 563 million objects, and (3) an Explanatory Supplement. Ancillary products include a Reject Table that contains 284 million detections that were not selected for the Source Catalog because they are low signal-to-noise ratio or spurious detections of image artifacts, an archive of over 1.5 million sets of calibrated WISE Single-exposure images, and a database of 9.4 billion source extractions from those single images, and moving object tracklets identified by the NEOWISE program (Mainzer et aI. 2011). The WISE All-Sky Data Release products supersede those from the WISE Preliminary Data Release (Cutri et al. 2011). The Explanatory Supplement to the WISE All-Sky Data Release Products is a general guide for users of the WISE data. The Supplement contains an overview of the WISE mission, facilities, and operations, a detailed description of WISE data processing algorithms, a guide to the content and formals of the image and tabular data products, and cautionary notes that describe known limitations of the All-Sky Release products. Instructions for accessing the WISE data products via the services of the NASA/IPAC Infrared Science Archive are provided. The Supplement also provides analyses of the achieved sky coverage, photometric and astrometric characteristics and completeness and reliability of the All-Sky

  1. Derivation of sky quality indicators from photometrically calibrated all-sky image mosaics

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.; Moore, Chadwick A.; Luginbuhl, Christian B.

    2015-08-01

    A large database of high resolution all-sky measurements of V-band night sky brightness at sites in U.S. National Parks and astronomical observatories is utilized to describe sky quality over a wide geographic area. Mosaics of photometrically calibrated V-band imagery are processed with a semi-automated procedure to reveal the effects of artificial sky glow through graphical presentation and numeric indicators of artificial sky brightness. Comparison with simpler methods such as the use of the Unihedron SQM and naked eye limiting magnitude reveal that areas near the horizon, which are not typically captured with single-channel measurements, contribute significantly to the indicators maximum vertical illuminance, maximum sky luminance, and average all-sky luminance. Distant sources of sky glow may represent future threats to areas of the sky nearer the zenith. Timely identification and quantification of these threats may allow mitigating strategies to be implemented.

  2. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  3. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  4. Virtual planets atlas 1.0 freeware

    NASA Astrophysics Data System (ADS)

    Legrand, C.; Chevalley, P.

    2015-10-01

    Since 2002, we develop the "Virtual Moon Atlas -http://www.ap-i.net/avl/en/start" a freeware to help Moon observing and to improve interest for Moon in general public. VMA freeware has been downloaded near 900000 times all over the world and is or has been used by several professional organizations such as Kitt Peak Observatory, National Japan Observatory, Birkbeck College / University College London (K. Joy), BBC Sky at night, several French astronomy magazines and astronomy writers (P. Harrington, S. French...) . Recommended by ESA, registered as educational software by French ministry for education, it has also yet been presented at 2006 & 2007 LPSC and PCC2 in 2011 We have declined this freeware in a new tool with the same goals, but for the telluric planets and satellites, the "Virtual Planets Atlas (VPA / http://www.ap-i.net/avp/en/start") now in version 1.0.

  5. Explorers of the Southern Sky

    NASA Astrophysics Data System (ADS)

    Haynes, Raymond; Haynes, Roslynn D.; Malin, David; McGee, Richard

    2010-08-01

    Preface; Acknowledgements; 1. Dreaming the stars; 2. Sailing south for a new sky; 3. Astronomy in Sydney town; 4. The struggle for independence; 5. A bid for fame; 6. For love of the subject; 7. Astronomy on a national basis; 8. From swords to ploughshares; 9. Radio astronomy and the big telescopes; 10. Entrepreneurs in astronomy; 11. The advantage of latitude; 12. The high-energy frontier; 13. Diversity through innovation; 14. Optical astronomy goes high tech; 15. A telescope as wide as a continent; Glossary of abbreviations; Glossary of scientific and technical words; Bibliography; Index of names and dates; Subject index.

  6. MSDS sky reference and preamplifier study

    NASA Technical Reports Server (NTRS)

    Larsen, L.; Stewart, S.; Lambeck, P.

    1974-01-01

    The major goals in re-designing the Multispectral Scanner and Data System (MSDS) sky reference are: (1) to remove the sun-elevation angle and aircraft-attitude angle dependence from the solar-sky illumination measurement, and (2) to obtain data on the optical state of the atmosphere. The present sky reference is dependent on solar elevation and provides essentially no information on important atmospheric parameters. Two sky reference designs were tested. One system is built around a hyperbolic mirror and the reflection approach. A second approach to a sky reference utilizes a fish-eye lens to obtain a 180 deg field of view. A detailed re-design of the present sky reference around the fish-eye approach, even with its limitations, is recommended for the MSDS system. A preamplifier study was undertaken to find ways of improving the noise-equivalent reflectance by reducing the noise level for silicon detector channels on the MSDS.

  7. Nightscape Photography Reclaims the Natural Sky

    NASA Astrophysics Data System (ADS)

    Tafreshi, Babak

    2015-08-01

    Nightscape photos and timelapse videos, where the Earth & sky are framed together with an astronomical purpose, support the dark skies activities by improving public awareness. TWAN or The World at Night program (www.twanight.org) presents the world's best collection of such landscape astrophotos and aims to introduce the night sky as a part of nature, an essential element of our living environment besides being the astronomers lab. The nightscape images also present views of our civilizations landmarks, both natural and historic sites, against the night-time backdrop of stars, planets, and celestial events. In this context TWAN is a bridge between art, science and culture.TWAN images contribute to programs such as the Dark Sky Parks by the International Dark Sky Association or Starlight reserves by assisting local efforts in better illustrating their dark skies and by producing stunning images that not only educate the local people on their night sky heritage also communicate with the governments that are responsible to support the dark sky area.Since 2009 TWAN organizes the world's largest annual photo contest on nightscape imaging, in collaboration with the Dark Skies Awareness, National Optical Astronomy Observatory, and Astronomers Without Borders. The International Earth & Sky Photo Contest promotes the photography that documents the beauty of natural skies against the problem of light pollution. In 2014 the entries received from about 50 countries and the contest result news was widely published in the most popular sources internationally.*Babak A. Tafreshi is a photographer and science communicator. He is the creator of The World At Night program, and a contributing photographer to the National Geographic, Sky&Telescope magazine, and the European Southern Observatory. http://twanight.org/tafreshi

  8. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  9. ATLAS detection of the bright, fast rising supernova candidate AT2016gkg in NGC 613

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-09-01

    ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa (see Tonry et al. ATel #8680). The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  10. For Spacious Skies: A Teacher's Guide. An Interdisciplinary Approach to the Sky.

    ERIC Educational Resources Information Center

    For Spacious Skies, Inc., Lexington, MA.

    Despite the fact that the sky is the most dominant feature of our surroundings, it plays the role of an unseen background for many objects. It is the intent of this guide to bring about an awareness of the sky to young people. Topics for activities include: (1) "Sky Awareness"; (2) "Compass"; (3) "Hand Lens"; (4) "Prism"; (5) "Binoculars"; (6)…

  11. For Spacious Skies Activity Guide. An Interdisciplinary Approach to the Sky.

    ERIC Educational Resources Information Center

    Ward, C. Whitney; Borden, Jack

    Despite the fact that the sky is the most dominant feature of our surroundings, it plays the role of an unseen background for may objects. It is the intent of this guide to bring about an awareness of the sky to young people. Topics for activities include: (1) "Sky Awareness"; (2) "Compass"; (3) "Hand Lens"; (4) "Prism"; (5) "Binoculars"; (6)…

  12. Exploring the Dynamic Radio Sky

    NASA Astrophysics Data System (ADS)

    Mooley, Kunal P.; Hallinan, Gregg; Frail, Dale A.; Myers, Steven T.; Kulkarni, Shrinivas R.; Bourke, Stephen; Horesh, Assaf

    2015-01-01

    Most of what is currently known about slow radio transients (supernovae, gamma-ray bursts, tidal disruption events, stellar flares, etc.) has come via radio follow-up of objects identified by synoptic telescopes at optical, X-ray or gamma-ray wavelengths. However, with the ability to capture obscured, unbeamed and magnetically-driven phenomena, radio surveys offer unique discovery strong diagnostic for cosmic transients. For the first time, we are systematically exploring the dynamic radio sky on timescales between one day to several years using multi-epoch large surveys with the Karl G. Jansky Array (VLA). We have carried out surveys in the COSMOS deep field as well as wide fields like Stripe 82. I have developed a unique infrastructure for near-real-time calibration, imaging, transient search, transient vetting, rapid multiwavelength follow-up, and contemporaneous optical surveys to better characterize radio transient phenomena. A large part of my thesis includes the commissioning of a new observing mode at the VLA: On-The-Fly Mosaicking. This mode has significantly improved the survey efficiency of the VLA, and it is a driver for VLASS, the future all-sky survey planned with this telescope. Through our radio surveys we have discovered several fascinating transients that are unique to the radio. These surveys have established the VLA as an efficient transient discovery machine. My thesis has enormous implications for how to design efficient transient surveys for the next generation of radio interferometer facilities like ASKAP, MeerKAT, WSRT/Apertif and LOFAR. My work has also provided answers to key problems such as the rates of transients, demographics of variability of radio sources including AGN, and false-positive foreground for future searches for the radio counterparts of gravitational-wave (GW) sources.

  13. Photometric indicators of visual night sky quality derived from all-sky brightness maps

    NASA Astrophysics Data System (ADS)

    Duriscoe, Dan M.

    2016-09-01

    Wide angle or fisheye cameras provide a high resolution record of artificial sky glow, which results from the scattering of escaped anthropogenic light by the atmosphere, over the sky vault in the moonless nocturnal environment. Analysis of this record yields important indicators of the extent and severity of light pollution. The following indicators were derived through numerical analysis of all-sky brightness maps: zenithal, average all-sky, median, brightest, and darkest sky brightness. In addition, horizontal and vertical illuminance, resulting from sky brightness were computed. A natural reference condition to which the anthropogenic component may be compared is proposed for each indicator, based upon an iterative analysis of a high resolution natural sky model. All-sky brightness data, calibrated in the V band by photometry of standard stars and converted to luminance, from 406 separate data sets were included in an exploratory analysis. Of these, six locations representing a wide range of severity of impact from artificial sky brightness were selected as examples and examined in detail. All-sky average brightness is the most unbiased indicator of impact to the environment, and is more sensitive and accurate in areas of slight to moderate light pollution impact than zenith brightness. Maximum vertical illuminance provides an excellent indicator of impacts to wilderness character, as does measures of the brightest portions of the sky. Zenith brightness, the workhorse of field campaigns, is compared to the other indicators and found to correlate well with horizontal illuminance, especially at relatively bright sites. The median sky brightness describes a brightness threshold for the upper half of the sky, of importance to telescopic optical astronomy. Numeric indicators, in concert with all-sky brightness maps, provide a complete assessment of visual sky quality at a site.

  14. SkyMapper Early Data Release

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Onken, Christopher; Schmidt, Brian; Bessell, Michael; Da Costa, Gary; Luvaul, Lance; Mackey, Dougal; Murphy, Simon; White, Marc; SkyMapper Team

    2016-05-01

    The SkyMapper Early Data Release (EDR) is the initial data release from the SkyMapper Southern Survey, which aims to create a deep, multi-epoch, multi-band photometric data set for the entire southern sky. EDR covers approximately 6700 sq. deg. (one-third) of the southern sky as obtained by the Short Survey component of the project. All included fields have at least two visits in good conditions in all six SkyMapper filters (uvgriz). Object catalogues are complete to magnitude 17-18, depending on filter. IVOA-complaint table access protocol (TAP), cone search and simple image access protocol (SIAP) services are available from the SkyMapper website (http://skymapper.anu.edu.au/), as well as through tools such as TOPCAT. Data are restricted to Australian astronomers and their collaborators for twelve months from the release date. Further details on the reduction of SkyMapper data, along with data quality improvements, will be released in late 2016 as part of SkyMapper Data Release 1 (DR1).

  15. Bright Meteor Lights Up Atlanta Skies

    NASA Video Gallery

    This video shows a very bright meteor that streaked over the skies of Atlanta, Ga., on the night of Aug. 28, 2011. The view is from an all sky camera in Cartersville, Ga., operated by NASA’s Mars...

  16. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  17. The AGN Content of the Micron all Sky Survey

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.

    2000-01-01

    The Two Micron All Sky Survey (2MASS) began routine operations from its northern facility on Mt. Hopkins, AZ in June of 1997, and from its southern facility on Cerro Tololo, Chile in March of 1998. At each site, highly automated 1.3 m telescopes equipped with identical 3-channel cameras, are systematically imaging the sky in three near infrared wavelength bands, J (1.25 um), H (1.65 um) and K-s (2.17 um). The Survey will ultimately produce an Image Atlas containing nearly two million 512 x 1024 pixel images (1 arcsec/pix) in the three colors, a highly complete and reliable catalog containing approx. 300 million point sources having SNR greater than 10 photometry at J less or = 15.8, H less or = 15.1 and K-s less or = 14.3 mag. and an astrometric accuracy greater than 0.511 RMS, and a catalog of 1-2 million resolved sources, primarily galaxies, having SNR greater than 10 photometric accuracy at J less than or = 15.5, H less than or = 14.8 and K-s less than or = 13.5 mag. The 2MASS Sampler, an introductory set of data, was released to the community in December of 1998 (see http://www.ipac.caltech.edu/2mass/). We review the near IR and optical/IR properties of "conventional" QSOs from UV and optical samples, and estimate the number that will be detected by 2MASS. We also discuss 2MASS's ability to test for for new populations of extremely red AGN that have been missed by UV and Visual surveys, as suggested by from IRAS and radio studies. Results of spectroscopic follow-up of 2MASS-selected new AGN candidates will also be presented.

  18. Report to users of ATLAS

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web.

  19. Charting the trajectory of the ATLAS stream

    NASA Astrophysics Data System (ADS)

    de Boer, Thomas; Belokurov, Vasily; Koposov, Sergey; Irwin, Mike; Erkal, Denis

    2014-08-01

    Stellar streams provide dramatic confirmation that large systems accrete smaller systems, in the context of a hierarchical merging cosmology, and therefore contain important clues about the formation mechanism of the Galactic halo. By studying the detailed properties of streams we can determine how stars are stripped from their hosts due to the Galactic tidal field and how the formation of the Galactic halo may have proceeded. Here we propose to trace the full visible extent of the recently discovered ATLAS stream using deep, wide-field photometry, to determine its path across the sky in 3 dimensions. By utilising the very wide-field capabilities of DECam, we will determine the deep, MW decontaminated CMD in a 30 degree long portion of the stream, allowing us to determine the distance, density profile and stellar population makeup of the stream. The position and density on the sky of kinematically cold structures like the ATLAS stream provides powerful, unbiased constraints on the distribution of dark matter in the Galaxy. Furthermore, deep photometry of the stellar content of the stream will tell us what type of system was the likely progenitor: globular cluster, ultra-faint dwarf or dSph galaxy.

  20. Simulations of the Microwave Sky

    SciTech Connect

    Sehgal, Neelima; Bode, Paul; Das, Sudeep; Hernandez-Monteagudo, Carlos; Huffenberger, Kevin; Lin, Yen-Ting; Ostriker, Jeremiah P.; Trac, Hy; /Harvard-Smithsonian Ctr. Astrophys.

    2009-12-16

    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands and utilized the easily accessible HEALPix map format to make these simulations applicable to other current and near future microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster and group populations, the primordial microwave background is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the intergalactic medium has been included, and the gas prescription to model the SZ signals has been refined to match the most recent X-ray observations. The cosmology adopted in these simulations is also consistent with the WMAP 5-year parameter measurements. From these simulations we find a slope for the Y{sub 200} - M{sub 200} relation that is only slightly steeper than self-similar, with an intrinsic scatter in the relation of {approx} 14%. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14}M{sub {circle_dot}} and z < 0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared

  1. The NRAO VLA Sky Survey

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Cotton, W. D.; Greisen, E. W.; Yin, Q. F.; Perley, R. A.; Broderick, J. J.

    1996-03-01

    Observations for the 1.4 GHz NRAO VLA Sky Survey (NVSS) began in 1993 September and should cover the sky north of -40 deg declination (82% of the celestial sphere) before the end of 1996. The principal data products will be: (1) A set of 2326 continuum map "cubes," each covering 4 deg X 4 deg with three planes containing Stokes I, Q, and U images. These maps were made with a relatively large restoring beam (45 arcsec FWHM) to yield the high surface-brightness sensitivity needed for completeness and photometric accuracy. Their rms brightness fluctuations are about 0.45 mJy/beam = 0.14 K (Stokes I) and 0.29 mJy/beam = 0.09 K (Stokes Q and U). The rms uncertainties in right ascension and declination vary from 0.3 arcsec for strong (S > 30 mJy) point sources to 5 arcsec for the faintest (S = 2.5 mJy) detectable sources. (2) Lists of discrete sources. (3) Processed (u,v) data sets. Every large map was constructed from more than 100 smaller "snapshot" maps. All of the edited and calibrated single-source (u,v) data sets used to make the snapshot maps contributing to each large map have been combined into a single multisource (u,v) file for users who want to investigate the data underlying the large maps. The NVSS is being made as a service to the astronomical community, and the principal data products are being released into a directory accessible by anonymous FTP (nvss.cv.nrao.edu) as soon as they are produced and verified. To ensure equal access for everyone, the NVSS team members have agreed to use only these electronically released results for their own research. Users should read the postscript file "paper.ps" containing a detailed description of the NVSS. Unprocessed data are available on request. If you have any questions, comments, or special requests, please contact Jim Condon by email at Internet address "jcondon@nrao.edu" or by telephone at (804) 296-0322.

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  3. SIMULATIONS OF THE MICROWAVE SKY

    SciTech Connect

    Sehgal, Neelima; Bode, Paul; Das, Sudeep; Ostriker, Jeremiah P.; Hernandez-Monteagudo, Carlos; Huffenberger, Kevin; Lin, Yen-Ting; Trac, Hy

    2010-02-01

    We create realistic, full-sky, half-arcminute resolution simulations of the microwave sky matched to the most recent astrophysical observations. The primary purpose of these simulations is to test the data reduction pipeline for the Atacama Cosmology Telescope (ACT) experiment; however, we have widened the frequency coverage beyond the ACT bands and utilized the easily accessible HEALPix map format to make these simulations applicable to other current and near future microwave background experiments. Some of the novel features of these simulations are that the radio and infrared galaxy populations are correlated with the galaxy cluster and group populations, the primordial microwave background is lensed by the dark matter structure in the simulation via a ray-tracing code, the contribution to the thermal and kinetic Sunyaev-Zel'dovich (SZ) signals from galaxy clusters, groups, and the intergalactic medium has been included, and the gas prescription to model the SZ signals has been refined to match the most recent X-ray observations. The cosmology adopted in these simulations is also consistent with the WMAP 5-year parameter measurements. From these simulations we find a slope for the Y{sub 200}-M{sub 200} relation that is only slightly steeper than self-similar, with an intrinsic scatter in the relation of approx14%. Regarding the contamination of cluster SZ flux by radio galaxies, we find for 148 GHz (90 GHz) only 3% (4%) of halos have their SZ decrements contaminated at a level of 20% or more. We find the contamination levels higher for infrared galaxies. However, at 90 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14} M{sub sun} and z < 1.2 have their SZ decrements filled in at a level of 20% or more. At 148 GHz, less than 20% of clusters with M{sub 200} > 2.5 x 10{sup 14} M{sub sun} and z < 0.8 have their SZ decrements filled in at a level of 50% or larger. Our models also suggest that a population of very high flux infrared galaxies, which are

  4. ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F- TEXAS RING OF TWELVE - Dyess Air Force Base, Atlas F Missle Site S-8, Approximately 3 miles east of Winters, 500 feet southwest of Highway 177, Winters, Runnels County, TX

  5. The Sky Brightness Data Archive (SBDA)

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Erin M.; Craine, Brian L.

    2011-05-01

    Although many astronomers have long been sensitive to issues of light pollution and deteriorating sky quality it is only in recent years that such interest has extended to other groups including, among others, ecologists, health professionals, and urban planners. Issues of light pollution and loss of dark skies are starting to appear in the scientific literature in the context of health and behavior impacts on both human and animal life. Nonetheless, a common deficiency in most such studies is the absence of historical or baseline data against which to compare sky brightness trends and temporal changes. To address this deficiency we have begun to collect a variety of types of quantitative sky brightness data for insertion in an international sky brightness archive that can be accessed for research projects which are dependent upon an understanding of the nature of local light pollution issues. To aid this process we have developed a mobile sky brightness meter which automatically logs sky brightness and observation location. The device can be stationary for long periods of time or can be easily transported for continuous sky brightness measurement from ground vehicles, boats, or aircraft. The sampling rate is typically about 0.25Hz. We present here examples of different modes of sky brightness measurement, various means of displaying and analyzing such data, ways to interpret natural astronomical phenomena apparent in the data, and suggest a number of complementary scientific projects that may capture the interest of both professional and amateur scientists. Finally, we discuss the status of the archive and ways that potential contributors may submit their observations for publication in the archive.

  6. NASA Science Engagement Through "Sky Art"

    NASA Astrophysics Data System (ADS)

    Bethea, K. L.; Damadeo, K.

    2013-12-01

    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  7. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  8. The Night Sky on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. This time-lapse composite, acquired the evening of Spirit's martian sol 590 (Aug. 30, 2005) from a perch atop 'Husband Hill' in Gusev Crater, shows Phobos, the brighter moon, on the left, and Deimos, the dimmer moon, on the right. In this sequence of images obtained every 170 seconds, both moons move from top to bottom. The bright star Aldebaran forms a trail on the right, along with some other stars in the constellation Taurus. Most of the other streaks in the image mark the collision of cosmic rays with pixels in the camera.

    Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the six images that make up this composite using Spirit's panoramic camera with the camera's broadband filter, which was designed specifically for acquiring images under low-light conditions.

  9. Teaching Chemistry Using October Sky

    NASA Astrophysics Data System (ADS)

    Goll, James G.; Wilkinson, Lindsay J.; Snell, Dolores M.

    2009-02-01

    The first artificial satellite, Sputnik, was launched over fifty years ago, on October 4, 1957, marking the beginning of the space age. The launch of Sputnik inspired coal miners’ sons in Coalwood, West Virginia, to form a rocket research program. The story of these coal miners’ sons was told by Homer Hickham, Jr., in the book Rocket Boys: A Memoir, and later in the movie adaptation October Sky. Both the book and the movie show the importance of mentoring from a teacher, Frieda Riley, who encouraged the Rocket Boys in their endeavors. The story of the Rocket Boys can be used in science classrooms as a means to teach the scientific process and to create what is termed in both the book and movie as a body of knowledge. Several chemical principles important in the development of rocket propellant systems were depicted in the book and movie. These propellant systems are comparable to those used for the solid rocket boosters used to launch the space shuttles. The use of popular media in the classroom can engage and inspire students and teachers alike.

  10. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  12. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement

  13. Teachable Fiction Comes to Yellow Sky.

    ERIC Educational Resources Information Center

    Tietz, Stephen

    2001-01-01

    Proposes that teachable fiction is efficient, strategically sound, and very visual. Analyzes Stephen Crane's "The Bride Comes to Yellow Sky" to show it fulfills these three characteristics. Suggests the story should be taught later in the semester. (PM)

  14. Sky cover from MFRSR observations: cumulus clouds

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Barnard, J.; Berg, L. K.; Flynn, C.; Long, C. N.

    2011-01-01

    The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  15. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

  16. The Mythology of the Night Sky

    NASA Astrophysics Data System (ADS)

    Falkner, David E.

    The word "planet" comes from the Latin word planeta and the Greek word planes, which means "wanderer." When the ancient Greeks studied the night sky they noticed that most of the stars remained in the same position relative to all the other stars, but a few stars seem to move in the sky from day to day, week to week, and month to month. The Greeks called these rogue stars "wanderers" because they wandered through the starry background.

  17. Correcting for Circumsolar and Near-Horizon Errors in Sky Cover Retrievals from Sky Images

    SciTech Connect

    Long, Charles N.

    2010-03-31

    Fractional sky cover amounts retrieved from sky imagery are overestimated significantly at times due to occurrences of “whitening” near the sun, and near the horizon for low sun, in the images. This phenomenon occurs due to forward scattering of visible light by aerosols and haze, and the intensity range limitations of the detectors of the cameras used to record the sky images. Our results suggest that when the problem occurs, the magnitude of the overestimate is typically on the order of about 10% to 20% fractional sky cover. To help alleviate this problem, a statistical analysis of the time series of the areas in the image near the sun position and along the horizon centered on the solar azimuth angle has been developed. This statistical analysis requires that images be captured frequently, at least once per minute. For times when the overestimation is detected as occurring, a correction is applied to the retrieved sky cover amounts. When the sky cover amount correction is applied, analysis indicates that the result better matches the actual sky conditions present, as noted by visual inspection of the sky images in question. In addition, frequency-of-occurrence histogram comparisons show that the adjusted results improve the agreement with other methodologies and expectations. Thus, the methodology presented here helps produce more accurate fractional sky cover retrievals.

  18. Protecting the Local Dark-Sky Areas around the International Observatories in Chile.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.

    2001-12-01

    This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.

  19. Source Catalog Data from FIRST (Faint Images of the Radio Sky at Twenty-Centimeters)

    DOE Data Explorer

    Becker, Robert H.; Helfand, David J.; White, Richard L.; Gregg, Michael D.; Laurent-Muehleisen, Sally A.

    FIRST, Faint Images of the Radio Sky at Twenty-Centimeters, is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North Galactic Cap. Using the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) in its B-configuration, the Survey acquired 3-minute snapshots covering a hexagonal grid using 2?7 3-MHz frequency channels centered at 1365 and 1435 MHz. The data were edited, self-calibrated, mapped, and CLEANed using an automated pipeline based largely on routines in the Astronomical Image Processing System (AIPS). A final atlas of maps is produced by coadding the twelve images adjacent to each pointing center. Source catalogs with flux densities and size information are generated from the coadded images also. The 2011 catalog is the latest version and has been tested to ensure reliability and completness. The catalog, generated from the 1993 through 2004 images, contains 816,000 sources and covers more than 9000 square degrees. A specialized search interface for the catalog resides at this website, and the catalog is also available as a compressed ASCII file. The user may also view earlier versions of the source catalog. The FIRST survey area was chosen to coincide with that of the Sloan Digital Sky Survey (SDSS); at the m(v)~24 limit of SDSS, ~50% of the optical counterparts to FIRST sources will be detected.

  20. Frequency of College Students' Night-Sky Watching Behaviors

    ERIC Educational Resources Information Center

    Kelly, William E.; Kelly, Kathryn E.; Batey, Jason

    2006-01-01

    College students (N = 112) completed the Noctcaelador Inventory, a measure of psychological attachment to the night-sky, and estimated various night-sky watching related activities: frequency and duration of night-sky watching, astro-tourism, ownership of night-sky viewing equipment, and attendance of observatories or planetariums. The results…

  1. Educating for the Preservation of Dark Skies

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Cianciolo, Frank; Wetzel, Marc; Finkelstein, Keely; Wren, William; Nance, Craig

    2015-08-01

    The stars at night really are big and bright deep in the heart of Texas at the McDonald Observatory near Fort Davis, Texas. Each year 80,000 visitors from all over the world make the pilgrimage to the Observatory to attend one of the three-times-a-week star parties. Many experience, for the first time, the humbling, splendor of a truly dark night sky. Over the last several years, the Observatory has experienced dramatic increases in visitation demonstrating the public’s appetite for science education, in general, and interest in the night sky, in particular. This increasing interest in astronomy is, ironically, occurring at a time when most of humanity’s skies are becoming increasingly light-polluted frustrating this natural interest. Dark skies and knowledgeable education and outreach staff are an important resource in maintaining the public’s interest in astronomy, support for astronomical research, and local tourism.This year Observatory educators were inspired by the observance of the International Year of Light to promote healthy outdoor lighting through its popular Astronomy Day distance learning program. This program reaches tens of thousands of K-12 students in Texas and other states with a message of how they can take action to preserve dark skies. As well, more than a thousand Boy Scouts visiting during the summer months receive a special program, which includes activities focusing on good lighting practices, thereby earning them credits toward an astronomy badge.The Observatory also offers a half-a-dozen K-12 teacher professional development workshops onsite each year, which provide about 90 teachers with dark skies information, best-practice lighting demonstrations, and red flashlights. Multi-year workshops for National Park and State of Texas Parks personnel are offered on dark sky preservation and sky interpretation at McDonald and a Dark Skies fund for retrofitting lights in the surrounding area has been established. The Observatory also uses

  2. Roses in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-11-01

    The two best known satellite galaxies of the Milky Way, the Magellanic Clouds, are located in the southern sky at a distance of about 170,000 light-years. They host many giant nebular complexes with very hot and luminous stars whose intense ultraviolet radiation causes the surrounding interstellar gas to glow. The intricate and colourful nebulae are produced by ionised gas [1] that shines as electrons and positively charged atomic nuclei recombine, emitting a cascade of photons at well defined wavelengths. Such nebulae are called "H II regions", signifying ionised hydrogen, i.e. hydrogen atoms that have lost one electron (protons). Their spectra are characterized by emission lines whose relative intensities carry useful information about the composition of the emitting gas, its temperature, as well as the mechanisms that cause the ionisation. Since the wavelengths of these spectral lines correspond to different colours, these alone are already very informative about the physical conditions of the gas. N44 [2] in the Large Magellanic Cloud is a spectacular example of such a giant H II region. Having observed it in 1999 (see ESO PR Photos 26a-d/99), a team of European astronomers [3] again used the Wide-Field-Imager (WFI) at the MPG/ESO 2.2-m telescope of the La Silla Observatory, pointing this 67-million pixel digital camera to the same sky region in order to provide another striking - and scientifically extremely rich - image of this complex of nebulae. With a size of roughly 1,000 light-years, the peculiar shape of N44 clearly outlines a ring that includes a bright stellar association of about 40 very luminous and bluish stars. These stars are the origin of powerful "stellar winds" that blow away the surrounding gas, piling it up and creating gigantic interstellar bubbles. Such massive stars end their lives as exploding supernovae that expel their outer layers at high speeds, typically about 10,000 km/sec. It is quite likely that some supernovae have already

  3. Dark Skies are a Universal Resource: IYA Programs on Dark Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Bueter, C.; Pompea, S. M.; Berglund, K.; Mann, T.; Gay, P.; Crelin, B.; Collins, D.; Sparks, R.

    2008-05-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also health, ecology, safety, economics and energy conservation. Because of its relevance, "Dark Skies” is a theme of the US Node for the International Year of Astronomy (IYA). Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, the ASP session will immerse participants in hands-on, minds-on activities, events and resources on dark skies awareness. These include a planetarium show on DVD, podcasting, social networking, a digital photography contest, The Great Switch Out, Earth Hour, National Dark Skies Week, a traveling exhibit, a 6-minute video tutorial, Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights, and unaided-eye and digital-meter star counting programs like GLOBE at Night. The ASP "Dark Skies” session is offered to provide IYA dark skies-related programs to a variety of attendees. Participants include professional or amateur astronomers, education and public outreach professionals, science center/museum/planetarium staff and educators who want to lead activities involving dark skies awareness in conjunction with IYA. During the session, each participant will be given a package of educational materials on the various dark skies programs. We will provide the "know-how” and the means for session attendees to become community leaders in promoting these dark skies programs as public events at their home institutions during IYA. Participants will be able to jump-start their education programs through the use of well-developed instructional materials and kits sent later if they commit to leading IYA dark skies activities. For more information about the IYA Dark Skies theme, visit http://astronomy2009.us/darkskies/.

  4. Mira Soars Through the Sky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of 'seeds' for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

    In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or 'far' ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or 'near' ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira.

    The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

    Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2).

    Mira is a highly evolved, 'red giant' star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace

  5. Mira Soars Through the Sky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    New ultraviolet images from NASA's Galaxy Evolution Explorer shows a speeding star that is leaving an enormous trail of 'seeds' for new solar systems. The star, named Mira (pronounced my-rah) after the latin word for 'wonderful,' is shedding material that will be recycled into new stars, planets and possibly even life as it hurls through our galaxy.

    In figure 1, the upper panel shows Mira's full, comet-like tail as seen only in shorter, or 'far' ultraviolet wavelengths, while the lower panel is a combined view showing both far and longer, or 'near' ultraviolet wavelengths. The close-up picture at bottom gives a better look at Mira itself, which appears as a pinkish dot, and is moving from left to right in this view. Shed material appears in light blue. The dots in the picture are stars and distant galaxies. The large blue dot on the left side of the upper panel, and the large yellow dot in the lower panel, are both stars that are closer to us than Mira.

    The Galaxy Evolution Explorer discovered the strange tail during part of its routine survey of the entire sky at ultraviolet wavelengths. When astronomers first saw the picture, they were shocked because Mira has been studied for over 400 years yet nothing like this has ever been documented before.

    Mira's comet-like tail stretches a startling 13 light-years across the sky. For comparison, the nearest star to our sun, Proxima Centauri, is only about 4 light-years away. Mira's tail also tells a tale of its history -- the material making it up has been slowly blown off over time, with the oldest material at the end of the tail being released about 30,000 years ago (figure 2).

    Mira is a highly evolved, 'red giant' star near the end of its life. Technically, it is called an asymptotic giant branch star. It is red in color and bloated; for example, if a red giant were to replace

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  7. An Innovative Collaboration on Dark Skies Education

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Mayer, M.; EPO Students, NOAO

    2011-01-01

    Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.

