Science.gov

Sample records for alameda county water

  1. A water-quality monitoring network for Vallecitos Valley, Alameda County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1980-01-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center, Alameda County, Calif. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. In Vallecitos Valley, the Livermore Gravel and the overlying alluvium constitute the groundwater reservoir. There is no subsurface inflow from adjacent groundwater basins. Groundwater flow in the Vallecitos subbasin is toward the southwest. The proposed network consists of four surface-water sampling sites and six wells to sample the groundwater system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring. (USGS)

  2. 22. Historic American Buildings Survey Alameda County Recorder Office Map ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Historic American Buildings Survey Alameda County Recorder Office Map Book 6, page 17 October 1960 SURVEY OF 1868 - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA

  3. An Environmental Scan of Northern Alameda County.

    ERIC Educational Resources Information Center

    Galloro, Nicholas

    A study was conducted to provide an overview of the demographic and economic characteristics of the geographical area served by the Peralta Community College District and to provide population and economic projections up to the year 2000. Historical data from the Alameda County Planning Commission, census data, and projections from the Association…

  4. Addressing the social determinants of health through the Alameda County, California, place matters policy initiative.

    PubMed

    Schaff, Katherine; Desautels, Alexandra; Flournoy, Rebecca; Carson, Keith; Drenick, Teresa; Fujii, Darlene; Lee, Anna; Luginbuhl, Jessica; Mena, Mona; Shrago, Amy; Siegel, Anita; Stahl, Robert; Watkins-Tartt, Kimi; Willow, Pam; Witt, Sandra; Woloshin, Diane; Yamashita, Brenda

    2013-11-01

    In Alameda County, California, significant health inequities by race/ethnicity, income, and place persist. Many of the county's low-income residents and residents of color live in communities that have faced historical and current disinvestment through public policies. This disinvestment affects community conditions such as access to economic opportunities, well-maintained and affordable housing, high-quality schools, healthy food, safe parks, and clean water and air. These community conditions greatly affect health. At the invitation of the Joint Center for Political and Economic Studies' national Place Matters initiative, Alameda County Supervisor Keith Carson's Office and the Alameda County Public Health Department launched Alameda County Place Matters, an initiative that addresses community conditions through local policy change. We describe the initiative's creation, activities, policy successes, and best practices.

  5. Addressing the Social Determinants of Health through the Alameda County, California, Place Matters Policy Initiative

    PubMed Central

    Schaff, Katherine; Flournoy, Rebecca; Carson, Keith; Drenick, Teresa; Fujii, Darlene; Lee, Anna; Luginbuhl, Jessica; Mena, Mona; Shrago, Amy; Siegel, Anita; Stahl, Robert; Watkins-Tartt, Kimi; Willow, Pam; Witt, Sandra; Woloshin, Diane; Yamashita, Brenda

    2013-01-01

    In Alameda County, California, significant health inequities by race/ethnicity, income, and place persist. Many of the county's low-income residents and residents of color live in communities that have faced historical and current disinvestment through public policies. This disinvestment affects community conditions such as access to economic opportunities, well-maintained and affordable housing, high-quality schools, healthy food, safe parks, and clean water and air. These community conditions greatly affect health. At the invitation of the Joint Center for Political and Economic Studies' national Place Matters initiative, Alameda County Supervisor Keith Carson's Office and the Alameda County Public Health Department launched Alameda County Place Matters, an initiative that addresses community conditions through local policy change. We describe the initiative's creation, activities, policy successes, and best practices. PMID:24179279

  6. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  7. The Alameda County Study: A Systematic, Chronological Review

    ERIC Educational Resources Information Center

    Housman, Jeff; Dorman, Steve

    2005-01-01

    This study is a systematic review of the Alameda County study findings and their importance in establishing a link between lifestyle and health outcomes. A systematic review of literature was performed and data indicating important links between lifestyle and health were synthesized. Although initial studies focused on the associations between…

  8. 75 FR 13301 - Los Vaqueros Reservoir Expansion, Contra Costa and Alameda Counties, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Register on February 20, 2009 (74 FR 7922). The written comment period on the Draft EIS/EIR ended on April... Bureau of Reclamation Los Vaqueros Reservoir Expansion, Contra Costa and Alameda Counties, CA AGENCY... Environmental Policy Act Federal lead agency, and the Contra Costa Water District, as the...

  9. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    USGS Publications Warehouse

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  10. Girls Incorporated of Alameda County at 50: a voice for girls (1958-2008).

    PubMed

    Terrazas, Cecilia; Schwartz, Sara L; Austin, Michael J

    2011-01-01

    Girls Incorporated of Alameda County is nonprofit human service organization that has delivered education, counseling, and advocacy services to girls aged 6 to 18 for 50 years. The organization began as a small, local girls club and has grown into a large multi-faceted service delivery organization attached to a national governing body. The history of Girls Incorporated of Alameda County introduces struggles in relation to external and internal factors that altered the way that the agency financed and managed and exemplifies the important role of nonprofit leadership. The organization's many accomplishments have also presented multiple challenges, particularly related to the changing roles of women in American society. PMID:21416431

  11. Support Services for Exceptional Students: Alameda, Contra Costa, Napa, San Joaquin, and Solano Counties.

    ERIC Educational Resources Information Center

    Hampel, Angelica; Maloney, Patricia

    Intended for use by vocational administrators responsible for mainstreaming handicapped students into vocational education classes, the resource guide lists and describes governmental and private agencies that provide vocational programs and support services for the handicapped on a local and statewide basis in the California counties of Alameda,…

  12. 77 FR 29456 - City of Alameda d/b/a Alameda Belt Line Railroad-Abandonment Exemption-in Alameda County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... Surface Transportation Board City of Alameda d/b/a Alameda Belt Line Railroad--Abandonment Exemption--in... cessation of service over the line either is pending with the Surface Transportation Board (Board) or with... filed by June 6, 2012, with the Surface Transportation Board, 395 E Street SW., Washington, DC...

  13. Digital database of microfossil localities in Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    McDougall, Kristin; Block, Debra

    2014-01-01

    The eastern San Francisco Bay region (Contra Costa and Alameda Counties, California) is a geologically complex area divided by faults into a suite of tectonic blocks. Each block contains a unique stratigraphic sequence of Tertiary sediments that in most blocks unconformably overlie Mesozoic sediments. Age and environmental interpretations based on analysis of microfossil assemblages are key factors in interpreting geologic history, structure, and correlation of each block. Much of this data, however, is distributed in unpublished internal reports and memos, and is generally unavailable to the geologic community. In this report the U.S. Geological Survey microfossil data from the Tertiary sediments of Alameda and Contra Costa counties are analyzed and presented in a digital database, which provides a user-friendly summary of the micropaleontologic data, locality information, and biostratigraphic and ecologic interpretations.

  14. Land application of wastewater and its effect on ground-water quality in the Livermore-Amador Valley, Alameda County, California

    USGS Publications Warehouse

    Sylvester, M.A.

    1983-01-01

    Ground-water quality, ground-water level, and rainfall data collected during the 1975 water year through the 1980 water year were analyzed to determine the effects of land application of effluent from wastewater treatment plants on ground-water quality in the Livermore-Amador Valley. Annual rainfall varied markedly during the study: 1976 and 1977 water years had less than one half the normal rainfall; 1978 and 1980 water years had greater than normal rainfall; and 1975 and 1979 water years had nearly normal rainfall. The direction ground-water movement in the valley was found to be generally that of surface water. Dissolved nitrate concentrations were generally much less in areas not receiving wastewater applications than in areas that do. Specific conductance, dissolved solids, dissolved chloride, and dissolved nitrate were substantially less in the lower aquifers than in the upper aquifer in the Livermore wastewater application areas. In the Castlewood, Pleasanton, Veterans Administration Hospital, and Livermore wastewater applications areas ground-water quality was similar to the quality of effluent from wastewater treatment plants in the valley. Rainfall, soil, and geology appeared to be the main determinants of ground-water quality in the Castlewood and Dublin-San Ramon and Camp Parks Military Reservation areas. Wastewater application appeared to be the main determinant of ground-water quality in Pleasanton, Veterans Administration Hospital, and Livermore Municipal Airport areas. Comparison of ground-water quality in wastewater application areas with proposed State water-quality objectives for ground water in the Livermore-Amador Valley showed impaired water quality in all areas. (USGS)

  15. Summary and results of the joint WMD-DAC/Alameda County bioterrorism response plan exercise.

    SciTech Connect

    Manley, Dawn Kataoka; Lipkin, Joel; West, Todd H.; Tam, Ricky; Hirano, Howard H.; Ammerlahn, Heidi R.

    2003-11-01

    On June 12,2003, the Alameda County Public Health Department and Sandia National Laboratories/CA jointly conducted an exercise that used a Weapons of Mass Destruction-Decision Analysis Center (WMD-DAC) bioterrorism attack simulation to test the effectiveness of the county's emergency response plan. The exercise was driven by an assumed release (in the vicinity of the Berkeley Marina), and subsequent spread, of a small quantity of aerosolized, weapons-grade anthrax spores. The simulation used several key WMD-DAC capabilities, namely: (1) integration with an atmospheric dispersion model to calculate expected dose levels in the affected areas, (2) a individual-tracking capability for both infected and non-infected persons as they made decisions, sought treatment, and received prophylaxis drugs, and (3) a user interface that allows exercise participants to affect the scenario evolution and outcome. The analysis of the county's response plan included documenting and reviewing the decisions made by participants during the exercise. Twenty-six local and regional officials representing the health care system, emergency medical services and law enforcement were involved in responding to the simulated attack. The results of this joint effort include lessons learned both by the Alameda County officials regarding implementation of their bioterrorism response plan and by the Sandia representatives about conducting exercises of this type. These observations are reviewed in this report, and they form a basis for providing a better understanding of group/individual decision processes and for identifying effective communication options among decision makers.

  16. Quaternary geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: a digital database

    USGS Publications Warehouse

    Helley, E.J.; Graymer, R.W.

    1997-01-01

    Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.

  17. Map showing locations of damaging landslides in Alameda County, California, resulting from 1997-98 El Nino rainstorms

    USGS Publications Warehouse

    Coe, J.A.; Godt, J.W.; Brian, Dianne; Houdre, Nicolas

    1999-01-01

    Heavy rainfall associated with a strong El Nino caused over $150 million in landslide damage in the 10-county San Francisco Bay region during the winter and spring of 1998. A team of USGS scientists collected information on landslide locations and damage costs. In Alameda County more than $20 million in damages were assessed. Debris flows occurred in rural portions of the county, but were only responsible for $400 thousand in damages.

  18. 77 FR 77183 - Union Pacific Railroad Company-Abandonment of Freight Easement Exemption-in Alameda County, Cal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Industrial Lead); Santa Clara Valley Transportation Authority--Abandonment of Residual Common Carrier Obligation Exemption--in Alameda County, Cal. (San Jose Industrial Lead) On December 12, 2012, Union Pacific... line, to abandon its residual common carrier obligation for, a portion of the San Jose Industrial...

  19. Alameda County Library Workplace Literacy, Final Performance Report for Library Services and Construction Act (LSCA) Title VI, Library Literacy Program.

    ERIC Educational Resources Information Center

    Drobner, Sherry

    The Adult Literacy Program at the Alameda County Library provided employment oriented programs. The project served a community of over 200,000 people, and targeted workforce/workplace learners. The project served 578 adult learners and provided 35,904 hours of direct tutoring service. The report provides a comparison of actual accomplishments to…

  20. Neighborhood environment and loss of physical function in older adults: evidence from the Alameda County Study.

    PubMed

    Balfour, Jennifer L; Kaplan, George A

    2002-03-15

    Research suggests that neighborhood environment may influence functional health at an older age. This study examined the association between neighborhood problems and incidence of overall and lower-extremity functional loss. A total of 883 participants in the Alameda County Study who were aged 55 years and older and functionally healthy were questioned in 1994 and 1995 as part of an ongoing cohort study. Participants rated the severity of six neighborhood problems: traffic, noise, crime, trash and litter, lighting, and public transportation. Seventeen percent reported multiple neighborhood problems. Functional loss was measured by self-report of severe difficulty with physical tasks (e.g., climbing stairs, lifting 10 pounds (4.54 kg)). After 1 year, 6.1% developed overall functional loss, and 3.9% developed lower-extremity functional loss. Regression models adjusted for demographic, socioeconomic, health, and behavioral risk factors. Compared with those who reported nonproblem neighborhoods, those who reported multiple-problem neighborhoods were at increased risk of overall functional loss (odds ratio = 2.23, 95% confidence interval: 1.08, 4.60) and lower-extremity functional loss (odds ratio = 3.12, 95% confidence interval: 1.15, 8.51). Neighborhood problems associated with the largest increase in risk were excessive noise, inadequate lighting, and heavy traffic. Older people who reported problematic neighborhood environments had a greater risk of functional deterioration over 1 year compared with those in better neighborhoods.

  1. Intersections of family homelessness, CPS involvement, and race in Alameda County, California.

    PubMed

    Rodriguez, Jason M; Shinn, Marybeth

    2016-07-01

    The homelessness and child protective services (CPS) systems are closely linked. This study examines the patterns and sequence of families' involvement with homeless shelters and CPS, as well as whether involvement in each system predicts involvement in the other using linked administrative records for 258 families recruited in emergency shelters in Alameda County, California. More than half of families were reported to CPS at some point, but less than one-fifth ever had a report substantiated. Reports that were uninvestigated or unfounded increased in the months leading up to shelter entry and spiked immediately afterward, but substantiations and child removals increased only later. Shelter use before study entry was associated with CPS referrals and investigations after study entry, although not with substantiated cases or child removals. However, CPS involvement before study entry was not associated with returns to shelter after study entry. These results imply that an unsubstantiated report of neglect or abuse may serve as an early warning signal for homelessness and that preventive strategies aiming to affect both homeless and child protective systems should focus on reducing homelessness. CPS workers should evaluate families' housing needs and attempt to link families to appropriate resources. Black families were disproportionately referred to CPS after shelter entry after controlling for other family characteristics, but race was not associated with substantiations of neglect or abuse or with child removals. Findings lend modest support to human decision-making and institutional explanations of racial disproportionalities in CPS involvement, especially for reporters outside of the CPS system. PMID:27318034

  2. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect

    Weber, W; Woollett, J

    2004-11-16

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  3. Sediment accumulation in San Leandro Bay, Alameda County, California, during the 20th century - A preliminary report

    SciTech Connect

    Nolan, K.M.; Fuller, C.C.

    1986-01-01

    Major changes made in the configuration of San Leandro Bay, Alameda County, California, during the 20th century have caused rapid sedimentation within parts of the Bay. Comparison of bathymetric surveys indicates that sedimentation in the vicinity of the San Leandro Bay channel averaged 0.7 cm/annum between 1856 and 1984. Lead-210 data collected at four shallow water sites east of the San Leandro Bay channel indicated that sedimentation rates have averaged between 0.06 and 0.28 cm/annum. Because bioturbation of bottom sediments cannot be discounted, better definition of this range in sedimentation rates would require measuring the activity of lead-210 on incoming sediments. In addition to sediment deposited in the vicinity of the San Leandro Bay channel and open, shallow areas to the east, 850,740 cu m of sediment was deposited between 1948 and 1983 in an area dredged at the mouth of San Leandro Creek. All available data indicate that between 1,213,000 and 1,364,000 cu m of sediment was deposited in San Leandro Bay between 1948 and 1983. Sediment yield data from an adjacent drainage basin, when combined with inventories of lead-210 and cesium-137, indicate that most of the sediment deposited in San Leandro Bay is coming from resuspension of bottom sediments or from erosion of marshes or shorelines of San Leandro or San Francisco Bay. 31 refs., 7 figs., 4 tabs.

  4. A preliminary survey of Vietnamese nail salon workers in Alameda County, California.

    PubMed

    Quach, Thu; Nguyen, Kim-Dung; Doan-Billings, Phuong-An; Okahara, Linda; Fan, Cathyn; Reynolds, Peggy

    2008-10-01

    In recent decades, the nail salon industry has been one of the fastest growing in the U.S. California has over 300,000 workers licensed to perform nail care services. Though little is known about their health, these workers routinely handle cosmetic products containing carcinogens and endocrine disruptors that may increase a woman's breast cancer risk. Additionally, an estimated 59-80% of California nail salons are run by Vietnamese women who face socio-cultural barriers that may compromise their workplace safety and health care access. In a pilot project designed to characterize Vietnamese nail salon workers in Alameda County, California in order to inform future health interventions and reduce occupational exposures, we conducted face-to-face surveys with a convenience sample of 201 Vietnamese nail salon workers at 74 salons. Of the workers surveyed, a majority reported that they are concerned about their health from exposure to workplace chemicals. Additionally, a sizeable proportion reported having experienced some health problem after they began working in the industry, particularly acute health problems that may be associated with solvent exposure (e.g. skin and eye irritation, breathing difficulties and headaches). Our findings highlight a critical need for further investigation into the breast cancer risk of nail salon workers, underscored by the workers' routine use of carcinogenic and endocrine-disrupting chemicals, their prevalent health concerns about such chemicals, and their high level of acute health problems. Moreover, the predominance of Vietnamese immigrant women in this workforce makes it an important target group for further research and health interventions.

  5. Clearing a Career Path: Lessons from Two Communities in Promoting Higher Education Access for the Early Care and Education Workforce. Alameda and Santa Clara Counties, California

    ERIC Educational Resources Information Center

    Dukakis, Kara; Bellm, Dan

    2006-01-01

    This report documents the process through which Alameda and Santa Clara Counties have used the Comprehensive Approaches to Raising Educational Standards (CARES) programs and other resources to leverage systemic change in early care and education (ECE) higher education. It describes a range of new and expanded efforts in both counties, and aims to…

  6. Sediment accumulation in San Leandro Bay, Alameda County, California, during the 20th century : a preliminary report

    USGS Publications Warehouse

    Nolan, K.M.; Fuller, C.C.

    1986-01-01

    Major changes made in the configuration of San Leandro Bay, Alameda County, California, during the 20th century have caused rapid sedimentation within parts of the Bay. Opening of the Oakland tidal channel and removal of 97% of the marshlands formerly surrounding the Bay have decreased tidal velocities and volumes. Marshland removal has decreased the tidal prism by about 25%. Comparison of bathymetric surveys indicates that sedimentation in the vicinity of the San Leandro Bay channel averaged 0.7 cm/annum between 1856 and 1984. Lead-210 data collected at four shallow water sites east of the San Leandro Bay channel indicated that sedimentation rates have averaged between 0.06 and 0.28 cm/annum. Because bioturbation of bottom sediments cannot be discounted, better definition of this range in sedimentation rates would required measuring the activity of lead-210 on incoming sediments. In addition to sediment deposited in the vicinity of the San Leandro Bay channel and open, shallow areas to the east, 850,740 cu m of sediment was deposited between 1948 and 1983 in an area dredged at the mouth of San Leandro Creek. All available data indicate that between 1 ,213,000 and 1,364,000 cu m of sediment was deposited in San Leandro Bay between 1948 and 1983. Sediment yield data from an adjacent drainage basin, when combined with inventories of lead-210 and cesium-137, indicate that most of the sediment deposited in San Leandro Bay is coming from resuspension of bottom sediments or from erosion of marshes or shorelines of San Leandro or San Francisco Bay. (Author 's abstract)

  7. 17. Western Branch right of way on Alameda Drive, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Western Branch right of way on Alameda Drive, looking west from Dorsey. The piped ditch (Lateral 6) runs beneath the grassy median. The SRP control structure in the background diverts water for Lateral 7, formerly known as the Petersen Ditch. Photographer: Mark Durben, June 1989. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  8. 2. LOOKING NORTHNORTHWEST ACROSS FEDERAL CHANNEL FROM THE ALAMEDA SHORE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING NORTH-NORTHWEST ACROSS FEDERAL CHANNEL FROM THE ALAMEDA SHORE, TO THE NORTH TRAINING WALL. (Panoramic view 2 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  9. An appraisal of surface-water quality in the Alameda Creek Basin, California, October 1974-June 1979

    USGS Publications Warehouse

    Lopp, L.E.

    1981-01-01

    Areal and seasonal variations in the quality of surface water in the Alameda Creek basin, California., from 1974 to 1979 were analyzed to determine the effects of wastewater discharges and imported water releases. Statistically significant differences were found among mean values of constituents in streamflow below the treated wastewater discharge points, imported water released from the South Bay Aqueduct, and the combined outflow at Alameda Creek near Niles. During periods before and after the drought of 1976-1977, concentrations of dissolved solids, dissolved chloride, and total nitrate varied inversely with water discharge. From 1974 to 1976, decreases in nutrient values coincided with increased in imported water releases. Values of physical properties and chemical constituents decreased during the spring and summer of 1976. During the second winter of the drought, imported water was decreased, and concentrations of dissolved solids, chloride, and total nitrate increased dramatically in the water at Alameda Creek near Niles. At the upstream tributary, Arroyo de la Laguna, increased chemical property and constituent values during 1976 and 1977 were attributed to decreased natural flow, hence the greater contribution of wastewater treatment plant effluent. Concentrations of several constituents exceeded limits set by the State water-quality objectives for the basin. With the return to normal flow levels in 1978-79, some concentrations returned to predrought levels. (USGS)

  10. TRUSS DETAILS. United Engineering Company Ltd., Alameda Shipyard. Includes crane ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRUSS DETAILS. United Engineering Company Ltd., Alameda Shipyard. Includes crane girder section. No architect noted. Drawn by Penney. Plan no. 2-N-7. March 10, 1942, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, item no. 22A. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Warehouse, 2900 Main Street, Alameda, Alameda County, CA

  11. BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BENDING SHOP & OVEN. United Engineering Co., Alameda, California. Plan, two elevations, sections, and details. Alben Froberg, Architect, Oakland, California. Sheet no. 1 of 1. Various scales. December 15, 1941. pencil on tracing paper - United Engineering Company Shipyard, Bending Shop & Oven, 2900 Main Street, Alameda, Alameda County, CA

  12. GATE HOUSE FOR UNITED ENGINEERING CO., Alameda, California. Four elevations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GATE HOUSE FOR UNITED ENGINEERING CO., Alameda, California. Four elevations and three sections. Alben Froberg, Architect, Oakland, California. Sheet no. 1. Scale 1/4 inch to the foot, elevations. Scale ~ inch to the foot, sections. July 31, 1941. pencil on tracing paper - United Engineering Company Shipyard, Gate House, 2900 Main Street, Alameda, Alameda County, CA

  13. 15. MAP OF ALAMEDA SHIPYARD SHOWING PROPOSED ADDITIONAL FACILITIES. United ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MAP OF ALAMEDA SHIPYARD SHOWING PROPOSED ADDITIONAL FACILITIES. United Engineering Company Ltd., Alameda Shipyard. A site map with all existing structures keyed to an identification legend. Also shows proposed new structures. No architect noted. Drawn by "J.B.H." (John Hudspeth?). Sheet 2. Plan no. 10,528. Scale one inch to 100 feet. November 12, 1943, last revised 1/18/44. pencil on vellum - United Engineering Company Shipyard, 2900 Main Street, Alameda, Alameda County, CA

  14. Debris flows triggered by the El Nino rainstorm of February 2-3, 1998, Walpert Ridge and vicinity, Alameda County, California

    USGS Publications Warehouse

    Coe, J.A.; Godt, J.W.

    2001-01-01

    On February 2 and 3, 1998, a rainstorm generated by the 1997-98 El Nino moved through the San Francisco Bay region of California triggering widespread slope failures. In the Walpert Ridge area of Alameda County 531 debris flows were triggered by the storm. These data depict the debris flows and landslides as polygons. The landslide polygons were mapped from 1:30,000 aerial photography using a PG2 photogrammetric plotter. The mapped debris flows and landslides were digitized manually in ArcInfo.

  15. Lithostratigraphic, borehole-geophysical, hydrogeologic, and hydrochemical data from the East Bay Plain, Alameda County, California

    USGS Publications Warehouse

    Sneed, Michelle; Orlando, Patricia v.P.; Borchers, James W.; Everett, Rhett; Solt, Michael; McGann, Mary; Lowers, Heather; Mahan, Shannon

    2015-01-01

    Water-level and aquifer-system-compaction measurements, which indicated diurnal and seasonal fluctuations, were made at the Bayside Groundwater Project site. Slug tests were performed at the Bayside piezometers and nine pre-existing wells to estimate hydraulic conductivity.

  16. Map showing recent (1997-98 El Nino) and historical landslides, Crow Creek and vicinity, Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    Coe, Jeffrey A.; Godt, Jonathan; Tachker, Pierre

    2004-01-01

    This report documents the spatial distribution of 3,800 landslides caused by 1997-98 El Ni?o winter rainfall in the vicinity of Crow Creek in Alameda and Contra Costa Counties, California. The report also documents 558 historical (pre-1997-98) landslides. Landslides were mapped from 1:12,000-scale aerial photographs and classified as either debris flows or slides. Slides include rotational and translational slides, earth flows, and complex slope movements. Debris flows and slides from the 1997-98 winter modified 1 percent of the surface of the 148.6 km2 study area. Debris flows were scattered throughout the area, regardless of the type of underlying bedrock geology. Slides, however, were concentrated in a soft sandstone, conglomerate, and clayey group of rock units. Digital map files accompany the report.

  17. 14. DREDGING MAP. United Engineering Company Ltd., Alameda Shipyard. Ship ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DREDGING MAP. United Engineering Company Ltd., Alameda Shipyard. Ship repair facilities dredging map. No architect noted. Drawn by "J.H." (John Hudspeth?). Sheet 1. Plan no. 10,529. Scale one inch to 50 feet. September 22, 1943. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 18, 1943. blueprint - United Engineering Company Shipyard, 2900 Main Street, Alameda, Alameda County, CA

  18. STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STATION BUILDING. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities. Plan, elevations, sections, details. Austin Willmott Earl, Consulting Engineer, 233 Sansome Street, San Francisco, California. Drawing no. 504. Various scales. January 20, 1945, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, amendments 4 & 5. blueprint - United Engineering Company Shipyard, Electrical Services & Switching Station, 2900 Main Street, Alameda, Alameda County, CA

  19. FIRST FLOOR PLAN AND SCHEDULES. United Engineering Company Ltd., Alameda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FIRST FLOOR PLAN AND SCHEDULES. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. First floor plan, door transom schedule, interior finish schedule, sash schedule, exterior color schedule, and location plot plan. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. Al of 8 sheets, Plan no. 10,007. Scale 1/8 inch to the foot. March 18, 1942, last revised 9/25/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Office Building No. 137, 2900 Main Street, Alameda, Alameda County, CA

  20. EXTERIOR ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Includes lettering detail for front elevation. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. A3 of 8 sheets, Plan no. 10,007. Scale 1/8 inch to the foot. March 18, 1942, last revised 9/21/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Office Building No. 137, 2900 Main Street, Alameda, Alameda County, CA

  1. SECOND FLOOR AND ROOF PLANS. United Engineering Company Ltd., Alameda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR AND ROOF PLANS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Second floor plan, and roof plan. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. A2 of 8 sheets, Plan no. 10,007. Scale 1/8 inch to the foot. March 18, 1942, last revised 9/22/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Office Building No. 137, 2900 Main Street, Alameda, Alameda County, CA

  2. Landslides in Alameda County, California: A Digital Database Extracted from Preliminary Photointerpretation Maps of Surficial Deposits by T.H. Nilsen in USGS Open-File Report 75-277

    USGS Publications Warehouse

    Roberts, Sebastian; Roberts, Michelle A.; Brennan, Eileen M.

    2000-01-01

    All or part of 25 7.5-minute quadrangles identifying 8465 landslides - largely slow-moving slides and earth flows - in Alameda County, California, have been converted to a digital-map database, compiled at 1:24,000 scale and plotted at 1:62,500 scale, that can be acquired from the U.S. Geological Survey over the Internet or on magnetic tape.

  3. Trench logs, terrestrial lidar system imagery, and radiocarbon data from the kilometer-62 site on the Greenville Fault, southeastern Alameda County, California, 2014

    USGS Publications Warehouse

    Lienkaemper, James J.; DeLong, Stephen B.; Avdievitch, Nikita N.; Pickering, Alexandra J; Guilderson, Thomas P.

    2015-01-01

    In 2014, we investigated an abrupt 8.5-meter (m), right-laterally deflected stream channel located near the Greenville Fault in southeastern Alameda County, California (-121.56224° E, 37.53430° N) that we discovered using 0.5-m resolution, 2011 aerial lidar imagery flown along the active fault trace. Prior to trenching we surveyed the site using a terrestrial lidar system (TLS) to document the exact geomorphic expression of this deflected stream channel before excavating a trench adjacent to it. We trenched perpendicular to the fault hoping to document the prehistoric history of earthquake ruptures along the fault. However, the alluvial stratigraphy that we document in these trench logs shows conclusively that this trench did not expose any active fault trace. Using other local geomorphic evidence for the fault location, a straight fault scarp immediately north of this stream projects slightly upslope of the west end of our trench and may be the actual location of the active fault trace. Five radiocarbon samples establish age control for the alluvial sequence documented in the trench, which may in the future be useful in constraining the long-term slip rate of the Greenville Fault. The deflection had been caused by an abrupt nontectonic termination of unit u30, a relatively thick (0.15–0.35 m) silt that is more erosion resistant than the adjacent cohesionless sand and gravel. 

  4. A multivariate analysis of health-related practices: a nine-year mortality follow-up of the Alameda County Study.

    PubMed

    Wingard, D L; Berkman, L F; Brand, R J

    1982-11-01

    Associations between several common health-related practices and a variety of health outcomes have been reported. However, the independent associations between each of these practices and mortality from all causes have not been assessed. In the present report, a multiple logistic analysis of seven potentially health-related practices (individually and in a summary index) and mortality from all causes is conducted, using data from the Human Population Laboratory Study of a random sample of 6928 adults living in Alameda County, California in 1965 and a subsequent nine-year mortality follow-up. Many covariables such as physical health status and socioeconomic status are simultaneously analyzed. The health-related practices examined are: 1) never smoking; 2) regular physical activity; 3) low alcohol consumption; 4) average weight status; 5) sleeping seven to eight hours/night; 6) not skipping breakfast; and 7) not snacking between meals. The analysis reveals that five of the practices are associated with lower mortality from all causes. Neither eating breakfast nor not snacking have significant independent associations with lower mortality. After covariable adjustment, respondents who reported few low-risk practices have a relative risk of 2.3 (p less than 0.001) when compared with those who had many low-risk practices. Mortality risks for possible combinations of health-related practices are discussed.

  5. PLANS & ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard. Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANS & ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard. Also includes door schedule and a small scale plot plan. No architect noted. Drawn by W.H.H. Plan no. 2-N-5 (U.E. Co. plan no. 10,523). Scale 1/8 inch to the foot. March 10, 1942, last revised 10/6/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, item no. 22A. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Warehouse, 2900 Main Street, Alameda, Alameda County, CA

  6. WAREHOUSE END FRAMING. United Engineering Company Ltd., Alameda Shipyard. Sections ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAREHOUSE END FRAMING. United Engineering Company Ltd., Alameda Shipyard. Sections at north and detail sections. No architect noted. Drawn by Penney. Plan no. 2-N-9 (U.E. Co. plan no. 10,523). Scales 1/4 inch and 1 inch to the foot. March 10, 1942, no revisions. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76, item no. 22A. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Warehouse, 2900 Main Street, Alameda, Alameda County, CA

  7. Cone Penetration Test and Soil Boring at the Bayside Groundwater Project Site in San Lorenzo, Alameda County, California

    USGS Publications Warehouse

    Bennett, Michael J.; Sneed, Michelle; Noce, Thomas E.; Tinsley, John C.

    2009-01-01

    Aquifer-system deformation associated with ground-water-level changes is being investigated cooperatively by the U.S. Geological Survey (USGS) and the East Bay Municipal Utility District (EBMUD) at the Bayside Groundwater Project (BGP) near the modern San Francisco Bay shore in San Lorenzo, California. As a part of this project, EBMUD has proposed an aquifer storage and recovery (ASR) program to store and recover as much as 3.78x104 m3/d of water. Water will be stored in a 30-m sequence of coarse-grained sediment (the 'Deep Aquifer') underlying the east bay alluvium and the adjacent ground-water basin. Storing and recovering water could cause subsidence and uplift at the ASR site and adjacent areas because the land surface will deform as aquifers and confining units elastically expand and contract with ASR cycles. The Deep Aquifer is overlain by more than 150 m of clayey fine-grained sediments and underlain by comparable units. These sediments are similar to the clayey sediments found in the nearby Santa Clara Valley, where inelastic compaction resulted in about 4.3 m of subsidence near San Jose from 1910 to 1995 due to overdraft of the aquifer. The Deep Aquifer is an important regional resource, and EBMUD is required to demonstrate that ASR activities will not affect nearby ground-water management, salinity levels, or cause permanent land subsidence. Subsidence in the east bay area could induce coastal flooding and create difficulty conveying winter storm runoff from urbanized areas. The objective of the cooperative investigation is to monitor and analyze aquifer-system compaction and expansion, as well as consequent land subsidence and uplift resulting from natural causes and any anthropogenic causes related to ground-water development and ASR activities at the BGP. Therefore, soil properties related to compressibility (and the potential for deformation associated with ground-water-level changes) are of the most concern. To achieve this objective, 3 boreholes

  8. 20. ANOTHER WATER VIEW OF THIS NORTH TRAINING WALL SECTION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ANOTHER WATER VIEW OF THIS NORTH TRAINING WALL SECTION, FROM SEVERAL HUNDRED FEET TO THE EAST OF THE PREVIOUS VIEW. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  9. 76 FR 13172 - Placer County Water Agency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... Energy Regulatory Commission Placer County Water Agency Notice of Application Tendered for Filing with... Filed: February 23, 2011 d. Applicant: Placer County Water Agency e. Name of Project: Middle Fork... Manager, Placer County Water Agency, 144 Ferguson Road, Auburn, CA 95603; Telephone: (530) 823-4490....

  10. Alameda Unified School District, 2009-2011. Alameda Case Study

    ERIC Educational Resources Information Center

    Pivot Learning Partners, 2011

    2011-01-01

    When the five-member Board of the Alameda Unified School District selected Kirsten Vital as the new superintendent in 2009, they chose someone from outside their tight-knit community. Board Trustee Margie Sherratt thought Vital was chosen to "get us moving," to be a change agent on closing the achievement gap. Vital, in her initial conversations…

  11. Water resources of Duval County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1994-01-01

    The report describes the hydrology and water resources of Duval County, the development of its water supplies, and water use within the county. Also included are descriptions of various natural features of the county (such as topography and geology), an explanation of the hydrologic cycle, and an interpretation of the relationship between them. Ground-water and surface-water resources and principal water-quality features within the county are also discussed. The report is intended to provide the general public with an overview of the water resources Of Duval County, and to increase public awareness of water issues. Information is presented in nontechnical language to enable the general reader to understand facts about water as a part of nature, and the problems associated with its development and use.

  12. Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California

    USGS Publications Warehouse

    Izbicki, John A.; Borchers, James W.; Leighton, David A.; Kulongoski, Justin T.; Fields, Latoya; Galloway, Devin L.; Michel, Robert L.

    2003-01-01

    The East Bay Plain, on the densely populated eastern shore of San Francisco Bay, contains an upper aquifer system to depths of 250 feet below land surface and an underlying lower aquifer system to depths of more than 650 feet. Injection and recovery of imported water has been proposed for deep aquifers at two sites within the lower aquifer system. Successful operation requires that the injected water be isolated from surface sources of poor-quality water during storage and recovery. Hydraulic, geochemical, and isotopic data were used to evaluate the isolation of deeper aquifers. Ground-water responses to tidal changes in the Bay suggest that thick clay layers present within these deposits effectively isolate the deeper aquifers in the northern part of the study area from overlying surficial deposits. These data also suggest that the areal extent of the shallow and deep aquifers beneath the Bay may be limited in the northern part of the study area. Despite its apparent hydraulic isolation, the lower aquifer system may be connected to the overlying upper aquifer system through the corroded and failed casings of abandoned wells. Water-level measurements in observation wells and downward flow measured in selected wells during nonpumped conditions suggest that water may flow through wells from the upper aquifer system into the lower aquifer system during nonpumped conditions. The chemistry of water from wells in the East Bay Plain ranges from fresh to saline; salinity is greater than seawater in shallow estuarine deposits near the Bay. Water from wells completed in the lower aquifer system has higher pH, higher sodium, chloride, and manganese concentrations, and lower calcium concentrations and alkalinity than does water from wells completed in the overlying upper aquifer system. Ground-water recharge temperatures derived from noble-gas data indicate that highly focused recharge processes from infiltration of winter streamflow and more diffuse recharge processes from

  13. Water resources of Sweetwater County, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Miller, Kirk A.

    2004-01-01

    Sweetwater County is located in the southwestern part of Wyoming and is the largest county in the State. A study to quantify the availability and describe the chemical quality of surface-water and ground-water resources in Sweetwater County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineers Office. Most of the county has an arid climate. For this reason a large amount of the flow in perennial streams within the county is derived from outside the county. Likewise, much of the ground-water recharge to aquifers within the county is from flows into the county, and occurs slowly. Surface-water data were not collected as part of the study. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Forty-six new ground-water-quality samples were collected as part of the study and the results from an additional 782 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers throughout the county also are described. Flow characteristics of streams in Sweetwater County vary substantially depending on regional and local basin characteristics and anthropogenic factors. Because precipitation amounts in the county are small, most streams in the county are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flows in perennial streams in the county generally are a result of snowmelt runoff in the mountainous headwater areas to the north, west, and south of the county. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Sweetwater County during water years 1974 through 1983 were variable. Concentrations of dissolved constituents, suspended sediment, and bacteria generally were smallest at sites on the Green River because of resistant geologic units, increased

  14. The Water Cycle in Volusia County

    USGS Publications Warehouse

    German, Edward R.

    2009-01-01

    Earth's water is always in motion. The water cycle, also known as the hydrologic cycle, describes the continuous movement of water on, above, and below the Earth's surface. This fact sheet provides information about how much water moves into and out of Volusia County, and where it is stored. It also illustrates the seasonal variation in water quantity and movement using data from some of the hydrologic data collection sites in or near Volusia County, Florida.

  15. Water resources of Carbon County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Mason, Jon P.; Norris, Jodi R.; Miller, Kirk A.

    2006-01-01

    Carbon County is located in the south-central part of Wyoming and is the third largest county in the State. A study to describe the physical and chemical characteristics of surface-water and ground-water resources in Carbon County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Surface-water data were not collected as part of the study. Forty-five ground-water-quality samples were collected as part of the study and the results from an additional 618 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers in hydrogeologic units throughout the county also are described. Flow characteristics of streams in Carbon County vary substantially depending on regional and local basin char-acteristics and anthropogenic factors. Precipitation in the county is variable with high mountainous areas receiving several times the annual precipitation of basin lowland areas. For this reason, streams with headwaters in mountainous areas generally are perennial, whereas most streams in the county with headwaters in basin lowland areas are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Carbon County during water years 1966 through 1986 varied. Concentrations of dissolved constituents and suspended sediment were smallest at sites on streams with headwaters in mountainous areas because of resistant geologic units, large diluting streamflows, and increased vegetative cover compared to sites on streams with headwaters in basin lowlands. Both water-table and artesian conditions occur in aquifers within the county. Shallow ground water is

  16. Chester County ground-water atlas, Chester County, Pennsylvania

    USGS Publications Warehouse

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater- quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective. In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds.Waterquality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinkingwater standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county. Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  17. Ground water resources of Lee County

    USGS Publications Warehouse

    Gordon, Donivan L.

    1980-01-01

    In terms of these factors, there are few locations in Lee County where the availability of ground water is not limited to some degree. The most common limitation is poor water quality, that is, highly mineralized ground water. Secondary limitations are generally related to poor distribution, small yields from some sources, and poor accessibility due to the great depths to adequate sources.

  18. Water availability of Washington County, Alabama

    USGS Publications Warehouse

    Newton, John G.; McCain, Jerald F.; Turner, James D.

    1975-01-01

    Large quantities of ground water and surface water are available in Washington County. Major sources of ground water are the Gosport Sand and Lisbon Formation undifferentiated, the Miocene Series undifferentiated, and alluvium and low terrace deposits. The Miocene, the most productive source of ground water, will yield 0.5 to 1.0 mgd (million gallons per day) per well and is a potential source of larger supplies in most of the county. The quantity of potable water available is governed largely by geologic structures. Average flows of the Tombigbee and Mobile Rivers in the southeast corner of the county are 18,200 and 39,400 mgd. Average runoff originating in the county is about 1,100 mgd or 1 mgd per square mile. Water in aquifers tapped by wells generally contains less than 500 mg/l (milligrams per liter) dissolved solids. The water generally is soft to moderately hard. Water in streams is soft to moderately hard and low in dissolved solids. Estimated water use in 1966 was 43.5 mgd of which 10.9 mgd was ground water and 32.6 mgd was surface water.

  19. Water resources of Lincoln County, Wyoming

    USGS Publications Warehouse

    Eddy-Miller, C. A.; Plafcan, Maria; Clark, M.L.

    1996-01-01

    Streamflow and ground-water quantity and quality data were collected and analyzed, 1993 through 1995, and historical data were compiled to summarize the water resources of Lincoln County.Deposits of Quaternary age, in the valleys of the Bear River and Salt River, had the most well development of any geologic unit in the county.The most productive alluvial aquifers were located in the Bear River Valley and Star Valley with pumping wells discharging up to 2,000 gallons perminute. The ground-water connection between the Overthrust Belt and the Green River Basin is restricted as a result of the folding and faulting that occurred during middle Mesozoic and early Cenozoic time. Total water use in Lincoln County during 1993 was estimated to be 405,000 million gallons. Surface water was the source for 98 percent of the water used in the county. Hydroelectric power generation and irrigation used the largest amounts of water. Dissolved-solids concentrations varied greatly for water samples collected from 35 geologic units inventoried. Dissolved-solids concentrations in all water samples from the LaneyMember of the Green River Formation were greater than the Secondary Maximum Contaminant Level of 500 milligrams per liter established by the U.S. Environmental Protection Agency. Statistical analysis of data collected from wells in the Star Valley monitoring study indicated there was no significant difference between data collected during different seasons, and no correlation between the nitrate concentrations and depth to ground water.

  20. Water resources of King County, Washington

    USGS Publications Warehouse

    Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.

    1968-01-01

    Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of

  1. Health habits of U.S. adults, 1985: the "Alameda 7" revisited.

    PubMed

    Schoenborn, C A

    1986-01-01

    Seven health habits, commonly referred to as the "Alameda 7," were shown to be associated with physical health status and mortality in a pioneer longitudinal study initiated in 1965 in Alameda County, CA. These habits are having never smoked, drinking less than five drinks at one sitting, sleeping 7-8 hours a night, exercising, maintaining desirable weight for height, avoiding snacks, and eating breakfast regularly. The Alameda study focused attention on the importance of everyday practices for the maintenance of good health and, ultimately, for longer life. This report presents selected findings on the prevalence of the seven Alameda practices (defined slightly differently in some cases) among the general U.S. population aged 18 years and older, by sex, according to age, education, income, and race. In general, men are more likely than women to smoke, drink, and exercise. Younger people are more likely than older people to skip breakfast, snack, and drink, and younger women are more likely than older women to smoke. Education, income, and racial differences were found for most health practices. Of all subgroups discussed, blacks, particularly black women, are the most likely to have lifestyles that would be considered unhealthy using the Alameda criteria. Overall, the data reported suggest that although large numbers of U.S. adults have healthy habits, many do not, particularly persons in socially and economically disadvantaged groups.

  2. Water resources of Manatee County, Florida. Water-resources investigations

    SciTech Connect

    Brown, D.P.

    1983-03-01

    Rapid development of Manatee County in southwest Florida is creating water-resource problems. The report presents an evaluation of the water resources and potential effects of water-resource developments. Most streams in the county have small drainage basins and low yields. The principal aquifers are the surficial, minor artesian, and the Floridan. The Floridan aquifer is the major source of irrigation water in the county. The minor artesian aquifer is a highly developed source of water for small rural supplies. Withdrawals of 20 to 50 million gallons per day from the Floridan aquifer since the 1950's have caused declines in the potentiometric surface of about 20 to 50 feet. The quality of ground water is good except in the coastal and southern parts of the county.

  3. Ground water in Creek County, Oklahoma

    USGS Publications Warehouse

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  4. Surface-water availability, Tuscaloosa County, Alabama

    USGS Publications Warehouse

    Knight, Alfred L.; Davis, Marvin E.

    1975-01-01

    The average annual runoff, about 1,270 mgd (million gallons per day), originating in Tuscaloosa County is equivalent to 20 inches or 0.95 mgd per square mile. The Black Warrior and Sipsey Rivers, the largest streams in the county, have average flows of 5,230 mgd and 580 mgd, respectively, where they leave the county, and median annual 7-day low flows in excess of 150 mgd and 35 mgd, respectively. North River, Big Sandy Creek, and Hurricane Creek have average flows in excess of 100 mgd and median annual 7-day low flows in excess of 2 mgd. Surface water generally contains less than 100 mg/l (milligrams per liter) dissolved solids, less than 10 mg/l chloride, and is soft to moderately hard. Streams having the higher hardness and the higher dissolved-solids content are in eastern Tuscaloosa County.

  5. Water resources of Indiana County, Pennsylvania

    USGS Publications Warehouse

    Williams, D.R.; McElroy, T.A.

    1997-01-01

    Indiana County, west-central Pennsylvania, is a major producer of coal and natural gas. Water managers and residents are concerned about the effects of mining and natural gas exploration on the surface- and ground-water resources of the county. This study assesses the quality and quantity of water in Indiana County. Ground- and surface-water sources are used for public supplies that serve 61 percent of the total population of the county. The remaining 39 percent of the population live in rural areas and rely on cisterns and wells and springs that tap shallow aquifers. Most of the county is underlain by rocks of Middle to Upper Pennsylvanian age. From oldest to youngest, they are the Allegheny Group, the Glenshaw Formation, the Casselman Formation, and the Monongahela Group. Almost all the coals mined are in the Allegheny Group and the Monongahela Group. Ground water in Indiana County flows through fractures in the rock. The size and extent of the fractures, which are controlled by lithology, topography, and structure, determine the sustained yield of wells. Topography has a significant control over the yields of wells sited in the Allegheny Group. Properly sited wells in the Glenshaw Formation may have yields adequate for municipal, commercial, or industrial uses. The Casselman Formation yields adequate amounts of water for domestic use. Yield of the Monongahela Group is small, and the water may not be of suitable quality for most uses. Yields of hilltop wells may be marginal, but valley wells may yield sufficient amounts for large-volume users. Data on the other rock units are sparse to nonexistent. Few wells in the county yield more than 40 gallons per minute. Most of the wells that do are in valleys where alluvial deposits are extensive enough to be mapable. Short-term water-level fluctuations are variable from well to well. Seasonal water-level fluctuations are controlled by time of year and amount of precipitation. The quality of water from the Casselman

  6. Water resources of Taos County, New Mexico

    USGS Publications Warehouse

    Garrabrant, Lynn A.

    1993-01-01

    In Taos County, ground water generally is unconfined and moves toward the Rio Grande or perennial streams. Water quality is good except in some areas where water has high values of specific conductance and hardness and contains high concentrations of dissolved solids and fluoride. Most wells are completed in alluvial sediments of Quaternary and Tertiary age in the Costilla Plains. A few wells are completed in basalt of the Taos Plateau and in alluvium of stream channels in the Sangre de Cristo Mountains. Depths to water in wells range from less than 1 to 1,080 feet below land surface. Well yields range from 1 to 3,000 gallons per minute. Water levels in wells in Sunshine Valley dropped 5 to 50 feet between 1955 and 1970. Ground-water irrigation has since declined and water levels have risen. Surface-water records show the county is a net producer of water. The average discharge gained in the Rio Grande as it flows through the county was 271,700 acre-feet per year for water years 1931-89. The highest mean monthly discharge occurs in May or June due to snowmelt runoff. Water quality ranges from good in upstream reaches to fair in lower reaches. Surface water was the source for 93 percent of water withdrawn in 1990, but ground water was used for all public supply, domestic, and industrial purposes. The largest water use is irrigation. About 28,500 acres were irrigated in 1990; alfalfa, native pasture, and planted pasture accounted for 91 percent of this acreage.

  7. 75 FR 26709 - Clarke County Water Supply Project, Clarke County, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Natural Resources Conservation Service Clarke County Water Supply Project, Clarke County, IA AGENCY... Water Supply Project, Clarke County, Iowa. ] FOR FURTHER INFORMATION CONTACT: Richard Sims, State... comments by NRCS information related to water supply demand requirements for permitting by the State...

  8. 77 FR 19095 - Security Zone; USCGC STRATTON Commissioning Ceremony, Alameda, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... the waters surrounding Coast Guard Island from the surface of the water to the ocean floor within 100... ocean floor is a temporary security zone: All waters within 100 yards of Coast Guard Island near Alameda... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; USCGC STRATTON Commissioning...

  9. Water resources of Spink County, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.; Howells, L.W.

    1996-01-01

    Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land

  10. Water resources of Yankton County, South Dakota

    USGS Publications Warehouse

    Bugliosi, E.F.

    1986-01-01

    The major surface-water sources in Yankton County, South Dakota are Lewis and Clark Lake, Marindahl and Beaver Lakes, and the Missouri and James Rivers. The James River has an average flow of 375 cu ft/sec and the Missouri River at Yankton has an average flow of 26,410 cu ft/sec. Major aquifers are the Dakota, the Niobrara, and the Lower James-Missouri glacial outwash. Depth to the Dakota aquifer, which underlies the entire county, ranges from about 300 to more than 500 ft below land surface. Wells completed in this artesian aquifer below altitudes of 1 ,260 ft will flow from 3 to 60 gallons/min at the land surface when properly constructed. Recharge is by subsurface inflow from the west. The water is a calcium sulfate type and is suitable in most cases for domestic, livestock, and irrigation uses. The Niobrara aquifer, which underlies the northeast and southwest parts of the county, may be under artesian or water-table conditions. Well yields vary but usually are suitable only for domestic use. Recharge to the northeast part of the aquifer is from precipitation infiltrating the overlying glacial deposits. The southwest part receives recharge as subsurface inflow from the west and from precipitation. The water is a magnesium sulfate type. The Lower James-Missouri aquifer underlies almost 50% of the county. Water in the aquifer is present under both artesian and water-table conditions. Wells can be expected to yield at least 1,000 gallons/min. Recharge is from subsurface inflow from the north and west, the Missouri River to the south, and from precipitation. The water is predominantly calcium sodium sulfate type, and specific conductance and hardness average 1,910 micromhs and 870 milligrams/L, respectively. (USGS)

  11. Water resources of Walworth County, South Dakota

    USGS Publications Warehouse

    Kume, Jack; Howells, Lewis

    1987-01-01

    The water resources of Walworth County, South Dakota are for the most part undeveloped. In 1978, only about 10,000 acre-feet of water was used for irrigation, stock, domestic, and public supplies; most of this water came form Lake Oahe on the Missouri River, and was used for irrigation. The lake stores about 22 million acre-feet of water; the average annual flow of the Missouri River is about 16 million acre-feet. Tributary streams normally are dry at least 10 months per year. Average annual net surface runoff from the county is 7,900 acre-feet. At least 99 percent of the precipitation per year is lost by evapotranspiration. An estimated 1.2 million acre-feet of water is stored in eight aquifers in the glacial drift. The water generally is suitable for irrigation, stock, and domestic use. It is estimated that more than 55 million acre-feet of water is stored in nine aquifers in the bedrock. These aquifers are in the Dakota Formation, Inyan Kara Group, Sundance and Minnelusa Formations, Madison Group, Devonian strata, and Stony Mountain, Red River, and Deadwood Formations. The water is slightly to very saline and, at best, is suitable for livestock and marginally acceptable for domestic supplies. (USGS)

  12. 75 FR 8106 - Don Edwards San Francisco Bay National Wildlife Refuge, Alameda, Santa Clara, and San Mateo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Fish and Wildlife Service Don Edwards San Francisco Bay National Wildlife Refuge, Alameda, Santa Clara, and San Mateo Counties, CA AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of intent to...) and Environmental Assessment (EA) for the Don Edwards San Francisco Bay National Wildlife...

  13. Artesian water in Somervell County, Texas

    USGS Publications Warehouse

    Fiedler, Albert George

    1934-01-01

    Somervell County is part of the Grand Prairie region of north-central Texas. An excellent supply of artesian water is available from the Trinity reservoir at no great depth. The first flowing well in Somervell County was drilled in 1880, and the first flowing well in Glen Rose, the county seat, was drilled in 1881. Since 1880 more than 500 wells have been constructed, probably more than half of them prior to 1900. Many of these early wells have been abandoned, either because the well hole caved in as a result of the absence or deterioration of casing or because the wells ceased to yield water by natural flow. The artesian water has always been used chiefly for domestic supply and for watering stock. Only a comparatively small area of farm land is now irrigated. The quantity used to supply the needs of tourist camps and outdoor swimming pools forms a relatively large percentage of the total amount withdrawn from the artesian reservoir in Somervell County. The artesian water is contained chiefly in the permeable sandstone beds--the basal sands for the Trinity group. Some shallow wells of small capacity are supplied by water in the crevices and solution channels in limestone that apparently is near the base of the Glen Rose formation and probably derives its water by leakage from the underlying Trinity reservoir. The wells encounter from one to three aquifers, the number depending upon their depth and location. At and around Glen Rose, the area in which most of the flowing wells are concentrated, the first aquifer is the creviced portion of the limestone, which is encountered at about 50 feet but does not everywhere yield water. The second and third aquifers, both of which are part of the 'basal sands' of the Trinity group, are much more uniform and persistent; the second is encountered at Glen Rose at depths of 100 to 135 feet, and the third at depths of about 275 to 330 feet. The artesian reservoir is supplied by water that falls as rain or snow upon the outcrop of

  14. Site mitigation issues along the Alameda Corridor

    SciTech Connect

    Ripaldi, C.P.

    1996-12-31

    The Alameda Corridor is a consolidated railroad link between the Ports of Los Angeles and Long Beach and the regional and national rail systems linking the nation. A joint Environmental Impacts Report/Environmental Impact Statement (EIR/EIS) was prepared for the project. The Final EIS was issued in February 1996, and a record of decision was issued in May, 1996. Various Phase 1 and Phase 2 Environmental Site Assessments have provided extensive historical documentation of environmental contamination in the vicinity of the Alameda Corridor Transportation Project. A Site Mitigation Master Plan provides guidance and direction for the clean-up activities. Samples will be analyzed for metals, PCB`s TRPH, BTEX, and VOCs.

