Calculations of skyshine from an intense portable electron linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, G.P.; Hughes, H.G.; Fry, D.A.
1994-12-31
The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-07-01
The Accelerator System Model (ASM) is a computer program developed to model proton radiofrequency accelerators and to carry out system level trade studies. The ASM FORTRAN subroutines are incorporated into an intuitive graphical user interface which provides for the {open_quotes}construction{close_quotes} of the accelerator in a window on the computer screen. The interface is based on the Shell for Particle Accelerator Related Codes (SPARC) software technology written for the Macintosh operating system in the C programming language. This User Manual describes the operation and use of the ASM application within the SPARC interface. The Appendix provides a detailed description of themore » physics and engineering models used in ASM. ASM Version 1.0 is joint project of G. H. Gillespie Associates, Inc. and the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Neither the ASM Version 1.0 software nor this ASM Documentation may be reproduced without the expressed written consent of both the Los Alamos National Laboratory and G. H. Gillespie Associates, Inc.« less
Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August
2016-09-13
Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less
Numerical predictions of EML (electromagnetic launcher) system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnurr, N.M.; Kerrisk, J.F.; Davidson, R.F.
1987-01-01
The performance of an electromagnetic launcher (EML) depends on a large number of parameters, including the characteristics of the power supply, rail geometry, rail and insulator material properties, injection velocity, and projectile mass. EML system performance is frequently limited by structural or thermal effects in the launcher (railgun). A series of computer codes has been developed at the Los Alamos National Laboratory to predict EML system performance and to determine the structural and thermal constraints on barrel design. These codes include FLD, a two-dimensional electrostatic code used to calculate the high-frequency inductance gradient and surface current density distribution for themore » rails; TOPAZRG, a two-dimensional finite-element code that simultaneously analyzes thermal and electromagnetic diffusion in the rails; and LARGE, a code that predicts the performance of the entire EML system. Trhe NIKE2D code, developed at the Lawrence Livermore National Laboratory, is used to perform structural analyses of the rails. These codes have been instrumental in the design of the Lethality Test System (LTS) at Los Alamos, which has an ultimate goal of accelerating a 30-g projectile to a velocity of 15 km/s. The capabilities of the individual codes and the coupling of these codes to perform a comprehensive analysis is discussed in relation to the LTS design. Numerical predictions are compared with experimental data and presented for the LTS prototype tests.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.
1995-10-01
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.
1995-09-15
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
Airport-Noise Levels and Annoyance Model (ALAMO) system's reference manual
NASA Technical Reports Server (NTRS)
Deloach, R.; Donaldson, J. L.; Johnson, M. J.
1986-01-01
The airport-noise levels and annoyance model (ALAMO) is described in terms of the constituent modules, the execution of ALAMO procedure files, necessary for system execution, and the source code documentation associated with code development at Langley Research Center. The modules constituting ALAMO are presented both in flow graph form, and through a description of the subroutines and functions that comprise them.
Beam breakup in an advanced linear induction accelerator
Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent
2016-07-01
Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less
Determination of the Shock Properties of Ceramic Corbit 98: 98% Alumina
2010-06-01
sapphire or aluminum. A single stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used...stage three inch bore gas gun was used to accelerate the projectile for experiments at NPS. Los Alamos National Lab used a higher performance gun...Gigapascals, one billion pascals of pressure or force per unit area HEL Hugoniot elastic limit LANL Los Alamos National Lab mm Millimeter, or one
Los Alamos high-power proton linac designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, G.P.
1995-10-01
Medium-energy high-power proton linear accelerators have been studied at Los Alamos as drivers for spallation neutron applications requiring large amounts of beam power. Reference designs for such accelerators are discussed, important design factors are reviewed, and issues and concern specific to this unprecedented power regime are discussed.
NASA Technical Reports Server (NTRS)
Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.
2004-01-01
The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.
Development of the Los Alamos continuous high average-power microsecond pulser ion accelerator
NASA Astrophysics Data System (ADS)
Bitteker, L. J.; Wood, B. P.; Davis, H. A.; Waganaar, W. J.; Boyd, I. D.; Lovberg, R. H.