  8. Dark Skies: Local Success, Global Challenge

    NASA Astrophysics Data System (ADS)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  9. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  10. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    PubMed

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront. PMID:22695611

  11. Globe at Night - Sky Brightness Monitoring Network

    NASA Astrophysics Data System (ADS)

    Cheung, Sze Leung; Pun, Jason Chun Shing; SO, Chu-wing; Shibata, Yukiko; Walker, Constance Elaine; Agata, Hidehiko

    2015-08-01

    The Global at Night - Sky Brightness Monitoring Network (GaN-MN) is an international project for long-term monitoring of night sky conditions around the world. The GaN-MN consists of fixed monitoring stations each equipped with a Sky Quality Meter - Lensed Ethernet (SQM-LE), which is a specialized light sensor for night sky brightness (NSB) measurement. NSB data are continuously collected at high sampling frequency throughout the night, and these data will be instantly made available to the general public to provide a real-time snapshot of the global light pollution condition. A single data collection methodology, including data sampling frequency, data selection criteria, device design and calibration, and schemes for data quality control, was adopted to ensure uniformity in the data collected. This is essential for a systematic and global study of the level of light pollution. The data collected will also provide the scientific backbone in our efforts to contribute to dark sky conservation through education to the general public and policy makers. The GaN-MN project is endorsed by the IAU IYL Executive Committee Working Group as a major Cosmic Light program in the International Year of Light.

  12. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.; Bellutta, Paolo

    2011-01-01

    Robust water detection is a critical perception requirement for unmanned ground vehicle (UGV) autonomous navigation. This is particularly true in wide-open areas where water can collect in naturally occurring terrain depressions during periods of heavy precipitation and form large water bodies. One of the properties of water useful for detecting it is that its surface acts as a horizontal mirror at large incidence angles. Water bodies can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. The Jet Propulsion Laboratory (JPL) has implemented a water detector based on sky reflections that geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground and predicts if the ground pixel is water based on color similarity and local terrain features. This software detects water bodies in wide-open areas on cross-country terrain at mid- to far-range using imagery acquired from a forward-looking stereo pair of color cameras mounted on a terrestrial UGV. In three test sequences approaching a pond under a clear, overcast, and cloudy sky, the true positive detection rate was 100% when the UGV was beyond 7 meters of the water's leading edge and the largest false positive detection rate was 0.58%. The sky reflection based water detector has been integrated on an experimental unmanned vehicle and field tested at Ft. Indiantown Gap, PA, USA.

  13. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  14. "Let There Be Night" Advocates Dark Skies

    NASA Astrophysics Data System (ADS)

    Bueter, Chuck

    2008-05-01

    Let There Be Night is an interactive planetarium program that supports a community-wide experiment to quantify local sky glow. In the planetarium, visitors will experience three aspects of light pollution--glare, sky glow, and light trespass--and decide whether and how to confront dark sky issues. Planetarians can select optional recorded stories and lessons to complement live demonstrations or star talks. As a companion experiment, students in grades 3-8 from one school district will then submit their backyard observations of Orion's limiting magnitude to the 2009 Globe at Night star hunt while small student teams concurrently quantify sky glow from each schoolyard with hand-held meters. After mapping their results and having classroom discussions, students will present their findings to the School Board. Material compiled and created for the program will be available for other dark sky advocates at www.LetThereBeNight.com, while large digital files will be distributed on disk through two planetarium associations. A 2008 Toyota TAPESTRY grant has enticed significant professional support, additional funding, and in-kind contributions.

  15. The commercial Atlas today

    NASA Astrophysics Data System (ADS)

    Patzer, Mike; White, Robert C.

    1990-07-01

    Spanning more than three decades, the General Dynamics Atlas launch vehicle program has contributed greatly to the productive exploitation of space. This paper briefly reviews Atlas history and achievements and then focuses on present Atlas launch vehicle configurations, capabilities, and propulsion systems. The four-vehicle Atlas family is described, inluding manufacturing, performance, and design differences. Vehicle launch options including the fairing and spacecraft adapter are discussed. A mission profile, flight environments, and a nominal sequence of events are described for a standard GTO mission. Details on vehicle enhancements are presented including the addition of solid rocket motors, booster and Centaur engine uprates, and avionics improvements.

  16. Launch window definition for sky target experiments.

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1973-01-01

    This paper is a brief report on the computer program developed for the Extraterrestrial Physics Barium Ion Cloud (BIC) Project. The mathematical analysis developed for the program along with its programing characteristics are pointed out to show that this program is adaptable to similar sky target projects. Definite viewing constraints are specified so that the chosen ground tracking stations can photograph the behavior of the sky target after its release. Viewing factors include the illumination of the target by the sun, the relative elevation look angle to the target from each tracking station, the solar and lunar depression angles at each tracking station, and the total sky background brightness of the target relative to each tracking station. Numeric values are assigned to each factor through program input. The program output is flexible so that the results of the window calculations can be studied to the depth required.

  17. Secrets to Successful Earth and Sky Photography

    NASA Astrophysics Data System (ADS)

    Tafreshi, Babak A.

    In the absolute silence of a desert night, surrounded by an arena of celestial beauties, a gentle breeze shifts the tiny grains of sand around me. There is a patchy glow of light visible all across the eastern horizon. It is gradually ascending over the sand dunes. The glow represents billions of stars in our home galaxy rising above the horizon of our planet. I have seen such dream-like starry scenes from many locations; from the boundless dark skies of the African Sahara when the summer Milky Way was arching over giant sandstones, to the shimmering beauty of the Grand Canyon under moonlight, and the transparent skies of the Himalayas when the bright stars of winter were rising above where the highest peak on Earth (Mt. Everest) meets the sky. These are forever-engraved moments in my memory. Astrophotography is not only about recording the celestial world. It can lead you to a life of adventure and discovery (Fig. 1).

  18. Extended Source/Galaxy All Sky 2

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey's All-Sky Survey Extended Source Catalog,; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image.

  19. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-01

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms. PMID:23262713

  20. Sky surveys in the ultraviolet. [spaceborne astronomy

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.

    1978-01-01

    Instrumentation, results, and future prospects for sky surveys at UV wavelengths inaccessible from the ground are reviewed. Detectors and optical materials, coatings, and systems for UV surveys are discussed, previously performed UV sky surveys are recounted, and some specific results of these surveys are examined. The rationale for UV surveys is explained, and the detectors and instrumentation considered for future UV surveys are described. It is noted that for the wavelength range from 1000 to 2000 A, detectors and instrumentation are already available to provide an all-sky UV survey of moderate resolution (10 to 30 arcsec) and moderate sensitivity (reaching hot stars as faint as 18th visual magnitude in direct imagery and 11th magnitude spectrographically with 2-A resolution).

  1. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  2. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  3. Hyperspectral all-sky imaging of auroras.

    PubMed

    Sigernes, Fred; Ivanov, Yuriy; Chernouss, Sergey; Trondsen, Trond; Roldugin, Alexey; Fedorenko, Yury; Kozelov, Boris; Kirillov, Andrey; Kornilov, Ilia; Safargaleev, Vladimir; Holmen, Silje; Dyrland, Margit; Lorentzen, Dag; Baddeley, Lisa

    2012-12-01

    A prototype auroral hyperspectral all-sky camera has been constructed and tested. It uses electro-optical tunable filters to image the night sky as a function of wavelength throughout the visible spectrum with no moving mechanical parts. The core optical system includes a new high power all-sky lens with F-number equal to f/1.1. The camera has been tested at the Kjell Henriksen Observatory (KHO) during the auroral season of 2011/2012. It detects all sub classes of aurora above ~½ of the sub visual 1kR green intensity threshold at an exposure time of only one second. Supervised classification of the hyperspectral data shows promise as a new method to process and identify auroral forms.

  4. Science with the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group

    2015-01-01

    The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start

  5. Modelling and Display of the Ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  6. Polarization patterns of the twilight sky

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  7. South Pol: Revealing the polarized southern sky

    NASA Astrophysics Data System (ADS)

    Magalha~es, A. M.; de Oliveira, C. M.; Carciofi, A.; Costa, R.; Dal Pino, E. M. G.; Diaz, M.; Ferrari, T.; Fernandez, C.; Gomes, A. L.; Marrara, L.; Pereyrac, A.; Ribeiro, N. L.; Rodrigues, C. V.; Rubinho, M. S.; Seriacopi, D. B.; Taylor, K.

    2012-05-01

    SOUTH POL will be a survey of the Southern sky in optical polarized light. It will use a newly designed polarimetric module at an 80cm Robotic Telescope. Telescope and polarimeter will be installed at CTIO, Chile, in late 2012. The initial goal is to cover the sky south of declination -15° in two years of observing time, aiming at a polarimetric accuracy <~ 0.1% down to V=15, with a camera covering a field of about 2.0 square degrees. SOUTH POL will impact areas such as Cosmology, Extragalactic Astronomy, Interstellar Medium of the Galaxy and Magellanic Clouds, Star Formation, Stellar Envelopes, Stellar explosions and Solar System, among others.

  8. The LWA1 Low Frequency Sky Survey

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration

    2015-01-01

    The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST

  9. Microwave Sky image from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A detailed full-sky map of the oldest light in the universe. It is a 'baby picture' of the universe. Colors indicate 'warmer' (red) and 'cooler' (blue) spots. The oval shape is a projection to display the whole sky; similar to the way the globe of the earth can be projected as an oval. The microwave light captured in this picture is from 379,000 years after the Big Bang, over 13 billion years ago. For more information, see http://map.gsfc.nasa.gov/m_mm/mr_whatsthat.html

  10. The Sky Polarisation Observatory (SPOrt) Program

    NASA Astrophysics Data System (ADS)

    Carretti, E.; Cortiglioni, S.; Tucci, M.; Cecchini, S.; Macculi, C.; Orsini, M.; Monari, J.; Orfei, A.; Poppi, S.; Bonometto, S.; Boella, G.; Gervasi, M.; Sironi, G.; Zannoni, M.; Fabbri, R.; Nicastro, L.; Tascone, R.; Pisani, U.

    The main goal of the Sky Polarization Observatory (SPOrt) Program is the measurement of the sky linear polarized emission in the 22-90 GHz frequency range. SPOrt payload will be accommodated on the International Space Station in 2003-2004 for a period of 18 months. The instrument configuration is presented together with most relevant ground activities in support to its realization. In particular, the development of hardware solutions for high sensitive polarimetric measurements, such as those requested by Galactic polarized emission and Cosmic Microwave Background observations, has been addressed by the SPOrt team to match the experiment requirements.

  11. BNL ATLAS Grid Computing

    ScienceCinema

    Michael Ernst

    2016-07-12

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  12. BNL ATLAS Grid Computing

    SciTech Connect

    Michael Ernst

    2008-10-02

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  13. ATLAS ACCEPTANCE TEST

    SciTech Connect

    Cochrane, J. C. , Jr.; Parker, J. V.; Hinckley, W. B.; Hosack, K. W.; Mills, D.; Parsons, W. M.; Scudder, D. W.; Stokes, J. L.; Tabaka, L. J.; Thompson, M. C.; Wysocki, Frederick Joseph; Campbell, T. N.; Lancaster, D. L.; Tom, C. Y.

    2001-01-01

    The acceptance test program for Atlas, a 23 MJ pulsed power facility for use in the Los Alamos High Energy Density Hydrodynamics program, has been completed. Completion of this program officially releases Atlas from the construction phase and readies it for experiments. Details of the acceptance test program results and of machine capabilities for experiments will be presented.

  14. Language Industries Atlas.

    ERIC Educational Resources Information Center

    Hearn, P. M., Ed.; Button, D. F., Ed.

    This atlas describes the activities of public and private organizations that create the infrastructure within which languages are able to develop and interact in the European Community (EC). It contains over 1,000 descriptions of activities that play a role in shaping the language industries, from a user or provider perspective. The atlas is…

  15. Sky brightness during eclipses: a review.

    PubMed

    Silverman, S M; Mullen, E G

    1975-12-01

    This paper is abstracted from the introductory section of "Sky Brightness During Eclipses: A Compendium from the Literature," AFCRL-TR-74-0363, Special Reports 180, Air Force Cambridge Research Laboratories, Hanscom AFB, Massachusetts 01731. This report should be consulted for fuller details and tables.

  16. A Ladder to Lean on the Sky

    ERIC Educational Resources Information Center

    Edwards, Margaret A.

    1970-01-01

    Over the four years the student is in high school the most logical person to impart to hime a love of reading, as a lifelong, never failing source of ideas and inspiration, is the school librarian. This is his ladder to the sky. (NH)

  17. Predicting UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Mohan, R.; Sreejith, A. G.; Murthy, Jayant

    2013-02-01

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse Galactic light, depends on different factors. Airglow is dependent on the time of day; zodiacal light depends on the time of year, angle from the Sun and from the ecliptic; diffuse UV emission depends on the line of sight. To provide a full description of the sky along any line of sight, we have also added stars. The UV background light can dominate in many areas of the sky and severely limit viewing directions due to overbrightness. The simulator, available as a downloadable package and as a web-based tool, can be applied to preparation of real space missions and instruments. For demonstration, we present the example use for the two near-future UV missions: UVIT instrument on the Indian Astrosat mission and a new proposed wide-field (∼1000 square degrees) transient explorer satellite.

  18. Very large radio surveys of the sky.

    PubMed

    Condon, J J

    1999-04-27

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys.

  19. Very large radio surveys of the sky

    PubMed Central

    Condon, J. J.

    1999-01-01

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys. PMID:10220365

  20. Sky brightness during eclipses: a review.

    PubMed

    Silverman, S M; Mullen, E G

    1975-12-01

    This paper is abstracted from the introductory section of "Sky Brightness During Eclipses: A Compendium from the Literature," AFCRL-TR-74-0363, Special Reports 180, Air Force Cambridge Research Laboratories, Hanscom AFB, Massachusetts 01731. This report should be consulted for fuller details and tables. PMID:20155120

  1. Why Is the Sky Dark at Night?

    ERIC Educational Resources Information Center

    Stinner, Arthur

    2014-01-01

    The puzzle as to just why the sky is dark at night, given that there are so many stars, has been around at least since Newton. This article summarizes six cosmological models that have been used to attempt to give an account of this puzzle including the Copernican universe, the Newton-Halley universe, the nineteenth century "one galaxy"…

  2. Spectral karyotyping (SKY) in hematological neoplasia

    NASA Astrophysics Data System (ADS)

    Preiss, Birgitte S.; Pedersen, Rikke K.; Kerndrup, Gitte B.

    2001-07-01

    From November 1, 1997 till November 1, 2000 we have investigated 204 cases of acute myeloid leukemia (AML) (nequals95), acute lymphatic leukemia (ALL) (nequals40), myelodysplastic syndrome (MDS) (nequals11), chronic myeloid leukemia (CML) (nequals9), chronic lymphatic leukemia (CLL) (nequals4) and non-Hodgkin lymphoma (NHL) (nequals45) cytogenetically, using G-band analysis and spectral karyotyping (SKY). By SKY we were able to detect the abnormal clones in all cases but 9. In the G-band preparations these cases showed very few abnormal mitoses. The SKY either extended or confirmed the G-band findings in 94% of those with an abnormal karyotype. Cryptic translocations (translocations not suspected from the G-band karyotype) were found in 71 cases (26 AML, 9 ALL, 5 MDS, 2 CLL and 29 NHL). We find SKY a powerful adjuvant diagnostic tool that does not compromise one of the advantages of karyotyping techniques, the analysis of the entire genome which, in contrast to molecular biological techniques, still leave the possibility to get mroe answers than questions posed.

  3. Deep-Sky Companions: Southern Gems

    NASA Astrophysics Data System (ADS)

    O'Meara, Stephen James

    2013-05-01

    Preface; 1. How to use this book; 2. The southern gems; Appendix A. Southern gems: basic data; Appendix B. Forty-two additional southern gems in Dunlop's catalogue; Appendix C. A brief history of early telescopic exploration of the far-southern skies; Appendix D. Photo credits; The southern gems checklist; Index; Wide-field star charts.

  4. National Atlas maps

    USGS Publications Warehouse

    ,

    1991-01-01

    The National Atlas of the United States of America was published by the U.S. Geological Survey in 1970. Its 765 maps and charts are on 335 14- by 19-inch pages. Many of the maps span facing pages. It's worth a quick trip to the library just to leaf through all 335 pages of this book. Rapid scanning of its thematic maps yields rich insights to the geography of issues of continuing national interest. On most maps, the geographic patterns are still valid, though the data are not current. The atlas is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. The maps dated after 1970 are either revisions of original atlas maps, or new maps published in atlas format. The titles of the separate maps are listed here.

  5. Diabetes Interactive Atlas.

    PubMed

    Kirtland, Karen A; Burrows, Nilka R; Geiss, Linda S

    2014-02-06

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas' maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity.

  6. A Glimpse of Atlas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's little moon Atlas orbits Saturn between the outer edge of the A ring and the fascinating, twisted F ring. This image just barely resolves the disk of Atlas, and also shows some of the knotted structure for which the F ring is known. Atlas is 32 kilometers (20 miles) across.

    The bright outer edge of the A ring is overexposed here, but farther down the image several bright ring features can be seen.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 25, 2005, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 60 degrees. Resolution in the original image was 14 kilometers (9 miles) per pixel.

  7. LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LEE VINING INTAKE LOOKING SOUTH. (MOTTLED SKY FROM CONDENSED MOISTURE ON NEGATIVE AFFECTING EVEN PROCESSING OF SKY, SAVED FOR DOCUMENTARY PURPOSES) - Los Angeles Aqueduct, Lee Vining Intake Structure, Los Angeles, Los Angeles County, CA

  8. Constellations and Inflow of Galactic Wind -- IBEX Full Sky Map

    NASA Video Gallery

    Animation, zooming out from Scorpio to a full sky view of the stars. It blends over to a color-coded full sky neutral atom map, as obtained with IBEX at energies where the interstellar wind is the ...

  9. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    PubMed

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  10. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    PubMed

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions. PMID:27029512

  11. The Community Cloud Atlas - Building an Informed Cloud Watching Community

    NASA Astrophysics Data System (ADS)

    Guy, N.; Rowe, A.

    2014-12-01

    The sky is dynamic, from long lasting cloud systems to ethereal, fleeting formations. After years of observing the sky and growing our personal collections of cloud photos, we decided to take to social media to share pictures, as well as build and educate a community of cloud enthusiasts. We began a Facebook page, the Community Cloud Atlas, described as "...the place to show off your pictures of the sky, identify clouds, and to discuss how specific cloud types form and what they can tell you about current and future weather." Our main goal has been to encourage others to share their pictures, while we describe the scenes from a meteorological perspective and reach out to the general public to facilitate a deeper understanding of the sky. Nearly 16 months later, we have over 1400 "likes," spanning 45 countries with ages ranging from 13 to over 65. We have a consistent stream of submissions; so many that we decided to start a corresponding blog to better organize the photos, provide more detailed explanations, and reach a bigger audience. Feedback from users has been positive in support of not only sharing cloud pictures, but also to "learn the science as well as admiring" the clouds. As one community member stated, "This is not 'just' a place to share some lovely pictures." We have attempted to blend our social media presence with providing an educational resource, and we are encouraged by the response we have received. Our Atlas has been informally implemented into classrooms, ranging from a 6th grade science class to Meteorology courses at universities. NOVA's recent Cloud Lab also made use of our Atlas as a supply of categorized pictures. Our ongoing goal is to not only continue to increase understanding and appreciation of the sky among the public, but to provide an increasingly useful tool for educators. We continue to explore different social media options to interact with the public and provide easier content submission, as well as software options for

  12. More Observations in Schools for Promoting Astronomy and Sky Protection

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2015-03-01

    In astronomy it is important to promote observation and the quality of the sky is essential for a good observation impact. It is important that children have a nice memory of their observations in a non-polluted sky. Using students as agents of change it is possible to promote good practice for sky protection in society.

  13. Integrated primary flight display: the sky arc

    NASA Astrophysics Data System (ADS)

    Voulgaris, Theodore J.; Metalis, Sam A.; Mobley, R. S.

    1995-05-01

    Flight instrument interpretability has been a key piloting issue because it is directly related to operator performance and inversely related to operator error. To improve interpretability we have developed the Sky Arc, a new symbology initially developed for attitude control, particularly for a helmet-mounted display. It consists of an integrated set of graphic symbols which vary in a continuous, analog fashion with changing flight parameters. The Sky Arc currently integrates, pitch, roll, heading, air speed, and terrain avoidance. The display can be integrated into a head down display, a head up display, or a helmet mounted display. In this preliminary study the usability of the Sky Arc as an attitude indicator was compared to a conventional head-up display pitch ladder symbology. The test involved six test subject pilots and a medium-fidelity simulator. The pilots were asked to fully recover from a series of unusual attitude conditions that were presented on the simulator. The time taken to recover and the correctness of the recovery procedure served as the objective evaluation measures. A Likert-type rating scale and open-ended subject matter expert opinions served as the subjective measures of evaluation. To examine whether there was a relationship between usability of the attitude indicator and difficulty of the unusual attitude, the workload levels involved in performing the unusual attitude recoveries were grouped into three levels, low, medium, and high. At each workload level there were four conditions, for a total of 12 different conditions. Each pilot was asked to recovery twice from each condition, for a total of 24 unusual attitude recovery trials. The test trials were counterbalanced and displayed in a prearranged order. No differences due to difficulty of the unusual attitude were detected. Overall, the study revealed that the Sky Arc led to generally faster recoveries than did the standard display, as well as higher subjective preference ratings

  14. SOUTH POL: Revealing the Polarized Southern Sky

    NASA Astrophysics Data System (ADS)

    Magalhães, A. M.

    2014-10-01

    SOUTH POL will be a survey of the Southern sky in optical polarized light. It will use a newly designed polarimeter for an 80cm Robotic Telescope. Telescope and polarimeter will be installed at CTIO, Chile. The initial goal is to cover the sky south of declination -15° in about two years of observing time, aiming at a polarimetric accuracy ≤ 0.1% down to V=15, with a camera covering a field of about 2.0 square degrees. SOUTH POL will impact areas such as Cosmology, Extragalactic Astronomy, Interstellar Medium of the Galaxy and Magellanic Clouds, Star Formation, Stellar Envelopes, Stellar Explosions and Solar System, among others. The polarimeter is currently being built and its optics and electronics assembled. We will describe the current status of the project. This project is supported by FAPESP. AMM is also supported by CNPq.

  15. The IRAS view of the extragalactic sky

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Houck, J. R.

    1987-01-01

    The IR-observable characteristics of the extragalactic sky are reviewed, summarizing the results of recent studies based on the IRAS survey, which covers over 96 percent of the sky to about 500 mJy at 12, 25, and 60 microns and to about 1.5 Jy at 100 microns. The numerical and morphological data are described; possible mechanisms for the IR emission are discussed; and the object classes are considered separately. Consideration is given to spiral and disk galaxies, barred and ring galaxies, irregular and dwarf galaxies, blue compact galaxies, elliptical and S0 galaxies, AGN observations (BL Lacs and OVV quasars, Seyfert galaxies, and quasars), highly luminous IR galaxies, and the cosmological implications of the IRAS findings. Diagrams, graphs, and tables are provided.

  16. Photographic surveys of the southern sky

    NASA Technical Reports Server (NTRS)

    Sim, M. E.

    1984-01-01

    Parameters of the UK 1.2 meter Schmidt telescope are described. Plates taken with this instrument are in two categories, those for systematic sky surveys and those taken at the request of research users. A collaborative project with the European Southern Observatory was undertaken to obtain a two-color survey of the sky south of -20 deg declination to complement the Palomar survey. A near infrared survey of the Galactic Plane and the Megallanic Clouds is being done. The area south of -20 deg and the zone between 0 deg and -15 deg are also being surveyed. Pending a decision on survey parameters, all available A quality prism plates are being retained to form a basis for systematic survey. Nearly half the plates taken on a service basis for the UK astronomical community are to fulfill nonsurvey requests. Plates taken for surveys which are not of A grade quality are also made available for research purposes.

  17. Dark Skies, Bright Kids! Year 5

    NASA Astrophysics Data System (ADS)

    Prager, Brian; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Bittle, L.; Borish, H.; Burkhardt, A.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Graninger, D.; Lauck, T.; Liss, S.; Oza, A.; Peacock, S.; Romero, C.; Sokal, K. R.; Stierwalt, S.; Walker, L.; Wenger, T.; Zucker, C.

    2014-01-01

    Our public outreach group Dark Skies, Bright Kids! (DSBK) fosters science literacy in Virginia by bringing a hands-on approach to astronomy that engages children's natural excitement and curiosity. We are an entirely volunteer-run group based out of the Department of Astronomy at the University of Virginia and we enthusiastically utilize astronomy as a 'gateway science.' We create long-term relationships with students during an 8 to 10 week long, after-school astronomy club at under served elementary schools in neighboring counties, and we visited 3 different schools in 2013. Additionally, we organize and participate in science events throughout the community. The fifth year of DSBK was marked by surpassing 10,000 contact hours in Spring 2013 Semester and by ringing in the fall semester with our biggest, most successful star party to date. We hosted the Third Annual Central Virginia Star Party, free and open to the community to encourage families to enjoy astronomy together. Nearly four hundred people of all ages attended, double the number from previous years. Joining with local astronomical societies, we offered an enlightening and exciting night with resources rarely accessible to the public, such as an IR camera and a portable planetarium. With numerous telescopes pointed at the sky, and a beautifully clear night with views of the Milky Way, the International Space Station, and numerous meteors, the star party was a fantastic opportunity to introduce many of our guests to the natural wonders of our night sky and enjoy some of the darkest skies on the eastern seaboard.

  18. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  19. Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at mid- to far-range (approximately 20 100 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). Non-traversable water bodies, such as large puddles, ponds, and lakes, are indirectly detected by detecting reflections of the sky below the horizon in color imagery. The appearance of water bodies in color imagery largely depends on the ratio of light reflected off the water surface to the light coming out of the water body. When a water body is far away, the angle of incidence is large, and the light reflected off the water surface dominates. We have exploited this behavior to detect water bodies out in the open at mid- to far-range. When a water body is detected at far range, a UGV s path planner can begin to look for alternate routes to the goal position sooner, rather than later. As a result, detecting water hazards at far range generally reduces the time required to reach a goal position during autonomous navigation. This software implements a new water detector based on sky reflections that geometrically locates the exact pixel in the sky that is reflecting on a candidate water pixel on the ground, and predicts if the ground pixel is water based on color similarity and local terrain features

  20. Modelling UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safanova, M.; Mohan, R.; Murthy, Jayant

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse galactic light, is dependent on various factors. Airglow is dependent on the time of day, zodiacal light on the time of year, angle from the Sun and from the ecliptic, and diffuse UV emission depends on the look direction. To provide a full description of any line of sight, we have also added stars. The diffuse UV background light can dominate in many areas of the sky and severely impact space telescopes viewing directions due to over brightness. The simulator, available as a downloadable package and as a simple web-based tool, can be applied to separate missions and instruments. For demonstration, we present the example used for two UV missions: the UVIT instrument on the Indian ASTROSAT mission to be launched in the next year and a prospective wide-field mission to search for transients in the UV.

  1. Charged-coupled detector sky surveys.

    PubMed Central

    Schneider, D P

    1993-01-01

    Sky surveys have played a fundamental role in advancing our understanding of the cosmos. The current pictures of stellar evolution and structure and kinematics of our Galaxy were made possible by the extensive photographic and spectrographic programs performed in the early part of the 20th century. The Palomar Sky Survey, completed in the 1950s, is still the principal source for many investigations. In the past few decades surveys have been undertaken at radio, millimeter, infrared, and x-ray wavelengths; each has provided insights into new astronomical phenomena (e.g., quasars, pulsars, and the 3 degrees cosmic background radiation). The advent of high quantum efficiency, linear solid-state devices, in particular charged-coupled detectors, has brought about a revolution in optical astronomy. With the recent development of large-format charged-coupled detectors and the rapidly increasing capabilities of data acquisition and processing systems, it is now feasible to employ the full capabilities of electronic detectors in projects that cover an appreciable fraction of the sky. This talk reviews the first "large scale" charged-coupled detector survey. This program, designed to detect very distant quasars, reveals the powers and limitations of charged-coupled detector surveys. PMID:11607431

  2. Extended Source/Galaxy All Sky 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns.

    The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image.

  3. Sky camera geometric calibration using solar observations

    NASA Astrophysics Data System (ADS)

    Urquhart, Bryan; Kurtz, Ben; Kleissl, Jan

    2016-09-01

    A camera model and associated automated calibration procedure for stationary daytime sky imaging cameras is presented. The specific modeling and calibration needs are motivated by remotely deployed cameras used to forecast solar power production where cameras point skyward and use 180° fisheye lenses. Sun position in the sky and on the image plane provides a simple and automated approach to calibration; special equipment or calibration patterns are not required. Sun position in the sky is modeled using a solar position algorithm (requiring latitude, longitude, altitude and time as inputs). Sun position on the image plane is detected using a simple image processing algorithm. The performance evaluation focuses on the calibration of a camera employing a fisheye lens with an equisolid angle projection, but the camera model is general enough to treat most fixed focal length, central, dioptric camera systems with a photo objective lens. Calibration errors scale with the noise level of the sun position measurement in the image plane, but the calibration is robust across a large range of noise in the sun position. Calibration performance on clear days ranged from 0.94 to 1.24 pixels root mean square error.

  4. Status of The Catalina Sky Survey

    NASA Astrophysics Data System (ADS)

    Christensen, Eric J.; Carson Fuls, David; Gibbs, Alex R.; Grauer, Albert D.; Hill, Rik E.; Johnson, Jess A.; Kowalski, Richard A.; Larson, Stephen M.; Matheny, Rose G.; Shelly, Frank C.

    2015-11-01

    The Catalina Sky Survey (CSS) continues to be a key contributor to NASA’s Near-Earth Object (NEO) survey effort, accounting for 42% of all new discoveries in the last calendar year (618 of 1,478). Recent upgrades and improvements include the routine, queue-scheduled remote operation of a 1.0-m telescope principally dedicated to the follow-up of newly discovered NEOs; enhancement of the moving object detection software resulting in a 10-15% increase in efficiency; reduction in acquisition overheads resulting in ~10% higher data throughput; and changes to the data reduction pipeline which have yielded overall better data quality (flat-fielding, astrometry and photometry). Significant instrumentation upgrades to the 1.5-m telescope (MPC code G96) and 0.7-m Schmidt telescope (MPC code 703) are underway, despite significant delays in procuring science-grade 10k x 10k detectors. The G96 camera has been fully assembled in the lab, and on-sky commissioning is imminent. When complete these new cameras will increase the fields-of-view of the 1.5-m and 0.7-m by 4.0x (to 5.0 sq. deg.) and 2.4x (to 19.4 sq. deg.), dramatically expanding the nightly coverage for both telescopes.The Catalina Sky Survey is funded by NASA’s Near-Earth Object Observation program (NNX15AF79G).

  5. A total sky cloud detection method using real clear sky background

    NASA Astrophysics Data System (ADS)

    Yang, J.; Min, Q.; Lu, W.; Ma, Y.; Yao, W.; Lu, T.; Du, J.; Liu, G.

    2015-12-01

    The brightness distribution of sky background is usually non-uniform, which creates many problems for traditional cloud detection methods including the failure of thin cloud detection in total sky images and significantly reducing retrieval accuracy in the circumsolar and near-horizon regions. This paper describes the development of a new cloud detection algorithm, named "clear sky background differencing (CSBD)", which is accomplished by differencing the original image and the corresponding clear sky background image using the images' green channel. First, a library of clear sky background images with a variety of solar elevation angles needs to be developed. The image rotation and image brightness adjustment algorithms are applied to ensure the two images being differenced have the same solar position and similar brightness distribution. Sensitivity tests show, as long as the positions of the sun in the two images are the same, the cloud detection results are satisfactory. Several experimental cases show that the CSBD algorithm obtains good cloud recognition results visually, especially for thin clouds.

  6. The interactive sky: a browsable allsky image

    NASA Astrophysics Data System (ADS)

    Tancredi, Gonzalo; Da Rosa, Fernando; Roland, Santiago; Almenares, Luciano; Gomez, Fernando

    2015-08-01

    We are conducting a project to make available panoramas of the night sky of the southern hemisphere, based on a mosaic of hundred of photographs. Each allsky panorama is a giant image composed by hundreds of high-resolution photos taken in the course of one night. The panoramas are accessible with a web-browser and the public is able to zoom on them and to see the sky with better quality than the naked eye. We are preparing 4 sets of panoramas corresponding to the four seasons.The individual images are taken with a 16 Mpixels DLSR camera with a 50 mm lens mounted on a Gigapan EPIC robotic camera mounts. These devices and a autoguiding telescope are mounted in a equatorial telescope mount, which allows us to have exposure of several tens seconds. The images are then processed and stitched to create the gigantic panorama, with typical weight of several GBytes.The limiting magnitude is V~8. The panoramas include more than 50 times more stars those detected with the naked eye.In addition to the allsky panoramas, we embedded higher resolution images of specific regions of interest such as: emission nebulae and dark, open and globular clusters and galaxies; which can be zoomed.The photographs have been acquiring since December 2014 in a dark place with low light pollution in the countryside of Uruguay; which allows us to achieve deep sky objects.These panoramas will be available on a website and can be accessed with any browser.This tool will be available for teaching purposes, astronomy popularization or introductory research. Teacher guides will be developed for educational activities at different educational levels.While there are similar projects like Google Sky, the methodology used to generate the giant panoramas allows a much more realistic view, with a background of continuous sky without sharp edges. Furthermore, while the planetarium software is based on drawings of the stars, our panoramas are based on real images.This is the first project with these

  7. Explanatory Supplement to the WISE All-Sky Data Release Products

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.; Wright, E. L.; Conrow, T.; Bauer, J.; Benford, D.; Brandenburg, H.; Dailey, J.; Eisenhardt, P. R. M.; Evans, T.; Fajardo-Acosta, S.; Fowler, J.; Gelino, C.; Grillmair, C.; Harbut, M.; Hoffman, D.; Jarrett, T.; Kirkpatrick, J. D.; Leisawitz, D.; Liu, W.; Mainzer, A.; Marsh, K.; Masci, F.; McCallon, H.; Padgett, D.; Ressler, M. E.; Royer, D.; Skrutskie, M. F.; Stanford, S. A.; Wyatt, P. L.; Tholen, D.; Tsai, C. W.; Wachter, S.; Wheelock, S. L.; Yan, L.; Alles, R.; Beck, R.; Grav, T.; Masiero, J.; McCollum, B.; McGehee, P.; Papin, M.; Wittman, M.