  15. Geology and ground-water resources of Uvalde County, Texas

    USGS Publications Warehouse

    Welder, F.A.; Reeves, R.D.

    1964-01-01

    Ground-water withdrawals from the Edwards and associated limestones in Uvalde County probably could be maintained indefinitely at a rate of about 200,000 acre-feet per year, provided that withdrawals north and west of the county were not increased. However, continued withdrawals at this rate-would cause wells in structurally high areas to go dry, and underflow into Medina County would cease. Furthermore, saline water might invade the fresh-water part of the

  16. Potable water quality in rural Georgetown County.

    PubMed

    Sandhu, S S; Nelson, P; Warren, W J

    1975-10-01

    Drinking water supplies of 161 rural communities, in Georgetown County, South Carolina, were randomly selected for sample collection. The analysis showed that most of the waters were slightly acidic. Low, but acceptable concentrations of chloride, copper, fluoride, sodium, cadmium, nitrate and phosphate were found. A few water samples showed higher then recommended levels of arsenic, mercury, zinc and lead. Although only 2% of the samples exceeded the mandatory limit of 0.05 ppm for arsenic, 72% exceeded the recommended level of 0.01 ppm. The mandatory limit for manganese was exceeded in 37% of the waters while 88% exceeded the limit for iron. The high iron content was generally responsible for the high turbidity found in 45% of the samples. The well depth and the consumer income had some bearing on water quality. Statistical evidence suggested that septic tank seepage was partially responsible for nitrate, phosphate, iron and arsenic contamination of shallow water supplies. Lead concentrations appear to vary according to the plumbing used and the pH of the waters. PMID:107

  17. Geology and ground-water resources of Dane County, Wisconsin

    USGS Publications Warehouse

    Cline, Denzel R.

    1965-01-01

    The purpose of the ground-water investigation of Dane County, Wis., was to determine the occurrence, movement, quantity, quality, and availability of ground water in the unconsolidated deposits and the underlying bedrock. The relationships between ground water and surface water were studied in general in Dane County and in detail in the Madison metropolitan area. An analysis was made of the hydrologic system of the Yahara River valley and of the effects of ground-water pumpage on that system.

  18. Ground-water resources data for Baldwin County, Alabama

    USGS Publications Warehouse

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  19. Outdoor residential water use trends in Orange County, California

    NASA Astrophysics Data System (ADS)

    Bijoor, N. S.; Famiglietti, J. S.; Berg, J.; Baum-Haley, M.

    2012-12-01

    Irrigation is required to maintain outdoor landscapes in semi-arid climates, such as in Orange County, California. Landscape water use efficiency is a priority in Orange County, as nearly half the water supply is imported and the region is vulnerable to water shortages. The purpose of this research is to determine whether single family household residents adjust landscape irrigation based on climate or income in Orange County. Specifically, the goals were to (1) estimate the volume of single family residence (SFR) landscape irrigation applied (2) determine the depth (mm) of over- or under-irrigation compared to theoretical need (3) determine the climatic and socioeconomic controls on landscape irrigation. We plan to compare results from agencies with uniform vs. allocation-based rate structures. A research partnership was established between six water retail agencies in Orange County: Huntington Beach Water District, El Toro Water District, Irvine Ranch Water District, East Orange County Water District, City of San Juan Capistrano, and Laguna Beach County Water District. These agencies represent a wide range of climatic and economic conditions and contributed between 3 and 13 years of SFR water use data on a monthly/bimonthly basis. Household water use, climate, and socioeconomic factors were mapped using Arcview GIS. Air temperature (California Irrigation Management Information System), precipitation (Orange County Cooperative Observer System), landscape size, and income (US Census) were evaluated as possible controls on SFR water use. Findings indicate that landscape water use may constitute the majority of household water use. We found over-irrigation relative to plant water demand in areas of Orange County. Domestic landscape water use may depend on climate and/or income. Results suggest a high potential for residential water savings with improved landscape irrigation efficiency. This information would be useful for improving or developing water use efficiency

  20. Water resources of Weston County, Wyoming

    USGS Publications Warehouse

    Lowry, M.E.; Head, W.J.; Rankl, J.G.; Busby, J.F.

    1986-01-01

    Surface water is scarce in Weston County, Wyoming. Groundwater has been developed from rocks ranging in age from Mississippian to Holocene. Adequate supplies for domestic or stock use can be developed from wells generally less than 1,000 ft deep, except in the area underlain by a thick sequence of predominantly marine shale that will yield only small quantities of very mineralized water. In the early 1960 's decreases in artesian pressures occurred in some wells completed in the Lakota Formation of Early Cretaceous age and Pahasapa Limestone of Early Mississippian age. Only the decrease in the Lakota was attributed to development of water from the formation. Extensive development of either of these aquifers, however, may result in significant interference between nearby wells completed within the same aquifer. There are other aquifers within a few hundred feet of the overlying Lakota Formation that could be developed as an alternative to the Lakota to help limit the loss of pressure. The much deeper Pahasapa Limestone generally is developed because of the large supplies that are possible. Because there are no other large yield aquifers, there are no alternatives to limit the loss of pressure of the Pahasapa in the event of increased development. (USGS)

  1. Water resources and effects of development in Hernando County, Florida

    USGS Publications Warehouse

    Fretwell, J.D.

    1985-01-01

    In spite of the hill and valley terrain in the Brooksville Ridge area of Hernando County, Florida, little surface drainage occurs within the county. Recharge to the Floridan aquifer system occurs as infiltration of precipitation within the county or as ground-water flow from Sumter County to the east and Pasco County to the south. Discharge is principally to the Gulf of Mexico, but some ground water flows north into Citrus County before it reaches the Gulf. The Floridan aquifer system is generally unconfined. Water quality is generally good except near the coast where high chloride occurs. Water from the Floridan aquifer system accounted for 87 percent of the water used for irrigation, industry, and rural and public supply in 1982. Sixty-seven percent of this water was used by industry. Rock mining, the major industry, used 99 percent of the industrial water. The anticipated increase in population in the county between 1982 and 2000 will increase demand for water primarily from public water-supply systems. This higher demand will cause about a 1 percent reduction in flow from Weeki Wachee Springs, but little change in lake levels or saltwater intrusion will occur if the projected additional supplies are developed far enough inland from the coast. (USGS)

  2. Geology and water resources of Winnebago County, Wisconsin

    USGS Publications Warehouse

    Olcott, Perry C.

    1966-01-01

    Sources or water in Winnebago County include surface water from the Fox and Wolf Rivers and their associated lakes, and ground water from sandstone, dolomite, and sand and gravel deposits. Surface water is hard and generally requires treatment, but is then suitable for municipal and most industrial uses. Pollution is only a local problem in the lakes and rivers, but algae are present in most of the lakes. Ground water in Winnebago County is hard to very hard, and dissolved iron is a problem in a large area of the county. A saline-water zone borders the eastern edge of the county and underlies the areas of concentrated pumpage at Neenah-Menasha and Oshkosh. A thick, southeastward-dipping sandstone aquifer, yielding as much as 1,000 gallons per minute to municipal and industrial wells, underlies Winnebago County. A dolomite aquifer in the eastern and southern part of the county yields as much as 50 gallons per minute to wells. Sand and gravel layers and lenses in preglacial bedrock channels, in northwestern Winnebago County and in the upper Fox River valley, yield as much as 50 gallons per minute to wells. Present water problems in the county include algae and local pollution in the Lake Winnebago Pool, iron in water from the sandstone aquifer, and saline ground Water in the eastern part of the county. Potential problems include rapid decline of water levels because of interference between closely spaced wells, migration of saline ground water toward areas of pumping, surface-water pollution from inadequate sewage and industrial-waste process plants, and ground-water pollution in dolomite formations. Development of the water resources of the county should follow a comprehensive plan which takes into consideration all aspects of water use. Dispersal of wells, especially extending toward the west from the heavily pumped Neenah-Menasha and Oshkosh areas, is recommended to reduce water-level declines and to avoid saline water. Supplemental use of ground water is

  3. Water resources of Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Wood, Charles R.; Flippo, Herbert N.; Lescinsky, Joseph B.; Barker, James L.

    1972-01-01

    Lehigh County occupies an area of 347 square miles in southeastern Pennsylvania. The northern part of Lehigh County is underlain by the Martinsburg Formation, which consists chiefly of shale and slate. The central part of the county, where most of the population centers are located and much of the urbanization is occurring, is underlain by alternating beds of limestone and dolomite. From oldest to youngest, these carbonate rocks are the Leithsville Formation, the Allentown Formation, the Beekmantown Group, and the Jacksonburg Formation. The southern part of the county is underlain chiefly by the shales, sandstones, and conglomerates of the Brunswick Formation and by metamorphic and igneous rocks.

  4. Geology and ground-water resources of Uvalde County, Texas

    USGS Publications Warehouse

    Welder, F.A.; Reeves, R.D.

    1964-01-01

    Ground-water withdrawals from the Edwards and associated limestones in Uvalde County probably could be maintained indefinitely at a rate of about 200,000 acre-feet per year, provided that withdrawals north and west of the county were not increased. However, continued withdrawals at this rate-would cause wells in structurally high areas to go dry, and underflow into Medina County would cease. Furthermore, saline water might invade the fresh-water part of the aquifer from the south, and perennial spring flow in the Leona River valley would cease.

  5. Water resources of Lincoln County coastal area, Oregon

    USGS Publications Warehouse

    Frank, F.J.; Laenen, Antonius

    1976-01-01

    Water supplies for all municipalities in Lincoln County currently (1975) are obtained from surface-water sources. Because of rapid economic development of the coastal area, it is expected that additional water will be needed in the future. Additional water can be supplied (1) by reservoirs on major streams; (2) by the expansion, in some locations, of present surface-water facilities on small streams; and (3) locally, by an additional small volume of supplemental water from ground-water sources.

  6. Shallow ground-water conditions, Tom Green County, Texas

    USGS Publications Warehouse

    Lee, J.N.

    1986-01-01

    Pollution from oil-field activities may affect the quality of water in some isolated wells and in some areas in the county. No historical records are available for determining any changes in pesticides, minor elements, or bacteria.

  7. Water resources data, Oakland County, Michigan 2001-2004

    USGS Publications Warehouse

    Aichele, S.S.; Crowley, S.L.; Tariska, C.K.; Stopar, J.

    2005-01-01

    This report presents water resources data used to produce a series of interpretive reports on the quantity and quality of water in Oakland County for Oakland County, Michigan. Some of these data have been published elsewhere, but are provided here in one report. This report has two main sections. The first section provides an overview of the methods used to collect the various types of data. The second section is a series of data tables containing ground-water-level data, synoptically measured stream-water-quality data, synoptically measured lake-water-quality data, and the results of a macroinvertebrate and habitat assessment.

  8. Sources of emergency water supplies in Santa Clara County, California

    USGS Publications Warehouse

    Akers, J.P.

    1977-01-01

    Water distribution systems in Santa Clara County, Calif., may be damaged and rendered inoperable by a large earthquake or other disaster. In such an event, individual agencies may have to implement emergency measures to supply water for drinking, firefighting, decontamination, or other purposes. In Santa Clara County, 128 wells have been identified as potential water-supply sources in emergencies. The criteria used to select the wells are: yield of at least 3 liters per second (50 gallons per minute), good water quality, ready accessibility, and available emergency power. Purification methods of small water supplies are described. (Woodard-USGS)

  9. Detection of water bodies in Saline County, Kansas

    NASA Technical Reports Server (NTRS)

    Barr, B. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A total of 2,272 water bodies were mapped in Saline County, Kansas in 1972 using ERTS-1 imagery. A topographic map of 1955 shows 1,056 water bodies in the county. The major increase took place in farm ponds. Preliminary comparison of image and maps indicates that water bodies larger than ten acres in area proved consistently detectable. Most water areas between four and ten acres are also detectable, although occasionally image context prevents detection. Water areas less than four acres in extent are sometimes detected, but the number varies greatly depending on image context and the individual interpretor.

  10. Geology and occurrence of ground water in Lyon County, Minnesota

    USGS Publications Warehouse

    Rodis, Harry G.

    1963-01-01

    Large quantities of ground water are available from melt-water channels in the county. Moderate quantities, adequate for domestic and small industrial needs, are available from many of the small isolated deposits of sand and gravel in the till. Small quantities of ground water, adequate only for domestic supply, generally can be obtained from Cretaceous sandstone.

  11. Ground-water resources of Cumberland County, New Jersey

    USGS Publications Warehouse

    Rooney, James G.

    1971-01-01

    Water use in Cumberland County varies and is highly seasonal, mainly because of increasing requirements for irrigation and the food processing industries in the county. In 1964 seasonal use ranged from 27 mgd in March to 145 mgd in August. This is much higher than withdrawals in neighboring Salem and Cape May Counties. In 1964 withdrawals in Cumberland County averaged about 51 mgd; almost all of this, 49.4 mgd, was from ground-water supplies. The total annual water use in 1964 according to type of use was: for public supply, 10.6 mgd; for industrial uses, 19.0 mgd; irrigation, 15.4 mgd; suburban, rural, residential, institutional, farm, and commercial, 5.9 mgd. 

  12. Investigation of Water Shortage in Yunlin County, Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, S.; Wen, J.; Hsu, C.; Lee, J.

    2011-12-01

    Yunlin County is one of the most important agricultural production counties in Taiwan. The longest river, the Zhuoshui River, is the northern boundary of Yunlin and supplies the greatest part of surface water resources to irrigation areas. The demands of domestic water, industrial water, and part of the irrigation water have been satisfied by groundwater pumping in the past forty years. Groundwater overpumping has caused the water level to decline significantly and has induced land subsidence in this area for more than thirty years. In 2010, the maximum subsidence rate was 6.4 cm/year and the continuous subsidence area (more than 3 cm/year subsidence rate) exceeded 267 km2. On the whole, water resources have become severely imbalanced in Yunlin County. This study aims to investigate the lack of water resources in Yunlin County and provides strategies to rectify the situation. In order to predict the water resource conditions for the future, the climate change issue was taken into account. Then, the water imbalance was quantified. The strategies for improving the water imbalance, which include recharging groundwater, substituting groundwater, and increasing the water usage efficiency are revealed.

  13. Public water supplies in Gloucester County, New Jersey

    USGS Publications Warehouse

    Hardt, William F.

    1963-01-01

    Gloucester County is in the southwestern part of New Jersey, below Camden, and is a part of the Lower Delaware River Valley. This area is attracting new industry and has shown a population increase of about 47 percent from 1950 to 1960, mostly urban. With the economic growth of the county, the availability and quality of water become increasingly important. The county is in the Coastal Plain of New Jersey. It is underlain by unconsolidated sands and clays of Quaternary, Tertiary, and Cretaceous age. The Raritan and Magothy Formations constitute the most important aquifers and yield more than 95 percent of the water pumped by the public water systems in the county. These formations are capable of yielding 1,400 gpm (gallons per minute) or more to large diameter wells. High yielding wells generally can be drilled anywhere in the county, although the formations are deeper toward the Atlantic Ocean. The Cohansey Sand, second most important aquifer, yields up to 800 gpm or more from large diameter wells. This aquifer is present only in the sparsely populated southeastern half of the county. The Wenonah Formation and Mount Laurel Sand are capable of yielding 100 to 200 gpm in certain areas. The overall chemical quality of the naturally occurring ground water is good. The water generally meets the U.S. Public Health Service's (1962) suggested limit for dissolved solids; however, in some areas, the water carries objectionable amounts of iron and nitrate in solution and has a low pH. Contamination of ground water by salt-water encroachment or by pollution from industrial activity or organic waste in densely populated areas should be prevented. The quality rather than the quantity of water may be the important factor in future ground-water developments. The 21 public water systems in Gloucester County pumped about 1.3 billion gallons of water during 1948 and some 2.7 billion gallons during 1959. This is slightly more than a hundred percent increase in pumpage in 12 year s

  14. Ground-water resources and geology of Jefferson County, Wisconsin

    USGS Publications Warehouse

    Borman, R.G.; Trotta, L.C.

    1975-01-01

    A steadily increasing population in Jefferson County, Wisconsin, is expanding the need for good-quality ground water. This need can be met by good-quality water available from the sand-and-gravel, Galena-Platteville, and sandstone aquifers. As much as 15 gallons per minute (0.95 liters per second) can be obtained from wells almost everywhere in the county. Yields of more than 1,000 gallons per minute (63 liters per second) are available from glacial drift where it contains a sufficient thickness of saturated sand and gravel. The Galena-Platteville aquifer is a dolomite that occurs mainly in the eastern one-half of the county and is locally more than 300 feet (90 meters) thick. Estimated well yields from this aquifer exceed 500 gallons per minute (32 liters per second). The sandstone aquifer underlies nearly the entire county except for small areas in the northwest corner. It is more than 1,100 feet (330 meters) thick in the southwest along the Dane-Jefferson County line. This aquifer is capable of yielding more than 1,000 gallons per minute (63 liters per second) to wells in much of the county and is the principal source of municipal water. The chemical quality of water from the three aquifers is similar. The water is very hard, having a median hardness between 315 and 325 milligrams per liter. Median values for dissolved solids range between 325 and 349 milligrams per liter. Iron and manganese commonly are present in bothersome amounts (combined total exceeding 0.3 milligrams per liter. About 13.0 million gallons per day (0.570 cubic meters per second) of ground water was pumped in the county in 1972, 87 percent from the sandstone aquifer. About 62 percent of the total water pumped was for industrial and commercial purposes, 26 percent for residential use, and 12 percent for municipal, irrigation, and institutional use.

  15. Hydrogeology and quality of ground water in Orange County, Florida

    USGS Publications Warehouse

    Adamski, James C.; German, Edward R.

    2004-01-01

    Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based

  16. Water-table map of Milwaukee County, Wisconsin

    USGS Publications Warehouse

    Sherrill, Marvin G.; Schiller, J.J.; Erickson, John R.

    1978-01-01

    A map (scale 1:100,000) of the water table in Milwaukee County in southeastern Wisconsin was prepared using water levels from more than 135 wells. The work was done as a cooperative project between the U.S. Geological Survey and the Southeastern Wisconsin Regional Planning Commission. The map shows the altitude of the water table in increments of 20 feet. The altitude ranges from less than 540 feet in a cone of depression in the city of Milwaukee to more than 800 feet in an area along the western border of the county. (Woodard-USGS)

  17. Water-table map of Kenosha County, Wisconsin

    USGS Publications Warehouse

    Sherrill, M.G.; Schiller, J.J.

    1979-01-01

    A map (scale 1:100,000) of the water table in Kenosha County in southeastern Wisconsin was prepared using water levels from more than 200 wells. The work was done as a cooperative project between the U.S. Geological Survey and the Southeastern Wisconsin Regional Planning Commission. The map shows the altitude of the water table in increments of 20 feet, with supplemental 10-foot contours. The altitude ranges from less than 580 feet at a point near Lake Michigan to more than 840 feet at a point near the western border of the county. (Woodard-USGS)

  18. Ground-water geology of Grayson County, Texas

    USGS Publications Warehouse

    Baker, E.T.

    1963-01-01

    The ground-water resources of Grayson County have been only partly developed. The volume of fresh water in transient storage in the Trinity group and Woodbine formation is estimated to be about 60 and 25 million acre-feet, respectively. Most of this water is not practicably recoverable because of the depth at which it occurs, but relatively high artesian heads and large available drawdowns in much of the county are favorable to future development within economic limits of pumping lift. In the Sherma

  19. Geology and ground-water resources of Hale County, Texas

    USGS Publications Warehouse

    Cronin, J.G.; Wells, Lloyd C.

    1963-01-01

    It is estimated that in 1955 about 39 million acre-feet of water was in storage in the Ogallala formation in Hale County; however, only about 16 million is theoretically available to wells, and a somewhat smaller amount is practically available. About 3 million acre-feet was removed from storage during 1938-55. Water levels in wells have declined more or less steadily since 1938, and it is apparent that the ground-water resources of the county are insufficient to support large-scale perennial irrigation such as that of 1955.

  20. Ground-water quality in Douglas County, western Nevada

    USGS Publications Warehouse

    Garcia, K.T.

    1989-01-01

    A 182% increase in population within the last 10 years in Douglas County, Nevada, has raised concerns by county officials as to the possible effects land development may have on groundwater quality. Most groundwater in Douglas County meets the State of Nevada drinking water standards. Of the 333 water samples used in this analysis, 6 equaled or were greater than the drinking water standards for sulfates, 44 for fluoride, 4 for dissolved solids, 5 for nitrate as nitrate, 12 for arsenic, 33 for iron, and 18 for manganese. Groundwater in the west-central, northern, and northeastern part of Carson Valley is influenced by geothermal water. Some areas in the county may have septic-tank effluent contaminating the groundwater. Temporal changes in most municipal wells showed no overall trend for dissolved-solids and nitrate concentrations spanning the years 1969-83. However, a municipal well in the Topaz Lake area has shown a general increases in the nitrate concentration from 1961 to 1984, but the concentration does not exceed the drinking-water standard. A future groundwater quality monitoring program in Douglas County would include periodic sampling of primary or heavily pumped wells, long-term trend wells, and supplemental wells. (Thacker-USGS)

  1. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    USGS Publications Warehouse

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  2. Water resources of Mellette and Todd counties, South Dakota

    USGS Publications Warehouse

    Carter, J.M.

    1998-01-01

    Mellette and Todd Counties are located in south-central South Dakota and have a combined area of 2,694 square miles. The White River and its tributaries, which include the Little White River, drain Mellette County and about one-half of Todd County. Tributaries to the Niobrara River, which include the Keya Paha River, drain the other one-half of Todd County. The average discharge of the Little White River is about 56 cubic feet per second as the river enters Todd County and is about 131 cubic feet per second as it discharges to the White River in northern Mellette County. The average discharge of the Keya Paha River just outside Todd County is about 39 cubic feet per second. The average annual runoff for Mellette and Todd Counties ranges from 0.94 to 2.36 inches based on records from nine streamflow-gaging stations in and near the counties. The average annual runoff is 1.62 inches, which compares with the average annual precipitation of about 19 inches. In Todd County, shallow wells completed in the alluvial, Ogallala, Arikaree, and White River aquifers generally can supply water that has low concentrations of dissolved solids, is fresh, and is soft to moderately hard. Ground water from shallow aquifers is limited in Mellette County; therefore, deep wells, often greater than 1,000 feet, are sometimes installed. The Pierre Shale often is used to supply rural domestic and stock wells in Mellette County even though well yields are low and the water has high dissolved solids, is moderately saline, and is very hard. Alluvial aquifers are present in both counties and store an estimated 1.6 million acre-feet of water. The water quality of the alluvial aquifers is dependent on the underlying deposits, and generally the water has low concentrations of dissolved solids, is fresh, and is soft to moderately hard where underlain by the Ogallala and Arikaree Formations; has moderate concentrations of dissolved solids, is slightly saline, and is hard where underlain by the White

  3. Geochemical Analysis of Surface Water in Rice County, Minnesota

    NASA Astrophysics Data System (ADS)

    Christenson, C.; Prullage, R.; Harvey, M.; Haileab, B.; Harrison, B. K.

    2012-12-01

    Monitoring the quality of surface water is essential to protecting freshwater systems from pollution. For the past four years, Rice County, located in southeastern Minnesota, has been subject to continuous research with the objective of determining the long-term effects of farmland runoff in the water systems. During the summer of 2012, 105 samples were collected from lakes, rivers, and streams. The samples were analyzed for conductivity, nitrate, chloride, calcium, and phosphate. Results show nitrate levels exceeding EPA restrictions (ranging 10-25 ppm) at some locations in the streams along farmlands in the southeast corner of the county. These findings are consistent with past results correlating nitrate levels with farmland runoff, with potential impact on contamination of surficial aquifers as well as significant lake eutrophication observed in the state. ICP-MS results on 67 samples exhibit complex geographical trends across the county not readily attributed to anthropogenic sources. Our findings should inform residents and policy makers taking measures to improve water quality in the county. In addition, annual studies should be continued to monitor water quality in Rice County.

  4. Water-table map of Racine County, Wisconsin

    USGS Publications Warehouse

    Sherrill, M.G.; Schiller, J.J.

    1978-01-01

    A map (scale 1:100,000) of the water table in Racine County in southeastern Wisconsin was prepared using water levels from more than 250 wells. The work was done as a cooperative project between the U.S. Geological Survey and the Southeastern Wisconsin Regional Planning Commission. The map shows the altitude of the water table in increments of 20 feet, with supplemental 10-foot contours. The altitude ranges from less than 520 feet at a point in a cone of depression in the eastern part of the county to more than 820 feet at two points, one along the border in the southwestern corner of the county and another in the northwestern corner. (Woodard-USGS)

  5. Water-table map of Waukesha County, Wisconsin

    USGS Publications Warehouse

    Gonthier, J.B.

    1978-01-01

    A map (scale 1:100,000) was prepared of the water table in Waukesha County in southeastern Wisconsin using water levels from more than 1,700 wells. The work was done as part of a cooperative project between the U.S. Geological Survey, the University of Wisconsin-Extension, Geological and Natural History Survey, and the Southeastern Wisconsin Regional Planning Commission. The map shows the altitude of the water table in increments of 20 feet, with supplemental 10-foot contours. The altitude ranges from less than 670 feet at a point along the east border of the county to more than 1,000 feet above sea level at three points in the central part of the county. (Woodard-USGS)

  6. Water-table map of Walworth County, Wisconsin

    USGS Publications Warehouse

    Sherrill, Marvin G.; Erickson, John R.

    1978-01-01

    A map of the water table in Walworth County in southeastern Wisconsin was prepared using water levels from nearly 600 wells. The work was done as a cooperative project between the U.S. Geological Survey, the University of Wisconsin-Extension, Geological and Natural History Survey, and the Southeastern Wisconsin Regional Planning Commission. The map (scale 1:100 ,000) shows the altitude of the water table in increments of 20 feet, with supplemental 10-foot contours. The altitude ranges from less than 780 feet along parts of the eastern border of the county to more than 1,000 feet in a small area near the central part of the county. (Woodard-USGS)

  7. Ground-water resources and geology of Waukesha County, Wisconsin

    USGS Publications Warehouse

    Gonthier, Joseph B.

    1975-01-01

    Good-quality water is available from the sand-and-gravel, Niagara, and sandstone aquifers in Waukesha County, Wis. As much as 15 gallons per minute (0.95 litres per second) can be obtained from wells almost everywhere in the county. Several hundred gallons per minute are available from aquifers in the glacial drift that fill bedrock valleys to thicknesses of 300 feet (91 metres) or more. Estimated well yields from much of the surficial outwash in western Waukesha County exceed 500 gallons per minute (31 litres per second). Estimated well yields from most of the Niagara aquifer, a dolomite as much as 325 feet (99 metres) thick in the eastern two-thirds of the county, exceed 50 gallons per minute (3.2 litres per second). The sandstone aquifer underlies the entire county and ranges in thickness from about 400 feet (120 metres) in the northwest corner to about 2,400 feet (730 metres) in the southeast corner. This aquifer yields more than 1,000 gallons per minute (63 litres per second) to wells over most of the county and is the principal source for municipal and subdivision water. Ground water in Waukesha County is of good quality and is suitable for most uses. Most of the water is a calcium magnesium bicarbonate type, is very hard [more than 180 mg/l (milligrams per litre) hardness], and requires softening for some uses. The ground water locally contains iron and manganese concentrations that exceed the limits (0.3 and 0.05 mg/l, respectively) recommended by the U.S. Public Health Service (1962, p. 7). Water high in sulfate and dissolved solids (saline water) is present locally in the Niagara and sandstone aquifers. Water from one well contained excessive nitrate (more than 45 mg/l). With one exception, wells sampled at irregular intervals indicated no significant changes in their chemical characteristics with time. About 24.3 million gallons per day (1.06 cubic metres per second) of ground water was pumped in the county in 1970. Sixty-two percent was withdrawn from

  8. Geology and ground-water resources of Rock County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1964-01-01

    Rock County is in south-central Wisconsin adjacent to the Illinois State line. The county has an area of about 723 square miles and had a population of about 113,000 in 1957 ; it is one of the leading agricultural and industrial counties in the State. The total annual precipitation averages about 32 inches, and the mean annual temperature is about 48 ? F. Land-surface altitudes are generally between 800 and 00 feet, but range from 731 feet, where the Rock River flows into Illinois, to above 1,080 feet, at several places in the northwestern part of the county. The northern part of Rock County consists of the hills and kettles of a terminal moraine which slopes southward to a flat, undissected outwash plain. The southeastern part of the county is an area of gentle slopes, whereas the southwestern part consists of steep-sided valleys and ridges. Rock County is within the drainage basin of the Rock River, which flows southward through the center of the county. The western and southwestern parts of ,the county are drained by the Sugar River und Coon Creek, both of which flow into the Pecatonica River in Illinois and thence into the Rock River. The southeastern part of the county is drained by Turtle Creek, which also flows into Illinois before joining the Rock River. Nearly all the lakes and ponds are in the northern one-third of the county, the area of most recent glaciation. The aquifers in Rock County are of sedimentary origin and include deeply buried sandstones, shales, and dolomites of the Upper Cambrian series. This series overlies crystalline rocks of Precambrian age and supplies water to all the cities and villages in the county. The St. Peter sandstone of Ordovician age underlies all Rock County except where the formation has been removed by erosion in the Rock and Sugar River valleys, and perhaps in Coon Creek valley. The St. Peter sandstone is the principal source of water for domestic, stock, and small industrial wells in the western half of the county

  9. Availability of ground water in Decatur County, Iowa

    USGS Publications Warehouse

    Cagle, J.W.; Steinhilber, W.L.

    1967-01-01

    Decatur County and several other counties in south-central Iowa comprise an area that has been chronically short of good-quality water.  Municipalities, industries and rural water users alike have been affected by the water shortage.  Municipalities have experienced serious problems in obtaining potable supplies adequate to keep pace with their growth and development: industrial expansion has been hindered and continues to be hindered by the shortage of good-quality water; and rural supplies for domestic and livestock use are difficult to obtain at many places.  The increased use of water for all purposes and periodic drought conditions have greatly magnified an already serious problem of water shortage.

  10. Geology and ground-water resources of Hays County, Texas

    USGS Publications Warehouse

    DeCook, Kenneth James

    1963-01-01

    Ground water from wells in the Pearsall formation generally contains less than 500 parts per million of dissolved solids. Water from the Glen Rose limestone in some places contains more than 500 parts per million of sulfate and more than 1,000 parts per million of dissolved solids; locally it is high in nitrate also. Except in the southeastern part of the county, water from the Edwards limestone is commonly very hard but is otherwise of good quality for most uses. Analyses of two water samples from the Austin chalk indicate a high content of bicarbonate. Water from the Taylor marl and from Quaternary sediments generally is hard, and locally it contains excessive nitrate. Most wells in Hays County are used for domestic and stock supplies. About 20 wells, most of them in the Edwards limestone, yield water in relatively large amounts for industrial use, irrigation, or public supplies.

  11. Ground-water in the Austin area, Lander County, Nevada

    USGS Publications Warehouse

    Phoenix, David A.

    1949-01-01

    The U.S. Geological Survey, in cooperation with the State Engineer of Nevada, made a preliminary survey of ground-water conditions in the Austin area, Nev., during the period July 25 to 28, 1949. The purpose was to evaluate ground-water conditions with special reference to the quantity of ground water that might be available in the area--an adequate water supply has been a constant problem throughout the history of the Austin area. The investigation was made by the writer under the supervision of Thomas W. Robinson, district engineer, Ground Water Branch, U.S. Geological Survey. Material assistance was given in the field by local residents. Frank Bertrand, water commissioner, Thomas Peacock, county assessor, and George McGinnis, county commissioner, guided the writer to springs new utilized by the town of Austin and rendered other valuable field assistance.

  12. Ground-water resources of Catron County, New Mexico

    USGS Publications Warehouse

    Basabilvazo, G.T.

    1997-01-01

    This report describes the occurrence, availability, and quality of ground-water and related surface-water resources in Catron County, the largest county in New Mexico. The county is located in the Lower Colorado River Basin and the Rio Grande Basin, and the Continental Divide is the boundary between the two river basins. Increases in water used for mining activities (coal, mineral, and geothermal), irrigated agriculture, reservoir construction, or domestic purposes could affect the quantity or quality of ground- water and surface-water resources in the county. Parts of seven major drainage basins are within the two regional river basins in the county--Carrizo Wash, North Plains, Rio Salado, San Agustin, Alamosa Creek, Gila, and San Francisco Basins. The San Francisco, Gila, and Tularosa Rivers typically flow perennially. During periods of low flow, most streamflow is derived from baseflow. The stream channels of the Rio Salado and Carrizo Wash Basins are commonly perennial in their upper reaches and ephemeral in their lower reaches. Largo Creek in the Carrizo Wash Basin is perennial downstream from Quemado Lake and ephemeral in the lower reaches. Aquifers in Catron County include Quaternary alluvium and bolson fill; Quaternary to Tertiary Gila Conglomerate; Tertiary Bearwallow Mountain Andesite, Datil Group, and Baca Formation; Cretaceous Mesaverde Group, Crevasse Canyon Formation, Gallup Sandstone, Mancos Shale, and Dakota Sandstone; Triassic Chinle Formation; and undifferentiated rocks of Permian age. Water in the aquifers in the county generally is unconfined; however, confined conditions may exist where the aquifers are overlain by other units of lower permeability. Yields of ground water from the Quaternary alluvium in the county range from 1 to 375 gallons per minute. Yields of ground water from the alluvium in the Carrizo Wash Basin are as much as 250 gallons per minute for short time periods. North of the Plains of San Agustin, ground-water yields from the

  13. Estimated use of water in Lincoln County, Wyoming, 1993

    USGS Publications Warehouse

    Ogle, K.M.; Eddy-Miller, C. A.; Busing, C.J.

    1996-01-01

    Total water use in Lincoln County, Wyoming in 1993 was estimated to be 405,000 Mgal (million gallons). Water use estimates were divided into nine categories: public supply, self-supplied domestic, commercial, irrigation, livestock, indus ial, mining, thermoelectric power, and hydro- electric power. Public supply water use, estimated to be 2,160 Mgal, primarily was obtained from springs and wells. Shallow ground water wells were the primary source of self-supplied domestic water, estimate to be 1.7 Mgal, and 53 percent of those wells were drilled to a depth of 100 feet or less. Commercial water use, estimated to be 117 Mgal, was obtained from public-supply systems. Surface water supplied an estimated 153,000 Mgal of the total estimated water use of 158,000 Mgal for irrigation in 1993. Sprinkler and flood irrigation technology were used about equally in the northern part of Lincoln County and flood irrigation was the primary technology used in the southern part. Livestock, industrial, and mining were not major water users in Lincoln County in 1993. Livestock water use totaled an estimated 203 Mgal. Industrial water use was estimated to be 120 Mgal from self-supplied water sources and 27 Mgal from public supplied water source Mining water use was an estimated 153 Mgal. Thermoelectric and hydroelectric power generation used surface water sources. Thermoelectric power water use was an estimated 5,900 Mgal. An estimated 238,000 Mgal of water was used to generate hydroelectc power at Fontenelle Reservoir on the Green River.

  14. Radon-222 in the ground water of Chester County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.

    1998-01-01

    Radon-222 concentrations in ground water in 31 geologic units in Chester County, Pa., were measured in 665 samples collected from 534 wells from 1986 to 1997. Chester County is underlain by schists, gneisses, quartzites, carbonates, sandstones, shales, and other rocks of the Piedmont Physiographic Province. On average, radon concentration was measured in water from one well per 1.4 square miles, throughout the 759 square-mile county, although the distribution of wells was not even areally or among geologic units. The median concentration of radon-222 in ground water from the 534 wells was 1,400 pCi/L (picocuries per liter). About 89 percent of the wells sampled contained radon-222 at concentrations greater than 300 pCi/L, and about 11 percent of the wells sampled contained radon-222 at concentrations greater than 5,000 pCi/L. The highest concentration measured was 53,000 pCi/L. Of the geologic units sampled, the median radon-222 concentration in ground water was greatest (4,400 pCi/L) in the Peters Creek Schist, the second most areally extensive formation in the county. Signifi- cant differences in the radon-222 concentrations in ground water among geologic units were observed. Generally, concentrations in ground water in schists, quartzites, and gneisses were greater than in ground water in anorthosite, carbonates, and ultramafic rocks. The distribution of radon-222 in ground water is related to the distribution of uranium in aquifer materials of the various rock types. Temporal variability in radon-222 concentrations in ground water does not appear to be greater than about a factor of two for most (75 percent) of wells sampled more than once but was observed to range up to almost a factor of three in water from one well. In water samples from this well, seasonal variations were observed; the maximum concentrations were measured in the fall and the minimum in the spring.

  15. Ground-water resources of Kleberg County, Texas

    USGS Publications Warehouse

    Livingston, Penn Poore; Bridges, Thomas W.

    1936-01-01

    Water obtained from the fresh-water horizon is comparatively fresh in the western and central parts of the county but contains a somewhat higher proportion of chlorides toward the Gulf. Samples obtained from about 100 wells, located for the most part in the central part of the county, showed a. higher chloride content than is normal for the freshwater beds in the area. These wells are believed in large part to be defective and to be admitting salt water. This was demonstrated and the leaks located in several wells that were tested. No evidence was found of salt-water contamination by percolation through the formations, however. The leaky wells should be repaired, If practicable, or sealed to prevent them from contaminating the fresh-water sand. The chances of leaks developing can be largely eliminated If the wells are properly drilled and provided with casing of good grade, and the casing is adequately seated.

  16. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  17. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.

  18. Pesticides in Ground Water - Campbell County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Campbell County. This fact sheet describes and summarizes results of the baseline monitoring in Campbell County.

  19. Water resources of Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  20. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  1. Ground water near Newton, Jasper County, Iowa

    USGS Publications Warehouse

    Buchmiller, Robert C.

    2001-01-01

    The water quality in the South Skunk River and the alluvial aquifer was similar, except most ground-water samples contained low dissolved oxygen concentrations. The low dissolved-oxygen concentrations in ground water resulted in high concentrations of iron and manganese in some locations and reduced forms of nitrogen.

  2. Ground-water resources of Coke County, Texas

    USGS Publications Warehouse

    Wilson, Clyde A.

    1973-01-01

    Coke County, located in semiarid west-central Texas, where large ranches, small farms, and oil production are the main bases of the economy, has a small supply of ground and surface water. Of the approximately 1,900 acre-feet of fresh to moderately saline ground water used in 1968, industry used 880 acre-feet, irrigation used 210 acre-feet, and domestic supply and livestock used 820 acre-feet. All of the water for municipal supply and some of the water for industry is obtained from surface-water reservoirs.

  3. Water resources and effects of development in Pasco County, Florida

    USGS Publications Warehouse

    Fretwell, J.D.

    1988-01-01

    Ninety-nine percent of the 79.72 million gal/d of water used in Pasco County, Florida is groundwater from the Upper Floridan aquifer. In addition, 53.5 million gal/d is exported for use in Pinellas County. Chemical quality of the water generally falls within recommended limits for drinking water except near the coast. A groundwater flow model was used to predict drawdowns in water levels under five different development plans for west Pasco County. One of these plans was incorporated in an estimated groundwater development plan for 2035 for Pasco, Pinellas, and part of Hillsborough County. Reduction in evapotranspiration accounts for nearly all the water required for each development plan. Two plans showed less effect in drawdown and potential of saltwater intrusion than the other three. For the overall groundwater development plan for Pasco, Pinellas, and parts of Hillsborough Counties, the average potentiometric surface in 2035 would be from 8 ft higher to 20 ft lower than the average 1976-77 potentiometric surface. Reductions in head would increase the potential for infiltration of contaminants in areas where surficial materials are thin, sinkhole development in sinkhole prone areas, and upconing and lateral intrusion of saltwater. The potential for dewatering the surficial aquifer is great in the Cross Bar Ranch and Cypress Creek well-field areas. Evapotranspiration of groundwater would be reduced by 19% between 1976-77 and 2035. Exchange of water between the rivers and the aquifers will be reduced by 13%. Springflow will be reduced by 6%, and three springs will cease to flow. Model boundary inflow and outflow also will be reduced. (USGS)

  4. Geology and ground-water resources of Washington County, Colorado

    USGS Publications Warehouse

    McGovern, Harold E.

    1964-01-01

    Washington County, in northeastern Colorado, has an area of 2,520 square miles. The eastern two-thirds of the county, part of the High Plains physiographic section, is relatively flat and has been moderately altered by the deposition of loess and dune sand, and by stream erosion. The western one-third is a part of the South Platte River basin and has been deeply dissected by tributary streams. The soils and climate of the county are generally suited for agriculture, which is the principal industry. The rocks that crop out in the county influence the availability of ground water. The Pierre Shale, of Late Cretaceous age, underlies the entire area and ranges in thickness from 2,000 to 4,500 feet. This dense shale is a barrier to the downward movement of water and yields little or no water to wells. The Chadron Formation, of Oligocene age, overlies the Pierre Shale in the northern and central parts of the area. The thickness of the formation ranges from a few feet to about 300 feet. Small to moderate quantities of water are available from the scattered sand lenses and from the highly fractured zones of the siltstone. The Ogallala Formation, of Pliocene age, overlies the Chadron Formation and in Washington County forms the High Plains section of the Great Plains province. The thickness of the Ogallala Formation ranges from 0 to about 400 feet, and the yield from wells ranges from a few gallons per hour to about 1,500 gpm. Peorian loess, of Pleistocene age, and dune sand, of Pleistocene to Recent age, mantle a large pan of the county and range in thickness from a few inches to about 120 feet Although the loess and dune sand yield little water to wells, they absorb much of the precipitation and conduct the water to underlying formations. Alluvium, of Pleistocene and Recent age, occupies most of the major stream valleys in thicknesses of a few feet to about 250 feet. The yield of wells tapping the alluvium ranges from a few gallons per minute to about 3,000 gpm, according

  5. 75 FR 9921 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Fish and Wildlife Service San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San Diego and Riverside Counties, CA AGENCY: Fish and Wildlife Service... the Draft Water Authority Natural Communities Conservation Program/Habitat Conservation Plan...

  6. 78 FR 41390 - Pershing County Water Conservation District; Notice of Application Tendered for Filing with the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pershing County Water Conservation District; Notice of Application Tendered...: Pershing County Water Conservation District. e. Name of Project: Humboldt River Hydro Power Project....

  7. Salinity of the ground water in western Pinal County, Arizona

    USGS Publications Warehouse

    Kister, Lester Ray; Hardt, W.F.

    1966-01-01

    The chemical quality of the ground water in western Pinal County is nonuniform areally and stratigraphically. The main areas of highly mineralized water are near Casa Grande and near Coolidge. Striking differences have been noted in the quality of water from different depths in the same well. Water from one well, (D-6-7) 25cdd, showed an increase in chloride content from 248 ppm (parts per million) at 350 feet below the land surface to 6,580 ppm at 375 feet; the concentration of chloride increased to 10,400 ppm at 550 feet below the land surface. This change was accompanied by an increase in the total dissolved solids as indicated by conductivity measurements. The change in water quality can be correlated with sediment types. The upper and lower sand and gravel units seem to yield water of better quality than the intermediate silt and clay unit. In places the silt and clay unit contains zones of gypsum and common table salt. These zones yield water that contains large amounts of the dissolved minerals usually associated with water from playa deposits. Highly mineralized ground water in an area near Casa Grande has moved southward and westward as much as 4 miles. Similar water near Coolidge has moved a lesser distance. Good management practices and proper use of soil amendments have made possible the use of water that is high in salinity and alkali hazard for agricultural purposes in western Pinal County. The fluoride content of the ground water in western Pinal County is usually low; however, water from wells that penetrate either the bedrock or unconsolidated sediments that contain certain volcanic rocks may have as much as 9 ppm of fluoride.

  8. Ground water in Juab, Millard, and Iron Counties, Utah

    USGS Publications Warehouse

    Meinzer, Oscar Edward

    1911-01-01

    Location and extent of area - Juab, Millard, and Iron counties lie in western Utah, and, with the exception of a small part of Iron County, are entirely within the Great Basin. (See fig. 1.) They comprise about 13,650 square miles, of which approximately 3,500 belong to Juab, 6,775 to Millard, and 3,375 to Iron County. Beaver County, which lies between Millard and Iron counties, is not discussed in this paper because its water resources have been described by W. T. Lee, of the United States Geological Survey, in Water-Supply Paper 217. Purpose of investigation - The investigation was begun in the summer of 1908, under cooperative agreement between the Director of the United States Geological Survey and Caleb Tanner, State engineer of Utah, the object of the work being to obtain and disseminate information which should lead to a greater utilization of the ground-water supplies. The agricultural development of an arid section, such as this, is primarily dependent on the amount of water available. Large tracts of fertile soil remain idle year after year for lack of water for irrigation, while much water that falls as rain and snow sinks into the ground, saturates the porous materials underlying the valleys and deserts, and eventually reappears at the surface in low alkali flats, where it is dissipated by evaporation without producing useful vegetation. If the water thus lost can be applied to fertile soil it will substantially increase the agricultural yield of the region. An urgent demand for information in regard to ground-water prospects has been created in recent years by the adoption of dry farming methods in localities where water is not readily obtained. The water required for culinary purposes and for supplying the horses and traction engines used in tilling the soil on some of the dry farms is at present hauled long distances. In most of the arid parts of this region watering places of any sort are so scarce that certain sections are accessible for grazing

  9. Ground-water resources of Atascosa County, Texas

    USGS Publications Warehouse

    Sundstrom, Raymond W.; Follett, C.R.

    1950-01-01

    Atascosa County, Tex., is underlain by water-bearing sands of Tertiary age that furnish water for domestic and stock supplies throughout the county, for the public supply of all except one of the towns and cities in the county, for irrigation in several localities, for drilling oil wells in the central and southern parts of the county, for washing glass sand in the northern part of the county, and for maintaining several lakes that are used for hunting and fishing. By far the most productive formation is the Carrizo sand, but supplies of considerable magnitude are also obtained from sands in the Mount Selman and Cook Mountain. formations. The rate of withdrawal from the Carrizo sand amounted to about 15,500 acre-feet a year in 1944-45 or an average of about 13.8 million gallons a day. This was about 6,000 acre-feet a year greater in 1944-45 than it was in 1929-30. Of the total amount of water withdrawn in 1944-45 about 6,500 acre-feet a year is largely wasted from uncontrolled flowing wells. If the waste of water from wells in the Carrizo sand were stopped, the consumption of water for useful purposes could be increased about 70 percent without increasing the draft on the underground reservoir. The increase in total withdrawals from the Carrizo sand has been accompanied by a general decline in the artesian head between 1929-30 and 1944 ranging from 3 to 25 feet. On the whole, the evidence shows that the artesian reservoir is not being overdrawn and that it will sustain a somewhat greater draft.

  10. Selected ground-water data, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    1989-01-01

    Hydrologic data for Chester County, Pennsylvania are given for 3,010 wells and 32 springs. Water levels are given for 48 observation wells measured monthly during 1936-86. Chemical analyses of ground water are given for major ions, physical properties, nutrients, metals and other trace constituents, volatile organic compounds, acid organic compounds, base-neutral organic compounds, organochlorine insecticides, polychlorinated biphenyls, polychlorinated napthalenes, organophosphorous insecticides, organic acid herbicides, triazine herbicides, other organic compounds, and radionuclides.

  11. DuPage County chilled water storage project

    SciTech Connect

    Grumman, D.L.

    1998-10-01

    Between 1992 and 1995, the DuPage County Governmental Center in Wheaton, Illinois, commissioned a detailed analysis of its chilled water plant and distribution system, as well as its future needs and options for meeting those needs. The result was a 10,000 ton-hour (35,170 kWh) chilled water storage tank with associated components and controls. This paper describes that process and the system that resulted.

  12. Estimated water use, by county, in North Carolina, 1995

    USGS Publications Warehouse

    Walters, D.A.

    1997-01-01

    Data on water use in North Carolina were compiled for 1995 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total withdrawals (fresh and saline) during 1995 were an estimated 9,286 million gallons per day for the offstream water-use categories. About 94 percent of the water withdrawn was from surface water. Thermoelectric-power generation accounted for 80 percent of all withdrawals. Instream water use for hydroelectric-power generation totaled about 56,400 million gallons per day. Each water-use category is summarized in this report by county and source of water supply.

  13. Sources of emergency water supplies in San Mateo County, California

    USGS Publications Warehouse

    Wood, P.R.

    1975-01-01

    San Mateo County has several densely populated urban areas that get most of their water supplies from surface-water sources that could by damaged by a major earthquake or other general disaster. In the event of such a disaster, limited supplies of potable water may be obtained from selected wells, springs, and perennial streams. This report outlines the principal sources of existing water supplies, gives information on the need for emergency water-supply procedures, presents general criteria needed for selecting emergency water-supply wells, summarizes information for 60 selected water wells, numerous springs, and perennial streams that can be used as sources of water, and describes emergency water-purification procedures that can be used by individuals or small groups of people.

  14. Ground-water data in the Baker County-northern Malheur County area, Oregon

    USGS Publications Warehouse

    Collins, C.A.

    1979-01-01

    Ground-water data for the Baker County-northern Malheur area, Oregon, are tabulated for the Bureau of Land Management. The data include well and spring records, a well-location map, drillers ' logs of wells, observation-well hydrographs, and chemical analyses of ground-water samples. The reported yields of wells and springs in the area ranged from less than 1 to 2 ,500 gallons per minute. Dissolved solids in ground-water samples ranged from 50 to 1,587 milligrams per liter, and arsenic ranged from 0.001 to 0.317 milligrams per liter. (Woodard-USGS)

  15. Manatee County government's commitment to Florida's water resources

    SciTech Connect

    Hunsicker, C.

    1998-07-01

    With ever increasing development demands in coastal areas and subsequent declines in natural resources, especially water, coastal communities must identify creative options for sustaining remaining water resources and an accepted standard of living. The Manatee County agricultural reuse project, using reclaimed wastewater is part of a water resource program, is designed to meet these challenges. The reuse system works in concert with consumer conservation practices and efficiency of use measures which are being implemented by all public and private sector water users in this southwest Florida community.

  16. Ground-water resources of Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Lowry, Marlin E.

    1972-01-01

    Natrona County covers an area of 5.369 square miles in central Wyoming. The climate is arid except in the mountainous areas. The county includes parts of the Great Plains, Middle Rocky Mountains, Wyoming Basin, and Southern Rocky Mountains physiographic provinces. There is wide variation of topography. More than 30 geologic formations are exposed in the county, 28 of which are known to yield water to wells and springs. The formations range in age from Precambrian to Holocene. Ground water in approximately 40 percent of the county contains more than 1.000 mg/l (milligrams per liter) of dissolved solids. Water chemically suitable for livestock can be developed at depths of less than 1,000 feet throughout most of the area. Many of the geologic formations were deposited under similar conditions and have similar water-bearing properties; also. water from these rocks deposited under similar conditions tends to have similar chemical characteristics. For this report, the stratigraphic section has been arbitrarily divided into six rock units based on similarity of deposition. The igneous and metamorphic rock unit includes rocks of Precambrian age and igneous intrusives and extrusives of Tertiary age. These rocks probably would not yield more than about 5 gpm (gallons per minute) to wells. The water is usually calcium bicarbonate type and contains less than 500 mg/l of dissolved solids. The marine rock unit includes formations of Cambrian, Mississippian, and Pennsylvanian and Permian age, having a maximum total thickness of about 1,900 feet. The Madison Limestone of Mississippian age and the Tensleep Sandstone and the Casper Formation of Pennsylvanian and Permian age supply the largest yields to wells and springs in the county. In the northeastern part of the county, flow from each of three wells in the Madison reportedly is more than 4.000 gpm. Each of three wells in the Tensleep in the same area flows more than 400 gpm. Yields of springs in the Casper Formation near Casper

  17. 77 FR 12830 - Pershing County Water Conservation District; Notice of Intent To File License Application, Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Energy Regulatory Commission Pershing County Water Conservation District; Notice of Intent To File....: 14327-000. c. Date Filed: November 22, 2011. d. Submitted by: Pershing County Water Conservation... Applicant Contact: Bennie Hodges, Pershing County Water Conservation District, P.O. Box 218, Lovelock,...

  18. 75 FR 11194 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Fish and Wildlife Service San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San Diego and Riverside Counties, CA AGENCY: Fish and Wildlife Service... application, and notice of public meetings for the San Diego County Water Authority's (Water...

  19. Water supply and demand in Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, Hugh E.

    1989-01-01

    Water supplies in Sedgwick County, Kansas, are derived from surface--and groundwater resources. During 1985, public supply, irrigation, and self-supplied industry required 38% of the 56 ,500 acre-ft of appropriated surface water and 57% of the 187 ,800 acre-ft of appropriated groundwater. If the historic (1920-80) annual population growth rate (2.8%) continues, the 126,100 acre ft of water appropriated for public-water supplies should meet demand until 2015. The quantity of potentially available water supplies was estimated by summing those resources having less than 1.00 mg/L dissolved solids. Surface water resources that meet this criterion are the Little Arkansas and Ninnescah Rivers and Cheney Reservoir. Subtracting legislated minimum streamflows for the rivers from their mean annual streamflow volumes leaves 532,000 acre-ft, which combined with the annual sustained yield of Cheney Reservoir (40,000 acre-ft) provides an estimated 572,000 acre-ft of surface water annually. Groundwater that meets the criterion was estimated by summing the annual precipitation recharge available to unconsolidated deposits in the county (78,400 acre-ft) and in the Harvey County part of the Wichita well field (13,000 acre-ft). Although more groundwater is available, withdrawals exceeding annual precipitation recharge would cause water level declines. Because less than 4% of the potentially available surface water was used for supplies in 1985 and because about 120% of the groundwater recharge was used, surface water resources have a greater potential for meeting future water use demands. (USGS)

  20. South Orange County Recycled Water Enhancement Act

    THOMAS, 111th Congress

    Rep. Calvert, Ken [R-CA-44

    2009-01-22

    04/27/2010 Committee on Energy and Natural Resources Subcommittee on Water and Power. Hearings held. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  1. Availability of ground water in Lyon County, Minnesota

    USGS Publications Warehouse

    Rodis, Harry G.

    1961-01-01

    The county is divided into areas of ground-water availability based on the quality and quantity of ground water available from the different geologic units. The glacial drift which covers all of the area, yields very hard water from sands and gravels occurring in melt-water channel deposits or as small, isolated melt-water bodies. Wells in the drift commonly yield from 2 to 30 gpm (gallons per minute), but sustained yields of as much as 500 gpm are obtained in areas where thick melt-water channel deposits occur. Cretaceous strata underlie about two-thirds of the county and yield water from poorly consolidated sandstone, The water ranges in hardness from soft to very hard and is sometimes high in chloride content. Wells in Cretaceous strata commonly yield from 2 to 7 gpm; however, in areas where the sandstone is in contact with the underlying weathered granite, sustained yields of as much as 75 gpm are obtained. The geographic and stratigraphic distribution of the geologic units suggests that additional water supplies may be available from Pleistocene and Cretaceous strata in areas not yet fully explored.