2000-10-01
The continuous high average-power microsecond pulser (CHAMP) ion accelerator is being constructed at Los Alamos National Laboratory. Progress on the testing of the CHAMP diode is discussed. A direct simulation Monte Carlo computer code is used to investigate the puffed gas fill of the CHAMP anode. High plenum pressures and low plenum volumes are found to be desirable for effective gas puffs. The typical gas fill time is 150-180 μs from initiation of valve operation to end of fill. Results of anode plasma production at three stages of development are discussed. Plasma properties are monitored with electric and magnetic field probes. From this data, the near coil plasma density under nominal conditions is found to be on the order of 1×1016 cm-3. Large error is associated with this calculation due to inconsistencies between tests and the limitations of the instrumentation used. The diode insulating magnetic field is observed to result in lower density plasma with a more diffuse structure than for the cases when the insulating field is not applied. The importance of these differences in plasma quality on the beam production is yet to be determined.
NASA Astrophysics Data System (ADS)
Joshi, C.
2012-12-01
The first Advanced Acceleration of Particles-AAC-Workshop (actually named Laser Acceleration of Particles Workshop) was held at Los Alamos in January 1982. The workshop lasted a week and divided all the acceleration techniques into four categories: near field, far field, media, and vacuum. Basic theorems of particle acceleration were postulated (later proven) and specific experiments based on the four categories were formulated. This landmark workshop led to the formation of the advanced accelerator R&D program in the HEP office of the DOE that supports advanced accelerator research to this day. Two major new user facilities at Argonne and Brookhaven and several more directed experimental efforts were built to explore the advanced particle acceleration schemes. It is not an exaggeration to say that the intellectual breadth and excitement provided by the many groups who entered this new field provided the needed vitality to then recently formed APS Division of Beams and the new online journal Physical Review Special Topics-Accelerators and Beams. On this 30th anniversary of the AAC Workshops, it is worthwhile to look back at the legacy of the first Workshop at Los Alamos and the fine groundwork it laid for the field of advanced accelerator concepts that continues to flourish to this day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang, Xiaoying; Rybarcyk, Larry
HPSim is a GPU-accelerated online multi-particle beam dynamics simulation tool for ion linacs. It was originally developed for use on the Los Alamos 800-MeV proton linac. It is a “z-code” that contains typical linac beam transport elements. The linac RF-gap transformation utilizes transit-time-factors to calculate the beam acceleration therein. The space-charge effects are computed using the 2D SCHEFF (Space CHarge EFFect) algorithm, which calculates the radial and longitudinal space charge forces for cylindrically symmetric beam distributions. Other space- charge routines to be incorporated include the 3D PICNIC and a 3D Poisson solver. HPSim can simulate beam dynamics in drift tubemore » linacs (DTLs) and coupled cavity linacs (CCLs). Elliptical superconducting cavity (SC) structures will also be incorporated into the code. The computational core of the code is written in C++ and accelerated using the NVIDIA CUDA technology. Users access the core code, which is wrapped in Python/C APIs, via Pythons scripts that enable ease-of-use and automation of the simulations. The overall linac description including the EPICS PV machine control parameters is kept in an SQLite database that also contains calibration and conversion factors required to transform the machine set points into model values used in the simulation.« less
Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos
NASA Astrophysics Data System (ADS)
Parsons, D. Kent
2017-09-01
Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.
The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions
NASA Astrophysics Data System (ADS)
Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group
2015-01-01
The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.
Light element opacities of astrophysical interest from ATOMIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.
We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator
Ekdahl, Carl
2015-11-17
Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less
Electron-beam dynamics for an advanced flash-radiography accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2015-06-22
Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less
Hybrid petacomputing meets cosmology: The Roadrunner Universe project
NASA Astrophysics Data System (ADS)
Habib, Salman; Pope, Adrian; Lukić, Zarija; Daniel, David; Fasel, Patricia; Desai, Nehal; Heitmann, Katrin; Hsu, Chung-Hsing; Ankeny, Lee; Mark, Graham; Bhattacharya, Suman; Ahrens, James
2009-07-01
The target of the Roadrunner Universe project at Los Alamos National Laboratory is a set of very large cosmological N-body simulation runs on the hybrid supercomputer Roadrunner, the world's first petaflop platform. Roadrunner's architecture presents opportunities and difficulties characteristic of next-generation supercomputing. We describe a new code designed to optimize performance and scalability by explicitly matching the underlying algorithms to the machine architecture, and by using the physics of the problem as an essential aid in this process. While applications will differ in specific exploits, we believe that such a design process will become increasingly important in the future. The Roadrunner Universe project code, MC3 (Mesh-based Cosmology Code on the Cell), uses grid and direct particle methods to balance the capabilities of Roadrunner's conventional (Opteron) and accelerator (Cell BE) layers. Mirrored particle caches and spectral techniques are used to overcome communication bandwidth limitations and possible difficulties with complicated particle-grid interaction templates.
Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickermann, Thomas
2012-08-01
In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less
Summary Report of Working Group 2: Computation
NASA Astrophysics Data System (ADS)
Stoltz, P. H.; Tsung, R. S.
2009-01-01
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.
Summary Report of Working Group 2: Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltz, P. H.; Tsung, R. S.
2009-01-22
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less
The role of configuration interaction in the LTE opacity of Fe
NASA Astrophysics Data System (ADS)
Colgan, James; Kilcrease, David; Magee, Norm; Armstrong, Gregory; Abdallah, Joe; Sherrill, Manolo; Fontes, Christopher; Zhang, Honglin; Hakel, Peter
2013-05-01
The Los Alamos National Laboratory code ATOMIC has been recently used to generate a series of local-thermodynamic-equilibrium (LTE) light element opacities for the elements H through Ne. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. Recent efforts have resulted in comprehensive new calculations of the opacity of Fe. In this presentation we explore the role of configuration interaction (CI) in the Fe opacity, and show where CI influences the monochromatic opacity. We present such comparisons for conditions of astrophysical interest. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.
Total reaction cross sections in CEM and MCNP6 at intermediate energies
Kerby, Leslie M.; Mashnik, Stepan G.
2015-05-14
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Total reaction cross sections in CEM and MCNP6 at intermediate energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerby, Leslie M.; Mashnik, Stepan G.
Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less
Theoretical modeling of laser-induced plasmas using the ATOMIC code
NASA Astrophysics Data System (ADS)
Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle
2014-10-01
We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
3D unstructured-mesh radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morel, J.
1997-12-31
Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less
Advances in petascale kinetic plasma simulation with VPIC and Roadrunner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Kevin J; Albright, Brian J; Yin, Lin
2009-01-01
VPIC, a first-principles 3d electromagnetic charge-conserving relativistic kinetic particle-in-cell (PIC) code, was recently adapted to run on Los Alamos's Roadrunner, the first supercomputer to break a petaflop (10{sup 15} floating point operations per second) in the TOP500 supercomputer performance rankings. They give a brief overview of the modeling capabilities and optimization techniques used in VPIC and the computational characteristics of petascale supercomputers like Roadrunner. They then discuss three applications enabled by VPIC's unprecedented performance on Roadrunner: modeling laser plasma interaction in upcoming inertial confinement fusion experiments at the National Ignition Facility (NIF), modeling short pulse laser GeV ion acceleration andmore » modeling reconnection in magnetic confinement fusion experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Robert P.; Miller, Paul; Howley, Kirsten
The NNSA Laboratories have entered into an interagency collaboration with the National Aeronautics and Space Administration (NASA) to explore strategies for prevention of Earth impacts by asteroids. Assessment of such strategies relies upon use of sophisticated multi-physics simulation codes. This document describes the task of verifying and cross-validating, between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), modeling capabilities and methods to be employed as part of the NNSA-NASA collaboration. The approach has been to develop a set of test problems and then to compare and contrast results obtained by use of a suite of codes, includingmore » MCNP, RAGE, Mercury, Ares, and Spheral. This document provides a short description of the codes, an overview of the idealized test problems, and discussion of the results for deflection by kinetic impactors and stand-off nuclear explosions.« less
A New Generation of Los Alamos Opacity Tables
Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...