    2012-03-01

    The Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010) surveyed the entire sky at 3.4, 4.6, 12 and 22 microns in 2010, achieving 5-sigma point source sensitivities per band better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Data Release, conducted on March 14, 2012, incorporates all data taken during the full cryogenic mission phase, 7 January 2010 to 6 August 2010, that were processed with improved calibrations and reduction algorithms. Release data products include: (1) an Atlas of 18,240 match-filtered, calibrated and coadded image sets; (2) a Source Catalog containing positions and four-band photometry for over 563 million objects, and (3) an Explanatory Supplement. Ancillary products include a Reject Table that contains 284 million detections that were not selected for the Source Catalog because they are low signal-to-noise ratio or spurious detections of image artifacts, an archive of over 1.5 million sets of calibrated WISE Single-exposure images, and a database of 9.4 billion source extractions from those single-images, and moving object tracklets identified by the NEOWISE program (Mainzer et al. 2011). The WISE All-Sky Data Release products supersede those from the WISE Preliminary Data Release (Cutri et al. 2011). The Explanatory Supplement to the WISE All-Sky Data Release Products is a general guide for users of the WISE data. The Supplement contains an overview of the WISE mission, facilities, and operations, a detailed description of WISE data processing algorithms, a guide to the content and formats of the image and tabular data products, and cautionary notes that describe known limitations of the All-Sky Release products. Instructions for accessing the WISE data products via the services of the NASA/IPAC Infrared Science Archive are provided. The Supplement also provides analyses of the achieved sky coverage, photometric and astrometric characteristics and completeness and reliability of the All-Sky

  8. ATLAS Metadata Task Force

    SciTech Connect

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  9. Diabetes Interactive Atlas

    PubMed Central

    Burrows, Nilka R.; Geiss, Linda S.

    2014-01-01

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340

  10. Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies.

    PubMed

    Hegedüs, Ramón; Akesson, Susanne; Horváth, Gábor

    2007-08-01

    The distribution of polarization in the overcast sky has been practically unknown. Earlier the polarization of light from heavily overcast skies (when the Sun's disc was invisible) has been measured only sporadically in some celestial points by point-source polarimetry. What kind of patterns of the degree p and angle alpha of linear polarization of light could develop after transmission through a thick layer of ice or water clouds? To answer this question, we measured the p and alpha patterns of numerous totally overcast skies on the Arctic Ocean and in Hungary by full-sky imaging polarimetry. We present here our finding that depending on the optical thickness of the cloud layer, the pattern of alpha of light transmitted through the ice or water clouds of totally overcast skies is qualitatively the same as the alpha pattern of the clear sky. Under overcast conditions the value of alpha is determined predominantly by scattering on cloud particles themselves. Nevertheless, the degrees of linear polarization of light from overcast skies were rather low (psky also appears in partly cloudy, foggy, and smoky skies. Our results show that the celestial distribution of the direction of polarization is a very robust pattern being qualitatively always the same under all possible sky conditions. This is of great importance for the orientation of polarization-sensitive animals based on sky polarization under conditions when the Sun is not visible.

  11. ATLAS@AWS

    NASA Astrophysics Data System (ADS)

    Gehrcke, Jan-Philip; Kluth, Stefan; Stonjek, Stefan

    2010-04-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  12. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  13. The diffuse galactic far-ultraviolet sky

    SciTech Connect

    Hamden, Erika T.; Schiminovich, David; Seibert, Mark

    2013-12-20

    We present an all-sky map of the diffuse Galactic far ultraviolet (1344-1786 Å) background using Galaxy Evolution Explorer data, covering 65% of the sky with 11.79 arcmin{sup 2} pixels. We investigate the dependence of the background on Galactic coordinates, finding that a standard cosecant model of intensity is not a valid fit. Furthermore, we compare our map to Galactic all-sky maps of 100 μm emission, N {sub H} {sub I} column, and Hα intensity. We measure a consistent low level far-UV (FUV) intensity at zero points for other Galactic quantities, indicating a 300 photons cm{sup –2} s{sup –1} sr{sup –1} Å{sup –1} non-scattered isotropic component to the diffuse FUV. There is also a linear relationship between FUV and 100 μm emission below 100 μm values of 8 MJy sr{sup –1}. We find a similar linear relationship between FUV and N {sub H} {sub I} below 10{sup 21} cm{sup –2}. The relationship between FUV and Hα intensity has no such constant cutoff. For all Galactic quantities, the slope of the linear portion of the relationship decreases with Galactic latitude. A modified cosecant model, taking into account dust scattering asymmetry and albedo, is able to accurately fit the diffuse FUV at latitudes above 20°. The best fit model indicates an albedo, a, of 0.62 ± 0.04 and a scattering asymmetry function, g, of 0.78 ± 0.05. Deviations from the model fit may indicate regions of excess FUV emission from fluorescence or shock fronts, while low latitude regions with depressed FUV emission are likely the result of self-shielding dusty clouds.

  14. The SPHEREx All-Sky Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  15. The SPHEREx All-Sky Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2016 California Institute of Technology. Government sponsorship acknowledged.

  16. Sloan Digital Sky Survey Photometric Calibration Revisited

    NASA Astrophysics Data System (ADS)

    Marriner, J.

    2016-05-01

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  17. HHEBBES! All sky camera system: status update

    NASA Astrophysics Data System (ADS)

    Bettonvil, F.

    2015-01-01

    A status update is given of the HHEBBES! All sky camera system. HHEBBES!, an automatic camera for capturing bright meteor trails, is based on a DSLR camera and a Liquid Crystal chopper for measuring the angular velocity. Purpose of the system is to a) recover meteorites; b) identify origin/parental bodies. In 2015, two new cameras were rolled out: BINGO! -alike HHEBBES! also in The Netherlands-, and POgLED, in Serbia. BINGO! is a first camera equipped with a longer focal length fisheye lens, to further increase the accuracy. Several minor improvements have been done and the data reduction pipeline was used for processing two prominent Dutch fireballs.

  18. Observed brightness distributions in overcast skies.

    PubMed

    Lee, Raymond L; Devan, David E

    2008-12-01

    Beneath most overcasts, clouds' motions and rapidly changing optical depths complicate mapping their angular distributions of luminance L(v) and visible-wavelength radiance L. Fisheye images of overcast skies taken with a radiometer-calibrated digital camera provide a useful new approach to solving this problem. Maps calculated from time-averaged images of individual overcasts not only show their brightness distributions in unprecedented detail, but they also help solve a long-standing puzzle about where brightness maxima of overcasts are actually located. When combined with simulated radiance distributions from MODTRAN4, our measured radiances also let us estimate the gradients of cloud thickness observed in some overcasts.

  19. Colors of the daytime overcast sky.

    PubMed

    Lee, Raymond L; Hernández-Andrés, Javier

    2005-09-20

    Time-series measurements of daylight (skylight plus direct sunlight) spectra beneath overcast skies reveal an unexpectedly wide gamut of pastel colors. Analyses of these spectra indicate that at visible wavelengths, overcasts are far from spectrally neutral transmitters of the daylight incident on their tops. Colorimetric analyses show that overcasts make daylight bluer and that the amount of bluing increases with cloud optical depth. Simulations using the radiative-transfer model MODTRAN4 help explain the observed bluing: multiple scattering within optically thick clouds greatly enhances spectrally selective absorption by water droplets. However, other factors affecting overcast colors seen from below range from minimal (cloud-top heights) to moot (surface colors).

  20. Colors of the daytime overcast sky

    NASA Astrophysics Data System (ADS)

    Lee, Raymond L., Jr.; Hernández-Andrés, Javier

    2005-09-01

    Time-series measurements of daylight (skylight plus direct sunlight) spectra beneath overcast skies reveal an unexpectedly wide gamut of pastel colors. Analyses of these spectra indicate that at visible wavelengths, overcasts are far from spectrally neutral transmitters of the daylight incident on their tops. Colorimetric analyses show that overcasts make daylight bluer and that the amount of bluing increases with cloud optical depth. Simulations using the radiative-transfer model MODTRAN4 help explain the observed bluing: multiple scattering within optically thick clouds greatly enhances spectrally selective absorption by water droplets. However, other factors affecting overcast colors seen from below range from minimal (cloud-top heights) to moot (surface colors).

  1. Temperature Stability of the Sky Quality Meter

    PubMed Central

    Schnitt, Sabrina; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz; Kyba, Christopher C.M.

    2013-01-01

    The stability of radiance measurements taken by the Sky Quality Meter (SQM) was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of −15°C to 35°C, and during temperature changes of −33°C/h and +70°C/h. This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%, indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions. PMID:24030682

  2. ACTPol: On-Sky Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Grace, E.; Beall, J.; Bond, J. R.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dunner, R.; Fox, A. E.; Gallardo, P.; Hasselfield, M.; Henderson, S.; Hilton, G. C.; Hincks, A. D.; Hlozek, R.; Hubmayr, J.; Irwin, K.; Klein, J.; Koopman, B.; Li, D.; Lungu, M.; Newburgh, L.; Nibarger, J. P.; Niemack, M. D.; Maurin, L.; Wollack, E. J.

    2014-01-01

    ACTPol is the polarization-sensitive receiver on the Atacama Cosmology Telescope. ACTPol enables sensitive millimeter wavelength measurements of the temperature and polarization anisotropies of the Cosmic Microwave Background (CMB) at arcminute angular scales. These measurements are designed to explore the process of cosmic structure formation, constrain or determine the sum of the neutrino masses, probe dark energy, and provide a foundation for a host of other cosmological tests. We present an overview of the first season of ACTPol observations focusing on the optimization and calibration of the first detector array as well as detailing the on-sky performance.

  3. Sloan Digital Sky Survey Photometric Calibration Revisited

    SciTech Connect

    Marriner, John; /Fermilab

    2012-06-29

    The Sloan Digital Sky Survey calibration is revisited to obtain the most accurate photometric calibration. A small but significant error is found in the flat-fielding of the Photometric telescope used for calibration. Two SDSS star catalogs are compared and the average difference in magnitude as a function of right ascension and declination exhibits small systematic errors in relative calibration. The photometric transformation from the SDSS Photometric Telescope to the 2.5 m telescope is recomputed and compared to synthetic magnitudes computed from measured filter bandpasses.

  4. The FLAMINGOS-2 On-Sky Performance

    NASA Astrophysics Data System (ADS)

    Raines, Steven Nicholas; Eikenberry, S. S.; Gonzalez, A. H.; Bandyopadhyay, R. M.; DeWitt, C.; Elston, R. J.; Bennett, J.; Murphey, C.; Hanna, K. T.; Rambold, W. N.; Warner, C.; Bessoff, A.; Branch, M.; Corley, R.; Eriksen, J.; Frommeyer, S.; Herlevich, M.; Hon, D.; Julian, J. A.; Julian, R. E.; Marin-Franch, A.; Marti, J.; Rashkin, D.; Leckie, B.; Gardhouse, W.; Fletcher, M.; Hardy, T.; Dunn, J.; Wooff, R.; Gomez, P. L.; Diaz, R. J.; Bergmann, M. P.

    2010-01-01

    FLAMINGOS-2, a near-infrared wide-field imager and fully-cryogenic multi-object spectrometer for Gemini Observatory built by the University of Florida, achieved First-Light in September 2009. We present and discuss on-sky characterization data such as image quality, imaging throughput, spectroscopic image quality and throughput, spectroscopic dispersion and resolution, as well as plate scale, field-of-view, and distortion. We also present detector plus system read noise, and detector gain, dark current, and linearity.

  5. Lost Skies of Italian Folk Astronomy

    NASA Astrophysics Data System (ADS)

    Barale, Piero

    The limited archival material and the scarcity of evidence from the oldest living representatives of various communities effectively restrict research on archaic astronomical knowledge within Italy to the Alpine area and the most northerly part of the Appenines. These are territories where, fortunately, the folk culture is historically recognized as being very conservative. The sky provided a series of "astral instruments" used for planning religious festivals, fairs, and work in the fields through an empirical-symbolic approach and ancient sidereal calendars with which the valley dwellers were able to arrange daily life.

  6. SPHEREx: An All-Sky Spectral Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; SPHEREx Science Team

    2016-01-01

    SPHEREx, a mission in NASA's Small Explorer (SMEX) program that was selected for Phase A in July 2015, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, in a single survey, with a single instrument. We will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power. Finally, SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 - 4.8 um at R = 41.5 and 150) with high sensitivity using a cooled telescope with large mapping speed.SPHEREx will observe from a sun-synchronous low-earth orbit, covering the entire sky in a manner similar to IRAS, COBE and WISE. During its two-year mission, SPHEREx will produce four complete all-sky maps for constraining the physics of inflation. These same maps contain numerous high signal-to-noise absorption spectra to study water and biogenic ices. The orbit naturally covers two deep regions at the celestial poles, which we use for studying galaxy evolution. All aspects of the SPHEREx instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. The projected instrument sensitivity, based on conservative performance estimates, meets the driving point source sensitivity requirement with 300 % margin.SPHEREx is a partnership between Caltech and JPL, following the successful management structure of the NuSTAR and GALEX SMEX missions. The spacecraft

  7. Concise Catalog of Deep-Sky Objects

    NASA Astrophysics Data System (ADS)

    Finlay, Warren H.

    This book is intended to give a concise summary of some of the more interesting astrophysical facts that are known about objects commonly observed by amateur astronomers. Pondering this information while viewing an object in the field has added a new level to the author's enjoyment of deep-sky observing, and it is hoped this information will be similarly enjoyed by other amateur astronomers. The book is not intended to be read cover to cover, but rather is designed so that each object entry can be read individually one at a time and in no particular order, perhaps while at the eyepiece.

  8. Smart Data Node in the Sky

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza; Kantak, Anil

    2007-01-01

    A document discusses the physical and engineering principles affecting the design of the Smart Data Node in the Sky (SDNITS) -- a proposed Earth-orbiting satellite for relaying scientific data from other Earth-orbiting satellites to one or more ground station(s). The document characterizes the problem of designing the telecommunication architecture of the SDNITS as consisting of two main parts: (1) finding the most advantageous orbit for the SDNITS to gather data from the scientific satellites and relay the data to the ground, taking account of such factors as visibility and range; and (2) choosing a telecommunication architecture appropriate for the intended relay function.

  9. Temperature stability of the sky quality meter.

    PubMed

    Schnitt, Sabrina; Ruhtz, Thomas; Fischer, Jürgen; Hölker, Franz; Kyba, Christopher C M

    2013-01-01

    The stability of radiance measurements taken by the Sky Quality Meter (SQM)was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of -15 °C to 35 °C, and during temperature changes of -33 °C/h and +70 °C/h.This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%,indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions. PMID:24030682

  10. Skycorr: A general tool for spectroscopic sky subtraction

    NASA Astrophysics Data System (ADS)

    Noll, S.; Kausch, W.; Kimeswenger, S.; Barden, M.; Jones, A. M.; Modigliani, A.; Szyszka, C.; Taylor, J.

    2014-07-01

    Context. Airglow emission lines, which dominate the optical-to-near-infrared sky radiation, show strong, line-dependent variability on time scales from minutes to decades. Therefore, the subtraction of the sky background in the affected wavelength regime becomes a problem if plain-sky spectra have to be taken at a different time from the astronomical data. Aims: A solution of this problem is the physically motivated scaling of the airglow lines in the plain-sky data to fit the sky lines in the object spectrum. We have developed a corresponding instrument-independent approach based on one-dimensional spectra. Methods: Our code skycorr separates sky lines and sky/object continuum by an iterative approach involving a line finder and airglow line data. The sky lines, which mainly belong to OH and O2 bands, are grouped according to their expected variability. The line groups in the sky data are then scaled to fit the sky in the science data. Required pixel-specific weights for overlapping groups are taken from a comprehensive airglow model. Deviations in the wavelength calibration are corrected for by fitting Chebyshev polynomials and rebinning via asymmetric damped sinc kernels. The scaled sky lines and the sky continuum are subtracted separately. Results: ESO-VLT X-shooter data covering 2.5 h with a good time resolution were selected to illustrate the performance. Data taken six nights and about one year before were also used as reference sky data. The variation of the sky-subtraction quality as a function of time difference between the object and sky data depends on changes in the airglow intensity, atmospheric transparency, and instrument calibration. Except for short time intervals of a few minutes, the sky line residuals were between 2.1 and 5.5 times weaker than for sky subtraction without fitting. Additional tests showed that skycorr performs consistently better than the method of Davies (2007, MNRAS, 375, 1099) developed for ESO-VLT SINFONI data.

  11. Seeing the Sky through Hubble's Eye: The COSMOS SkyWalker

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Sánchez, S. F.; Koekemoer, A.

    2006-08-01

    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 109 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 1010 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker ``technique'' can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 2562 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.

  12. Blinded: Modern Art, Astronomy, and the Lost Sky

    NASA Astrophysics Data System (ADS)

    Wells, G.

    2016-01-01

    For today's casual visual observer, the night sky has become lost. Pollution, light glare, and the constructed environment have created a blindness through which the night sky is only imperfectly seen, when seen at all. Can the night sky, then, still inspire art if it has become invisible? In this paper, I would like to explore the question of the inspiration of the night sky in the absence of direct observation. In particular, I suggest that the absence of the visual night sky has forced artists to consider the problems of representing an “invisible” subject from nature. The implications of this “invisible” sky are not just a matter of stylistic expression, but also of cultural interpretation.

  13. Radio Source Contributions to the Microwave Sky

    NASA Astrophysics Data System (ADS)

    Boughn, S. P.; Partridge, R. B.

    2008-03-01

    Cross-correlations of the Wilkinson Microwave Anisotropy Probe (WMAP) full sky K-, Ka-, Q-, V-, and W-band maps with the 1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux map are used to constrain rms fluctuations due to unresolved microwave sources in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking account of only those fluctuations correlated with the 1.4 GHz radio source counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ~2 μK for a solid angle of 1 deg2 assuming that the cross-correlations are dominated by clustering, and ~1 μK if dominated by Poisson fluctuations. The correlated fluctuations at the other bands are consistent with a β = -2.1 ± 0.4 frequency spectrum. If microwave sources are distributed similarly in redshift to the radio and X-ray sources and are similarly clustered, then the implied total rms microwave fluctuations correspond to ~5 μK. While this value should be considered no more than a plausible estimate, it is similar to that implied by the excess, small angular scale fluctuations observed in the Q band by WMAP and is consistent with estimates made by extrapolating low-frequency source counts.

  14. COSMO-SkyMed and GIS applications

    NASA Astrophysics Data System (ADS)

    Milillo, Pietro; Sole, Aurelia; Serio, Carmine

    2013-04-01

    Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.

  15. Intercomparisons of nine sky brightness detectors.

    PubMed

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2011-01-01

    Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across The Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from -16% to +20%. Intercalibration reduces this to 0.5%, and -7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m(2) on 12 April, and the largest value was 5.94 ± 0.03 mcd/m(2) on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent.

  16. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect

    Christenson, Norm; Walters, Jerel

    2014-12-31

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  17. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  18. Students in Advanced Research for Sky Surveillance

    NASA Astrophysics Data System (ADS)

    Gehrels, Tom

    1997-11-01

    Spacewatch program discovers small bodies (asteroids and comets) in the solar system and analyzes their distributions with orbital parameters and absolute magnitude. Scanning of the night sky is conducted 18-20 nights per month with tbe 0.9-m Spacewatch Telescope on Kitt Peak. About 1200. to 2000 sqare degrees of sky are searched each year to a V magnitude level of 21.3. Spacewatch discoveries support studies of the evolution of the Centaur, Trojan, Main-Belt, and Earth-approaching asteroid populations. Space watch also finds potential targets for space missions, finds objects that might present a hazard of impact on the Earth, provides accurate astrometry of about 30,000 asteroids annually, and recovers comets and asteroids that are too faint for most other observers. This AASERT grant supported several undergraduate students working on upgrades to instrumentation and analyses of date under the supervision of spacewatch engineers and researchers. The opportunity to have young, energetic new members of the group accomplished a great del of work, simulated and exxelerated our research efforts, and enhanced the students' career opportunities.

  19. Patrolling the Sky at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Taylor, Gregory B.; Obenberger, K.; Hartman, J.; LWA Collaboration

    2013-01-01

    The first station of the Long Wavelength Array, “LWA1”, is located near the center of the Very Large Array in central New Mexico and has recently begun scientific operations as a stand-alone instrument with collecting area roughly equivalent to a 100m dish. The LWA1 images the sky in near-real-time using the “transient buffer - narrowband” (TBN) system which is operational with 258 dipoles, and a bandwidth of 70 kHz. This bandwidth can be placed at any frequency between 5 and 88 MHz. Near-real-time reduction of the data is accomplished by a dedicated cluster in the electronics shelter of the array. The LWA1 can also form up to 4 beams on the sky simultaneously with 16 MHz bandwidth in each of two tunings and full polarization which can provide higher senstivity for follow-up observations. Here we report on detection limits for prompt emission from approximately 30 Gamma-Ray Bursts at frequencies between 30 and 80 MHz. We also report on a number of bright transients of short duration that were detected in the course of searching the error-boxes of GRBs. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grant AST-1139974 of the University Radio Observatory program.

  20. Mauna Loa sky conditions - Bench mark and present

    NASA Astrophysics Data System (ADS)

    Garcia, C. J.; Yasukawa, E. A.

    1983-08-01

    Sky conditions at the Mauna Loa Solar Observatory (MLSO) were measured during a period of uncontaminated skies in July 1981, and during the presence of volcanic dust clouds in 1982 using MLSO instrument systems. A six-fold increase in scattering due to aerosols, is accompanied by a 25 percent direct incident radiation decrease, and sky polarization/intensity perturbations were detected after the onset of volcanic clouds.

  1. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  2. Sky type discrimination using a ground-based sun photometer

    USGS Publications Warehouse

    DeFelice, Thomas P.; Wylie, B.K.

    2001-01-01

    A 2-year feasibility study was conducted at the USGS EROS Data Center, South Dakota (43.733°N, 96.6167°W) to assess whether a four-band, ground-based, sun photometer could be used to discriminate sky types. The results indicate that unique spectral signatures do exist between sunny skies (including clear and hazy skies) and cirrus, and cirrostratus, altocumulus or fair-weather cumulus, and thin stratocumulus or altostratus, and fog/fractostratus skies. There were insufficient data points to represent other cloud types at a statistically significant level.

  3. Distributed analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.

    2015-12-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data is a challenging task for the distributed physics community. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are running daily on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We report on the impact such changes have on the DA infrastructure, describe the new DA components, and include recent performance measurements.

  4. Sky surveys of interest for cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Szkody, Paula

    2016-07-01

    Sky Surveys provide much useful information for finding and understanding catacylsmic variables (CVs). Depending on the length of time the survey runs and the cadence used, the surveys can easily locate novae and dwarf novae based on the amplitude and shape of the light curves. For systems with high inclination or prominent hot spots and periods of hours, some orbital information can be derived from eclipses that are caught or repetitive modulations in the folded light curves. However, in most cases, detailed knowledge of the type of system and its orbital period must come from extended observations at other wavelengths, as most surveys take place in one filter or unfiltered. Currently, we are in the midst of an explosion of recently past, continuing and future plans for sky surveys. The Sloan Digital Sky Survey found about 300 CVs in its Legacy Mode, with small numbers continuing to be added through the extended phases. The CVs were primarily identified through spectroscopic coverage of selected objects from the photometric survey and subsequently found a wide variety of systems (polars, intermediate polars, novalikes, dwarf novae, objects with pulsating white dwarfs) due to spectroscopic differences among these types. The Palomar Transit Factory (PTF), Intermediate PTF and future Zwicky Transient Facilty (ZTF) operate in the same mode of candidate discovery via outbursts followed by spectroscopy for confirmation. The Catalina Real-Time Transient Survey primarily adds dwarf novae that are found from outbursts in the long time span of observations. The Kepler K2 mission operates with a much higher cadence (48-1440 observations/day) but shorter total length (70-80 days) and thus finds CVs through orbital variability as well as those with short outburst intervals. Gaia will provide distances for most of the objects under study, thus locating them in the galaxy. The upcoming Large Synoptic Survey Telescope (LSST) will go much fainter and cover variability on a 10 yr

  5. "Untangling the centimetre-wavelength sky"

    NASA Astrophysics Data System (ADS)

    Leahy, J. Patrick

    2015-08-01

    The global SED of the Milky Way reaches a minimum at about 80 GHz. In the decade below this, three emission processes predominate: synchrotron, from cosmic ray leptons spiralling in the Galactic magnetic field; free-free, from ionized gas in nebulae and the diffuse warm ionized medium; and anomalous microwaves (AME), believed to be dipole emission from spinning very small dust grains. Each component provides unique diagnostics: synchroton traces the lepton energy spectrum near 20 GeV and reveals the local and global structure of the Galactic magnetic field, free-free probes ionized gas where the usual H-alpha tracer is obscured, and AME traces a new interstellar component, whose relation to the general dust population can now be explored. In total intensity, accurate separation of these components is a hard problem not yet completely solved, mainly due to the spatial variability of the AME spectrum, which in the Planck 2015 analysis dominates the SED between 20 and 60 GHz. New large-area surveys in the frequency decade below the satellite microwave will, in combination with Planck and WMAP, will provide a far more robust determination of each component.In contrast to the confused situation in total intensity, only synchrotron contributes significant polarization in our band, and WMAP and Planck give a clear view of the polarized synchrotron sky, for the first time effectively free of Faraday rotation and depolarization. New ground-based microwave polarization surveys such as GMIMS, S-PASS, C-BASS, and QUIJOTE, will add much higher sensitivity and also have the high frequency resolution needed to trace the line-of-sight component of the magnetic field via Faraday synthesis. The polarization along the Galactic plane constrains models of the global Galactic magnetic field. Away from the plane, polarization probes the tangling of the field in the Galactic halo and clarifies the structure of the Galactic loops and spurs, which impose a large-scale coherence on the

  6. Analysis Preservation in ATLAS

    NASA Astrophysics Data System (ADS)

    Cranmer, Kyle; Heinrich, Lukas; Jones, Roger; South, David M.

    2015-12-01

    Long before data taking, ATLAS established a policy that all analyses need to be preserved. In the initial data-taking period, this has been achieved by various tools and techniques. ATLAS is now reviewing the analysis preservation with the aim of bringing coherence and robustness to the process and with a clearer view of the level of reproducibility that is reasonably achievable. The secondary aim is to reduce the load on the analysts. Once complete, this will serve for our internal preservation needs but also provide a basis for any subsequent sharing of analysis results with external parties.

  7. Opaque Skies in the Far East

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick shroud of haze lingers over China, turning the sky an opaque grey over most of the eastern provinces and almost completely blotting out details of the land surface in this true-color scene. Beijing, China's capital city, is situated roughly 150 km (93 miles) west of Bo Hai Bay, under what appears to the densest portion of the aerosol pollution. These data were collected on January 11, 2002, by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard OrbView 2. The heavy aerosol concentrations can be seen blowing eastward across the Bo Hai Bay and Yellow Sea. It appears that some of the pollution has reached as far east as North and South Korea and the islands of Japan. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Sky reconstruction for the Tianlai cylinder array

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Zuo, Shi-Fan; Ansari, Reza; Chen, Xuelei; Li, Yi-Chao; Wu, Feng-Quan; Campagne, Jean-Eric; Magneville, Christophe

    2016-10-01

    We apply our sky map reconstruction method for transit type interferometers to the Tianlai cylinder array. The method is based on spherical harmonic decomposition, and can be applied to a cylindrical array as well as dish arrays and we can compute the instrument response, synthesized beam, transfer function and noise power spectrum. We consider cylinder arrays with feed spacing larger than half a wavelength and, as expected, we find that the arrays with regular spacing have grating lobes which produce spurious images in the reconstructed maps. We show that this problem can be overcome using arrays with a different feed spacing on each cylinder. We present the reconstructed maps, and study the performance in terms of noise power spectrum, transfer function and beams for both regular and irregular feed spacing configurations.

  9. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  10. Blue Skies Research and the global economy

    NASA Astrophysics Data System (ADS)

    Braben, Donald W.

    2002-11-01

    Robert Solow's seminal work of the 1950s showed that science and technology are major sources of long-term global economic growth. But we have recently changed the ways that science and technology are managed. Industrial and academic research once thrived on individual freedom and flair. Progressively for the past three decades or so, however, research has been focused on short-term objectives selected by consensus. Global per-capita growth has steadily declined. Scientific enterprise is losing diversity. Blue Skies Research can help to restore diversity and to create the new technologies that can stimulate growth, but funding agencies nowadays rarely allow total freedom. A new coefficient of adventurousness is described. Its use, or other means, may help restore economic growth to its former levels.

  11. Dark Skies, Bright Kids Year 7

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  12. Hunting the Southern Skies with SIMBA

    NASA Astrophysics Data System (ADS)

    2001-08-01

    First Images from the New "Millimetre Camera" on SEST at La Silla Summary A new instrument, SIMBA ("SEST IMaging Bolometer Array") , has been installed at the Swedish-ESO Submillimetre Telescope (SEST) at the ESO La Silla Observatory in July 2001. It records astronomical images at a wavelength of 1.2 mm and is able to quickly map large sky areas. In order to achieve the best possible sensitivity, SIMBA is cooled to only 0.3 deg above the absolute zero on the temperature scale. SIMBA is the first imaging millimetre instrument in the southern hemisphere . Radiation at this wavelength is mostly emitted from cold dust and ionized gas in a variety of objects in the Universe. Among other, SIMBA now opens exciting prospects for in-depth studies of the "hidden" sites of star formation , deep inside dense interstellar nebulae. While such clouds are impenetrable to optical light, they are transparent to millimetre radiation and SIMBA can therefore observe the associated phenomena, in particular the dust around nascent stars . This sophisticated instrument can also search for disks of cold dust around nearby stars in which planets are being formed or which may be left-overs of this basic process. Equally important, SIMBA may observe extremely distant galaxies in the early universe , recording them while they were still in the formation stage. Various SIMBA images have been obtained during the first tests of the new instrument. The first observations confirm the great promise for unique astronomical studies of the southern sky in the millimetre wavelength region. These results also pave the way towards the Atacama Large Millimeter Array (ALMA) , the giant, joint research project that is now under study in Europe, the USA and Japan. PR Photo 28a/01 : SIMBA image centered on the infrared source IRAS 17175-3544 PR Photo 28b/01 : SIMBA image centered on the infrared source IRAS 18434-0242 PR Photo 28c/01 : SIMBA image centered on the infrared source IRAS 17271-3439 PR Photo 28d/01

  13. Gaia's FPA: sampling the sky in silicon

    NASA Astrophysics Data System (ADS)

    Kohley, Ralf; Garé, Philippe; Vétel, Cyril; Marchais, Denis; Chassat, François

    2012-09-01

    ESÁs astrometry satellite Gaia is scheduled for launch in 2013. In a combination of outstanding hardware performance, autonomous object detection and sophisticated data processing, Gaia will chart more than a billion stars of the entire sky to unprecedented accuracy during its 5 years mission. A key element to its mission success is the focal plane assembly (FPA), the largest ever flown to space, comprising a close-butted almost Giga-pixel mosaic of 106 large area CCDs. Manufacturing and extensive testing of the individual devices and detector system units as well as integration on the single-piece, silicon-carbide support structure has been a challenge. The focal plane is now assembled and has undergone its final tests during 2012. The paper summarizes the expected in-flight performances of Gaiás FPA and the implemented tools and procedures to monitor its operation in space. Accurate knowledge of the impact of FPA performance parameters on individual measurements and its evolution in time is critical to achieve the high accuracy needed in calibrating the science data. An example is the radiation-induced deterioration of the CCD charge transfer efficiency, which acts on distorting the detected object PSFs while observing the sky in continuous scan mode. Through dedicated calibration procedures and directly through the scientific data processing, Gaia will therefore closely track the radiation environment at L2 from the FPA output itself. Detection of transient effects and analysis of persistent damage on the CCDs mainly caused by solar protons converts Gaia's FPA inherently into the largest ever radiation monitor in space.

  14. COSMO-SkyMed Second Generation planner

    NASA Astrophysics Data System (ADS)

    Covello, Fabio; Scopa, Tiziana; Serva, Stefano; Caltagirone, Francesco; De Luca, Giuseppe Francesco; Pacaccio, Alessandro; Profili, Mario

    2014-10-01

    COSMO-SkyMed Second Generation (CSG) system has been conceived, according to Italian Space Agency (ASI) and Italian Ministry of Defence (It-MoD) requirements, at the twofold objective of ensuring operational continuity to the current constellation (COSMO-SkyMed - CSK), while improving functionality and performances. It is an "end-to-end" Italian Earth Observation Dual-Use (Civilian and Defence) Space System with Synthetic Aperture Radar (SAR) operating in X-Band. CSG mission planning purpose is to fully employ the system resources, shared between partners with very different needs, producing a mission plan that satisfies the higher priority requests and optimizes the overall plan with the remaining requests according to the users programming rights consumption. CSG Mission Planning tool provides new performances in terms of adaptability and flexibility of the planning and scheduling algorithms conceived to select and synchronize data acquisition and downloading activities. CSG planning and scheduling problem is characterized by a large size of research space and a particular structure of technical and managerial constraints that has led to the implementation of innovative design of the planning algorithms based on both priority criteria and saturation of system resources. This approach envisages two scheduling strategies: the rank-based and the optimization-based. The former strategy is firstly applied to the most important request categories, with an associated rank value or priority level; the latter is subsequently applied to the unranked or lower priority requests. This is an iterative dynamic process of finding optimal solutions able to better answer the demanding requirements coming from the needs of heterogeneous users.