  2. Ground-water quality for Grainger County, Tennessee

    USGS Publications Warehouse

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  3. Water use in Georgia by county for 2005; and water-use trends, 1980-2005

    USGS Publications Warehouse

    Fanning, Julia L.; Trent, Victoria P.

    2009-01-01

    Consumptive water use was determined for each category of use and compiled for each county. Estimation techniques vary for each water-use category. While consumptive use varied for each county in 2005, from about 1 percent to nearly 100 percent of total withdrawals, consumptive-use estimates for the entire State totaled 1,310 Mgal/d, about 24 percent of total withdrawals.

  4. Geology and ground-water resources of Galveston County, Texas

    USGS Publications Warehouse

    Petitt, Ben McDowell; Winslow, Allen George

    1957-01-01

    Much additional ground water could be obtained from both the "Alta Loma" sand and the upper part of the Beaumont clay, especially in the northern and western parts of the county. Before large developments of supplies are planned, however, these areas should be explored by test drilling. The problems of well spacing and pumping rates should be thoroughly studied in order to determine the maximum development permitted by the ground-water supply. Current observations should be continued with special emphasis on the progress of salt-water encroachment.

  5. Surface-water hydrology of Honey Lake Valley, Lassen County, California and Washoe County, Nevada

    USGS Publications Warehouse

    Rockwell, Gerald L.

    1993-01-01

    Honey Lake Valley straddles the State line of California and Nevada; it is about 35 mi north of Reno and about three-fourths of the area is in California. In this report, Honey Lake Valley (also referred to as “the basin") includes the entire area within the hydrographic boundary shown in figure 1. Susanville, Calif., in the northwestern part of the basin, is the largest town. Population is increasing rapidly in the Susanville area and in the Reno area of adjacent Washoe County, Nev. Lassen and Washoe Counties have identified water resources in Honey Lake Valley as a possible source to meet their needs for future development. An important component of an assessment of the availability of additional long-term supply is an appraisal of surface-water resources.The U.S. Geological Survey, in cooperation with the California Department of Water Resources and the Nevada Division of Water Resources, began a hydrologic assessment of the area in 1987. The study was primarily an appraisal of ground-water resources, but it also included an assessment of surface-water resources. The purpose of this map report is to present the results of the surface-water assessment, including (1) a broad overview of surface-water conditions in the basin, (2) an estimate of mean annual streamflow to the valley floor, and (3) an evaluation of the characteristics of Honey lake. Results of the study related to ground-water resources of the basin are discussed in a separate report by Handman and others (1990) and are summarized in a short “Water Fact Sheet” by Handman (1990).

  6. Surface-water and ground-water features, Clay County, Florida

    USGS Publications Warehouse

    Bentley, C.B.

    1977-01-01

    Clay County is a rapidly growing area in northeastern Florida. Surface water largely is undeveloped except for recreational use. Black Creek is the largest fresh-water stream in the country and has an average discharge of about 515 cubic feet per second. However, excessive color, iron concentration, hardness, and pH often make the water objectionable for many asses. Water from the lakes and streams in the Etonia Creek basin in southwestern Clay County generally is of good chemical quality. Ground water occurs in the county in a water-table aquifer, secondary artesian aquifers, and the Floridan aquifer. Large withdrawals of water from the Floridan aquifer since the 1940's, especially in nearby metropolitan Jacksonville, have caused a decline of the potentiometric surface of up to 30 feet in the northeast corner of Clay County to less than 5 feet in the western part. The rate of decline in recent years at Orange Park has been about 0.7 of a foot per year. Ground water in the county generally is of good chemical quality and is suitable for most uses. (Woodard-USGS)

  7. Water resources of Codington and Grant counties, South Dakota

    USGS Publications Warehouse

    Hansen, D.S.

    1990-01-01

    The primary sources of surface water in Codington and Grant Counties are Lakes Kampeska and Pelican and numerous potholes in western Codington County. Seasonal variations in streamflow and lake levels are directly related to seasonal variations in precipitation and evapotranspiration. Dissolved-solids concentrations in water from streams and lakes increase as stream discharge decreases and lake levels decline. Seven aquifers in glacial-outwash deposits and two bedrock aquifers were delineated in Codington and Grant Counties. The extent of the outwash aquifers ranges from 30 sq mi for the Antelope Valley aquifer to 860 sq mi for the Altamost aquifer. The average thickness of the glacial aquifers ranges from 20 ft for the Prairie Coteau to 63 ft for the Revillo. The Big Sioux and Antelope Valley aquifers are less than 10 ft below land surface. The Veblen, Prairie Coteau, and the Lonesome Lake aquifers are less than 380 ft below land surface. The Revillo and Altamost aquifers are less than 668 ft below land surface. Reported well yields are as much as 800 gal/min for the Big Sioux, Antelope Valley, and Prairie Coteau aquifers. Predominant ions are calcium and bicarbonate in water from the Big Sioux, Antelope Valley, Prairie Coteau, Veblen, Revillo, and Lonesome Lake aquifers. Sulfate also is predominant in water from the Veblen aquifer. Average dissolved-solids concentrations in water from the aquifers range 350 to 2,120 mg/L. The two bedrock aquifers delineated are the Dakota and granite wash. The water level has declined 10 ft from 1958 to 1985. Predominant ions in water from the Dakota and granite wash aquifers are sodium and sulfate. (USGS)

  8. Ground-water resources of Jones County, Mississippi

    USGS Publications Warehouse

    Boswell, E.H.; Bednar, G.A.; Darden, Daphne

    1987-01-01

    Jones County, Mississippi, is supplied with groundwater from aquifers in strata of Eocene and younger age. The largest groundwater withdrawals are from aquifers in the Catahoula Sandstone of the Miocene aquifer system that occur at depths of 200 and 400 ft in the Laurel area. Several public and industrial water supply wells obtain water from deeper Eocene strata that occur at depths of more than 900 ft. Pumpage from all aquifers in Jones County for all uses increased from < 1 million gal/day (mgd) in 1925 to a maximum of 21.6 mgd in 1975. The city of Laurel used about 6.2 mgd in 1984 and total water use for the county was about 14.1 mgd. The extreme irregularity of the sand beds that form the aquifers is reflected in the wide range in hydraulic characteristics. Transmissivity values range from 600 to 10,000 sq ft/day and average about 6,000 sq ft/day. The average hydraulic conductivity is about 90 ft/day. Water levels in key observation wells in the lower Catahoula aquifer at Laurel have declined from about 150 ft above sea level in 1945 to about 80 ft above sea level in 1985. Since 1975, water levels in the Catahoula aquifers in the Laurel area have declined at a slower rate, but the cone of depression has enlarged because of areal changes in pumping. Water in the major aquifers is usable for most purposes, and concentrations of common constituents do not exceed water quality criteria for drinking water supplies. Iron concentrations are highest in the Catahoula and Vicksburg aquifers, exceeding 0.30 mg/L in water from 33% of the wells for which data are available. Color is highest in the Eocene Cockfield aquifer, exceeding 50 units in water from 60% of the wells. Dissolved solids concentrations range from 487 to 840 mg/L in water from wells in the Cockfield and Sparta aquifers. The pH values generally are < 7.0 in water from wells in the Catahoula and Vicksburg aquifers and > 8.4 in water from wells in the Cockfield and Sparta aquifers. Hardness of water from all

  9. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2006

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean ground-water-level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2006. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2006 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 3 of the 11 observation wells, above normal in 5, and below normal in the remaining 3 wells.

  10. Ground-water resources in Mendocino County, California

    USGS Publications Warehouse

    Farrar, C.D.

    1986-01-01

    Mendocino County includes about 3,500 sq mi of coastal northern California. Groundwater is the main source for municipal and individual domestic water systems and contributes significantly to irrigation. Consolidated rocks of the Franciscan Complex are exposed over most of the county. The consolidated rocks are commonly dry and generally supply < 5 gal/min of water to wells. Unconsolidated fill in the inland valleys consists of gravel, sand, silt, and clay. Low permeability in the fill caused by fine grain size and poor sorting limits well yields to less than 50 gal/min in most areas; where the fill is better sorted, yields of 1,000 gal/min can be obtained. Storage capacity estimates for the three largest basins are Ukiah Valley, 90,000 acre-ft; Little lake Valley, 35,000 acre-ft; and Laytonville Valley, 14,000 acre-ft. Abundant rainfall (35 to 56 in/yr) generally recharges these basins to capacity. Seasonal water level fluctuations since the 1950 's have been nearly constant, except during the 1976-77 drought. Chemical quality of water in basement rocks and valley fill is generally acceptable for most uses. Some areas along fault zones yield water with high boron concentrations ( <2 mg/L). Sodium chloride water with dissolved solids concentrations exceeding 1,000 mg/L is found in deeper parts of Little Lake Valley. (Author 's abstract)

  11. Ground-water resources and geology of Cook County, Georgia

    USGS Publications Warehouse

    Sever, Charles W.

    1972-01-01

    Aquifer-performance tests and aquifer studies indicate that the limestone beneath the city of Adel and probably most of Cook County contains potable water to a depth of only about 400 to 500 feet and that "deep" wells that tap these limestones obtain most of their water from a few thin, highly permeable zones rather than from the entire thickness of the rocks. Below about 500 feet the water is mineralized and not potable without treatment. The yield of "shallow wells" is variable and the water generally is corrosive and at places contains appreciable dissolved iron. The volume of ground water flowing through the Suwannee and Marianna Limestones in Cook County and available for development to properly spaced wells and well fields is estimated to be about 18,000,000 gallons per day. That in the Tampa Foundation is estimated to be about 1,500,000 gallons per day. Water levels near the center of the Adel well field have declined 38 feet since 1890 and presently are declining at a rate of 1.6 feet per year.

  12. Geology and ground-water resources of Winkler County, Texas

    USGS Publications Warehouse

    Garza, Sergio; Wesselman, John B.

    1963-01-01

    The chemical quality of the water in the principal aquifers is generally acceptable for industry and for public supply. About two-thirds of the samples collected from fresh-water wells had a dissolved-solids content of less than 1,000 ppm (parts per million) ; however, some samples in a few areas were hard and were high in fluoride and silica. Samples from wells in polluted areas contained dissolved solids ranging from about 1,400 to 71,100 ppm. Two comprehensive analyses of water samples from the Rustler formation showed a dissolved-solids content of 18,400 ppm. and 157,000 ppm. In most of the water produced with the oil in the Hendrick oil field, the content of dissolved solids ranged from about 4,000 to about 10,000 ppm. The water produced with the oil in the rest of the oil fields in Winkler County was mainly brine.

  13. Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007

    USGS Publications Warehouse

    McSwain, Kristen Bukowski

    2008-01-01

    Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells.

  14. Arsenic in ground water in Sanilac County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  15. Arsenic in ground water in Washtenaw County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  16. Arsenic in ground water in Shiawassee County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  17. Arsenic in ground water in Huron County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  18. Arsenic in ground water in Genesee County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  19. Arsenic in ground water in Tuscola County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  20. Arsenic in ground water in Lapeer County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [μg/I.]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 μg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  1. Arsenic in ground water in Livingston County, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Rachol, Cynthia M.

    2000-01-01

    Previous studies of ground-water resources in Michigan by the Michigan Department of Community Health (MDCH), the Michigan Department of Environmental Quality (MDEQ), and the U.S. Geological Survey (USGS) indicate that in several counties in the southeastern part of the State the concentrations of arsenic in ground water may exceed the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 50 micrograms per liter [µg/L]. This MCL was established in 1986. The Safe Drinking Water Act, as amended in 1996, requires USEPA to revise this standard in 2000. In June 2000, the USEPA proposed a revised MCL of 5 µg/L. In 1996, the USGS, in cooperation with the MDEQ and the Health Departments of Genesee, Huron, Lapeer, Livingston, Oakland, Sanilac, Shiawassee, Tuscola and Washtenaw counties, began a study of the factors controlling arsenic occurrence and concentrations in ground water in southeastern Michigan. This study is one of four USGS Drinking Water Initiative projects throughout the United States.

  2. Water resources of Brookings and Kingsbury counties, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.

    1989-01-01

    Surface water and groundwater resources are widely distributed in Brookings and Kingsbury Counties, an area of nearly 1,700 sq mi of glaciated plains of the Coteau des Prairies plateau in eastern South Dakota. The resources are relatively undeveloped except for large withdrawals for irrigation from shallow glacial aquifers. Groundwater withdrawals accounted for 90% of the 16 ,000 acre-ft of water withdrawn in 1985. The Big Sioux River drains an area of about 2,400 sq mi and flows southward through Brookings County. Discharge of the Big Sioux River near Brookings has averaged 117,000 acre-ft/yr but can decrease to 17 ,600 acre-ft/yr during drought periods. West of the river are thousands of shallow ponds, marshes, and lakes. The largest, Lake Thompson in central Kingsbury County, rose nearly 20 ft during 1985-86 because of record precipitation and large overflow from upstream lakes. Six major glacial aquifers of outwash sand and gravel store 8 million acre-ft of fresh to slightly saline, very hard water beneath nearly 1,300 sq mi at depths ranging from land surface to more than 700 ft. Concentrations of dissolved solids and hardness of water from the aquifers exceed 1,000 mg/L at many places. The 600 sq mi of the surficial, freshwater Big Sioux and Vermillion East Fork aquifers contain more than 200 large-capacity wells that can be pumped from 200 to as much as 1,300 gal/min. Three extensive bedrock aquifers store 67 million acre-ft of slightly saline, soft water at depths ranging from 320 to 1,300 ft. Maximum yields for wells in the sandstone of the Codell and Dakota aquifers are estimated to be 100 gal/min. (USGS)

  3. Water resources of Lake and Moody counties, South Dakota

    USGS Publications Warehouse

    Hansen, D.S.

    1986-01-01

    The primary sources of surface water in Lake and Moody Counties are the Big Sioux River and its intermittent tributaries, and Lakes Herman, Madison, and Brant. Seasonal variations in streamflow and lake levels are directly related to seasonal variations in precipitation. Dissolved-solids concentration in water from streams and lakes increases as streamflow decreases and lake levels decline. Eight glacial aquifers and four bedrock aquifers were delineated in Lake and Moody Counties. The Big Sioux, North Skunk Creek, Pipestone Creek, Battle Creek, and East Fork Vermillion aquifers are composed of glacial outwash. These aquifers are less than 60 feet below land surface, and are in hydraulic connection with the river or creek of the same name. The Rutland, Ramona, and Howard aquifers are composed of glacial outwash and are overlain by 50 to 470 feet of till. The four bedrock aquifers are the Niobrara, Codell, Dakota, and Quartzite wash. The average thickness of the Big Sioux, Pipestone Creek, North Skunk Creek, Battle Creek, and East Fork Vermillion aquifers ranges from 14 feet for the Battle Creek aquifer to 39 feet for the North Skunk Creek aquifer. The average thickness of the Rutland, Ramona, and Howard aquifers ranges from 18 feet for the Ramona aquifer to 40 feet for the Howard aquifer. Predominant chemical constituents in water from the Big Sioux, North Skunk Creek, and Pipestone Creek aquifers are calcium and bicarbonate. Predominant chemical constituents in the Battle Creek and East Fork Vermillion aquifers are calcium and sulfate. Predominant chemical constituents in water from the Rutland, Ramona, and Howard aquifers are calcium, sulfate and biocarbonate. The average thickness of the four bedrock aquifers ranges from 60 to 400 feet. The aquifers are under artesian conditions. Predominant chemical constituents in water from the Niobrara aquifer are calcium, sodium, and sulfate; from the Codell and Dakota aquifers are sodium and sulfate; and from the Quartzite

  4. Water availability and geology of Sumter County, Alabama

    USGS Publications Warehouse

    Davis, Marvin E.; Sanford, Thomas H.; Jefferson, Patrick O.

    1975-01-01

    Geologic units that crop out in Sumter County include the Selma Group of Late Cretaceous age; the Midway and Wilcox Groups of Tertiary Age; and terrace deposits and alluvium of Quaternary age. The Tuscaloosa Group, consisting of the Coker and Gordo Formations, and Eutaw Formation of Late Cretaceous age underlie the entire county. The Cretaceous units dip southwestward about 45 feet per mile and strike northwestward. They consist chiefly of deposits of sand, gravel, chalk, and clay. Potential sources of large supplies of ground water are major aquifers in the Coker, Gordo, and Eutaw Formations; expected yields are 1.6 mgd (million gallons per day or more per well. The Naheola and Nanafalia formations, Tuscahome Sand, and terrace deposits and alluvium are expected to yield 10 to 50 gallons per minute per well.

  5. Availability of ground water in Montgomery County, Maryland

    USGS Publications Warehouse

    Richardson, Claire A.

    1977-01-01

    Montgomery County, Md., is underlain by consolidated rocks that, on the basis of well yields, have been subdivided into six hydrogeologic units. The distribution of the hydrogeologic units are shown on a map (scale 1:62,500). Most wells drilled in the county yield between 6 and 25 gal/min (0.4 to 1.6 L/s); however, about one-third of the wells drilled in the most productive hydrogeologic unit yielded more than 25 gal/min (1.6 L/s). Water from all units is suitable for domestic, public supply, and most industrial uses, but may require treatment for the removal of iron and hardness.

  6. Ground-water data in Orange County and adjacent counties, Texas, 1985-90

    USGS Publications Warehouse

    Kasmarek, Mark C.

    1999-01-01

    The lower unit of the Chicot aquifer is a major source of freshwater for Orange County, Texas. In 1989, the average rate of ground-water withdrawal from the lower unit of the Chicot aquifer in Orange County for municipal and industrial use was 13.8 million gallons per day, a substantial decrease from the historical high of 23.1 million gallons per day in 1972. The average withdrawal for industrial use decreased substantially from 14.4 million gallons per day during 1963?84 to 6.9 million gallons per day during 1985?89. The average withdrawal for municipal use during 1985?89 was 6.8 million gallons per day, similar to the average withdrawal of 5.8 million gallons per day during 1963?84. Water levels in wells in most of the study area rose during 1985?90. The largest rise in water levels was more than 10 feet in parts of Orange and Pinehurst, north of site B (one of three areas of ground-water withdrawal for industrial use), while the largest decline in water levels was a localized decline of more than 60 feet at site C in south-central Orange County (also an area of withdrawal for industrial use). Chemical analyses of ground-water samples from the lower Chicot aquifer during 1985?90 indicate that the aquifer contained mostly freshwater (dissolved solids concentrations less than 1,000 milligrams per liter). Dissolved chloride concentrations remained relatively constant in most wells during 1985?90 but could vary greatly between wells within short distances. Saline-water encroachment continued to occur during 1985?89 but at a slower rate than in the 1970s and early 1980s. On the basis of chemical data collected during 1985?89, a relation was determined between specific conductance and dissolved chloride concentration that can be used to estimate dissolved chloride by multiplying the specific conductance by different factors for low or high conductances.

  7. Estimated water use, by county, in North Carolina, 1990

    USGS Publications Warehouse

    Terziotti, Silvia; Schrader, Tony P.; Treece, M.W.

    1994-01-01

    Data on water use in North Carolina were compiled for 1990 as part of a cooperative agreement between the U.S. Geological Survey and the Division of Water Resources of the North Carolina Department of Environment, Health, and Natural Resources. Data were compiled from a number of Federal, State, and private sources for the offstream water-use categories of public supply, domestic, commercial, industrial, mining, livestock, irrigation, and thermoelectric-power generation. Data also were collected for instream use from hydroelectric facilities. Total estimated offstream water use in the State for 1990 was about 8,940 million gallons per day. About 95 percent of the water withdrawn was from surface-water sources. Thermoelectric-power generation accounted for about 81 percent of all withdrawals. Data for instream water use for hydroelectric-power generation also were compiled. This instream water use totaled about 66,900 million gallons per day. eAch water-use category is summarized in this report by county and source of water supply.

  8. Quality of ground water in Routt County, northwestern Colorado

    USGS Publications Warehouse

    Covay, Kenneth J.; Tobin, R.L.

    1980-01-01

    Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)

  9. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for

  10. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    PubMed

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment. PMID:26040975

  11. Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995

    USGS Publications Warehouse

    Rankin, D.R.

    1996-01-01

    Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.

  12. A water-resources data network evaluation for Monterey County, California; Phase 1; South county

    USGS Publications Warehouse

    Showalter, P.K.; Hord, S.H.

    1986-01-01

    An evaluation made of rainfall, surface water, groundwater, and water quality monitoring networks in Salinas River basin in southern Monterey County, California, proposed all long-term rain gages be continued for extending short-term records and suggested the installation of two additional recording gages. Eight new storage rain gages were suggested at midaltitudes of east and west sides of Salinas Valley where few data are available. The evaluation revealed some short-term gaging stations could be discontinued because of good regression relations between them and the long-term stations Arroyo Seco near Soledad. Of 16 stations selected for the proposed network, 4 are new recording stations, 6 are new nonrecording streamflow and water quality sampling sites, 5 are existing stations, and the last is a station operated from 1969 to 1976; also included are water quality sampling stations on Lakes Nacimiento and San Antonio. The proposed groundwater network was developed from information on geology, geohydrology, and groundwater quality, high priority objectives for groundwater network, and consideration for providing good areal coverage of levels and water quality. Of 145 sites selected, 86 are existing monitoring wells. (USGS)

  13. 78 FR 59919 - Pershing County Water Conservation District; Notice of Application Accepted for Filing With the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Energy Regulatory Commission Pershing County Water Conservation District; Notice of Application Accepted... County Water Conservation District. e. Name of Project: Humboldt River Hydropower Project. f. Location... water quality certification; (2) a copy of the request for certification, including proof of the date...

  14. 75 FR 19632 - San Diego County Water Authority; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Pumped Storage Water Power Project No. 13747. The proposed project would be located at the existing San... Energy Regulatory Commission San Diego County Water Authority; Notice of Preliminary Permit Application.... On March 1, 2010, San Diego County Water Authority filed an application for a preliminary...

  15. Water-quality data for canals in eastern Broward County, Florida, 1975-78

    USGS Publications Warehouse

    Sonntag, W.H.

    1980-01-01

    Increased urbanization in Broward County has contributed to canals being used as receptacles for urban wastes, sewage effluent, and stormwater runoff. The introduction of contaminants into the canals may affect the water quality. In 1969 the U.S. Geological Survey, in cooperation with the Broward County Pollution Control Board and the South Florida Water Management District, began to monitor the water-quality in canals of eastern Broward County. This report presents selected water-quality data collected from the canals, October 1974 through September 1978, in eastern Broward County. (Kosco-USGS)

  16. Water resources of Aurora and Jerauld Counties, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.

    1985-01-01

    Large quantities of slightly saline ground water are available for future water requirements in Aurora and Jerauld Counties, 1 ,236 square miles of glaciated, till-covered hills and plains in southeastern South Dakota. More than one million acre-feet of ground water is stored in five major glacial aquifers, outwash sand and gravel, beneath 340 square miles. About 58 million acre-feet is stored in bedrock, in the Niobrara marl aquifer, the Codell sandstone aquifer, and the Dakota sandstone aquifer. Recharge of aquifers by infiltration of precipitation totals 31 ,000 acre-feet annually. Effects of increased ground-water withdrawals generally have been small for glacial aquifers and large for some bedrock aquifers. Water levels declined 0.6 to 4 feet in glacial aquifers during 1978-80 within a mile of irrigation wells pumping 300 to 1,000 gallons per minute. In contrast, water levels declined 40 feet near a well pumping 1 ,500 gallons per minute from the Niobrara aquifer because of small artesian storage. Artesian pressure of the Dakota aquifer declined about 200 feet between 1909 and 1979 because of large withdrawals through flowing wells. The availability of surface water is limited because streams are ephemeral and have large flows only during spring of wet years. Most of the lakes are small, semipermanent, and shallow. Most surface water in the study area contains low concentrations of dissolved solids but most of the ground water is very hard and slightly saline. Some ground water has a very high-salinity hazard for irrigation. Water from the Niobrara and Codell aquifers also has a high sodium hazard and high boron concentrations. (USGS)

  17. Water for the growing needs of Harrison County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy; Shattles, Donald E.; Humphreys, Carney P.

    1968-01-01

    The potential for water-supply development in Harrison County is almost unlimited. During an average year, more than 350 billion gallons of water flow into the Gulf of Mexico from the streams of the county. With storage reservoirs these streams have a potential sustained supply of hundreds of millions of. gallons per day. Recreation uses and flood-control benefits could also be considered in reservoir design. Upstream from the zones of salt-water penetration, mineral content is low and fairly constant. Water in the streams generally has high color and low pH ; treatment would be required for most municipal and industrial uses. Impoundment in reservoirs normally would have little effect on the quality of the surface water. However, impoundment would trap most of the suspended-sediment load of the streams. Flooding along the major streams of Harrison County is a minor hazard at present (1966), but with further industrial development and urbanization, flooding in these now rural areas could become serious. Intense rainfall from thunderstorms and hurricanes causes serious local flooding in the populous areas near the coast. Tidal flooding, a result of tropical storms, is an ever-present hazard in areas near the coast. The ground-water reservoir, which at present provides all fresh-water supplies, is capable of supporting many times the 25 million gallons per day withdrawal through existing wells. Fresh water occurs to depths as great as 2,500 feet in sand aquifers of Pliocene and Miocene age. Many of the aquifers have high transmissibility; most of those tested have transmissibility in the range, of 50,000-100,000 gallons per day per foot. Although few wells produce more than 1,000 gallons per minute, several of the aquifers can yield two to three times that amount to wells designed for the higher production. Artesian water levels along the coast are declining at a rate of 1 foot per year on the average; however, water levels are still above or only slightly below the

  18. Water resources of the Descanso Area, San Diego County, California

    USGS Publications Warehouse

    Duell, L.F., Jr.

    1990-01-01

    Hydrologic information was collected during water year 1988 (October 1987 to September 1988) to evaluate the effects of current pumping on groundwater levels in the Descanso area in south-central San Diego County. Water year 1988 was a period of near-normal precipitation and runoff. The groundwater system in the area consists of aquifers in the metamorphic and granitic bedrock and in the overlying regolith (weathered bedrock). Most wells penetrate both aquifers, but the regolith is the source of most water pumped from wells. Groundwater storage in 1988 was estimated to be 800 to 2,000 acre-ft in the regolith and 300 to 3,000 acre-ft in bedrock. Recharge to the groundwater system from infiltration of precipitation and streamflow was estimated to be about 1,000 acre-ft. Pumpage, which was estimated to be 170 acre-ft, had little effect on groundwater storage. Water levels in wells were nearly the same at the end of the water year as at the beginning. Groundwater quality generally was suitable for domestic uses. Concentrations of iron and manganese , although nontoxic, exceeded California maximum contaminant levels for domestic drinking water in some wells. (USGS)

  19. Water quality of Bear Creek basin, Jackson County, Oregon

    USGS Publications Warehouse

    Wittenberg, Loren A.; McKenzie, Stuart W.

    1980-01-01

    Water-quality data identify surface-water-quality problems in Bear Creek basin, Jackson County, Oreg., where possible, their causes or sources. Irrigation and return-flow data show pastures are sources of fecal coliform and fecal streptococci bacteria and sinks for suspended sediment and nitrite-plus-nitrate nitrogen. Bear Creek and its tributaries have dissolved oxygen and pH values that do not meet State standards. Forty to 50% of the fecal coliform and fecal streptococci concentrations were higher than 1,000 bacteria colonies per 100 milliliters during the irrigation season in the lower two-thirds of the basin. During the irrigation season, suspended-sediment concentrations, average 35 milligrams per liter, were double those for the nonirrigation season. The Ashland sewage-treatment plant is a major source of nitrite plus nitrate, ammonia, and Kjeldahl nitrogen, and orthophosphate in Bear Creek. (USGS)

  20. Water-use data by category, county, and water management district in Florida, 1950-90

    USGS Publications Warehouse

    Marella, R.L.

    1995-01-01

    The population for Florida in 1990 was estimated at 12.94 million, an increase of nearly 10.17 million (370 percent) from the population of 2.77 million in 1950. Consequently, water use (fresh and saline) in Florida increased nearly 510 percent (15,175 million gallons per day) between 1950 and 1990. The resident population of the State is projected to surpass 20 million by the year 2020. Through the cooperation of the Florida Department of Environ- mental Protection and the U.S. Geologial Survey, water-use data for the period between 1950 and 1990 has been consolidated into one publication. This report aggregates and summarizes the quantities of water withdrawn annually for all water-use categories (public supply, self-supplied domestic, self-supplied commercial-industrial, agriculture, and thermoelectric power generation), by counties, and water management districts in Florida from 1950 through 1990. Total water withdrawn in Florida increased from 2,923 million gallons per day in 1950 to 17,898 million gallons per day in 1990. Surface- water withdrawals during 1950 totaled 2,333 million gallons per day but were not differentiated between fresh and saline, therefore, comparisons between fresh and saline water were made beginning with 1955 data. Freshwater withdrawals increased 245 percent between 1955 and 1990. Saline water withdrawals increased more than 1,500 percent between 1955 and 1990. In 1955, more than 47 percent of the fresh- water used was withdrawn from ground-water sources and 53 percent was withdrawn from surface-water sources. In 1990, nearly 62 percent of the fresh- water withdrawn was from ground-water sources, while 38 percent was withdrawn from surface-water sources. The steady increase in ground-water withdrawals since the 1950's primarily is a result of the ability to drill and pump water more economically from large, deep wells and the reliability of both the quality and quantity of water from these wells. Water withdrawn for public supply in

  1. Water Use in Georgia by County for 2005; and Water-Use Trends, 1980-2005

    USGS Publications Warehouse

    Fanning, Julia L.; Trent, Victoria P.

    2009-01-01

    Water use for 2005 for each county in Georgia was estimated using data obtained from various Federal and State agencies and local sources. Total consumptive water use also was estimated for each county in Georgia for 2005. Water use is subdivided according to offstream and instream use. Offstream use is defined as water withdrawn or diverted from a ground- or surface-water source and transported to the place of use. Estimates for offstream water use include the categories of public supply, domestic, commercial, industrial, mining, irrigation, livestock, aquaculture, and thermoelectric power. Instream use is that which occurs within a stream channel for such purposes as hydroelectric-power generation, navigation, water-quality improvement, fish propagation, and recreation. The only category of instream use estimated was hydroelectric-power generation. Georgia law (the Georgia Ground-Water Use Act of 1972 and the Georgia Water Supply Act of 1978 [Georgia Department of Natural Resources, 2008a,b]) requires any water user who withdraws more than 100,000 gallons per day on a monthly average to obtain a withdrawal permit from the Georgia Environmental Protection Division. Permit holders generally must report their withdrawals by month. The Georgia Water-Use Program collects the reported information under the withdrawal permit system and the drinking-water permit system and stores the data in the Georgia Water-Use Data System.

  2. Ground-water levels in Huron County, Michigan, January 1995 through December 1995

    USGS Publications Warehouse

    Sweat, M.J.

    1996-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made.

  3. Ground-water resources of Chester County, Pennsylvania

    USGS Publications Warehouse

    McGreevy, L.J.; Sloto, R.A.

    1977-01-01

    Chester County is an area about 760 square miles (1,970 square kilometers) in the Piedmont of southeastern Pennsylvania. Rocks of the county include: (1) Precambrian metamorphic and igneous rocks; (2) upper Precambrian to lower Paleozoic metamorphic rocks, predominantly metamorphosed sedimentary rocks; (3) upper Precambrian and lower Paleozoic sedimentary rocks that are moderately metamorphosed; and (4) Upper Triassic sedimentary and igneous rocks. Overlying the bedrock is a generally thick zone of consolidated weathered rock. Most wells derive water from fractured rock. Intergranular permeability is present only in the weathered zone and in some of the sedimentary rock. Solution of the carbonate rock and weatherine increase the permeability. Reported yields range from 0 to 1,800 gallons per minute (114 liters per second). Yields from carbonate rock, particularly the Cockeysville Marble and Ledger Formation, are generally higher than yields from other units. The difference in yield between nearby wells in the same unit, however, may be greater than the difference in yield between wells in different units. Exceptionally high yields of 100 gallons per minute (6 liters per second) or more were reported in almost all parts of the county and from almost all units, as were exceptionally low yields of 5 gallons per minute (0.3 liters per second) or less. The estimated number of wells that would be needed in an area to yield 1 million gallons per day (0.04 cubic meters per second) continuously are indicated on a map. The estimates are based on evaluation of data on reported yields of more than 1,900 wells, on specific capacity for almost 900 wells, and on estimates of long-term specific capacity from 97 pumping tests. Yields that might be obtained by intensive exploration of an aquifer were estimated. These yields were then reduced by half to approximate the long-term average yield. Aerial imagery of various kinds was evaluated as a potential aid in the study. The imagery

  4. Ground-water resources of Snohomish County, Washington

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1952-01-01

    Snohomish County comprises an east-west strip, six townships wide, extending 60 miles from the eastern shore of Puget Sound to the drainage divide of the Cascade Mountains. Topographically, the eastern two-thirds of the county varies frown hills and low mountain spurs at the west to the continuous high, maturely carved mountains of the Cascade Range at the east. The western third of the county lies in the Puget Sound lowland section: it is made up largely of unconsolidated deposits, as contrasted with the hard rocks of the mountain section. High-level deposits of glacial debris in some places form a transitional ramp from the lowlands to the mountain topography; in other places the transition is abrupt. The principal rivers--the Snohomish, Skykomish, Stillaguamish, and Sauk--drain westward and northwestward to Puget Sound. The Puget Sound lowland, with its extensions up the river valleys, is economically the important part. of the county. Within that part., ground-water development is of particular importance. The climate is equable and dominantly oceanic, with an average of about 32 h. of rainfall annually, but with a pronounced dry season from June to September. A mean annual temperature of 52 F, a growing season of more than 200 days, and a variety of good soils form a setting in which supplemental irrigation can at least double the average crop production. Within the coastal lowland, plateau segments 200 to 600 ft or more in altitude are separated by flat-bottomed, alluviated river gorges. The river flats in some eases represent the surface of as much as 500 to 600 ft of glacial and alluvial deposits backfilled into canyonlike arms of the aneestral drainage system. The plateau segments are formed of the till-smoothed remnants of bedrock or the tabular segments of Pleistocene deposits. The Pleistocene deposits consist, above sea level, of about 200 ft of Admiralty clay and as much as 1,000 ft of deposits of the Vashon glaciation. The latter include as much as

  5. 76 FR 71008 - Yuba County Water Agency; Notice of Dispute Resolution Process Schedule; Panel Meeting, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... Energy Regulatory Commission Yuba County Water Agency; Notice of Dispute Resolution Process Schedule... resolution process, pursuant to 18 CFR 5.14, in the relicensing proceeding for the Yuba County Water Agency's... dispute resolution panel member. On October 25, 2011, Commission staff designated Stephen P. Bowler...

  6. 77 FR 40509 - Drawbridge Operation Regulation; Oakland Inner Harbor Tidal Canal, Alameda, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Oakland Inner Harbor Tidal Canal... Drawbridge across Oakland Inner Harbor Tidal Canal, mile 5.2, at Alameda, CA. The deviation is necessary to..., mile 5.2, over Oakland Inner Harbor Tidal Canal, at Alameda, CA. The drawbridge navigation...

  7. Assessment of the school drinking water supply and the water quality in Pingtung County, Taiwan.

    PubMed

    Chung, Pei-Ling; Chung, Chung-Yi; Liao, Shao-Wei; Miaw, Chang-Ling

    2009-12-01

    In this study, a questionnaire survey of school drinking water quality of 42 schools in Pingtung County was conducted according to the water sources, treatment facilities, location of school as well as different grade levels. Among them, 45% of schools used tap water as the main source of drinking water, and the schools using groundwater and surface water as drinking water source account for 29% and 26%, respectively. The schools above senior high school level in the city used tap water as drinking water more than underground water, while the schools under junior high school level in the rural area used surface water as their main source of drinking water. The surface water was normally boiled before being provided to their students. The reverse osmosis system is a commonly used water treatment equipment for those schools using tap water or underground water. Drinking fountain or boiled water unit is widely installed in schools above senior high school level. For schools under junior high school level, a pipeline is stretched across the campus. Relative test shows that the unqualified rate of microbe in water is 26.2%. All parameters for physical and chemical properties and metal content had met the domestic standards except that the turbidity of schools under junior high school level using tap water is slightly higher than the standard value.

  8. Reflectance of vegetation, soil, and water. [in Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A study was conducted in a 340-acre (139 hectares) field of grain sorghum (Sorghum bicolor (L.) Moench) to determine if multispectral data from ERTS-1 could be used to detect differences in chlorophyll concentration between iron-deficient (chlorotic) and apparently normal (green) grain sorghum. Chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size were identified on a computer printout of band 5 data which contains the chlorophyll absorption band at the 0.65 micron wavelength. ERTS resolution is sufficient for practical applications in detecting iron-deficient sorghum in otherwise uniform fields. The first classification map of the study county has been produced. Vegetation (crops), rangeland, bare soil, water, and an undefined (all other) category occupied 15.2, 45.0, 19.1, 0.02, and 20.6% of the land area, respectively.

  9. Water resources of Hanson and Davison Counties, South Dakota

    USGS Publications Warehouse

    Hansen, D.S.

    1983-01-01

    Five glacial and four bedrock aquifers were delineated in Hanson and Davison Counties. The glacial aquifers, outwash deposits confined by as much as 275 feet of glacial till, are the Floyd, Plum Creek, Ethan, Warren, and Alexandria. The bedrock aquifers are the Niobrara, Codell, Dakota, and Sioux Quartzite Wash, and may be as much as 80, 350, 700, and 500 feet below land surface, respectively. The glacial aquifers averaged 13 to 40 feet in thickness and contain about 670,000 acre-feet of water in storage. Recharge to the Floyd and Plum Creek aquifers is from the Sioux Quartzite Wash aquifer and from fractures in the Sioux Quartzite. Recharge to the Ethan and Warren aquifers is from the Niobrara aquifer. Reported yield to wells from the Floyd and Plum Creek aquifers was as much as 1,000 gallons per minute. Predominant chemical constituents in water from the glacial aquifers are sulfate, calcium, and sodium. The bedrock aquifers averaged 40 to 110 feet in the thickness and contain about 11.3 million acre-feet of water in storage. The direction of water movement in the aquifers is to the northeast. The average reported yield from wells in the bedrock aquifers ranged from 1 to 75 gallons per minute. Reported yield from wells in the Niobrara aquifer was as much as 1,000 gallons per minute. Predominant chemical constituents in water from the Niobrara and Codell aquifers were sulfate, sodium, and calcium. Predominant chemical constituents in water from the Dakota and Sioux Quartzite wash were sulfate and calcium. (USGS)

  10. Effects of septic-tank effluent on ground-water quality in northern Williamson County and southern Davidson County, Tennessee

    USGS Publications Warehouse

    Hanchar, D.W.

    1991-01-01

    An investigation of the potential contamination of ground water from septic tank systems blasted in bedrock in Williamson and Davidson Counties, Tennessee, was conducted during 1988-89. Water samples were collected from domestic and observation wells, springs, and surface-water sites in a residential subdivision in the northern part of Williamson County near Nashville. The subdivision has a high density of septic-tank field lines installed into blasted bedrock Water samples also were collected from a well located in an area of Davidson County where field lines were installed in 5 feet of soil. Samples were analyzed for major inorganic constituents, nutrients, total organic carbon, optical brighteners, and bacteria. Although results of analyses of water samples from wells indicate no effect of septic-tank effluent on ground-water quality at these sites, water from two springs located downgradient from the subdivision had slightly larger concentrations of nitrite plus nitrate (2.2 and 2.7 milligrams per liter N), and much larger concentrations of fecal coliform and fecal streptococci bacteria (2,000 to 3,200 and 700 to 900 colonies per 100 milliliters of sample, respectively), than other wells and springs sampled during 1988. Water from one of these springs contained optical brighteners, which indicates that septic-tank effluent is affecting ground-water quality.

  11. Ground-water and geohydrologic conditions in Queens County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian

    1971-01-01

    Queens County is a heavily populated borough of New York City, at the western end of Long Island, N. Y., in which large amounts of ground water are used, mostly for public supply. Ground water, pumped from local aquifers, by privately owned water-supply companies, supplied the water needs of about 750,000 of the nearly 2 million residents of the county in 1967; the balance was supplied by New York City from surface sources outside the county in upstate New York. The county's aquifers consist of sand and gravel of Late Cretaceous and of Pleistocene ages, and the aquifers comprise a wedge-shaped ground-water reservoir lying on a southeastward-sloping floor of Precambrian(?) bedrock. Beds of clay and silt generally confine water in the deeper parts of the reservoir; water in the deeper aquifers ranges from poorly confined to well confined. Wisconsin-age glacial deposits in the uppermost part of the reservoir contain ground water under water-table conditions. Ground water pumpage averaged about 60 mgd (million gallons per day) in Queens County from about 1900 to 1967. Much of the water was used in adjacent Kings County, another borough of New York City, prior to 1950. The large ground-water withdrawal has resulted in a wide-spread and still-growing cone of depression in the water table, reflecting a loss of about 61 billion gallons of fresh water from storage. Significant drawdown of the water table probably began with rapid urbanization of Queens County in the 1920's. The county has been extensively paved, and storm and sanitary sewers divert water, which formerly entered the ground, to tidewater north and south of the county. Natural recharge to the aquifers has been reduced to about one half of the preurban rate and is below the withdrawal rate. Ground-water levels have declined more than 40. feet from the earliest-known levels, in 1903, to 1967, and the water table is below sea level in much of the county. The aquifers are being contaminated by the movement of

  12. Water-resources data for Alachua, Bradford, Clay, and Union Counties, Florida

    USGS Publications Warehouse

    Clark, William E.; Musgrove, Rufus H.; Menke, Clarence G.; Cagle, Joseph W.

    1964-01-01

    A study of the water resources of Alachua, Bradford, Clay, and Union counties, Florida (fig. 1), was made by the Water Resources Division of the U. S. Geological Survey in cooperation with the Florida Geological Survey during the period 1957-61. The results of this study will be published by the Florida Geological Survey in the following reports by William E. Clark, Rufus H. Musgrove, Clarence G. Menke, and Joseph W. Cagle, Jr.: "Interim Report on the Water Resources of Alachua, Bradford, Clay, and Union Counties, Florida," "Water Resources of Alachua, Bradford, Clay, and Union Counties, Florida," and "Hydrology of Brooklyn Lake, near Keystone Heights, Florida."

  13. Ground-water resources of southern New Castle County, Delaware

    USGS Publications Warehouse

    Rima, Donald Robert; Coskery, O.J.; Anderson, P.W.

    1964-01-01

    Southern New Castle County has a land area of 190 square miles in northcentral Delaware. It is predominantly a rural area with a population of about 9,500 people who are engaged chiefly in agriculture. By and large, the residents are dependent upon ground water as a source of potable water. This investigation was made to provide knowledge of the availability and quality of .the ground-water supply to aid future development. The climate, surface features, and geology of the area are favorable for the occurrence of ground water. Temperatures are generally mild and precipitation is normally abundant and fairly evenly distributed throughout the year. The topography of the area is relatively fiat and, hence, the streams have low gradients. The surface is underlain to a considerable depth by highly permeable unconsolidated sediments that range in age from Early Cretaceous to Recent. Nearly all the subsurface stratigraphic units yield some water to wells, but only four parts or combinations of these units are sufficiently permeable, to yield large supplies. These are, from oldest to youngest, the nonmarine Cretaceous sediments and the Magothy Formation, the Monmouth Group, the Rancocas Formation, and .the surficial terrace and valley-fill deposits. In the northern part of the area the nonmarine Cretaceous sediments and the Magothy Formation can be reached economically by wells. Yields in excess of 300 gpm (gallons per minute) have been obtained from wells screened in this aquifer, but the maximum productivity of the aquifer has not been .tested. The Monmouth Group is used as a source of water in the central part of the area, where some wells yield as much as 125 gpm. The Rancocas Formation is the principal aquifer in the southern part of the area. Yields of 200-400 gpm can be expected from this aquifer, owing to its uniformly coarse texture, particularly in the upper part of the formation. The terrace deposits compose the shallow watertable aquifer throughout the area. In

  14. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality.

    PubMed

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices. PMID:26993817

  15. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality

    NASA Astrophysics Data System (ADS)

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  16. Ground water of coal deposits, Bay County, Michigan

    USGS Publications Warehouse

    Stark, J.R.; McDonald, Michael G.

    1980-01-01

    A coal deposit in Bay County, Mich., typical of Pennsylvanian-coal deposits in the State, was studied to determine the degree to which hydrologic factors might affect future coal mining. The coal deposit, which averages about 0.5 meters in thickness, lies 50 meters below land surface. It is part of a multi-layered aquifer system that contains sandstone, shale, sand and gravel, and clay units in addition to beds of coal. Hydrologic characteristics (hydraulic conductivity and storage coefficient) of each unit were evaluated by analyses of aquifer tests and a finite-difference groundwater flow model. A model simulating groundwater flow to a hypothetical mine was developed. Results of the study indicate that seepage will probably not be great enough to preclude mining coal. Also, pumping water to keep the mine dry will have little effect on heads in aquifers outside the mine during the first decade of mining. Although coal was mined in Michigan during 1860-1950, significant reserves remain. These deposits, part of the Saginaw Formation of Pennsylvanian age, are near the industrialized parts of the State. The quantity of pumped water needed to keep mines dry and the effect of pumping on aquifers surrounding the mines is a major factor in determining the feasibility of opening new mines. (USGS)

  17. The ground-water system in southeastern Laramie County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Borchert, William B.

    1972-01-01

    Increased development of irrigation wells in southeastern Laramie County, Wyo., has caused concern about the quantity of water available. Ground water from approximately 230 large-capacity wells is used to irrigate most of the 18,165 acres under irrigation. The purpose of this study is to provide more knowledge about the character of the aquifers, quantity of water in storage, rate of withdrawal, and the effect of withdrawals on streamflow. The area studied consists of about 400 square miles in southeastern Laramie County in the extreme southeast corner of Wyoming. The White River Formation of Oligocene age and alluvium of Quaternary age are the principal aquifers. The White River Formation is made up primarily of clay, silt, and fine sand. Secondary permeability in the White River Formation accounts for it being an important aquifer. The alluvium, which Includes terrace and flood-plain deposits, consists of sand and gravel that contain some lenses of silt and clay. Existence of secondary permeability in the White River Formation has been accepted for some time although the nature of the secondary permeability has been disputed. Examination of downhole conditions with a television camera during this study revealed openings in the formation that appeared to be similar to tubes or caverns. The openings were of various sizes and shapes but only a few appeared to be associated with fracturing. Solution activity in the formation probably is an important factor in the development of secondary permeability. The study area was divided into the Pine Bluffs-Egbert area and the Carpenter area. Ground-water movement in the Pine Bluffs-Egbert area is generally eastward into Nebraska; in the Carpenter area, movement is generally southward into Colorado. Pumpage from large-capacity wells in the Pine Bluffs-Egbert area was estimated to be about 21,790 acre-feet in 1971. Water levels exhibited a declining trend annually in some areas during the period of record. Data indicate that

  18. Altitude of water table, surficial aquifer, Palm Beach County, Florida, April 24-26, 1984

    USGS Publications Warehouse

    Miller, Wesley L.

    1985-01-01

    Water levels in Palm Beach County, Florida, were measured in April 1984 to determine the altitude of the water table in the surficial aquifer. A total of 104 wells and 50 surface-water measurement sites were used to contour the altitude of the water table at 2 and 4-foot intervals. The water-level measurements made in April represent low-water levels near the end of south Florida 's dry season. Contours of the water table at this time ranged from 22 feet above sea level in the north-central part of the county to 2 feet near the coast. (USGS)

  19. Hydrogeology and ground-water quality of confined aquifers in buried valleys in Rock County, Minnesota and Minnehaha County, South Dakota

    USGS Publications Warehouse

    Lindgren, R.J.

    1997-01-01

    The predominant ions in water from two wells screened in confined drift aquifers in Rock County were calcium and bicarbonate and in water from a third well were calcium and sulfate. The predominant ions in water from one well screened in an undifferentiated Cretaceous aquifer in Rock County were calcium and bicarbonate and in water from a second well were calcium and sulfate. The predominant ions in water from two wells screened in the Split Rock Creek aquifer in Rock County were calcium and bicarbonate and in water from a third well were calcium and sulfate.

  20. Water resources in a rapidly growing region-Oakland County, Michigan

    USGS Publications Warehouse

    Aichele, Stephen S.

    2005-01-01

    Despite considerable expansion of urban areas, streamflow characteristics at most sites have not been affected. However, at several sites in areas of the county that are both supplied by ground water and sewered, statistically significant downward trends in low-flow stream discharges have been noted between 1970 and 2003. Stream chemistry, compared to a previous study of county water resources prepared in 1972, has generally improved, with marked decreases in concentrations of nitrogen, phosphorus, and sulfate. Chloride concentrations, however, have increased dramatically in river and lake water across the county. Detectable concentrations of personal-care products, flame retardants, and petroleum fuel compounds were identified at all river sites sampled. 

  1. 78 FR 16490 - Placer County Water Agency; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Operation On February 23, 2011, the Placer County Water Agency, licensee for the Middle Fork American River... Commission's regulations thereunder. The Middle Fork American River Hydroelectric Project is located on the Middle Fork American River and the Rubicon River and located in Placer and El Dorado Counties,...

  2. Ground water in the Pullman area, Whitman County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Washburn, R.L.

    1963-01-01

    This report presents the results of an investigation of the ground-water resources of the Pullman area, Whitman County, Wash. The investigation war made in cooperation with the State of Washington, Department of Conservation, Division of Water Resources, to determine whether the 1959 rate of ground-water withdrawal exceeded the perennial yield of the developed aquifers, and if so, (1) whether additional aquifers could be developed in the area, and (2) whether the yield of the developed aquifers could be increased by artificial recharge. The Pullman area includes the agricultural district surrounding the city of Pullman, in southeastern Whitman County, and the western two-thirds of the Moscow-Pullman basin, which extends into Latah County, Idaho. The mapped area comprises shout 250 square miles. The area is in a region of smooth rolling hills formed by erosion of thick deposits of loess, which cover a dissected lava plain. The loess (Palouse formation of Pleistocene age) ranges in thickness from less than 1 foot to more than 150 feet. The underlying lava flows, part of the Columbia River basalt of Tertiary age, are nearly horizontal and form bluffs and low cliffs along the major streams. The total thickness of the basalt sequence in the area is not known, but it may be considerably greater than 1,000 feet beneath the city of Pullman. The basalt sequence is underlain by a basement mass of granite, granite gneiss, and quartzite, of pre-Tertiary age. The most productive aquifers in the area are in the Columbia River basalt. They consist of the permeable zones, commonly occurring at the tops of individual lava flows, which may contain ground water under either artesian or water-table conditions. Two such permeable zones have produced more than 95 percent of the ground water used in the Pullman area, or as much as 870 million gallons per year (1957). These two zones are hydraulically connected and lie at depths ranging from about 50 to 170 feet below the land surface at

  3. Water-resources data network evaluation for Monterey County, California; Phase 2, northern and coastal areas of Monterey County

    USGS Publications Warehouse

    Templin, W.E.; Smith, P.E.; DeBortoli, M.L.; Schluter, R.C.

    1995-01-01

    This report presents an evaluation of water- resources data-collection networks in the northern and coastal areas of Monterey County, California. This evaluation was done by the U.S. Geological Survey in cooperation with the Monterey County Flood Control and Water Conservation District to evaluate precipitation, surface water, and ground water monitoring networks. This report describes existing monitoring networks in the study areas and areas where possible additional data-collection is needed. During this study, 106 precipitation-quantity gages were identified, of which 84 were active; however, no precipitation-quality gages were identified in the study areas. The precipitaion-quantity gages were concentrated in the Monterey Peninsula and the northern part of the county. If the number of gages in these areas were reduced, coverage would still be adequate to meet most objectives; however, additional gages could improve coverage in the Tularcitos Creek basin and in the coastal areas south of Carmel to the county boundary. If collection of precipitation data were expanded to include monitoring precipitation quality, this expanded monitoring also could include monitoring precipitation for acid rain and pesticides. Eleven continuous streamflow-gaging stations were identified during this study, of which seven were active. To meet the objectives of the streamflow networks outlined in this report, the seven active stations would need to be continued, four stations would need to be reactivated, and an additional six streamflow-gaging stations would need to be added. Eleven stations that routinely were sampled for chemical constituents were identified in the study areas. Surface water in the lower Big Sur River basin was sampled annually for total coli- form and fecal coliform bacteria, and the Big Sur River was sampled monthly at 16 stations for these bacteria. Routine sampling for chemical constituents also was done in the Big Sur River basin. The Monterey County Flood

  4. Drought-trigger ground-water levels and analysis of historical water-level trends in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    The Chester County observation-well network was established in 1973 through a cooperative agreement between the Chester County Water Resources Authority (CCWRA) and the U.S. Geological Survey. The network was established to monitor local ground-water levels, to determine drought conditions, and to monitor ground-water-level trends. Drought-warning and drought-emergency water-level triggers were determined for 20 of the 23 wells in the Chester County observation-well network. A statistical test to determine either rising or declining water-level trends was performed on data for all wells in the network. Water-level data from both of these wells showed a rising trend. A decrease in ground-water pumping in the area near these wells was probably the reason for the rise in water levels.

  5. Summary of reported agriculture and irrigation water use in Jefferson County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Jefferson County, Arkansas. The number of withdrawal registrations for Jefferson County was 1,636 (1,227 groundwater and 409 surface water). Water with- drawals reported during the registration process total 5.64 Mgal/day (3.89 Mgal/d groundwater and 1.75 Mgal/d surface water) for agriculture and 197.49 Mgal/d (161.39 Mgal/d groundwater and 36.10 Mgal/d surface water) for irrigation. The regis- tration reports for 1991 indicate that this water was applied to 132,667 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and unknown crops as well as for the agricultural uses of animal aquaculture, crawfish, minnows, timber, and ducks. (USGS) {descriptors: *Water use, *Arkansas, *Jefferson County, Selective withdrawal, Groundwater, Surface water

  6. Summary of reported agriculture and irrigation water use in Monroe County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Monroe County, Arkansas. The number of withdrawal registrations for Monroe County was 1,886 (1,677 groundwater and 209 surface water). Water withdrawals reported during the registration process total 8.87 Mgal/d (5.75 Mgal/d groundwater and 3.12 Mgal/d surface water) for agriculture and 210.61 Mgal/d (190.99 Mgal/d groundwater and 19.62 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 127,670 acres of land to irrigate rice, sorghum, soybeans, milo, cash grains, cotton, hay, and unknown crops, as well as for agricultural uses of animal aquaculture, minnows, and ducks. {descriptors: *Water use, *Arkansas, *Monroe County, Selective withdrawal, Groundwater, Surface water

  7. Hydrogeology and ground-water quality of Brunswick County, North Carolina

    USGS Publications Warehouse

    Harden, Stephen L.; Fine, Jason M.; Spruill, Timothy B.