2016-01-26
We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less
Electrical Engineering in Los Alamos Neutron Science Center Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Michael James
The field of electrical engineering plays a significant role in particle accelerator design and operations. Los Alamos National Laboratories LANSCE facility utilizes the electrical energy concepts of power distribution, plasma generation, radio frequency energy, electrostatic acceleration, signals and diagnostics. The culmination of these fields produces a machine of incredible potential with uses such as isotope production, neutron spallation, neutron imaging and particle analysis. The key isotope produced in LANSCE isotope production facility is Strontium-82 which is utilized for medical uses such as cancer treatment and positron emission tomography also known as PET scans. Neutron spallation is one of the verymore » few methods used to produce neutrons for scientific research the other methods are natural decay of transuranic elements from nuclear reactors. Accelerator produce neutrons by accelerating charged particles into neutron dense elements such as tungsten imparting a neutral particle with kinetic energy, this has the benefit of producing a large number of neutrons as well as minimizing the waste generated. Utilizing the accelerator scientist can gain an understanding of how various particles behave and interact with matter to better understand the natural laws of physics and the universe around us.« less
Investigation and Prediction of RF Window Performance in APT Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, S. Jr.
1997-05-01
The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electronmore » multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, T.A.; Baker, D.F.; Edwards, C.L.
1993-10-01
Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, Cris William
Los Alamos National Laboratory’s proposed MaRIE facility is slated to introduce the world’s highest energy hard x-ray free electron laser (XFEL). As the light source for the Matter-Radiation Interactions in Extremes experimental facility (MaRIE), the 42-keV XFEL, with bursts of x-ray pulses at gigahertz repetition for studying fast dynamical processes, will help accelerate discovery and design of the advanced materials needed to meet 21st-century national security and energy security challenges. Yet the science of free-electron lasers has a long and distinguished history at Los Alamos National Laboratory (LANL), where for nearly four decades Los Alamos scientists have been performing research,more » design, development, and collaboration work in FEL science. The work at Los Alamos has evolved from low-gain amplifier and oscillator FEL development to highbrightness photoinjector development, and later, self-amplified spontaneous emission (SASE) and high-gain amplifier FEL development.« less
A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD
NASA Astrophysics Data System (ADS)
Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team
2017-11-01
The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
New Generation of Los Alamos Opacity Tables
NASA Astrophysics Data System (ADS)
Colgan, James; Kilcrease, D. P.; Magee, N. H.; Sherrill, M. E.; Abdallah, J.; Hakel, P.; Fontes, C. J.; Guzik, J. A.; Mussack, K. A.
2016-05-01
We present a new generation of Los Alamos OPLIB opacity tables that have been computed using the ATOMIC code. Our tables have been calculated for all 30 elements from hydrogen through zinc and are publicly available through our website. In this poster we discuss the details of the calculations that underpin the new opacity tables. We also show several recent applications of the use of our opacity tables to solar modeling and other astrophysical applications. In particular, we demonstrate that use of the new opacities improves the agreement between solar models and helioseismology, but does not fully resolve the long-standing `solar abundance' problem. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report« less
Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferres, Laurent
Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less
Status of LANL Efforts to Effectively Use Sequoia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William David
2015-05-14
Los Alamos National Laboratory (LANL) is currently working on 3 new production applications, VPC, xRage, and Pagosa. VPIC was designed to be a 3D relativist, electromagnetic Particle-In-Cell code for plasma simulation. xRage, a 3D AMR mesh amd multi physics hydro code. Pagosa, is a 3D structured mesh and multi physics hydro code.
The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob
2017-11-01
Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.
Evaluation of Production Cross Sections of Li, Be, B in CR
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Mashnik, S. G.
2003-01-01
Accurate evaluation of the production cross section of light elements is important for models of cosmic ray (CR) propagation, galactic chemical evolution, and cosmological studies. However, the experimental spallation cross section data are scarce and often unavailable to CR community while semi-empirical systematics are frequently wrong by a significant factor. Running sophisticated nuclear codes is not an option of choice for everyone either. We use the Los Alamos versions of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k together with all available data from Los Alamos Nuclear Laboratory (LANL) nuclear database to produce evaluated production cross sections of isotopes of Li, Be, and B suitable for astrophysical applications. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2014-10-14
Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1996-01-01
Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.
The Los Alamos suite of relativistic atomic physics codes
Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...
2015-05-28
The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less
Earth and Planetary Science Letters
NASA Technical Reports Server (NTRS)
Nishiizumi, K.; Klein, J.; Middleton, R.; Masarik, J.; Reedy, R. C.; Arnold, J. R.; Fink, D.