  15. Dark Skies, Bright Kids: Year 2

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Johnson, K.; Lynch, R.; Walker, L.; Beaton, R.; Corby, J.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Kingery, A.; Layman, S.; Murphy, E.; Richardson, W.; Ries, P.; Romero, C.; Sivakoff, G.; Sokal, K.; Trammell, G.; Whelan, D.; Yang, A.; Zasowski, G.

    2011-01-01

    The Dark Skies, Bright Kids (DSBK) outreach program brings astronomy education into local elementary schools in central Virginia's Southern Albemarle County through an after-school club. Taking advantage of the unusually dark night skies in the rural countryside, DSBK targets economically disadvantaged schools that tend to be underserved due to their rural locale. The goals of DSBK are to foster children's natural curiosity, demonstrate that science is a fun and creative process, challenge students' conceptions of what a scientist is and does, and teach some basic astronomy. Furthermore, DSBK works to assimilate families into students' education by holding family observing nights at the school. Now in its third semester, DSBK has successfully run programs at two schools with very diverse student populations. Working with these students has helped us to revise our activities and to create new ones. A by-product of our work has been the development of lesson plans, complete with learning goals and detailed instructions, that we make publically available on our website. This year we are expanding our repertoire with our new planetarium, which allows us to visualize topics in novel ways and supplements family observing on cloudy nights. The DSBK volunteers have also created a bilingual astronomy artbook --- designed, written, and illustrated by UVa students --- that we will publish and distribute to elementary schools in Virginia. Our book debuted at the last AAS winter meeting, and since then it has been extensively revised and updated with input from many individuals, including parents, professional educators, and a children's book author. Because the club is currently limited to serving a few elementary schools, this book will be part of our efforts to broaden our impact by bringing astronomy to schools we cannot go to ourselves and reaching out to Spanish-speaking communities at the same time.

  16. The ADS All Sky Survey: footprints of astronomy literature, in the sky

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA

    2014-01-01

    The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.

  17. Big Sky Telegraph: Telecommunications Guide to Community Action.

    ERIC Educational Resources Information Center

    Odasz, Frank B., Comp.

    This document contains a wide assortment of papers and promotional materials concerning the Big Sky Telegraph, a Montana-based telecommunications network serving rural economic development organizations. Funded by the US West Foundation and Western Montana College, Big Sky was created to stimulate grassroots innovation in rural education,…

  18. 76 FR 42704 - Sky River LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Sky River LLC; Notice of Filing Take notice that, on July 8, 2011, Sky River LLC filed to amend its Open Access Transmission Tariff (OATT) filing, submitted on April 1, 2011...

  19. Gender Roles and Night-Sky Watching among College Students

    ERIC Educational Resources Information Center

    Kelly, William E.; McGee, Catherine M.

    2012-01-01

    The present study investigated the relationship between gender roles and night-sky watching in a sample of college students (N=161). The Bem Sex-Role Inventory (BSRI) and the Noctcaelador Inventory (NI) were used to investigate the differences between gender role groups for night-sky watching. The results supported the hypothesis that androgynous…

  20. The New Progress of the Starry Sky Project of China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    2015-08-01

    Since the 28th General Assembly of IAU, the SSPC team made new progress:1. Enhanced the function of the SSPC team-- Established the contact with IAU C50, IUCN Dark Skies Advisory Group, AWB and IDA,and undertakes the work of the IDA Beijing Chapter.-- Got supports from China’s National Astronomical Observatories, Beijing Planetarium, and Shanghai Science and Technology Museum.-- Signed cooperation agreements with Lighting Research Center, English Education Group and law Firm; formed the team force.2. Put forward a proposal to national top institutionThe SSPC submitted the first proposal about dark sky protection to the Chinese People’s Political Consultative Conference.3. Introduced the Criteria and Guideline of dark sky protectionThe SSPC team translated 8 documents of IDA, and provided a reference basis for Chinese dark sky protection.4. Actively establish dark sky places-- Plan a Dark Sky Reserve around Ali astronomical observatory (5,100m elevation) in Tibet. China’s Xinhua News Agency released the news.-- Combining with Hangcuo Lake, a National Natural Reserve and Scenic in Tibet, to plan and establish the Dark Sky Park.-- Cooperated with Shandong Longgang Tourism Group to construct the Dream Sky Theme Park in the suburbs of Jinan city.In the IYL 2015, the SSPC is getting further development:First, make dark sky protection enter National Ecological Strategy of “Beautiful China”. We call on: “Beautiful China” needs “Beautiful Night Sky” China should care the shared starry sky, and left this resource and heritage for children.Second, hold “Cosmic Light” exhibition in Shanghai Science and Technology Museum on August.Third, continue to establish Dark Sky Reserve, Park and Theme Park. We want to make these places become the bases of dark sky protection, astronomical education and ecological tourism, and develop into new cultural industry.Fourth, actively join international cooperation.Now, “Blue Sky, White Cloud and Starry Sky “have become

  1. Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network.

    PubMed

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2015-01-01

    In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%-9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs.

  2. Haleakalā Sky Polarization: Full-Sky Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Swindle, R.; Kuhn, J. R.

    2015-10-01

    Observations of the daytime sky polarization are useful calibration tools for large-aperture telescopes, as well as a testbed for polarized radiative transfer models. We present an instrument capable of measuring the complete full-sky Stokes vector over visible/NIR broad bands. The design utilizes liquid crystal variable retarders and a dual-beam polarization analyzer, allowing for a clear and cloudy sky acquisition cadence near 12 s which shows minimal image artifacts from solar and cloud motion. In this article, we detail the design, full-field calibration methodology, and Haleakalā observations, which provide an absolute polarimetric accuracy on individual Stokes parameters of better than 3% across VRI bandpasses. Angle and degree of polarization images are compared with a single-scattering model and the more complete MODTRAN-4P polarized radiative transfer package. Comparisons with independent measurements atop nearby Mauna Loa show similar polarization structure, but results suggest a relatively larger depolarization from surface reflections beneath Haleakalā.

  3. Monitoring the Sky with the Prototype All-Sky Imager on the LWA1

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Taylor, G. B.; Hartman, J. M.; Clarke, T. E.; Dowell, J.; Dubois, A.; Dubois, D.; Henning, P. A.; Lazio, J.; Michalak, S.; Schinzel, F. K.

    2015-03-01

    We present a description of the Prototype All-Sky Imager (PASI), a backend correlator and imager of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real time. PASI has recorded over 13,000hr of all-sky images at frequencies between 10 and 88MHz creating opportunities for new research and discoveries. We also report rate density and pulse energy density limits on transients at 38, 52, and 74MHz, for pulse widths of 5s. We limit transients at those frequencies with pulse energy densities of >2.7×10-23, >1.1×10-23, and >2.8×10-23Jm-2Hz-1 to have rate densities <1.2×10-4, <5.6×10-4, and <7.2×10-4 year-1deg-2.

  4. Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.

    PubMed

    Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R

    2013-03-10

    A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles. PMID:23478763

  5. Monitoring the Low Frequency Sky with the LWA1 and the Prototype All-Sky Imager

    NASA Astrophysics Data System (ADS)

    Obenberger, Kenneth Steven; LWA Collaboration

    2015-01-01

    We present findings from the Prototype All-Sky Imager (PASI), a backend correlator of the first station of the Long Wavelength Array (LWA1). PASI cross-correlates a live stream of all 260 dual-polarization dipole antennas of the LWA1, creates all-sky images, and uploads them to the LWA-TV website in near real-time. PASI has recorded over 14,000 hours of all-sky images at frequencies between 10 and 88 MHz. These data have resulted in the discovery of radio emission from large meteors (Fireballs), and has been used to set improved limits on slow transients at 38, 52, and 74 MHz. PASI is also being used to characterize how the ionosphere affects low frequency transient astronomy. Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST-1139974 of the University Radio Observatory program.

  6. Stability of the Nine Sky Quality Meters in the Dutch Night Sky Brightness Monitoring Network

    PubMed Central

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2015-01-01

    In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%–9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs. PMID:25912348

  7. Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network.

    PubMed

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2015-01-01

    In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%-9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs. PMID:25912348

  8. Night Sky Quality Measurements at the ATA50 Telescope

    NASA Astrophysics Data System (ADS)

    Er, Hüseyin; Nasiroglu, Ilham; Guney, Yavuz

    2016-07-01

    One of the most important factor affecting the quality of the sky in astronomy is the light pollution (luminance of the night sky). Light pollution, also affects humans and wildlife in many ways. This effect occurs by using the light source of outdoor lighting in the wrong way. Light pollution can be reduced by lighting only what is actually needed, when and where it is needed. In generally, SQM (Sky Quality Meter- Clear Sky Detector) is used to measure this light effect. In this work we present night sky brightness measurements performed at the Atatürk University Astrophysics Research Telescope (ATA50) and the surrounding area, Erzurum, TURKEY. We also discussed the physical impacts of light pollution on science, humans and wildlife.

  9. Measurement of night sky brightness in southern Australia

    NASA Astrophysics Data System (ADS)

    Hampf, Daniel; Rowell, Gavin; Wild, Neville; Sudholz, Tristan; Horns, Dieter; Tluczykont, Martin

    2011-09-01

    Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments. The measurements of night sky brightness presented here were carried out at Fowler's Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE. A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands. The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 × 10 12 photons/(s sr m 2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec 2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 × 10 -3 sr. The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.

  10. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  11. An Icelandic wind atlas

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  12. Atlas of NATO.

    ERIC Educational Resources Information Center

    Young, Harry F.

    This atlas provides basic information about the North Atlantic Treaty Organization (NATO). Formed in response to growing concern for the security of Western Europe after World War II, NATO is a vehicle for Western efforts to reduce East-West tensions and the level of armaments. NATO promotes political and economic collaboration as well as military…

  13. Predicting the sky from 30 MHz to 800 GHz: the extended Global Sky Model

    NASA Astrophysics Data System (ADS)

    Liu, Adrian

    We propose to construct the extended Global Sky Model (eGSM), a software package and associated data products that are capable of generating maps of the sky at any frequency within a broad range (30 MHz to 800 GHz). The eGSM is constructed from archival data, and its outputs will include not only "best estimate" sky maps, but also accurate error bars and the ability to generate random realizations of missing modes in the input data. Such views of the sky are crucial in the practice of precision cosmology, where our ability to constrain cosmological parameters and detect new phenomena (such as B-mode signatures from primordial gravitational waves, or spectral distortions of the Cosmic Microwave Background; CMB) rests crucially on our ability to remove systematic foreground contamination. Doing so requires empirical measurements of the foreground sky brightness (such as that arising from Galactic synchrotron radiation, among other sources), which are typically performed only at select narrow wavelength ranges. We aim to transcend traditional wavelength limits by optimally combining existing data to provide a comprehensive view of the foreground sky at any frequency within the broad range of 30 MHz to 800 GHz. Previous efforts to interpolate between multi-frequency maps resulted in the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008), a software package that outputs foreground maps at any frequency of the user's choosing between 10 MHz and 100 GHz. However, the GSM has a number of shortcomings. First and foremost, the GSM does not include the latest archival data from the Planck satellite. Multi-frequency models depend crucially on data from Planck, WMAP, and COBE to provide high-frequency "anchor" maps. Another crucial shortcoming is the lack of error bars in the output maps. Finally, the GSM is only able to predict temperature (i.e., total intensity) maps, and not polarization information. With the recent release of Planck's polarized data products, the

  14. Monitoring the night sky with the Cerro Tololo All-Sky camera for the TMT and LSST projects

    NASA Astrophysics Data System (ADS)

    Walker, David E.; Schwarz, Hugo E.; Bustos, Edison

    2006-06-01

    The All-Sky camera used in the LSST and TMT site testing campaigns is described and some early results are shown. The All-Sky camera takes images of the entire visible hemisphere of sky every 30s in blue, red, Y and Z filters giving enhanced contrast for the detection of clouds, airglow and the near-infrared. Animation is used to show movement of clouds. An additional narrow band filter is centered on the most prominent line of the sodium vapor lamp spectra and is used to monitor any man-made light pollution near the site. The camera also detects aircraft lights and contrails, satellites, meteor(ite)s, local light polluters, and can be used for stellar extinction monitoring and for photometry of transient astronomical objects. For outreach and education the All-Sky camera can show wandering planets, diurnal rotation of the sky, the zodiacal light, and similar astronomical basics.

  15. The Extreme and Variable High Energy Sky

    NASA Astrophysics Data System (ADS)

    A critically important region of the astrophysical spectrum is the hard X-ray/gamma-ray band, from the keV to the GeV energy range. In this band, an unusually rich range of astrophysical processes occur: this is the energy domain where fundamental changes from thermal to non-thermal sources/phenomena are expected, where the effects of absorption are drastically reduced and a clearer picture of the Universe is possible. This is also the energy range where most of the extreme astrophysical behavior is taking place, e.g. cosmic acceleration, explosions and accretion onto black holes and neutron stars; where variability is more the rule than the exception and where a number of instruments are actively working (e.g. INTEGRAL, SWIFT, Suzaku, MAXI, AGILE, Fermi and HESS). These telescopes are providing an unprecedented view of the high energy sky. Combined with data obtained at lower energies from a number of satellites and ground based telescopes we have for the first time the possibility of studying this extreme and variable sky over a very broad energy band and with unprecedented sensitivity.The workshop is aimed at bringing together scientists active across the field of high energy astrophysics in order to focus on the opportunities offered by the high energy window both from the observational and theoretical viewpoints, while a dedicated section will also be devoted to discuss the current status of planned and future missions. The meeting will consist of invited talks and contributions which are welcome as either posters or as short presentations. There will be time for open discussions throughout.We intend to cover the most extreme phenomena associated with acceleration, explosions and accretion onto galactic and extragalactic objects as well as to study variability in all types of objects and environments. In view of the extension of INTEGRAL operational lifetime, the workshop will provide a unique opportunity to prepare for extra observational possibility and to

  16. The Herschel-ATLAS Data Release 1 - II. Multi-wavelength counterparts to submillimetre sources

    NASA Astrophysics Data System (ADS)

    Bourne, N.; Dunne, L.; Maddox, S. J.; Dye, S.; Furlanetto, C.; Hoyos, C.; Smith, D. J. B.; Eales, S.; Smith, M. W. L.; Valiante, E.; Alpaslan, M.; Andrae, E.; Baldry, I. K.; Cluver, M. E.; Cooray, A.; Driver, S. P.; Dunlop, J. S.; Grootes, M. W.; Ivison, R. J.; Jarrett, T. H.; Liske, J.; Madore, B. F.; Popescu, C. C.; Robotham, A. G.; Rowlands, K.; Seibert, M.; Thompson, M. A.; Tuffs, R. J.; Viaene, S.; Wright, A. H.

    2016-10-01

    This paper is the second in a pair of papers presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500 μm covering a total area of 600 deg2. In this paper, we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg2 over three equatorial fields of roughly 12 × 4.5 deg centred at 9h, 12h and 14{^h.}5, respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood ratio technique to identify Sloan Digital Sky Survey counterparts at r < 22.4 for 250-μm-selected sources detected at ≥4σ (≈28 mJy). We find `reliable' counterparts (reliability R ≥ 0.8) for 44 835 sources (39 per cent), with an estimated completeness of 73.0 per cent and contamination rate of 4.7 per cent. Using redshifts and multi-wavelength photometry from GAMA and other public catalogues, we show that H-ATLAS-selected galaxies at z < 0.5 span a wide range of optical colours, total infrared (IR) luminosities and IR/UV ratios, with no strong disposition towards mid-IR-classified active galactic nuclei in comparison with optical selection. The data described herein, together with all maps and catalogues described in the companion paper, are available from the H-ATLAS website at www.h-atlas.org.

  17. All Sky Cloud Coverage Monitoring for SONG-China Project

    NASA Astrophysics Data System (ADS)

    Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.

    2016-05-01

    In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.

  18. Sky Background Variability Measured on Maunakea at Gemini North Observatory

    NASA Astrophysics Data System (ADS)

    Smith, Adam B.; Roth, Katherine; Stephens, Andrew W.

    2016-01-01

    Gemini North has recently implemented a Quality Assessment Pipeline (QAP) that automatically reduces images in realtime to determine sky condition quantities, including background sky brightness from the optical to near-infrared. Processing archived images through the QAP and mining the results allows us to look for trends and systematic issues with the instruments and optics during the first decade of Gemini.Here we present the results of using the QAP calculated values to quantify how airglow affects the background sky brightness of images taken with Gemini's imaging instruments, GMOS and NIRI, as well as searching for other factors that may cause changes in the sky brightness. By investigating the dependence of measured sky brightness as a function of a variety of variables, including time after twilight, airmass, season, distance from the moon, air temperature, etc., we quantify the effect of sky brightness and its impact on the sensitivity of Gemini optical and near-infrared imaging data. These measurements will be used to determine new sky background relationships for Maunakea, and to improve the Gemini Integration Time Calculators (ITCs).

  19. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  20. Color Variations in the Sky at Sunset

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of the martian sunset from Sol 24 shows much more color variation than had previously been seen. The blue color near the Sun is not caused by clouds of water ice, but by the martian dust itself. The dust in the atmosphere absorbs blue light, giving the sky its red color, but it also scatters some of the blue light into the area just around the Sun because of its size. The blue color only becomes apparent near sunrise and sunset, when the light has to pass through the largest amount of dust. This image was taken by the Imager for Mars Pathfinder.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Far Infrared All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1998-01-01

    Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.

  2. MUSE dream conclusion: the sky verdict

    NASA Astrophysics Data System (ADS)

    Caillier, P.; Accardo, M.; Adjali, L.; Anwand, H.; Bacon, R.; Boudon, D.; Capoani, L.; Daguisé, E.; Dupieux, M.; Dupuy, C.; Francois, M.; Glindemann, A.; Gojak, D.; Gonté, F.; Haddad, N.; Hansali, G.; Hahn, T.; Jarno, A.; Kelz, A.; Koehler, C.; Kosmalski, J.; Laurent, F.; Larrieu, M.; Lizon, J.-L.; Loupias, M.; Manescau, A.; Migniau, J.-E.; Monstein, C.; Nicklas, H.; Parès, L.; Pécontal-Rousset, A.; Piqueras, L.; Reiss, R.; Remillieux, A.; Renault, E.; Rupprecht, G.; Streicher, O.; Stuik, R.; Valentin, H.; Vernet, J.; Weilbacher, P.; Zins, G.

    2014-08-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument built for ESO (European Southern Observatory). The MUSE project is supported by a European consortium of 7 institutes. After the finalisation of its integration in Europe, the MUSE instrument has been partially dismounted and shipped to the VLT (Very Large Telescope) in Chile. From October 2013 till February 2014, it has then been reassembled, tested and finally installed on the telescope its final home. From there it collects its first photons coming from the outer limit of the visible universe. This critical moment when the instrument finally meets its destiny is the opportunity to look at the overall outcome of the project and the final performance of the instrument on the sky. The instrument which we dreamt of has become reality. Are the dreamt performances there as well? These final instrumental performances are the result of a step by step process of design, manufacturing, assembly, test and integration. Now is also time to review the path opened by the MUSE project. What challenges were faced during those last steps, what strategy, what choices did pay off? What did not?

  3. Dark Skies, Bright Kids Year 6

    NASA Astrophysics Data System (ADS)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine

    2015-01-01

    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  4. The Sloan Digital Sky Survey Photometric Camera

    SciTech Connect

    Gunn, J.E.; Carr, M.; Rockosi, C.; Sekiguchi, M.; Berry, K.; Elms, B.; de Haas, E.; Ivezic, Z.; Knapp, G.; Lupton, R.; Pauls, G.; Simcoe, R.; Hirsch, R.; Sanford, D.; Wang, S.; York, D.; Harris, F.; Annis, J.; Bartozek, L.; Boroski, W.; Bakken, J.; Haldeman, M.; Kent, S.; Holm, S.; Holmgren, D.; Petravick, D.; Prosapio, A.; Rechenmacher, R.; Doi, M.; Fukugita, M.; Shimasaku, K.; Okada, N.; Hull, C.; Siegmund, W.; Mannery, E.; Blouke, M.; Heidtman, D.; Schneider, D.; Lucinio, R.; and others

    1998-12-01

    We have constructed a large-format mosaic CCD camera for the Sloan Digital Sky Survey. The camera consists of two arrays, a photometric array that uses 30 2048 {times} 2048 SITe/Tektronix CCDs (24 {mu}m pixels) with an effective imaging area of 720 cm{sup 2} and an astrometric array that uses 24 400 {times} 2048 CCDs with the same pixel size, which will allow us to tie bright astrometric standard stars to the objects imaged in the photometric camera. The instrument will be used to carry out photometry essentially simultaneously in five color bands spanning the range accessible to silicon detectors on the ground in the time-delay{endash}and{endash}integrate (TDI) scanning mode. The photometric detectors are arrayed in the focal plane in six columns of five chips each such that two scans cover a filled stripe 2&arcdeg;5 wide. This paper presents engineering and technical details of the camera. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  5. Surprise Ultraviolet Party in the Sky

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Galaxies aren't the only objects filling up the view of NASA's Galaxy Evolution Explorer. Since its launch in 2003, the space telescope -- originally designed to observe galaxies across the universe in ultraviolet light -- has discovered a festive sky blinking with flaring and erupting stars, as well as streaking asteroids, satellites and space debris. A group of six streaking objects -- the identities of which remain unknown -- can be seen here flying across the telescope's sight in this sped-up movie.

    The two brightest objects appear to perform a sharp turn then travel in the reverse direction. This illusion is most likely the result of the Galaxy Evolution Explorer overtaking the objects as it orbits around Earth.

    Careful inspection reveals four additional faint objects with the same timing and behavior. These faint objects are easiest to see during the retrograde portion of their paths. Three appear between the two bright sources, and one is above them, near the edge of the field of view.

    These bonus objects are being collected in to public catalogues for other astronomers to study.

  6. Improving atlas methodology

    USGS Publications Warehouse

    Robbins, C.S.; Dowell, B.A.; O'Brien, J.

    1987-01-01

    We are studying a sample of Maryland (2 %) and New Hampshire (4 %) Atlas blocks and a small sample in Maine. These three States used different sampling methods and block sizes. We compare sampling techniques, roadside with off-road coverage, our coverage with that of the volunteers, and different methods of quantifying Atlas results. The 7 1/2' (12-km) blocks used in the Maine Atlas are satisfactory for coarse mapping, but are too large to enable changes to be detected in the future. Most states are subdividing the standard 7 1/2' maps into six 5-km blocks. The random 1/6 sample of 5-km blocks used in New Hampshire, Vermont (published 1985), and many other states has the advantage of permitting detection of some changes in the future, but the disadvantage of leaving important habitats unsampled. The Maryland system of atlasing all 1,200 5-km blocks and covering one out of each six by quarterblocks (2 1/2-km) is far superior if enough observers can be found. A good compromise, not yet attempted, would be to Atlas a 1/6 random sample of 5-km blocks and also one other carefully selected (non-random) block on the same 7 1/2' map--the block that would include the best sample of habitats or elevations not in the random block. In our sample the second block raised the percentage of birds found from 86% of the birds recorded in the 7 1/2' quadrangle to 93%. It was helpful to list the expected species in each block and to revise this list annually. We estimate that 90-100 species could be found with intensive effort in most Maryland blocks; perhaps 95-105 in New Hampshire. It was also helpful to know which species were under-sampled so we could make a special effort to search for these. A total of 75 species per block (or 75% of the expected species in blocks with very restricted habitat diversity) is considered a practical and adequate goal in these States. When fewer than 60 species are found per block, a high proportion of the rarer species are missed, as well as some of

  7. The Emu Sky Knowledge of the Kamilaroi and Euahlayi Peoples

    NASA Astrophysics Data System (ADS)

    Fuller, Robert S.; Anderson, Michael G.; Norris, Ray P.; Trudgett, Michelle

    2014-07-01

    This paper presents a detailed study of the knowledge of the Kamilaroi and Euahlayi peoples about the "Emu in the Sky". This study was done with ethnographic data that was not previously reported in detail. We surveyed the literature to find that there are widespread reports of an "Emu in the Sky" across Aboriginal Australian language groups, but little detailed knowledge available in the literature. This paper reports and describes a comprehensive Kamilaroi and Euahlayi knowledge of the Emu in the Sky and its cultural context.

  8. Summary of sky brightness measurements during eclipses of the sun.

    PubMed

    Sharp, W E; Silverman, S M; Lloyd, J W

    1971-06-01

    A selected group of measurements of the sky brightness during total solar eclipses is used to determine a standard light curve during the period from no obscuration to totality. It is found that the sky light may be considered as attenuated sunlight up to at least 99.8% obscuration. During totality, the sky light consists of multiply scattered light from outside the umbral region. The effects of solar elevation angle, cloud cover, and albedo and the variability of the light curve during totality are discussed.

  9. SNAP sky background at the north ecliptic pole

    SciTech Connect

    Aldering, Greg

    2002-07-01

    I summarize the extant direct and indirect data on the sky background SNAP will see at the North Ecliptic Pole over the wavelength range 0.4 < {lambda} < 1.7 {micro}m. At the spatial resolution of SNAP the sky background due to stars and galaxies is resolved, so the only source considered is zodiacal light. Several models are explored to provide interpolation in wavelength between the broadband data from HST and COBE observations. I believe the input data are now established well enough that the accuracy of the sky background presented here is sufficient for SNAP simulations, and that it will stand up to scrutiny by reviewers.

  10. Summary of sky brightness measurements during eclipses of the sun.

    PubMed

    Sharp, W E; Silverman, S M; Lloyd, J W

    1971-06-01

    A selected group of measurements of the sky brightness during total solar eclipses is used to determine a standard light curve during the period from no obscuration to totality. It is found that the sky light may be considered as attenuated sunlight up to at least 99.8% obscuration. During totality, the sky light consists of multiply scattered light from outside the umbral region. The effects of solar elevation angle, cloud cover, and albedo and the variability of the light curve during totality are discussed. PMID:20111096

  11. Promoting Landspace Astrophotography for Dark Sky Preservation in Nepal

    NASA Astrophysics Data System (ADS)

    Dwa, Manisha; Bhattarai, Suresh

    2015-08-01

    This paper will present astrophotography and dark sky preservation initiatives and its impact in Nepal. It will highlight the astrophotography and the dark skies Initiatives of Nepal Astronomical Society (NASO) since 2007. Some case studies from the landspace astrophotography by TWAN, EurAstro Mission and others promoted by NASO will be discussed in details. It will also present our collaborative approach with the media to take the idea of dark sky peservation to Nepalese Community in the country and abroad. Some success stories linked with UNESCO World Heritage Sites of Nepal will be discussed in brief. Our appreach of introducing such photography as a tool for astronomy communication will be discussed.

  12. Pi of the Sky preparations towards advanced gravitational detector era

    NASA Astrophysics Data System (ADS)

    ZadroŻny, Adam; Opiela, Rafał; Obara, Łukasz; Sokołowski, Marcin

    2014-11-01

    Pi of the Sky telescope have taken part in gravitational wave EM follow-up project, runned by LSC-Virgo Collaboration, in its initial run in 2009-2010. Since than gravitational wave detectors are being upgraded and become operation in 2015, when the next science run is planned. The paper focuses on Pi of the Sky preparations to LSC-Virgo EM Follow-up project of gravitational wave transient candidates in 2015+ and on Pi of the Sky results of previous science run 2009-2010.

  13. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  14. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  15. Assessment Atlas, 1982-83.

    ERIC Educational Resources Information Center

    Yosemite Community Coll. District, Modesto, CA.

    Designed to provide information of value in establishing a base for decisionmaking in the Yosemite Community College District (YCCD), this assessment atlas graphically presents statistical data on the District as a whole, its two campuses, and YCCD Central Services for 1982-83. After an introduction to the use of the assessment atlas and…

  16. Assessment Atlas, 1983-84.

    ERIC Educational Resources Information Center

    Yosemite Community Coll. District, Modesto, CA.

    Designed to provide information of value in establishing a base for decision making in the Yosemite Community College District (YCCD), this assessment atlas graphically presents statistical data for the District as a whole, its two campuses, and YCCD Central Services for 1983-84. After an introduction to the use of the assessment atlas and…

  17. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  18. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  19. The High Time Resolution Radio Sky

    NASA Astrophysics Data System (ADS)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  20. 25. VIEW OF UPPER PORTION OF GRAND STAIRWAY SHOWING SKY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF UPPER PORTION OF GRAND STAIRWAY SHOWING SKY LIGHT, COLUMN CAPITALS AND COFFERED CEILING. PHOTO TAKEN FROM SOUTHWEST CORNER OF SECOND FLOOR LOOKING NORTHEAST. - Yakima National Guard Armory, 202 South Third Street, Yakima, Yakima County, WA

  1. Feasibility of polarized all-sky imaging for aerosol characterization

    NASA Astrophysics Data System (ADS)

    Kreuter, A.; Blumthaler, M.

    2012-12-01

    Polarized all-sky distribution measurements contain radiative information about aerosol properties. We investigate the method of all-sky imaging for aerosol property retrieval and propose a technical frame work for image processing and analysis. Using Zernike polynomials, we decompose the relative Stokes parameter distributions, which efficiently captures the information content. The resulting feature vector is well suited for all-sky imaging, independent of calibration and robust against noise. It can be directly used in existing algorithms or alternative types of retrieval methods of aerosol optical properties in the future. By modeling possible aerosol scenarios we investigate the influence of different aerosol types in terms of the first two principal components describing the maximal variances. In this representation we show that the feature vector from a polarized all-sky imager is suitable for aerosol classification with respect to size and single scatter albedo.

  2. J-2X Powerpack Test Lights Up the Sky

    NASA Video Gallery

    A burst of flame from a J-2X Powerpack test-firing lights up the sky on Dec. 5, 2012 at NASA's Stennis Space Center in Mississippi. For the first time, the Space Launch System team invited Twitter ...

  3. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  4. Sky view factors in forest canopies calculated with IDRISI

    NASA Astrophysics Data System (ADS)

    Holmer, B.; Postgård, U.; Eriksson, M.

    The sky view factor (SVF) is used in forest, road and urban climatology to characterise radiative properties. We now propose a method suitable for forest canopies using the raster based and commercially available software IDRISI. It uses quadratic pixels in rows and columns in a scanned equiangular fish-eye image. A threshold value is chosen to divide the image into sky and non-sky areas. The resulting image is then multiplied with a sky view weight image, where the weights of the pixels depend on the angular distance from zenith. The sum of pixel products gives the SVF. Quality analysis of the method is also performed. The choice of threshold value gives some uncertainties due to leaves reflecting sunlight. This error will be reduced by observing details (branches etc.) in the image and by choosing an overcast day for capturing the image. The precision range for SVF calculations will be better than 0.1.

  5. Dark Skies, Bright Kids! Year 4

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R.; Borish, J.; Crawford, S. B.; Corby, J.; Damke, G.; Dean, J.; Dorsey, G.; Jackson, L.; Liss, S.; Oza, A.; Peacock, S.; Prager, B.; Romero, C.; Sivakoff, G. R.; Walker, L.; Whelan, D. G.; Zucker, C.

    2013-01-01

    Aiming to engage young children's natural excitement and curiosity, the outreach group Dark Skies, Bright Kids (DSBK) brings a hands-on approach to astronomy to elementary schools in Virginia. We hope to enhance children's view and understanding of science while exploring the Universe using fun activities. DSBK focuses on rural and underserved schools in Albemarle County and offers a semester-long astronomy club for third through fifth grade students. We believe regular interactions foster personal relationships between students and volunteers that encourage a life-long interest in science. In our fourth year of hosting clubs, we returned to Ivy Creek Elementary School, where we saw wonderful responses from a special group of students with `low-incidence' disabilities. DSBK has grown to realize a broader reach beyond local astronomy clubs; we hope to ignite a spark of interest in astronomy and science more widely- in more children, their families, and their teachers. We also hosted the Second Annual Central Virginia Star Party with an open invitation to the community to encourage families to enjoy astronomy together. Throughout the year, DSBK now holds 'one-off' programs (akin to astronomy field days) for elementary schools and children's groups throughout Virginia. Furthermore, we are in the final stages of a project to create two bilingual astronomy books called "Snapshots of the Universe", in Spanish and French with English translations. This art book will be made available online and we are working to get a copy in every elementary school in the state. DSBK has begun to reach out to elementary school teachers in order to provide them with useful and engaging classroom material. We have adapted our volunteer-created activities into useful and ready-to-use lessons, available online. After improvements based on research through interactions and feedback from teachers, we have explicitly identified the learning goals in terms of Virginia's Standards of Learning

  6. "Sausage" and "Toothbrush" in the Sky

    NASA Astrophysics Data System (ADS)

    Jee, Myungkook J.; Dawson, William; Van Weeren, Reinout J.; Wittman, David M.; Merging Cluster Collaborations

    2016-06-01

    Radio-relic clusters are a subclass of merging clusters that exhibit elongated diffuse radio emissions at the periphery of the systems. A number of observational and theoretical studies support the premise that the relics trace the locations of shock fronts induced by cluster mergers. Detailed analysis of the radio relic data enables us to put independent constraints on the key parameters necessary in our reconstruction of the merging scenario, including the direction of the merger, the projection angle between the merger axis and the plane of the sky, the shock velocity, and the time since the impact. Because of the limited observational time window set by both development and deterioration of mature shocks, only a few tens of radio relic clusters are known to date. In this poster, we present a detailed study of the two radio-relic clusters CIZA J2242.8+5301 and RX J0603.3+4214, whose peculiar radio-relic morphologies give them the nicknames "Sausage" and "Toothbrush", respectively. Both clusters possess remarkably large (~2 Mpc) radio relics stretched perpendicular to the hypothesized merger axes. After briefly reviewing previous studies, we highlight our recent weak-lensing analysis of these two interesting systems. We find that the "Sausage" cluster's dark matter is elongated along the merger axis and composed of two massive systems, each weighing ~1015 solar masses. On the other hand, the dark matter of the "Toothbrush" cluster is distributed complicatedly and resolved into at least four subclusters with relatively modest masses. Our weak-lensing studies help us to constrain the merger scenarios and enable detailed follow-up numerical studies in the future.