    2003-01-01

    Brunswick County is the southernmost coastal county in North Carolina and lies in the southeastern part of the Coastal Plain physiographic province. In this report, geologic, hydrologic, and chemical data were used to investigate and delineate the hydro-geologic framework and ground-water quality of Brunswick County. The major aquifers and their associated confining units delineated in the Brunswick County study area include, from youngest to oldest, the surficial, Castle Hayne, Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers. All of these aquifers, with the exception of the Castle Hayne aquifer, are located throughout Brunswick County. The Castle Hayne aquifer extends across only the southeastern part of the county. Based on available data, the Castle Hayne and Peedee confining units are missing in some areas of Brunswick County, which allows direct hydraulic contact between the surficial aquifer and underlying Castle Hayne or Peedee aquifers. The confining units for the Black Creek, upper Cape Fear, and lower Cape Fear aquifers appear to be continuous throughout Brunswick County. In examining the conceptual hydrologic system for Brunswick County, a generalized water budget was developed to better understand the natural processes, including precipitation, evapotranspiration, and stream runoff, that influence ground-water recharge to the shallow aquifer system in the county. In the generalized water budget, an estimated 11 inches per year of the average annual precipitation of 55 inches per year in Brunswick County is estimated to infiltrate and recharge the shallow aquifer system. Of the 11 inches per year that recharges the shallow system, about 1 inch per year is estimated to recharge the deeper aquifer system. The surficial aquifer in Brunswick County is an important source of water for domestic supply and irrigation. The Castle Hayne aquifer is the most productive aquifer and serves as the principal ground-water source of municipal supply

  8. DATA QUALIFICATION REPORT: WATER-LEVEL DATA FROM THE NYE COUNTY EARLY WARNING DRILLING PROGRAM

    SciTech Connect

    F. H. Dove, P. Sanchez, and L. Saraka

    2000-04-21

    The objective of this work is to evaluate unqualified, water-level data gathered under the Nye County Early Warning Drilling Program (EWDP) and to determine whether the status of the data should be changed to ''qualified'' data in accordance with AP-SIII.2Q (Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data). The corroboration method (as defined in Attachment 2 of AP-SIII.2Q) was implemented to qualify water-level data from Nye County measurements obtained directly from the Nye County Nuclear Waste Repository Program Office (NWRPO). Comparison of United States Geological Survey (USGS) measurements contained in DTN GS990608312312.003 with the Nye County water-level data has shown that the differences in water-level altitudes for the same wells are significantly less than 1 meter. This is an acceptable finding. Evaluation and recommendation criteria have been strictly applied to qualify Nye County measurements of water levels in selected wells measured by the USGS. However, the process of qualifying measured results by corroboration also builds confidence that the Nye County method for measurement of water levels is adequate for the intended use of the data (which is regional modeling). Therefore, it is reasonable to extend the term of ''qualified'' to water-level measurements in the remaining Nye County Phase I wells on the basis that the method has been shown to produce adequate results for the intended purpose of supporting large-scale modeling activities for the Yucca Mountain Project (YMP). The Data Qualification Team recommends the Nye County, water-level data contained in Appendix D of this report be designated as ''qualified''. These data document manual measurements of water-levels in eight (8) EWDP Phase I drillholes that were obtained prior to the field installation of continuous monitoring equipment.

  9. 75 FR 35024 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Saline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Waters of the Cape Fear River in Brunswick and New Hanover Counties No Discharge Zone Determination The... Counties, and the saline waters of the Cape Fear River in Brunswick and New Hanover Counties. The other... creeks, the Atlantic Intracoastal Waterway, Cape Fear River (up to Toomers Creek 34 15'36.61'' N 77...

  10. Technical Review of Water-Resources Investigations of the Tule Desert, Lincoln County, Southern Nevada

    USGS Publications Warehouse

    Berger, David L.; Halford, Keith J.; Belcher, Wayne R.; Lico, Michael S.

    2008-01-01

    The Nevada State Engineer in Ruling No. 5181 required Lincoln County and Vidler Water Company, Inc., to provide results from additional water-resources studies of Tule Desert in southern Nevada to support water-rights application 64692. As outlined by the ruling, the additional studies were to include the determination of the amount of ground water available from the Tule Desert basin, ground-water recharge to the Tule Desert, and the direction of ground-water flow. Results of these additional studies were published in five reports prepared for Lincoln County and Vidler Water Company, Inc. The National Park Service formally requested that the U.S. Geological Survey provide technical reviews of these five reports. The Nevada State Engineer in Ruling No. 5181 required Lincoln County and Vidler Water Company, Inc., to provide results from additional water-resources studies of Tule Desert in southern Nevada to support water-rights application 64692. As outlined by the ruling, the additional studies were to include the determination of the amount of ground water available from the Tule Desert basin, ground-water recharge to the Tule Desert, and the direction of ground-water flow. Results of these additional studies were published in five reports prepared for Lincoln County and Vidler Water Company, Inc. The National Park Service formally requested that the U.S. Geological Survey provide technical reviews of these five reports.

  11. Reflectance of vegetation, soil, and water. [Hidalgo County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The majority of the rangelands of Hidalgo County, Texas are used in cow-calf operations. Continuous year-long grazing is practiced on about 60% of the acreage and some type of deferred system on the rest. Mechanical brush control is used more than chemical control. Ground surveys gave representative estimates for 15 vegetable crops produced in Hidalgo County. ERTS-1 data were used to estimate the acreage of citrus in the county. Combined Kubleka Munk and regression models, that included a term for shadow areas, gave a higher correlation of composite canopy reflectance with ground truth than either model alone.

  12. A County Level Assessment of Water Withdrawals for Hydraulic Fracturing: Where are Impacts Most Likely?

    NASA Astrophysics Data System (ADS)

    Fleming, M. M.; LeDuc, S. D.; Clark, C.; Todd, J.

    2015-12-01

    Concerns have arisen of the potential effects of hydraulic fracturing water withdrawals on both water for human consumption and aquatic communities. Any impacts are likely to be location specific since current U.S. hydraulic fracturing activities are concentrated in particular regions, water availability is unevenly distributed, and hydraulic fracturing water use differs between locations, including the amount of water use per well, source water, and reuse rates. Here, we used FracFocus to estimate annual hydraulic fracturing water use, and combined this with U.S. Geological Survey water use data and water availability indices to identify U.S. counties where potential impacts may be most likely. We surveyed the literature to understand source water and reuse rates. Overall, we found that hydraulic fracturing water use and consumption are a small percentage relative to total water use and consumption for most U.S. counties. However, there are 26 counties where fracturing water use is greater than 10% compared to 2010 total water use, and eight and four counties at greater than 30% and 50%, respectively. We conclude hydraulic fracturing water use currently has the greatest potential for impacts in southern and western Texas due to relatively high fracturing water use, low reuse rates, low fresh water availability, and frequent drought. However, the availability of brackish groundwater in these areas is also high relative to fracturing water use, suggesting an alternative source that could reduce potential impacts. Comparatively, the potential for impacts appears to be lower in other U.S. regions. While our county-scale findings do not preclude the possibility of more localized water quantity effects, this study provides a relative indicator of areas where potential problems might arise. Disclaimer: The views expressed here are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

  13. Chemical quality of ground water in San Joaquin and part of Contra Costa Counties, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1981-01-01

    Chemical water-quality conditions were investigated in San Joaquin and part of Contra Costa Counties by canvassing available wells and sampling water from 324 representative wells. Chemical water types varied, with 73 percent of the wells sampled containing either calcium-magnesium bicarbonate, or calcium-sodium bicarbonate type water. Substantial areas contain ground water exceeding water-quality standards for boron, manganese, and nitrate. Trace elements, with the exception of boron and manganese, were present in negligible amounts. (USGS)

  14. Geology and ground-water resources of Duval County, Texas

    USGS Publications Warehouse

    Sayre, Albert Nelson

    1937-01-01

    Duval County is situated in southern Texas, 100 to 150 miles south of San Antonio and about midway between Corpus Christi, on the Gulf of Mexico, and Laredo, on the Rio Grande. The county lies on the Coastal Plain, which for the most part is low and relatively featureless. Between the Nueces River and the Rio Grande in this part of Texas the plain is interrupted by an erosion remnant, the Reynosa Plateau, which reaches a maximum altitude of nearly 1,000 feet above sea level and stands well above the areas to the east and west. The Reynosa Plateau includes most of Duval County and parts of Webb, Zapata, Starr, Jim Hogg, Jim Wells, McMullen, and Live Oak Counties. In Duval County the plateau is bounded on the west by the westward-facing Bordas escarpment, 75 to 150 feet high, which crosses the county with a southwesterly trend from about the middle of the north boundary to about the middle of the west boundary. On the east the plateau is bounded by a low seaward-facing escarpment, which passes through San Diego, trending a little west of south.

  15. Feasibility of water-supply development from the unconfined aquifer in Charlotte County, Florida

    USGS Publications Warehouse

    Wolansky, R.M.

    1978-01-01

    The unconfined aquifer in Charlotte County contains some potable water over most of the county, and represents a potential source of water supply to help satisfy the increasing demands of development. An estimated 150 billion cubic feet of relatively good quality water is stored in the unconfined aquifer. Transmissivity of this aquifer averages about 500 square feet per day, ranging from 100 to 7000 feet per day. Although recharge is primarily from rainfall, a significant amount occurs by upward movement of water from underlying confined aquifers through abandoned and flowing irrigation wells. Average annual recharge is estimated at 12 inches per year, and ranges from less than one inch to 16 inches per year. Chemical quality of the water is variable. However, chloride concentrations of water from the unconfined aquifer generally are less than 50 milligrams per liter. The area of greatest potential yield is located east of Telegraph Swamp in eastern Charlotte County. (Woodard-USGS)

  16. 76 FR 23708 - Safety Zone; Pierce County Department of Emergency Management Regional Water Exercise, East...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... Management Regional Water Exercise, East Passage, Tacoma, WA AGENCY: Coast Guard, DHS. ACTION: Temporary..., Washington for a Regional Water Rescue Exercise near Browns Point. A safety zone is necessary to ensure the... participants in the Regional Water Rescue Exercise. Basis and Purpose The Pierce County, Washington,...

  17. Construction, lithologic, and water-level data for wells near the Dickson County landfill, Dickson County, Tennessee, 1995

    USGS Publications Warehouse

    Ladd, D.E.

    1996-01-01

    Organic compounds were detected in water samples collected from Sullivan Spring during several sampling events in 1994. Prior to this, the spring was the drinking-water source for two families in the Dickson, Tennessee area. An investigation was conducted by the U.S. Geological Survey, in cooperation with Dickson County Solid Waste Management, to determine if Sullivan Spring is hydraulically downgradient from the Dickson County landfill. This report describes the data collected during the investigation. Five monitoring wells were installed near the northwestern corner of the landfill at points between the landfill and Sullivan Spring. Water-level measurements were made on June 1 and 2, 1995, at these wells and 13 other wells near the landfill to determine ground- water altitudes in the area. Water-level altitudes in the five new monitoring wells and three other landfill-monitoring wells were higher (750.04 to 800.17 feet) than the altitude of Sullivan Spring (approximately 725 feet). In general, wells in topographically high areas had higher water-level altitudes than Sullivan Spring and wells near streams in lowland areas.

  18. Ground-water movement and water quality in Lake Point, Tooele County, Utah, 1999-2003

    USGS Publications Warehouse

    Kenney, T.A.; Wright, S.J.; Stolp, B.J.

    2006-01-01

    Water-level and water-quality data in Lake Point, Tooele County, Utah, were collected during August 1999 through August 2003. Water levels in Lake Point generally declined about 1 to 2 feet from July 2001 to July 2003, likely because of less-than-average precipitation. Ground water generally flows in two directions from the Oquirrh Mountains. One component flows north toward the regional topographic low, Great Salt Lake. The other component generally flows southwest toward a substantial spring complex, Factory/Dunne's Pond. This southwest component flows through a coarse gravel deposit believed to be a shoreline feature of historic Lake Bonneville. The dominant water-quality trend in Lake Point is an increase in dissolved-solids concentration with proximity to Great Salt Lake. The water type changes from calcium-bicarbonate adjacent to the Oquirrh Mountains to sodium-chloride with proximity to Great Salt Lake. Evaluation of chloride-bromide weight ratios indicates a mixture of fresher recharge waters with a brine similar to what currently exists in Great Salt Lake.

  19. Description of water-resource-related data compiled for Harvey County, south-central Kansas

    USGS Publications Warehouse

    Hansen, C.V.

    1993-01-01

    Site, construction, geologic, water-level, water- quality, water-withdrawal, and well-survey data for sites in Harvey County were compiled in cooper- ation with the Harvey County Health Department as part of the Kansas Department of Health and Environment's Local Environmental Protection Program (LEPP). These data were entered into a relational data-base management system (RDBMS) to facilitate the analysis required to meet the LEPP goals of developing plans for nonpoint-source management and for public-water-supply protection. The data in the RDBMS are organized into digital data sets. The data sets contain the water- resource-related data compiled by the U.S. Geological Survey for 668 wells; by the Kansas Department of Health and Environment for 1,636 wells, 6 public-water-supply systems, 6 streams, and 2 surface-water impoundments; by the Kansas State Board of Agriculture for 423 wells and 26 streams or impoundments; by well-drilling con- tractors and the Kansas Geological Survey for 126 wells; and by Harvey County for 89 wells. In addition, data on 761 wells and 133 sites without wells resulting from a survey of rural landowners and residents by Harvey County as a part of the LEPP are contained in another data set. The data in these 7 data sets are available from the Harvey County Health Department in Newton, Kansas. (USGS)

  20. Water quality of streams in Johnson County, Kansas, 2002-07

    USGS Publications Warehouse

    Rasmussen, T.J.

    2009-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/. ?? 2009 ASCE.

  1. Ground-water levels in Huron County, Michigan, March 1993 through December 1994

    USGS Publications Warehouse

    Sweat, M.J.

    1995-01-01

    In 1990, the U.S. Geological Survey completed a study of the hydrogeology of Huron County, Michigan. In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The program included the operation of continuous water-level recorders installed on four wells, in Bingham, Fairhaven, Grant and Lake townships (figure 1). County personnel make quarterly water-level measurements on 22 other wells (figure 1). Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made. Two of the wells with recorders are completed in the Marshall aquifer (H5r and H25Ar), one is completed in the glacio-fluvial aquifer (H2r), and one is completed in the Saginaw aquifer (H9r). Hydrographs are presented for each of the four wells with water level recorders (figures 3, 4, 6, and 8). Hydrographs of quarterly water-level measurements and range of water levels during the period October, 1988 to January, 1990 (the original project period) are shown in figures 5, 7, 9, and 10 and quarterly water levels are presented in tables 1 through 4. Figure 2 shows the monthly-mean water-level elevation of Lake Huron, as measured at Harbor Beach and Essexville, and monthly-mean precipitation as recorded at Bad Axe, for the period October, 1988 through December, 1994. In general, Lake Huron water-level elevation were at or near record lows in late 1989, and near record highs in late 1993. Precipitation throughout the period was generally within the normal range.

  2. Records of wells, drillers' logs, water-level measurements, and chemical analyses of ground water in Brazoria, Fort Bend, and Waller counties, Texas, 1985-89

    USGS Publications Warehouse

    Locke, Glenn L.

    1991-01-01

    Data for water wells and ground water in Brazoria, Fort Bend, and Waller Counties were collected during 1985-89 by the U.S. Geological Survey. This report presents a compilation of records for 32 wells in Brazoria County, 19 wells in Fort Bend County, and 16 wells in Waller County. Drillers' logs for 65 wells, water levels for 85 wells, chemical analyses of water for 9 wells, and water levels and chemical analyses of water from previously inventoried wells also are presented in this report.

  3. Records of wells, drillers' logs, water-level measurements, and chemical analyses of ground water in Chambers, Liberty, and Montgomery counties, Texas, 1985-89

    USGS Publications Warehouse

    Locke, Glenn L.

    1991-01-01

    Data for water wells and ground water in Chambers, Liberty, and Montgomery Counties were collected during 1985-89 by the U.S. Geological Survey. This report presents a compilation of records for 4 wells in Chambers County, 8 wells in Liberty County, and 64 wells in Montgomery County. Drillers' logs of 60 wells, water levels for 84 wells, chemical analyses of water for 11 wells, and water levels and chemical analyses of water from previously inventoried wells also are presented in this report.

  4. Chemical characteristics of water in the surficial aquifer system, Dade County, Florida

    USGS Publications Warehouse

    Sonntag, W.H.

    1987-01-01

    Geohydrologic test drilling was conducted throughout Dade County to describe the chemical characteristics of water from geohydrologic units in the surficial aquifer system. Water quality analysis of samples collected from the test wells completed in central Dade County indicates that the Biscayne aquifer (unit A), the upper clastic unit of the Tamiami Formation (unit B), and parts of a limestone, sandstone, and sand unit of the Tamiami Formation (unit C) have been effectively flushed of residual seawater, and contain primarily calcium bicarbonate groundwater. The lower parts of unit C and the lower clastic unit of the Tamiami Formation (unit D) primarily contain calcium-sodium bicarbonate or sodium bicarbonate type water. An analysis of variance test indicates that water in units A and B is not significantly (0.05 probability level) different in composition. Mean concentrations of dissolved solids, sodium, and chloride are significantly different between units A and C, whereas mean concentrations of dissolved solids, calcium, sodium, and chloride are significantly different between units A and D. Groundwater in the surficial aquifer system in northwestern Dade County is more mineralized than groundwater that occurs elsewhere in the county (except in coastal areas affected by saltwater). An analysis of variance test indicates that mean concentrations of dissolved solids, sodium, and chloride at sites in northwestern Dade County, developed in units A and C, are significantly different from the mean concentrations of these constituents at sites throughout the rest of the county. Water in this part of the surficial aquifer system is similar to highly mineralized water found in western Broward County. However, in northwestern Dade County, the groundwater has been diluted to a greater extent by less mineralized recharge water. Overall, groundwater in the four major geohydrologic units of the surficial aquifer system of Dade County is suitable for most uses. Maximum

  5. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  6. Water withdrawals in the Black Warrior-Tombigbee Basin and Alcorn County, Mississippi, 1985-87

    USGS Publications Warehouse

    Barber, N.L.

    1991-01-01

    Public-supply and industrial water withdrawals were inventoried for the Mississippi part of the Black Warrior-Tombigbee Basin and for Alcorn County, Mississippi. The study area, located in the northeastern part of the State, is largely forested or agricultural land, with some industries near the larger towns. A water-resource capacity analysis was done to determine a risk rating for each inventoried facility, evaluating the likelihood of the facility exceeding the capacity of its current source of water at the existing level of use. Published reports and potentiometric maps were used in this analysis to determine the source capacity and the effects withdrawals have had on each water source. The public-supply and industrial water withdrawals in the basin are from ground water, with the exception of the city of Columbus. About 97 percent of the total withdrawal of 80 million gallons per day is from ground water. Water-supply systems in three areas were determined to have a high risk of exceeding the water-resource capacity: the Tupelo-Lee County area, the West Point (Clay County) area, and the Starkville (Oktibbeha County) area.

  7. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    USGS Publications Warehouse

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    Goshen County, which has an area of 2,186 square miles, lies in southeastern Wyoming. The purpose of this study was to evaluate the ground-water resources of the county by determining the character, thickness, and extent of the waterbearing materials; the source, occurrence, movement, quantity, and quality of the ground water; and the possibility of developing additional ground water. The rocks exposed in the area are sedimentary and range in age from Precambrian to Recent. A map that shows the areas of outcrop and a generalized section that summarizes the age, thickness, physical character, and water supply of these formations are included in the report. Owing to the great depths at which they lie beneath most of the county, the formations older than the Lance formation of Late Cretaceous age are not discussed in detail. The Lance formation, of Late Cretaceous age, which consists mainly of beds of fine-grained sandstone and shale, has a maximum thickness of about 1,400 feet. It yields water, which usually is under artesian pressure, to a large number of domestic and stock wells in the south-central part of the county. Tertiary rocks in the area include the Chadron and Brule formations of Oligocene age, the Arikaree formation of Miocene age, and channel deposits of Pliocene age. The Chadron formation is made up of two distinct units: a lower unit of highly variegated fluviatile deposits that has been found only in the report area; and an upper unit that is typical of the formation as it occurs in adjacent areas. The lower unit, which ranges in thickness from a knife edge to about 95 feet, is not known to yield water to wells, but its coarse-grained channel deposits probably would yield small quantities of water to wells. The upper unit, which ranges in thickness from a knife edge to about 150 feet, yields sufficient quantities of water for domestic and stock uses from channel deposits of sandstone under artesian pressure. The Brule formation, which is mainly a

  8. Ground-water resources of Williams County, Ohio, 1984-86

    USGS Publications Warehouse

    Coen, A. W.

    1989-01-01

    This report presents the results of a county-wide ground-water appraisal of Williams County, a mostly agricultural county of more than 36,000 people that is undergoing gradual commercial and industrial development. Most of the County's ground water is in the 80-to 320-foot thick cap of unconsolidated glacial sediments. The underlying Mississippian and older bedrock units are mostly Wisconsin till containing discontinuous lenses of sand and gravel. Two end moraines that cross the County form low northeast-southwest-trending ridges. Ground moraine covers the rest of the County except for fine sand and silt lacustrine sediments in the southeastern corner.The water-bearing sand and gravel bodies appear to be thickest and most widespread in the end moraines and thinnest and more localized in the lacustrine sediments. A generally productive (up to 1,000 gallons per minute) zone of sand and gravel and broken, weathered rock is present in places at the contact of the unconsolidated sediments and the shale. A study of well logs and aquifer tests shows that well yields of 500 gallons per minute are possible over all but the southeastern corner of the County. Transmissivities range from 2,800 to more than 64,300 feet squared per day. Storage coefficients that range from 0.0001 to 0.00038 indicate confined to semiconfined conditions. A gently southeast-sloping water-level surface was identified by measuring water levels in an 87-well network. A potentiometric-surface map constructed from these water-level measurements shows a fairly consistent gradient of 10 to 30 feet per mile across the County, which indicates that the unconsolidated sediments, on a large scale, act as one aquifer. Ground water flows toward the southeast. The recharge area for the ground-water system includes Williams County, and the area just to the northwest of Williams County, whereas the discharge areas are mainly the streams within and to the southeast of the County. Water quality in the unconsolidated

  9. Geochemical characterization of seaplane lagoon sediments, Alameda Naval Air Station

    SciTech Connect

    Bono, A; Carroll, S; Esser, B; Luther, G W; O'Day, P; Randall, S

    1999-08-16

    Our objective in the characterization of sediments from Seaplane Lagoon at the Alameda Naval Air Station (NAS) was to determine the geochemical interactions that control the partitioning of cadmium, chromium, cobalt, copper, lead, mercury, nickel, and zinc between the sediments and the porewaters. Our approach was to collect several cores at the east outfall location of the Seaplane Lagoon. We determined the porewater chemistry by (1) making in situ micro-electrode measurements, (2) extracting porewaters, and (3) modeling geochemical reactions. We determined the sediment chemistry by measuring (1) elemental abundance, (2) mineralogy, and (3) trace-element speciation. This information should help the US Navy determine the long-term hazard of the sediments if they are left in place and the short-term hazard if they are dredged. We did not fully examine the geochemistry of sediments from the West Beach Landfill Wetlands site, because these sediments were distinct from the Seaplane Lagoon sediments. Our initial motivation for studying the Landfill Wetlands site was to determine the trace-element geochemistry in Seaplane Lagoon sediments that had been dredged and then disposed in the Landfill Wetlands. Unfortunately, the location of these dredged sediments is unknown. The cores we sampled were not from the Seaplane Lagoon.

  10. Ground water in the Blanchard area, McClain County, Oklahoma

    USGS Publications Warehouse

    Davis, Leon Virgil; Schoff, Stuart L.

    1948-01-01

    A letter from Lloyd L. Bowser, City Clerk, dated January 8, 1948, in behalf of the town council and Mayor Walter Casey, indicates that a serious shortage of water is faced by the town of Blanchard, McClain County, Oklahoma. The town is near the eastern boundary of Grady County, where an investigation of the ground-water resources is being made by the Oklahoma Geological Survey in cooperation with the U.S. Geological Survey as part of a State-wide investigation. Information obtained thus far may aid the town by showing where additional ground water for municipal supply may be sought.

  11. Computer program and data listing for two-dimensional ground-water model for Laramie County, Wyoming

    USGS Publications Warehouse

    Crist, M.A.

    1983-01-01

    This is a supplement to the report, ' Effect of pumpage on ground-water levels as modeled in Laramie County, Wyoming, ' published as U.S. Geological Survey Water-Resources Investigations Open-File Report 80-1104. The computer program and data used to model ground-water conditions in post-Cretaceous rocks in Laramie County are listed. (USGS)

  12. Water-level records for the Big Sioux Aquifer, Minnehaha County, South Dakota

    USGS Publications Warehouse

    Bradford, Wendell L.

    1981-01-01

    This report contains a tabulation of water levels in wells tapping the Big Sioux aquifer in Minnehaha County, S. Dak. Included is a compilation of all water levels in 43 wells measured by the U.S. Geological Survey and State agencies during the period 1957-80. The data are presented in tabular and graphic form. (USGS)

  13. Change in surficial water area, Quivera National Wildlife Refuge, Stafford County, Kansas

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. MSS-7 images acquired in August, October, and December 1972 revealed changes in both the number of water pools and surficial water area of larger pools in Quivera National Wildlife Refuge (Big and Little Salt Marsh), Stafford County, Kansas.

  14. Summary of geology and ground-water conditions in the vicinity of Tappahannock, Essex County, Virginia

    USGS Publications Warehouse

    Sinnott, Allen

    1955-01-01

    This memorandum has been prepared in response to a recent inquiry from the city officials of Tappahannock, Essex County, Va., regarding the availability of ground water in the Tappahannock area.  The memorandum was prepared as part of the ground-water studies of the Geological Survey in cooperation with the Virginia Division of Geology.

  15. EVIDENCE FOR METAL ATTENUATION IN ACID MINE WATER BY SULFATE REDUCTION, PENN MINE, CALAVERAS COUNTY, CALIFORNIA

    EPA Science Inventory

    The Penn Mine in Calaveras County, California, produced Cu from massive sulfide ores from 1861 to 1953. Mine wastes were removed to a landfill during the late 1990s, improving surface-water quality, but deep mine workings were not remediated and contain metalliferous water with p...

  16. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends at 45 sites in 10 Piedmont streams in the Chattahoochee and Etowah river basins. The strongest overall tre...

  17. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends in 20 Piedmont streams in the Chattahoochee and Etowah river basins. We found trends through time at mos...

  18. Hydrogeology and Simulation of Regional Ground-Water-Level Declines in Monroe County, Michigan

    USGS Publications Warehouse

    Reeves, Howard W.; Wright, Kirsten V.; Nicholas, J.R.

    2004-01-01

    Observed ground-water-level declines from 1991 to 2003 in northern Monroe County, Michigan, are consistent with increased ground-water demands in the region. In 1991, the estimated ground-water use in the county was 20 million gallons per day, and 80 percent of this total was from quarry dewatering. In 2001, the estimated ground-water use in the county was 30 million gallons per day, and 75 percent of this total was from quarry dewatering. Prior to approximately 1990, the ground-water demands were met by capturing natural discharge from the area and by inducing leakage through glacial deposits that cover the bedrock aquifer. Increased ground-water demand after 1990 led to declines in ground-water level as the system moves toward a new steady-state. Much of the available natural discharge from the bedrock aquifer had been captured by the 1991 conditions, and the response to additional withdrawals resulted in the observed widespread decline in water levels. The causes of the observed declines were explored through the use of a regional ground-water-flow model. The model area includes portions of Lenawee, Monroe, Washtenaw, and Wayne Counties in Michigan, and portions of Fulton, Henry, and Lucas Counties in Ohio. Factors, including lowered water-table elevations because of below average precipitation during the time period (1991 - 2001) and reduction in water supply to the bedrock aquifer because of land-use changes, were found to affect the regional system, but these factors did not explain the regional decline. Potential ground-water capture for the bedrock aquifer in Monroe County is limited by the low hydraulic conductivity of the overlying glacial deposits and shales and the presence of dense saline water within the bedrock as it dips into the Michigan Basin to the west and north of the county. Hydrogeologic features of the bedrock and the overlying glacial deposits were included in the model design. An important step of characterizing the bedrock aquifer was the

  19. Water levels in observation wells in Santa Barbara County, California, in 1956

    USGS Publications Warehouse

    Muir, K.S.; Merritt, P.M.

    1957-01-01

    Investigation of the ground-water resources of Santa Barbara County was continued during 1956 by the Geological Survey in cooperation with the Santa Barbara County Water Agency. Monthly water-level recorders were operated. Earlier measurements, covering the period 1941 through 1953, have been published in Geological Survey water-Supply Papers; those for 1954 and 1955 are in press and have been released locally in duplicated form. Water-Supply Paper 1068 contains tabulated descriptions of 2,246 wells in existence in 1942 in the various ground-water basins of the county. The same publication contains also many water-level measurements made prior to 1942 by the city of Santa Barbara, Santa Maria Valley Water Conservation District, San Joaquin Power Division of the Pacific Gas and Electric Co., Union Sugar Co., Union Oil Co., and other organizations and individuals. Comprehensive reports on the geology and ground-water resources of the Santa Ynez River basin (Upson and Thomasson, 1951), the south-coast basins (Upson, 1951), the Santa Maria Valley area (Worts, 1951), and the Cuyama Valley (Upson and Worts, 1951) have been published as Water-Supply Papers 1107, 1108, 1000, and 1110-B respectively. A report on stream runoff and ground-water storage capacity of the Santa Ynez River valley (Troxell and Wilson, 1952) was released to the open file in October 1952. A report appraising the ground-water resources of the Santa Ynez River valley (Wilson, 1957) was released to the open file in October 1956.

  20. Water supply and use in Deaf Smith, Swisher, and nearby counties in the Texas Panhandle

    SciTech Connect

    Not Available

    1985-02-01

    Irrigation for agriculture is the primary water use in the area of Deaf Smith and Swisher Counties, Texas, and the Ogallala Formation is the main water source. The availability of water in the 12-county area is projected to decrease markedly over the next 5 decades because of the steady depletion of ground water in recoverable storage. Water requirements in the 12-county area are projected to exceed available supplies from about 1990 through 2030. The shortage for the year 2030 is estimated to be approximately 4 million acre-feet under high-growth-rate conditions. Because of its semiarid climate, the area has little available surface water to augment the supply of the Ogallala Formation, which, despite its depletion, could be the principal source of water for the repository. There are, however, other potential sources of water: (1) Lake Mackenzie, on Tule Creek; (2) the Santa Rosa Formation, which underlies much of the Southern High Plains and locally yields moderate amounts of good-quality water; and (3) the Wolfcamp Series, which yields low amounts of highly saline water. The effluents of municipal wastewater treatment plants and municipal water systems may also be useful as supplements to the repository's primary water supply.

  1. Ground-Water Levels in Huron County, Michigan, January 1996 through December 1996

    USGS Publications Warehouse

    Sweat, M.J.

    1997-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into an agreement to continue collecting water levels at selected wells throughout Huron County. As part of the agreement, the USGS has provided training and instrumentation for County personnel to measure, on a quarterly basis, the depth to water below the land surface in selected wells. The agreement includes the operation of continuous water-level recorders installed on four wells in Bingham, Fairhaven, Grant and Lake Townships (fig. 1). County personnel make quarterly water-level measurements of 22 other wells. Once each year, County personnel are accompanied by USGS personnel who provide a quality assurance/quality control check of all measurements being made. Precipitation and the altitude of Lake Huron are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean monthly water-level altitude of Lake Huron, averaged from measurements made by U.S. Army Corps of Engineers at two sites, and mean monthly precipitation as recorded in Huron County, for the period October 1988 through December 1996. In general, Lake Huron water levels in 1996 were about the same as they were from 1992-94 (NOAA, 1988-96). Precipitation was generally within the normal range, but was lower than 1993 or 1994. Rainfall during May, June, and July was, cumulatively, about 8.5 inches less in 1995 than in 1994. Hydrographs are presented for each of four wells with water-level recorders. Quarterly water-level measurements and range of water levels during 1996 for the other 22 wells are shown graphically and tabulated. In general, water levels in the glaciofluvial aquifer reflect seasonal variations, with maximum depths to water occurring in late summer and early fall and minimum depths to water occurring in late winter and early

  2. Hydrogeology and ground-water use and quality, Brown County, Wisconsin

    USGS Publications Warehouse

    Krohelski, J.T.; Brown, B.A.

    1986-01-01

    A three-dimensional digital model was used to simulate flow in the ground-water system. Model results indicate that sources of ground water pumped from wells tapping the St. Peter and Elk Mound aquifers in Brown County, 1979, include 4.8 million gallons per day of underflow, most of which enters the county across the west border; 1.9 million gallons per day of flow from vertical leakage within the county; and 1.5 million gallons per day from storage. The model is most sensitive to the horizontal hydraulic conductivity of the upper aquifer. Vertical hydraulic conductivity of the confining units and recharge rates to the water-table aquifer are the least well-defined model parameters.

  3. Occurrence of ground water and potential for seawater intrusion, Island County, Washington

    USGS Publications Warehouse

    Jones, M.A.

    1985-01-01

    The data from a study of groundwater availability and quality in Island County, Washington, are presented. Increased groundwater withdrawals associated with the population increase in Island County have caused concern about groundwater availability and potential seawater intrusion. The most widely used aquifer lies near sea level. Locally, available data indicate that one or more water-bearing zones lie above the sea-level aquifer. Pumpage in 1979 was about 1.67 billion gallons, about 90% of which was pumped from the sea-level aquifer. Most large producing wells in the county have pumping water levels near or below sea level, so that if pumping continues for a long enough time, seawater intrusion would result. Chloride concentrations in water samples taken in July 1978, April 1980 and August 1980 indicate that seawater intrusion is occurring in northeastern and southern Camano Island and in central Whidbey island. (USGS)

  4. Geology and ground-water resources of Nobles County, and part of Jackson County, Minnesota

    USGS Publications Warehouse

    Norvitch, Ralph F.

    1964-01-01

    The quality of water in the Precambrian crystalline rocks, the Cretaceous strata, and the buried Pleistocene aquifers is poor. Chemical analyses of 22 water samples showed that dissolved solids ranged from 1,100 ppm (parts per million) to 3,050 ppm. Water from the surficial outwash deposits is good by comparison; dissolved solids in water from these aquifers ranged from 425 to 870 ppm.

  5. Ground-water quality in northeastern St. Joseph County, Indiana

    USGS Publications Warehouse

    Fenelon, J.M.; Bayless, E. Randall; Watson, Lee R.

    1995-01-01

    No industrial organic compounds were detected in the water samples. Four pesticides - alachlor, carbofuran, metolachlor, and triazines - were detected in water samples; the highest pesticide concentration in a water sample was 1.0 microgram per liter of alachlor.

  6. Ground-water geology of Bexar County, Texas

    USGS Publications Warehouse

    Arnow, Ted

    1963-01-01

    The water from the Edwards is almost uniformly a calcium bicarbonate water of good quality, although hard. In the southern part of the San Antonio area the water is charged with hydrogen sulfide; farther downdip it becomes highly mineralized.

  7. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  8. Summary of reported agriculture and irrigation water use in Phillips County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Phillips County, Arkansas. The number of withdrawal registrations for Phillips County was 1,109 (1,103 groundwater and 6 surface water). Water withdrawals reported during the registration process total 0.15 Mgal/d (0.15 Mgal/d groundwater and none from surface water) for agriculture and 123.75 Mgal/d (122.66 Mgal/d groundwater and 1.09 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 96,502 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, grapes, nuts, fruit trees, and sod, as well as for the agricultural use of animal aquaculture.

  9. Summary of reported agriculture and irrigation water use in Lee County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lee County, Arkansas. The number of withdrawal registrations for Lee County was 1,582 (1,533 groundwater and 49 surface water). Water withdrawals reported during the registration process total 3.77 Mgal/d (3.39 Mgal/d groundwater and 0.38 Mgal/d surface water) for agriculture and 169.25 Mgal/d (166.79 Mgal/d groundwater and 2.46 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 97,029 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, and nuts as well as for the agricultural uses of animal aquaculture and ducks.

  10. Summary of reported agriculture and irrigation water use in Crittendon County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1991-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Crittenden County, Arkansas. The number of withdrawal registrations for Crittenden County was 868 (824 groundwater and 44 surface water). Water withdrawals reported during the registration process total 0.67 Mgal/d (0.67 Mgal/d groundwater and none from surface water) for agriculture and 60.29 Mgal/d (59.15 Mgal/d groundwater and 1.14 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water applied to 51,937 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and hay as well as for the agricultural uses of animal aquaculture.

  11. Summary of reported agriculture and irrigation water use in Woodruff County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Woodruff County, Arkansas. The number of withdrawal registrations for Woodruff County was 1,930 (1,755 groundwater and 175 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.91 Mgal/d groundwater and none from surface water) for agriculture and 284.20 Mgal/d (258.13 Mgal/d groundwater and 26.07 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 138,452 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and vegetables, as well as for the agricultural uses of animal aquaculture and ducks.

  12. Summary of reported agriculture and irrigation water use in Drew County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Drew County, Arkansas. The number of withdrawal registrations for Drew County was 505 (342 groundwater and 163 surface water). Water withdrawals reported during the registration process total 0.32 Mgal/d (0.32 Mgal/d groundwater and none from surface water) for agriculture and 43.04 Mgal/d (37.43 Mgal/d groundwater and 5.61 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 23,775 acres of land to irrigate wheat, rice, corn, soybeans, milo, cash grains, cotton, and hay as well as for the agricultural use of animal aquaculture and catfish.

  13. Summary of reported agriculture and irrigation water use in Lincoln County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lincoln County, Arkansas. The number of withdrawal registrations for Lincoln County was 1,167 (868 groundwater and 299 surface water). Water with- drawals reported during the registration process total 3.88 Mgal/d (3.88 Mgal/d groundwater and none from surface water) for agriculture and 114.31 Mgal/d (98.59 Mgal/d groundwater and 15.72 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 81,477 acres of land to irrigate rice, corn, soybeans, milo, cotton and vegetables as well as for the agricultural use of animal aquaculture.

  14. Summary of reported agriculture and irrigation water use in St. Francis County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in St. Francis County, Arkansas. The number of withdrawal registrations for St. Francis County was 1,286 (1,194 groundwater and 92 surface water). Water withdrawals reported during the registration process total 0.14 Mgal/d (0.14 Mgal/d groundwater and none from surface water) for agriculture and 172.48 Mgal/d groundwater and 12.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 100,183 acres of land to irrigate rice, soybeans, milo, cotton, and vegetables as well as for the agricultural uses of animal aquaculture and ducks.

  15. Summary of reported agriculture and irrigation water use in Clay County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Clay County, Arkansas. The number of withdrawal registrations for Clay County was 2,025 (1,965 groundwater and 60 surface water). Water withdrawals reported during the registration process total 2.07 Mgal/d (2.01 Mgal/d groundwater and 0.06 Mgal/d surface water) for agriculture and 164.50 Mgal/d (159.64 Mgal/d groundwater and 4.56 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 94,399 acres of land to irrigate rice, corn, soybeans, milo, cotton, vegetables, and unknown crops as well as for the agricultural uses of animal aquaculture.

  16. Summary of reported agriculture and irrigation water use in Mississippi County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Mississippi County, Arkansas. The number of withdrawal registrations for Mississippi County was 981 (946 groundwater and 35 surface water). Water withdrawals reported during the registration process total 0.06 Mgal/d (0.01 Mgal/d groundwater and 0.05 Mgal/d surface water) for agriculture and 97.82 Mgal/d (94.16 Mgal/d groundwater and 3.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 109,345 acres of land to irrigate rice, corn, soybeans, milo, cotton, hay, vegetables, berries, and sod as well as for the agricultural use of animal aquaculture.

  17. Summary of reported agriculture and irrigation water use in Craighead County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Craighead County, Arkansas. The number of withdrawal registrations for Craighead County was 2,384 (2,187 groundwater and 197 surface water). Water withdrawals reported during the registration process total 1.45 Mgal/d (0.50 Mgal/d groundwater and 0.95 Mgal/d surface water) for agriculture and 287.20 Mgal/d (261.52 Mgal/d groundwater and 25.68 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 168,003 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cotton, hay, vegetables, nuts, and sod as well as for the agricultural uses of animal aquaculture and sports clubs.

  18. Summary of reported agriculture and irrigation water use in Lonoke County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lonoke County, Arkansas. The number of withdrawal registrations for Lonoke County was 3,313 (2,587 groundwater and 726 surface water). Water with drawals reported during the registration process total 61.30 Mgal/d (59.50 Mgal/d groundwater and 1.80 Mgal/d surface water) for agriculture and 300.45 Mgal/d (241.86 Mgal/d groundwater and 58.59 Mgal/d surface water) for irrigation. The registra- tion reports for 1991 indicate that this water was applied to 238,457 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, and sod as well as for the agricultural uses of animal aquaculture, hatcheries, and ducks.

  19. Summary of reported agriculture and irrigation water use in west-central Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following west-central Arkansas counties: Conway, Crawford, Faulkner, Franklin, Johnson, Logan, Perry, Pope, Scott, Sebastian, and Yell. The number of withdrawal registrations for west-central Arkansas counties was 307 (90 groundwater and 217 surface water). Water withdrawals reported during the registration process total 1.00 Mgal/d (0.15 Mgal/d groundwater and 0.85 Mgal/d surface water) for agriculture and 32.07 Mgal/d (5.67 Mgal/d groundwater and 26.40 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 22,856 acres of land to irrigate rice, corn, sorghum, soybeans, wheat, cash grains, hay, milo, vegetables, sod, berries, grapes, and fruit trees as well as for the agricultural uses of catfish and ducks.

  20. Summary of reported agriculture and irrigation water use in White County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in White County, Arkansas. The number of withdrawal registrations for White County was 1,365 (1,146 groundwater and 219 surface water). Water withdrawals reported during the registration process total 1.37 Mgal/d (0.95 Mgal/d groundwater and 0.42 Mgal/d surface water) for agriculture and 69.91 Mgal/d (43.78 Mgal/d groundwater and 26.13 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was supplied to 46,315 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, hay, vegetables, berries, grapes, fruit trees, sod, and unknown crop as well as for the agricultural uses of animal aquaculture, minnows, ducks, and sport clubs.

  1. Summary of reported agriculture and irrigation water use in Cross County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Cross County, Arkansas. The number of withdrawal registrations for Cross County was 2,506 (2,314 groundwater and 192 surface water). Water withdrawals reported during the registration process total 2.01 Mgal/d (1.85 Mgal/d groundwater and 0.16 Mgal/d surface water) for agriculture and 404.04 Mgal/d (377.08 Mgal/d groundwater and 26.96 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 218,152 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, hay, and vegetables as well as for the agricultural use of animal aquaculture and ducks.

  2. Summary of reported agriculture and irrigation water use in Pulaski County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Pulaski County, Arkansas. The number of withdrawal registrations for Pulaski County was 291 (170 groundwater and 121 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.71 Mgal/d groundwater and 0.20 Mgal/d surface water) for agriculture and 37.42 Mgal/d (28.53 Mgal/d groundwater and 8.89 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 28,088 acres of land to irrigate wheat, rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and sod, as well as for the agricultural uses of animal aquaculture, timber, and ducks.

  3. Summary of reported agriculture and irrigation water use in southwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following southwestern Arkansas counties: Bradley, Calhoun, Clark, Cleveland, Columbia, Dallas, Garland, Grant, Hempstead, Hot Spring, Howard, Little River, Montgomery, Nevada, Ouachita, Pike, Polk, Saline, Sevier, and Union. The number of withdrawal registrations for southwestern Arkansas counties was 132 (31 groundwater and 101 surface water). Water withdrawals reported during the registration process total 0.84 Mgal/d (none from groundwater and 0.84 Mgal/d surface water) for agriculture and 14.22 Mgal/d (1.64 Mgal/d groundwater and 12.58 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 8,455 acres of land to irrigate rice, corn, sorghum, soybeans, cotton, cash grains, vegetables, sod, berries, fruit trees, timber, shrubs, and nuts as well as for the agricultural use of animal aquaculture.

  4. Summary of reported agriculture and irrigation water use in Prairie County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Prairie County, Arkansas. The number of withdrawal registrations for Prairie County was 2,187 (1,786 groundwater and 401 surface water). Water with- drawals reported during the registration process total 26.93 Mgal/d (26.84 Mgal/d groundwater and 0.09 Mgal/d surface water) for agriculture and 191.08 Mgal/d (138.79 Mgal/d groundwater and 52.29 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 144,956 acres of land to irrigate rice, corn, soybeans, milo, cash grains, unknown crop, cotton hay, berries, and fruit trees as well as for the agricultural uses of animal aquaculture, minnows, timber, and ducks.

  5. Summary of reported agriculture and irrigation water use in northwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following northwestern Arkansas counties: Baxter, Benton, Boone, Carroll, Cleburne, Fulton, Izard, Madison, Marion, Newton, Searcy, Sharp, Stone, Van Buren, and Washington. The number of withdrawal registrations for northwestern Arkansas counties was 106 (16 groundwater and 90 surface water). Water withdrawals reported during the registration process total 41.72 Mgal/d (0.74 Mgal/d groundwater and 40.98 Mgal/d surface water) for agriculture and 3.33 Mgal/d (0.27 Mgal/d groundwater and 3.06 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 3,588 acres of land to irrigate rice, soybeans, cash grains, hay, oats, vegetables, sod, berries, fruit trees, and timber as well as for the agricultural use of animal aquaculture.

  6. Summary of reported agriculture and irrigation water use in Greene County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Greene County, Arkansas. The number of withdrawal registrations for Greene County was 1,567 (1,510 groundwater and 57 surface water). Water withdrawals reported during the registration process total 26.69 Mgal/d (23.98 Mgal/d groundwater and 2.71 Mgal/d surface water) for agriculture and 92.46 Mgal/d (91.03 Mgal/d groundwater and 1.43 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 70,947 acres of land to irrigate rice, corn, soybeans, milo, cotton, fruit trees, and sod as well as for the agricultural use of animal aquaculture.

  7. Summary of reported agriculture and irrigation water use in Jackson County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Jackson County, Arkansas. The number of withdrawal registrations for Jackson County was 2,450 (2,279 groundwater and 171 surface water). Water withdrawals reported during the registration process total 5.24 Mgal/d (4.81 Mgal/d groundwater and 0.43 Mgal/d surface water) for agriculture and 274.90 Mgal/d (263.59 Mgal/d groundwater and 11.31 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 149,737 acres of land to irrigate rice, corn, soybeans, milo, cash grains, cotton, hay, and vegetables as well as for the agricultural use of animal aquaculture, goldfish, and ducks.

  8. Water-supply development and management alternatives for Clinton, Eaton, and Ingham Counties, Michigan

    USGS Publications Warehouse

    Vanlier, Kenneth Eugene; Wood, Warren W.; Brunett, Jilann O.

    1973-01-01

    The Tri-County region, consisting of Clinton, Eaton, and Ingham Counties, is an area of 1,697 square miles in Michigan's Lower Peninsula and has as its hub the Lansing metropolitan area. The land surface ranges in altitude from about 700 to about 1,000 feet. The region receives an average of about 31 inches of precipitation each year. The population is nearing 400,000 and by 1990 will be near 600,000. Average daily water use is slightly more than 30 million gallons today; by 1980 it will be about 50 million gallons, and by 1990 it will probably be about 70 million gallons. The Tri-County region is drained by seven river systems. The median annual 7 -day mean low flows of the principal streams in these systems were measured at the point farthest downstream within the region. These values, in cubic feet per second, are as follows: Grand River, 180; Maple River, 34; Looking Glass River, 28; Red Cedar River, 30; Portage Creek, 15; Battle Creek, 20; and Thornapple River, 24-a total of 331 cubic feet per second or about 220 million gallons per day. The areal variance in 7-day low-flow runoff ranges from 0 to 0.15 cubic foot per second per square mile. The principal source of ground water in the Tri-County region is a complex aquifer system composed of the Saginaw and Grand River Formations and some of the overlying glacial sediments. This aquifer yields between 300 and 700 gallons per minute to individual wells in much of the western half of Ingham County, in the eastern half of Clinton County, in a small area in southeastern Clinton County, and in northeastern Eaton County. In some parts of the region, the glacial sediments are favorable for development of moderate to large supplies of water. Minor aquifers in the region are the Bayport, Michigan, and Marshall Formations. Providing water supplies in the future requires complete and comprehensive water-management programs. Such management programs involve determining which of several alternative water-development systems

  9. Ground-water basic data for Griggs and Steele Counties, North Dakota

    USGS Publications Warehouse

    Downey, Joe S.

    1973-01-01

    The objectives of the hydrologic investigation in Griggs and Steele Counties, N. Dak. (fig. 1) were to: (1) determine the location, extent, and nature of the major aquifers; (2) evaluate the occurrence and movement of ground water, including recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the major aquifers; and (5) determine the chemical quality of the ground water.

  10. Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987

    USGS Publications Warehouse

    Duwelius, R.F.

    1990-01-01

    Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation

  11. Continuous Water-Quality Monitoring of Streams in Johnson County, Kansas, 2002-06

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Water quality in Johnson County, Kansas was characterized on the basis of continuous, in-stream monitoring. The results summarized in this fact sheet may be used to better understand concentration and load variability during changing seasonal and streamflow conditions and to assess water-quality conditions relative to water-quality standards and management goals. The baseline information also will be useful for evaluating future changes in land use and effectiveness of implemented best management practices.

  12. Water-quality data for landfills, Hillsborough County, Florida, January 1974-October 1977

    USGS Publications Warehouse

    Fernandez, Mario; Hallbourg, Robin R.

    1978-01-01

    Periodic water-quality data were collected at four landfills in Hillsborough County from January 1974 through October 1977. Water samples were analyzed for nitrogen and phosphorous species, cations, trace metals, chloride, specific conductance, chemical oxygen demand, biological oxygen demand, and coliforms. Select ground-water samples were analyzed for herbicide and pesticide. Results of chemical and bacteriological analysis form four landfills are presented as basic data. Geologic logs and well descriptions are presented for wells drilled at the landfills after January 1974.

  13. Geology and ground-water resources of Outagamie County, Wisconsin

    USGS Publications Warehouse

    LeRoux, E.F.

    1957-01-01

    The ground water differs greatly in chemical quality from well to well, but it is generally a very hard calcium magnesium bicarbonate water, some of it high in iron. To aid in determining the source of well waters, 22 chemical analyses were plotted on a logarithmic diagram to obtain characteristic patterns for waters from several geologic sources.

  14. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  15. Ground-water flow and water quality in northeastern Union County, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1987-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the Village of Richwood, Ohio, to determine directions of ground-water flow, ground-water-level fluctuations, and water quality in the northeastern part of Union County. The topography of the study area generally is featureless, and the land surfaces slopes gently eastward from 985 to 925 feet above sea level. Glacial deposits up to 48 feet thick cover the carbonate-bedrock aquifer. Three municipal wells and an adjoining abandoned landfill are located in an area previously excavated for clay deposits. An agricultural supply company is adjacent to the well field. Ground water flows from west to east with local variation to the northeast and southeast because of the influence of Fulton Creek. Richwood Lake occupies an abandoned sand-and-gravel quarry. Water-level fluctuations indicate that the and gravel deposits beneath the lake may be hydraulically connected to the bedrock aquifer. Water-quality data collected from 14 wells and Richwood Lake indicate that a hard to very hard calcium bicarbonate type water is characteristic of the study area. Dissolved solids ranged from 200 to 720 mg/L (Milligrams per liter) throughout the study area. Potassium ranged from 1.3 to 15 mg/L, with a median concentration of 2.0 mg/L. Concentration of 10 and 15 mg/L at one municipal well were five to eight times greater than the median concentration. Total organic carbon, ammonia, and organic nitrogen were present at every site. Concentrations of ammonia above 1 mg/L as nitrogen were found in water from two municipal wells and one domestic well. Total organic carbon was detected at a municipal well, a landfill well, and a domestic well at concentrations above 5 mg/L. Ground-water quality is similar throughout the study area except in the vicinity of the municipal well field, where water from one well had elevated concentrations of ammonia, dissolved manganese, dissolved chloride, dissolved, sodium, and total organic

  16. Ground-water/surface-water relations along Honey Creek, Washtenaw County, Michigan, 2003

    USGS Publications Warehouse

    Healy, Denis F.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Ann Arbor, Mich., investigated the ground-water/ surface-water relations along the lower reaches of Honey Creek, Washtenaw County, Mich., and an unnamed tributary to Honey Creek (the discharge tributary) from June through October 2003. Streamflow in these reaches was artificially high during a naturally low-flow period due to an anthropogenic discharge. Ground-water/surface-water relations were examined by seepage runs (series of streamflow measurements for the computation of streams gains or losses) and measurements of the difference in head between the stream surface and shallow aquifer. Specific conductance and water-temperature measurements were used as ancillary data to help identify gaining and losing reaches. Three seepage runs and four runs in which hydraulic-head differences between the stream and shallow aquifer were measured (piezometer runs) were made during periods of base flow. Streamflow measurements were made at 18 sites for the seepage runs. Instream piezometers were installed at 16 sites and bank piezometers were installed at 2 sites. Two deeper instream piezometers were installed at site 13 on September 4, 2003 to collect additional data on the ground-water/surface-water relations at that site. The seepage runs indicate that the main stem of Honey Creek and the discharge tributary in the study area are overall gaining reaches. The seepage runs also indicate that smaller reaches of Honey Creek and the discharge tributary may be losing reaches and that this relation may change over time with changing hydraulic conditions. The piezometer-run measurements support the seepage-run results on the main stem, whereas piezometer-run measurements both support and conflict with seepage-run measurements on the discharge tributary. Seepage runs give an average for the reach, whereas piezometer head-difference measurements are for a specific area around the piezometer. Data that may appear to be

  17. Ground-water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1990-1993

    USGS Publications Warehouse

    Kues, G.E.; Garcia, B.M.