1997-01-01
Systematic measurements of the concentrations of cosmogen Ca-41 (half-life = 1.04 x 10(exp 5) yr) in the Apollo 15 long core 15001-15006 were performed by accelerator mass spectroscopy. Earlier measurements of cosmogenic Be-10, C-14, Al-26, Cl-36, and Mn-53 in the same core have provided confirmation and improvement of theoretical models for predicting production profiles of nuclides by cosmic ray induced spallation in the Moon and large meteorites. Unlike these nuclides, Ca-40 in the lunar surface is produced mainly by thermal neutron capture reactions on Ca-40. The maximum production of Ca-41, about 1 dpm/g Ca, was observed at a depth in the Moon of about 150 g/sq cm. For depths below about 300 g/sq cm, Ca-41 production falls off exponentially with an e-folding length of 175 g/sq cm. Neutron production in the Moon was modeled with the Los Alamos High Energy Transport Code System, and yields of nuclei produced by low-energy thermal and epithermal neutrons were calculated with the Monte Carlo N-Particle code. The new theoretical calculations using these codes are in good agreement with our measured Ca-41 concentrations as well as with Co-60 and direct neutron fluence measurements in the Moon.
Influence of shockwave profile on ejecta: An experimental and computational study
NASA Astrophysics Data System (ADS)
Zellner, Michael; Germann, Timothy; Hammerberg, James; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William
2009-06-01
This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foils, optical shadowgraph, and x-ray attenuation. In addition to the experimental results, SPaSM, a short-ranged parallel molecular dynamics code developed at Los Alamos National Laboratory, was used to investigate the relation between shock-pulse shape and production of ejecta from a first principles point-of-view.
NASA Astrophysics Data System (ADS)
Kelley, Karen Corzine
At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative measurements compared best with Bertini and were within a factor of two to three of CEM2k+GEM2.
NASA Astrophysics Data System (ADS)
Barr, D.; Gilpatrick, J. D.; Martinez, D.; Shurter, R. B.
2004-11-01
The Los Alamos Neutron Science Center (LANSCE) facility at Los Alamos National Laboratory has constructed both an Isotope Production Facility (IPF) and a Switchyard Kicker (XDK) as additions to the H+ and H- accelerator. These additions contain eleven Beam Position Monitors (BPMs) that measure the beam's position throughout the transport. The analog electronics within each processing module determines the beam position using the log-ratio technique. For system reliability, calibrations compensate for various temperature drifts and other imperfections in the processing electronics components. Additionally, verifications are periodically implemented by a PC running a National Instruments LabVIEW virtual instrument (VI) to verify continued system and cable integrity. The VI communicates with the processor cards via a PCI/MXI-3 VXI-crate communication module. Previously, accelerator operators performed BPM system calibrations typically once per day while beam was explicitly turned off. One of this new measurement system's unique achievements is its automated calibration and verification capability. Taking advantage of the pulsed nature of the LANSCE-facility beams, the integrated electronics hardware and VI perform calibration and verification operations between beam pulses without interrupting production beam delivery. The design, construction, and performance results of the automated calibration and verification portion of this position measurement system will be the topic of this paper.
New facility for ion beam materials characterization and modification at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.
1988-01-01
The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.
LANL Debuts Hybrid Garbage Truck
Witt, Monica
2018-01-16
Los Alamos National Laboratory has begun using a diesel-hydraulic hybrid garbage truck that could save up to 30 percent in operating costs and greenhouse emissions. The Peterbilt Model 320 takes energy from braking and uses it to help the truck accelerate after stops.
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
Los Alamos research in nozzle based coaxial plasma thrusters
NASA Technical Reports Server (NTRS)
Scheuer, Jay; Schoenberg, Kurt; Gerwin, Richard; Henins, Ivars; Moses, Ronald, Jr.; Wurden, Glen
1992-01-01
The topics are presented in viewgraph form and include the following: research approach; perspectives on efficient magnetoplasmadynamic (MPD) operation; NASA and DOE supported research in ideal magnetohydrodynamic plasma acceleration and flow, electrode phenomena, and magnetic nozzles; and future research directions and plans.
The U.S. Environmental Protection Agency (EPA), through the Environmental Technology Verification Program, is working to accelerate the acceptance and use of innovative technologies that improve the way the United States manages its environmental problems. This report describes ...