  7. Full-sky Astrometric Mapping Explorer (FAME)

    NASA Astrophysics Data System (ADS)

    Johnston, K.; Gaume, R.; Harris, F.; Monet, D.; Murison, M.; Seidelmann, P. K.; Urban, S.; Johnson, M.; Horner, S.; Vassar, R.

    2000-12-01

    The FAME project began Phase B development in September 2000. FAME is a MIDEX class NASA Explorer mission that will perform an all-sky, astrometric survey with unprecedented accuracy. FAME will produce an astrometric catalog of 40 million stars between 5th and 15th magnitude. For the bright stars (5th to 9th magnitude) FAME will determine positions and parallaxes accurate to better than 50 microarcseconds, with proper motion errors less than 50 microarcseconds per year. For the fainter stars (between 9th and 15th magnitude) FAME will determine positions and parallaxes accurate to better than 500 microarcseconds, with proper motion errors less than 500 microarcseconds per year. FAME will also collect photometric data on these 40 million stars in four Sloan DSS colors. The FAME science, instrument, and spacecraft requirements and error budgets are being refined to establish the basis for the improved design of the instrument and spacecraft. The Attitude Control System (ACS) based on solar radiation pressure is being studied, including the limitations on the solar angle between the Sun and the rotation angle. The data processing plans are being developed. The CCD procurement contract is in place and design and fabrication of the CCDs is in progress. CCD tests for operations in various Time Delay Integration (TDI) situations are underway and described in another poster. It appears that the current FAME launch schedule will be delayed somewhat due to recent NASA budget restrictions. The FAME project is funded by the NASA Explorer program administered by Goddard Space Flight Center for the Office of Space Science under contract number S-13610-Y.

  8. Dark Skies, Bright Kids! Year 3

    NASA Astrophysics Data System (ADS)

    Whelan, David G.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R. L.; Borish, J.; Corby, J. F.; Dorsey, G.; Gugliucci, N. E.; Prager, B. J.; Ries, P. A.; Romero, C. E.; Sokal, K. R.; Tang, X.; Walker, L. M.; Yang, A. J.; Zasowski, G.

    2012-01-01

    Dark Skies, Bright Kids! (DSBK) is a program that brings astronomy education to elementary schools throughout central Virginia. In a relaxed, out-of-classroom atmosphere, we are able to foster the innate curiosity that young students have about science and the world around them. We target schools that are under-served due to their rural locale or special needs students, demonstrating that science is a fun and creative process to a segment of the population that might not otherwise be exposed to astronomy. Families are included in the learning experience during semi-annual `star parties'. Since last January, we have expanded the breadth and depth of our educational capabilities. We have developed new programs for use in our digital planetarium. We held the first Central Virginia Star Party, providing an atmosphere where local children from multiple schools were able to share their love for astronomy. Local government and University officials were also invited so that they could experience our focused science outreach. Most recently, we have become part of Ivy Creek School's Club Day activities, bringing our program to a new segment of the elementary school system in Albemarle County: those that have `low-incidence' disabilities, requiring special attention. We continue to develop a curriculum for after-school programs that functions as either a series of one-time activities or several months of focused outreach at one school. Many of these activities are provided on our website, http://www.astro.virginia.edu/dsbk/, for the wider astronomical community, including the new planetarium work. We have extended our book project to include two bilingual astronomy books called `Snapshots of the Universe,' one in Spanish and English, the other in French and English. These books introduce young people to some of the many wonders of the Universe through art and captions developed by DSBK volunteers.

  9. Cosmic Atlas: A Real-Time Universe Simulation

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Jenkins, N. E.

    2004-05-01

    Cosmic Atlas is a software program produced at the Denver Museum of Nature & Science to generate real-time digital content for the Museum's Gates Planetarium. Created by in-house staff, Cosmic Atlas is designed to be scientifically accurate, flexible, easily updated to stay current with new discoveries, and portable to multiple platforms. It is currently developed using desktop computers running a Linux OS, and is also installed on a multi-graphics pipe SGI visualization computer running the IRIX OS in the Gates Planetarium. The software can be used in real-time presentations via traditional ``star talks'' and classes, but can also be used to devise flightpaths, perform timeline-based editing, play back flightpaths in real-time, and save out image renders for creating video files to be shown on additional playback systems. The first version of the program is meant to replicate the functionality of a traditional optical-mechanical star ball, and hence creates a replica of the night time sky, with constellations, deep sky objects, and didactic information and grids. The Solar System is a realistic, three-dimensional, navigable simulation, updated with the latest moon and minor planet discoveries, and with motions over time determined by a customized orrery. Additional modules can show traditional astronomical imagery, including an application for loading in FITS files to create three-color composites. A three-dimensional model of the Milky Way is in development, populated with HIPPARCOS stars for the local galactic neighborhood, and with molecular clouds constructed from large-scale CO survey data; more distant regions are filled with statistically generated stellar and interstellar medium distributions.

  10. ATLAS-1 Logo

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary payload for the Space Shuttle mission STS-45, launched March 24, 1992, was the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1)which was mounted on nondeployable Spacelab pallets in the orbiter cargo bay. Eight countries, th U.S., France, Germany, Belgium, United Kingdom, Switzerland, The Netherlands, and Japan, provided 12 instruments designed to perform 14 investigations in four fields. Atmospheric science instruments/investigations: Atmospheric Lyman-Alpha Emissions (ALAE); Atmospheric Trace Molecule Spectroscopy (ATMOS); Grille Spectrometer (GRILLE); Imaging Spectrometric Observatory (ISO); Millimeter-Wave Atmospheric Sounder (MAS). Solar Science: Active Cavity Radiometer Irradiance Monitor (ACRIM); Measurement of the Solar Constant (SOLCON); Solar Spectrum from 180 to 3,200 Nanometers (SOLSPEC); Solar Ultraviolet Spectral Irradiance Monitor (SUSIM). Space Plasma Physics: Atmospheric Emissions Photometric Imaging (AEPI); Space Experiments with Particle Accelerators (SEPAC). Ultraviolet astronomy: Far Ultraviolet Space Telescope (FAUST). This is the logo or emblem that was designed to represent the ATLAS-1 payload.

  11. The Status of the NASA All Sky Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Moser, Danielle E.

    2011-01-01

    Established by the NASA Meteoroid Environment Office, the NASA All Sky Fireball Network consists of 6 meteor video cameras in the southern United States, with plans to expand to 15 cameras by 2013. As of mid-2011, the network had detected 1796 multi-station meteors, including meteors from 43 different meteor showers. The current status of the NASA All Sky Fireball Network is described, alongside preliminary results.

  12. Worldwide Impact: International Year of Astronomy Dark Skies Awareness Programs

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Isbell, D.

    2009-12-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, “Dark Skies Awareness” is a global cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs through: - New Technology (website, podcasts, social networking, Second Life) - Educational Materials (Great Switch Out, a traveling exhibit, brochures, posters, CDs, DVDs, educational kit) - The Arts (photo contest) - Events (Earth Hour, International Dark Sky Week, World Night in Defense of Starlight, Dark Skies Discovery Sites, Sidewalk Astronomy, Nights in the Parks) - Citizen Science Programs (5 star hunting programs & Quiet Skies) Dark Skies Communities (Starlight Initiative, International Dark Sky Communities) Many countries around the world have participated in these programs. We will highlight 24 countries in particular and focus on successful techniques used in aspects of the programs, results and impact on the audience, and plans and challenges for maintaining or extending the program beyond the International Year of Astronomy. The International Year of Astronomy 2009 is partially funded from a grant from the National Science Foundation (NSF) Astronomy Division. The National Optical Astronomy Observatory is host to the IYA2009 Dark Skies Awareness programs and is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with NSF.

  13. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-01-01

    We present the new results from the Chandra Galaxy Atlas prpject. We have systematically analyzed the archival Chandra data of 50 early type galaxies to study their hot ISM. Taking full advantage of the Chandra capabilities, we produced spatially resolved data products with additional spectral information. We will make these products publicly available and use them for our focused science goals, e.g., gas morphology, scaling relation, X-ray based mass profile, circum-nuclear gas.

  14. Topographical atlas sheets

    USGS Publications Warehouse

    Wheeler, George Montague

    1876-01-01

    The following topographical atlas sheets, accompanying Appendix J.J. of the Annual Report of the Chief of Engineers, U.S. Army-being Annual Report upon U. S. Geographical Surveys-have been published during the fiscal year ending June 30, 1876, and are a portion of the series projected to embrace the territory of the United States lying west of the 100th meridian.

  15. WESTCARB Carbon Atlas

    DOE Data Explorer

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  16. ATLAS reliability analysis

    SciTech Connect

    Bartsch, R.R.

    1995-09-01

    Key elements of the 36 MJ ATLAS capacitor bank have been evaluated for individual probabilities of failure. These have been combined to estimate system reliability which is to be greater than 95% on each experimental shot. This analysis utilizes Weibull or Weibull-like distributions with increasing probability of failure with the number of shots. For transmission line insulation, a minimum thickness is obtained and for the railgaps, a method for obtaining a maintenance interval from forthcoming life tests is suggested.

  17. Preserving Dark Skies in National Parks for Future Generations

    NASA Astrophysics Data System (ADS)

    Duriscoe, C. S.; Duriscoe, D. M.

    2004-12-01

    The United States National Park Service (NPS) has formed a team of professional scientists and naturalists to monitor the effects of light pollution in parks throughout the country, from sources both within and outside the parks. The NPS Night Sky Team is using a wide field CCD camera to quantify sky quality by imaging the entire sky under varying optical extinction conditions. A component of the program utilizes these images and other materials to convey the National Park Service mission of protecting the night sky "unimpaired for the enjoyment of future generations." This education outreach effort includes the dissemination of results from the research and monitoring, brochures for the general public, astronomy activity guide for grades 6-12 emphasizing light pollution and dark skies as one of the national parks' primary resources, and astronomy activities for the public in parks, often in collaboration with local amateur astronomy groups. Other potential accomplishments include the location of observatories in parks, a website for the Night Sky Team, and the instigation of lighting retrofits within parks. This program is funded primarily by the United States Department of Interior, National Park Service

  18. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  19. Open Skies: Facilitating the many dimensions of transparency

    SciTech Connect

    Allentuck, J.

    1993-08-01

    The Treaty on Open Skies (Open Skies) was signed on 24 March 1992 by 23 European nations in addition to the United States and Canada. Unlike other arms control treaties which prohibit specific weapons or weapon systems, Open Skies is intended to provide, in the words of its preamble, means ``to facilitate the monitoring of compliance with existing or future arms control agreements.`` In addition, its objectives include the ``improvement of openness and transparency for conflict prevention and crises management in the framework of the Conference on Security and Cooperation in Europe and in other relevant international institutions.`` The preamble also alludes to the possible extension of the Open Skies regime into additional (non-arms control) fields, such as environmental protection. Not mentioned is an objective which the treaty would appear to strive to attain: to equalize to some degree the ability of nations to obtain intelligence deemed essential to their national security. This is in fact the case since it provides such means to signatories which otherwise do not have direct access to advanced information gathering technology. ``Open Skies`` also contributes to monitoring or treaty verification by providing an instrument for cuing further investigation of information which might indicate impending treaty violation. Thus, while appearing unfocussed from a monitoring or treaty verification point of view, Open Skies represents substantial progress toward facilitating transparency.

  20. New Sky Flats for HST's ACS/WFC

    NASA Astrophysics Data System (ADS)

    Lucas, Ray A.; Grogin, Norman A.

    2016-06-01

    We have begun experiments to make new sky flat files for HST's ACS/WFC. Sky flats can be especially useful for deep imaging in such as programs as deep, extragalactic survey programs because they can help to better deal with noise at low levels. Although we also hope to make similar sky flats for some other popular filters including F606W and F814W, we are beginning this experiment with the F435W filter on the ACS/WFC since it is a popular filter in use in many deep extragalactic surveys, and since the bluer filters such as F435W generally have lower throughput and images in that filter are typically noisier than others at some longer mid-optical wavelengths. Initially, although sources will be masked in these images, etc. we are endeavoring to use just post-SM4 F435W images of duration equal to or greater than 800 seconds and which are free of bright stars in order to try and avoid scattered light and sky background color issues as much as possible, although the sky in different images taken at different times and in different directions will likely have some different background levels and color terms in any event. However, our hope is that the final sky flats will be of sufficient S/N to be good calibrators for deep survey programs.

  1. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  2. SkyDOT: a publicly accessible variability database, containing multiple sky surveys and real-time data

    SciTech Connect

    Starr, D. L.; Wozniak, P. R.; Vestrand, W. T.

    2002-01-01

    SkyDOT (Sky Database for Objects in Time-Domain) is a Virtual Observatory currently comprised of data from the RAPTOR, ROTSE I, and OGLE I1 survey projects. This makes it a very large time domain database. In addition, the RAPTOR project provides SkyDOT with real-time variability data as well as stereoscopic information. With its web interface, we believe SkyDOT will be a very useful tool for both astronomers, and the public. Our main task has been to construct an efficient relational database containing all existing data, while handling a real-time inflow of data. We also provide a useful web interface allowing easy access to both astronomers and the public. Initially, this server will allow common searches, specific queries, and access to light curves. In the future we will include machine learning classification tools and access to spectral information.

  3. Interpreting Sky-Averaged 21-cm Measurements

    NASA Astrophysics Data System (ADS)

    Mirocha, Jordan

    2015-01-01

    Within the first ~billion years after the Big Bang, the intergalactic medium (IGM) underwent a remarkable transformation, from a uniform sea of cold neutral hydrogen gas to a fully ionized, metal-enriched plasma. Three milestones during this epoch of reionization -- the emergence of the first stars, black holes (BHs), and full-fledged galaxies -- are expected to manifest themselves as extrema in sky-averaged ("global") measurements of the redshifted 21-cm background. However, interpreting these measurements will be complicated by the presence of strong foregrounds and non-trivialities in the radiative transfer (RT) modeling required to make robust predictions.I have developed numerical models that efficiently solve the frequency-dependent radiative transfer equation, which has led to two advances in studies of the global 21-cm signal. First, frequency-dependent solutions facilitate studies of how the global 21-cm signal may be used to constrain the detailed spectral properties of the first stars, BHs, and galaxies, rather than just the timing of their formation. And second, the speed of these calculations allows one to search vast expanses of a currently unconstrained parameter space, while simultaneously characterizing the degeneracies between parameters of interest. I find principally that (1) physical properties of the IGM, such as its temperature and ionization state, can be constrained robustly from observations of the global 21-cm signal without invoking models for the astrophysical sources themselves, (2) translating IGM properties to galaxy properties is challenging, in large part due to frequency-dependent effects. For instance, evolution in the characteristic spectrum of accreting BHs can modify the 21-cm absorption signal at levels accessible to first generation instruments, but could easily be confused with evolution in the X-ray luminosity star-formation rate relation. Finally, (3) the independent constraints most likely to aide in the interpretation

  4. The Biggest Star in the Sky

    NASA Astrophysics Data System (ADS)

    1997-03-01

    An international team of astronomers has used large telescopes in Chile and Australia to measure the biggest star in the sky. The star, designated R Doradus , is of the so-called red giant type and is located in the southern constellation of Dorado. Its apparent diameter (i.e., the size which the star appears to have when seen from the Earth) is larger than any other so far observed, except for the Sun. In particular, it exceeds by more than 30 % that of Betelgeuse , which for the past 75 years has held the title of star with the largest apparent size. Measuring sizes of stars Measuring the sizes of stars is very difficult due to their enormous distances. For example, if our Sun were placed at the distance of the next closest star (four light-years away), it would have about the same apparent size as a DM 1 (or US quarter-dollar) coin placed at a distance of 500 km (about 0.01 arcsec). Even for the most powerful astronomical telescopes, it is a very challenging task to measure such small angles. Ideally, the angular resolution of a telescope (its capability to resolve fine details in celestial sources) increases with its diameter. In practice, although ground-based optical telescopes now have diameters up to 10 metres, their actual resolution of visual light is that of a telescope of only about 20 centimetres aperture. This is because of the constant turbulence in the Earth's atmosphere. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. The first, and largest, star apart from the Sun to have its diameter measured was Betelgeuse, the brightest star in the constellation of Orion. Its angular diameter was found to be 0.044 arcsec by Albert Michelson and his team who used the Hooker telescope on Mt. Wilson in California in the early 1920s, pioneering interferometry techniques. Betelgeuse kept its title as the star with the largest apparent size for the next 75

  5. Hazy and Dusty Skies over Western Africa

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A pall of smoke and dust largely obscured the nations of Cote d'Ivoire, Ghana, Burkina Faso and southern Mali on January 12, 2004. The poor air quality in the region was a combined result of the hundreds of agricultural fires that were burning throughout western Africa during December and early January, and was likely to have been influenced by a Saharan dust storm that occurred several days earlier. These image data products from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate the abundance of atmospheric particulate matter across the region.

    The left-hand panels are natural-color views from MISR's downward-pointing (nadir) and most obliquely forward-pointing cameras. At the nadir view, the shoreline of the Cote d'Ivoire and many other surface features are apparent, and the haze across the region is noticeable. The distinctive area of dark green vegetation (apparent below and left of image center) is situated in the Cote d'Ivoire, near the border with Ghana, to the east of the Komoe River and southwest of the Comoe National Park. At the oblique view the aerosol appears so thick that the coastline is completely obscured, but this region of dark vegetation and hilly terrain can still be discerned.

    The right-hand panel is generated through automated processing of data from multiple MISR cameras, and utilizes the change in scene brightness and contrast at different view angles to retrieve aerosol amounts, expressed as optical depth. The aerosol map indicates an optically thick atmosphere by the orange or yellow pixels, and clearer skies are indicated by blue pixels. Places where clouds or other factors precluded an aerosol retrieval are shown in dark gray. Aerosol properties are retrieved at a coarse spatial resolution of 17.6 kilometers.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were

  6. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    SciTech Connect

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  7. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  8. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  9. SkyLine and SkyGas: Novel automated technologies for automatic GHG flux measurements

    NASA Astrophysics Data System (ADS)

    Ineson, Philip; Stockdale, James

    2014-05-01

    1. Concerns for the future of the Earth's climate centre around the anthropogenically-driven continuing increases in atmospheric concentrations of the major 'greenhouse gases' (GHGs) which include CO2, CH4 and N2O. A major component of the global budgets for all three of these gases is the flux between the atmosphere and terrestrial ecosystems. 2. Currently, these fluxes are poorly quantified, largely due to technical limitations associated with making these flux measurements. Whilst eddy covariance systems have greatly improved such measurements at the ecosystem scale, flux measurements at the plot scale are commonly made using labour intensive traditional 'cover box' approaches; technical limitations have frequently been a bottle-neck in producing adequate and appropriate GHG flux data necessary for making land management decisions. For example, there are almost no night time flux data for N2O fluxes, and frequently such data are only measured over bare soil patches. 3. We have been addressing the design of novel field equipment for the automation of GHG flux measurements at the chamber and plot scale and will present here some of the technical solutions we have developed. These solutions include the development of the SkyLine and SkyGas approaches which resolve many of the common problems associated with making high frequency, sufficiently replicated GHG flux measurements under field conditions. 4. Unlike most other automated systems, these technologies 'fly' a single chamber to the measurement site, rather than have multiple replicated chambers and analysers. We will present data showing how such systems can deliver high time and spatial resolution flux data, with a minimum of operator intervention and, potentially, at relatively low per plot cost. We will also show how such measurements can be extended to monitoring fluxes from freshwater features in the landscape.

  10. Methodology of Lithuanian climate atlas mapping

    NASA Astrophysics Data System (ADS)

    Valiukas, Donatas; Galvonaitė, Audronė; Česnulevičius, Algimantas

    2015-06-01

    Climate atlases summarize large sets of quantitative and qualitative data and are results of complex analytical cartographic work. These special geographical publications summarize long term meteorological observations, provide maps and figures which characterise different climate elements. Visual information is supplemented with explanatory texts. A lot of information on short and long term changes of climate elements were provided in published Lithuanian atlases (Atlas of Lithuanian SDR, 1981; Climate Atlas of Lithuania, 2013), as well as in prepared but unpublished Lithuanian Atlas (1989) and in upcoming new national atlas publications (National Atlas of Lithuania. 1st part, 2014). Climate atlases has to be constantly updated to be relevant and to describe current climate conditions. Comprehensive indicators of Lithuanian climate are provided in different cartographic publications. Different time periods, various data sets and diverse cartographic data analysis tools and visualisation methods were used in these different publications.

  11. MarsAtlas: A cortical parcellation atlas for functional mapping.

    PubMed

    Auzias, Guillaume; Coulon, Olivier; Brovelli, Andrea

    2016-04-01

    An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. PMID:26813563

  12. The BlueSky Smoke Modeling Framework: Recent Developments

    NASA Astrophysics Data System (ADS)

    Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.

    2012-12-01

    BlueSky systems—a set of decision support tools including SmartFire and the BlueSky Framework—aid public policy decision makers and scientific researchers in evaluating the air quality impacts of fires. Smoke and fire managers use BlueSky systems in decisions about prescribed burns and wildland firefighting. Air quality agencies use BlueSky systems to support decisions related to air quality regulations. We will discuss a range of recent improvements to the BlueSky systems, as well as examples of applications and future plans. BlueSky systems have the flexibility to accept basic fire information from virtually any source and can reconcile multiple information sources so that duplication of fire records is eliminated. BlueSky systems currently apply information from (1) the National Oceanic and Atmospheric Administration's (NOAA) Hazard Mapping System (HMS), which represents remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational Environmental Satellites (GOES); (2) the Monitoring Trends in Burn Severity (MTBS) interagency project, which derives fire perimeters from Landsat 30-meter burn scars; (3) the Geospatial Multi-Agency Coordination Group (GeoMAC), which produces helicopter-flown burn perimeters; and (4) ground-based fire reports, such as the ICS-209 reports managed by the National Wildfire Coordinating Group. Efforts are currently underway to streamline the use of additional ground-based systems, such as states' prescribed burn databases. BlueSky systems were recently modified to address known uncertainties in smoke modeling associated with (1) estimates of biomass consumption derived from sparse fuel moisture data, and (2) models of plume injection heights. Additional sources of remotely sensed data are being applied to address these issues as follows: - The National Aeronautics and Space Administration's (NASA) Tropical Rainfall Measuring Mission

  13. AGN, Star Formation, and the NanoJy Sky

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    I present simple but robust estimates of the types of sources making up the faint, sub-μJy radio sky. These include star-forming galaxies and radio-quiet active galactic nuclei but also two "new" populations, that is low radio power ellipticals and dwarf galaxies, the latter likely constituting the most numerous component of the radio sky. I then estimate for the first time the X-ray, optical, and mid-infrared fluxes these objects are likely to have, which are very important for source identification and the synergy between the upcoming SKA and its various pathfinders with future missions in other bands. On large areas of the sky the SKA, and any other radio telescope producing surveys down to at least the μJy level, will go deeper than all currently planned (and past) sky surveys, with the possible exception of the optical ones from PAN-STARRS and the LSST. On the other hand, most sources from currently planned all-sky surveys, with the likely exception of the optical ones, will have a radio counterpart within the reach of the SKA. JWST and the ELTs might turn out to be the main, or perhaps even the only, facilities capable of securing optical counterparts and especially redshifts of μJy radio sources.

  14. Deeply X-raying the high-energy sky

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco

    2016-05-01

    All-sky explorations by Fermi-LAT have revolutionized our view of the gamma-ray Universe. While its ongoing all-sky survey counts thousands of sources, essential issues related to the nature of unassociated sources call for more sensitive all-sky surveys at hard X-ray energies that allow for their identification. This latter energy band encodes the hard-tail of the thermal emission and the soft-tail of non-thermal emission thereby bridging the non-thermal and thermal emission mechanisms of gamma-ray sources. All-sky surveys at hard X-rays are best performed by current coded-mask telescopes Swift/BAT and INTEGRAL/IBIS. To boost the hard X-ray all-sky sensitivity, we have developed an ad hoc technique by combining photons from independent observations of BAT and IBIS. The resulting Swift-INTEGRAL X-ray (SIX) survey has an improved source-number density. This improvement is essential to enhance the positive hard X-ray - gamma-ray source matches. We present the results from the scientific link between the neighboring gamma-ray and hard X-ray bands in the context of galactic and extragalactic source classes of the second catalog Fermi Gamma-ray LAT (2FGL).

  15. Automating Image Import for Google Sky using Virtual Observatory Tools

    NASA Astrophysics Data System (ADS)

    Crossley, Jared H.; DuPlain, R.; Radziwill, N. M.

    2009-01-01

    We have developed a prototype web service that brings the wealth of Virtual Observatory image data to the Google Sky desktop client. The web service, "KML Now!," presents the user with a simple web interface and requires no specialized knowledge of image conversion, coordinate system conversion, or Google Sky's KML metadata format. KML Now! makes use of Virtual Observatory Simple Image Access Services to acquire images based on user-input search coordinates. Once images are acquired, open source conversion software is used to generate Sky-compatible image and metadata files; the files are cached on the server for reuse. A "launcher" KML file pointing to all applicable server-side data is returned to the user, and when opened in Google Sky, all images are automatically placed within the desktop client. KML Now! can also operate directly on a user-specified image, without the need for Virtual Observatory interaction. A KML Now! query is coded in URL arguments, which allows it to be easily called from within Google Sky, a feature to be added in future developments. Funding for this project is provided by the National Radio Astronomy Observatory and the National Virtual Observatory, both supported by the National Science Foundation.

  16. Night sky photometry with amateur-grade digital cameras

    NASA Astrophysics Data System (ADS)

    Mrozek, Tomasz; Gronkiewicz, Dominik; Kolomanski, Sylwester; Steslicki, Marek

    2015-08-01

    Measurements of night sky brightness can give us valuable information on light pollution. The more the measurements we have the better is our knowledge on the spatial distribution of the pollution on local and global scale.High accuracy professional photometry of night sky can be performed with dedicated instruments. The main drawbacks of this method are high price and low mobility. This limits an amount of observers and therefore amount of photometric data that can be collected. In order to overcome the problem of limited amount of data we can involve amateur astronomers in photometry of night sky. However, to achieve this goal we need a method that utilizes equipment which is usually used by amateur astronomers, e.g digital cameras.We propose a method that enables good accuracy photometry of night sky with a use of digital compact or DSLR cameras. In the method reduction of observations and standarization to Johnson UBV system are performed. We tested several cameras and compared results to Sky Quality Meter (SQM) measurements. The overall consistency for results is within 0.2 mag.

  17. A New Sky Subtraction Technique for Low Surface Brightness Data

    NASA Astrophysics Data System (ADS)

    Katkov, I. Y.; Chilingarian, I. V.

    2011-07-01

    We present a new approach to the sky subtraction for long-slit spectra that is suitable for low-surface brightness objects based on the controlled reconstruction of the night sky spectrum in the Fourier space using twilight or arc-line frames as references. It can be easily adopted for FLAMINGOS-type multi-slit data. Compared to existing sky subtraction algorithms, our technique is taking into account variations of the spectral line spread along the slit thus qualitatively improving the sky subtraction quality for extended targets. As an example, we show how the stellar metallicity and stellar velocity dispersion profiles in the outer disc of the spiral galaxy NGC5440 are affected by the sky subtraction quality. Our technique is used in the survey of early-type galaxies carried out at the Russian 6-m telescope, and it strongly increases the scientific potential of large amounts of long-slit data for nearby galaxies available in major data archives.

  18. The MAMBA Thermal Infrared All-Sky Camera

    NASA Astrophysics Data System (ADS)

    Pier, Edward Alan; Tinn Chee Jim, Kevin; Lewis, Peter

    2015-08-01

    We are developing a system to continually and simultaneously monitor infrared atmospheric extinction along all lines of sight. This system combines a next generation radiometrically calibrated thermal all-sky camera, a weather station, and a neural net trained on historic Radiosonde profiles. Oceanit Laboratories, Inc. will market this system as an off the shelf unit. Custom-built thermal all sky cameras have previously been used on Haleakala, Cerro Tololo, and elsewhere. Except for RASICAM on Cerro Tololo, they have not been radiometrically calibrated and have been used only for qualitative cloud monitoring. The new system will have improved sky coverage, resolution, and noise properties with respect to RASICAM, and simulations show it will be able to infer atmospheric transmittance to within a few percent. The all sky camera will combine an equiresolution optical design with an off-the-shelf thermal detector and in field blackbody calibration sources to provide uniform sensitivity and radiometric accuracy across the sky at relatively low cost. Our goal is to make such systems ubiqitous at observatories around the world.

  19. Mining the SDSS SkyServer SQL queries log

    NASA Astrophysics Data System (ADS)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  20. CONCAM All-Sky Maps of Airglow and Opacity

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Shamir, L.; CONCAM Collaboration

    2003-12-01

    A major goal of the global CONtinuous CAMera (CONCAM) network is to support astronomical observing sites with real-time all-sky images and information. To date, this aim has been fulfilled mostly by CONCAM's role as an optical cloud monitor -- creating rapid ground-truth fisheye images that can be visually inspected so that real-time observing decisions can be made. These images are available immediately over the web through http://concam.net/, where they are also archived The high quality of raw CONCAM data, however, allows us to go further and build a data pipeline from which automated stellar photometry can be done for a few hundred of the brightest stars. When combined with CONCAM all-sky brightness data, we show that a simultaneous solution for sky opacity and emissivity is possible at stellar positions. These data can then be interpolated into all-sky maps. With current CONCAM3 equipment, maps with a broadband accuracy of about 0.25 magnitudes for altitudes above 25 degrees is demonstrated. Such maps might contribute to a more quantitative assessment of the brightness, clarity, and variability of the night sky background above the world's largest telescopes both in real time and in subsequent data reduction. Progress on creating these maps as part of the CONCAM data processing pipeline will be discussed.

  1. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  2. Ceres' sunlight atlas

    NASA Astrophysics Data System (ADS)

    Molaro, P.; Centurión, M.

    2011-01-01

    Context. Astronomical research dealing with accurate radial velocity measurements need reliable astronomical standards to calibrate the spectrographs and to assess possible systematics. Stellar radial velocity standards offer a reference at the level of a few hundred m s-1 and are not adequate for most present needs. Aims: We aim to show that sunlight reflected by asteroids is a fairly accessible way to record a high-resolution solar spectrum from the whole disk, which can therefore be used as a radial velocity standard and can improve the uncertainties of solar line positions. Methods: We used solar light reflected by the asteroid Ceres observed with HARPS to measure solar lines' wavelengths. Results: We provide a new solar atlas with 491 line wavelengths in the range 540-690 nm and 222 lines in the range 400-410 nm obtained from reflected solar spectrum of Ceres. These measurements are consistent with those of Allende Prieto & Garcia Lopez (1998b) based on FTS solar atlases but with a factor 3 higher precision. Conclusions: This atlas provides a benchmark for wavelength calibration to check radial velocity accuracy down to 44 m s-1 locally and a few m s-1 globally. The asteroid-based technique could provide a new way to track radial velocity shifts with solar activity cycle, as well as to derive convective shifts suitable for comparison with theoretical atmospheric models. It could also be used to study radial velocity deviations in spectrographs such as those recently detected in HIRES and UVES. Dedicated HARPS observations of other asteroids could improve present results substantially and these investigations have been solicited. Full Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A74

  3. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  4. The ATLAS TRT electronics

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounin, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; Røhne, O.; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-06-01

    The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system.

  5. Neonatal Atlas Construction Using Sparse Representation

    PubMed Central

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883

  6. ATLAS Series of Shuttle Missions. Volume 23

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This technical paper contains selected papers from Geophysical Research Letters (Volume 23, Number 17) on ATLAS series of shuttle missions. The ATLAS space shuttle missions were conducted in March 1992, April 1993, and November 1994. This paper discusses solar irradiance, middle atmospheric temperatures, and trace gas concentrations measurements made by the ATLAS payload and companion instruments.

  7. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  8. Dark Sky Collaborators: Arizona (AZ) Observatories, Communities, and Businesses

    NASA Astrophysics Data System (ADS)

    Del Castillo, Elizabeth Alvarez; Corbally, Christopher; Falco, Emilio E.; Green, Richard F.; Hall, Jeffrey C.; Williams, G. Grant

    2015-03-01

    With outdoor lighting ordinances in Arizona first in place around observatories in 1958 and 1972, then throughout the state since 1986, Arizonans have extensive experience working with communities and businesses to preserve our dark skies. Though communities are committed to the astronomy sector in our state, astronomers must collaborate with other stakeholders to implement solutions. Ongoing education and public outreach is necessary to enable ordinance updates as technology changes. Despite significant population increases, sky brightness measurements over the last 20 years show that ordinance updates are worth our efforts as we seek to maintain high quality skies around our observatories. Collaborations are being forged and actions taken to promote astronomy for the longer term in Arizona.

  9. Development test results of the Portable, Reconfigurable Sky Sensor (PRSS)

    SciTech Connect

    Blattman, D.A.