    1995-01-01

    Ground-water-quality and ground-water-level data were collected in four unincorporated areas of Bernalillo County during 1990-93. Twenty wells in the east mountain area of Bernalillo County were sampled approximately monthly between January 1990 and June 1993. The water samples were analyzed for concentrations of chloride and selected nutrient species; many of the samples also were analyzed for concentrations of total organic carbon and dissolved boron and iron. Eleven wells northeast of the city of Albuquerque, 20 wells in the Rio Grande Valley immediately north of Albuquerque, and 30 wells in the Rio Grande Valley immediately south of Albuquerque were sampled once each between December 1992 and September 1993; all water samples were analyzed for chloride and selected nutrient species, and selected samples from wells in the north and south valley areas were also analyzed for major dissolved constituents, iron, manganese, and methylene blue active substances. Samples from 10 of the wells in the north and south valley areas were analyzed for 47 selected pesticides. Field measurements of specific conductance, pH, temperature, and alkalinity were made on most samples at the time of sample collection. Water levels also were measured at the time of sample collection when possible. Results of the monthly water-quality and water-level monitoring in the east mountain area of Bernalillo County are presented in graphical form. Water-quality and water-level data collected from the other areas are presented in tabular form.

  18. Water resources of the Lake Traverse Reservation, South and North Dakota, and Roberts County, South Dakota

    USGS Publications Warehouse

    Thompson, Ryan F.

    2001-01-01

    In 1994, the U.S. Geological Survey, in cooperation with the Sisseton-Wahpeton Sioux Tribe; Roberts County; and the South Dakota Department of Environment and Natural Resources, Geological Survey Program, began a 6-year investigation to describe and quantify the water resources of the area within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. Roberts County is located in extreme northeastern South Dakota, and the 1867 boundary of the Lake Traverse Reservation encompasses much of Roberts County and parts of Marshall, Day, Codington, and Grant Counties in South Dakota and parts of Richland and Sargent Counties in southeast North Dakota. This report includes descriptions of the quantity, quality, and availability of surface and ground water, the extent of the major glacial and bedrock aquifers and named outwash groups, and surface- and ground-water uses within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County. The surface-water resources within the 1867 boundary of the Lake Traverse Reservation and adjacent parts of Roberts County include rivers, streams, lakes, and wetlands. The Wild Rice and Bois de Sioux Rivers are tributaries of the Red River within the Souris-Red-Rainy River Basin; the Little Minnesota, Jorgenson, and North Fork Whetstone Rivers are tributaries of the Minnesota River within the Upper Mississippi River Basin, and the James and Big Sioux Rivers are tributaries within the Missouri River Basin. Several of the larger lakes within the study area have been developed for recreation, while many of the smaller lakes and wetlands are used for livestock watering or as wildlife production areas. Statistical summaries are presented for the water-quality data of six selected streams within the study area, and the dominant chemical species are listed for 17 selected lakes within the study area. The glacial history of the study area has led to a rather complex system of glacial

  19. Geology and ground water resources of Wells County, North Dakota

    USGS Publications Warehouse

    Binemie, John P.; Falgle, George A.; Bred, Ronald J.; Reid, John R.; Buturla, Frank

    1970-01-01

    Wells County is in east-central North Dakota on the eastern flank of the Williston Basin. It is underlain by 4000 to 6000 feet of Paleozoic and Mesozoic rocks that dip gently to the west. The uppermost Cretaceous rocks, the Hell Creek, Fox Hills and Pierre Formations, lie directly beneath the glacial drift; isolated exposures of the Fox Hills and Pierre rocks occur in the Sheyenne River valley. Glacial drift covers the entire area averaging about 100 feet thick. In certain buried valleys it is more than 400 feet thick.

  20. Quality-of-water data, Palm Beach County, Florida, 1970-1975

    USGS Publications Warehouse

    Miller, Wesley L.; Lietz, Arthur C.

    1976-01-01

    One of the most pressing problems of Palm Beach County, Florida, is the present and potential contamination of the surface and ground-water resources. The canals which dissect the urban and agricultural areas are convenient receptacles for storm-water runoff, sewage effluent, and agricultural wastes. Contaminants in the canals may enter the shallow aquifer as the canal water infiltrates. The quality of water in the shallow aquifer is further influenced by constituents in infiltrating rainwater, septic tank effluent, and many other sources of contamination. The County Health Department has stated that many of the canals and lakes, including Lake Worth, an estuary, have reached levels of contamination rendering them unfit for recreation (Land and others, 1972). The purpose of this report is to: (1) Compile the basic water-quality data collected during 1970-75 as a part of the monitoring program. (2) Make these data available in a usable form to assist in urban and regional planning of the county 's water resources. The water-quality programs include 36 surface-water stations on canals and lakes and 136 ground-water stations which have been regularly sampled. Both urban and agricultural areas are included in the sampling programs. (Woodard-USGS)

  1. Transmissivity and water quality of water-producing zones in the intermediate aquifer system, Sarasota County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Bowman, Geronia

    1998-01-01

    The intermediate aquifer system is an important water source in Sarasota County, Florida, because the quality of water in it is usually better than that in the underlying Upper Floridan aquifer. The intermediate aquifer system consists of a group of up to three water-producing zones separated by less-permeable units that restrict the vertical movement of ground water between zones. The diverse lithology, that makes up the intermediate aquifer system, reflects the variety of depositional environments that occurred during the late Oligocene and Miocene epochs. Slight changes in the depositional environment resulted in aquifer heterogeneity, creating both localized connection between water-producing zones and abrupt culmination of water-producing zones that are not well documented. Aquifer heterogeneity results in vertical and areal variability in hydraulic and water-quality properties. The uppermost water-producing zone is designated producing zone 1 but is not extensively used because of its limited production capability and limited areal extent. The second water-producing zone is designated producing zone 2, and most of the domestic- and irrigation-supply wells in the area are open to this zone. Additionally, producing zone 2 is utilized for public supply in southern coastal areas of Sarasota County. Producing zone 3 is the lowermost and most productive water-producing zone in the intermediate aquifer system. Public-supply well fields serving the cities of Sarasota and Venice, as well as the Plantation and Mabry Carlton Reserve well fields, utilize producing zone 3. Heads within the intermediate aquifer system generally increase with aquifer depth. However, localized head-gradient reversals occur in the study area, coinciding with sites of intense ground-water withdrawals. Heads in producing zones 1, 2, and 3 range from 1 to 23, 0.2 to 34, and 7 to 42 feet above sea level, respectively. Generally, an upward head gradient exists between producing zones 3 and 2

  2. Pesticides in Ground Water - Niobrara and Weston Counties, Wyoming, 2005-2006

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.

    2007-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2005-2006, baseline monitoring was conducted in Niobrara and Weston Counties. This Fact Sheet describes and summarizes results of the baseline monitoring in Niobrara and Weston Counties.

  3. 76 FR 18548 - North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Lower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... described either discharge into State approved waste treatment systems, or the waste is collected into a... AGENCY North Carolina Waters Along the Entire Length of Brunswick and Pender Counties and the Lower... Brunswick and Pender Counties Coastal Waters and a portion of the Cape Fear River, as a No Discharge...

  4. 78 FR 63242 - Proposed Template Safe Harbor Agreement for the Solano County Water Agency in Yolo and Solano...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Fish and Wildlife Service Proposed Template Safe Harbor Agreement for the Solano County Water Agency in... availability. SUMMARY: This notice advises the public that the Solano County Water Agency and the U.S. Fish and... threatened valley elderberry longhorn beetle (Desmocerus californicus dimorphus). While not signatory to...

  5. 77 FR 66607 - Placer County Water Agency; Notice of Application for Approval of Contract for the Sale of Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Energy Regulatory Commission Placer County Water Agency; Notice of Application for Approval of Contract for the Sale of Power for a Period Extending Beyond the Term of the License Take notice that on July 17, 2012, Placer County Water Agency filed with the Commission an application for approval of:...

  6. Ground-water flow and ground- and surface-water interaction at the Weldon Spring quarry, St. Charles County, Missouri

    SciTech Connect

    Imes, J.L.; Kleeschulte, M.J.

    1997-12-31

    Ground-water-level measurements to support remedial actions were made in 37 piezometers and 19 monitoring wells during a 19-month period to assess the potential for ground-water flow from an abandoned quarry to the nearby St. Charles County well field, which withdraws water from the base of the alluvial aquifer. From 1957 to 1966, low-level radioactive waste products from the Weldon Spring chemical plant were placed in the quarry a few hundred feet north of the Missouri River alluvial plain. Uranium-based contaminants subsequently were detected in alluvial ground water south of the quarry. During all but flood conditions, lateral ground-water flow in the bedrock from the quarry, as interpreted from water-table maps, generally is southwest toward Little Femme Osage Creek or south into the alluvial aquifer. After entering the alluvial aquifer, the ground water flows southeast to east toward a ground-water depression presumably produced by pumping at the St. Charles County well field. The depression position varies depending on the Missouri River stage and probably the number and location of active wells in the St. Charles County well field.

  7. Water quality of Rogers Lake, Dakota County, Minnesota

    USGS Publications Warehouse

    Have, M.R.

    1980-01-01

    Analyses of water from Rogers Lake suggest that sodium and chloride concentrations were higher than in ground water or in water in some surrounding lakes . Sodium ranged from 7.2 to 55 milligrams per liter, and chloride ranged from 15 to 30 milligrams per liter. Concentrations were highest in March 1978, when most of the lake water was frozen. Much of the sodium and chloride may have been derived from road salts used for deicing.

  8. Factors affecting ground-water quality in Oakland County, Michigan

    USGS Publications Warehouse

    ,

    2004-01-01

    Ground water is water stored in pores within soil and rock beneath the land surface. When these pores are connected so that water can be transmitted to wells or springs, these bodies of soil and rock are termed aquifers, from two Greek words meaning “water” and “to bear.” 

  9. Ground-water resources of Rusk County, Texas

    USGS Publications Warehouse

    Sandeen, W.M.

    1984-01-01

    Some mineralization of ground water is due to natural causes. Other mineralization of ground water is due to contamination. A program needs to be initiated to determine the extent and cause of mineralization that has taken place in freshwater sands. Water-quality data is needed at Henderson in order to monitor saltwater encroachment.

  10. County Level Assessment of Impaired Waters and Gastrointestinal Infections

    EPA Science Inventory

    Water quality data are measured at a watershed level and health data are organized at different levels of aggregation therefore, assessing the population-level impact of water quality on health can be difficult. To address this discrepancy and enable the consideration of water ...

  11. Ground-water levels in water years 1984-86 and estimated ground-water pumpage in water years 1984-85, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1987-01-01

    Tabulations of groundwater level measurements made during the water years 1984-86 and summaries of estimated pumpage for water years 1984 and 1985 in Carson valley, Douglas County, Nevada, are included in this report. The data are being collected to provide a record of long-term groundwater changes and pumpage estimates that can be incorporated in a groundwater model change at a later date. (USGS)

  12. Availability and quality of ground water in the Winston area, Douglas County, Oregon

    USGS Publications Warehouse

    Robison, J.H.; Collins, C.A.

    1977-01-01

    A map of the Winston area, Douglas County, Oreg., shows areal geology and locations and chemical diagrams of wells with water analyses. Another map of the area has diagrams showing the depth to water, pumping level, total depth, and yields of selected wells. Reported yields of wells range from less than 1 to as much as 70 gallons per minute; the average is less than 10. A table listing chemical analyses of water shows that, although most ground water is of adequate quality for domestic use, some wells yield water with dissolved constituents in excess of recommended limits. (Woodard-USGS)

  13. A county level assessment of water withdrawals for hydraulic fracturing: Where are impacts most likely? [Poster 2015

    EPA Science Inventory

    The objective of this study was to assess, at the county level, the potential for hydraulic fracturing (HF) water withdrawals to impact the quantity of drinking water resources, and identify where potential impacts may be most frequent or severe.

  14. Assessment of water quality in the South Indian River Water Control District, Palm Beach County, Florida, 1989-94

    USGS Publications Warehouse

    Lietz, A.C.

    1996-01-01

    A study was conducted to assess ground-water and surface-water quality in the South Indian River Water Control District in northern Palm Beach County from 1989 to 1994. Contamination of the surficial aquifer system and availability of a potable water supply have become of increasing concern. The study consisted of sampling 11 ground-water wells and 14 surface- water sites for determination of major inorganic constituents and physical characteristics, trace metals, nitrogen and phosphorus species, and synthetic organic compounds. Sodium and chloride concentrations exceeded Florida drinking-water standards in ground water at two wells, dissolved- solids concentrations at five ground-water wells and one surface-water site, and color values at all 11 ground-water wells and all 14 surface-water sites. Other constituents also exhibited concentrations that exceeded drinking-water standards. Cadmium and zinc concentrations exceeded the standards in ground water at one well, and lead concentrations exceeded the standard in ground water at five wells. Nitrogen and phosphorus specie concentrations did not exceed respective drinking-water standards in any ground-water or surface-water samples. Several synthetic organic compounds were detected at or above 50 micrograms per liter in water samples collected from six ground-water wells and three surface-water sites.

  15. Quality of ground water in southern Buchanan County, Virginia

    USGS Publications Warehouse

    Rogers, Stanley M.; Powell, John D.

    1983-01-01

    In seven small contiguous stream basins in the coal area of southwest Virginia, ground water is predominantly bicarbonate in anion composition, with calcium as the major cation in the ridges and sodium the major cation in the lower altitudes. Sulfate is the major anion in water associated with coal seams and in stream waters draining areas extensively disturbed by mining activities. Water found along a major linear feature in the Big Prater Creek valley and water from deep wells in Levisa Fork basin contain chloride as the predominant anion. Hydrogen ion activities (pH) in the ground water range from 5.2 to 8.4. Iron concentrations as high as 14,000 micrograms per liter are present in domestic wells. The chemical composition of most streams changes with diminishing discharge and at baseflow is similar to the composition of local ground water. At high flows, streams draining mined areas are enriched with sulfate. (USGS)

  16. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  17. 77 FR 47058 - Middle Fork American River Hydroelectric Project Placer County Water Agency; Notice of Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Middle Fork American River Hydroelectric Project Placer County Water Agency... comments on the draft environmental impact statement for the Middle Fork American River Project No....

  18. 77 FR 27097 - LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... revised 10 CFR 73.55 through the issuance of a final rule on March 27, 2009 (74 FR 13926). Section 73.55... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI...

  19. Data on ground-water quality with emphasis on radionuclides, Sarasota County, Florida

    USGS Publications Warehouse

    Sutcliffe, Horace; Miller, R.L.

    1981-01-01

    A compilation of analytical results are presented for selected radiochemical and chemical characteristics for 200 groundwater samples collected from 92 wells in Sarasota County, Fla. Radium-226 analysis was made on 160 of the water samples and 80 samples equaled or exceeded the 5 picocuries per liter maximum contaminant level established by the National Interim Primary Drinking Regulations. (USGS)

  20. 76 FR 72197 - Yuba County Water Agency; Notice of Panel Meeting and Technical Conference Details

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Energy Regulatory Commission Yuba County Water Agency; Notice of Panel Meeting and Technical Conference... anadromous fish: Sediment supply, transport, and storage; (5) large wood and riparian habitat for anadromous..., the dispute resolution panel convened. On November 9, 2011, the Commission issued a Notice of...

  1. Ground-water levels in water year 1987 and estimated ground-water pumpage in water years 1986-87, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1990-01-01

    Groundwater levels were measured at 58 wells during water year 1987 and a summary of estimated pumpage is given for water years 1986 and 1987 in Carson Valley, Douglas County, Nevada. The data were collected to provide a record of groundwater changes over the long-term and pumpage estimates that can be incorporated into an existing groundwater model. The estimated total pumpage in water year 1986 was 10,200 acre-ft and in water year 1987 was 13,400 acre-ft. Groundwater levels exhibited seasonal fluctuations but remained relatively stable over the reporting period throughout most of the valley. (USGS)

  2. Ground-water withdrawals, water-level changes, land-surface subsidence, and ground-water quality in Fort Bend County, Texas, 1969-87

    USGS Publications Warehouse

    Locke, G.L.

    1990-01-01

    The concentrations of dissolved solids in water from wells in Fort Bend County have not changed appreciably from 1969 to 1987. The median concentrations of dissolved solids are 475 milligrams in water from wells in Fort Bend per liter in water from the upper unit of the Chicot aquifer, 337 milligrams per liter in water from the lower unit of the Chicot aquifer, and 307 milligrams per liter in water from the Evangeline aquifer.

  3. Availability and quality of water from shallow aquifers in Duval County, Florida

    USGS Publications Warehouse

    Causey, Lawson V.; Phelps, G.G.

    1978-01-01

    The shallow-aquifer system in Duval County, Fla., overlies the Florida aquifer and is composed chiefly of sand, clay, sandy clay, and limestone. Thickness of the system ranges from about 300 to 600 feet. The upper 150 feet of deposits, consisting of the water-table and shallow-rock zones, are the most dependable and economical source of supplemental water supply. The principal shallow water-bearing zone is a limestone bed 40 to 100 feet below land surface. Aquifer tests conducted at 13 sites in Duval County show that yields from the shallow aquifer vary from place to place within the county owing chiefly to variations in lithology of the saturated rocks and sediments. The limestone of the shallow-rock zone will yield as much as 200 gallons per minute to wells; the maximum yield at most of the sites tested was between 30 and 100 gallons per minute. The water-table zone generally yields 10 gallons per minute or less but at one site, where a water-table well tapped a shell bed near land surface, the well yielded more than 40 gallons per minute. The quality of water in the shallow aquifer system in Duval County is generally acceptable for most domestic, commercial, and industrial uses. In some places, however, it has a high iron concentration and is hard. The iron concentration exceeds 0.3 milligrams per liter in water from the water-table or shallow-rock zones at 7 of the 13 aquifer test sites. The hardness of water from the aquifer ranges from about 60 to about 180 milligrams per liter. (Kosco-USGS)

  4. Water-quality conditions in southern Rockingham County, New Hampshire

    USGS Publications Warehouse

    Silvey, William Dudley; Wheeler, Robert L.

    1978-01-01

    Physical, chemical, and biological characteristics of water were measured at 26 surface-water sites, 17 ground-water sites, and in effluent from two sanitary landfills as part of planning for area-wide waste management in four watersheds within the Southern Rockingham Regional Planning District in Southern New Hampshire. Dissolved minerals concentration in water at all but one of 26 surface-water-sampling sites is low and within recommended limits of the U.S. Environmental Protection Agency. Water at the 26 surface-water-sampling sites generally was enriched with nitrogen and phosphorus and contained at least some coliform bacteria, indicating contamination, probably from waste disposal systems. PCBs (polychlorinated biphenyls) and pesticides were not present in the water, but small amounts of DDE, DDD, dieldrin, chlordane, and heptachlor were present in stream-bottom materials at 11 of the 26 sites, and PCBs were present at 7. Iron and manganese were present in concentrations that in some cases exceeded recommended limits. Coliform bacteria were present at 5 of the 17 ground-water-sampling sites; concentrations of iron exceeded recommended limits at 8 sites, and manganese exceeded recommended limits at 9 sites. PCBs and pesticides were not present in any samples collected at the ground-water-sampling sites. (Woodard-USGS)

  5. Ground-water hydrology of the Cocoa well-field area, Orange County, Florida

    USGS Publications Warehouse

    Tibbals, C.H.; Frazee, J.M.

    1976-01-01

    The city of Cocoa, Brevard County, Florida, supplies water for much of central Brevard County including Cape Kennedy and Patrick Air Force Base. The water supply is obtained from a well field in east Orange County. Many of the easternmost wells in that well field yield salty water (chloride concentration greater than 250 milligrams per liter). The interface between the fresh and salty water in the west part of the well field occurs at a depth of about 1,400 feet. An upward hydraulic gradient exists between the the lower (salty) zones and the upper, or pumped zones of the Floridan aquifer in the west part of the well field. Secondary artesian aquifers in the well-field area are relatively high-yielding but are of limited areal extent. However, they are suitable as a source of water for supplemental supply or for artificially recharging the Floridan aquifer. Fresh water was transferred by siphon from a secondary artesian aquifer to the Floridan aquifer at 90 gallons per minute. Artificial recharge and recovery experiments show that it is feasible to retrieve fresh water stored in salty zones of the Floridan aquifer. (Woodard-USGS)

  6. Ground-water conditions in the Triassic aquifer in Deaf Smith and Swisher Counties

    SciTech Connect

    Duffin, G.L.

    1984-12-01

    In April 1984, the Director of the Nuclear Waste Programs of the Governor's Office requested a study be undertaken by the Texas Department of Water Resources on the ground-water conditions in the Triassic aquifer in Deaf Smith and Swisher Counties. The need for the study was prompted by the U.S. Department of Energy's (DOE) announcement that consideration was being given to locating high-level nuclear waste repository sites in these counties and by the concern over what impacts operation of such sites might have on the ground-water resources in the area. The results of the study, including a discussion of the occurrence of ground water and a tabulation of basic data obtained during the investigation are presented in this report.

  7. Preliminary survey of ground-water resources for Island County, Washington

    USGS Publications Warehouse

    Cline, D.R.; Jones, M.A.; Dion, N.P.; Whiteman, K.J.; Sapik, D.B.

    1982-01-01

    Increased ground-water withdrawals associated with the population increase in Island County have caused concern about ground-water availability and potential seawater intrusion. The most widespread and widely used aquifer lies near sea level. Locally, available data also indicate that one or more water-bearing zones lie above the sea-level aquifer. Pumpage in 1979 totaled about 1.67 billion gallons; about 90% was pumped from the sea-level aquifer. Most large producing wells in the county have pumping water levels near or below sea level, so that if pumping continued for a long enough time, seawater intrusion would result. Sampling of chloride concentrations in July 1978, April 1980, and August 1980 indicated problem areas mainly in northeastern and southern Camano Island and in central Whidbey Island. (USGS)

  8. Chemical characteristics of water in the surficial aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1987-01-01

    Water quality data was collected in 1981 and 1982 during the drilling of test holes at 27 sites throughout Broward County, Florida. Determinations were made for the following physical properties and chemical constituents: pH, alkalinity, specific conductance, major ions, selected nutrients and dissolved iron, aluminum, and manganese. Determinations for the trace elements-arsenic, barium, cadmium, chromium, lead, zinc, selenium, and mercury-were made at 14 wells. Water in the surficial aquifer system between the coastal ridge and the conservation areas is potable and usually is a calcium bicarbonate type for the first 140 ft or more below land surface. Between depths of 140 and 230 ft, groundwater generally grades into a mixed-ion water type. In some areas, diluted seawater occurs beneath the mixed water zone. Dissolved iron concentrations between the coastal ridge and the conservation areas are variable but generally exceed 1,000 micrograms/L. Beneath the conservation areas and the western edge of Broward County, groundwater in the first 100 ft below land surface generally is either a calcium bicarbonate type or a mixed-ion type. At depths between 100 and 200 ft, diluted residual seawater occurs, except along the far western edge of the county. Residual seawater is least diluted in the north. Dissolved iron concentrations generally are between 300 and 1 ,000 micrograms/L but increase to the east of the conservation areas. Other findings of the investigation include: (1) groundwater in some areas west of the coastal ridge probably would be suitable for most domestic, agricultural, and industrial uses if it were treated for carbonate hardness; (2) groundwater in much of Broward County is chemically altered by natural softening and magnesium enrichment (natural softening increases to the west and is very pronounced beneath the far western edge of the county); and (3) there is evidence of mineralized water from the conservation areas mixing with groundwater east of the

  9. Ground-water resources and geology of northern and central Johnson County, Wyoming

    USGS Publications Warehouse

    Whitcomb, Harold A.; Cummings, T. Ray; McCullough, Richard A.

    1966-01-01

    Northern and central Johnson County, Wyo., is an area of about 2,600 square miles that lies principally in the western part of the Powder River structural basin but also includes the east flank of the Bighorn Mountains. Sedimentary rocks exposed range in age from Cambrian to Recent and have an average total thickness of about 16,000 feet. Igneous and metamorphic rocks of Precambrian age crop out in the Bighorn Mountains. Rocks of pre-Tertiary age, exposed on the flanks and in the foothills of the Bighorns, dip steeply eastward and lie at great depth in the Powder River basin. The rest of the project area is underlain by a thick sequence of interbedded sandstone, siltstone, and shale of Paleocene and Eocene age. Owing to the regional structure, most aquifers in Johnson County contain water under artesian pressure. The Madison Limestone had not been tapped for water in Johnson County at the time of the present investigation (1963), but several wells in eastern Big Horn and Washakie Counties, on the west flank of the Bighorn Mountains, reportedly have flows ranging from 1,100 to 2,800 gallons per minute. Comparable yields can probably be obtained from the Madison in Johnson County in those areas where the limestone is fractured or cavernous. The Tensleep Sandstone reportedly yields 600 gallons per minute to a pumped irrigation well near its outcrop in the southwestern part of the project area. Several flowing wells tap the formation on the west flank of the Bighorn Mountains. The Madison Limestone and the Tensleep Sandstone have limited potential as sources of water because they can be developed economically only in a narrow band paralleling the Bighorn Mountain front in the southwestern part of the project area. Overlying the Tensleep Sandstone is about 6,000 feet of shale, siltstone, and fine-grained sandstone that, with a few exceptions, normally yields only small quantities of water to wells. The Cloverly Formation and the Newcastle Sandstone may yield moderate

  10. Water resources of Soledad, Poway, and Moosa basins, San Diego County, California

    USGS Publications Warehouse

    Evenson, K.D.

    1989-01-01

    Reclaimed water is being considered as as supplemental water supply in the Soledad, Poway, and Moosa basins, San Diego County. This report describes the geology, soils, hydrology, and cultural factors in each of the basins as they relate to use of reclaimed water. Imported water is currently the major water-supply source in the basins. Groundwater supplies are used to a limited extent for both agricultural and domestic needs. Surface water flows are intermittent and, therefore, have not been developed for use in the basins. All three of the basins have the potential for use of reclaimed water, but only the Moosa basin is currently implementing a plan for such use. Concentrations of dissolved solids, chloride, and sulfate in both ground and surface water commonly exceed local basin objectives. As of 1985, plans for use of reclaimed water are oriented toward improving the quality of the groundwater. (USGS)

  11. Ground-water resources of Honey Lake valley, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Handman, E.H.; Londquist, C.J.; Maurer, D.K.

    1990-01-01

    Honey Lake Valley is a 2,200 sq-mi, topographically closed basin about 35 miles northwest of Reno, Nevada. Unconsolidated basin-fill deposits on the valley floor and fractured volcanic rocks in northern and eastern uplands are the principal aquifers. In the study area, about 130,000 acre- ft of water recharges the aquifer system annually, about 40% by direct infiltration of precipitation and about 60% by infiltration of streamflow and irrigation water. Balancing this is an equal amount of groundwater discharge, of which about 65% evaporates from the water table or is transpired by phreatophytes, about 30 % is withdrawn from wells, and about 5% leaves the basin as subsurface outflow to the east. Results of a groundwater flow model of the eastern part of the basin, where withdrawals for public supply have been proposed, indicate that if 15,000 acre-ft of water were withdrawn annually, a new equilibrium would eventually be established by a reduction of about 60% in both evapotranspiration and subsurface outflow to the east. Hydrologic effects would be minimal at the western boundary of the flow-model area. Within the modeled area, the increased withdrawals cause an increase in the simulated net flow of groundwater eastward across the California-Nevada State line from about 670 acre-ft/yr to about 2,300 acre-ft/yr. (USGS)

  12. Membrane Technology for Produced Water in Lea County

    SciTech Connect

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also

  13. Congenital cardiac anomalies in relation to water contamination, Santa Clara County, California, 1981-1983

    SciTech Connect

    Swan, S.H.; Shaw, G.; Harris, J.A.; Neutra, R.R.

    1989-05-01

    In November 1981, a leak of solvents from an underground storage tank was detected at an electronics manufacturing plant in Santa Clara County, California. Solvents (predominantly 1,1,1-trichloroethene, or methyl chloroform) were found in a nearby well which supplied drinking water to the surrounding community. Residents were concerned about a possible relation between adverse reproductive outcomes and consumption of contaminated water. To address this concern, the California Department of Health Services conducted two epidemiologic studies: one of these, reported here, is a county-wide study of cardiac anomalies. This study, which looked at major cardiac anomalies among births throughout Santa Clara County in 1981-1983, found an increased prevalence in the service area of the water company which operated the contaminated well. During the potentially exposed time period (January 1981 through August 1982), 12 babies with major cardiac anomalies were born to residents of this area. This represents an excess of six cases over the number expected based on the prevalence in the remainder of the county (relative risk = 2.2, 95 per cent confidence interval 1.2-4.0). No excess was observed in the unexposed time period (September 1982 through December 1983). However, the temporal distribution of major cardiac cases born during the exposed time period suggests that the solvent leak is an unlikely explanation for this excess.

  14. Fragmented Flows: Water Supply in Los Angeles County.

    PubMed

    Pincetl, Stephanie; Porse, Erik; Cheng, Deborah

    2016-08-01

    In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water-a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways-through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management. PMID:27174451

  15. Fragmented Flows: Water Supply in Los Angeles County.

    PubMed

    Pincetl, Stephanie; Porse, Erik; Cheng, Deborah

    2016-08-01

    In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water-a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways-through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.

  16. History and hydrologic effects of ground water use in Kings, Queens, and western Nassau counties, Long Island, New York

    USGS Publications Warehouse

    Cartwright, Richard A.

    2002-01-01

    Ground-water withdrawals from the aquifers underlying Kings and Queens Counties varied temporally and spatially during the 20th century and caused extreme changes in water levels. The resultant lowering of water levels during periods of heavy pumping caused saltwater intrusion in nearshore areas and the migration of contaminants from land surface into deep aquifers. The recovery of water levels in response to countywide curtailment of pumping has resulted in the flooding of underground structures. Combined withdrawals for public and industrial supply in Kings and Queens Counties were greatest during the 1930's--about 130 million gallons per day. During this period, a large cone of depression developed in the water table in Kings County; within this depression, water levels were about 45 feet lower than in 1903. All pumping for public supply was halted in Kings County in 1947, and in Jamaica (in Queens County) in 1974. Water levels in Kings County had recovered by 1974 and have remained similar to those of 1903 since then, except for minor localized drawdowns due to industrial-supply or dewatering withdrawals. A large cone of depression that had formed in southeastern Queens County before 1974 has now (1997) disappeared. The estimated combined withdrawal for public supply and industrial supply in Kings and Queens Counties in 1996 was only about 50 million gallons per day. The water-level recoveries in the water-table and confined aquifers generally have resulted in the dilution and dispersion of residual salty and nitrate-contaminated ground water. The majority of recently sampled wells indicate stable or decreasing chloride and nitrate concentrations in all aquifers since 1983. Organic contaminants remain in ground water in Kings, Queens, and Nassau Counties, however; the most commonly detected compounds in 1992-96 were tetrachloroethene, trichloroethene, chloroform, and total trihalomethanes. Water samples from monitoring wells in Kings County indicate a greater

  17. Ground-water resources of Liberty County, Texas, with a section on Stream runoff

    USGS Publications Warehouse

    Alexander, Walter H.; Breeding, S. D.

    1950-01-01

    Liberty County is in the Gulf Coastal Plain of southeastern Texas in the second tier of counties back from the Gulf. The geologic formations discussed in this report in upward sequence consist of the Oakville sandstone of Miocene age and the Lagarto clay of Miocene (?) age, the Willis sand of Pliocene (?) age, and the Lissie formation and Beaumont clay of Pleistocene age. The rocks of these formations crop out in belts roughly parallel to the Gulf shore and dip southeastward. As one travels across San Jacinto and Liberty Counties from northwest to southeast the belts of outcrop are traversed in the above order, beginning with the 0akville sandstone and Lagarto clay. The land surface slopes southeastward toward the Gulf at a rate less than the dip of the rocks; consequently artesian conditions exist in all parts of the county. The valley of the Trinity River is well known for its flowing weds, which range from 100 to 808 feet in depth. Most of the ground water used in the county is obtained from wells ranging in depth from 350 to about 1,000 feet and is drawn from the Lissie formation. Wells yielding 1,000 to 3,500 gallons a minute and ranging from 740 to 1,030 feet in depth have been developed for rice irrigation in the North Dayton area, in the southwestern part of the county. These wells draw water mostly from sands in the Lissie formation, but most of them are also screened in overlying thinner sands in the Beaumont clay. The municipal water supplies of Liberty, Cleveland, Dayton, and Diasetta are obtained from wells ranging from 350 to 833 feet in depth with reported yields of 300 to 350 gallons a minute. Most of the wells in the rural areas are less than 50 feet in depth and furnish small supplies of water for domestic use and for stock. Such supplies can be obtained almost anywhere in the county from shallow wells in the Lissie and Beaumont formations or in alluvial deposits. The average daily withdrawal of ground water for irrigation, public supply, and

  18. Multicultural Education in Clinical Psychology: Curriculum Reform at CSPP Berkeley/Alameda.

    ERIC Educational Resources Information Center

    California School of Professional Psychology, Alameda.

    This report describes a three-year project at the California School of Professional Psychology (Alameda Campus) to train graduate students in professional psychology to meet the mental health needs of clients from diverse ethnic/racial backgrounds. Multicultural content was integrated into all required courses, using a variety of resources and…

  19. Water resources of Oley Township, Berks County, Pennsylvania

    USGS Publications Warehouse

    Paulachok, G.N.; Wood, C.R.

    1988-01-01

    Oley Township covers an area of 24 square miles, about half of which is underlain by highly permeable carbonate rocks. Nondomestic wells in these rocks typically have yields of 200 gallons per minute, and some wells yield more than 1,000 gallons per minute. Ground-water yield for Oley Township is about 0.5 million gallons per day per square mile. Thus, about 12 million gallons per day could be pumped from wells on a sustained basis. However, pumping this amount would adversely affect streamflow. A series of discharge measurements on Manatawny Creek in January 1983 showed that the creek was gaining approximately 12 cubic feet per second where it crosses the more- permeable carbonate rocks. Thus, the streams are directly connected to these aquifers. The northern and western parts of the township are mostly underlain by shale, quartzite, granite, gneiss, and carbonate rocks of low permeability, and some wells do not yield enough water for domestic supplies. A water-table map shows that two active quarries in low-permeability rocks have had little effect on the hydrologic system. Specific yields are about 4.5 percent for the carbonate rocks; 5 percent for quartzite, granite, and gneiss; 1 percent for the noncarbonate sedimentary rocks; and 1.5 percent for the Jacksonburg Limestone, which consists of argillaceous limestone. In 1982--a year of average precipitation--the ground-water contribution to total streamflow ranged from 56 to 88 percent. Basins with the highest percentage of carbonate rock contribute the largest amount of ground water to streamflow. Evapotranspiration averaged about 26 inches in 1982. Water loss was 32 inches in the Limekiln Creek basin; this suggests that about 6 inches of precipitation bypassed the Limekiln Creek gaging station as ground-water underflow. The most serious water-quality problems are excessive nitrate concentrations and bacterial contamination. Water from 3 of 19 wells in carbonate rocks had nitrate concentrations in excess of the

  20. Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009

    USGS Publications Warehouse

    Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor; Lamothe, Paul J.

    2009-01-01

    In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent

  1. Water resources of the Sycamore Creek watershed, Maricopa County, Arizona

    USGS Publications Warehouse

    Thomsen, B.W.; Schumann, Herbert H.

    1969-01-01

    The Sycamore Creek watershed is representative of many small watersheds in the Southwest where much of the streamflow originates in the mountainous areas and disappears rather quickly into the alluvial deposits adjacent to the mountains. Five years of .streamflow records from the Sycamore Creek watershed show that an average annual water yield of 6,110 acre-feet was obtained from the 165 square miles (105,000 acres) of the upper hard-rock mountain area, which receives an average annual precipitation of about 20 inches. Only a small percentage of the ,annual water yield, however, reaches the Verde River as surface flow over the 9-mile reach of the alluvial channel below the mountain front. Flows must be more ,than 200 cubic feet per second to reach the river; flows less than this rate disappear into the 1,ower alluvial area and are stored temporarily in the ground-Water reservoir : most of this water is released as ground-water discharge to the Verde River at a relatively constant rate of about 4,000 acre-feet per year. Evapotranspiration losses in the lower alluvial area are controlled by the depth of the water table and averaged about 1,500 acre-feet per year.

  2. Fragmented Flows: Water Supply in Los Angeles County

    NASA Astrophysics Data System (ADS)

    Pincetl, Stephanie; Porse, Erik; Cheng, Deborah

    2016-08-01

    In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water—a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways—through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.

  3. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  4. Description of water-resource-related data compiled for Reno County, south-central Kansas

    USGS Publications Warehouse

    Hansen, C.V.

    1993-01-01

    Water-resource-related data for sites in Reno County, Kansas were compiled in cooperation with the Reno County Health Department as part of the Kansas Department of Health and Environment's Local Environmental Protection Program (LEPP). These data were entered into a relational data-base management system (RDBMS) to facilitate the spatial analysis required to meet the LEPP goals of developing plans for nonpoint-source management and for public- water-supply protection. The data in the RDBMS are organized into digital data sets. The data sets contain the water-resource-related data compiled by the U.S. Geological Survey for 958 wells; by the Kansas Department of Health and Environment for 3,936 wells; by the Kansas Department of Health and Environment for 51 wells, 18 public-water-supply distribution systems, and 7 streams; by the Kansas State Board of Agriculture for 643 wells and 23 streams or surface-water impoundments; and by well-drilling contractors and the Kansas Geological Survey for 96 wells. The data in these five data sets are available from the Reno County Health Department in Hutchinson, Kansas. (USGS)

  5. 76 FR 63602 - Voting Rights Act Amendments of 2006, Determinations Under Section 203

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    .... California: State Coverage Hispanic. Alameda County Asian (Chinese). Alameda County Asian (Filipino). Alameda County Hispanic. Alameda County Asian (Vietnamese). Colusa County Hispanic. Contra Costa County Hispanic... Hispanic. Lehigh County Hispanic. Philadelphia County Hispanic. Rhode Island: Central Falls city...

  6. Ground-water recharge in Escambia and Santa Rosa Counties, Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Ground water is a major component of Florida's water resources, accounting for 90 percent of all public-supply and self-supplied domestic water withdrawals, and 58 percent of self-supplied commercial-industrial and agricultural withdrawals of freshwater (Marella, 1992). Ground-water is also an important source of water for streams, lakes, and wetlands in Florida. Because of their importance, a good understanding of these resources is essential for their sound development, use, and protection. One area in which our understanding is lacking is in characterizing the rate at which ground water in aquifers is recharged, and how recharge rates vary geographically. Ground-water recharge (recharge) is the replenishment of ground water by downward infiltration of water from rainfall, streams, and other sources (American Society of Civil Engineers, 1987, p. 222). The recharge rates in many areas of Florida are unknown, of insufficient accuracy, or mapped at scales that are too coarse to be useful. Improved maps of recharge rates will result in improved capabilities for managing Florida's ground-water resources. In 1989, the U.S. Geological Survey, in cooperation with the Florida Department of Environmental Regulation, began a study to delineate high-rate recharge areas in several regions of Florida (Vecchioli and others, 1990). This study resulted in recharge maps that delineated areas of high (greater than 10 inches per year) and low (0 to 10 inches per year) recharge in three counties--Okaloosa, Pasco, and Volusia Counties--at a scale of 1:100,000. This report describes the results of a similar recharge mapping study for Escambia and Santa Rosa Counties (fig. 1), in which areas of high- and low-rates of recharge to the sand-and-gravel aquifer and Upper Floridan aquifer are delineated. The study was conducted in 1992 and 1993 by the U.S. Geological Survey in cooperation with the Florida Department of Environmental Protection.

  7. Water-quality reconnaissance of Harding Creek, Lawrence County, Arkansas

    USGS Publications Warehouse

    Petersen, James C.

    1981-01-01

    A study of Harding Creek conducted between April and October 1980 to assess the water quality of the creek indicates no serious water-quality problems. Eight water samples were collected during periods of low to moderate streamflow (less than 19 cubic feet per second). The water was hard to very hard (100 to 220 milligrams per liter as calcium carbonate) and dissolved-solids concentrations ranged from 112 to 244 milligrams per liter. Suspended-sediment concentrations were low (generally less than 5 milligrams per liter). Total phosphorus concentrations did not exceed 50 micrograms per liter, and total nitrogen concentrations were less than 1.9 milligrams per liter. Concentrations of most metals were less than 5 micrograms per liter, the exceptions being iron (110 to 210 micrograms per liter), manganese (20 to 80 micrograms per liter), and zinc (0 to 30 micrograms per liter). Fecal-coliform bacteria were present in some samples in large enough numbers (as many as 710 colonies per 100 milliliters) to indicate that the U.S. Environmental Protection Agency criterion and Arkansas water-quality standards may be exceeded at times. (USGS)

  8. Summary of geology and ground-water resources of Passaic County, New Jersey

    USGS Publications Warehouse

    Carswell, L.D.; Rooney, J.G.

    1976-01-01

    The Brunswick Formation of Triassic age is the most important aquifer in the southeastern one-third of Passaic County, N. J. Yields of public supply and industrial wells range from 50 to 510 gal/min and the median yield is 130 gal/min. Most of these wells are 200 to 400 feet deep. The median yield of all public supply and industrial wells over 300 feet deep and 8 inches or larger in diameter is 230 gal/min. Crystalline rocks of Precambrian age are the major source of ground water for domestic use in the northwestern two-thirds of Passaic County. Well yields range from 1 to 200 gal/min. The median yield of domestic wells is 5 gal/min and that of public supply wells is 30 gal/min. Unconsolidated stratified deposits of Quaternary age are potentially an important source of ground water for future development. Yields of wells tapping the stratified deposits range from 4 to 920 gal/min. The median reported yield of domestic wells is 16 gal/min and that of public supply and industrial wells is 130 gal/min. The quality of ground water in Passaic County varies from one aquifer to another. Water from the Precambrian rocks is soft to moderately hard (34 to 104 mg/liter) and is low in dissolved solids (66 to 159 mg/liter). Water from the Brunswick Formation is moderately hard to very hard (89 to 540 mg/liter). The dissolved solids content ranges from 129 to 563 mg/liter. Ground-water pumpage by the major public supply companies in the county has increased from 2.1 million gallons per day in 1951 to 4.39 million gallons per day in 1968. (Woodard-USGS)

  9. Ground-water resources of Monmouth County, New Jersey

    USGS Publications Warehouse

    Jablonski, Leo A.

    1968-01-01

    Aquifers in the Raritan and Magothy Formations and the Englishtown Formation supplied 76 percent of the ground water used in 1958. These aquifers, in conjunction with the Wenonah Formation and Mount Laurel Sand of Late Cretaceous age, are capable of providing relatively large yields to wells. The average yield of 63 large-diameter wells tapping these aquifers is 580 gpm, at depths randing from 100 to 1,140 feet. In general, the concentrations of chemical constituents in water from the aquifers would not restrict the use of the water for most purposes. High concentrations of iron do occur and require treatment. The concentrations of dissolved solids in 39 to 41 samples were 160 ppm (parts per million) or less.

  10. Salt-water encroachment in southern Nassau and southeastern Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Lusczynski, N.J.; Swarzenski, Wolfgang V.

    1966-01-01

    Test drilling, extraction of water from cores, electric logging, water sampling, and water-level measurements from 1958 to 1961 provided a suitable basis for a substantial refinement in the definition of the positions, chloride concentrations, and rates of movement of salty water in the intermediate and deep deposits of southern Nassau County and southeastern Queens County. Filter-press, centrifugal, and dilution methods were used to extract water from cores for chloride analysis at the test-drilling sites. Chloride analysis of water extracted by these methods, chloride analyses of water from wells, and the interpretation of electric logs helped to define the chloride content of the salty water. New concepts of environmental-water head and zerovels, developed during the investigation, proved useful for defining hydraulic gradients and ratee of flow in ground water of variable density in a vertical direction and in horizontal and inclined planes, respectively. Hydraulic gradients in and between fresh and salty water were determined from water levels from data at individual and multiple-observation wells. Salty ground water occurs in southern Nassau and southeastern Queens Counties as three wedgelike extensions that project landward in unconsolidated deposits from a main body of salty water that lies seaward of the barrier beaches in Nassau County and of Jamaica Bay in Queens County. Salty water occurs not only in permeable deposits but also in the shallow and deep clay deposits. The highest chloride content of the salty ground water in the main body and the wedges is about 16,000 ppm, which is about 1,000 to 2,000 ppm less than the chloride content of ocean water. The shallow salty water in the Pleistocene and Recent deposits is connected freely with the bays, tidal estuaries, and ocean. The intermediate wedge is found only in the southwestern part of Nassau County in the upper part of the Magothy (?) Formation, in the Jamneco Gravel, and in the overlying clay

  11. Demographic factors associated with perceptions about water safety and tap water consumption among adults in Santa Clara County, California, 2011.

    PubMed

    van Erp, Brianna; Webber, Whitney L; Stoddard, Pamela; Shah, Roshni; Martin, Lori; Broderick, Bonnie; Induni, Marta

    2014-06-12

    The objective of this study was to examine differences in tap water consumption and perceptions of bottle versus tap water safety for Hispanics and non-Hispanic whites, as well as associations with other demographic characteristics. Data are from the Santa Clara County, California, Dietary Practices Survey (2011; N = 306). We used logistic regression to examine associations between demographic characteristics and 1) perceptions that bottled water is safer than tap and 2) primarily consuming tap water. Hispanics were less likely than non-Hispanic whites to primarily drink tap water (OR = 0.33; 95% CI, 0.11-0.99), although there was no significant difference in perceptions that bottled water is safer between these groups (OR = 0.50; 95% CI, 0.11-2.27). Hispanics may be an important population for interventions promoting tap water consumption.

  12. Water Quality in Iron County, Wisconsin; Its Understanding, Preservation, Utilization.

    ERIC Educational Resources Information Center

    Schneiderwent, Myron O., Ed.

    The report represents the efforts of two schools of higher education in northern Wisconsin to keep Lake Superior, the largest surface area, fresh water lake in the world, close to the condition it was in thousands of years ago when it was formed. The University of Wisconsin-Superior and Northland College have been studying, since 1972, water…

  13. Water Quality in Ashland County, Wisconsin; Its Understanding, Preservation, Utilization.

    ERIC Educational Resources Information Center

    Schneiderwent, Myron O., Ed.

    This report represents the efforts of two schools of higher education in northern Wisconsin to keep Lake Superior, the largest surface area, fresh water lake in the world, close to the condition it was in thousands of years ago when it was formed. The University of Wisconsin-Superior and Northland College have been studying, since 1972, water…

  14. Water Quality in Bayfield County, Wisconsin; Its Understanding, Preservation, Utilization.

    ERIC Educational Resources Information Center

    Schneiderwent, Myron O., Ed.

    The report represents the efforts of two schools of higher education in northern Wisconsin to keep Lake Superior, the largest surface area, fresh water lake in the world, close to the condition it was in thousands of years ago when it was formed. The University of Wisconsin-Superior and Northland College have been studying, since 1972, water…

  15. Water Quality in Douglas County, Wisconsin; Its Understanding, Preservation, Utilization.

    ERIC Educational Resources Information Center

    Schneiderwent, Myron O., Ed.

    The report represents the efforts of two schools of higher education in northern Wisconsin to keep Lake Superior, the largest surface area, fresh water lake in the world, close to the condition it was in thousands of years ago when it was formed. The University of Wisconsin-Superior and Northland College have been studying, since 1972, water…

  16. Geology and ground-water resources of Fond du Lac County, Wisconsin

    USGS Publications Warehouse

    Newport, Thomas G.

    1962-01-01

    The principal water-bearing rocks underlying Fond du Lac County, Wis., are sandstones of Cambrian and Ordovician age and dolomite of Silurian age. Other aquifers include dolomite of Ordovician age and sand. and gravel of Quaternary age. Crystalline rocks of Precambrian age, which underlie all the water-bearing formations, form a practically impermeable basement complex and yield little or no water to wells. Ground water is the source of all public and most private and industrial water supplies in the county. The municipalities and industries obtain water chiefly from wells that penetrate the sandstones of Cambrian and Ordorician age. The Platteville formation and Galena dolomite of Ordovician age and the Niagara dolomite of Silurian age supply water to most domestic and stock wells and to a few industrial wells. Several buried valleys in the bedrock surface contain water-bearing deposits of sand and gravel. The source of the ground water in Fond du Lac County is local precipitation. Recharge to the water-bearing beds occurs in most of the county but is greatest where the bedrock formations are near the surface. Ground water is discharged by seeps and springs, by evaporation and transpiration, and by wells. Ground-water levels in wells fluctuate in response to recharge and to natural discharge and pumping. In areas not affected by pumping, water levels generally decline through the summer months because of natural discharge and lack of recharge, recover slightly in the fall after the first killing frost, decline during the winter, and recover in the spring when recharge is greatest. In areas of heavy pumping, the water levels are lowest in late summer and highest in late winter. Water levels in wells in the Fond du Lac area were about 5 to 50 feet above the land surface in 1885, but they had declined to as low as 185 feet below the land surface by 1957. Coefficients of transmissibility and storage of the sandstones of Cambrian and Ordovician age were determined by

  17. Memorandum on ground-water investigation of four proposed stock wells in Puertocito Area, Socorro County and Canoncito Area, Bernalillo and Valencia Counties, New Mexico

    USGS Publications Warehouse

    Repenning, C.A.; Galloway, S.E.

    1952-01-01

    At the request of the Navajo Service, Office ot Indian Affairs, a groundwater iinvestigation of four proposed stock wells in the Puertocito Area, Socorro county and the Canoncito Area., Bernalillo and Valencia counties,New Mexico, was made in November, 1951 (see fig. 1). Although these areas are not on the Navajo Indian Reservation, they were included in the program of study of ground-water resources or the Navajo and Hopi Indian Reservations now being conducted by the Ground Water Branch of the United States Geological Survey. The work was financed by and was in cooperation with the Navajo Service, Office of Indian Affairs.

  18. Streamflow and water quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1987-01-01

    A diel (24-hour) water-quality survey was done to investigate the sources of dry-weather waste inputs attributable to other than permitted point-source effluent and to evaluate the waste-load assimilative capacity of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, in October 1984. Flow in the Grand Calumet River consists almost entirely of municipal and industrial effluents which comprised more than 90% of the 500 cu ft/sec flow observed at the confluence of the East Branch Grand Calumet River and the Indiana Harbor Ship Canal during the study. At the time of the study, virtually all of the flow in the West Branch Grand Calumet River was municipal effluent. Diel variations in streamflow of as much as 300 cu ft/sec were observed in the East Branch near the ship canal. The diel variation diminished at the upstream sampling sites in the East Branch. In the West Branch, the diel variation in flow was quite drastic; complete reversals of flow were observed at sampling stations near the ship canal. Average dissolved-oxygen concentrations at stations in the East Branch ranged from 5.7 to 8.2 mg/L and at stations in the West Branch from 0.8 to 6.6 mg/L. Concentrations of dissolved solids, suspended solids, biochemical-oxygen demand, ammonia, nitrite, nitrate, and phosphorus were substantially higher in the West Branch than in the East Branch. In the East Branch, only the Indiana Stream Pollution Control Board water-quality standards for total phosphorus and phenol were exceeded. In the West Branch, water-quality standards for total ammonia, chloride, cyanide, dissolved solids, fluoride, total phosphorus, mercury, and phenol were exceeded and dissolved oxygen was less than the minimum allowable. Three areas of significant differences between cumulative effluent and instream chemical-mass discharges were identified in the East Branch and one in the West Branch. The presence of unidentified waste inputs in the East Branch were indicated by

  19. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways.

    PubMed

    Chiu, Yi-Wen; Wu, May

    2012-08-21

    While agricultural residue is considered as a near-term feedstock option for cellulosic biofuels, its sustainability must be evaluated by taking water into account. This study aims to analyze the county-level water footprint for four biofuel pathways in the United States, including bioethanol generated from corn grain, stover, wheat straw, and biodiesel from soybean. The county-level blue water footprint of ethanol from corn grain, stover, and wheat straw shows extremely wide variances with a national average of 31, 132, and 139 L of water per liter biofuel (L(w)/L(bf)), and standard deviation of 133, 323, and 297 L(w)/L(bf), respectively. Soybean biodiesel production results in a blue water footprint of 313 L(w)/L(bf) on the national average with standard deviation of 894 L(w)/L(bf). All biofuels show a greater green water footprint than the blue one. This work elucidates how diverse spatial resolutions affect biofuel water footprints, which can provide detailed insights into biofuels' implications on local water sustainability.

  20. Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma

    USGS Publications Warehouse

    Becker, C.J.

    1998-01-01

    A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

  1. Water quality in the Old Plantation Water Control District, Broward County, Florida; progress report, July 1976-June 1977

    USGS Publications Warehouse

    Russell, Gary M.; Hanson, Chris E.; Pitt, William A.J.