Applied Computational Electromagnetics Society Journal and Newletter, Volume 14 No. 1
1999-03-01
code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in...SOUTH AFRICA Alamo, CA, 94507-0516 USA Washington, DC 20330 USA MANAGING EDITOR Kueichien C. Hill Krishna Naishadham Richard W. Adler Wright Laboratory...INSTITUTIONAL MEMBERS ALLGON DERA Nasvagen 17 Common Road, Funtington INNOVATIVE DYNAMICS Akersberga, SWEDEN S-18425 Chichester, P018 9PD UK 2560 N. Triphammer
Enhanced verification test suite for physics simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rim, Jung Ho; Tandon, Lav
This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.
Unaligned instruction relocation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.
In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unalignedmore » ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.« less
Unaligned instruction relocation
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.
2018-01-23
In one embodiment, a computer-implemented method includes receiving source code to be compiled into an executable file for an unaligned instruction set architecture (ISA). Aligned assembled code is generated, by a computer processor. The aligned assembled code complies with an aligned ISA and includes aligned processor code for a processor and aligned accelerator code for an accelerator. A first linking pass is performed on the aligned assembled code, including relocating a first relocation target in the aligned accelerator code that refers to a first object outside the aligned accelerator code. Unaligned assembled code is generated in accordance with the unaligned ISA and includes unaligned accelerator code for the accelerator and unaligned processor code for the processor. A second linking pass is performed on the unaligned assembled code, including relocating a second relocation target outside the unaligned accelerator code that refers to an object in the unaligned accelerator code.
Ford Motor Company NDE facility shielding design.
Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H
2005-01-01
Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.
1999-01-01
Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
1987-04-01
for two applications important to the development of charged particle beam propagation studies. The first application is to measure the decay of...at Los Alamos4 and the Medea accelerator at McDonnell- Douglas Research Laboratory.5 The second application is to measure the conductivity generated...for the first time. For slightly higher rep-rate accelerators such as Medea or PHERMEX, it will improve the accuracy of the results by eliminating pulse
NASA Astrophysics Data System (ADS)
Bird, Robert; Nystrom, David; Albright, Brian
2017-10-01
The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.
Status of the Prototype Pulsed Photonuclear Assessment (PPA) Inspection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prototype Photonuclear Inspection Technoloby - An
Prototype Photonuclear Inspection Technology – An Integrated Systems Approach* James L. Jonesa, Daren R. Normana, Kevin J. Haskella, James W. Sterbentza, Woo Y. Yoona, Scott M. Watsona, James T. Johnsona, John M. Zabriskiea, Calvin E. Mossb, Frank Harmonc a – Idaho National Laboratory, P.O. Box 1625-2802, Idaho Falls, Idaho 83415-2802 b – Los Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos, New Mexico, 87585 c – Idaho State University, 1500 Alvin Ricken Dr., Pocatello, Idaho 83201 Active interrogation technologies are being pursued in order to address many of today’s challenging inspection requirements related to both nuclear and non-nuclearmore » material detection. The Idaho National Laboratory, along with the Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, continue to develop electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo containers. This paper presents an overview and status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system and its ability to detect shielded nuclear material by focusing on the integration of three major detection system components: delayed neutron measurement, delayed gamma-ray measurements, and a transmission, gray-scale mapping for shield material detection. Areas of future development and advancement within each detection component will be presented. *Supported in part by the Department of Homeland Security under DOE-ID Contract Number DE-AC07-99ID13727. POC: James L. Jones, 208-526-1730« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick
Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.
Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick; ...
2015-08-13
Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.
Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.
An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.
Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-10-01
This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less
Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Polavarapu, Rinosh
2016-11-01
The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).
The Los Alamos Neutron Science Center Spallation Neutron Sources
NASA Astrophysics Data System (ADS)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.
Chu, Steven [U.S. Energy Secretary
2018-01-12
The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jefferson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-01-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-12-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Neutron Particle Effects on a Quad-Redundant Flight Control Computer
NASA Technical Reports Server (NTRS)
Eure, Kenneth; Belcastro, Celeste M.; Gray, W Steven; Gonzalex, Oscar
2003-01-01
This paper describes a single-event upset experiment performed at the Los Alamos National Laboratory. A closed-loop control system consisting of a Quad-Redundant Flight Control Computer (FCC) and a B737 simulator was operated while the FCC was exposed to a neutron beam. The purpose of this test was to analyze the effects of neutron bombardment on avionics control systems operating at altitudes where neutron strikes are probable. The neutron energy spectrum produced at the Los Alamos National Laboratory is similar in shape to the spectrum of atmospheric neutrons but much more intense. The higher intensity results in accelerated life tests that are representative of the actual neutron radiation that a FCC may receive over a period of years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffersonmore » National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).« less
Liquid rocket combustor computer code development
NASA Technical Reports Server (NTRS)
Liang, P. Y.