    1993-12-31

    The protection of assets against surreptitious access from the sky is a continuing problem. The Portable, Reconfigurable Sky Sensor is designed to provide volumetric intruder detection against low-observable aircraft, helicopters, and parachutists in the sky. Multiple systems may be joined to form continuous detection volume for applications such as borders. The PRSS is resistant to nuisance alarms due to wind up to 70 mph, rain/snow up to 6 inches/hour or small targets such as birds. The PRSS has been successfully tested against multiple intrusions with altitude range from 50 to 3,000 feet and cross-range up to 3,000 feet. This paper summarizes some of these field tests and lists specifications and potential uses.

  10. A simple formula for determining globally clear skies

    SciTech Connect

    Long, C.N.; George, A.T.; Mace, G.G.

    1996-04-01

    Surface measurements to serve as {open_quotes}ground truth{close_quotes} are of primary importance in the development of retrieval algorithms using satellite measurements to predict surface irradiance. The most basic algorithms of this type deal with clear sky (i.e., cloudless) top-to-surface shortwave (SW) transfer, serving as a necessary prerequisite towards treating both clear and cloudy conditions. Recently, atmosphere SW cloud forcing to infer the possibility of excess atmospheric absorption (compared with model results) in cloudy atmospheres. The surface component of this ratio relies on inferring the expected clear sky SW irradiance to determine the effects of clouds on the SW energy budget. Solar renewable energy applications make use of clear and cloud fraction climatologies to assess solar radiation resources. All of the above depend to some extent on the identification of globally clear sky conditions and the attendant measurements of downwelling SW irradiance.

  11. The BAA Campaign for Dark Skies: Fifteen years on

    NASA Astrophysics Data System (ADS)

    Mizon, R.

    2004-06-01

    The starry sky is, unofficially but indubitably, a site of special scientific interest and an area of outstanding natural beauty - if it can be seen. The BAA's Campaign for Dark Skies (CfDS) was set up by concerned members in 1989, to counter the ever-growing tide of skyglow which has tainted the night sky over Britain since the 1950s. Once caused almost exclusively by poorly aimed streetlamps and building floodlights emitting light above the horizontal, skyglow is nowadays increasingly the result of vastly over-powered, poorly mounted household security lights and literally 'over-the-top' sports lighting. CfDS has grown into a network of 124 volunteer local officers, and several hundred committed supporters, who aim to persuade their local councils and relevant organisations of the benefits of well directed lighting, the motto being: the right amount of light, and only where needed.

  12. Sky background subtraction with fiber-fed spectrographs

    NASA Astrophysics Data System (ADS)

    Puech, M.; Rodrigues, M.; Yang, Y.; Flores, H.; Royer, F.; Disseau, K.; Gonçalves, T.; Hammer, F.; Cirasuolo, M.; Evans, C. J.; Li Causi, G.; Maiolino, R.; Melo, C.

    2014-08-01

    Fiber-fed spectrographs can now have throughputs equivalent to slit spectrographs. However, the sky subtraction accuracy that can be reached on such instruments has often been pinpointed as one of their major issues, in relation to difficulties in scattered light and flat-field corrections or throughput losses associated with fibers. Using technical time observations with FLAMES-GIRAFFE, two observing techniques, namely dual staring and cross beam switching modes, were tested and the resulting sky subtraction accuracy reached in both cases was quantified. Results indicate that an accuracy of 0.6% on the sky subtraction can be reached, provided that the cross beam switching mode is used. This is very encouraging regarding the detection of very faint sources with future fiber-fed spectrographs such as VLT/MOONS or E-ELT/MOSAIC.

  13. Pi of the Sky contributions to the GLORIA project

    NASA Astrophysics Data System (ADS)

    Obara, L.; Cwiek, A.; Cwiok, M.; Majcher, A.; Mankiewicz, L.; Żarnecki, A. F.

    2014-12-01

    ``Pi of the Sky'' is a system of wide field-of-view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. In July 2013 the final ``Pi of the Sky'' detector system, with 16 CCD cameras on 4 mounts, was comissioned and integrated into the citizen-science network GLORIA (GLobal Robotic-telescope Intelligent Array). It is available to GLORIA users for scheduled observations. Selected archive data from the ``Pi of the Sky'' prototype telescope in Chile was also used to implement off-line demonstrator experiment for GLORIA. Thanks to the wide field of view of the telescope the selected sample of about 500 images allows for variability analysis of bright objects of different kind. Image processing is based on the LUIZA framework, which was implemented for GLORIA for efficient and flexible data analysis, based on the experience from high energy physics experiments.

  14. All-sky monitors for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.; Priedhorsky, William

    1987-01-01

    The rationale for a semipermanent all-sky X-ray monitor and a variety of options for its implementation are discussed. It is concluded that the Space Station offers an excellent opportunity for hosting such a monitor, and that a set of pinhole cameras can be configured to provide an effective and economical monitor system. A baseline of six independent pinhole modules, each of which requires approximately 1 cu ft, 30 pounds, 2 W and 100 bits per second, can provide full sky coverage with scientifically interesting sensitivities. No other resources or special accommodation (such as detailed alignment registration, time-tagging, or on-orbit servicing) would be required. The baseline system can locate bright sources to a few arcmin and can simultaneously measure each of the several hundred sources in the sky brighter than a few thousandths the intensity of the Crab nebula every day for decades.

  15. ZAP - enhanced PCA sky subtraction for integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland; Richard, Johan; Conseil, Simon

    2016-05-01

    We introduce Zurich Atmosphere Purge (ZAP), an approach to sky subtraction based on principal component analysis (PCA) that we have developed for the Multi Unit Spectrographic Explorer (MUSE) integral field spectrograph. ZAP employs filtering and data segmentation to enhance the inherent capabilities of PCA for sky subtraction. Extensive testing shows that ZAP reduces sky emission residuals while robustly preserving the flux and line shapes of astronomical sources. The method works in a variety of observational situations from sparse fields with a low density of sources to filled fields in which the target source fills the field of view. With the inclusion of both of these situations, the method is generally applicable to many different science cases and should also be useful for other instrumentation. ZAP is available for download at http://muse-vlt.eu/science/tools.

  16. Providing Diurnal Sky Cover Data at ARM Sites

    SciTech Connect

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  17. Gods, Demons and Deceivers: Jesuits Facing Chaco Skies

    NASA Astrophysics Data System (ADS)

    López, Alejandro Martín

    2015-05-01

    The Jesuit missions located in the Chaco are less known than the ones in Paraguay. They are the last step of the Jesuits' missionary device in the Rio de la Plata region. They were dedicated to 'evangelize' and 'civilize' the aboriginal groups considered more hostile: nomadic hunter-gatherers who adopted the use of horses and were not controlled by the colonial government. These groups were seen by Europeans as a radical otherness. That is why the Jesuits' descriptions of Chaco Indian skies are a very interesting example about European attitudes toward other worldviews. This paper explores the use of different paradigms for interpreting these alternative skies: demonic influence, the deception of sorcerers and an Evemeristic reading of the indigenous worldview. This article also addresses some of the interactions between the aboriginal and Christian skies in the mission context.

  18. Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection.

    PubMed

    Horváth, Gábor; Barta, Andras; Gál, József; Suhai, Bence; Haiman, Ottó

    2002-01-20

    For elimination of the shortcomings of imaging polarimeters that take the necessary three pictures sequentially through linear-polarization filters, a three-lens, three-camera, full-sky imaging polarimeter was designed that takes the required pictures simultaneously. With this polarimeter, celestial polarization patterns can be measured even if rapid temporal changes occur in the sky: under cloudy sky conditions, or immediately after sunrise or prior to sunset. One of the possible applications of our polarimeter is the ground-based detection of clouds. With use of the additional information of the degree and the angle of polarization patterns of cloudy skies measured in the red (650 nm), green (550 nm), and blue (450 nm) spectral ranges, improved algorithms of radiometric cloud detection can be offered. We present a combined radiometric and polarimetric algorithm that performs the detection of clouds more efficiently and reliably as compared with an exclusively radiometric cloud-detection algorithm. The advantages and the limits of three-lens, three-camera, full-sky imaging polarimeters as well as the possibilities of improving our polarimetric cloud detection method are discussed briefly.

  19. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  20. The search for Near Earth Objects - why dark skies are critically important

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard

    2015-08-01

    Impact of Earth by asteroids is perhaps the only natural disaster that can be prevented. If an asteroid that will impact Earth can be identified sufficiently early, it is possible to modify its orbit to eliminate the impact. As a consequence, a major effort is presently underway to identify Near Earth Objects (NEOs) that may present a threat to Earth. The impact of a 20-meter diameter object near Chelyabinsk, Russia, provided a spectacular reminder of the threat that these objects present. Although no deaths were caused, injuries and a large amount of property damage were caused.The search for NEOs is mostly funded by NASA. The principal search telescopes are the Pan-STARRS telescopes, located on Haleakala, Maui, Hawaii, and the Catalina Sky Survey, located near Tucson, Arizona. Both of these locations are seriously threatened by light pollution. A new survey, ATLAS, will commence shortly, with one telescope located on Haleakala, Maui, and the other telescope located on Mauna Loa, Hawaii (which is less threatened).Artificial light (i.e., light pollution) at these observing sites raises the sky background, and makes faint objects harder or impossible to see.Searches for Near Earth Objects typically use very broad passbands in order to obtain the maximum amount of light. These passbands typically stretch from 400 to 820 nm. As such, they are very vulnerable to the changes in lighting that are occurring across the globe, with widespread introduction of blue-rich white lighting. It is critically important in all of these locations to limit the amount of blue light that is so readily scattered by the atmosphere.A network of followup telescopes, spread across the planet, play a crucial role in the discovery of NEOs. After a new NEO is identified by the survey telescopes such as Pan-STARRS and Catalina, additional observations must be secured to establish its orbit, and in order to determine whether it poses a threat to Earth. The majority of these followup telescopes are

  1. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  2. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's cultural and natural heritage. More than 1/5 of the world population, 2/3 of the United States population and 1/2 of the European Union population have already lost naked-eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The poster will provide an update, describe how people can continue to participate, and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  3. Automating sky object classification in astronomical survey images

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, Nicholas; Djorgovski, S. G.

    1992-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomer Observatory Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 10(exp 7) galaxies and 10(exp 8) stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. The size of this data set precludes manual analysis. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3* and O-BTree, two inductive learning techniques, learn classification decision trees from examples. These classifiers will be used to process the rest of the data. This paper gives an overview of the machine learning techniques used, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our approach is well-suited to the problem. The primary benefits of the approach are increased data reduction throughput and consistency of classification. The classification rules which are the product of the inductive learning techniques will form an object, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically cataloged

  4. Hunting Mirages in the Southern Sky

    NASA Astrophysics Data System (ADS)

    1996-02-01

    Another Gravitational Lens Candidate Identified at ESO One more cosmic mirage has been found with the ESO 3.5-metre New Technology Telescope (NTT). It consists of two images of the same quasar, seen very close to each other in the southern constellation of Hydra (The Water-Snake). Ever since the exciting discovery of the first cosmic mirage was made seventeen years ago, astronomers have been asking how common this strange phenomenon really is. In most cases we see more than one image of the same celestial object. This effect is due to the bending and focusing of light from distant objects when it passes through the strong gravitational fields of massive galaxies on its way to us. However, from here on the opinions of the specialists diverge. While some believe that this is a very rare event, others disagree and some have even been suggesting that a substantial fraction of the very faint images seen on long exposure photos obtained with large astronomical telescopes may in fact be caused by this effect. If so, they would not be `real'. Is it thus conceivable that the distant Universe is just a great mirror cabinet? There is only one way to answer this important question - more and better observations must be obtained. It is in the course of these investigations that the new discovery was made by a group of three European astronomers [1]. Cosmic mirages are caused by gravitational lenses The physical principle behind a cosmic mirage is known since 1916 as a consequence of Einstein's General Relativity Theory. The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are also curved (in the same way as a `straight line' on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an

  5. Interpretation of NO2 absorption in twilight sky spectra

    NASA Astrophysics Data System (ADS)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  6. The sky entities as represented in African literature

    NASA Astrophysics Data System (ADS)

    Urama, Evelyn N.

    2011-06-01

    Astronomical observations used by the ancient people of Africa were developed out of the people's desire to have concrete manifestations of their gods and religious beliefs as well as for time-keeping - day, night and calendar for agricultural and festive seasons. The sky entities (the solar and stellar systems) observed become part of the lives and events here on Earth and so are also part of the context of African literature. This paper examines the ways in which different African peoples have reflected on the role of the sky entities in their literature.

  7. The All Sky Young Association (ASYA): a New Young Association

    NASA Astrophysics Data System (ADS)

    Torres, C. A. O.; Quast, G. R.; Montes, D.

    2016-01-01

    To analyze the SACY (Search for Associations Containing Young stars) survey we developed a method to find young associations and to define their high probability members. These bona fide members enable to obtain the kinematical and the physical properties of each association in a proper way. Recently we noted a concentration in the UV plane and we found a new association we are calling ASYA (All Sky Young Association) for its overall distribution in the sky with a total of 38 bonafide members and an estimated age of 110 Myr, the oldest young association found in the SACY survey. We present here its kinematical, space and Li distributions and its HR diagram.

  8. Full - sky search for ultrahigh - energy cosmic ray anisotropies

    SciTech Connect

    Luis A. Anchordoqui et al.

    2003-07-02

    Using data from the SUGAR and the AGASA experiments taken during a 10 yr period with nearly uniform exposure to the entire sky, we search for anisotropy patterns in the arrival directions of cosmic rays with energies > 10{sup 19.6} eV. We determine the angular power spectrum from an expansion in spherical harmonics for modes out to {ell} = 5. Based on available statistics, we find no significant deviation from isotropy. We compare the rather modest results which can be extracted from existing data samples with the results that should be forthcoming as new full-sky observatories begin operation.

  9. The Sloan Digital Sky Survey: Status and prospects

    SciTech Connect

    Loveday, J.; SDSS Collaboration

    1996-05-01

    The Sloan Digital Sky Survey (SDSS) is a project to definitively map {pi} steradians of the local Universe. An array of CCD detectors used in drift-scan mode will digitally image the sky in five passbands to a limiting magnitude of r{prime} {approximately} 23. Selected from the imaging survey, 10{sup 6} galaxies and 10{sup 5} quasars will be observed spectroscopically. I describe the current status of the survey, which is due to begin observations early in 1997, and its prospects for constraining models for dark matter in the Universe. 8 refs., 7 figs.

  10. Tampa Bay environmental atlas

    SciTech Connect

    Kunneke, J.T.; Palik, T.F.

    1984-12-01

    Biological and water resource data for Tampa Bay were compiled and mapped at a scale of 1:24,000. This atlas consists of (1) composited information overlain on 18 biological and 20 water resource base maps and (2) an accompanying map narrative. Subjects mapped on the water resource maps are contours of the mean middepth specific conductivity which can be converted to salinity; bathymetry, sediments, tidal currents, the freshwater/saltwater interface, dredge spoil disposal sites; locations of industrial and municipal point source discharges, tide stations, and water quality sampling stations. The point source discharge locations show permitted capacity and the water quality sampling stations show 5-year averages for chlorophyll, conductivity, turbidity, temperature, and total nitrogen. The subjects shown on the biological resource maps are clam and oyster beds, shellfish harvest areas, colonial bird nesting sites, manatee habitat, seagrass beds and artificial reefs. Spawning seasons, nursery habitats, and adult habitats are identified for major fish species. The atlas will provide useful information for coastal planning and management in Tampa Bay.

  11. ATLAS DBM Module Qualification

    SciTech Connect

    Soha, Aria; Gorisek, Andrej; Zavrtanik, Marko; Sokhranyi, Grygorii; McGoldrick, Garrin; Cerv, Matevz

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond based luminosity monitor to complement the time segmented ATLAS Beam Conditions Monitor (BCM) so that when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning the ATLAS luminosity measurement is not compromised.

  12. Atlas Distributed Analysis Tools

    NASA Astrophysics Data System (ADS)

    de La Hoz, Santiago Gonzalez; Ruiz, Luis March; Liko, Dietrich

    2008-06-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting and merging, and includes automated job monitoring and output retrieval.

  13. Mafic Atlas: Looking at basalt rock formations for potential carbon sequestration application

    DOE Data Explorer

    Basalt formations are prevalent in the Big Sky region, and while less studied than other potential storage sites for CO2, they may play an important role in geologic sequestration due to their unique geochemical and physical properties. Regionally, basalts offer significant long-term storage potential estimated in the range of 33-134 billion metric tons. These estimates scaled globally suggest that the five largest basalt provinces could sequester 10,000 years of the world’s CO2 emissions. Basalt provinces are globally distributed and could significantly expand CO2 storage options in regions where conventional storage is limited or non-existent. BSCSP and Idaho State University developed a national Mafic Atlas to assess the sequestration potential of basalts through modeling studies, laboratory testing, and insights developed from mafic rock pilot projects. The Mafic Atlas online mapping application highlights the Columbia River Basalt Group in Washington and Oregon and its proximity to the West Coast power load. Features of the map include: • Carbon storage capacity estimates for regional basalt provinces • Click-able well locations that link to US Geological Survey well log datasets • Live GeoRSS feeds and an address finder • Custom drawing and printing tools to create your own map • Search tools to explore the Mafic database. [copied from http://www.bigskyco2.org/atlas/mafic

  14. The Herschel-ATLAS: Extragalatic Number Counts from 250 to 500 Microns

    NASA Technical Reports Server (NTRS)

    Clements, D. L.; Rigby, E.; Maddox, S.; Dunne, L.; Mortier, A.; Amblard, A.; Auld, R.; Bonfield, D.; Cooray, A.; Dariush, A.; Dye, S.; Eales, S.; Gardner, Jonathan P.; Ibar, E.; Ivison, R.; Leeuw, L.; Sibthorpe, B.; Smith, D. J. B.; Temi, P.; Pascale, E.; Pohlen, M.

    2010-01-01

    Aims.The Herschel-ATLAS survey (H-ATLAS) will be the largest area survey to be undertaken by the Herschel Space Observatory. It will cover 550 sq. deg. of extragalactic sky at wavelengths of 100, 160, 250, 350 and 500 microns when completed, reaching flux limits (50-) from 32 to 145mJy. We here present galaxy number counts obtained for SPIRE observations of the first -14 sq. deg. observed at 250, 350 and 500 m. Methods. Number counts are a fundamental tool in constraining models of galaxy evolution. We use source catalogs extracted from the H-ATLAS maps as the basis for such an analysis. Correction factors for completeness and flux boosting are derived by applying our extraction method to model catalogs and then applied to the raw observational counts. Results. We find a steep rise in the number counts at flux levels of 100-200mJy in all three SPIRE bands, consistent with results from BLAST. The counts are compared to a range of galaxy evolution models. None of the current models is an ideal fit to the data but all ascribe the steep rise to a population of luminous, rapidly evolving dusty galaxies at moderate to high redshift.

  15. National Atlas of the United States Maps

    USGS Publications Warehouse

    ,

    2001-01-01

    The 'National Atlas of the United States of America?', published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new 'National Atlas' in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the 'National Atlas of the United States?' were published.

  16. Anti-Atlas Mountains, Morocco

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Anti-Atlas Mountains of northern Africa and the nearby Atlas mountains were created by the prolonged collision of the African and Eurasian tectonic plates, beginning about 80 million years ago. Massive sandstone and limestone layers have been crumpled and uplifted more than 4,000 meters in the High Atlas and to lower elevations in the Anti-Atlas. Between more continuous major fold structures, such as the Jbel Ouarkziz in the southwestern Anti-Atlas, tighter secondary folds (arrow) have developed. Earlier, the supercontinent of Pangea rifted apart to form precursors to the Mediterranean and the Atlantic Ocean (Beauchamp and others, 1996). In those seas sands, clays, limey sediments, and evaporite layers (gypsum, rock salt) were deposited. Later, during the mountain-building plate collision, the gypsum layers flowed under the pressure and provided a slippery surface on which overlying rigid rocks could glide (Burkhard, 2001). The broad, open style of folds seen in this view is common where evaporites are involved in the deformation. Other examples can be found in the Southern Zagros of Iran and the Sierra Madre Oriental of Mexico. Information Sources: Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M., 1996, Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco: Tulsa, American Association of Petroleum Geologists Bulletin, v. 80, No. 9, p. 1459-1482. Burkhard, Martin, 2001, Tectonics of the Anti-Atlas of Morocco -- Thin-skin/thick-skin relationships in an atypical foreland fold belt. University of Neuchatel, Switzerland: http://www-geol.unine.ch/Structural/Antiatlas.html (accessed 1/29/02). STS108-711-25 was taken in December, 2001 by the crew of Space Shuttle mission 108 using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography

  17. On the geolocation accuracy of COSMO-SkyMed products

    NASA Astrophysics Data System (ADS)

    Nitti, Davide O.; Nutricato, Raffaele; Lorusso, Rino; Lombardi, Nunzia; Bovenga, Fabio; Bruno, Maria F.; Chiaradia, Maria T.; Milillo, Giovanni

    2015-10-01

    Accurate geolocation of SAR data is nowadays strongly required because of the increasing number of high resolution SAR sensors available as for instance from TerraSAR-X / TanDEM-X and COSMO-SkyMed space-borne missions. Both stripmap and spotlight acquisition modes provide from metric to sub metric spatial resolution which demands the ability to ensure a geolocation accuracy of the same order of magnitude. Geocoding quality depends on several factors and in particular on the knowledge of the actual values of the satellite position along the orbit, and the delay introduced by the additional path induced by changes in the refractivity index due to the presence of the atmosphere (the so called Atmospheric Path Delay or APD). No definitive results are reported yet in the scientific literature, concerning the best performances achievable by the COSMO-SkyMed constellation in terms of geolocation accuracy. Preliminary studies have shown that sub-pixel geolocation accuracies are hardly achievable with COSMO-SkyMed data. The present work aims at inspecting the origin of the geolocation error sources in COSMO-SkyMed Single-look Complex Slant (SCS) products, and to investigate possible strategies for their compensation or mitigation. Five different test sites have been selected in Italy and Argentina, where up to 30 corner reflectors are installed, pointing towards ascending or descending passes. Experimental results are presented and discussed.

  18. a Study of Sasin-Animal Sky Map on Chonmunryucho

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Myeong-Gu

    2003-03-01

    Chon-Mun-Ryu-Cho, written (edited) by Lee Sun-Ji during the period of King Se-Jong, is a representative astronomy book of Cho-Sun (A.D. 1392 -1910) Dynasty. We find and study in the first page of the book; the description of 28 oriental constellations as a Sasin (four mythical oriental animals)-animal sky map which is not widely known yet. The map consists of four groups of constellations, each of which represents the Sasin: Chang-Ryong (dragon), Baek-Ho (tigers with Ki-Rin [Oriental giraffe]), Ju-Jak (Chinese phoenix), Hyun-Mu (a tortoise interwined with a snake). Each group (animals) spans 2˜7 of 28 oriental constellations As we know from the illustration of the Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do a representative sky map of Cho-Sun Dynasty, astronomy in Cho-Sun Dynasty is closely related to that in Go-Gu-Ryer (B.C. 37 -A.D. 668) Dynasty. Since these Sasin-animals appear in most mural paintings of Go-Gu-Ryer tombs, visualization of sky with these animal constellations could have been established as early as in Go-Gu-Ryer Dynasty. We also reconstruct this ''A Sasin-animal Korean sky map'' based on the shapes of the Sasin and Ki-Rin from Go-Gu-Ryer paintings and 28 oriental constellations in Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do.

  19. Scope on the Skies: The Law of Location

    ERIC Educational Resources Information Center

    Riddle, Bob

    2010-01-01

    This article explains how the sky would look from different locations, specifically from other locations within our solar system. Answers to the following questions are addressed: Do the constellation patterns we see from Earth look different from another planet in our solar system? What would the Sun look like from greater distances? (Contains 2…

  20. Spain 31-GHz observations of sky brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gary, B. L.

    1988-01-01

    A water vapor radiometer was deployed at DSS 63 for 3 months of sky brightness temperature measurements at 31 GHz. An exceedance plot was derived from this data showing the fraction of time that 31 GHz 30 degree elevation angle brightness temperature exceeds specified values. The 5 percent exceedance statistics occurs at 75 K, compared with 70 K in Australia.

  1. The Young Child and the Night Sky: Mythology and Astronomy.

    ERIC Educational Resources Information Center

    Martin, Kathleen

    1995-01-01

    Suggests a way of teaching science to young children that is consistent with Piaget's interpretation of the child's spontaneous animism and that elicits a personal and in-depth response to knowledge. Describes construction and use of an environmental bubble to enhance children's interest in the night sky. (SW)

  2. The daylight sky and Avogadro’s number

    NASA Astrophysics Data System (ADS)

    Potenza, Marco A. C.

    2015-11-01

    Two methods for estimating Avogadro’s number from the observation of the daylight sky are presented, both suitable for undergraduate students. One is very simple and based on simple naked-eye observation, and the other exploits a common digital camera as a photometer.

  3. The Aquarius Simulator and Cold-Sky Calibration

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; Dinnat, Emmanuel P.; Abraham, Saji; deMatthaeis, Paolo; Wentz, Frank J.

    2011-01-01

    A numerical simulator has been developed to study remote sensing from space in the spectral window at 1.413 GHz (L-band), and it has been used to optimize the cold-sky calibration (CSC) for the Aquarius radiometers. The celestial sky is a common cold reference in microwave radiometry. It is currently being used by the Soil Moisture and Ocean Salinity satellite, and it is planned that, after launch, the Aquarius/SAC-D observatory will periodically rotate to view "cold sky" as part of the calibration plan. Although radiation from the celestial sky is stable and relatively well known, it varies with location. In addition, radiation from the Earth below contributes to the measured signal through the antenna back lobes and also varies along the orbit. Both effects must be taken into account for a careful calibration. The numerical simulator has been used with the Aquarius configuration (antennas and orbit) to investigate these issues and determine optimum conditions for performing a CSC. This paper provides an overview of the simulator and the analysis leading to the selection of the optimum locations for a CSC.

  4. Clear sky atmosphere at cm-wavelengths from climatology data

    NASA Astrophysics Data System (ADS)

    Lew, Bartosz; Uscka-Kowalkowska, Joanna

    2016-01-01

    We utilize ground-based, balloon-borne and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature (Tatm) and optical depth (τ) at centimetre wavelengths. We validate the reconstruction by comparing the model column PWV with photometric measurements of PWV, performed in clear sky conditions pointed towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of a Polish 32-metre radio telescope, and characterize Tatm and τ year round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss the shortcomings of using planar, single-layer and optically thin atmospheric models in continuum radio-source flux-density measurement calibrations. We obtain PWV-Tatm and PWV-τ scaling relations in clear sky conditions, and constrain limits to which the actual Tatm and τ can deviate from those derived solely from the climatological data. Finally, we suggest a statistical method to detect clear sky that involves ground-level measurements of relative humidity. Accuracy is tested using local climatological data. The method may be useful to constrain cloud cover in cases when no other (and more robust) climatological data are available.

  5. The 1997 Reference of Diffuse Night Sky Brightness

    NASA Technical Reports Server (NTRS)

    Leinert, C.; Bowyer, S.; Haikala, L. K.; Hanner, M. S.; Hauser, M. G.; Levasseur-Regourd, A. C.; Mann, I.; Mattila, K.; Reach, W. T.; Schlosser, W.; Staude, J. J.; Toller, G. N.; Weiland, J. L.; Weinberg, J. L.; Witt, A. N.

    1997-01-01

    In the following we present material in tabular and graphical form, with the aim to allow the non specialist to obtain a realistic estimate of the diffuse night sky brightness over a wide range of wavelengths from the far UV longward of Ly to the far-infrared.

  6. Constellations, Stars and Deep-Sky Objects: Nomenclature

    NASA Astrophysics Data System (ADS)

    Woodruff, J.; Murdin, P.

    2000-11-01

    This article looks at the origins of the various labels applied to constellations and stars (individual, double and variable) and deep-sky objects (star clusters, nebulae, galaxies, etc). They vary from ancient names of complex etymology to unromantic modern numerical designations....

  7. Astronaut Eileen Collins is briefed on use of Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Eileen M. Collins, STS-63 mission pilot, is briefed on the use of Sky Genie device by Karin L. Porter. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  8. Astronaut Bernard Collins prepares to use Sky Genie

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Bernard A. Harris, Jr., STS-63 payload commander, prepares to make use of a Sky Genie device used in emergency egress training. The device would aid in emergency egress operations aboard a troubled Space Shuttle. Porter, an employee of Rockwell International, helps train astronauts in egress procedures at JSC's Shuttle mockup and integration laboratory.

  9. Night-sky brightness and extinction at Mt Shatdzhatmaz

    NASA Astrophysics Data System (ADS)

    Kornilov, V.; Kornilov, M.; Voziakova, O.; Shatsky, N.; Safonov, B.; Gorbunov, I.; Potanin, S.; Cheryasov, D.; Senik, V.

    2016-11-01

    The photometric sky quality of Mt Shatdzhatmaz, the site of the Sternberg Astronomical Institute Caucasian Observatory 2.5-m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a by-product of atmospheric optical turbulence measurements with the MASS (Multi-Aperture Scintillation Sensor) device conducted in 2007-2013. The factors biasing night-sky brightness measurements are considered and a technique to reduce their impact on the statistics is proposed. The single-band photometric estimations provided by MASS are easy to transform to the standard photometric bands. The median moonless night-sky brightness is 22.1, 21.1, 20.3 and 19.0 mag arcsec-2 for the B, V, R and I spectral bands, respectively. The median extinction coefficients for the same photometric bands are 0.28, 0.17, 0.13 and 0.09 mag. The best atmospheric transparency is observed in winter.

  10. The Sky as a Topic in Science Education

    ERIC Educational Resources Information Center

    Galili, Igal; Weizman, Ayelet; Cohen, Ariel

    2004-01-01

    The concepts of sky and visibility distance, as perceived by different learners, are investigated for the first time as a subject of a science education research. Mental models of students with regard to the subject were elicited. They were interpreted in terms of two-level hierarchy: schemes and facets-of-knowledge (defined in the paper). Our…

  11. Status of the NASA SETI Sky Survey microwave observing project

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Wilck, H. C.; Olsen, E. T.; Garyantes, M. F.; Burns, D. J.; Asmar, P. R.; Brady, R. B.; Deich, W. T. S.; Renzetti, N. A.

    1992-01-01

    The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.

  12. Evolution of the Air Toxics under the Big Sky Program

    ERIC Educational Resources Information Center

    Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy

    2011-01-01

    As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…

  13. Hunting Mirages in the Southern Sky

    NASA Astrophysics Data System (ADS)

    1996-02-01

    Another Gravitational Lens Candidate Identified at ESO One more cosmic mirage has been found with the ESO 3.5-metre New Technology Telescope (NTT). It consists of two images of the same quasar, seen very close to each other in the southern constellation of Hydra (The Water-Snake). Ever since the exciting discovery of the first cosmic mirage was made seventeen years ago, astronomers have been asking how common this strange phenomenon really is. In most cases we see more than one image of the same celestial object. This effect is due to the bending and focusing of light from distant objects when it passes through the strong gravitational fields of massive galaxies on its way to us. However, from here on the opinions of the specialists diverge. While some believe that this is a very rare event, others disagree and some have even been suggesting that a substantial fraction of the very faint images seen on long exposure photos obtained with large astronomical telescopes may in fact be caused by this effect. If so, they would not be `real'. Is it thus conceivable that the distant Universe is just a great mirror cabinet? There is only one way to answer this important question - more and better observations must be obtained. It is in the course of these investigations that the new discovery was made by a group of three European astronomers [1]. Cosmic mirages are caused by gravitational lenses The physical principle behind a cosmic mirage is known since 1916 as a consequence of Einstein's General Relativity Theory. The gravitational field of a massive object curves the local geometry of the Universe, so light rays passing close to the object are also curved (in the same way as a `straight line' on the surface of the Earth is necessarily curved because of the curvature of the Earth's surface). This effect was first observed by astronomers in 1919 during a total solar eclipse. Accurate positional measurements of stars seen in the dark sky near the eclipsed Sun indicated an

  14. NASA SETI microwave observing project: Sky Survey element

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1991-01-01

    The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis

  15. The Wisconsin H-Alpha Mapper Sky Survey

    NASA Astrophysics Data System (ADS)

    Haffner, L. Matthew; Reynolds, Ronald J.; Babler, Brian L.; Madsen, Gregory J.; Hill, Alex S.; Barger, Kathleen; Jaehnig, Kurt P.; Mierkiewicz, Edwin J.; Percival, Jeffrey W.; Chopra, Nitish; Pingel, Nickolas; Reese, Daniel T.; Gostisha, Martin; Wunderlin, Jennifer

    2016-01-01

    We present the first all-sky, kinematic survey of Hα from the Milky Way, combining survey observations taken with the Wisconsin H-Alpha Mapper (WHAM) from Kitt Peak (1997-2007) and Cerro Tololo (2009-present). The WHAM Sky Survey (WHAM-SS) reaches sensitivity levels of about 0.1 R (EM ~ 0.2 pc cm^-6) with emission detected toward every direction in the sky. Each pointing of the survey comprises a spatially integrated spectrum from a one-degree beam on the sky covering at least 200 km/s around the Local Standard of Rest with 12 km/s spectral resolution. WHAM was designed primarily to study the pervasive warm ionized medium (WIM) component of the interstellar medium (ISM) but also reveals many large-scale, locally-ionized regions throughout the Galaxy. The WIM is a diffuse but thick component of the ISM that extends several kiloparsecs into the Galactic halo with a kinematic signature that traces the gaseous spiral arms of the Galaxy. In addition to this fairly smooth global emission, the Hα sky contains many individual H II regions and supernova remnants, a few revealed in the WHAM-SS for the first time. Some locations are dominated by complex filamentary network of diffuse ionized gas where the ISM has been shaped by past winds and supernovae and is now powered by a new wave of star formation. At high latitudes, faint emission from intermediate-velocity clouds is also regularly present. The success of WHAM as a fully remote observing facility for nearly two decades is due in no small part to the excellent and responsive support staff at KPNO in Arizona and CTIO in Chile. WHAM has been designed, built, and operated primarily through support of the National Science Foundation. The current research presented here is funded by award AST-1108911.