    1978-01-01

    Water quality in the Old Plantation Water Control District in Broward County, Florida has been affected by effluent from sewage-treatment plants, agriculture, and storm-water runoff. Effect of effluent from sewage-treatment plants on water quality was evident at 3 sites where concentrations of nutrients and bacteria in the Broward County canals exceeded State standards of 2,400 colonies per 100 milliliters for total coliform bacteria. At 2 of the 3 sites the fecal coliform/fecal streptococcus ratios indicated possible human contamination. The effect of agriculture on water quality was evident where relatively high levels of chlorinated hydrocarbon insecticides had concentrated in the bottom sediments, of the canals. For example, DDD reached levels of 330 micrograms per kilogram at one site. The effects of storm-water runoff on water quality were detected during the wet season when concentrations of several trace elements increased. For example, zinc averaged 30 micrograms per milliliter in the wet season compared with 20 micrograms per milliliter during the dry season. (Woodard-USGS)

  2. Water-quality characteristics for selected streams in Lawrence County, South Dakota, 1988-92

    USGS Publications Warehouse

    Williamson, Joyce E.; Hayes, Timothy Scott

    2000-01-01

    During the 1980?s, significant economic development and population growth began to occur in Lawrence County in the northern part of the Black Hills of western South Dakota. Rising gold prices and heap-leach extraction methods allowed the economic recovery of marginal gold ore deposits, resulting in development of several large-scale, open-pit gold mines in Lawrence County. There was increasing local concern regarding potential impacts on the hydrologic system, especially relating to the quantity and quality of water in the numerous streams and springs of Lawrence County. In order to characterize the water quality of selected streams within Lawrence County, samples were collected from 1988 through 1992 at different times of the year and under variable hydrologic conditions. During the time of this study, the Black Hills area was experiencing a drought; thus, most samples were collected during low-flow conditions.Streamflow and water-quality characteristics in Lawrence County are affected by both geologic conditions and precipitation patterns. Most streams that cross outcrops of the Madison Limestone and Minnelusa Formation lose all or large part of their streamflow to aquifer recharge. Streams that are predominantly spring fed have relatively stable streamflow, varying slightly with dry and wet precipitation cycles.Most streams in Lawrence County generally have calcium magnesium bicarbonate type waters. The sites from the mineralized area of central Lawrence County vary slightly from other streams in Lawrence County by having higher concentrations of sodium, less bicarbonate, and more sulfate. False Bottom Creek near Central City has more sulfate than bicarbonate. Nitrogen, phosphorous, and cyanide concentrations were at or near the laboratory reporting limits for most sites and did not exceed any of the water-quality standards. Nitrite plus nitrate concentrations at Annie Creek near Lead, Whitetail Creek at Lead, Squaw Creek near Spearfish, and Spearfish Creek

  3. Ground-Water Conditions and Studies in the Albany Area of Dougherty County, Georgia, 2007

    USGS Publications Warehouse

    Gordon, Debbie W.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the Albany Water, Gas, and Light Commission to monitor ground-water quality and availability since 1977. This report presents an overview of ground-water conditions and studies in the Albany area of Dougherty County, Georgia, during 2007. Historical data are also presented for comparison with 2007 data. Ongoing monitoring activities include continuous water-level recording in 24 wells and monthly water-level measurements in 5 wells. During 2007, water levels in 21 of the continuous-recording wells were below normal, corresponding to lower than average rainfall. Ground-water samples collected from the Upper Floridan aquifer indicate that nitrate levels have decreased or remained about the same since 2006. Water samples were collected from the Flint River and wells at the Albany wellfield, and data were plotted on a trilinear diagram to show the percent composition of selected major cations and anions. Ground-water constituents (major cations and anions) of the Upper Floridan aquifer at the Albany wellfield are distinctly different from those in the water of the Flint River. To improve the understanding of the ground-water flow system and nitrate movement in the Upper Floridan aquifer, the USGS is developing a ground-water flow model in the southwestern Albany area of Georgia. The model is being calibrated to simulate periods of dry (October 1999) and relatively wet (March 2001) hydrologic conditions. Preliminary water-level simulations indicate a generally good fit to measured water levels.

  4. Water resources of Teton County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Nolan, B.T.; Miller, K.A.

    1995-01-01

    Surface- and ground-water data were collected and analyzed to describe the water resources of that part of Teton County, Wyoming located south of Yellowstone National Park. Wells and springs inventoried in the Teton County study area most commonly were completed in or issued from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks. The largest measured, reported, or estimated discharges were from Quaternary uncon- solidated deposits (3,000 gallons per minute), the Bacon Ridge Sandstone of Cretaceous age (800 gallons per minute), and the Madison Limestone of Mississippian age (800 gallons per minute). Dissolved-solids concentrations in water samples from Quaternary unconsolidated deposits and Tertiary, Mesozoic, and Paleozoic rocks ranged from 80 to 1,060 milligrams per liter. A time-domain electromagnetic survey of Jackson Hole indicated that the depth of Quaternary unconsolidated deposits ranged from about 380 feet in the northern part of Antelope Flats to about 2,400 feet near the Potholes area in Grand Teton National Park. A streamflow gain-and-loss study indicated that the ground-water discharge to the Snake River between gaging stations near Moran and south of the Flat Creek confluence, near Jackson, was 395 cubic feet per second. Water level contours generated from 137 water-level measurements and 118 stream altitudes indicated that water in Quaternary unconsolidated deposits flows southwest in the general direction of the Snake River.

  5. Delineation of ground-water contributing areas of streams of southwest Suffolk County, New York

    USGS Publications Warehouse

    Sulam, Dennis J.

    1980-01-01

    The hydrologic system of southwest Suffolk County consists of two major components--a deep, southward-flowing ground-water system bounded on the north by Long Islands ' regional ground-water divide and on the south by the south-shore bays and ocean, and an overlying series of shallow ground-water flow systems that are separated from one another by north-south-trending interstream water-table divides. The shallow flow systems are the source of base flow to all streams on the island. The ground-water-contributing areas of southwest Suffolk County 's 21 streams are delineated on a map. The drainage-divide locations were derived from a 1975 water-table map on the assumption that flow in the shallow flow systems is two dimensional (horizontal). This assumption is valid for the southern part of the area (adjacent to flowing streams), but, because the direction of flow in the northern part, near the regional ground-water divide, is mainly downward, the delineations for the northern part are only inferred. (USGS)

  6. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  7. REMEDIATION OF LEON WATER FLOOD, BUTLER COUNTY, KANSAS

    SciTech Connect

    M.L. Korphage; Kelly Kindscher; Bruce G. Langhus

    2001-11-26

    The Leon Water Flood site has undergone one season of soil amendments and growth of specialized plants meant to colonize and accelerate the remediation of the salt-impacted site. The researchers characterized the impacted soil as to chemistry, added soil amendments, and planted several species of seedlings, and seeded the scarred areas. After the first growing season, the surface soil was again characterized and groundcover was also characterized. While plant growth was quite meager across the area, soil chemistry did improve over most of the two scars.

  8. Loading of water and soil by pollutants in Shelby County

    SciTech Connect

    Madhavan, K. )

    1990-10-01

    Our environment is constantly being polluted by humans and animals. Pollution is increased by modern practices, such as the use of pesticides, herbicides and other chemicals. The number of household pets in the US is increasing and they add to the pollution. In a city, such as Memphis, where production of chemical compounds is relatively high, the pollution of the environment may grow worse unless concerted efforts are made to control it. This study was undertaken to indicate the possible extent of pollution of the surface soil in and near Memphis. Runoff contributes to the pollution of the waterways and their ultimate resting sites. So, water analyses are useful indicators of pollution.

  9. Ground-water quality in the Davie Landfill, Broward County, Florida

    USGS Publications Warehouse

    Mattraw, H.C.

    1976-01-01

    Ground-water adjacent to a disposal pond for septic tank sludge, oil, and grease at the Davie landfill, Broward County, Florida was tested for a variety of ground-water contaminants. Three wells adjacent to the disposal pond yielded water rich in nutrients, organic carbon and many other chemical constituents. Total coliform bacteria ranged from less than 100 to 660 colonies per 100 milliliters in samples collected from the shallowest well (depth 20 feet). At well depths of 35 and 45 feet bacterial counts were less than 20 colonies per 100 milliliters or zero. Concentrations of several constituents in water samples collected from the wells downgradient from the landfill, disposal pond, and an incinerator wash pond were greater than in samples collected from wells immediately upgradient of the landfill. A comparison of sodium-chloride ion ratios indicated that downgradient ground-water contamination was related to the incinerator wash water pond rather than the septic tank sludge pond. (Woodard-USGS)

  10. EARTHQUAKE HAZARDS TO DOMESTIC WATER DISTRIBUTION SYSTEMS IN SALT LAKE COUNTY, UTAH.

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  11. Water resources and geology of the Los Coyotes Indian Reservation and vicinity, San Diego County, California

    USGS Publications Warehouse

    Ballog, A.P.; Moyle, W.R.

    1980-01-01

    The water resources of the Los Coyotes Indian Reservation, San Diego County, Calif., are sufficient to supply the limited domestic and stock-water needs of the present residents of the reservation. Surface-water runoff is derived from direct precipitation on the area and from intermittent spring flow. Groundwater occurs in the alluvial deposits and in the consolidated rocks where they are highly fractured or deeply weathered. The best potential for groundwater development on the reservation is in the small alluvial basins in the San Ysidro and San Ignacio areas. Most water on the reservation is good to excellent in chemical quality for domestic, stock, and irrigation use. Water from two wells (and one spring), however, exceeds the primary drinking-water standard for nitrate plus nitrate. (USGS)

  12. Water Budgets and Potential Effects of Land- and Water-Use Changes for Carson Valley, Douglas County, Nevada, and Alpine County, California

    USGS Publications Warehouse

    Maurer, Douglas K.; Berger, David L.

    2006-01-01

    To address concerns over continued growth in Carson Valley, the U.S. Geological Survey, in cooperation with Douglas County, Nevada, began a study in February 2003 to update estimates of water-budget components in Carson Valley. Estimates of water-budget components were updated using annual evapotranspiration (ET) rates, rates of streamflow loss to infiltration and gain from ground-water seepage, and rates of recharge from precipitation determined from data collected in 2003 and 2004 for the study and reported in the literature. Overall water budgets were developed for the area of basin-fill deposits in Carson Valley for water years 1941-70 and 1990-2005. Water years 1941-70 represent conditions prior to increased population growth and ground-water pumping, and the importation of effluent. A ground-water budget was developed for the same area for water years 1990-2005. Estimates of total inflow in the overall water budget ranged from 432,000 to 450,000 acre-feet per year (acre-ft/yr) for water years 1941-70 and from 430,000 to 448,000 for water years 1990-2005. Estimates of total inflow for both periods were fairly similar because variations in streamflow and precipitation were offset by increases in imported effluent. Components of inflow included precipitation on basin-fill deposits of 38,000 acre-ft/yr for both periods, streamflow of the Carson River and tributaries to the valley floor of 372,000 acre-ft/yr for water years 1941-70 and 360,000 acre-ft/yr for water years 1990-2005, ground-water inflow ranging from 22,000 to 40,000 acre-ft/yr for both periods, and imported effluent of 9,800 acre-ft/yr for water years 1990-2005 with none imported for water years 1941-70. Estimates of ground-water inflow from the California portion of Carson Valley averaged about 6,000 acre-ft/yr and ranged from 4,000 to 8,000 acre-ft/yr. These estimates compared well with a previous estimate of ground-water inflow across the State line. Estimates of total outflow in the overall water

  13. Geology and ground-water resources of Platte County, Wyoming, with a section on Chemical quality of the water

    USGS Publications Warehouse

    Morris, D.A.; Babcock, H.M.; Langford, R.H.

    1960-01-01

    Platte County, Wyo., has an area of 2,114 square miles and, in 1950, had a population of 7,925; it lies within parts of two major physiographic provinces, the northern extension of the Southern Rocky Mountains and the northwestern part of the Great Plains. The Laramie Range and related structures lie along the western margin of the county and constitute the eastern limit of the Rocky Mountain Front Range. The High Plains section of the Great Plains province extends eastward from the Laramie Range over the remainder of the county. The original surface of the High Plains has been deeply eroded, and in the northeastern part of the county it is broken by the broad uplifted structural platform of the Hartville Hills. The North Platte River and its tributaries have entrenched their channels as much as 1,000 feet into the plains, leaving wide, very flat intervalley areas that are interrupted by a few isolated buttes and outlying ridges. Well-defined terraces, locally called the Wheatland Flats, have been formed in central Platte County. The climate is semiarid, the average annual precipitation being about 15 inches. Farming and stockraising are the principal occupations in the county. Most of the rocks exposed in the county are of Tertiary and Quaternary age, although rocks as old as Precambrian crop out locally. The Arikaree and Brule formations and younger deposits, including Tertiary ( ?) deposits (undifferentiated) and terrace, flood-plain, and other alluvial deposits, underlie more than two-thirds of the county. Mesozoic, Paleozoic, and Precambrian rocks crop out in the other third and underlie the younger rocks at great depths elsewhere. Small supplies of ground water adequate for domestic and stock use can be obtained from shallow wells in the Casper, Hartville, Cloverly, Brule, and Arikaree formations and in the terrace and flood-plain deposits. Small to moderate amounts of ground water can be obtained from the 'Converse sand' of the Hartville formation. Several

  14. Geochemical Relations between Surface Water and Groundwater In Fractured Rock In Nevada County, CA

    NASA Astrophysics Data System (ADS)

    Soltero, E.

    2013-12-01

    The Sierra Nevada foothills in the South Yuba River basin Nevada County, CA is underlain by plutonic, metabasic rocks of pre-Tertiary age. Fifty-six water samples from five sites were analyzed for spatial and temporal variations using stable isotopes of water and major element chemistry. Hydrogeochemical data from surface water and groundwater indicate site specific, depth related spatial variations. Temporal variations are evident in most surface water data and absent in most groundwater data. Data for 18O and deuterium (D) plot close to the global meteoric water line confirming a meteoric source and minimal subsequent evaporative fractionation or effects of gas-water-rock interactions. An altitude effect presented in surface and groundwater data as a 0.1 per mil decrease in δ 18O and a 0.5- 0.7 per mil decrease in δ D per 30.5 meter (100ft) increase between 305 and 884 meters (1,000 and 2,900 feet) in elevation. Major element chemistry was dominated by sodium, magnesium, and calcium bicarbonate in dilute concentrations. Most groundwater data had higher Ca/Na (1.8:1), Ca/Mg (4:3), and HCO3- /Cl- (3:1) ratios than surface water data from the same site, indicative of local gas-water-rock interactions or mixing of infiltrating water with other groundwater sources. Most deep groundwater data (>91 meters or 300ft) had similar Ca/Na (0.9:1), and higher Ca/Mg (1.6:1) and HCO3- /Cl- (1.6:1) ratios than shallow groundwater data. Most groundwater samples were under saturated or close to saturation with respect to calcite. Aqueous speciation modeling, EQ3NR version 7.2c, adjusted for lab conditions, indicated acceptable charge balance relations. Most water data are consistent with fracture flow in the granitic and metamorphic rocks of the region. Data suggest a precipitation dominated hydrologic regime where local surface waters are related to local groundwaters. Most data indicate that infiltration by way of secondary porosity contributes to groundwater production in

  15. Availability of ground water near Carmel, Hamilton County, Indiana

    USGS Publications Warehouse

    Gillies, D.C.

    1976-01-01

    Flow in the unconsolidated glacial deposits near the city of Carmel in central Indiana was simulated by a digital-computer model in a study of hydraulic characteristics of the deposits. The study shows that 21.3 million gallons per day (933 litres per second) of additional water could be withdrawn from the aquifer for an indefinite period of time. This pumpage is approximately 5 million gallons per day (219 1itres per second) above the projected water needs of Carmel for 1990. Saturated thickness, transmissivity, and storage coefficient of the outwash aquifer along the White River east of Carmel were determined, using available data supplemented by test drilling . The saturated thickness of the aquifer ranges f r om 10 to 110 feet 0 to 34 me tres); transmissivity ranges from 1,000 feet squared per day (93 metres squared per day) to 24 ,000 feet squared per day (2 ,230 metres squared per day); and the average storage coefficient is 0.11.

  16. Hydrogeology and ground-water availability in the carbonate aquifer system of Frederick County, Virginia

    USGS Publications Warehouse

    Harlow,, George E.; Orndorff, Randall C.; Nelms, David L.; Weary, David J.; Moberg, Roger M.

    2005-01-01

    The carbonate aquifer system of the northern Shenandoah Valley provides an important water supply to local communities, including Frederick County, Va., which depends on ground water as a source of water supply. The county and surrounding area are undergoing increased urbanization, and increased demands on the carbonate aquifer system are expected. A study was conducted between October 2000 and March 2004 by the U.S. Geological Survey (USGS), in cooperation with the County of Frederick, Va., to describe the hydrogeology and ground-water availability in the carbonate aquifer system underlying the county. The study area encompasses about 25 percent (105 square miles) of the county that is underlain by carbonate bedrock. The carbonate aquifer system of Frederick County is in the Shenandoah Valley region of the Valley and Ridge Physiographic Province. Approximately 10,000 feet of folded and fractured Middle Cambrian to Upper Ordovician sedimentary rocks are exposed and are overlain by Pleistocene (?) and Holocene surficial deposits. All geologic units in the study area are considered to be aquifers. The geologic units are generally unconfined, fractured-rock aquifers that are recharged by precipitation and discharge locally to streams and springs, and by evapotranspiration. Stream density in the carbonate study area is less than in the remainder of the county, which is underlain by siliciclastic rock units. Most streams flow normal to strike (from the northwest towards the southeast) across the study area. These streams are characterized by shallow incisement and are usually limited to a single stream channel. In the southern third of the study area, streams flow parallel to strike (from the northeast towards the southwest) towards the deeply intrenched Cedar Creek. Springs are commonly located at the start of flows for all streams in the carbonate study area, and spring discharges are often a large portion of the streamflow (especially during drought conditions). The

  17. Hydrology and water quality of Geneva Lake, Walworth County, Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Goddard, Gerald L.; Mergener, Elizabeth A.; Rose, William J.; Garrision, Paul J.

    2002-01-01

    Direct measurements and indirect measurements based on sediment-core analyses indicate that the water quality of Geneva Lake has degraded in the last 170 years, the greatest effects resulting from urbanization. Sedimentation rates were highest between 1900 to 1930, and phosphorus concentrations were highest between the 1930s to early 1980s. As a result of the recent reduction in phosphorus loading, in-lake near-surface phosphorus concentrations decreased from 20.25 ?g/L to about 10.15 ?g/L and are similar to those estimated for the lake in the early 1900s. Concentrations of other chemical constituents associated with urban areas, however, have continually increased, especially in Williams Bay and Geneva Bay.

  18. Development, description, and application of a geographic information system data base for water resources in Karst Terrane in Greene County, Missouri. Water resources investigation

    SciTech Connect

    Waite, L.A.; Thomson, K.C.

    1993-12-31

    A geographic information system data base was developed for Greene County, Missouri, to provide data for use in the planning for the protection of water resources. The data base contains the following map layers: geology, cave entrances and passages, county and quadrangle boundary, dye traces, faults, geographic names, hypsography, hydrography, lineaments. Ozark aquifer potentiometric surface, public land survey system, sinkholes, soils, springs, and transportation.

  19. Geology, water resources and usable ground-water storage capacity of part of Solano County, California

    USGS Publications Warehouse

    Thomasson, H.G.; Olmsted, F.H.; LeRoux, E.F.

    1960-01-01

    The area described is confined largely to the valley-floor and foothill lands of Solano County, which lies directly between Sacramento, the State capital, and San Francisco. The area is considered in two subareas: The Putah area, which extends from Putah Creek southward to the Montezuma Hills and from the foothills of the Coast Ranges eastward to the west edge of the Yolo Bypass; and the Suisun-Fairfield area, which is to the southwest in the notch in the Coast Ranges through which the waters of the Great Central Valley of California reach San Francisco Bay. There are no known hydrologic interconnections between the two subareas, through either surface streams or underground aquifers. The climate of the area is characterized by warm, rainless summers and by cool winters in which temperatures seldom drop much below freezing. The rainfall ranges from about 17 inches per year along the east side to perhaps 24 inches in the foothills to the west, and irrigation is necessary for all crops except dry-farmed grains, pastures, and some orchards. PUTAH AREA The Putah area occupies the southwestern corner of the Sacramento Valley, a topographic and structural basin underlain by a thick accumulation of sediments eroded from the surrounding hills and mountains by the Sacramento River and its tributaries. The eastern Coast Ranges and foothills lying west of the Sacramento Valley are a generally northward-trending belt of eastward-dipping sedimentary rocks that range in age from Cretaceous to Pleistocene. Successively younger strata are exposed eastward, and the essentially undeformed deposits of late Pleistocene and Recent age that immediately underlie the valley lap onto the tilted sediments of the foothills. Most of the streams of the Putah area rise east of the high ridge of Cretaceous rocks marking the western boundaries of Solano and Yolo Counties, but Putah Creek, the largest stream in the area, rises far west of that ridge and flows across it in a deep, narrow canyon

  20. Mesocarnivore Surveys on Lawrence Livermore National Laboratory Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect

    Clark, H O; Smith, D A; Cypher, B L; Kelly, P A; Woollett, J S

    2004-11-16

    Lawrence Livermore National Laboratory (LLNL), operated under cooperative agreement between the University of California and the U. S. Department of Energy, administers and operates an approximately 11 mi{sup 2} (28 km{sup 2}) test site in the remote hills at the northern end of the South Coast Ranges of Central California (Figure 1). Known as Site 300, this expanse of rolling hills and canyons supports a diverse array of grassland communities typical of lowland central California. The facility serves a variety of functions related to testing non-nuclear explosives, lasers, and weapons subsystems. The primary purpose of this project was to determine the presence of any mesocarnivores on Site 300 that use the property for foraging, denning, and other related activities. The surveys occurred from mid-September to mid-October, 2002.

  1. Revised long-term creep rates on the Hayward Fault, Alameda and Contra Costa Counties, California

    USGS Publications Warehouse

    Lienkaemper, James J.; Galehouse, Jon S.

    1997-01-01

    Although the Hayward fault is a source of major earthquakes, it also creeps or slips aseismically, and has done so steadily for several decades (certainly since 1921 and probably since 1869). Most of the fault creeps between 3 and 6 mm/yr, except for a 4- to 6-km-long segment near its south end that creeps at about 9 mm/yr. We present results of our recent surveys to recover angles and deflection lines established across the fault in the 1960s and 1970s, but unmonitored since. We have added data from more offset cultural features to the long-term creep rate data set and made substantial improvements to the analytical method used to compute offsets. The revised creep rate values improve our knowledge of spatial and temporal variation along the fault. The more accurate revised data has reduced the estimate of the average creep rate along most of the fault from 5.1 mm/yr to 4.6 mm/yr. Creep rates in the 9 mm/yr section near the south end have remained the same.

  2. Cultural resource inventory of Lawrence Livermore National Laboratory's Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect

    Busby, C.I.

    1981-05-01

    A Class III cultural resources inventory was undertaken of ca. 7000 acres of Lawrence Livermore National Laboratory's Site 300 property. Twenty-four cultural resource properties and twenty-five site types were located and recorded. Of the properties, three are prehistoric, twenty historic and one is a multicomponent site. Historic cultural resources comprise 83% of the total site assemblage. In terms of defined site types, historic petroglyphs and structures are the most representative of the recorded cultural resources. A brief site locale analysis, utilizing the inventory data, indicates that cultural resources occurrence is associated more strongly with the canyon-gully landforms than the foothills. Based on this analysis, it is probable that there is a greater probability of impacting cultural resources when projects occur in and around canyon-gully areas. The majority of the sites are either of CRES S3 or S4 significance (low significance) and while they merit consideration by Lawrence Livermore National Laboratory, that consideration should be mostly of a defensive nature.

  3. Hydrogeologic framework, availability of water supplies, and saltwater intrusion, Cape May County, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Carleton, Glen B.

    2002-01-01

    During 1960-90, saltwater intrusion forced the abandonment of at least 10 public-supply wells, 3 industrial-supply wells, and more than 100 domestic-supply wells in Cape May County, N.J. Actual or imminent ground-water contamination caused by land-use practices and human activities has forced the closure of at least six shallow public-supply wells and many domestic-supply wells. Freshwater in Cape May County flows in many small streams and is held in wetlands and natural and artificial ponds. More importantly, freshwater from precipitation passes through and is stored in five aquifers-- Holly Beach water-bearing zone, estuarine sand aquifer, Cohansey aquifer, Rio Grande water-bearing zone, and Atlantic City 800-foot sand. Surface-water discharges were measured at 14 stream sites. The Tuckahoe River is the largest stream in Cape May County. The mean annual discharge for the Tuckahoe River at Head of River was 43.8 ft3/s (cubic feet per second) or 10,800 Mgal/yr (million gallons per year) during the period of record (1969-93). Mean daily discharge ranged from 25 ft3/s or 16 Mgal/d in September to 73 ft3/s or 47 Mgal/d in April. Mean daily discharge at the eight largest streams wholly within the county ranged from 15.9 to 3.05 ft3/s (3,750 to 720 Mgal/yr). Total water use in the county was about 8,600 Mgal/yr in 1990, including about 25 Mgal/yr of surface water, 3,000 Mgal/yr from the Holly Beach water-bearing zone, 1,000 Mgal/yr from the estuarine sand aquifer, 2,200 Mgal/yr from the Cohansey aquifer, 200 Mgal/yr from the Rio Grande water-bearing zone, and 2,200 Mgal/yr from the Atlantic City 800-foot sand. Water-level data collected during April 1991 for more than 200 wells show that in some locations ground-water flow directions and rates have changed when compared with those shown on historical potentiometric-surface maps. In 1991, water levels in the Holly Beach water-bearing zone were nearly identical to levels prior to development. A cone of depression has

  4. Availability and chemical characteristics of ground water in central La Plata County, Colorado

    USGS Publications Warehouse

    Brogden, R.E.; Giles, T.F.

    1976-01-01

    The central part of La Plata County, Colo., has undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in central La Plata County include: alluvium, Animas Formation of Quaternary and Tertiary age, Fruitland Formation, Pictured Cliffs Sandstone, three formations of the Mesa Verde Group, the Mancos Shale, Dakota Sandstone, Morrison Formation of Cretaceous and Jurassic age, and undifferentiated formations. Well yields generally are low, usually less than 25 gallons per minute. However, higher yields, 25 to 50 gallons per minute may be found locally in aquifers in the alluvium and the Animas Formation. The quality of water from the aquifers is dependent on rock type. Most of the water is a calcium bicarbonate type. However, aquifers that are predominantly fine-grained or contain interbeds of shale may contain sodium bicarbonate type water. The dissolution of minerals in the coal beds, which are present in the Mesa Verde Group and the Dakota Sandstone, can contribute high concentrations of iron, sulfate, and chloride to ground water. (Woodard-USGS)

  5. Hydrology and chemical quality of ground water in Crowley County, Colorado

    USGS Publications Warehouse

    Cain, Doug; Ryan, Barbara J.; Emmons, Patrick J.

    1980-01-01

    Significant quantities of groundwater can be obtained from several alluvial water-table aquifers possibly from two deep confined sandstone aquifers in Crowley County, Colo. The major water-table aquifer is the alluvium along the Arkansas River valley where well yields may be as much as 2,000 gallons per minute. Minor alluvial aquifers with well yields ranging from 5 to 200 gallons per minute occur in the drainage basins of Horse Creek, Bob Creek, and Sand Arroyo, and in alluvium underlying dune sand in the western part of the county. The Dakota Sandstone and the underlying Cheyenne Sandstone are the confined aquifers. The depth to the top of the Dakota Sandstone ranges from 700 to 3,600 feet below land surface. These aquifers are currently undeveloped but well yields may be as much as 275 gallons per minute. The chemical quality of water in the aquifers varies widely with dissolved solids ranging from about 400 to 8,000 milligrams per liter. On the basis of 35 analyses of water samples, only 2 samples met drinking-water standards for all constituents determined. In most instances, the water is suitable for agricultural uses. (USGS)

  6. Water-Quality Data for the Lower Russian River Basin, Sonoma County, California, 2003-2004

    USGS Publications Warehouse

    Anders, Robert; Davidek, Karl; Koczot, Kathryn M.

    2006-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, began a study to determine the chemical, microbiological, and isotopic composition of the surface water and ground water in selected areas of the Lower Russian River Basin, Sonoma County, California. This report is a compilation of the hydrologic and water-quality data collected from 10 Russian River sites, 1 gravel-terrace pit site, 12 ground-water sites, 11 tributary sites including Mark West Creek, and 2 estuary sites between the city of Healdsburg and the Pacific Ocean, for the period August 2003 to September 2004. Field measurements made included streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and turbidity. Water samples were analyzed for nutrients, major ions, total and dissolved organic carbon, trace elements, mercury, wastewater compounds, total coliform, Escherichia coli, Enterococci, Clostridium perfringens, and the stable isotopes of hydrogen and oxygen. Discharge measurements and sampling techniques were modified to accommodate the very low summer flows at most of the tributaries, and discharge measurements were made with an acoustic Doppler velocity meter at the estuary river site to overcome the complexities associated with tidal influences.

  7. Applying Bayesian Maximum Entropy to extrapolating local-scale water consumption in Maricopa County, Arizona

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Wentz, Elizabeth A.

    2008-01-01

    Understanding water use in the context of urban growth and climate variability requires an accurate representation of regional water use. It is challenging, however, because water use data are often unavailable, and when they are available, they are geographically aggregated to protect the identity of individuals. The present paper aims to map local-scale estimates of water use in Maricopa County, Arizona, on the basis of data aggregated to census tracts and measured only in the City of Phoenix. To complete our research goals we describe two types of data uncertainty sources (i.e., extrapolation and downscaling processes) and then generate data that account for the uncertainty sources (i.e., soft data). Our results ascertain that the Bayesian Maximum Entropy (BME) mapping method of modern geostatistics is a theoretically sound approach for assimilating the soft data into mapping processes. Our results lead to increased mapping accuracy over classical geostatistics, which does not account for the soft data. The confirmed BME maps therefore provide useful knowledge on local water use variability in the whole county that is further applied to the understanding of causal factors of urban water demand.

  8. Ground-water resources of the alluvial aquifers in northeastern Larimer County, Colorado

    USGS Publications Warehouse

    Hurr, R.T.; Schneider, P.A.

    1977-01-01

    Ground water is a source of municipal, domestic, stock, and irrigation supply for most of northeastern Larimer County, Colo. A study of the alluvial aquifers in the northeastern part of the county was conducted to determine volume of water in storage, rate and location of ground-water withdrawals, and chemical quality of the water with particular attention to dissolved solids, hardness, sulfate, and selenium. There are 251 large-capacity wells in the study area. Well yields range from about 80 gpm (gallons per minute) to a little over 1,800 gpm. Total volume of water in storage is about 133,000 acre-feet--32 ,000 acre-feet in the alluvium of Buckeye terrace and 101,000 acre-feet in the valley-fill aquifer associated with Boxelder Creek. Ground-water withdrawals for irrigation are about 25,000 acre-feet annually. The municipal wells pumped 210 acre-feet in 1974. The factors affecting ground-water quality are the quality of applied irrigation water, the amount of water lost to evapotranspiration during irrigation, and, to a lesser degree, solution of soluble material in the alluvium and in the bedrock at the base of the alluvium. Ground water at the north end of the Buckeye terrace contains only about 300 mg/liter dissolved solids. Recharge is from surface water containing less than 90 mg/liter dissolved solids. Concentrations of all constituents increase downgradient to the south due to solution and evaporative concentration. (Woodard-USGS)

  9. Water resources of Monroe County, New York, water years 2003-08: Streamflow, constituent loads, and trends in water quality

    USGS Publications Warehouse

    Hayhurst, Brett A.; Coon, William F.; Eckhardt, David A.V.

    2010-01-01

    This report, the sixth in a series published since 1994, presents analyses of hydrologic data in Monroe County for the period October 2002 through September 2008. Streamflows and water quality were monitored at nine sites by the Monroe County Department of Health and the U.S. Geological Survey. Streamflow yields (flow per unit area) were highest in Northrup Creek, which had sustained flows from year-round inflow from the village of Spencerport wastewater-treatment plant and seasonal releases from the New York State Erie (Barge) Canal. Genesee River streamflow yields also were high, at least in part, as a result of higher rainfall and lower evapotranspiration rates in the upper part of the Genesee River Basin than in the other study basins. The lowest streamflow yields were measured in Honeoye Creek, which reflected a decrease in flows due to the withdrawals from Hemlock and Canadice Lakes for the city of Rochester water supply. Water samples collected at nine monitoring sites were analyzed for nutrients, chloride, sulfate, and total suspended solids. The loads of constituents, which were computed from the concentration data and the daily flows recorded at each of the monitoring sites, are estimates of the mass of the constituents that was transported in the streamflow. Annual yields (loads per unit area) also were computed to assess differences in constituent transport among the study basins. All urban sites - Allen Creek and the two downstream sites on Irondequoit Creek - had seasonally high concentrations and annual yields of chloride. Chloride loads are attributed to the application of road-deicing salts to the county's roadways and are related to population and road densities. The less-urbanized sites in the study - Genesee River, Honeoye Creek, and Oatka Creek - had relatively low concentrations and yields of chloride. The highest concentrations and yields of sulfate were measured in Black Creek, Oatka Creek, and Irondequoit Creek at Railroad Mills and are

  10. The distribution of bromide in water in the Floridan aquifer system, Duval County, northeastern Florida

    USGS Publications Warehouse

    German, E.R.; Taylor, G.F.

    1995-01-01

    Although Duval County, Florida, has ample ground-water resources for public supply, the potential exists for a problem with excessive disinfectant by-products. These disinfectant by-products result from the treatment of raw water containing low concentrations of bromide and naturally occurring organic compounds. Because of this potential problem, the relation of bromide concentrations to aquifer tapped, well location and depth, and chemical characteristics of water in the Floridan aquifer system underlying Duval County were studied to determine if these relations could be applied to delineate water with low-bromide concentrations for future supplies. In 1992, water samples from 106 wells that tap the Floridan aquifer system were analyzed for bromide and major dissolved constituents. A comparison of bromide concentrations from the 1992 sampling with data from earlier studies (1979-80) indicates that higher bromide concentrations were detected during the earlier studies. The difference between the old and new data is probably because of a change in analytical methodology in the analysis of samples. Bromide concentrations exceeded the detection limit (0.10 milligrams per liter) in water from 28 of the 106 wells (26 percent) sampled in 1992. The maximum concentration was 0.56 milligrams per liter. There were no relations between bromide and major dissolved constituents, well depth, or aquifer tapped that would be useful for determining bromide concentrations. Areal patterns of bromide occurrence are not clearly defined, but areas with relatively high bromide concentrations tend to be located in a triangular area near the community of Sunbeam, Florida, and along the St. Johns River throughout Duval County.

  11. Ground-water resources of the North Beach Peninsula, Pacific County, Washington

    USGS Publications Warehouse

    Tracy, James V.

    1977-01-01

    The anticipated water demand of 425 million gallons per year for the North Brach Peninsula, Pacific County, Wash., can be met by properly developing the ground-water supplies of the area 's water-table aquifer. Of the approximately 77 inches of annual precipitation on the peninsula, an estimated 23 inches is lost to evapotranspiration, and approximately 36 inches is discharged by the water-table aquifer into the ocean and bay. The remaining water either runs off the surface or is leaked to a deeper aquifer that ultimately discharges to the ocean. At least 12 inches of the water that discharges naturally through the aquifer is available for additional development. This quantity of water is approximately equivalent to 860,000 gallons per day. Wells spaced at least 1,000 feet apart along the major axis of the peninsula and pumped at average rates of no more than 80 gallons per minute could ensure that water-level declines do not exceed 6 feet near the wells and 1 foot at the shoreline, thereby preventing seawater intrusion. Lowering of the water table may be beneficial in reducing waterlogging problems, but care must be taken not to lower the levels near cranberry bogs, which require a shallow water table. Treatment of the otherwise good quality water for iron may be required, as about 75 percent of the well water sampled from the aquifer had iron concentrations in excess of limits recommended by the U.S. Environmental Protection Agency. (Woodard-USGS)

  12. Ground-Water Conditions and Studies in the Brunswick-Glynn County Area, Georgia, 2007

    USGS Publications Warehouse

    Cherry, Gregory S.; Clarke, John S.

    2008-01-01

    The Upper Floridan aquifer is contaminated with saltwater in a 2-square-mile area of downtown Brunswick, Georgia. This contamination has limited the development of the ground-water supply in the Glynn County area. Hydrologic, geologic, and water-quality data are needed to effectively manage water resources. Since 1959, the U.S. Geological Survey has conducted a cooperative water-resources program with the City of Brunswick to monitor and assess the effect of ground-water development on saltwater contamination of the Floridan aquifer system. The potential development of alternative sources of water in the Brunswick and surficial aquifer systems also is an important consideration in coastal areas. During calendar year 2007, the cooperative water-resources monitoring program included continuous water-level recording of 13 wells completed in the Floridan, Brunswick, and surficial aquifer systems; collecting water levels from 22 wells to map the potentiometric surface of the Upper Floridan aquifer during July and August 2007; and collecting and analyzing water samples from 76 wells to map chloride concentrations in the Upper Floridan aquifer during July and August 2007. In addition, work was initiated to refine an existing ground-water flow model for evaluation of water-management scenarios.

  13. Availability of Ground-water in Marion County, Indiana

    USGS Publications Warehouse

    Meyer, William R.; Reussow, J.P.; Gillies, D.C.; Shampine, W.J.

    1975-01-01

    A series of model experiments were carried out to test the capacity of the aquifers to sustain increases in pumpage. In all of these, a new equilibrium was established within 6 years of simulated pumpage. In two of these experiments, water levels in the discharging wells were allowed to draw down to approximately half of the saturated thickness of the glacial-outwash aquifer. At this drawdown limit, the total discharge of wells in the system was found to be 59 million gallons per day (2.6 cubic second) assuming that the streams were fully connected to the upper third of the glacial-outwash aquifer. In two other experiments, discharging wells were allowed to drawdown an average of two-thirds of the saturated thickness of the glacial-outwash aquifer. At this limit, the total discharge was found to be 72 million gallons per day (3.2 cubic metres per second) using the conservative stream-aquifer connection, and 103 million gallons per day (4.5 cubic metres per second) assuming a full connection. Some dewatering of the aquifer was associated with the 72 million gallons per day (3.2 cubic metres per second) discharge. In all experiments, the amount that could be pumped from the confined aquifers without disturbing existing domestic wells was found to be small.

  14. Relation of nitrate concentrations in water to agricultural land use and soil type in Dakota County, Minnesota, 1990

    USGS Publications Warehouse

    Almendinger, James Edward

    1991-01-01

    Nitrate is commonly found in ground water in agricultural areas throughout the Midwest. The emphasis of this report is to relate differences in nitrate concentrations in ground water to agricultural land use and soil type. In addition, nitrate concentrations in streams, shallow ground water near the water table, and deeper ground water from 10 to 30 feet below the water table are tabulated for selected sites in Dakota County.

  15. Ground-water flow beneath levee 35A from conservation area 2B, Broward County, Florida

    USGS Publications Warehouse

    Swayze, L.J.

    1988-01-01

    Conservation Area 2B is an area of recharge for the surficial aquifer system in Broward County. Water stored in the conservation area provides the hydraulic potential for downward flow to the high permeability zone of the Biscayne aquifer. A 5.64 ft head differential (average for the period of record) between water levels in Conservation Area 2B and water levels in the adjacent levee 35A borrow canal causes water to leak into the canal at an average rate of about 0.0022 cu ft per sec per lineal foot of canal and accounts for a loss of 0.013 foot per day of surface water from Conservation Area 2B. Amounts of canal leakage and underflow are constantly changing and are dependent upon the head differential between Conservation Area 2B and the levee 35A borrow canal. (Author 's abstract)

  16. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  17. A water-quality assessment of the Burnham Creek Watershed, Polk County, Minnesota

    USGS Publications Warehouse

    Have, M.R.

    1975-01-01

    A water-quality assessment of the Burnham Creek watershed, Polk County, Minn., was made in May 1975. Surface waters were calcium magnesium bicarbonate types with 0.11 mg/liter or less of nitrite plus nitrate nitrogen and 0.10 mg/liter or less of total phosphorous. Fecal coliform bacteria concentrations were between 3 and 720 colonies per 100 milliliters and fecal Streptococci concentrations ranged between 19 and 1600 colonies per 100 milliliters. Pesticide concentrations were low in the stream bottom materials, but an increasing trend was apparent in the downstream direction. The benthic community was dominated by blackfly larvae.

  18. Reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Arizona

    USGS Publications Warehouse

    Metzger, Donald G.

    1957-01-01

    In accordance with a request from its cooperating agency, the Arizona State Land Department, the U.S. Geological Survey has made a brief reconnaissance of the water resources of the Lonesome Valley area, Yavapai County, Ariz., to determine the probable hydrologic effects of a proposed dam on Lynx Creek. The construction of this dam has been proposed by the Arizona Game and Fish Department, for recreational and fish-cultural purposes. Data on the geology of the area were furnished by Mrs. Medora M. Krieger, geologist, Geologic Division, U.S. Geological Survey, and the map was prepared by Floyd R. Twenter, geologist, Ground Water Branch.

  19. Compilation of Water-Resources Data and Hydrogeologic Setting for Brunswick County, North Carolina, 1933-2000

    USGS Publications Warehouse

    Fine, Jason M.; Cunningham, William L.

    2001-01-01

    Water-resources data were compiled for Brunswick County, North Carolina, to describe the hydrologic conditions of the County. Hydrologic data collected by the U.S. Geological Survey as well as data collected by other governmental agencies and reviewed by the U.S. Geological Survey are presented. Data from four weather stations and two surface-water stations are summarized. Data also are presented for land use and land cover, soils, geology, hydrogeology, 12 continuously monitored ground-water wells, 73 periodically measured ground-water wells, and water-quality measurements from 39 ground-water wells. Mean monthly precipitation at the Longwood, Shallotte, Southport, and Wilmington Airport weather stations ranged from 2.19 to 7.94 inches for the periods of record, and mean monthly temperatures at the Longwood, Southport, and Wilmington Airport weather stations ranged from 43.4 to 80.1 degrees Fahrenheit for the periods of record. An evaluation of land-use and land-cover data for Brunswick County indicated that most of the County is either forested land (about 57 percent) or wetlands (about 29 percent). Cross sections are presented to illustrate the general hydrogeology beneath Brunswick County. Water-level data for Brunswick County indicate that water levels ranged from about 110 feet above mean sea level to about 22 feet below mean sea level. Chloride concentrations measured in aquifers in Brunswick County ranged from near 0 to 15,000 milligrams per liter. Chloride levels in the Black Creek and Cape Fear aquifers were measured at well above the potable limit for ground water of 250 milligrams per liter set by the U.S. Environmental Protection Agency for safe drinking water.

  20. Vulnerability of ground water to atrazine leaching in Kent County, Michigan

    USGS Publications Warehouse

    Holtschlag, D.J.; Luukkonen, C.L.

    1997-01-01

    A steady-state model of pesticide leaching through the unsaturated zone was used with readily available hydrologic, lithologic, and pesticide characteristics to estimate the vulnerability of the near-surface aquifer to atrazine contamination from non-point sources in Kent County, Michigan. The modelcomputed fraction of atrazine remaining at the water table, RM, was used as the vulnerability criterion; time of travel to the water table also was computed. Model results indicate that the average fraction of atrazine remaining at the water table was 0.039 percent; the fraction ranged from 0 to 3.6 percent. Time of travel of atrazine from the soil surface to the water table averaged 17.7 years and ranged from 2.2 to 118 years.Three maps were generated to present three views of the same atrazine vulnerability characteristics using different metrics (nonlinear transformations of the computed fractions remaining). The metrics were chosen because of the highly (right) skewed distribution of computed fractions. The first metric, rm = RMλ (where λ was 0.0625), depicts a relatively uniform distribution of vulnerability across the county with localized areas of high and low vulnerability visible. The second metric, rmλ-0.5, depicts about one-half the county at low vulnerability with discontinuous patterns of high vulnerability evident. In the third metric, rmλ-1.0 (RM), more than 95 percent of the county appears to have low vulnerability; small, distinct areas of high vulnerability are present.Aquifer vulnerability estimates in the RM metric were used with a steady-state, uniform atrazine application rate to compute a potential concentration of atrazine in leachate reaching the water table. The average estimated potential atrazine concentration in leachate at the water table was 0.16 μg/L (micrograms per liter) in the model area; estimated potential concentrations ranged from 0 to 26 μg/L. About 2 percent of the model area had estimated potential atrazine concentrations

  1. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  2. Geohydrology and ground-water quality of east King County, Washington

    USGS Publications Warehouse

    Turney, G.L.; Kahle, S.C.; Dion, N.P.

    1995-01-01

    East King County is a 250-square-mile area east of Seattle underlain by as much as 1,200 feet of unconsolidated deposits of glacial and nonglacial origin. A surficial geology map and 12 geohydrologic sections were constructed and used to delineate 10 geohydrologic units, 4 of which are major aquifers. Annual precipitation over the study area averages 57 inches, of which 31 inches, or 413,000 acre-feet, enter the ground-water system as recharge. Some 98,500 acre-feet of ground water is estimated to discharge to surface water bodies each year, 9,540 acre-feet is discharged through springs, and 4,270 acre-feet is withdrawn from wells. The chemical quality of the ground water in east King County is typical of that in other areas of western Washington. The median dissolved-solids concen- tration of 124 samples analyzed was 115 milligrams per liter, and 95 percent of the water samples were classified as soft or moderately hard. The median nitrate concentration was 0.07 milligrams per liter, and no widespread nitrate contamination was apparent.

  3. Analysis of water-surface profiles in Leon County and the city of Tallahassee, Florida

    USGS Publications Warehouse

    Franklin, M.A.; Orr, R.A.

    1987-01-01

    Water surface profiles for the 10-, 25-, 50-, and 100-yr recurrence interval floods for most of the streams that drain developing areas of Leon County and the city of Tallahassee are presented. The principal streams studied are in the Lake Munson, Lake Lafayette, and Lake Jackson basins Peak discharges were computed from regression equations based on information gained from 15 streamflow stations in the area. Standard step-backwater procedures were used to determine the water-surface elevations for the streams. The flood elevations were generally higher than those in the Flood Insurance Studies for Tallahassee (1976) and Leon County (1982). The primary reason for the higher profiles is that peak discharges used in this report are larger than those used previously, largely due to changes in land use. The flood profiles for Bradford Brook, North Branch Gum Creek, and West Branch Gum Creek generally match those in the Leon County Flood Insurance Studies. Channel improvements in some areas would lower the flood elevation in that area, but would probably increase flooding downstream. (Lantz-PTT)

  4. Investigation of ground-water availability and quality in Orange County, North Carolina

    USGS Publications Warehouse

    Cunningham, William L.; Daniel, Charles C.

    2001-01-01

    A countywide inventory was conducted of 649 wells in nine hydrogeologic units in Orange County, North Carolina. As a result of this inventory, estimates of ground-water availability and use were calculated, and water-quality results were obtained from 51 wells sampled throughout the County from December 1998 through January 1999. The typical well in Orange County has an average depth of 208 feet, an average casing length of 53.6 feet, a static water level of 26.6 feet, a yield of 17.6 gallons per minute, and a well casing diameter of 6.25 inches. The saturated thickness of the regolith averages 27.0 feet and the yield per foot of total well depth averages 0.119 gallon per minute per foot. Two areas of the County are more favorable for high-yield wells.a west-southwest to east-northeast trending area in the northwestern part of the County, and a southwest to northeast trending area in the southwestern part of the County. Well yields in Orange County show little correlation with topographic or hydrogeologic setting. Fifty-one sampling locations were selected based on (a) countywide areal distribution, (b) weighted distribution among hydrogeologic units, and (c) permission from homeowners. The list of analytes for the sampling program consisted of common anions and cations, metals and trace elements, nutrients, organic compounds, and radon. Samples were screened for the presence of fuel compounds and pesticides by using immuno-assay techniques. Dissolved oxygen, pH, temperature, specific conductance, and alkalinity were measured in the field. The median pH was 6.9, which is nearly neutral, and the median hardness was 75 milligrams per liter calcium carbonate. The median dissolved solids concentration was 125 milligrams per liter, and the median specific conductance was 175 microsiemens per centimeter at 25 degrees Celsius. Orange County ground water is classified as a calcium-bicarbonate type. High nutrient concentrations were not found in samples collected for this

  5. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  6. Development of ground-water resources in Orange County, Texas, and adjacent areas in Texas and Louisiana, 1971-80

    USGS Publications Warehouse

    Bonnet, C.W.; Gabrysch, R.K.

    1982-01-01

    Although saltwater encroachment is evident in parts of southern Orange County, the encroachment is not expected to be detrimental if the ground-water pumping remains stable and the projected increase in demands for water is met with surface-water supplies.

  7. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  8. Drought-Trigger Ground-Water Levels in Chester County, Pennsylvania, for the Period of Record Ending May 2006

    USGS Publications Warehouse

    Cinotto, Peter J.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the Chester County Water Resources Authority (CCWRA), to update the drought-trigger water levels for the Chester County observation-well network. The Chester County observation-well network was established in 1973 through a cooperative agreement between the CCWRA and the USGS to monitor local ground-water levels and trends and to determine drought conditions. In 1990 and again in 1997, drought-warning and drought-emergency water-level triggers were determined for the majority of wells in the existing Chester County observation-well network of 23 wells. Since 1997, the Chester County observation-well network expanded to 29 wells, some of the original wells were destroyed, and additional monthly water-level observations were made to allow for better statistical relations. Because of these changes, new statistics for water-level triggers were required. For this study, 19 of the 29 wells in the observation-well network were used to compute drought-trigger water levels. An additional 'drought-watch water-level trigger' category was developed to make the Chester County drought-trigger water-level categories consistent with those implemented by the Pennsylvania Department of Environmental Protection (PaDEP). The three drought-trigger water-level categories, as defined by PaDEP are 1) 'drought watch' when at the 75th-percentile level; 2) 'drought warning' when at the 90th-percentile level; and 3) 'drought emergency' when at the 95th-percentile level. A revised methodology, resulting from longer periods of record representing ground-water and climatic conditions and changes in local water use, has resulted in some observed differences in drought-trigger water levels. A comparison of current drought-trigger water levels to those calculated in 1997 shows the largest mean annual change in percentile values was in northeastern Chester County. In this northeastern region, the

  9. Ground-Water Levels in Huron County, Michigan, 2006-07

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Fuller, L.M.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS initially operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham (H5r), Fairhaven (H9r), Grant (H2r), and Lake Townships (H25Ar) and summarized the data collected in an annual or bi-annual report (fig. 1). The agreement was altered in 2003, and beginning January 1, 2004, only wells H9r and H25Ar retained continuous water-level recorders, while wells H2r and H5r reverted to quarterly or periodic measurement status due to budget constraints. The decision of which two wells to discontinue was based on an analysis of the intrinsic value to Huron County of data from each well. Well H2r was selected for periodic measurement at that time because it is completed in the glacial aquifer, which is absent in much of Huron County and well H5r, which is completed in the Marshall aquifer, was selected because the water level in the well is often perturbed as a result of pumpage from nearby production wells and does not always reflect baseline conditions within the aquifer. USGS also has provided training for County or Huron Conservation District personnel to measure the water level in 24 of the wells on a quarterly basis. USGS personnel accompany County or Huron Conservation District personnel on a semi-annual basis to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the wells is summarized in an annual or bi-annual report. The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from

  10. Geohydrological characterization, water-chemistry, and ground-water flow simulation model of the Sonoma Valley area, Sonoma County, California

    USGS Publications Warehouse

    Farrar, Christopher D.; Metzger, Loren F.; Nishikawa, Tracy; Koczot, Kathryn M.; Reichard, Eric G.; Langenheim, V.E.

    2006-01-01

    The Sonoma Valley, located about 30 miles north of San Francisco, is one of several basins in Sonoma County that use a combination of ground water and water delivered from the Russian River for supply. Over the past 30 years, Sonoma Valley has experienced rapid population growth and land-use changes. In particular, there has been a significant increase in irrigated agriculture, predominantly vineyards. To provide a better understanding of the ground-water/surface-water system in Sonoma Valley, the U.S. Geological Survey compiled and evaluated existing data, collected and analyzed new data, and developed a ground-water flow model to better understand and manage the ground-water system. The new data collected include subsurface lithology, gravity measurements, groundwater levels, streamflow gains and losses, temperature, water chemistry, and stable isotopes. Sonoma Valley is drained by Sonoma Creek, which discharges into San Pablo Bay. The long-term average annual volume of precipitation in the watershed is estimated to be 269,000 acre-feet. Recharge to the ground-water system is primarily from direct precipitation and Sonoma Creek. Discharge from the ground-water system is predominantly outflow to Sonoma Creek, pumpage, and outflow to marshlands and to San Pablo Bay. Geologic units of most importance for groundwater supply are the Quaternary alluvial deposits, the Glen Ellen Formation, the Huichica Formation, and the Sonoma Volcanics. In this report, the ground-water system is divided into three depth-based geohydrologic units: upper (less than 200 feet below land surface), middle (between 200 and 500 feet), and lower (greater than 500 feet). Synoptic streamflow measurements were made along Sonoma Creek and indicate those reaches with statistically significant gains or losses. Changes in ground-water levels in wells were analyzed by comparing historical contour maps with the contour map for 2003. In addition, individual hydrographs were evaluated to assess temporal

  11. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    USGS Publications Warehouse

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  12. Records of wells, drillers' logs, water-level measurements, and chemical analyses of ground water in Harris and Galveston counties, Texas, 1980-84

    USGS Publications Warehouse

    Williams, James F.; Coplin, L.S.; Ranzau, C.E.; Lind, W.B.; Bonnet, C.W.; Locke, Glenn L.

    1987-01-01

    Information on major new water wells in Harris and Galveston Counties was compiled by the U.S. Geological Survey from 1980 to 1984. This report presents the results of the hydro!ogic data collection on new large-capacity and other selected wells, including well location and completion data, drillers 1 logs of the strata penetrated, water levels, and chemical quality of the produced water. These water-well data are supplementary to similar data on older wells in these counties and to descriptive evaluations of the ground-water resources which have been published previously.

  13. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    USGS Publications Warehouse

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  14. Ground-water-recharge rates in Nassau and Suffolk counties, New York

    USGS Publications Warehouse

    Peterson, D.S.

    1987-01-01

    Groundwater is the sole source of freshwater in Nassau and Suffolk Counties on Long Island; therefore, the rate at which precipitation replenishes the groundwater system may affect future water supplies in some areas. Annual precipitation on Long Island averages 45 inches per year, but less than 23 inches , or 50%, recharges the ground-water system. (Recharge is precipitation that percolates to the ground-water system naturally; it does not include water from stormwater basins or injection wells.) The rate of recharge varies locally and ranges from 29% to 57% of precipitation, depending on land use, season, and amount of storm sewering in the area. Recharge was calculated by subtracting evapotranspiration and direct runoff values from known precipitation values. Evapotranspiration was calculated by the Thornwaite and Mather method, and direct runoff rates to streams were calculated from streamflow records and size of known storm-sewer service areas. This report includes maps that depict precipitation, evapotranspiration, and rates of natural recharge in Nassau and Suffolk Counties for use in future hydrologic studies on Long Island. (Author 's abstract)

  15. Water management challenges in the context of agricultural intensification and endemic fluorosis: the case of Yuanmou County.

    PubMed

    Fang, Jing; Wu, Xinan; Xu, Jianchu; Yang, Xuefei; Song, Xiaoxiao; Wang, Guangan; Yan, Maosheng; Yan, Mei; Wang, Danni

    2011-12-01

    Yuanmou County in Yunnan Province, China is situated in a dry hot valley where annual evaporation is almost six times the annual rainfall and thus the county suffers from chronic water shortages. Since the early 1980s the county has taken advantage of local warm climate and focused its economic development strategy on commercial vegetable plantations. This strategy successfully brings high income to the local government and farmers, but increases water consumption and adds an extra stressor to the already diminished water resources. Yuanmou County is one of the endemic fluorosis hotspots in China where both dental and skeletal fluorosis cases have been found among local villagers that were diagnosed as being water-borne. Despite measures to adapt to water shortages and control fluorosis taken by the local government and communities, new challenges are emerging. Herein, we describe the water management challenges facing the county as well as document the coping strategies adopted by the government and communities, analyze remaining and emerging challenges, and suggest an ecohealth framework for better management of water resources in Yuanmou.