  16. Parameterization of instantaneous global horizontal irradiance: Cloudy-sky component

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Liu, J.; Zeng, X.; Liang, H.

    2012-07-01

    Radiation calculations in global numerical weather prediction (NWP) and climate models are usually conducted in 3-hourly time interval in order to reduce the computational cost. This treatment can lead to an incorrect solar radiation at the Earth's surface which could be one of the error sources in modeled convection and precipitation. In order to improve the simulation of the diurnal cycle of solar radiation a fast scheme has been developed based on detailed radiative transfer calculations for a wide range of atmospheric conditions and can be used to determine the surface solar radiation at each model integration time step with affordable costs. This scheme is divided into components for clear-sky and cloudy-sky conditions. The clear-sky component has been described in a companion paper. The cloudy-sky component is introduced in this paper. The input variables required by this scheme are all available in NWP and climate models or can be obtained from satellite observations. Therefore, the scheme can be used in a global model to determine the surface GHI. It can also be used as an offline scheme to calculate the surface GHI using data from satellite measurements. SUNFLUX scheme has been tested using observations obtained from three Atmospheric Radiation Measurements (ARM) stations established by the U. S. Department of Energy. The results show that a half hourly mean relative error of GHI under all-sky conditions is less than 7%. An important application of the scheme is in global climate models. The radiation sampling error due to infrequent radiation calculations is investigated using the SUNFLUX and ARM observations. It is found that errors in the surface net solar irradiance are very large, exceeding 800 W m-2at many non-radiation time steps due to ignoring the effects of clouds. Use of the SUNFLUX scheme can reduce these errors to less than 50 W m-2.

  17. Cassini Tour Atlas Automated Generation

    NASA Technical Reports Server (NTRS)

    Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.

    2011-01-01

    During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.

  18. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Mossman, Amy; Fruscione, Antonella; Anderson, Craig; Morgan, Doug; Burke, Douglas J.; O'Sullivan, E. J; Fabbiano, Giuseppina; Lauer, Jennifer; McCollough, Mike

    2014-06-01

    The hot ISM in early type galaxies plays a crucial role for understanding their formation and evolution. Structural features of the hot ISM identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion/stripping and star formation and its quenching. In our new project, Chandra Galaxy Atlas, we will systematically analyze the archival Chandra data of 137 ETGs to study the hot ISM. Taking full advantage of the Chandra capabilities, we will derive uniform data products of spatially resolved dataset with additional spectral information. We will make these products publicly available and use them for our focused science goals.

  19. Atlas of Nuclear Isomers

    SciTech Connect

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  20. Consumer Energy Atlas

    SciTech Connect

    Not Available

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  1. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  2. Losing Sleep to Watch the Night-Sky: The Relationship between Sleep-Length and Noctcaelador

    ERIC Educational Resources Information Center

    Kelly, William E.; Rose, Callie

    2005-01-01

    For most of history, humans have been watching the night-sky (Hawkins, 1983). Historically, individuals have watched the night-sky for aesthetic appreciation and to gain insights and knowledge (Brecher & Feirtag, 1979). Despite the long history of night-sky watching among humans and the apparent importance of the behavior to large groups of…

  3. The potential of clear-sky carbon dioxide satellite retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, Robert R.; O'Dell, Christopher W.; Taylor, Thomas E.; Mandrake, Lukas; Smyth, Mike

    2016-04-01

    Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS) XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2) measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had errors 0-20 % larger than the full-physics retrieval over land and errors roughly 20-35 % larger over ocean, depending on filtration level. In general, the clear-sky retrieval had XCOC-BASS: The C-Band All Sky Survey

    NASA Astrophysics Data System (ADS)

    Pearson, Timothy J.; C-BASS Collaboration

    2016-06-01

    The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre

  4. The potential of clear-sky carbon dioxide satellite retrievals

    NASA Astrophysics Data System (ADS)

    Nelson, R. R.; O'Dell, C. W.; Taylor, T. E.; Mandrake, L.; Smyth, M.

    2015-12-01

    Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS) XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2) measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had nearly indistinguishable error characteristics over land, but roughly 30-60 % larger errors over ocean, depending on filtration level, compared to the full-physics retrieval. In general, the clear-sky retrieval had XCO2 root-mean-square (RMS) errors of

  5. The ATLAS Positron Experiment -- APEX

    SciTech Connect

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  6. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  7. An atlas of solar events: 1997-2004

    NASA Astrophysics Data System (ADS)

    Artzner, G.; Auchère, F.; Delaboudinière, J. P.; Bougnet, M.

    Coronal mass ejections (CMEs) are observed in the plane of the sky from coronographic images. As the solar surface is then masked by an occulting disk, it is not clear wether halo CMEs are directed towards the Earth or in the opposite direction. Observations of the solar corona on the solar disk from the Extreme Ultraviolet Imaging Telescope EIT on board the Solar Heliospheric Observatory SoHO do help in order to make a choice. Quasi-continuous observations of the corona of the Sun have been therefore obtained from april 1997 up to now at a twelve minute cadence in the coronal line of FeXII, as a CME watch program. At a slower six hours cadence an additional synoptic program investigates the chromosphere and the corona at four different wavelengths. Large coronal solar events appear when viewing animations of the CME watch program. Fainter events do appear when viewing running difference animations of the CME watch program. When looking for additional spectral information from raw running differences of the synoptic program it is difficult to disentangle intrinsic solar events from the parasitic effect of the solar rotation. We constructed from the synoptic program observations an atlas of more than 20 000 difference images corrected for an average solar rotation. We present case studies of specific events in order to investigate the source of darkenings in difference images, either removal of emitting material, interposition of obscuring material or large changes of temperature. Statistics of brigtenings and darkenings along solar cycle 23 are presented. We speculate about future observations from the STEREO mission in order to obtain better diagnostics about darkenings. As a by product of the atlas of solar events we obtain a number of quiet time sequences well suited in order to precisely measure the differnetial solar rotation by the apparent displacement of tracers.

  8. Blue Sky Funders Forum - Advancing Environmental Literacy through Funder Collaboration

    NASA Astrophysics Data System (ADS)

    Chen, A.

    2015-12-01

    The Blue Sky Funders Forum inspires, deepens, and expands private funding and philanthropic leadership to promote learning opportunities that connect people and nature and promote environmental literacy. Being prepared for the future requires all of us to understand the consequences of how we live on where we live - the connection between people and nature. Learning about the true meaning of that connection is a process that starts in early childhood and lasts a lifetime. Blue Sky brings supporters of this work together to learn from one another and to strategize how to scale up the impact of the effective programs that transform how people interact with their surroundings. By making these essential learning opportunities more accessible in all communities, we broaden and strengthen the constituency that makes well-informed choices, balancing the needs of today with the needs of future generations.

  9. Development of a sky imager for cloud cover assessment.

    PubMed

    Cazorla, A; Olmo, F J; Alados-Arboledas, L

    2008-01-01

    Based on a CCD camera, we have developed an in-house sky imager system for the purpose of cloud cover estimation and characterization. The system captures a multispectral image every 5 min, and the analysis is done with a method based on an optimized neural network classification procedure and a genetic algorithm. The method discriminates between clear sky and two cloud classes: opaque and thin clouds. It also divides the image into sectors and finds the percentage of clouds in those different regions. We have validated the classification algorithm on two levels: image level, using the cloud observations included in the METAR register performed at the closest meteorological station, and pixel level, determining whether the final classification is correct.

  10. Aquarius Whole Range Calibration: Celestial Sky, Ocean, and Land Targets

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Bindlish, Rajat; Piepmeier, Jeffrey R.; Brown, Shannon T.

    2014-01-01

    Aquarius is a spaceborne instrument that uses L-band radiometers to monitor sea surface salinity globally. Other applications of its data over land and the cryosphere are being developed. Combining its measurements with existing and upcoming L-band sensors will allow for long term studies. For that purpose, the radiometers calibration is critical. Aquarius measurements are currently calibrated over the oceans. They have been found too cold at the low end (celestial sky) of the brightness temperature scale, and too warm at the warm end (land and ice). We assess the impact of the antenna pattern model on the biases and propose a correction. We re-calibrate Aquarius measurements using the corrected antenna pattern and measurements over the Sky and oceans. The performances of the new calibration are evaluated using measurements over well instrument land sites.

  11. Fluorescence lidar detection with shot noise and sky radiance.

    PubMed

    Rosen, D L; Gillespie, J B

    1992-07-20

    Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques.

  12. Sloan Digital Sky Survey Infrastructure Preparations at Las Campanas Observatory

    NASA Astrophysics Data System (ADS)

    Hearty, Frederick R.; Wilson, J. C.; Majewski, S. R.; Leger, F.; Harding, P.; Parejko, J. K.; Roman, A.; Ebelke, G.; SDSS-IV; APOGEE-1/2

    2014-01-01

    The Sloan Digital Sky Survey, conducted on the Sloan Foundation Telescope at Apache Point Observatory for the last 15 years, is embarking on a dual hemisphere survey. This next iteration of the survey, termed SDSS-IV, will conduct a portion of the galactic evolution experiment APOGEE in Chile on the du Pont Telescope at the Las Campanas Observatory; critical portions of the Galaxy are best or only accessible in southern skies. The infrastructure for the southern survey will be derived from the mature and productive systems at APO, while the concept of operations will significantly depart from the established SDSS model. Presented herein are the elements that comprise the LCO infrastructure and the rationale for the envisioned survey operations.

  13. X-ray all-sky monitors. [for spaceborne astronomy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1979-01-01

    Considerations for an all-sky monitor for the Ariel-5 mission are evaluated. The monitors with the best signal-to-noise utilize the pinhole-camera principle, and are also least expensive in hardware and data analysis costs. The sensitivity sufficient to sensibly monitor compact extragalactic sources requires a system with approximately 100 times the sensitivity of the Ariel-5 ASM. A system identical in size to the Ariel-5 ASM can be made with approximately 5 times better sensitivity, and can satisfy the minimum requirements for this mission if it spins. An all-sky monitor appears to be essential to assure that rare occurrences in compact objects can be observed with the pointed experiment, and to ascertain that large amounts of pointing time will not be wasted by observing at the wrong times.

  14. A-STAR: The All-Sky Transient Astrophysics Reporter

    NASA Astrophysics Data System (ADS)

    Osborne, J. P.; O'Brien, P.; Evans, P.; Fraser, G. W.; Martindale, A.; Atteia, J.-L.; Cordier, B.; Mereghetti, S.

    2013-07-01

    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.

  15. No evidence for anomalously low variance circles on the sky

    SciTech Connect

    Moss, Adam; Scott, Douglas; Zibin, James P. E-mail: dscott@phas.ubc.ca

    2011-04-01

    In a recent paper, Gurzadyan and Penrose claim to have found directions on the sky centred on which are circles of anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular picture of the very early Universe. We attempted to repeat the analysis of these authors, and we can indeed confirm that such variations do exist in the temperature variance for annuli around points in the data. However, we find that this variation is entirely expected in a sky which contains the usual CMB anisotropies. In other words, properly simulated Gaussian CMB data contain just the sorts of variations claimed. Gurzadyan and Penrose have not found evidence for pre-Big Bang phenomena, but have simply re-discovered that the CMB contains structure.

  16. NSF Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Hund, L.; Boltuch, D.; Fultz, C.; Buck, S.; Smith, T.; Harris, R.; Moffett, D.; LaFratta, M.; Walsh, L.; Castelaz, M. W.

    2005-12-01

    The intent of the "Sensing the Radio Sky" project is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year project began in the summer of 2004. A total of twelve interns and four faculty mentors from Furman University and UNCA have participated at the Pisgah Astronomical Research Institute to develop the Radio Sky project. The project united physics and multimedia majors and allowed these students to apply their knowledge of different disciplines to a common goal. One component of the project is the development and production of a cylinder to be displayed in portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The project is near completion and the final draft will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. The development of the Radio Sky project has also provided a template for potential similar projects that examine our universe in different wavelengths, such as gamma ray, x-ray, and infrared. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  17. Piero della Francesca's Sky in The Dream of Constantine

    NASA Astrophysics Data System (ADS)

    Valerio, V.

    2011-06-01

    The recent restoration of the frescoes by Piero della Francesca in the Church of San Francesco in Arezzo has made to appear on the background of the scene of Constantine's dream a number of stars. They are clearly painted with the intention to illustrate a sort of "natural" sky. In 2001 Anna Maria Maetzke recognized in a group of stars the constellation of the Ursa Minor, but so far no further study has been carried on to find any relation between the painted and the true sky. In this paper I show the existence of more constellations in the fresco, which are hardly detectable due to the mirror representation of the starry sky. Such a mirror image, as the Universe was seen from the outside, has a Greek origin and this kind of representation was introduced in Western Europe not only in celestial globes but also in star maps. This discovery leads to consider that Piero had at his disposal either a globe or a map which he reproduced on the fresco. My hypothesis is that a star map might be supplied to Piero by the astronomer Regiomontanus who was in Italy since 1461 following the Cardinal Bessarion in his journey from Wien to Rome. In 1463, Cardinal Bessarion was named papal legate to Venice and in July of the same year he leaved Rome together with Regiomontanus to reach Ferrara and Venice. The road to Venice crossed Umbria nearby Sansepolcro, Piero's birthplace not far from Arezzo. The trip took more than two weeks due to a stop before crossing the Apennines because the plague in Ferrara. Bessarion and Regiomontanus might have met Piero who was painting the cycle of frescoes in Arezzo and supplied him with a star map. Unfortunately, due to the lack of the horizon and any right line in the scene it is not possible to detect the latitude of the place corresponding to the painted sky.

  18. The Sloan Digital Sky Survey Telescope Performance Monitor

    NASA Astrophysics Data System (ADS)

    McGehee, Peregrine M.; Brinkmann, Jon; Rockosi, Constance M.; Long, Dan; Snedden, Stephanie A.; Kleinman, S. J.; Nitta, Atsuko; Harvanek, Michael; Newman, Peter R.; Neilsen, Eric H., Jr.; Krzesinski, Jurek

    2002-12-01

    The Telescope Performance Monitor (TPM) installed at the Sloan Digital Sky Survey (SDSS) located at Apache Point Observatory provides access to real-time and archived engineering data. The modularity present in the underlying Experimental Physics and Industrial Control System (EPICS) toolkit allows the observers and operations staff to develop their own approaches to data access and analysis. These techniques are summarized and the use of the TPM to solve critical project issues including analysis and correction of thermal management problems are presented.

  19. Estimation of aerosol optical properties from all-sky imagers

    NASA Astrophysics Data System (ADS)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  1. Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Kelley, David H.; Milone, Eugene F.

    Exploring Ancient Skies uses modern science to examine ancient astronomy throughout the World, that is, to use the methods of archaeology and insights of modern astronomy explore how astronomy was practiced before the invention of the telescope. It thus reviews an enormous and growing body of literature on the cultures of the ancient Mediterranean, the Far East, and the New World, particularly Mesoamerica, putting the ancient astronomical materials into their archaeological and cultural contexts.

  2. A signal detection strategy for the SETI All Sky Survey

    NASA Technical Reports Server (NTRS)

    Lawton, W.; Olsen, E. T.; Solomon, J.; Quirk, M. P.

    1985-01-01

    A source detection strategy for the SETI All Sky Survey is described. The method is designed to detect continuous wave (or very narrowband) sources transitting an antenna beam. The short-time spectra of the received signal are accumulated, and candidate extraterrestrial sources are recognized by the recognized by the presence of narrowband power exceeding a threshold function. The threshold function is derived using a Neyman-pearson hypothesis test.

  3. Supplementing the Digitized Sky Survey for UV-Mission Planning

    NASA Technical Reports Server (NTRS)

    McLean, Brian

    2004-01-01

    The Space Telescope Science Institute worked on a project to augment the Digitized Sky Survey archive by completing the scanning and processing of the POSS-I blue survey. This will provide an additional valuable resource to support UV-mission planning. All of the data will be made available through the NASA optical/UV archive (MAST) at STScI. The activities completed during this project are included.

  4. The NASA Fireball Network All-Sky Cameras

    NASA Technical Reports Server (NTRS)

    Suggs, Rob M.

    2011-01-01

    The construction of small, inexpensive all-sky cameras designed specifically for the NASA Fireball Network is described. The use of off-the-shelf electronics, optics, and plumbing materials results in a robust and easy to duplicate design. Engineering challenges such as weather-proofing and thermal control and their mitigation are described. Field-of-view and gain adjustments to assure uniformity across the network will also be detailed.

  5. Atlas-based system for functional neurosurgery

    NASA Astrophysics Data System (ADS)

    Nowinski, Wieslaw L.; Yeo, Tseng T.; Yang, Guo L.; Dow, Douglas E.

    1997-05-01

    This paper addresses the development of an atlas-based system for preoperative functional neurosurgery planning and training, intraoperative support and postoperative analysis. The system is based on Atlas of Stereotaxy of the Human Brain by Schaltenbrand and Wahren used for interactive segmentation and labeling of clinical data in 2D/3D, and for assisting stereotactic targeting. The atlas microseries are digitized, enhanced, segmented, labeled, aligned and organized into mutually preregistered atlas volumes 3D models of the structures are also constructed. The atlas may be interactively registered with the actual patient's data. Several other features are also provided including data reformatting, visualization, navigation, mensuration, and stereotactic path display and editing in 2D/3D. The system increases the accuracy of target definition, reduces the time of planning and time of the procedure itself. It also constitutes a research platform for the construction of more advanced neurosurgery supporting tools and brain atlases.

  6. Anatomical Variant of Atlas : Arcuate Foramen, Occpitalization of Atlas, and Defect of Posterior Arch of Atlas

    PubMed Central

    2015-01-01

    Objective We sought to examine anatomic variations of the atlas and the clinical significance of these variations. Methods We retrospectively reviewed 1029 cervical 3-dimensional (3D) CT images. Cervical 3D CT was performed between November 2011 and August 2014. Arcuate foramina were classified as partial or complete and left and/or right. Occipitalization of the atlas was classified in accordance with criteria specified by Mudaliar et al. Posterior arch defects of the atlas were classified in accordance with criteria specified by Currarino et al. Results One hundred and eight vertebrae (108/1029, 10.5%) showed an arcuate foramen. Bilateral arcuate foramina were present in 41 of these vertebrae and the remaining 67 arcuate foramina were unilateral (right 31, left 36). Right-side arcuate foramina were partial on 18 sides and complete on 54 sides. Left-side arcuate foramina were partial on 24 sides and complete on 53 sides. One case of atlas assimilation was found. Twelve patients (12/1029, 1.17%) had a defect of the atlantal posterior arch. Nine of these patients (9/1029, 0.87%) had a type A posterior arch defect. We also identified one type B, one type D, and one type E defect. Conclusion Preoperative diagnosis of occipitalization of the atlas and arcuate foramina using 3D CT is of paramount importance in avoiding neurovascular injury during surgery. It is important to be aware of posterior arch defects of the atlas because they may be misdiagnosed as a fracture. PMID:26819687

  7. NIXNOX project: Sites in Spain where citizens can enjoy dark starry skies

    NASA Astrophysics Data System (ADS)

    Zamorano, J.; de Miguel, A. Sánchez; Alfaro, E.; Martínez-Delgado, D.; Ocaña, F.; Castaño, J. Gómez; Nievas, M.

    2015-03-01

    The NIXNOX project, sponsored by the Spanish Astronomical Society, is a Pro-Am collaboration with the aim of finding sites with dark skies. All sky data of the night sky brightness is being obtained by amateur astronomers with Sky Quality Meter (SQM) photometers. We are not looking for remote locations because the places should be easily accessible by people with children. Our goal is to motivate citizens to observe the night sky. NIXNOX will provide information to answer the question: where can I go to observe the stars with my family?

  8. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  9. Mitigation of Volcanic Risk: The COSMO-SkyMed Contribution

    NASA Astrophysics Data System (ADS)

    Sacco, Patrizia; Daraio, Maria Girolamo; Battagliere, Maria Libera; Coletta, Alessandro

    2015-05-01

    The Italian Space Agency (ASI) promotes Earth Observation (EO) applications related to themes such as the prediction, monitoring, management and mitigation of natural and anthropogenic hazards. The approach generally followed is the development and demonstration of prototype services, using currently available data from space missions, in particular the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) mission, which represents the largest Italian investment in Space System for EO and thanks to which Italy plays a key role worldwide. Projects funded by ASI provide the convergence of various national industry expertise, research and institutional reference users. In this context a significant example is represented by the ASI Pilot Projects, recently concluded, dealing with various thematic, such as volcanoes. In this paper a special focus will be addressed to the volcanic risk management and the contribution provided in this field by COSMO-SkyMed satellite constellation during the last years. A comprehensive overview of the various national and international projects using COSMO-SkyMed data for the volcanic risk mitigation will be given, highlighting the Italian contribution provided worldwide in this operational framework.

  10. Reliability of radio transients detected in the Nasu sky survey

    SciTech Connect

    Aoki, Takahiro; Daishido, Tsuneaki; Tanaka, Tai; Nakao, Ryota; Nomura, Naomi; Sugisawa, Kentaro; Niinuma, Kotaro; Takefuji, Kazuhiro; Kida, Sumiko

    2014-01-20

    This article reports on the reliability of 11 radio transients detected in the Nasu sky survey. We derived false detection rates and evaluated the statistical significance of each transient source. A single source, labeled WJN J1443+3439, was statistically significant at the 10{sup –5} significance level; the other 10 sources were insignificant. On the basis of this single detection, the sky surface density of live radio transients was estimated to be 2{sub −1.9}{sup +9}×10{sup −6} deg{sup −2} at a flux density above 3 Jy and a frequency of 1.42 GHz. Since this result is comparable with other survey results and known transients, WJN J1443+3439 could not be excluded. The sky surface density supported a power-law distribution of source count versus flux density. For transient events, the power-law exponent was approximately –3/2. These results are expected to assist radio variable/transient surveys in next-generation facilities such as the Square Kilometre Array.

  11. The faint radio sky: radio astronomy becomes mainstream

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    2016-09-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.

  12. Measurement and analysis of sky background spectra in passive ranging

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Liu, Bingqi; Yu, Hao; Li, Xiaoming; Yan, Zongqun; Hua, Wenshen; Shi, Yunsheng; Chen, Yichao

    2015-10-01

    Experimental program is designed to analyze the radiation and absorption characteristic of the sky background at near-infrared Oxygen A absorption band of passive ranging based on Oxygen spectral absorption; an acousto-optic tunable hyper spectral imaging spectrometer is used as the measuring device. Under the condition of sunny, cloudy, and snowy weather, the sky background spectral distribution is collected using the acousto-optic tunable hyper spectral imaging spectrometer. Then the Oxygen absorption rate is calculated according to the principle of Oxygen spectrum absorption passive ranging. The measurement result shows: absorption lines exist in the sky background spectral distribution at the Oxygen A absorption band, and the absorption rates are different at different weather conditions. The Oxygen absorption rates are the biggest under snowy weather, bigger under cloudy weather, and the smallest under sunny weather. The general change pattern of Oxygen absorption rate under different weather conditions is obtained and the result has laid solid foundation for suppressing the interference of the background and extracting target spectral accurately in subsequent passive ranging researching.

  13. The cut-sky cosmic microwave background is not anomalous

    SciTech Connect

    Pontzen, Andrew; Peiris, Hiranya V.

    2010-05-15

    The observed angular correlation function of the cosmic microwave background has previously been reported to be anomalous, particularly when measured in regions of the sky uncontaminated by Galactic emission. Recent work by Efstathiou et al. presents a Bayesian comparison of isotropic theories, casting doubt on the significance of the purported anomaly. We extend this analysis to all anisotropic Gaussian theories with vanishing mean (<{delta}T>=0), using the much wider class of models to confirm that the anomaly is not likely to point to new physics. On the other hand if there is any new physics to be gleaned, it results from low-l alignments which will be better quantified by a full-sky statistic. We also consider quadratic maximum likelihood power spectrum estimators that are constructed assuming isotropy. The underlying assumptions are therefore false if the ensemble is anisotropic. Nonetheless we demonstrate that, for theories compatible with the observed sky, these estimators (while no longer optimal) remain statistically superior to pseudo-C{sub l} power spectrum estimators.

  14. Design Analysis of Corridors-in-the-Sky

    NASA Technical Reports Server (NTRS)

    Xue, Min

    2008-01-01

    Corridors-in-the-sky or tubes is one of new concepts in dynamic airspace configuration. It accommodates high density traffic, which has similar trajectories. Less air traffic controllers workload is expected than classic airspaces, thus, corridors-in-the-sky may increase national airspace capacity and reduce flight delays. To design corridors-in-the-sky, besides identifying their locations, their utilization, altitudes, and impacts on remaining system need to be analyzed. This paper chooses one tube candidate and presents analyses of spatial and temporal utilization of the tube, the impact on the remaining traffic, and the potential benefit caused by off-loading the traffic from underlying sectors. Fundamental issues regarding to the benefits have been also clarified. Methods developed to assist the analysis are described. Analysis results suggest dynamic tubes in terms of varied utilizations during different time periods. And it is found that combined lane options would be a good choice to lower the impact on non-tube users. Finally, it shows significant reduction of peak aircraft count in underlying sectors with only one tube enabled.

  15. Bernhard Schmidt and the Schmidt Telescope for Mapping the Sky

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    Bernhard Voldemar Schmidt (1879--1935) was born in Estonia. He ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, working freelance in Hamburg Observatory, he developed a short focal length optical system with a large field of view. He succeeded in inventing the ``Schmidt Telescope'' in 1930, which allows the imaging a large field of the sky without any distortions. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt Telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope was built in 1948, the ``Big Schmidt'' (126 cm), Mount Palomar, USA. Schmidt telescopes are also important tools for cosmology. The result of the Palomar Observatory Sky Surveys (1949--1958, 1985--1999) is a data base of about 20 million galaxies and over 100 million stars, supplemented in 1971 by the ESO Schmidt for the southern sky. Also high resolution spectrometers can be fitted to the Schmidt telescope. The 80 cm Schmidt telescope of Hamburg Observatory, planned since 1936, finished 1955, is on Calar Alto, Spain, since 1975. Combined with two objective prisms, it was used for a Quasar survey project.

  16. Meteor trails observed by the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cikota, A.; Bektešević, D.; Cikota, S.; Weaver, B.; Jevremović, D.; Vinković, D.

    2014-07-01

    Scientific observation of meteors is not simple because they have large angular size and random appearance in time and position on the sky. Bright meteors can be easily observed by naked eye or by video cameras in low resolution, but the luminosity distribution of meteors at their fainter end, the actual column diameter of the radiating zone, meteor fragmentation and the microstructure of lightcurves (especially when a meteor is detected through several color filters, as it happened in SDSS) is not well investigated. However, wide-field surveys, such as SDSS or the future LSST, with long time coverage over a significant fraction of sky might be helpful in collecting a scientifically relevant sample of low-brightness meteors. We used a custom designed Python script to detect linear features in SDSS images. The detection is performed in two steps: 1) we detect stars with Source Extractor [1] and blend them out; 2) we define a threshold so as to analyze 10000 points over the threshold; 3) we apply RANSAC [2] to detect points forming a line. We detected trails in over 15000 calibrated and sky-subtracted ''frame'' images in two filters so far. The drift scan in imaging survey mode of SDSS enables simple distinction between "apparently fast" meteors and other "slow" linear features caused by satellites and space debris, so that around 4000 frames could be eliminated as obvious satellites. Here we discuss the detection method, show some interesting preliminary results of the analysis of detected meteors, and discuss implications for other surveys.

  17. The All-Sky Automated Survey for Supernovae CV Patrol

    NASA Astrophysics Data System (ADS)

    Davis, Alexandra Bianca; Shappee, Benjamin John; Archer Shappee, Bartlett; ASAS-SN

    2015-01-01

    Even in the modern era, only human eyes scan the entire optical sky for the violent, variable, and transient events that shape our universe. The "All Sky Automated Survey for Supernovae" (ASAS-SN or "Assassin") is changing this by monitoring the extra-galactic sky down to V~17 mag every 2-3 days using multiple telescopes, hosted by Las Cumbres Observatory Global Telescope Network, in the northern and southern hemispheres. By far the most common events observed by ASAS-SN are the Galactic transients. Since April 2013 ASAS-SN has identified over 180 new cataclysmic variable stars and announced over 260 new outbursts of known CVs. To make our data available to the CV community in 'real time', we have launched an automated 'CV Patrol' to monitor known CVs for outbursts as a useful tool for both professional and amateurs astronomers. It is a long term goal of ASAS-SN to make all our data public in real-time, and this patrol will serve as a framework for future ASAS-SN data releases.

  18. All-sky interferometry with spherical harmonic transit telescopes

    SciTech Connect

    Shaw, J. Richard; Pen, Ue-Li; Sigurdson, Kris; Sitwell, Michael; Stebbins, Albert

    2014-02-01

    In this paper, we describe the spherical harmonic transit telescope through the use of a novel formalism for the analysis of transit radio telescopes. This all-sky approach bypasses the curved-sky complications of traditional interferometry and so is particularly well-suited to the analysis of wide-field radio interferometers. It enables compact and computationally efficient representations of the data and its statistics, which allow new ways of approaching important problems like map-making and foreground removal. In particular, we show how it enables the use of the Karhunen-Loève transform as a highly effective foreground filter, suppressing realistic foreground residuals for our fiducial example by at least a factor 20 below the 21 cm signal, even in highly contaminated regions of the sky. This is despite the presence of the mode-mixing inherent in real-world instruments with frequency-dependent beams. We show, using Fisher forecasting, that foreground cleaning has little effect on power spectrum constraints compared to hypothetical foreground-free measurements. Beyond providing a natural real-world data analysis framework for 21 cm telescopes now under construction and future experiments, this formalism allows accurate power spectrum forecasts to be made that include the interplay of design constraints and realistic experimental systematics with 21st century 21 cm science.

  19. Sky observation and mythology: paths to an astronomical culture

    NASA Astrophysics Data System (ADS)

    Alencar, Victor Alves

    2011-06-01

    The teaching and the popularization of Astronomy, nowadays, suffers from the absence of attractiveness. It's, somehow, consensual that the most efficient approach to attract the general public or even an uninterested student to the Astronomy is the sky observation. With the help of instruments like telescopes or binoculars, the observation of aesthetical impressive objects such as galactic clusters, approaching planets and many others may have a great impact upon those people. We have been executing an efficient and attractive didactic method which has been evaluated permanently for more than two years and has shown great efficiency that consists in the utilization of legends and myths from different cultures (including Brazilian Indians myths, in an etnoastronomical approach) about the constellations and their dispositions in the sky. The objective of this panel is to show the efficiency of the method and some of its teaching routines always beginning with myths or legends involving a great number of constellations (using, preferentially, most of the watchable sky in a certain time of year), using asterisms for identification and then following to a certain constellation from which it is possible to extract the information required for the studied subject.

  20. Variable gamma-ray sky at 1 GeV

    SciTech Connect

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-15

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 Multiplication-Sign 10{sup -6}, which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  1. The gamma-ray sky as seen with HAWC

    NASA Astrophysics Data System (ADS)

    Hüntemeyer, Petra

    2015-12-01

    The High-Altitude Water Cherenkov (HAWC) TeV Gamma-Ray Observatory located at a site about two hours drive east of Puebla, Mexico on the Sierra Negra plateau (4100 m a.s.l.) was inaugurated in March 2015. The array of 300 water Cherenkov detectors can observe large portions of the sky simultaneously and, with an energy range of 100 GeV to 100 TeV, is currently one of the most sensitive instruments capable of probing particle acceleration near PeV energies. HAWC has already started science operation in the Summer of 2013 and preliminary sky maps have been produced from 260 days of data taken with a partial array. Multiple > 5 σ (pre-trials) hotspots are visible along the galactic plane and some appear to coincide with known TeV sources from the H.E.S.S. catalog, SNRs and molecular cloud associations, and pulsars wind nebulae (PWNe). The sky maps based on partial HAWC array data are discussed as well as the scientific potential of the completed instrument especially in the context of multi-wavelengths studies.

  2. All-Sky Monitoring of Variable Sources with Fermi GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James; Bhat, Narayana

    2011-01-01

    Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.

  3. The VLA Low Frequency Sky Survey Redux (VLSSr)

    NASA Astrophysics Data System (ADS)

    Peters, Wendy M.; Cotton, W. D.; Kassim, N. E.

    2014-01-01

    We present the Very Large Array (VLA) Low-frequency Sky Survey Redux (VLSSr), which covers the sky above declinations δ > -30 degrees at a frequency of 74 MHz with 75" resolution and an average RMS noise of 0.1 Jy/beam. The theoretical largest angular size imaged is 36', and there are approximately 95,000 cataloged sources. We have completely re-imaged all data from the original VLSS survey leading to improvements in a number of areas. These include the application of a more accurate primary beam correction which removes substantial radially dependent flux errors present in the VLSS, and smart-windowing to reduce the clean bias by half. We look ahead to the possibility of an expanded, "VLSS generation 2", made by piggybacking observations of the planned VLA Sky Survey (VLASS) using a proposed 24/7 commensal system, called the LOw Band Observatory (LOBO). Catalogs and images for the VLSSr are available at .

  4. Advertising Citizen Science: A Trailer for the Citizen Sky Project

    NASA Astrophysics Data System (ADS)

    Wyatt, Ryan; Price, A.

    2012-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.

  5. ATLAS Inner Detector Event Data Model

    SciTech Connect

    ATLAS; Akesson, F.; Costa, M.J.; Dobos, D.; Elsing, M.; Fleischmann, S.; Gaponenko, A.; Gnanvo, K.; Keener, P.T.; Liebig, W.; Moyse, E.; Salzburger, A.; Siebel, M.; Wildauer, A.