  16. Water management challenges in the context of agricultural intensification and endemic fluorosis: the case of Yuanmou County.

    PubMed

    Fang, Jing; Wu, Xinan; Xu, Jianchu; Yang, Xuefei; Song, Xiaoxiao; Wang, Guangan; Yan, Maosheng; Yan, Mei; Wang, Danni

    2011-12-01

    Yuanmou County in Yunnan Province, China is situated in a dry hot valley where annual evaporation is almost six times the annual rainfall and thus the county suffers from chronic water shortages. Since the early 1980s the county has taken advantage of local warm climate and focused its economic development strategy on commercial vegetable plantations. This strategy successfully brings high income to the local government and farmers, but increases water consumption and adds an extra stressor to the already diminished water resources. Yuanmou County is one of the endemic fluorosis hotspots in China where both dental and skeletal fluorosis cases have been found among local villagers that were diagnosed as being water-borne. Despite measures to adapt to water shortages and control fluorosis taken by the local government and communities, new challenges are emerging. Herein, we describe the water management challenges facing the county as well as document the coping strategies adopted by the government and communities, analyze remaining and emerging challenges, and suggest an ecohealth framework for better management of water resources in Yuanmou. PMID:22388462

  17. Ground-Water Levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998). The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was measured in Lake Huron

  18. Ground-Water Levels in Huron County, Michigan, 2004-05

    USGS Publications Warehouse

    Weaver, T.L.; Crowley, S.L.; Blumer, S.P.

    2006-01-01

    Executive Summary: In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to measure water levels at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships retained continuous waterlevel recorders, while the wells in Grant and Bingham Townships reverted primarily to periodic or quarterly measurement status. USGS also has provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 25 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 25 periodically or quarterly-measured wells is summarized in an annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998). The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for ground-water levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville or Harbor Beach, or both (National Oceanic and Atmospheric Administration, 2003-05), and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration, 2003-05). In March 2003, a new low-water level for the period from 1991 through 2005 was

  19. Hydrology and water quality of lakes and streams in Orange County, Florida

    USGS Publications Warehouse

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow

  20. Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio

    USGS Publications Warehouse

    Breen, K.J.; Dumouchelle, D.H.

    1991-01-01

    The hydrology and quality of ground water were evaluated for the surficial sand and carbonate aquifers in northwestern Ohio. A locally important surficial sand aquifer in western Lucas County was evaluated on the basis of data from 10 wells completed in undeveloped and developed areas. The carbonate aquifer in Silurian and Devonian bedrock at its northernmost extent on the Ohio mainland was evaluated on the basis of data from previous studies and data from 466 wells and 11 springs. Most data are for the period 1985-88. The unconfined surficial sand aquifer is less than 50 ft. (feet) thick. Clay-rich drift, which restricts vertical movement of water, underlines the aquifer. Recharge is from precipitation, and discharge is by evapotranspiration and by flow to local streams and drainage ditches. Water levels are generally 2 to 8 ft. below land surface and fluctuate a total of about 3.5 ft. seasonally in a forested area. Concentrations of iron and manganese in ground water are excessive in some areas. Waters from shallow drive-point wells in residential areas contained larger concentrations of dissolved solids, hardness, sodium, and chloride than did waters from identical wells in undeveloped areas. The presence of nitrate nitrogen an other selected constituents in ground water in residential areas, and the absence of these constituents in ground water in undeveloped areas, indicate that the surficial sand aquifer has been affected by development. In carbonate aquifer, fractures, bedding-plane joints, and other secondary openings are the principal water-bearing zones. These zones can be areally and stratigraphically separated by low-permeability rock. Leaky artesian or semiconfined conditions predominate beneath most of the 1,400-mi? study area. The aquifer is confined by relatively impermeable underlying shale of Silurian age and overlying clay-rich drift of Quaternary age. Unproductive strata, including evaporites, within the sequence of carbonate rocks also confine

  1. Availability of ground water in the area surrounding the Trident submarine construction facility, Kitsap County, Washington

    USGS Publications Warehouse

    Hansen, Arnold J.; Molenaar, Dee

    1976-01-01

    General information is presented on water resources--with emphasis on ground-water occurrence and availability--in that part of Kitsap County (referred to as Trident Impact Area) that would be most affected by the development of the Trident submarine construction facility at Bangor, Washington. The estimated 1970 water use in the study area averaged about 13 million gallons per day (mgd); of this amount about 9 mgd came from surface-water sources--from a large reservoir outside the study area--and about 4 mgd came from ground water pumped from two aquifers in the area. Anticipated water use soon will be about 18 to 21 mgd; virtually all the additional quantity required (about 5 to 8 mgd) above present use must come from ground-water sources. Preliminary evaluation of the aquifers suggests that an additional 1.5 mgd can be developed from the upper aquifer and 7 mgd from the lower aquifer. Existing wells tapping the lower aquifer might yield additional water and increase the total yield in the area by 3.5 mgd, and new wells drilled in selected areas could produce an additional 3.5 mgd from this aquifer. However, additional, large-scale ground-water withdrawal from the lower aquifer could induce saltwater intrusion into wells situated in coastal areas. (Woodard-USGS)

  2. Investigation of ethylene dibromide (EDB) in ground water in Seminole County, Georgia

    USGS Publications Warehouse

    McConnell, James B.; Hicks, D.W.; Lowe, L. E.; Cohen, S.Z.; Jovanovich, A.P.

    1984-01-01

    An investigation of ground water in Seminole County, Georgia, for ethylene dibromide (EDB) was conducted in August 1983 by the U.S. Geological Survey in cooperation with the Exposure Assessment Branch of the U.S. Environmental Protection Agency. The purpose of the investigation was to determine whether EDB, which was previously detected in ground-water samples from four neighboring wells, was localized in the vicinity of the wells or was more widespread in the ground-water system. EDB was detected in 6 of 19 wells sampled. Concentrations ranged from 0.03 to 11.8 micrograms per liter. Five of the six samples that contained EDB were collected from irrigation wells, and one was collected from a domestic well. Concentrations of 4.5 and 11.8 micrograms per liter were found in two irrigation wells located near Buck Hole, a sinkhole in a swampy depression in central Seminole County. EDB was not detected in samples from the remaining 10 irrigation and 3 domestic wells and the surface-water site (detection level less than 0.01 microgram per liter). Nine core samples were collected from a borehole near one of the irrigation wells that had high EDB concentrations. EDB was found in a core sample near the surface and in samples from depths of 24 to 25, 34 to 35, and 39 to 40 feet in the residuum. EDB concentrations in the core samples ranged from 0.06 to 2.4 micrograms per kilogram. EDB in the aquifer was found in a 4-square-mile area of the county in the vicinity of Buck Hole. EDB application information and the local hydrogeology indicate that EDB contamination in ground water in Seminole County probably is due to soil fumigation with EDB. Apparently, EDB moves downward through the residuum and, through undetermined pathways, enters the aquifer. However, because the high concentration of EDB in the aquifer seems to be localized in the Buck Hole area, the possibility of contamination from an EDB fumigant spill cannot be disregarded at this time.

  3. Ground-water resources of McKenzie County, North Dakota. Part III

    SciTech Connect

    Croft, M.G.

    1985-01-01

    Ground water suitable for domestic and livestock supplies in McKenzie County is available from three aquifer systems in semiconsolidated rocks of Late Cretaceous and Tertiary age. Ground water from aquifers in unconsolidated sand and gravel of Quaternary age is suitable for domestic, livestock, municipal, industrial, and irrigation uses. Rocks older than Late Cretaceous age extend to 15,000 feet (4572 meters) and generally contain brackish water that is unsuitable for most purposes. The Fox Hills and basal Hell Creek aquifer system is used as a source for livestock and domestic supplies. It generally is 1100 to 1800 feet (335 to 549 meters) in depth, and the transmissivity is 200 to 300 feet squared per day (19 to 28 meters squared per day). The water is lower in dissolved solids than water in overlying aquifers of Tertiary age and has a median dissolved-solids concentration of about 1325 milligrams per liter. Wells may yield 100 gallons per minute (6.3 liters per second). Six aquifers, each consisting of 50 to 176 feet (15 to 54 meters) of unconsolidated sand and gravel of Quaternary age, occur in McKensie County. The sand and gravel could yield 100 to more than 500 gallons per minute (6.3 to 32 liters per second). The water from four of the aquifers generally is a sodium bicarbonate type and has a median dissolved-solids concentration of 1100 to 2330 milligrams per liter. Water from the Charbonneau, Tobacco Garden, and Yellowstone-Missouri aquifers is suitable for irrigation. 26 figs., 9 tabs.

  4. Water-quality characteristics and ground water quantity of the Fraser River Watershed, Grand County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bauch, Nancy J.; Bails, Jeffrey B.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Grand County Board of County Commissioners, conducted a 4-year study to assess ground- and surface-water-quality conditions and ground-water quantity in the 302-square-mile Fraser River watershed in north-central Colorado. The Fraser River flows north about 28 miles from the headwaters near the Continental Divide, through the towns of Winter Park, Fraser, Tabernash, and Granby, and is one of the major tributaries to the Upper Colorado River. Increasing urban development, as well as the seasonal influx of tourists, is placing more demands on the water resources in the Fraser River watershed. A ground-water sampling network of 11 wells was established to represent different aquifer systems (alluvial, Troublesome Formation, Precambrian granite), land uses (urban, nonurban), and areas with or without individual septic disposal system use. The well network was sampled for ground-water quality on a semiannual basis from August 1998 through September 2001. The sampling included field properties and the collection of water samples for analysis of major ions, trace elements, nutrients, dissolved organic carbon, bacteria, methylene blue active substances, and radon-222. One surface-water site, on the Fraser River just downstream from the town of Tabernash, Colorado, was sampled bimonthly from August 1998 through September 2001 to assess the cumulative effects of natural and human processes on water quality in the upper part of the Fraser River watershed. Surface-water-quality sampling included field properties and the collection of water-quality samples for analysis of major ions, trace elements, nutrients, organic carbon, and bacteria. Ground water was a calcium-bicarbonate type water and is suitable as a drinking-water, domestic, municipal, industrial, and irrigation source. In general, no widespread ground-water-quality problems were indicated. All pH values and concentrations of dissolved solids, chloride, fluoride

  5. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority

    USGS Publications Warehouse

    Bexfield, Laura M.; Anderholm, Scott K.

    2008-01-01

    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to

  6. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    A ground-water flow model was used in conjunction with particle tracking to evaluate ground-water vulnerability in Clark County, Washington. Using the particle-tracking program, particles were placed in every cell of the flow model (about 60,000 particles) and tracked backwards in time and space upgradient along flow paths to their recharge points. A new computer program was developed that interfaces the results from a particle-tracking program with a geographic information system (GIS). The GIS was used to display and analyze the particle-tracking results. Ground-water vulnerability was evaluated by selecting parts of the ground-water flow system and combining the results with ancillary information stored in the GIS to determine recharge areas, characteristics of recharge areas, downgradient impact of land use at recharge areas, and age of ground water. Maps of the recharge areas for each hydrogeologic unit illustrate the presence of local, intermediate, or regional ground-water flow systems and emphasize the three-dimensional nature of the ground-water flow system in Clark County. Maps of the recharge points for each hydrogeologic unit were overlaid with maps depicting aquifer sensitivity as determined by DRASTIC (a measure of the pollution potential of ground water, based on the intrinsic characteristics of the near-surface unsaturated and saturated zones) and recharge from on-site waste-disposal systems. A large number of recharge areas were identified, particularly in southern Clark County, that have a high aquifer sensitivity, coincide with areas of recharge from on-site waste-disposal systems, or both. Using the GIS, the characteristics of the recharge areas were related to the downgradient parts of the ground-water system that will eventually receive flow that has recharged through these areas. The aquifer sensitivity, as indicated by DRASTIC, of the recharge areas for downgradient parts of the flow system was mapped for each hydrogeologic unit. A number of

  7. Ground-Water Levels in Huron County, Michigan, 2002-03

    USGS Publications Warehouse

    Weaver, T.L.; Blumer, S.P.; Crowley, S.L.

    2008-01-01

    In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to collect water-level altitudes (hereafter referred to as water levels) at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships will have continuous water-level recorders, while the wells in Grant and Bingham Townships will revert to quarterly measurement status. USGS has also provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 23 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 23 quarterly-measured wells is also summarized in the annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998). The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville and Harbor Beach, and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration [NOAA], 2002-04; Danny Costello, NOAA hydrologist, written commun., 2003-04). In March 2003, a new low-water level for the period of this study was measured in

  8. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer

  9. Effects of irrigation water supply variations on limited resource farming in Conejos County, Colorado

    NASA Astrophysics Data System (ADS)

    Eckert, Jerry B.; Wang, Erda

    1993-02-01

    Farms in NE Conejos County, Colorado, are characterized by limited resources, uncertain surface flow irrigation systems, and mixed crop-livestock enterprise combinations which are dependent on public grazing resources. To model decision making on these farms, a linear program is developed stressing enterprise choices under conditions of multiple resource constraints. Differential access to grazing resources and irrigation water is emphasized in this research. Regarding the water resource, the model reflects farms situated alternatively on high-, medium-, and low-priority irrigation ditches within the Alamosa-La Jara river system, each with and without supplemental pumping. Differences are found in optimum enterprise mixes, net returns, choice of cropping technology, level of marketings, and other characteristics in response to variations in the availability of irrigation water. Implications are presented for alternative improvement strategies.

  10. Ground-water quality in northern Ada County, lower Boise River basin, Idaho, 1985-96

    USGS Publications Warehouse

    Parliman, D.J.; Spinazola, Joseph M.

    1998-01-01

    In October 1992, the U.S. Geological Survey (USGS), in cooperation with the Idaho Division of Environmental Quality, Boise Regional Office (IDEQ-BRO), began a comprehensive study of ground-water quality in the lower Boise River Basin. The study in northern Ada County has been completed, and this report presents selected results of investigations in that area. Results and discussion presented herein are based on information in publications listed under “References Cited” on the last page of this Fact Sheet.

  11. Classification of ground-water recharge potential in three parts of Santa Cruz County, California

    USGS Publications Warehouse

    Muir, K.S.; Johnson, Michael J.

    1979-01-01

    Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

  12. Saline-water intrusion related to well construction in Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  13. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    NASA Astrophysics Data System (ADS)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  14. Occurrence and quality of ground water in southwestern King County, Washington

    USGS Publications Warehouse

    Woodward, D.G.; Packard, F.A.; Dion, N.P.; Sumioka, S.S.

    1995-01-01

    The 250-square mile study area in southwestern King County, Washington is underlain by sediments as much as 2,200 feet thick, deposited during at least four continental glacial/interglacial periods. Published surficial geologic maps and drillers' lithologic logs from about 700 field-located wells were used to prepare 28 geologic sections; these sections were used to delineate 9 hydrogeologic units--5 aquifers, 3 confining beds, and a basal, undifferentiated unit. Two aquifers in these sediments occur at the land surface. Maps depicting the configuration of the tops of three buried aquifers show the extent and the geometry of those aquifers. Maps showing the thickness of two of the three buried aquifers also were prepared. Potentiometric-surface maps for the major aquifers are based on water levels measured in about 400 wells during April 1987. Hydraulic characteristics of the major aquifers are mapped using more than 1,100 specific-capacity calculations and about 240 hydraulic-conductivity determinations from selected wells. Estimates of the average annual recharge to the ground-water system from precipitation for the entire study area were based on relations determined from modeling selected basins. Discharges from the ground-water system were based on estimates of springflow and diffuse seepage from the bluffs surrounding the uplands, and on the quantity of water withdrawn from high-capacity wells. A total of 242 water samples was collected from 217 wells during two mass samplings and analyzed for the presence of common constituents. Samples also were collected and analyzed for heavy metals, boron, detergents, and volatile organic compounds. These analyses indicated there was no widespread degradation of ground-water quality in southwestern King County.

  15. Hydrogeology and Ground-Water Quality, Chippewa Township, Isabella County, Michigan, 2002-05

    USGS Publications Warehouse

    Westjohn, David B.; Hoard, Chris J.

    2006-01-01

    The ground-water resource potential of Chippewa Township, Isabella County, Mich. was characterized on the basis of existing hydrogeologic data, water-level records, analyses of water samples, and interpretation of geophysical survey data. Eight ground-water samples were collected and analyzed for major ions, nutrients, and trace-metal composition. In addition, 10 direct current-resistivity soundings were collected throughout Chippewa and Coe Townships to identify potential freshwater in the aquifer system. The aquifer system includes complexly interbedded glaciofluvial, glaciolacustrine, and basal-lodgment tills, which overlie Jurassic or Pennsylvanian sedimentary rocks. In parts of the township, freshwater is present in all geologic units, but in most areas saline water is encountered near the base of Pleistocene glacial deposits and in the Jurassic or Pennsylvanian bedrock. A near-surface sheet of relatively dense basal-lodgment till likely prevents, or substantially retards, significant direct recharge of ground water to glacial and bedrock aquifers in Chippewa and adjacent townships. Glacial sands and gravels form the principal aquifer for domestic wells (97.5 percent of wells in the township). The single community water supply in the township has wells screened in glacial deposits near the base of the glacial drift. Increased withdrawals of ground water in response to increasing demand has led to a slight decline in water quality from this supply. This water-quality decline is related primarily to an increase of dissolved sulfate, which is probably a function of well depth and dissolution of gypsum, a common mineral constituent in the Jurassic 'red beds,' which form the uppermost bedrock unit throughout most of the township. One explanation for the increase in sulfate is upconing of saline water from bedrock sources, which may contain saline water.

  16. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  17. How can hydrology inform economic policymaking? An assessment of water stress at the county level for the Northeastern United States using two concepts of water availability

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, C. A.; Nicoletti, C.; Hoover, J. H.; Voigt, B. G.; Vörösmarty, C.; Fekete, B. M.

    2010-12-01

    Motivated by the Dublin-Rio Principles for water management, there is a global call to recognize the economic dimension of the interaction between societies and water resources. As frequently stated in the scientific water literature, the complexity of this interaction demands conceptual integration among diverse disciplines to both understand the critical issues and to design a set of policies to regulate the use of this resource. Water economic policy, economists are frequently told, is to be based not only on sound economic principles and knowledge, but also on hydrological realities. This paper offers a contribution for such an integration by showing how the use of two hydrological concepts for available water changes the evaluation of water stress at the county level for the Northeastern US. The analysis further suggests patterns of source-dependency that are proposed as relevant for economic policy design. Using USGS estimations for water economic withdrawals for 1985 through 2005, and benefiting from runoff data for the same period obtained from the WBMplus hydrological model, two sets of county-specific water stress indicators (WSIs) are built as ratios of withdrawals to two concepts of available water: internal runoff generated within each county, and internal runoff plus incoming surface flows generated elsewhere. A vis-a-vis value comparison between these sets yields two main findings. First, changes in the values of WSIs higher than 50% are observed for almost 70% of the 433 counties considered, a fact that suggests that small-scale stress assessments are highly sensitive to the utilized concept of water supply. Second, counties’ dependence on water sources is heterogeneous and can be classified into three groups by whether they mainly depend on internal runoff, on incoming flows, or on the mining of groundwater. The classification criterion interprets counties as mainly depending on internal runoff or on groundwater when their pairs of WSIs are of

  18. Summary and statistical analysis of precipitation and groundwater data for Brunswick County, North Carolina, Water Year 2008

    USGS Publications Warehouse

    McSwain, Kristen Bukowski; Strickland, A.G.

    2010-01-01

    Groundwater conditions in Brunswick County, North Carolina, have been monitored continuously since 2000 through the operation and maintenance of groundwater-level observation wells in the surficial, Castle Hayne, and Peedee aquifers of the North Atlantic Coastal Plain aquifer system. Groundwater-resource conditions for the Brunswick County area were evaluated by relating the normal range (25th to 75th percentile) monthly mean groundwater-level and precipitation data for water years 2001 to 2008 to median monthly mean groundwater levels and monthly sum of daily precipitation for water year 2008. Summaries of precipitation and groundwater conditions for the Brunswick County area and hydrographs and statistics of continuous groundwater levels collected during the 2008 water year are presented in this report. Groundwater levels varied by aquifer and geographic location within Brunswick County, but were influenced by drought conditions and groundwater withdrawals. Water levels were normal in two of the eight observation wells and below normal in the remaining six wells. Seasonal Kendall trend analysis performed on more than 9 years of monthly mean groundwater-level data collected in an observation well located within the Brunswick County well field indicated there is a strong downward trend, with water levels declining at a rate of about 2.2 feet per year.

  19. Nature and chlorine reactivity of organic constituents from reclaimed water in groundwater, Los Angeles County, California

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Barber, L.B.; Schroeder, R.A.; Anders, R.; Davisson, M.L.

    2001-01-01

    The nature and chlorine reactivity of organic constituents in reclaimed water (tertiary-treated municipal wastewater) before, during, and after recharge into groundwater at the Montebello Forebay in Los Angeles County, CA, was the focus of this study. Dissolved organic matter (DOM) in reclaimed water from this site is primarily a mixture of aromatic sulfonates from anionic surfactant degradation, N-acetyl amino sugars and proteins from bacterial activity, and natural fulvic acid, whereas DOM from native groundwaters in the aquifer to which reclaimed water was recharged consists of natural fulvic acids. The hydrophilic neutral N-acetyl amino sugars that constitute 40% of the DOM in reclaimed water are removed during the first 3 m of vertical infiltration in the recharge basin. Groundwater age dating with 3H and 3He isotopes, and determinations of organic and inorganic C isotopes, enabled clear differentiation of recent recharged water from older native groundwater. Phenol structures in natural fulvic acids in DOM isolated from groundwater produced significant trihalomethanes (THM) and total organic halogen (TOX) yields upon chlorination, and these structures also were responsible for the enhanced SUVA and specific fluorescence characteristics relative to DOM in reclaimed water. Aromatic sulfonates and fulvic acids in reclaimed water DOM produced minimal THM and TOX yields.

  20. Water in sand and gravel deposits in McHenry County, Illinois

    SciTech Connect

    Nicholas, J.R.; Krohelski, J.T.

    1984-01-01

    Two general types of sand and gravel occur in McHenry County - unconfined aquifers, which are at or near the land surface, and semiconfined aquifers, which are overlain by one or more till members. Water levels in both types of aquifers are mapped from measurements made in the spring of 1979. The water-level configuration roughly parallels the land surface. Moraines and other topographically high features coincide with ground-water divides of local flow systems. Flow paths from divides to low-lands are relatively short - a few miles or less. Recharge predominates in uplands, whereas discharge predominates in lowlands. Water levels change seasonally in response to variations in recharge and discharge conditions. The highest water levels occur during spring and decline during the rest of the year. Ground water is of the calcium magnesium bicarbonate type and is of acceptable quality for most uses. However, for domestic and some industrial uses, treatment may be required to reduce hardness and to remove iron. Hardness ranged from 130 to 600 milligrams per liter as calcium carbonate, and dissolved iron concentrations ranges from less than 10 to 6200 micrograms per liter. The specific conductance of ground water ranged from 260 to 1170 micromhos per centimeter. Specific conductance exceeded 1000 micromhos per centimeter near Huntley and Hebron. Nitrate concentration was generally less than 0.68 milligrams per liter. 22 refs., 9 figs., 3 tabs.

  1. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    USGS Publications Warehouse

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  2. Quality of Water in Selected Wells, Harrison County, Mississippi, 1997-2005

    USGS Publications Warehouse

    Burt, David E.; Welch, Heather L.

    2007-01-01

    The U.S. Geological Survey collects, on a systematic basis, data needed to determine and evaluate the ground-water resources of Harrison County, Mississippi. Water samples were collected from 1997 to 2005 at selected wells screened in the Citronelle, Graham Ferry, Pascagoula, Hattiesburg, and Catahoula Sandstone aquifers and were analyzed for field properties (temperature, pH, specific conductivity, and color), total dissolved solids, chloride, iron, and manganese. The U.S. Environmental Protection Agency Secondary Drinking Water Regulation (SDWR) of 500 milligrams per liter for total dissolved solids was exceeded in water from three wells in the Hattiesburg aquifer and 12 wells in the Pascagoula aquifer. Chloride concentrations did not exceed the SDWR in any of the aquifers sampled, except for the Pascagoula aquifer where water in 10 wells had concentrations that exceeded the SDWR of 250 milligrams per liter. Iron concentrations in water from nine wells completed in the Graham Ferry and four wells completed in the Pascagoula aquifers exceeded the SDWR of 300 micrograms per liter. Thirty water samples collected from the Graham Ferry and 12 from the Pascagoula aquifer exceeded the SDWR of 50 micrograms per liter for manganese.

  3. Insights into the Interactions between Educational Messages: Looking across Multiple Organizations Addressing Water Issues in Maricopa County, Arizona

    ERIC Educational Resources Information Center

    Cutts, Bethany; Saltz, Charlene; Elser, Monica

    2008-01-01

    The public receives environmental information from a variety of sources. Evaluation of a single program or one organization's effort is incomplete. Through surveys and interviews, we evaluate the cumulative impact of outreach by 20 water-related organizations in Maricopa County, Arizona. Household water conservation is a topic addressed by 18…

  4. Availability and Quality of Water from Underground Coal Mines in Johnson and Martin Counties, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Cordivio1a, Steven; Risser, Dennis W.

    1981-01-01

    This report provides water users with detailed information on the location, quantity, and quality of water available from underground coal mines in the Breathitt Formation of Pennsylvanian age in part of eastern Kentucky. The principal coal seams mined are the Van Lear in Johnson County and the Alma in Martin County. Coal mines that contained water were located by field inventory and coal-mine maps. The principal factors that affect the occurrence of water in coal mines are the size of the recharge area overlying the mine, the intensity and duration of precipitation, and the altitude of the mine relative to that of the nearest perennial stream. Ten above-drainage mines (that is, mines at higher elevations than that of the nearest perennial stream) are considered potential sources of water. Discharge from these mines ranged from 12 to 1,700 gallons per minute. The highest sustained discharge from a mine ranged from 750 to 1,200 gallons per minute. The water in coal mines is part of the hydrologic system and varies seasonally with precipitation. Annual discharge from most above-drainage mines ranged from 3 to 10 percent of annual precipitation on the 1and-surface area above the mine. Eight below-drainage mines are considered potential sources of water. Two were test-pumped at rates of 560 to 620 gallons per minute for as long as 6 hours. After test pumping the Warfield Mining No. 1 mine during September 1977 and March 1978, the recovery (or recharge) rates were significantly different. In September, the recharge rate was about 1,150 gallons per minute, but in March the recharge rate was 103,500 gallons per minute. This difference reflects the seasonal variations in the amount of water available to the ground-water system. Estimates of water stored in below-drainage mines ranged from 22 to 1,462 million gallons. This storage represents a safety factor sufficient to provide water through periods of limited recharge to the mine. Most mine water is of the calcium

  5. Hydrogeology, ground-water quality, and potential for water-supply contamination near the Shelby County landfill in Memphis, Tennessee

    USGS Publications Warehouse

    Parks, W.S.; Mirecki, J.E.

    1992-01-01

    An investigation was conducted from 1989 to 1991 to collect and interpret hydrogeologic and ground-water-quality data specific to the Shelby County landfill in east Memphis, Tennessee. Eighteen wells were installed in the alluvial and Memphis aquifers at the landfill. Hydrogeologic data collected showed that the confining unit separating the alluvial aquifer from the Memphis aquifer was thin or absent just north of the landfill and elsewhere consists predominantly of fine sand and silt with lenses of clay. A water-table map of the landfill vicinity confirms the existence of a depression in the water table north and northeast of the landfill and indicates that ground water flows northeast from the Wolf River passing beneath the landfill toward the depression in the water table. A map of the potentiometric surface of the Memphis aquifer shows that water levels were anomalously high just north of the landfill, indicating downward leakage of water from the alluvial aquifer to the Memphis aquifer. An analysis of water-quality data for major and trace inorganic constituents and nutrients confirms that leachate from the landfill has migrated northeastward in the alluvial aquifer toward the depression in the water table and that contaminants in the alluvial aquifer have migrated downward into the Memphis aquifer. The leachate plume can be characterized by concentrations of certain major and trace inorganic constituents that are 2 to 20 times higher than samples from upgradient and background alluvial aquifer wells. The major and trace constituents that best characterize the leachate plume are total organic carbon, chloride, dissolved solids, iron, ammonia nitrogen, calcium, sodium, iodide, barium, strontium, boron, and cadmium. Several of these constituents (specifically dissolved solids, calcium, sodium, and possibly ammonia nitrogen, chloride, barium, and strontium) were detected in elevated concentrations in samples from certain Memphis aquifer wells. Elevated

  6. Water Resources of the Ground-Water System in the Unconsolidated Deposits of the Colville River Watershed, Stevens County, Washington

    USGS Publications Warehouse

    Kahle, Sue C.; Longpre, Claire I.; Smith, Raymond R.; Sumioka, Steve S.; Watkins, Anni M.; Kresch, David L.

    2003-01-01

    A study of the water resources of the ground-water system in the unconsolidated deposits of the Colville River Watershed provided the Colville River Watershed Planning Team with an assessment of the hydrogeologic framework, preliminary determinations of how the shallow and deeper parts of the ground-water system interact with each other and the surface-water system, descriptions of water-quantity characteristics including water-use estimates and an estimated water budget for the watershed, and an assessment of further data needs. The 1,007-square-mile watershed, located in Stevens County in northeastern Washington, is closed to further surface-water appropriations throughout most of the basin during most seasons. The information provided by this study will assist local watershed planners in assessing the status of water resources within the Colville River Watershed (Water Resources Inventory Area 59). The hydrogeologic framework consists of glacial and alluvial deposits that overlie bedrock and are more than 700 feet thick in places. Twenty-six hydrogeologic sections were constructed, using a map of the surficial geology and drillers' logs for more than 350 wells. Seven hydrogeologic units were delineated: the Upper outwash aquifer, the Till confining unit, the Older outwash aquifer, the Colville Valley confining unit, the Lower aquifer, the Lower confining unit, and Bedrock. Synoptic stream discharge measurements made in September 2001 identified gaining and losing reaches over the unconsolidated valley deposits. During the September measurement period, the Colville River gained flow from the shallow ground-water system near its headwaters to the town of Valley and lost flow to the shallow ground-water system from Valley to Chewelah. Downstream from Chewelah, the river generally lost flow, but the amounts lost were small and within measurement error. Ground-water levels indicate that the Lower aquifer and the shallow ground-water system may act as fairly

  7. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    USGS Publications Warehouse

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  8. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the

  9. Surface-water hydrology and runoff simulations for three basins in Pierce County, Washington

    USGS Publications Warehouse

    Mastin, M.C.

    1996-01-01

    The surface-water hydrology in Clear, Clarks, and Clover Creek Basins in central Pierce County, Washington, is described with a conceptual model of the runoff processes and then simulated with the Hydrological Simulation Program-FORTRAN (HSPF), a continuous, deterministic hydrologic model. The study area is currently undergoing a rapid conversion of rural, undeveloped land to urban and suburban land that often changes the flow characteristics of the streams that drain these lands. The complex interactions of land cover, climate, soils, topography, channel characteristics, and ground- water flow patterns determine the surface-water hydrology of the study area and require a complex numerical model to assess the impact of urbanization on streamflows. The U.S. Geological Survey completed this investigation in cooperation with the Storm Drainage and Surface Water Management Utility within the Pierce County Department of Public Works to describe the important rainfall-runoff processes within the study area and to develop a simulation model to be used as a tool to predict changes in runoff characteristics resulting from changes in land use. The conceptual model, a qualitative representation of the study basins, links the physical characteristics to the runoff process of the study basins. The model incorporates 11 generalizations identified by the investigation, eight of which describe runoff from hillslopes, and three that account for the effects of channel characteristics and ground-water flow patterns on runoff. Stream discharge was measured at 28 sites and precipitation was measured at six sites for 3 years in two overlapping phases during the period of October 1989 through September 1992 to calibrate and validate the simulation model. Comparison of rainfall data from October 1989 through September 1992 shows the data-collection period beginning with 2 wet water years followed by the relatively dry 1992 water year. Runoff was simulated with two basin models-the Clover

  10. 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California

    USGS Publications Warehouse

    Predmore, Steven K.

    2003-01-01

    This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level.

  11. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources. Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system. Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  12. Availability of fresh ground water, Montauk Point area, Suffolk County, Long Island, New York

    USGS Publications Warehouse

    Perlmutter, Nathaniel Matthew; DeLuca, Frank A.

    1963-01-01

    Ground water is the only source of supply at the Montauk Air Force Station n eastern Suffolk County. The water is contained in the upper 200 feet of deposits of late Pleistocene age, which are broadly divided into an upper unit of undifferentiated till and stratified drift and a lower unit of stratified drift. Fresh water in the principal aquifer, which is in the lower unit, is a lens-shaped body, which lies above salty water containing as much as 11,300 ppm of chloride. The fresh water is under artesian pressure and has a head ranging from about sea level to 3.5 feet above sea level. Pumping rates of 50 to 100 gpm cause salty water to move toward the. supply wells from below. The optimum pumping rate of most wells is about 30 gpm. New wells should be drilled as remote as possible from existing wells, and the well screens should be set as high above the zone of diffusion as the deposits permit.

  13. Ground water in the Twenty-Nine Palms Indian Reservation and vicinity, San Bernardino County, California

    USGS Publications Warehouse

    Freckleton, J.R.

    1982-01-01

    The Twenty-Nine Palms Indian Reservation is in San Bernardino County, California. Movement of ground water in the area is impeded locally by faults which act as ground-water barriers. There are indications that a fault probably crosses the reservation in an east-west direction; such a fault may interfere with ground-water pumping. The water-table altitude near the northern boundary of the reservation is estimated to be 120 to 130 feet below land surface datum; the aquifer thickness in the area is unknown. Pumping-test results for wells near the reservation show specific capacities ranging from 9.2 to 70.0 gallons per minute per foot of drawdown. Wells drilled on the reservation would probably fall within this range. Sodium concentrations, which may pose a hazard to those who must restrict its intake, and excessive fluoride are present in water samples from wells near the reservation. High sodium and fluoride concentrations are probably present in water in the saturated material underlying the reservation. (USGS)

  14. Hydrology and quality of ground water in northern Thurston County, Washington

    USGS Publications Warehouse

    Dion, N.P.; Turney, G.L.; Jones, M.A.

    1994-01-01

    Northern Thurston County is underlain by as much as 1,000 feet of unconsolidated deposits of Pleistocene Age, that are of both glacial and nonglacial origin. Interpretation of 17 geelogic sections led to the delineation of 7 major geohydrologic units, 3 of which constitute aquifers in the area. Precipi- tation ranges from about 35 to 65 inches per year across the study area. Estimates of gross recharge from precipitation indicate that the ground-water system of the area receives about 25 inches per year. The net recharge to the system (recharge from precipitation minus withdrawals from wells) is the equivalent of about 23 inches per year. Ground water generally moves toward marine bodiesand to major surface drainage channels. Leakage from Lake St. Clair, which lies in a compound kettle within permeable glacial outwash, is almost 24 feet per year per unit area. Leakage from the lake may make up part of the water that discharges at McAllister Springs, north of the lake. Of the few water-quality problems encountered, the most widespread is seawater intrusion, which is caused by the activities of man. Most water-quality problems in the study area, however, are due to natural causes. Iron concentrations axe as large as 21,000 micrograms per liter, manganese concentrations are as large as 3,400 micrograms per liter, and connate seawater is present in ground water in the southern pan of the study area.

  15. Aldicarb-pesticide contamination of ground water in eastern Suffolk County, Long Island, New York

    USGS Publications Warehouse

    Soren, Julian; Stelz, W.G.

    1984-01-01

    Aldicarb, a toxic oxime-carbamate pesticide that was believed incapable of reaching ground water, was used in potato-farming areas of eastern Suffolk County, New York during 1975-80. In 1979, aldicarb was found in substantial concentrations in ground water throughout the area. The New York State Department of Health set a limit of 7 micrograms per liter for aldicarb in drinking water. Extensive ground-water sampling into 1980 showed widespread contamination ranging from small amounts to as much as 515 micrograms per liter. In 1980, the U.S. Environmental Protection Agency banned the use of aldicarb on Long Island at the manufacturer 's request. A 1982 sampling study found aldicarb to have penetrated to about 40 feet below the water table in concentrations ranging from below detection limit to 239 micrograms per liter. Despite reputed toxicity, no instance of aldicarb poisoning on Long Island has been documented. The excessive aldicarb concentrations in the ground water of eastern Long Island may persist for decades; the duration has not been precisely determined and remains under investigation. (USGS)

  16. Water resources of the Santa Ysabel and Mesa Grande Indian Reservations, San Diego County, California

    USGS Publications Warehouse

    Freckleton, John R.

    1981-01-01

    The Santa Ysabel (consisting of three tracts) and Mesa Grande Indian Reservations are in north-central San Diego County, Calif. On both reservations fractured and weathered igneous and metamorphic rocks and alluvium are water bearing; however, no wells are known to derive their water entirely from alluvium. Well yields range from 2.5 to 250 gallons per minute. Springs occur where saturated fractured or weathered material intersects the land surface. Spring discharge ranged from 0 gallon per minute (November 1979) to 9.4 gallons per minute (November 1979). Few data are available for the surface water characteristics of the study area. One-time measurements of discharge at selected stream sites were made in late November 1979 and late May 1980; discharges ranged from less than 0.01 cubic foot per second to an estimated 3 cubic feet per second. Further study of the surface-water systems would provide a basis for estimating their development potential. The existing water-supply development on the Santa Ysabel Indian Reservation is adequate for the present residents. The Mesa Grande reservation was unoccupied in 1952, was reportedly unoccupied in November 1979, and has no developed water supply. Additional water can be developed for both reservations from the igneous and metamorphic rock, from presently undeveloped springs, and from perennial reaches of the larger streams. Except for excessive iron and sodium at some ground-water sites and excessive sodium at a few surface-water sites, the water is of suitable quality for domestic and agricultural use. (USGS)

  17. Cogeneration system using digester gas for Macon-Bibb county water and sewerage authority

    SciTech Connect

    Priester, D.C.

    1984-05-01

    With rise in energy cost, there is renewed focus on alternate energy sources, and especially sources that previously were not feasible to utilize, but were readily available. One of these is methane gas generated in biomass conversion in wastewater treatment plant anaerobic digestion process. The gas generated has been historically wasted and only used where it has been convenient. Now it is economically feasible to engineer systems to make the best use of the gas. The combination of cogeneration and digester gas utilization is particularly attractive for medium to large wastewater treatment plants. This paper describes the system designed for the Poplar Street Water Pollution Control Plant of the Macon-Bibb County Water and Sewerage Authority. The system consists of gas collection, cleaning and drying systems, storage vessel, and a utilization system of gas turbine generators.

  18. Availability of Additional Water for Chiricahua National Monument, Cochise County, Arizona

    USGS Publications Warehouse

    Johnson, Phillip W.

    1962-01-01

    The Chiricahua National Monument is in the eastern part of Cochise County, Ariz. The monument is about 35 miles southeast of Wilicox in the north end of the Chiricahua Mountains which border Sulphur Springs Valley on the west. The area is drained by two intermittent washes, one in Bonita and the other in Rhyolite Canyons. Shake Spring is the present source of water for the monument. It ranges in rate of flow from 2 to 12 gpm (gallons per minute) and during dry periods It is not adequate to support the requirements of the monument. Ample water to meet the present and future needs of the Chiricahua National Monument is available from a combination of several sources - undeveloped springs or seeps, capture of runoff out of the canyons, and wells drilled in the alluvium.

  19. Construction, geologic, and water-level data for observation wells near Brentwood, Williamson County, Tennessee

    USGS Publications Warehouse

    Hanchar, Dorothea Withington

    1989-01-01

    Thirty-four observation wells were installed at 17 sites in the area of a hazardous-waste disposal site near Brentwood, in Williamson County, Tennessee. These wells were installed to supplement data collected from domestic wells in the area, to help define the geology of the study area and to determine the water levels. Both lithologic and geophysical logs were obtained for each well drilled to help define the formations encountered. Four limestone units, corresponding to the Bigby-Cannon limestone, the Hermitage Formation, the Carters Limestone (including the T-3 bentonite), and the Lebanon Limestone, were described from well cuttings and borehole geophysical logs. Water levels have been collected at both the shallow and deep wells at each site. (USGS)

  20. Ground-water appraisal of the Fishkill-Beacon area, Dutchess County, New York

    USGS Publications Warehouse

    Snavely, Deborah S.

    1980-01-01

    The most productive aquifers in the Fishkill-Beacon area, Dutchess County, N.Y., are the sand and gravel beds in the northeast corner of the area and along the valleys of Fishkill and Clove Creeks. The average yield of these aquifers to wells is 190 gal/min (gallons per minute). The most productive bedrock aquifer is limestone, which yields an average of about 150 gal/min. Shale and granite each yield an average of less than 35 gal/min. About 4 billion gallons of available ground water is estimated to be in storage in the sand and gravel aquifers in the area. The area withdraws an average of 3.3 Mgal/d (million gallons per day) of water in June, July, and August and 2 Mgal/d during the remainder of the year. (USGS)

  1. Rainfall-runoff relationships and water-quality assessment of Coon Creek watershed, Anoka County, Minnesota

    USGS Publications Warehouse

    Arntson, A.D.; Tornes, L.H.

    1985-01-01

    Water-quality characteristics were determined based on 14 water samples from 4 sites and 1 bottom-mate rial sample from each site. Results of the analyses indicated that streams draining urban areas carry the highest concentrations of most constituents sampled. Sand Creek at Xeon Boulevard, which drains the most urbanized area, had the highest mean concentration of metals, chloride, dissolved solids, and suspended sediment. Concentrations of total phosphorus ranged from 0.04 to 0.43 milligram per liter at the rural sites on County Ditch 58 at Andover Boulevard and Coon Creek at Raddison Road. Average phosphorus concentrations at the rural sites are comparable to concentrations at the urban sites.

  2. Baseline water quality of Schmidt, Hornbeam, and Horseshore Lakes, Dakota County, Minnesota

    USGS Publications Warehouse

    Payne, G.A.

    1980-01-01

    Three lakes in Dakota County were sampled five times during an 18-month period to determine baseline water quality prior to construction of an interstate highway. Results of physical measurements and chemical analyses showed that the lakes were shallow, nonstratified, and nutrient enriched. Considerable seasonal variations in dissolved solids, nutrient, and dissolved-oxygen concentrations were observed. Oxygen depletion and high nutrient concentrations were characteristics of conditions under an ice cover. Blue-green algal blooms typically were established soon after ice breakup and persisted until late fall. Data from the study will be supplemented with data--collected during and after construction of the highway to assess the impact of highway construction s \\d drainage on water quality of the lakes.

  3. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  4. Water use in Georgia by county for 2010 and water-use trends, 1985–2010

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2015-12-16

    About 2,225 Mgal/d of water was returned to Georgia streams and lakes in 2010 under the National Pollutant Discharge Elimination System program administered by the Georgia Environmental Protection Division. This amount is about 48 percent of the total water withdrawn from all sources in 2010. Water returns declined 39 percent between 1995 and 2010, mirroring the decline in water withdrawals during that period. In addition, land applications of treated wastewater increased steadily between 1995 and 2010.

  5. Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; McManus, B. Craig

    1996-01-01

    Valley Forge National Historical Park is just southwest of the Commodore Semiconductor Group (CSG) National Priorities List (Superfund) Site, a source of volatile organic compounds (VOC's) in ground water. The 7.5-square-mile study area includes the part of the park in Lower Providence and West Norriton Townships in Montgomery County, Pa., and surrounding vicinity. The park is underlain by sedimentary rocks of the Upper Triassic age stockton Formation. A potentiometric-surface map constructed from water levels measured in 59 wells shows a cone of depression, approximately 0.5 mile in diameter, centered near the CSG Site. The cone of depression is caused by the pumping of six public supply wells. A ground-water divide between the cone of depression and Valley Forge National Historical Park provides a hydraulic barrier to the flow of ground water and contaminants from the CSG Site to the park. If pumping in the cone of depression was to cease, water levels would recover, and the ground-water divide would shift to the north. A hydraulic gradient between the CSG Site and the Schuylkill River would be established, causing contaminated ground water to flow to the park. Water samples were collected from 12 wells within the park boundary and 9 wells between the park boundary and the ground-water divide to the north of the park. All water samples were analyzed for physical properties (field determinations), nutrients, common ions, metals and other trace constituents, and VOC's. Water samples from the 12 wells inside the park boundary also were analyzed for pesticides. Concentrations of inorganic constituents in the water samples did not exceed U.S. Environmental Protection Agency maximum contaminant levels. Very low concentrations of organic compounds were detected in some of the water samples. VOC's were detected in water from 76 percent of the wells sampled; the maximum concentration detected was 5.8 micrograms per liter of chloroform. The most commonly detected VOC was

  6. Analysis of ground water by different laboratories: a comparison of chloride and nitrate data, Nassau and Suffolk counties, New York

    USGS Publications Warehouse

    Katz, Brian G.; Krulikas, Richard K.

    1979-01-01

    Water samples from wells in Nassau and Suffolk Counties were analyzed for chloride and nitrate. Two samples were collected at each well; one was analyzed by the U.S. Geological Survey, the other by a laboratory in the county from which the sample was taken. Results were compared statistically by paired-sample t-test to indicate the degree of uniformity among laboratory results. Chloride analyses from one of the three county laboratories differed significantly (0.95 confidence level) from that of a Geological Survey laboratory. For nitrate analyses, a significant difference (0.95 confidence level) was noted between results from two of the three county laboratories and the Geological Survey laboratory. The lack of uniformity among results reported by the participating laboratories indicates a need for continuing participation in a quality-assurance program and exercise of strong quality control from time of sample collection through analysis so that differences can be evaluated. (Kosco-USGS)

  7. Inventory of forest resources (including water) by multi-level sampling. [nine northern Virginia coastal plain counties

    NASA Technical Reports Server (NTRS)

    Aldrich, R. C.; Dana, R. W.; Roberts, E. H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A stratified random sample using LANDSAT band 5 and 7 panchromatic prints resulted in estimates of water in counties with sampling errors less than + or - 9% (67% probability level). A forest inventory using a four band LANDSAT color composite resulted in estimates of forest area by counties that were within + or - 6.7% and + or - 3.7% respectively (67% probability level). Estimates of forest area for counties by computer assisted techniques were within + or - 21% of operational forest survey figures and for all counties the difference was only one percent. Correlations of airborne terrain reflectance measurements with LANDSAT radiance verified a linear atmospheric model with an additive (path radiance) term and multiplicative (transmittance) term. Coefficients of determination for 28 of the 32 modeling attempts, not adverseley affected by rain shower occurring between the times of LANDSAT passage and aircraft overflights, exceeded 0.83.

  8. Tracing reclaimed water in the Menifee, Winchester, and Perris-South ground-water subbasins, Riverside County, California

    USGS Publications Warehouse

    Kaehler, Charles A.; Belitz, Kenneth

    2003-01-01

    As a component in the management of water resources in the Menifee, Winchester, and Perris-South subbasins in Riverside County, California, ponds are operated by the Eastern Municipal Water District for the temporary storage of reclaimed water that is produced by several regional water-reclamation facilities. A primary goal of this study was to evaluate the potential for using various ground-water constituents or characteristics as tracers of reclaimed water that has infiltrated from the storage ponds into the ground water in the three subbasins. A secondary goal was to estimate the degree to which the infiltrated reclaimed water has mixed with the native ground water. The evaluation of potential tracers and the estimation of mixing focused on data from wells located relatively close to the ponds. The most useful constituents and characteristics for evaluation of the fate and mixing of reclaimed water in the Menifee, Winchester, and Perris-South subbasins are major-ion composition, stable isotopes of hydrogen and oxygen, ultraviolet absorbance (UV-A), chloride concentration, and boron/chloride ratio plotted against chloride concentration. Emphasis in this study was placed on evaluating the utility of UV-A as a tracer and boron/chloride ratios in estimating the fraction of reclaimed water in ground water. In the Menifee subbasin, major-ion data, stable isotopes, chloride, UV-A, and boron/chloride ratio are all useful in identifying reclaimed water, and the results based on these indicators are consistent with each other. The results suggest that values of UV-A greater than or equal to 0.007 indicate the presence of reclaimed water in the Menifee subbasin. Ground-water samples with UV-A greater than 0.007 are estimated to consist of about 75 to 100 percent reclaimed water, on the basis of chloride-mixing calculations and boron/chloride-versus-chloride mixing calculations. In the Winchester subbasin, results based on the same factors used in the Menifee subbasin are

  9. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    USGS Publications Warehouse

    Novitzki, R.P.

    1976-01-01

    Other recharge-recycling schemes can also be evaluated. Estimating the recycling efficiency (of recharge ponds, trenches, spreading areas, or irrigated fields) provides a basis for predicting water-level declines, the concentration of conservative ions (conservative in the sense that no reaction other than mixing occurs to change the character of the ion being considered) in the water supply and in the regional ground-water system, and the temperature of the water supply. Hatchery development and management schemes can be chosen to optimize hatchery productivity or minimize operation costs while protecting the ground-water system.

  10. Hydrogeology and ground-water-quality conditions at the Emporia- Lyon County Landfill, eastern Kansas, 1988

    USGS Publications Warehouse

    Myers, N.C.; Bigsby, P.R.

    1990-01-01

    Hydrogeology and water-quality conditions at the Emporia-Lyon County Landfill, eastern Kansas, were investigated from April 1988 through April 1989. Potentiometric-surface maps indicated groundwater movement from the northeast and northwest towards the landfill and then south through the landfill to the Cottonwood River. The maps indicate that during periods of low groundwater levels, groundwater flows northward in the north-west part of the landfill, which may have been induced by water withdrawal from wells north of the landfill or by water ponded in waste lagoons south and west of the landfill. Chemical analysis of water samples from monitoring wells upgradient and downgradient of the landfill indicate calcium bicarbonate to be the dominant water type. No inorganic or organic chemical concentrations exceeded Kansas or Federal primary drinking-water standards. Kansas secondary drinking-water standards were equaled or exceeded, however, in water from some or all wells for total hardness, dissolved solids, iron, and manganese. Water from one upgradient well contained larger concentrations of dissolved oxygen and nitrate, and smaller concentrations of bicarbonate, alkalinity, ammonia, arsenic, iron, and manganese as compared to all other monitoring wells. Results of this investigation indicate that groundwater quality downgradient of well MW-2 has increased concentrations of some inorganic and organic compounds. Due to the industrial nature of the area and the changing directions of groundwater flow, it is not clear what the source of these compounds might be. Long-term monitoring, additional wells, and access to nearby waste lagoons and waste-lagoon monitoring wells would help define the sources of increased inorganic and organic compounds. (USGS)

  11. Water Use, Ground-Water Recharge and Availability, and Quality of Water in the Greenwich Area, Fairfield County, Connecticut and Westchester County, New York, 2000-2002

    USGS Publications Warehouse

    Mullaney, John R.

    2004-01-01

    Ground-water budgets were developed for 32 small basin-based zones in the Greenwich area of southwestern Connecticut, where crystalline-bedrock aquifers supply private wells, to determine the status of residential ground-water consumption relative to rates of ground-water recharge and discharge. Estimated residential ground-water withdrawals for small basins (averaging 1.7 square miles (mi2) ranged from 0 to 0.16 million gallons per day per square mile (Mgal/d/mi2). To develop these budgets, residential ground-water withdrawals were estimated using multiple-linear regression models that relate water use from public water supply to data on residential property characteristics. Average daily water use of households with public water supply ranged from 219 to 1,082 gallons per day (gal/d). A steady-state finite-difference ground-water-flow model was developed to track water budgets, and to estimate optimal values for hydraulic conductivity of the bedrock (0.05 feet per day) and recharge to the overlying till deposits (6.9 inches) using nonlinear regression. Estimated recharge rates to the small basins ranged from 3.6 to 7.5 inches per year (in/yr) and relate to the percentage of the basin underlain by coarse-grained glacial stratified deposits. Recharge was not applied to impervious areas to account for the effects of urbanization. Net residential ground-water consumption was estimated as ground-water withdrawals increased during the growing season, and ranged from 0 to 0.9 in/yr. Long-term average stream base flows simulated by the ground-water-flow model were compared to calculated values of average base flow and low flow to determine if base flow was substantially reduced in any of the basins studied. Three of the 32 basins studied had simulated base flows less than 3 in/yr, as a result of either ground-water withdrawals or reduced recharge due to urbanization. A water-availability criteria of the difference between the 30-day 2-year low flow and the recharge rate

  12. Watershed characteristics and water-quality trends and loads in 12 watersheds in Gwinnett County, Georgia

    USGS Publications Warehouse

    Joiner, John K.; Aulenbach, Brent T.; Landers, Mark N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Gwinnett County Department of Water Resources, established a Long-Term Trend Monitoring (LTTM) program in 1996. The LTTM program is a comprehensive, long-term, water-quantity and water-quality monitoring program designed to document and analyze the hydrologic and water-quality conditions of selected watersheds of Gwinnett County, Georgia. Water-quality monitoring initially began in six watersheds and was expanded to another six watersheds in 2001. As part of the LTTM program, streamflow, precipitation, water temperature, specific conductance, and turbidity were measured continuously at the 12 watershed monitoring stations for water years 2004–09. In addition, discrete water-quality samples were collected seasonally from May through October (summer) and November through April (winter), including one base-flow and three stormflow event composite samples, during the study period. Samples were analyzed for nutrients (nitrogen and phosphorus), total organic carbon, trace elements (total lead and total zinc), total dissolved solids, and total suspended sediment (total suspended solids and suspended-sediment concentrations). The sampling scheme was designed to identify variations in water quality both hydrologically and seasonally. The 12 watersheds were characterized for basin slope, population density, land use for 2009, and the percentage of impervious area from 2000 to 2009. Precipitation in water years 2004–09 was about 18 percent below average, and the county experienced exceptional drought conditions and below average runoff in water years 2007 and 2008. Watershed water yields, the percentage of precipitation that results in runoff, typically are lower in low precipitation years and are higher for watersheds with the highest percentages of impervious areas. A comparison of base-flow and stormflow water-quality samples indicates that turbidity and concentrations of total ammonia plus organic nitrogen, total

  13. Electrical-analog-model study of water resources of the Columbus area, Bartholomew County, Indiana

    USGS Publications Warehouse

    Watkins, Frank A.; Heisel, J.E.