    2007-12-12

    The data model for event reconstruction (EDM) in the Inner Detector of the ATLAS experiment is presented. Different data classes represent evolving stages in the reconstruction data flow, and specific derived classes exist for the sub-detectors. The Inner Detector EDM also extends the data model for common tracking in ATLAS and is integrated into the modular design of the ATLAS high-level trigger and off-line software.

  6. The ATLAS Facility at Argonne National Laboratory

    SciTech Connect

    1997-07-01

    The Argonne Tandem Linac Accelerator System (ATLAS) is a superconducting low-energy heavy ion accelerator. Its primary purpose is to provide beams for research in nuclear structure physics. This report begins with a brief history of ATLAS and then describes the current design of the facility. Also summarized are the experimental equipment and research programs. It concludes with a proposal for turning ATLAS into a radioactive beam facility.

  7. Hong Kong CIE sky classification and prediction by accessible weather data and trees-based methods

    NASA Astrophysics Data System (ADS)

    Lou, S.; Li, D. H. W.; Lam, J. C.

    2016-08-01

    Solar irradiance and daylight illuminance are important for solar energy and daylighting designs. Recently, the International Commission of Illuminance (CIE) adopted a range of sky conditions to represent the possible sky distributions which are crucial to the estimation of solar irradiance and daylight illuminance on vertical building facades. The important issue would be whether the sky conditions are correctly identified by the accessible variables. Previously, a number of climatic parameters including sky luminance distributions, vertical solar irradiance and sky illuminance were proposed for the CIE sky classification. However, such data are not always available. This paper proposes an approach based on the readily accessible data that systematically recorded by the local meteorological station for many years. The performance was evaluated using measured vertical solar irradiance and illuminance. The results show that the proposed approach is reliable for sky classification.

  8. ``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B.

    2008-11-01

    In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/.

  9. Sensitivity of full-sky experiments to large scale cosmic ray anisotropies

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Weiler, Thomas J.

    2015-12-01

    The two main advantages of space-based observation of extreme energy (≳ 5 ×1019 eV) cosmic rays (EECRs) over ground based observatories are the increased field of view and the full-sky coverage with nearly uniform systematics across the entire sky. The former guarantees increased statistics, whereas the latter enables a clean partitioning of the sky into spherical harmonics. The discovery of anisotropies would help to identify the long sought origin of EECRs. We begin an investigation of the reach of a full-sky space-based experiment such as EUSO to detect anisotropies in the extreme-energy cosmic-ray sky compared to ground based partial-sky experiments such as the Pierre Auger Observatory and Telescope Array. The technique is explained here, and simulations for a Universe with just two nonzero multipoles, monopole plus either dipole or quadrupole, are presented. These simulations quantify the advantages of space-based, all-sky coverage.

  10. Report to users of ATLAS, December 1995

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1995-12-01

    This report covers the following: status of ATLAS accelerator; highlights of recent research at ATLAS; research related concept for an Advanced Exotic Beam Facility on ATLAS; program advisory committee; and ATLAS user group executive committee. Research highlights are given for the following: APEX progress report; transport efficiency of the Argonne Fragment Mass Analyzer; collective motion in light polonium isotopes; angular correlation measurements for {sup 12}C(g.s.) + {sup 12}C(3{minus},9.64MeV) inelastic scattering; and the AYE-ball (Argonne-Yale-European gamma spectrometer) used to study the structure of nuclei far from stability.

  11. Image database for digital hand atlas

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Huang, H. K.; Pietka, Ewa; Gilsanz, Vicente; Dey, Partha S.; Gertych, Arkadiusz; Pospiech-Kurkowska, Sywia

    2003-05-01

    Bone age assessment is a procedure frequently performed in pediatric patients to evaluate their growth disorder. A commonly used method is atlas matching by a visual comparison of a hand radiograph with a small reference set of old Greulich-Pyle atlas. We have developed a new digital hand atlas with a large set of clinically normal hand images of diverse ethnic groups. In this paper, we will present our system design and implementation of the digital atlas database to support the computer-aided atlas matching for bone age assessment. The system consists of a hand atlas image database, a computer-aided diagnostic (CAD) software module for image processing and atlas matching, and a Web user interface. Users can use a Web browser to push DICOM images, directly or indirectly from PACS, to the CAD server for a bone age assessment. Quantitative features on the examined image, which reflect the skeletal maturity, are then extracted and compared with patterns from the atlas image database to assess the bone age. The digital atlas method built on a large image database and current Internet technology provides an alternative to supplement or replace the traditional one for a quantitative, accurate and cost-effective assessment of bone age.

  12. Global GIS database; digital atlas of Africa

    USGS Publications Warehouse

    Hearn, P.P.; Hare, T.M.; Schruben, P.; Sherrill, D.; LaMar, C.; Tsushima, P.

    2001-01-01

    This CD-ROM contains a digital atlas of the countries of Africa. This atlas is part of a global database compiled from USGS and other data sources at a nominal scale of 1:1 million and is intended to be used as a regional-scale reference and analytical tool by government officials, researchers, the private sector, and the general public. The atlas includes free GIS software or may be used with ESRI's ArcView software. Customized ArcView tools, specifically designed to make this atlas easier to use, are also included.

  13. Book review: Oklahoma Breeding Bird Atlas

    USGS Publications Warehouse

    Peterjohn, Bruce G.

    2004-01-01

    The first North American breeding bird atlases were initiated during the 1970s. With atlases completed or ongoing in more than 40 U.S. states and most Canadian provinces, these projects are now familiar to professional ornithologists and amateur birders. This book provides the results of the Oklahoma Breeding Bird Atlas, the data for which were collected during 1997–2001. Its appearance less than 3 years after completing fieldwork is remarkable and everyone associated with its timely publication should be congratulated for their efforts.Review info: Oklahoma Breeding Bird Atlas. By Dan L. Reinking, 2004. ISBN: 0806136146, 528 pp.

  14. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  15. Learning with the ATLAS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects—education scenarios—have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These highly appreciated projects could become a new component in many teachers' classrooms. The Learning with ATLAS portal and the information on the ATLAS public website make it possible for teachers to design educational material for their own situations. To be able to work with real data adds a new dimension to particle physics explorations at school.

  16. Digital atlas for spinal x rays

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Pillemer, Stanley R.; Goh, Gin-Hua; Berman, Lewis E.; Neve, Leif; Thoma, George R.; Premkumar, Ahalya; Ostchega, Yechiam; Lawrence, Reva C.; Altman, Roy D.; Lane, Nancy E.; Scott, William W., Jr.

    1997-05-01

    At the National Library of Medicine we are developing a digital atlas to serve as a reference tool for the interpretation of cervical and lumbar spine x-rays. The atlas contains representative images for four grades of severity for cervical/lumbar spondylolisthesis. A prototype version of the atlas has been built using images for which expert rheumatologist readers reached exact agreement in grading. The atlas functionality includes the ability to display cervical and lumbar anatomy, display of single images or multiple simultaneous images, image processing functions, and capability to ad user-defined images to the atlas. Images are selected for display by the user specifying feature and grade. Currently, the atlas runs on a Sun SPARC workstation under the Solaris operating system. THe initial use of the atlas is to aid in reading a collection of 17,000 NHANES II digitized x-rays. The atlas may also be used as a general digital reference tool for the standardized interpretation of digital x-rays for osteoarthritis. We are investigating further development of the atlas to accommodate a wider set of images, to operate on multiple platforms, and to be accessible via the WWW.

  17. AN ALL-SKY CATALOG OF BRIGHT M DWARFS

    SciTech Connect

    Lepine, Sebastien; Gaidos, Eric

    2011-10-15

    We present an all-sky catalog of M dwarf stars with apparent infrared magnitude J < 10. The 8889 stars are selected from the ongoing SUPERBLINK survey of stars with proper motion {mu} > 40 mas yr{sup -1}, supplemented on the bright end with the Tycho-2 catalog. Completeness tests which account for kinematic (proper motion) bias suggest that our catalog represents {approx}75% of the estimated {approx}11, 900 M dwarfs with J < 10 expected to populate the entire sky. Our catalog is, however, significantly more complete for the northern sky ({approx}90%) than it is for the south ({approx}60%). Stars are identified as cool, red M dwarfs from a combination of optical and infrared color cuts, and are distinguished from background M giants and highly reddened stars using either existing parallax measurements or, if such measurements are lacking, using their location in an optical-to-infrared reduced proper motion diagram. These bright M dwarfs are all prime targets for exoplanet surveys using the Doppler radial velocity or transit methods; the combination of low-mass and bright apparent magnitude should make possible the detection of Earth-size planets on short-period orbits using currently available techniques. Parallax measurements, when available, and photometric distance estimates are provided for all stars, and these place most systems within 60 pc of the Sun. Spectral type estimated from V - J color shows that most of the stars range from K7 to M4, with only a few late M dwarfs, all within 20 pc. Proximity to the Sun also makes these stars good targets for high-resolution exoplanet imaging searches, especially if younger objects can be identified on the basis of X-ray or UV excess. For that purpose, we include X-ray flux from ROSAT and FUV/NUV ultraviolet magnitudes from GALEX for all stars for which a counterpart can be identified in those catalogs. Additional photometric data include optical magnitudes from Digitized Sky Survey plates and infrared magnitudes from

  18. The VLA Sky Survey (VLASS): Technical Implementation Plans and Progress

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.; Law, Casey J.; Baum, Stefi Alison; Chandler, Claire J.; Chatterjee, Shami; Lacy, Mark; Murphy, Eric J.; VLASS Survey Science Group

    2016-01-01

    The VLA Sky Survey (VLASS) was initiated to exploit the science and technical opportunities for a new large radio astronomical survey using the Karl G. Jansky Very Large Array. In March 2015, the proposal for the VLASS underwent a formal Community Review. What emerged from this review is a 5400 hour project to survey the 33885 square degrees of the sky above Declination -40 degrees from 2-4 GHz at 2MHz frequency resolution and 2.5" angular resolution. Over the survey duration of 7 years, each area of the sky will be covered in 3 epochs spaced 32 months apart, to a depth of 0.12mJy/beam rms noise per epoch (0.07mJy/beam combined) in total intensity (Stokes I) and including full polarization. Observations are planned to commence in mid-2016. The raw data will be available in the NRAO archive immediately with no proprietary period and science data products will be provided to the community in a timely manner.In this presentation we describe the survey design and the Technical Implementation Plan (TIP) for the VLASS. The VLASS Basic Data Products (BDP) that will be produced by the survey team include: raw and calibrated visibility data, quick-look continuum images, single-epoch images and spectral image cubes, single-epoch basic object catalogs, and cumulative "static sky" images and image cubes and basic object catalogs to the full survey depth. Calibration, image processing, and analysis for the VLASS will be carried out through automated pipelines being developed at NRAO. Integral to this workflow is maintaining Quality Assurance throughout the system from telescope to archive. The storage and archive services budgeted for the BDP is 1PB for the data and images combined. Significantly higher storage would be required to serve the highest spectral resolution spectral cubes over the full sky area, and thus devising an affordable strategy for providing these services is critical, for example through "Processing on Demand" based on user query of the archive. We will

  19. Pictorial Atlas of the Netherlands.

    ERIC Educational Resources Information Center

    Information and Documentation Centre for the Geography of the Netherlands, Utrecht.

    The atlas contains almost 40 photographs and 40 maps of geographical aspects of the Netherlands: the coast, dikes, canals, towns, and farmland. Each page contains a photograph, a section of a map showing the area in which the photograph was taken, and a discussion of several paragraphs about the geographical problems of the area and how they have…

  20. Event selection services in ATLAS

    NASA Astrophysics Data System (ADS)

    Cranshaw, J.; Cuhadar-Donszelmann, T.; Gallas, E.; Hrivnac, J.; Kenyon, M.; McGlone, H.; Malon, D.; Mambelli, M.; Nowak, M.; Viegas, F.; Vinek, E.; Zhang, Q.

    2010-04-01

    ATLAS has developed and deployed event-level selection services based upon event metadata records ("TAGS") and supporting file and database technology. These services allow physicists to extract events that satisfy their selection predicates from any stage of data processing and use them as input to later analyses. One component of these services is a web-based Event-Level Selection Service Interface (ELSSI). ELSSI supports event selection by integrating run-level metadata, luminosity-block-level metadata (e.g., detector status and quality information), and event-by-event information (e.g., triggers passed and physics content). The list of events that survive after some selection criterion is returned in a form that can be used directly as input to local or distributed analysis; indeed, it is possible to submit a skimming job directly from the ELSSI interface using grid proxy credential delegation. ELSSI allows physicists to explore ATLAS event metadata as a means to understand, qualitatively and quantitatively, the distributional characteristics of ATLAS data. In fact, the ELSSI service provides an easy interface to see the highest missing ET events or the events with the most leptons, to count how many events passed a given set of triggers, or to find events that failed a given trigger but nonetheless look relevant to an analysis based upon the results of offline reconstruction, and more. This work provides an overview of ATLAS event-level selection services, with an emphasis upon the interactive Event-Level Selection Service Interface.

  1. Atlas of fetal skeletal radiology

    SciTech Connect

    Ornov, A.; Borochowitz, Z.; Lachman, R.; Rimoin, D.L.

    1987-01-01

    This atlas presents anterior, posterior and lateral views of normal but spontaneously aborted fetuses from 10 weeks through 27 weeks of gestation. The series of radiographs exhibits a wide array of skeletal dysplasia, and a chapter on the normal chondroosseous development - the formation of cartilage and bone and ossification of individual bones is included for further clarification.

  2. Atlas of the Soviet Union.

    ERIC Educational Resources Information Center

    Young, Harry F.

    This atlas consists of 20 maps, tables, charts, and graphs with complementary text illustrating Soviet government machinery, trade and political relations, and military stance. Some topics depicted by charts and graphs include: (1) Soviet foreign affairs machinery; (2) Soviet intelligence and security services; (4) Soviet position in the United…

  3. Atlas of the African Child.

    ERIC Educational Resources Information Center

    Patel, Mahesh, Ed.

    Using data primarily from United Nations Statistical Yearbooks, but from other sources as well, this Atlas provides an overview, in graphical form, of issues affecting children in Africa. Some of the issues covered, such as immunization, affect children directly. Others, such as economic progress, are included because they form part of the…

  4. Keeping the Stars in Our Eyes: Global Astronomy Month's Dark Skies Awareness Programs

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Global Astronomy Month's Dark Skies Awareness Working Group

    2012-01-01

    The International Year of Astronomy provided opportunities to experience the beauty of the night sky. Every April since IYA2009, Global Astronomy Month (GAM) carried on the activities with new ones. Its goal is to bring astronomy enthusiasts together to celebrate astronomy and the beauty of observing the sky. Dark Skies Awareness (DSA) is a major program of GAM. Its main "take away" message focuses on reasons and methods for preserving the night sky. With half of the world's population living in cities, many people never experience the wonderment of a pristinely dark sky. "Light pollution” is obscuring people's long-standing natural heritage to view stars. Poorly-aimed and unshielded outdoor lights are the cause of most of the light pollution. They waste more than $2 billion (17 billion kilowatt-hours) of energy in the United States each year. Under unpolluted skies we ought to see more than a couple thousand stars, yet we see less than a hundred from many cities. A number of dark skies events and activities to promote public awareness on how to save energy and save our night sky were held worldwide during GAM2011 and will be held during GAM2012: · International Earth & Sky Photo Contest, April 1-22 · GLOBE at Night, which measures local levels of light pollution over a 10 day period, April 11-20 · International Dark Sky Week, April 14-20 · World Night in Defense of Starlight, April 20 · Dark Sky Rangers, designed to involve young people in preventing light pollution · One Star at a Time, creating accessible public spaces for viewing a dark night sky · Dark Skies Awareness 10 minute audio podcasts and poetry GAM 2012 DSA programs will be presented in terms of lessons learned and plans ahead to redress a disappearing natural heritage-our dark night sky.

  5. Properties of eclipsing binaries from all-sky surveys - II. Detached eclipsing binaries in Catalina Sky Surveys

    NASA Astrophysics Data System (ADS)

    Lee ( ), Chien-Hsiu

    2015-12-01

    Eclipsing binaries play pivotal roles in our understanding of stellar properties. In the era of all-sky surveys, thousands of eclipsing binaries have been charted, yet their light curves remain unexplored. The goal of this work is to use time series and colour information to extract physical parameters of the binary systems when the spectroscopic information is not available. Inspired by the work of Devor et al., we use the Detached Eclipsing Binary Light curve fitter (DEBiL) and the Method for Eclipsing Component Identification (MECI) to derive basic properties of the binary systems identified by the Catalina Sky Surveys. We derive the mass, fractional radius, and age for 2170 binary systems. We report 211 eccentric systems and compare their properties to the tidal circularization theory. From the mass estimate, we present a subsample of low-mass M-dwarfs which warrant further follow-up to test the stellar models at the low-mass regime. With MECI, we are able to estimate the distance to individual eclipsing binary system and use them to probe the large-scale structure of the Milky Way. We demonstrate that DEBiL and MECI are instrumental to investigate eclipsing binary light curves in the era of all-sky surveys, and provide estimates of stellar parameters when the spectroscopic information is not available.

  6. The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content.

    PubMed

    Bakker, Rembrandt; Tiesinga, Paul; Kötter, Rolf

    2015-07-01

    The Scalable Brain Atlas (SBA) is a collection of web services that provide unified access to a large collection of brain atlas templates for different species. Its main component is an atlas viewer that displays brain atlas data as a stack of slices in which stereotaxic coordinates and brain regions can be selected. These are subsequently used to launch web queries to resources that require coordinates or region names as input. It supports plugins which run inside the viewer and respond when a new slice, coordinate or region is selected. It contains 20 atlas templates in six species, and plugins to compute coordinate transformations, display anatomical connectivity and fiducial points, and retrieve properties, descriptions, definitions and 3d reconstructions of brain regions. The ambition of SBA is to provide a unified representation of all publicly available brain atlases directly in the web browser, while remaining a responsive and light weight resource that specializes in atlas comparisons, searches, coordinate transformations and interactive displays.

  7. The Molecular Atlas Project

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Yin, Peng

    The promise of super-resolution microscopy is a technology to discover new biological mechanisms that occur at smaller length scales then previously observable. However, with higher-resolution, we generally lose the larger spatial context of the image itself. The Molecular Atlas Project (MAP) directly asks how these competing interests between super-resolution imaging and broader spatially contextualized information can be reconciled. MAP enables us to acquire, visualize, explore, and annotate proteomic image data representing 7 orders of magnitude in length ranging from molecular (nm) to tissue (cm) scales. This multi-scale understanding is made possible by combining multiplexed DNA-PAINT, a DNA nanotechnology approach to super-resolution imaging, with ``big-data'' strategies for information management and image visualization. With these innovations combined, MAP enables us to explore cell-specific heterogeneity in ductal carcinoma for every cellin a cm-sized tissue section, analyze organoid growth for advances in high-throughput tissue-on-a-chip technology, and examine individual synapses for connectome mapping over extremely wide areas. Ultimately, MAP is a fundamentally new way to interact with multiscale biophysical data.

  8. Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI.

    PubMed

    Wu, Dan; Ma, Ting; Ceritoglu, Can; Li, Yue; Chotiyanonta, Jill; Hou, Zhipeng; Hsu, John; Xu, Xin; Brown, Timothy; Miller, Michael I; Mori, Susumu

    2016-01-15

    Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation. PMID:26499813

  9. Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI.

    PubMed

    Wu, Dan; Ma, Ting; Ceritoglu, Can; Li, Yue; Chotiyanonta, Jill; Hou, Zhipeng; Hsu, John; Xu, Xin; Brown, Timothy; Miller, Michael I; Mori, Susumu

    2016-01-15

    Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation.

  10. COMPARISON OF METHODOLOGIES FOR COMPUTING SKY VIEW FACTOR IN URBAN ENVIRONMENTS

    SciTech Connect

    M. J. BROWN; S. GRIMMOND; C. RATTI

    2001-07-01

    Sky view factor ({Psi}{sub sky}) is used in radiation balance schemes for the partitioning of longwave and shortwave radiation within urban and forest canopies and complex terrain. In the urban environment, ({Psi}{sub sky}) and 1-({Psi}{sub sky}) give a measure of how much radiation penetrates the canopy and how much will be intercepted by the canopy, respectively. As part of the Oct. 2000 URBAN field Experiment in Salt Lake City (Shinn et al., 2001), photographs were taken in the downtown area at ground level shooting upwards using a fisheye lens. Utilizing image analysis and in-house processing software, ({Psi}{sub sky}) was computed for each photograph. Sky view factor was also computed from 3D building databases using the methodology developed by Ratti and Richens (1999). Although photographic methods for obtaining sky view factor are very accurate, they are time consuming to acquire. Commercial 3D building databases are becoming increasingly more available and sky view factor can be computed from them quite easily. In the future, 3D building datasets might be used to readily compute sky view factor for cities and therefore better estimates of the urban climate could be made. Comparisons of the two methods for computing sky view factor are compared in this paper.

  11. Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959-2013)

    NASA Astrophysics Data System (ADS)

    Manara, Veronica; Brunetti, Michele; Celozzi, Angela; Maugeri, Maurizio; Sanchez-Lorenzo, Arturo; Wild, Martin

    2016-09-01

    A dataset of 54 daily Italian downward surface solar radiation (SSR) records has been set up collecting data for the 1959-2013 period. Special emphasis is given to the quality control and the homogenization of the records in order to ensure the reliability of the resulting trends. This step has been shown as necessary due to the large differences obtained between the raw and homogenized dataset, especially during the first decades of the study period. In addition, SSR series under clear-sky conditions were obtained considering only the cloudless days from corresponding ground-based cloudiness observations. Subsequently, records were interpolated onto a regular grid and clustered into two regions, northern and southern Italy, which were averaged in order to get all-sky and clear-sky regional SSR records. Their temporal evolution is presented, and possible reasons for differences between all-sky and clear-sky conditions and between the two regions are discussed in order to determine to what extent SSR variability depends on aerosols or clouds. Specifically, the all-sky SSR records show a decrease until the mid-1980s (dimming period), and a following increase until the end of the series (brightening period) even though strength and persistence of tendencies are not the same in all seasons. Clear-sky records present stronger tendencies than all-sky records during the dimming period in all seasons and during the brightening period in winter and autumn. This suggests that, under all-sky conditions, the variations caused by the increase/decrease in the aerosol content have been partially masked by cloud cover variations, especially during the dimming period. Under clear sky the observed dimming is stronger in the south than in the north. This peculiarity could be a consequence of a significant contribution of mineral dust variations to the SSR variability.

  12. A lobster-eye on the x-ray sky

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Zhang, W.; Gendreau, K. C.; Petre, R.; White, N. E.

    1999-01-01

    We propose an x-ray all-sky monitor for the International Space Station (ISS) that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1 -3.0 keV) for study. Taking advantage of the power telemetry and space available on the ISS we can use a telescope geometry and detectors that will provide better than 4 arc minute resolution of the entire sky in a 1.5 hr duty cycle. To achieve this sensitivity and resolution we use focusing optics based on the lobster-eye geometry. We propose two approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates: this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. A simultaneous development of both approaches with selection of the superior candidate at the end of the development phase is suggested. The instrument is made of a number of modules based on a 2×2 cooled CCD detector array that covers an area of 6×6 cm2 at the focal plane. Using optics with a radius of curvature of 0.75 m this gives each module a field of view of 9°×9°. The modular approach gives us enormous flexibility in terms of physical arrangement on the ISS so that we may take advantage of clear lines of sight and also in terms of built-in redundancy. We estimate that ~50 such modules give us instantaneous coverage of 1/10 of the sky. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of

  13. A lobster-eye on the x-ray sky

    SciTech Connect

    Peele, A. G.; Zhang, W.; Gendreau, K. C.; Petre, R.; White, N. E.

    1999-01-22

    We propose an x-ray all-sky monitor for the International Space Station (ISS) that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1 -3.0 keV) for study. Taking advantage of the power telemetry and space available on the ISS we can use a telescope geometry and detectors that will provide better than 4 arc minute resolution of the entire sky in a 1.5 hr duty cycle. To achieve this sensitivity and resolution we use focusing optics based on the lobster-eye geometry. We propose two approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates: this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. A simultaneous development of both approaches with selection of the superior candidate at the end of the development phase is suggested. The instrument is made of a number of modules based on a 2x2 cooled CCD detector array that covers an area of 6x6 cm{sup 2} at the focal plane. Using optics with a radius of curvature of 0.75 m this gives each module a field of view of 9 deg. x 9 deg. The modular approach gives us enormous flexibility in terms of physical arrangement on the ISS so that we may take advantage of clear lines of sight and also in terms of built-in redundancy. We estimate that {approx}50 such modules give us instantaneous coverage of 1/10 of the sky. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar

  14. The Catalina Sky Survey: Status, Discoveries and the Future

    NASA Astrophysics Data System (ADS)

    Johnson, Jess A.; Christensen, Eric J.; Gibbs, Alex R.; Grauer, Albert D.; Hill, Richard E.; Kowalski, Richard A.; Larson, Steve M.; Shelly, Frank J.

    2014-11-01

    On 1 January 2014, the Catalina Sky Survey kicked off its year with the discovery of 2014 AA, a small Apollo-type NEO that entered the atmosphere over the mid-Atlantic ocean 21 hours after discovery. As of 12 August 2014, the Catalina Sky Survey (CSS) has discovered 5192 Near Earth Objects. Accounting for nearly two thirds of all NEO discoveries since 2005, and over 46% of all known NEOs, CSS has a long history of being an effective dedicated NEO survey, and pending upgrades will allow it to continue its productivity into the foreseeable future.We present an overview of our facilities and equipment, the current status of survey operations, an overview of recent discoveries and discovery statistics, and the status of recent and pending upgrades to our instrumentation and equipment. The 1.0m follow-up telescope on Mt. Lemmon is now operational (MPC code I52) and providing asteroid astrometry. A new camera for the 1.5 m telescope (G96) will increase the field four times to 5 square degrees and may be operational by the end of the year. A similar camera for the Catalina Schmidt telescope (703) will follow with a 19.4 square degree field. These upgrades will substantially increase the NEO discovery rate from CSS. Additionally, software upgrades to accommodate the larger data flow are in process. Finally, we will discuss ways in which our data are being used for other purposes within the astronomical community, including the search for optical transients (Catalina Real-Time Transient Survey), and the public search for NEOs through the Asteroid Zoo program, developed by Planetary Resources, Inc. in collaboration with CSS and Zooniverse, under the auspices of NASA's Asteroid Grand Challenge initiative. The Catalina Sky Survey is funded by NASA’s Near Earth Objects Observation Program.

  15. SWIR air glow mapping of the night sky

    NASA Astrophysics Data System (ADS)

    Myers, Michael M.; Dayton, David C.; Gonglewski, John D.; Fertig, Gregory; Allen, Jeff; Nolasco, Rudolf; Burns, Dennis; Mons, Ishan

    2010-08-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Islands of Kauai and Maui Hawaii.

  16. Technical Implementation Plan for the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.; Law, Casey J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Lazio, Joseph; Hodge, Jacqueline; Lang, Cornelia C.; Mao, Sui Ann; Murphy, Eric J.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin

    2015-01-01

    The Karl G. Jansky Very Large Array is a recently completed rejuvenation of the VLA, providing observers with significantly increased continuum sensitivity and spectral survey speeds. Given the potential for new centimeter-wavelength sky surveys with this enhanced facility, the VLA Sky Survey (VLASS) was initiated to exploit the science and technical opportunities for a new large survey. In this presentation we describe the survey design and the Technical Implementation Plan (TIP) for the VLASS.The proposed VLASS showcases the strengths and unique capabilities of the Jansky VLA, namely high resolution imaging and exquisite point-source sensitivity, which are critical for source identification, and full polarimetry with good performance even in lines of sight with high Faraday depth. This has led to the choice of observing from 2-4 GHz at 2MHz frequency resolution and 0.7"-2.1" angular resolution. The VLASS will be observed in multiple epochs over the span of at least 5 years. The data will be available in the NRAO archive immediately with no proprietary period and science data products will be provided to the community in a timely manner.To achieve its science goals requires the VLASS to address a number of key challenges in data management, computation, image processing, and analysis, and quality assurance. The VLASS basic data products include: raw visibility data, calibrated data, quick-look continuum images, single-epoch images and spectral image cubes, single-epoch basic object catalogs, cumulative "static sky" images and image cubes and basic object catalogs (generated after each epoch beyond the first). The storage required for these multi-epoch images range from 300TB to >80PB depending upon the desired time and spectral resolution. Devising an affordable strategy for providing these services, for example through use of "process on-demand" rather than image storage, is therefore critical. We will discuss opportunities for community involvement in VLASS

  17. The Galaxy Evolution Explorer (GALEX): an All Sky Ultraviolet Survey

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; GALEX Team

    We are preparing a mission to perform imaging and spectroscopic surveys of the sky in the Ultraviolet. GALEX (The GALaxy Evolution EXplorer) will fill in the crucial missing piece of the spectrum so that our knowledge of the sky from 100 micron to 10 A is complete. The Palomar Sky Survey has served as the fundamental resource for research in optical astronomy for over thirty years, and the IRAS, EUVE, and Rosat satellites provided similar databases for the infrared, extreme ultraviolet, and X-ray regimes. GALEX will provide a catalog with an order of magnitude more sources than any of these experiments, and will produce an unprecedented statistically powerful database of UV images and spectra of nearby and distant galaxies, linked to a multiwavelength archive. GALEX is approved as a NASA Small Explorer (SMEX) mission, to fly in 2001. GALEX will perform a series of spectroscopic and imaging surveys in the space ultraviolet band (1300-3000A ), that will map the history and probe the causes of star formation over the 0

  18. Game: GRB and All-Sky Monitor Experiment

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; Campana, Riccardo; Evangelista, Yuri; Feroci, Marco; Fuschino, Fabio; Labanti, Claudio; Salvaterra, Ruben; Stratta, Giulia; Tagliaferri, Gianpiero; Frontera, Filippo; Guidorzi, Cristiano; Rosati, Piero; Titarchuk, Lev; Braga, João Penacchioni, Ana; Ruffini, Remo; Izzo, Luca; Zampa, Nicola; Vacchi, Andrea; Santangelo, Andrea; Hudec, Rene; Gomboc, Andreja; Rodic, Tomaz

    2015-01-01

    We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 2017 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ˜1 keV up to ˜20 MeV, an energy resolution as good as ~250 eV in the 1-30 keV energy range, a source location accuracy of ~1 arcmin. The mission profile included a launch (e.g., by Vega) into a low Earth orbit, a baseline sky scanning mode plus pointed observations of regions of particular interest, data transmission to ground via X-band (4.8 Gb/orbit, Alcantara and Malindi ground stations), and prompt transmission of GRB / transient triggers.

  19. A REVISED VIEW OF THE TRANSIENT RADIO SKY

    SciTech Connect

    Frail, D. A.; Kulkarni, S. R.; Ofek, E. O.; Bower, G. C.; Nakar, E.

    2012-03-01

    We report on a re-analysis of archival data from the Very Large Array for a sample of 10 long-duration radio transients reported by Bower and others. These transients have an implied all-sky rate that would make them the most common radio transient in the sky and yet most have no quiescent counterparts at other wavelengths and therefore no known progenitor (other than Galactic neutron stars). We find that more than half of these transients are due to rare data artifacts. The remaining sources have lower signal-to-noise ratio (S/N) than initially reported by 1{sigma}-1.5{sigma}. This lowering of S/N matters greatly since the sources are at the threshold. We are unable to decisively account for the S/N differences. By two orthogonal criteria one source appears to be a good detection. Thus the rate of long-duration radio transients without optical counterparts is, at best, comparable to that of the class of recently discovered Swift J1644+57 nuclear radio transients. We revisit the known and expected classes of long-duration radio transients and conclude that the dynamic radio sky remains a rich area for further exploration. Informed by the experience of past searches for radio transients, we suggest that future surveys pay closer attention to rare data errors and ensure that a wealth of sensitive multi-wavelength data be available in advance of the radio observations and that the radio searches should have assured follow-up resources.

  20. Traces on sky. Unexpected results of regular observations

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.; Steklov, A. F.; Vidmachenko, A. P.; Dashkiev, N. G.; Steklov, E. A.

    2016-08-01

    If the fireball's track has noticeable angular size, it can be seen even in the daytime. After the flight, bolide remains a noticeable trace of a dust, dark against the light sky. If such a dust trail illuminated by the rays of the Sun, which had just hid behind the horizon (or even in the moonlight), it is visible as bright lanes in the night sky or in twilight. That's why we call it the twilight bolides. Usually, astronomical observations using of meteor patrols, carried out at night after the evening astronomical twilight. But from March 2013 to October 2015, the authors have obtained several thousands of different tracks in the sky over Kiev. Therefore, we have identified a special class of twilight observations of fireballs. We register the traces of invading to atmosphere of meteoroids of natural and artificial origin. At the same time, observe the traces of fireballs at the day-time are also possible. But they are less effective than in the twilight. Night observations of bright meteoric tracks can usually observe some seconds. While traces of the twilight bolides we observed from some minutes up to two hours, before they be scattered by atmospheric currents. It opens the great prospects for low-cost direct experiments probing of these tracks by using, for example, the astronomical aviation. We propose the twilight tracks are classified into the following types: AMT - aero-meteorological tracks, AST - aero-space, ATT - aero-technical, and NST - not yet classified tracks of unknown nature. During the short period of our observations (from March 2013 to 2016), was fixed falling at least a dozen fragments of cometary nuclei, at least five of sufficiently large and dozens of smaller fragments of meteoroids. The results of our observations also showed that during the morning and evening twilight over Kiev clearly visible the plume of aerosols of technical nature from the plants, factories and other production facilities.