    1970-01-01

    The Columbus study area is in part of a glacial outwash sand and gravel aquifer that was deposited in a preglacial bedrock valley. The study area extends from the north line of Bartholomew County to the south county line and includes a small part of Jackson County south of Sand Creek and east of the East Fork White River. This report area includes about 100 square miles of the aquifer. In the Columbus area, ground water in the outwash aquifer is unconfined. Results of pumping tests and estimates derived from specific-capacity data indicate that the average horizontal permeability for this aquifer is about 3,500 gallons per day per square foot. An average coefficient of storage of about 0.2 was determined from pumping tests. Transmissibilities range from near zero in some places along the boundary to about 500,000 gallons per day per foot in the thicker parts of the aquifer. About 800,000 acre-feet of water is in storage in the aquifer. This storage is equivalent to an average yield of 34 million gallons per day for about 21 years without recharge. An electrical-analog model was built to analyze the aquifer system and determine the effects of development. Analysis of the model indicates that there is more than enough water to meet the estimated needs of the city of Columbus without seriously depleting the aquifer. Additional withdrawals will affect the flow in the Flatrock River, but if the withdrawals are made south of the city, they will not affect the river any more than present pumping. Future pumping should be confined to the deepest part of the outwash aquifer and (or) to the area adjacent to the streams. On the basis of an hypothesized amount and distribution of pumping, the decline in water levels in the Columbus area as predicted by the model for the period 1970-2015 ranged from about 20 feet in the center of the areas of pumping to 3 feet or less in the areas upstream and downstream from these areas of pumping.

  14. Reconnaissance of water quality at four swine farms in Jackson County, Florida, 1993

    USGS Publications Warehouse

    Collins, J.J.

    1996-01-01

    The quality of ground water on four typical swine farms in Jackson County, Florida, was studied by analyzing water samples from wastewater lagoons, monitoring wells, and supply wells. Water samples were collected quarterly for 1 year and analyzed for the following dissolved species: nitrate, nitrite, ammonium nitrogen, phosphorus, potassium, sulfate, chloride, calcium, magnesium, fluoride, total ammonium plus organic nitrogen, total phosphorus, alkalinity, carbonate, and bicarbonate. Additionally, the following field constituents were determined in the water samples: temperature, specific conductance, pH, dissolved oxygen, and fecal streptococcus and fecal coliform bacteria. Chemical changes in swine waste as it leaches and migrates through the saturated zone were examined by comparing median values and ranges of water- quality data from farm wastewater in lagoons, shallow pond, shallow monitoring wells, and deeper farm supply wells. The effects of hydrogeologic settings and swine farmland uses on shallow ground-water quality were examined by comparing the shallow ground-water-quality data set with the results of the chemical analyses of water from the Upper Floridan aquifer, and to land uses adjacent to the monitoring wells. Substantial differences occur between the quality of diluted swine waste in the wastewater lagoons, and that of the water quality found in the shallow pond, and the ground water frm all but two of the monitoring wells of the four swine farms. The liquid from the wastewater lagoons and ground water from two wells adjacent to and down the regional gradient from a lagoon on one site, have relatively high values for the following properties and constituents: specific conductance, dissolved ammonia nitrogen, dissolved potassium, and dissolved chloride. Ground water from all other monitoring wells and farm supply wells and the surface water pond, have relatively much lower values for the same properties and constituents. To determine the relation

  15. Effect of urbanization on the water resources of Warminster Township, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Davis, D.K.

    1982-01-01

    median and the median in nearby Chester County. High concentrations of sulfate and dissolved solids in ground water are probably caused by restricted gournd-water circulation and may be reduced by long-term pumping, which flushes the aquifer. Effluent from sewage treatment plants has degraded the quality of low streamflow.

  16. Water resources of the Santa Rosa Indian Reservation and vicinity, Riverside County, California

    USGS Publications Warehouse

    Buono, Anthony; Moyle, W.R.; Dana, Patricia

    1979-01-01

    Additional water for irrigation is needed by the Santa Rosa Indian Reservation, Riverside County, California. Water in the area is derived from precipitation, which averages 12 inches annually, on three subbasins nearly surrounding the 17-square-mile reservation. No ground water flows in from outside the area. A supply well that taps sandy material overlying the pre-Tertiary basement complex showed a specific capacity of 0.4 gallon per minute per foot of drawdown. Estimates of specific yield for material encountered during drilling of three wells and a test hole ranged from 5 to 10 percent. A gravity survey outlined the thickest section of the aquifer in the Vandeventer Flat area, and test wells are proposed to determine its potential well yield. Damming streams to retain runoff (about 1,500 acre-feet per year, and more during periods of heavy precipitation) is also proposed. Analyses of water from the supply well and five major springs showed that ground water is suitable for irrigation except at Sulphur Spring, where the percent sodium of 97 exceeds recommended maximums, and at Bull Canyon Spring, where the specific conductance of 1,300 micromhos indicate a salinity hazard. (Kosco-USGS)

  17. Assessment of water quality in canals of eastern Broward County, Florida, 1969-74

    USGS Publications Warehouse

    Waller, Bradley G.; Miller, Wesley L.

    1982-01-01

    An intensive water-quality monitoring program was started in 1969 to determine the effects of man-induced contaminants on the water quality in the primary canal system of eastern Broward County, Florida. This report covers the first 6 years of the program and provides a data base that can be used to compare future changes in water-quality conditions. Most data indicate that beyond the small seasonal fluctuation in constituent level, the greatest adverse effect on the quality of water is caused by discharge of sewage and treated sewage effluent to the canals. The areas affected by sewage have greater concentrations of macronutrients, trace metals, and pesticides than unaffected areas. Major-ion concentrations were affected only by season and local lithology. Over the 6-year study a gradual decrease in macronutrient concentration and an increase in dissolved oxygen have occurred. This improvement in water quality is attributed to a decrease of sewage discharge into canals and better treatment of sewage effluents. (USGS)

  18. Effects of land use on surface-water quality in the East Everglades, Dade County, Florida

    USGS Publications Warehouse

    Waller, Bradley G.

    1982-01-01

    Water-quality characteristics were determined at five developed areas in the East Everglades, Dade County, Florida, during the 1978 wet season (June through October). These areas are designated as: Coopertown; Chekika Hammock State Park; residential area; rock-plowed tomato field; and Cracker Jack Slough agricultural area. Data from the developed areas were compared with data from four baseline sites in undeveloped areas to determine the effects of land use on the surface-water quality. The rock-plowed tomato field was the only area where surface-water quality was affected. Water quality at this field is affected by agricultural activities and chemical applications as indicated by increased concentrations of orthophosphate, organic nitrogen, organic carbon, copper, manganese, mercury, and potassium. The remaining four areas of land use had water-quality characteristics typical of baseline sites in nearby Northeast Shark River Slough or Taylor Slough. Chemical analyses of soil indicated chlorinated-hydrocarbon insecticide residues at Coopertown and the two agricultural areas, Cracker Jack Slough and the rock-plowed tomato field. Trace elements in concentrations greater than base level occurred at both agricultural areas (manganese), Chekika Hammock State Park (manganese), and at Coopertown (lead and zinc). (USGS)

  19. A Preliminary evaluation of hydrology and water quality near the Tacoma Landfill, Pierce County, Washington

    USGS Publications Warehouse

    Lum, W.E.; Turney, G.L.

    1985-01-01

    The Tacoma landfill, located in western Pierce County, Washington, has been used for the disposal of waste since about 1960. Disposal operations are planned to continue at this site until at least 1990. Data were compiled and interpreted to help understand the possible effects of the landfill on water quality in the surrounding area. Data were collected from published and unpublished reports of the U.S. Geological Survey, and from predominantly unpublished data in the files of other government agencies. The Tacoma landfill is underlain by unconsolidated, glacially derived deposits that consist of a wide variety of mixtures of clay to boulder-sized materials. Ground water is mostly the result of rainfall on the land surface, and moves through artesian aquifers (under the landfill) that are tapped for both domestic and municipal use. Hazardous liquid and dissolved wastes are probably present in the landfill, and potential flow paths for waste migration exist. An undetermined number of single-family domestic wells and 18 public-supply wells are within 3 miles of the landfill, three as close as 0.2 miles. There is only limited evidence indicating ground- and surface-water contamination. Further investigations of the geology, hydrology and water quality are needed to characterize the impact the landfill has on ground- and surface-water of the surrounding area. (USGS)

  20. Geology and ground-water conditions in southern Nassau and southeastern Queens Counties, Long Island, New York

    USGS Publications Warehouse

    Perlmutter, N.M.; Geraghty, J.J.

    1963-01-01

    Test drilling, electrical logging, and water sampling of 'outpost' and other wells have revealed the existence of a deep confined body of salt water in the Magothy(?) formation beneath southwestern Nassau and southeastern Queens Counties, Long Island, N.Y. In connection with a test-drilling program, cooperatively sponsored by the U.S. Geological Survey, the Nassau County Department of Public Works, and the New York State Water Resources Commission (formerly Water Power and Control Commission), 13 wells ranging in depth from about 130 to 800 feet were drilled during 1952 and 1953 and screened at various depths in the Magothy(?) formation and Jameco gravel. On the basis of the preliminary geologic, hydrologic, and chemical data from these wells, a detailed investigation of ground-water conditions from the water table to the bedrock was begun in a 200-square-mile area in southern Nassau and southeastern Queens Counties. The Inain purposes of the investigation were to delineate the bodies of fresh and salty ground water in the project area, to relate their occurrence and movement to geologic and hydrologic conditions, to estimate the rate of encroachment, if any, of the salty water, and to evaluate the effectiveness of the existing network of outpost wells as detectors of salt-water encroachment. About a million people in the report area, residing mainly in southern Nassau County, are completely dependent on ground water as a source of supply. Fortunately, precipitation averages about 44 inches per year, of which approximately half is estimated to percolate into the ground-water reservoir. The ground water is contained in and moves through eight differentiated geologic units composed of unconsolidated gravel, sand, and clay, of Late Cretaceous, Pleistocene, and Recent age, having a maximum total thickness of about 1,700 feet. The underlying metamorphic and igneous crystalline basement rocks are of Precambrian age and are not water bearing. The water-yielding units from

  1. Environmental setting, water budget, and stream assessment for the Broad Run watershed, Chester County, Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.; Reif, Andrew G.; Olson, Leif E.

    2005-01-01

    The Broad Run watershed lies almost entirely in West Bradford Township, Chester County, Pa., and drains 7.08 square miles to the West Branch Brandywine Creek. Because of the potential effect of encroaching development and other stresses on the Broad Run watershed, West Bradford Township, the Chester County Water Resources Authority, and the Chester County Health Department entered into a cooperative study with the U.S. Geological Survey to complete an annual water budget and stream assessment of overall conditions. The annual water budget quantified the basic parameters of the hydrologic cycle for the climatic conditions present from April 1, 2003, to March 31, 2004. These water-budget data identified immediate needs and (or) deficits that were present within the hydrologic cycle during that period, if present; however, an annual water budget encompassing a single year does not identify long-term trends. The stream assessment was conducted in two parts and assessed the overall condition of the watershed, an overall assessment of the fluvial-geomorphic conditions within the watershed and an overall assessment of the stream-quality conditions. The data collected will document present (2004) conditions and identify potential vulnerabilities to future disturbances. For the annual period from April 1, 2003, to March 31, 2004, determination of an annual water budget indicated that of the 67.8 inches of precipitation that fell on the Broad Run watershed, 38.8 inches drained by way of streamflow to the West Branch Brandywine Creek. Of this 38.8 inches of streamflow, local-minimum hydrograph separation techniques determined that 7.30 inches originated from direct runoff and 31.5 inches originated from base flow. The remaining precipitation went into ground-water storage (1.71 inches) and was lost to evapotranspiration (27.3 inches). Ground-water recharge for this period-35.2 inches-was based on these values and an estimated ground-water evapotranspiration rate of 2 inches

  2. Development, description, and application of a geographic information system data base for water resources in karst terrane in Greene County, Missouri

    USGS Publications Warehouse

    Waite, L.A.; Thomson, Kenneth C.

    1993-01-01

    A geographic information system data base was developed for Greene County, Missouri, to provide data for use in the protection of water resources. The geographic information system data base contains the following map layers: geology, cave entrances and passages, county and quadrangle boundary, dye traces, faults, geographic names, hypsography, hydrography, lineaments, Ozark aquifer potentio- metric surface, public land survey system, sink- holes, soils, springs, and transportation. Several serious incidents of ground-water contamination have been reported in the karst terrane developed in soluble carbonate rocks in Greene County. Karst terranes are environmentally sensitive because any contaminant carried by surface runoff has the potential for rapid transport through solution enlarged fractures to the ground-water system. In the karst terrane in Greene County, about 2,500 sinkholes have been located; these sinkholes are potential access points for contamination to the ground-water system. Recent examples of ground-water contamination by sewage, fertilizers, and hydrocarbon chemicals have demonstrated the sensitivity of ground water in the Greene County karst terrane to degradation. The ground-water system is a major source of drinking water for Greene County. The population in Greene County, which includes Springfield, the third largest city in Missouri, is rapidly increasing and the protection of the water resources of Greene County is an increasing concern.

  3. Recycling ground water in Waushara County, Wisconsin : resource management for cold-water fish hatcheries

    USGS Publications Warehouse

    Novitzki, R.P.

    1976-01-01

    Other recharge-recycling schemes can also be evaluated. Estimating the recycling efficiency (of recharge ponds, trenches, spreading areas, or irrigated fields) provides a basis for predicting water-level declines, the concentration of conservative ions (conservative in the sense that no reaction other than mixing occurs to change the character of the ion being considered) in the water supply and in the regional ground-water system, and the tem

  4. Water volume and sediment accumulation in Lake Linganore, Frederick County, Maryland, 2009

    USGS Publications Warehouse

    Sekellick, Andrew J.; Banks, S.L.

    2010-01-01

    To assist in understanding sediment and phosphorus loadings and the management of water resources, a bathymetric survey was conducted at Lake Linganore in Frederick County, Maryland in June 2009 by the U.S. Geological Survey, in cooperation with the City of Frederick and Frederick County, Maryland. Position data and water-depth data were collected using a survey grade echo sounder and a differentially corrected global positioning system. Data were compiled and edited using geographic information system software. A three-dimensional triangulated irregular network model of the lake bottom was created to calculate the volume of stored water in the reservoir. Large-scale topographic maps of the valley prior to inundation in 1972 were provided by the City of Frederick and digitized. The two surfaces were compared and a sediment volume was calculated. Cartographic representations of both water depth and sediment accumulation were produced along with an area/capacity table. An accuracy assessment was completed on the resulting bathymetric model. Vertical accuracy at the 95-percent confidence level for the collected data, the bathymetric surface model, and the bathymetric contour map was calculated to be 0.95 feet, 1.53 feet, and 3.63 feet, respectively. The water storage volume of Lake Linganore was calculated to be 1,860 acre-feet at full pool elevation. Water volume in the reservoir has decreased by 350 acre-feet (about 16 percent) in the 37 years since the dam was constructed. The total calculated volume of sediment deposited in the lake since 1972 is 313 acre-feet. This represents an average rate of sediment accumulation of 8.5 acre-feet per year since Linganore Creek was impounded. A sectional analysis of sediment distribution indicates that the most upstream third of Lake Linganore contains the largest volume of sediment whereas the section closest to the dam contains the largest amount of water. In comparison to other Maryland Piedmont reservoirs, Lake Linganore

  5. Movement and fate of ethylene dibromide (EDB) in ground water in Seminole County, Georgia

    USGS Publications Warehouse

    McConnell, J.B.

    1987-01-01

    An investigation to assess the movement and fate of ethylene dibromide (EDB) in the Upper Floridan aquifer (formerly the principal artesian aquifer) was conducted, because a previous investigation conducted in August 1983, had found EDB contamination of the aquifer in about a 4 sq mi area in central Seminole County, Georgia. Analyses of water from wells resampled in June 1985 indicate that EDB was present in the groundwater 2 yr after last being applied as a soil fumigant. The investigation revealed that groundwater recharge and irrigation pumping between August 1983 and June 1985 did not substantially change the areal extent of EDB in the Upper Floridan aquifer but concentrations of EDB seem to be declining. The highest concentrations again were found in two irrigation wells near Buck Hole, a sinkhole in a swampy depression in central Seminole County. EDB concentrations in these two wells ranged from 1.5 to 13 micrograms/L. Samples from two of three wells in the residuum near Buck Hole also had detectable concentrations of EDB. The presence of EDB in water samples from wells tapping the residuum and wells tapping the Upper Floridan aquifer indicates that agriculturally applied EDB has moved downward from the surface soils through the residuum and into the aquifer. Results of aquifer tests conducted in a similar geohydrologic setting suggest that local pumping from the highly transmissive aquifer may accelerate downward movement of water and EDB. Potentiometric surface maps of the Upper Floridan aquifer indicate that east of Fishpond Drain, where the highest concentrations of EDB were detected, the direction of groundwater flow and the direction of potential EDB transport generally is south-southeasterly. However, the movement of an EDB plume from the area of relatively high concentrations near Buck Hole along inferred groundwater flow lines was not detected. (Author 's abstract)

  6. Ground-Water Quality and Potential Effects of Individual Sewage Disposal System Effluent on Ground-Water Quality in Park County, Colorado, 2001-2004

    USGS Publications Warehouse

    Miller, Lisa D.; Ortiz, Roderick F.

    2007-01-01

    In 2000, the U.S. Geological Survey, in cooperation with Park County, Colorado, began a study to evaluate ground-water quality in the various aquifers in Park County that supply water to domestic wells. The focus of this study was to identify and describe the principal natural and human factors that affect ground-water quality. In addition, the potential effects of individual sewage disposal system (ISDS) effluent on ground-water quality were evaluated. Ground-water samples were collected from domestic water-supply wells from July 2001 through October 2004 in the alluvial, crystalline-rock, sedimentary-rock, and volcanic-rock aquifers to assess general ground-water quality and effects of ISDS's on ground-water quality throughout Park County. Samples were analyzed for physical properties, major ions, nutrients, bacteria, and boron; and selected samples also were analyzed for dissolved organic carbon, human-related (wastewater) compounds, trace elements, radionuclides, and age-dating constituents (tritium and chlorofluorocarbons). Drinking-water quality is adequate for domestic use throughout Park County with a few exceptions. Only about 3 percent of wells had concentrations of fluoride, nitrate, and (or) uranium that exceeded U.S. Environmental Protection Agency national, primary drinking-water standards. These primary drinking-water standards were exceeded only in wells completed in the crystalline-rock aquifers in eastern Park County. Escherichia coli bacteria were detected in one well near Guffey, and total coliform bacteria were detected in about 11 percent of wells sampled throughout the county. The highest total coliform concentrations were measured southeast of the city of Jefferson and west of Tarryall Reservoir. Secondary drinking-water standards were exceeded more frequently. About 19 percent of wells had concentrations of one or more constituents (pH, chloride, fluoride, sulfate, and dissolved solids) that exceeded secondary drinking-water standards

  7. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more

  8. Geology and ground-water resources of the Rawlins area, Carbon County, Wyoming

    USGS Publications Warehouse

    Berry, Delmar W.

    1960-01-01

    The Rawlins area in west-central Carbon County, south-central Wyoming includes approximately 634 square miles of plains and valleys grading into relatively rugged uplifts. The climate is characterized by low precipitation, rapid evaporation, and a wide range of temperature. Railroading and ranching are the principal occupations in the area. The exposed rocks in the area range in age from Precambrian through Recent. The older formations are exposed in the uplifted parts, the oldest being exposed along the apex of the Rawlins uplift. The formations dip sharply away from the anticlines and other uplifts and occur in the subsurface throughout the remainder of the area. The Cambrian rocks (undifferentiated), Madison limestone, Tensleep sandstone, Sun dance formation, Cloverly formation, Frontier formation, and Miocene and Pliocene rocks (undifferentiated) yield water to domestic and stock wells in the area. In the vicinity of the Rawlins uplift, the rocks of Cambrian age, Madison limestone, and Tensleep sandstone yield water to a few public-supply wells. The Cloverly formation yields water to public-supply wells in the Miller Hill and Sage Creek basin area. Wells that tap the Madison limestone, Tensleep sandstone, and Cloverly formation yield water under sufficient artesian pressure to flow at the land surface. The Browns Park formation yields water to springs that supply most of the Rawlins city water and supply water for domestic and stock use. Included on the geologic map are location of wells and test wells, depths to water below land surface, and location of springs. Depths to water range from zero in the unconsolidated deposits along the valley of Sugar Creek at the southern end of the Rawlins uplift to as much as 129 feet below the land surface in the Tertiary sedimentary rocks along the Continental Divide in the southern part of the area. The aquifers are recharged principally by precipitation that falls upon the area, by percolation from streams and ponds, and

  9. Quality of ground water in Harrison County, Mississippi, June - July 1993

    USGS Publications Warehouse

    Slack, L.J.; Oakley, W.T.; O'Hara, C. G.; Cooper, L.M.

    1994-01-01

    During June and July 1993, the U.S. Geological Survey analyzed water from 145 wells in Harrison County, southeastern Mississippi. The wells are completed in five major geologic units: the Citronelle, Graham Ferry, Pascagoula, and Hattiesburg Formations and the Catahoula Sandstone. The wells ranged from 74 to 2,410 feet in depth. Specific conductance (lab) ranged from 15 to 2,020 microsiemens per centimeter; pH (lab), from 5.9 to 9.0; color, from less than 5 to 120 platinum-cobalt units; dissolved-solids concentrations (residue on evaporation), from 20 to 1,120 milligrams per liter; chloride concentrations, from 1.9 to 470 milligrams per liter; and nitrite plus nitrate as nitrogen concentrations, from less than 0.02 to 0.85 milligram per liter. Most of the larger values of specific conductance, pH, dissolved-solids concen- trations, and chloride concentrations were from wells in the southern one-half of the county.

  10. Soil, water, and vegetation conditions in south Texas. [Hildago County, Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. To distinguish dead from live vegetation, spectrophotometrically measured infinite reflectance of dead and live corn (Zea mays L.) leaves were compared over the 0.5 to 2.5 micron waveband. Dead leaf reflectance was reached over the entire 0.5 to 2.5 micron waveband by stacking only two to three leaves. Live leaf reflectance was attained by stacking two leaves for the 0.5 to 0.75 micron waveband (chlorophyll absorption region), eight leaves for the 0.75 to 1.35 micron waveband (near infrared region), and three leaves for the 1.35 to 2.5 micron waveband (water absorption region). LANDSAT-1 MSS digital data for 11 December 1973 overpass were used to estimate the sugar cane acreage in Hidalgo County. The computer aided estimate was 22,100 acres compared with the Texas Crop and Livestock Reporting Service estimate of 20,500 acres for the 1973-'74 crop year. Although there were errors of omission from harvested fields that were identified as bare soil and some citrus and native vegetation that were mistakenly identified as sugar cane, the mapped location of sugar cane fields in the county compared favorably with their location on the thematic map generated by the computer.

  11. Data collection and compilation for a geodatabase of groundwater, surface-water, water-quality, geophysical, and geologic data, Pecos County Region, Texas, 1930-2011

    USGS Publications Warehouse

    Pearson, Daniel K.; Bumgarner, Johnathan R.; Houston, Natalie A.; Stanton, Gregory P.; Teeple, Andrew P.; Thomas, Jonathan V.

    2012-01-01

    The U.S. Geological Survey, in cooperation with Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1, compiled groundwater, surface-water, water-quality, geophysical, and geologic data for site locations in the Pecos County region, Texas, and developed a geodatabase to facilitate use of this information. Data were compiled for an approximately 4,700 square mile area of the Pecos County region, Texas. The geodatabase contains data from 8,242 sampling locations; it was designed to organize and store field-collected geochemical and geophysical data, as well as digital database resources from the U.S. Geological Survey, Middle Pecos Groundwater Conservation District, Texas Water Development Board, Texas Commission on Environmental Quality,and numerous other State and local databases. The geodatabase combines these disparate database resources into a simple data model. Site locations are geospatially enabled and stored in a geodatabase feature class for cartographic visualization and spatial analysis within a Geographic Information System. The sampling locations are related to hydrogeologic information through the use of geodatabase relationship classes. The geodatabase relationship classes provide the ability to perform complex spatial and data-driven queries to explore data stored in the geodatabase.

  12. Effects of decreased ground-water withdrawal on ground-water levels and chloride concentrations in Camden County, Georgia, and ground-water levels in Nassau County, Florida, from September 2001 to May 2003

    USGS Publications Warehouse

    Peck, Michael F.; McFadden, Keith W.; Leeth, David C.

    2005-01-01

    During October 2002, the Durango Paper Company formerly Gillman Paper Company) in St. Marys, Georgia, shut down paper-mill operations; the shutdown resulted in decreased ground-water withdrawal in Camden County by 35.6 million gallons per day. The decrease in withdrawal resulted in water-level rise in wells completed in the Floridan aquifer system and the overlying surficial and Brunswick aquifer systems; many wells in the St. Marys area flowed for the first time since the mill began operations during 1941. Pumping at the mill resulted in the development of a cone of depression that coalesced with a larger adjacent cone of depression at Fernandina Beach, Florida. Since closure of the mill, the cone at St. Marys is no longer present, although the cone still exists at Fernandina Beach, Florida. Historical water-level data from the production wells at the mill indicate that the pumping water level ranged from 68 to 235 feet (ft) below North American Vertical Datum of 1988 (NAVD 88) and averaged about 114 ft when the mill was operating. Since the shutdown, it is estimated that water levels at the mill have risen about 140 ft and are now at about 30 ft above NAVD 88. The water-level rise in wells in outlying areas in Camden County was less pronounced and ranged from about 5 to 10 ft above NAVD 88. Because of the regional upward water-level trend in the Upper Floridan aquifer that started during 19992000 in most of the coastal area, combined with a steeper upward trend beginning during October 2002, it was not possible to determine if the 510 ft rise in water levels in wells away from St. Marys was due to the mill closure. In addition to water-level rise of 2226 ft in the Floridan aquifer system, water-level rises in the overlying surficial and Brunswick aquifer systems at St. Marys after the shutdown indicate upward leakage of water. Water levels had stabilized in the confined surficial and Upper and Lower Floridan aquifers by AprilMay 2003; however, the water level in

  13. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    USGS Publications Warehouse

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American

  14. Water quality of lake Waramaug and surrounding watershed, Litchfield County, Connecticut. Water resources investigation

    SciTech Connect

    Kulp, K.P.; Grason, D.

    1992-01-01

    Lake Waramaug and its watershed in western Connecticut were sampled from March 1977 to March 1978 to develop information for a lake-management plan. Nutrient enrichment has degraded the lake water quality, resulting in increased algal population in recent years. Chemical analyses of surface-water inflow, ground-water inflow, and atmospheric deposition in the watershed indicate that surface-water inflow at the northeastern corner of the lake is the major source of nutrients discharged to the lake. Atmospheric deposition contains 0.01 to 0.47 milligrams per liter total phosphorus and 0.52 to 3.2 milligrams per liter total nitrogen. During the 7.3-month period of investigation, atmospheric deposition contributed 61,400 pounds of nitrogen and 3,150 pounds of phosphorus to the lake's watershed. Nutrient concentrations in ground water were relatively low, with total phosphorus ranging from 0.008 to 0.14 milligrams per liter.

  15. Geohydrology and water chemistry in the Rialto-Colton Basin, San Bernardino County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Kadhim, Dina

    1997-01-01

    The 40-square-mile Rialto-Colton ground- water basin is in western San Bernardino County, California, about 60 miles east of Los Angeles.This basin was chosen for storage of imported water because of the good quality of native ground water, the known capacity for additional ground-water storage in the basin, and the availability of imported water. Because the movement and mixing of imported water needed to be determined, the San Bernardino Valley Municipal Water District entered into a cooperative program with the U.S.Geological Survey in 1991 to study the geohydrology and water chemistry in the Rialto- Colton basin. Ground-water flow and chemistry were investigated using existing data, borehole- geophysical and lithologic logs from newly drilled test holes, measurement of water levels, and chemical analyses of water samples. The Rialto-Colton basin is bounded on the northwest and southeast by the San Gabriel Mountains and the Badlands, respectively. The San Jacinto Fault and Barrier E form the northeastern boundary, and the Rialto-Colton Fault forms the southwestern boundary. Except in the southeastern part of the basin, the San Jacinto and Rialto-Colton Faults act as groundwater barriers that impede ground- water flow into and out of the basin.Barrier E generally does not impede ground- water flow into the basin. The ground-water system consists primarily of gravel, sand, silt, and clay. The maximum thickness is greater than 1,000 feet. The ground- water system is divided into four water-bearing units: river-channel deposits, and upper, middle, and lower water-bearing units. Relatively impermeable consolidated deposits underlie the lower water- bearing unit and form the lower boundary of the ground- water system. Ground water moves from east to west in the river-channel deposits and upper water-bearing unit in the southeastern part of the basin, and from northwest to southeast in the middle and lower water-bearing units. Two major internal faults, Barrier J and

  16. Reconnaissance evaluation of surface-water quality in Eagle, Grand, Jackson, Pitkin, Routt, and Summit counties, Colorado

    USGS Publications Warehouse

    Britton, Linda J.

    1979-01-01

    Water-quality data were collected from streams in a six-county area in northwest Colorado to determine if the streams were polluted and, if so, to determine the sources of the pollution. Eighty-three stream sites were selected for sampling in Eagle, Grand, Jackson, Pitkin, Routt, and Summit Counties. A summary of data collected prior to this study, results of current chemical and biological sampling, and needs for future water-quality monitoring are reported for each county. Data collected at selected sites included temperature, pH, specific conductance, dissolved oxygen, and stream discharge. Chemical data collected included nutrients, inorganics, organics, and trace elements. Biological data collected included counts and species composition of total and fecal-coliform bacteria, fecal-streptococcus bacteria, benthic invertebrates, and phytoplankton. Most of the sites were sampled three times: in April-June 1976, August 1976, and January 1977. (Woodard-USGS)

  17. Hydrology, water quality, and phosphorus loading of Kirby Lake, Barron County, Wisconsin

    USGS Publications Warehouse

    Rose, William J.; Robertson, Dale M.

    1998-01-01

    In 1992, residents near Kirby Lake, located about five miles northwest of Cumberland, in Barron County, Wisconsin, formed the Kirby Lake Management District. The Lake District immediately began to gather information needed for the preparation of a comprehensive lake-management plan that would be used to protect the natural and recreational assets of the lake. The Lake District completed a land-use inventory of the watershed and an evaluation of available lake water-quality data. The land-use data were used to assess the potential contribution of nutrients to the lake from the watershed. The evaluation of lake water-quality data, which were collected as part of the Wisconsin Department of Natural Resources (WDNR) Self-Help Monitoring Program, indicated the lake has relatively good water quality. Before a comprehensive lake-management plan could be prepared, however, a better understanding of several aspects of the lake and its surroundings was needed. To address those aspects including the definition of the lake's hydrology and the principal sources of nutrients, and the relation of the lake's water quality to nutrient loading the U.S. Geological Survey, in cooperation with the Lake District and the WDNR (through a Lake Management Planning Grant), conducted a study of Kirby Lake and its watershed. This Fact Sheet presents the results of that study.

  18. Hydrogeology and ground-water-quality conditions at the Geary County landfill, northeast Kansas, 1988

    USGS Publications Warehouse

    Myers, N.C.; Bigsby, P.R.

    1989-01-01

    Chemical analysis of water from monitoring wells upgradient and downgradient of the Geary County Landfill in Kansas near Junction City indicate the presence of several chemically distinct water types. For the dominant calcium bicarbonate water type, concentrations of inorganic and organic constituents indicate the presence of reducing conditions within the landfill and increased concentrations of calcium, magnesium, sodium, bicarbonate, sulfate, chloride, ammonia, iron, manganese, and other trace elements downgradient within a leachate plume that extends northeasterly away from the landfill. The orientation of the long axis of the leachate plume does not coincide with the August or September directions of groundwater flow, possibly due to the effect of abundant rainfall and high river stages at other times of the year or preferential flow in very transmissive zones, and thus may indicate the dominant direction of groundwater flow. None of the organic-constituent or inorganic-constituent concentrations exceeded secondary drinking-water standards. Concentrations of benzene, vinyl chloride, and 1,2-trans-dichloroethene exceeded Kansas notification levels. (USGS)

  19. Movement of ground water in coal-bearing rocks near Fishtrap Lake in Pike County, Kentucky

    USGS Publications Warehouse

    Davis, R.W.

    1987-01-01

    Eight test holes were core-drilled from various altitudes in a typical coal-bearing sequence rocks of Pennsylvania age in Pike County, eastern Kentucky. Vertical fractures were common in cores from shallow depths, but became less common or absent toward the bottom of two test holes drilled 400 and 291 ft deep. Most fractures readily injected water, and near the bottoms of the two deep holes, coal beds accepted water in the non-fractured rocks. Rhodamin-WT dye was injected in a 61-ft deep ridge-top well on October 24, 1985 and was detected in varying concentrations in water samples taken from all down-gradient piezometers at the study site on November 7, 1985. The presence of dye in down-gradient piezometers indicated that groundwater in the Eastern Kentucky coal field can move from areas of higher head to areas of lower head. The movement probably occurs in a stair-step fashion through a complex system of near-vertical fractures, and laterally through permeable rocks, which probably are the coal beds. This suggests that land uses on ridges could affect the quality of water from wells or springs at lower altitudes on hillsides or in the valley bottoms even though separated by a thick interval of rocks that include beds of low primary permeability. (Author 's abstract)

  20. Considerations for monitoring water quality of the Schenectady aquifer, Schenectady County, New York

    USGS Publications Warehouse

    Allen, R.V.; Waller, Roger Milton

    1981-01-01

    Six public water-supply systems in Schenectady County, N.Y., obtain water from sand and gravel units that form a more or less continuous aquifer system contiguous to the Mohawk River. The aquifer is under water-table conditions and in hydraulic contact with the river, so that pumping wells induces recharge from the river. Direct recharge to the aquifer from precipitation and runoff occurs throughout the valley floor. Chemical analyses since 1972 have indicated no water-quality deterioration from toxic substances, including pesticides. Geohydrologic conditions at each of the six well fields were evaluated to determine the feasibility of a monitoring system to provide warning of contamination before it reaches a pumping center. Potential contamination sources in the area are landfills, gravel pits, industrial sites, and transportation corridors. Only two of the well fields have wells that could be used for monitoring; at most sites, two or more wells would need to be installed to provide minimal means of detecting contaminants migrating toward a pumping center. (USGS)

  1. Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey, 1984

    USGS Publications Warehouse

    Hochreiter, J.J.; Kozinski, Jane

    1985-01-01

    The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochlorine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride (455 and 1800 micrograms/L, respectively), a volatile organic solvent. Bed-material samples taken from Little Timber and Birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). Contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the U.S. Geological Survey in 1980. Only a trace of PCB 's was detected in any bed material sample taken from Racoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. (Author 's abstract)

  2. Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey

    SciTech Connect

    Hochreiter, J.J.; Kozinski, J.

    1985-01-01

    The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochloroine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride, a volatile organic solvent. Bed-material samples taken from Little Timber and birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the US Geological Survey in 1980. Only a trace of PCB's was detected in any bed material sample taken from Raccoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. 23 refs., 7 figs, 7 tabs.

  3. Effect of pumpage on ground-water levels as modeled in Laramie County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.

    1980-01-01

    Groundwater is being extensively developed for domestic, agricultural, and industrial use in a 2,320-square mile area in Laramie County, WY., bounded approximately by Horse Creek on the north, Nebraska on the east, Colorado on the south, and pre-Tertiary outcrops on the west. Currently (1977) about 47,300 acres of land are irrigated with groundwater. Groundwater levels are declining in some areas as much as 4 feet per year. The investigation was made to provide State water administrators with data on water-level changes resulting from present (1977) groundwater withdrawals and to provide a means of predicting the future effect of groundwater development. A digital model was developed of the hydrologic system in the post-Cretaceous rocks. The ability of the model to simulate the hydrologic system was determined by comparing the water-level changes measured at 37 observation wells located in areas of irrigation pumping with the water-level changes calculated by the model for 1971-77. Comparison of the measured and calculated changes showed agreement with a root-mean-square deviation of + or - 3.6 feet with 8 feet as the maximum deviation. It is concluded that the model adequately simulates present hydrologic conditions in the post-Cretaceous rocks and may be used to predict the effect of applied stress to the system. (USGS)

  4. Ground-water resources of coastal Citrus, Hernando, and southwestern Levy counties, Florida

    USGS Publications Warehouse

    Fretwell, J.D.

    1983-01-01

    Ground water in the coastal parts of Citrus, Hernando, and Levy Counties is obtained almost entirely from the Floridan aquifer. The aquifer is unconfined near the coast and semiconfined in the ridge area. Transmissivity ranges from 20,000 feet squared per day in the ridge area to greater than 2,000,000 feet squared per day near major springs. Changes in the potentiometric surface of the aquifer are small between the wet and dry seasons. Water quality within the study area is generally very good except immediately adjacent to the coast where saltwater from the Gulf of Mexico poses a threat to freshwater supply. This threat can be compensated for by placing well fields a sufficient distance away from the zone of transition from saltwater to freshwater so as not to reduce or reverse the hydraulic gradient in that zone. Computer models are presently available to help predict the extent of influence of ground-water withdrawals in an area. These may be used as management tools in planning ground-water development of the area. (USGS)

  5. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  6. Hydrogeology, Aquifer Geochemistry, and Ground-Water Quality in Morgan County, West Virginia

    USGS Publications Warehouse

    Boughton, Carol J.; McCoy, Kurt J.

    2006-01-01

    Private and public wells throughout Morgan County, W. Va., were tested to determine aquifer hydraulic, geochemical, and water-quality characteristics. The entire study area is located in the Valley and Ridge Physiographic Province, a region of complex geologic structure and lithology. Aquifers in the study area are characterized by thin to thick bedded formations with interbedding among the various limestones, shales, sandstones, and siltstones that are folded into a series of steeply dipping north-south trending anticlines and synclines. Zones of ground-water production typically consist of one to two fracture sets, with little to no production from unfractured bedrock matrix. Measurements of transmissivity range from 2 to 1,490 feet squared per day, with the larger transmissivities occurring near bedding contacts and in zones with cross-faulting or jointing. Ground water flows from recharge areas in the uplands to local drainages and to deeper flow systems that appear to be controlled by regional geologic structure. The overall flow direction is from south to north within the study area. Ground water within the study area is predominantly a calcium-bicarbonate type water reflecting contact with carbonate rocks. Sodium-bicarbonate and calcium-magnesium-sulfate end-members also exist, with many samples exhibiting mixing, which may be the result of flow between the differing rock types or within units containing both carbonate rocks and shales. Values of water-quality characteristics that were greater than U.S. Environmental Protection Agency drinking-water standards included radon-222, pH, turbidity, iron, manganese, aluminum, and total- and fecal-coliform and Escherichia coli (E. coli) bacteria. Concentrations of radon-222 were detected in all samples from all units, with the largest concentrations (1,330 and 2,170 picocuries per liter) from the Clinton Formation.

  7. Geohydrologic data for the St. Charles County well field and public-water supply, 1985-91, and projected public-water supply, 1995 and 2000,for St. Charles County, Missouri

    USGS Publications Warehouse

    Mugel, D.N.

    1993-01-01

    The St. Charles County well field consists of 8 wells that penetrate the entire thickness of the Missouri River alluvial aquifer. The wells range from 98 to 116 ft deep. The lower 40 ft of each well is screened and open to the aquifer. The specific capacities of the wells calculated soon after well completion ranged from 115 to 248 gal/min/ft of drawdown. Transmissivities range from 900 to 60,200 sq ft/day. Hydraulic conductivities range from 23 to 602 ft/day. Storage coefficients range from 0.005 to 0.2. A tracer test determined effective porosity ranging from 0.21 to 0.32. A point dilution test determined a groundwater velocity of 0.83 ft/day. From 1985-91, the average daily water supply from the St. Charles County well field and water- treatment plant increased from 5.76 to 10.23 Mgal/day, an increase from 36.2 to 42.2 percent of the total quantity of water supplied by major public-water suppliers in St. Charles County. The average daily water supply from the well field and water-treatment plant is projected to increase to 11.0 Mgal/day during 1995 and 12.2 Mgal/day during 2000. The St. Charles County Water Department's projections of peak daily demands from customers indicate that these demands will exceed the capacity of the water-treatment plant during 1995 and will exceed the capacities of both the well field and water-treatment plant during 2000.

  8. Water quality of Calero Reservoir, Santa Clara County, California, 1981-83

    USGS Publications Warehouse

    Clifton, D.G.; Gloege, I.S.

    1987-01-01

    Data were collected from December 1980 to September 1983 to describe water quality conditions of Calero Reservoir and the Almaden-Calero canal, Santa Clara County, California. Results show that water in Calero Reservoir and the canal generally met water quality criteria, as identified by the California Regional Water Quality Control Board San Francisco Bay Region, for municipal and domestic supply, water contact and non-contact recreation, warm water fish habitat, wildlife habitat, and fish spawning. Water temperature profiles show that Calero Reservoir can be classified as a warm monomictic reservoir. Water transparency profiles showed rapid attenuation of light with depth in the water column. The depth of the euphotic zone ranged from .5 m to 5.0 m. In winter and spring, light-extinction values generally were high throughout the water column; in summer and fall, values generally were high near the reservoir bottom. Dissolved oxygen concentrations were < 5.0 mg/L in about 22% of the measurements. Median pH values were 7.9 in the reservoir and 8.4 in the canal. Mean specific conductance values were 299 microsiemens/cm at 25 C in the reservoir and 326 in the canal. Calcium and magnesium were the dominant cations and bicarbonate the dominant anion in Calero Reservoir. Concentrations of total recoverable mercury in the bottom sediments in Calero Reservoir ranged from 0.06 to 0.85 mg/kg, but concentrations in the water column were was generally < 1 mg/L. Mean total nitrogen concentration in the Reservoir was 1.00 mg/L, much of it in dissolved form (mean concentration was 0.85 mg/L). Mean total organic nitrogen concentration in Calero Reservoir was 0.65 mg/L, and mean total nitrate concentration was 0.21 mg/L. Mean total phosphorus and dissolved orthophosphorous concentrations were 0.05 and 0.019 mg/L, respectively. Net primary productivity in the euphotic zone ranged from -2,000 to 10,000 mg of oxygen/sq m/day; the median value was 930. Carlson 's trophic-state index

  9. Simulation of groundwater and surface-water resources of the Santa Rosa Plain watershed, Sonoma County, California

    USGS Publications Warehouse

    Woolfenden, Linda R.; Nishikawa, Tracy

    2014-01-01

    Water managers in the Santa Rosa Plain face the challenge of meeting increasing water demand with a combination of Russian River water, which has uncertainties in its future availability; local groundwater resources; and ongoing and expanding recycled water and water from other conservation programs. To address this challenge, the U.S. Geological Survey, in cooperation with the Sonoma County Water Agency, the cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, the town of Windsor, the California American Water Company, and the County of Sonoma, undertook development of a fully coupled groundwater and surface-water model to better understand and to help manage the hydrologic resources in the Santa Rosa Plain watershed. The purpose of this report is to (1) describe the construction and calibration of the fully coupled groundwater and surface-water flow model for the Santa Rosa Plain watershed, referred to as the Santa Rosa Plain hydrologic model; (2) present results from simulation of the Santa Rosa Plain hydrologic model, including water budgets, recharge distributions, streamflow, and the effect of pumping on water-budget components; and (3) present the results from using the model to evaluate the potential hydrologic effects of climate change and variability without pumpage for water years 2011-99 and with projected pumpage for water years 2011-40.

  10. Geology and ground-water resources of the Ahtanum Valley, Yakima County, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1962-01-01

    The Ahtanum Valley covers an area of about 100 square miles in an important agricultural district in central Yakima County, Wash. Because the area is semiarid, virtually all crops require irrigation. Surface-water supplies are inadequate in most of the area, and ground water is being used increasingly for irrigation. The purpose of this investigation was the collection and interpretation of data, pertaining to ground water in the area as an aid in the proper development and management of the water resources. The occurrence and movement of ground water in the Ahtanum Valley are directly related to the geology. The valley occupies part of a structural trough (Ahtanum-Moxee subbasin) that is underlain by strongly folded flow layers of a thick sequence of the Yakima basalt. The upper part of the basalt sequence interfingers with, and is conformably overlying by, sedimentary rocks of the Ellensburg formation which are as much as 1,000 feet thick. These rocks are in turn overlying unconformably by cemented basalt gravel as much as 400 feet thick. Unconsolidated alluvial sand and gravel, as much as 30 feet thick, form the valley floor. Although ground water occurs in each of the rock units within the area, the Yakima basalt and the unconsolidated alluvium yield about three-fourths of the ground water currently used. Wells in the area range in depth from a few feet to more than 1,200 feet and yield from less than 1 to more than 1,030 gallons per minute. Although water levels in water-table wells usually are shallow--often less than 5 feet below the land surface--levels in deeper wells tapping confined water range from somewhat above the land surface (in flowing wells) to about 200 feet below. Wells drilled into aquifers in the Yakima basalt, the Ellensburg formation, and the cemented gravel usually tap confined water, and at least 12 wells in the area flow or have flowed in the past. Ground-water levels fluctuate principally in response to changes in stream levels

  11. Mineral resources of the New Water Mountains Wilderness Study Area, La Paz County, Arizona

    SciTech Connect

    Sherrod, D.R.; Smith, D.B.; Koch, R.D.; Hanna, W.F.; Pitkin, J.A.; Lane, M.E.

    1989-01-01

    The New Water Mountains Wilderness Study Area, situated in La Paz County, west-central Arizona, locally has a moderate resource potential for gold and silver from replacement-type deposits occurring in Paleozoic marble in the western and north-central parts of the area, and a low resource potential for copper, lead, zinc, and manganese localized in fault zones that cut Tertiary volcanic rocks near the eastern edge of the range. Resource potential is low for geothermal energy or oil and gas. There is an unknown resource potential for lime, which could be developed from Paleozoic marble in the north-central part of the area. Sand and gravel occur in the area, but these materials are abundant closer to markets in the region.

  12. Ground-water hydrology of Dugway Proving Ground and adjoining area, Tooele and Juab counties, Utah

    USGS Publications Warehouse

    Steiger, Judy I.; Freethey, Geoffrey W.

    2001-01-01

    Dugway Proving Ground (DPG) is a U.S. Department of Defense chemical, biological, and explosives testing facility in northwestern Utah.  The facility includes about 620 mi2 in Tooele County.  The town of Dugway, referred to as English Village, is the administrative headquarters for the military facility, the primary residential area, and community center.  The English Village area is located at the southern end of Skull Valley and is separated from the Fries area by a surface-water divide.  Most of the facility is located just to the west of Skull Valley in Government Creek Valley, Dugway Valley, and the Great Salt Lake Desert (fig. 1).

  13. Methane Gas Concentration in Soils and Ground Water, Carbon and Emery Counties, Utah, 1995-2003

    USGS Publications Warehouse

    Stolp, B.J.; Burr, A.L.; Johnson, K.K.

    2006-01-01

    The release of methane gas from coal beds creates the potential for it to move into near-surface environments through natural and human-made pathways. To help ensure the safety of communities and determine the potential effects of development of coal-bed resources, methane gas concentrations in soils and ground water in Carbon and Emery Counties, Utah, were monitored from 1995 to 2003. A total of 420 samples were collected, which contained an average methane concentration of 2,740 parts per million by volume (ppmv) and a median concentration of less than 10 ppmv. On the basis of spatial and temporal methane concentration data collected during the monitoring period, there does not appear to be an obvious, widespread, or consistent migration of methane gas to the near-surface environment.

  14. Water use in Georgia by county for 2010 and water-use trends, 1985–2010

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2015-12-16

    About 2,225 Mgal/d of water was returned to Georgia streams and lakes in 2010 under the National Pollutant Discharge Elimination System program administered by the Georgia Environmental Protection Division. This am

  15. Chlorofluorocarbon dating of herbicide-containing well waters in Fresno and Tulare counties, California

    USGS Publications Warehouse

    Spurlock, F.; Burow, K.; Dubrovsky, N.

    2000-01-01

    Simazine, diuron, and bromacil are the most frequently detected currently registered pesticides in California groundwater. These herbicides have been used for several decades in Fresno and Tulare counties, California; however, previous data are inadequate to determine whether the detections are a result of recent or historical applications (i.e., within the last decade, or 20-30 yr ago). Chlorofluorocarbon (CFC) groundwater age-dating was used in conjunction with one-dimensional transport modeling to address this question. The estimated times between herbicide application and subsequent detection in groundwater samples from 18 domestic wells ranged from 3 to 33 yr; the aggregate data indicate that more than half of the detections are associated with applications in the last decade. The data also suggest that changes in groundwater quality arising from modified management practices will probably not be discernible for at least a decade. A secondary objective of this study was to evaluate the contribution of simazine degradates deethylsimazine (DES; 2-amino-4-chloro-6-ethylamino-s-triazine) and diaminochlorotriazine (DACT; 2,4-diamino-6-chloro-s-triazine) to total triazine concentrations (defined here as simazine + DES + DACT) in 30 domestic wells. The N-dealkylated s- chlorotriazine degradates DES and DACT substantially contribute to total triazine concentrations in Fresno and Tulare County groundwater, composing 24 to 100% of the total triazines, with a median of 82%. If s-chlorotriazines display a common mode of toxicological action, the prevalence of triazine degradates in water samples found in this and other studies indicate that drinking water standards based on total s-chlorotriazine concentrations may be most appropriate.

  16. Geohydrology and ground-water quality at selected sites in Meade County, Kentucky, 1987-88

    USGS Publications Warehouse

    Mull, D.S.; Alexander, A.G.; Schultz, P.E.

    1989-01-01

    Meade County in north-central Kentucky is about 305 sq mi in size, and is underlain by thick beds of limestone and dolomite which are the principal sources of drinking water for about 8 ,500 residents. About half the area contains mature, karst terrain with abundant sinkholes, springs, and caves. Because of this karst terrain, groundwater is susceptible to rapid changes in water quality and contamination from human sources. Thirty-seven wells and 12 springs were selected as sampling points to characterize groundwater quality in the area. Water was analyzed for major anions and cations, nitrates, trace elements, and organic compounds. Water from selected sites was also analyzed for fecal species of coliform streptococci bacteria and total coliform content. Except for fluoride and lead, the water quality was within the range expected for carbonate aquifers.The fluoride content was significantly higher in water from wells than in water from springs. Concentrations of detectable lead ranged from 10 to 50 micrograms/L and had a median value of 7.5 microg/L. Dissolved solids ranged from 100 to 2,200 mg/L and the median value was 512 mg/L. Hardness ranged from 20 to 1,100 mg/L and the median value was 290 mg/L. Organic compounds detected by the gas chromatographic/flame ionization detection scans, did not indicate evidence of concentrations in excess of the current Federal drinking water standards. Analysis for specific organic compounds indicated that the presence of these compounds was associated with agricultural chemicals, usually pesticides. Total coliform content exceeded drinking water standards in water from all 12 springs and in 18 wells. Statistical analysis of the groundwater quality data indicates that the variance of the concentrations of fluoride and chloride may be attributed to the site type. There was strong correlation between hardness and dissolved solids, hardness and sulfate, and sulfate and dissolved solids. No apparent relations were detected

  17. Water acquisition and use during unconventional oil and gas development and the existing data challenges: Weld and Garfield counties, CO.

    PubMed

    Oikonomou, Panagiotis D; Kallenberger, Julie A; Waskom, Reagan M; Boone, Karie K; Plombon, Elizabeth N; Ryan, Joseph N

    2016-10-01

    Colorado has recently experienced a significant increase in unconventional oil and gas development, with the greatest concentration of activity occurring in Weld and Garfield counties. Water for oil and gas development has received much attention mainly because water resources are limited in these regions and development is taking place closer to populated areas than it did in the past. Publicly available datasets for the period 2011-2014 were used to identify water acquisition strategies and sources of water used for oil and gas. In addition, the annual average water used in these two counties was quantified and compared to their total water withdrawals. The analysis also quantified the water needed for different well types, along with the flowback water that is retrieved. Weld and Garfield counties are dissimilar in respect to development practices for water acquisition, preferred well type and the fate of flowback water. But at the same time, this difference displays how geological characteristics, water availability, and administration localities are the key elements along with economics in the decision making process within the oil and gas sector. This effort also revealed data challenges regarding accessibility and reliability of reported information, and the need for additional data. Improving the understanding of the unconventional oil and gas sector's water use will help identify possible effects and tradeoffs on the local/regional level, which could diminish the conflicting perspectives that shape the water-energy discussions. This would complement the ability to make informed water resources planning and management decisions that are environmentally and socially acceptable. PMID:27300291

  18. Simulation of ground-water flow in the Cedar River alluvium, northwest Black Hawk County and southwest Bremer County, Iowa

    USGS Publications Warehouse

    Schaap, Bryan D.; Savoca, Mark E.; Turco, Michael J.

    2003-01-01

    In general, once high ground-water levels occur, either because of high Cedar River water Abstract levels or above normal local precipitation or both, ground-water in the central part of the study area along Highway 218 flows toward the south rather than following shorter flow paths to the Cedar River. Intermittent streams in the study area discharge substantial amounts of water from the ground-water flow system.

  19. Water resources of Jackson and Independence Counties, Arkansas; Contributions to the Hydrology of the United States

    USGS Publications Warehouse

    Albin, Donald R.; Hines, Marion S.; Stephens, John W.

    1967-01-01

    The present (1965) water use in Jackson and Independence Counties is about 55.6 million gallons per day, and quantities sufficient for any foreseeable use are available. Supplies for the large-scale uses--municipal, industrial, and irrigation--can best be obtained from wells in the Coastal Plain and from streams in the highlands. Wells in the Coastal Plain will yield 1,000-2,000 gallons of water per minute when screened at depths from 100 to 150 feet in alluvial sand and gravel of Quaternary age. The water will require treatment for the removal of iron and the reduction of hardness to be suitable for municipal and industrial uses. Wells in the highlands generally yield less than 50 gallons per minute of water that is of good quality, though hard. The dependable flow of .the White River at Newport is about 4.2 billion gallons per day. The dependable 'base flows of the small streams tributary to the White River in the Salem Plateau and Springfield Plateau sections range from 0.25 to 5 million gallons per day, and the dependable flow of Polk Bayou at Batesville is about 21 million gallons per day. These streams can be utilized for water supply with little or no artificial storage required. Streams in the Boston Mountains section and in the Arkansas Valley section recede to very low flow or to no flow during extended dry periods, but dependable, supplies can be obtained from these streams 'by construction of storage facilities Water from all the highland streams is af excellent chemical quality except that it generally is hard.

  20. 77 FR 2974 - Yuba County Water Agency; Notice of Proposed Restricted Service List for a Programmatic Agreement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Yuba County Water Agency; Notice of Proposed Restricted Service List for a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the National Register of Historic Places Rule 2010 of...