1985-01-01
The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, R.; Bailey, J.; Virgo, M.
Argonne National Laboratory, in cooperation with Los Alamos National Laboratory, is developing technology with NorthStar Medical Technologies to produce 99Mo from the γ,n reaction on a 100Mo target in an electron accelerator. During production runs and thermal testing of the helium-cooled target, it became obvious that a production-scale beam-line configuration would need a collimator to protect the target from accidental beam misplacement or a beam-profile change. A prototype high-power collimator and beam stop were designed and fabricated. Testing indicated that they will be able to operate at full power in the production-scale accelerator.
Physics Division progress report, January 1, 1984-September 30, 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, W.E.
1987-10-01
This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear andmore » particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.« less
Isotope Cancer Treatment Research at LANL
Weidner, John; Nortier, Meiring
2018-02-13
Los Alamos National Laboratory has produced medical isotopes for diagnostic and imaging purposes for more than 30 years. Now LANL researchers have branched out into isotope cancer treatment studies. New results show that an accelerator-based approach can produce clinical trial quantities of actinium-225, an isotope that has promise as a way to kill tumors without damaging surrounding healthy cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weseloh, Wayne N.; Clancy, Sean P.; Painter, James W.
2010-08-01
PAGOSA is a computational fluid dynamics computer program developed at Los Alamos National Laboratory (LANL) for the study of high-speed compressible flow and high-rate material deformation. PAGOSA is a three-dimensional Eulerian finite difference code, solving problems with a wide variety of equations of state (EOSs), material strength, and explosive modeling options.
1984-12-01
radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements
TRAC-PF1/MOD1 pretest predictions of MIST experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.; Steiner, J.L.; Siebe, D.A.
Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 to provide integral system test data on specific issues and phenomena relevant to post small-break loss-of-coolant accidents (SBLOCAs) in Babcock and Wilcox plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. During Fiscal Year 1986, Los Alamos performed five MIST pretest analyses. The five experiments were chosen on the basis of their potential either to approach the facility limits or to challenge the predictive capability of the TRAC-PF1/MOD1 code. Three SBLOCA tests weremore » examined which included nominal test conditions, throttled auxiliary feedwater and asymmetric steam-generator cooldown, and reduced high-pressure-injection (HPI) capacity, respectively. Also analyzed were two ''feed-and-bleed'' cooling tests with reduced HPI and delayed HPI initiation. Results of the tests showed that the MIST facility limits would not be approached in the five tests considered. Early comparisons with preliminary test data indicate that the TRAC-PF1/MOD1 code is correctly calculating the dominant phenomena occurring in the MIST facility during the tests. Posttest analyses are planned to provide a quantitative assessment of the code's ability to predict MIST transients.« less
Safety features of subcritical fluid fueled systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, C.R.
1995-10-01
Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitativemore » in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.« less
Enabling cost-effective high-current burst-mode operation in superconducting accelerators
Sheffield, Richard L.
2015-06-01
Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less
Using Supercomputers to Probe the Early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, Elena Edi
For decades physicists have been trying to decipher the first moments after the Big Bang. Using very large telescopes, for example, scientists scan the skies and look at how fast galaxies move. Satellites study the relic radiation left from the Big Bang, called the cosmic microwave background radiation. And finally, particle colliders, like the Large Hadron Collider at CERN, allow researchers to smash protons together and analyze the debris left behind by such collisions. Physicists at Los Alamos National Laboratory, however, are taking a different approach: they are using computers. In collaboration with colleagues at University of California San Diego,more » the Los Alamos researchers developed a computer code, called BURST, that can simulate conditions during the first few minutes of cosmological evolution.« less
The application of interactive graphics to large time-dependent hydrodynamics problems
NASA Technical Reports Server (NTRS)
Gama-Lobo, F.; Maas, L. D.
1975-01-01
A written companion of a movie entitled "Interactive Graphics at Los Alamos Scientific Laboratory" was presented. While the movie presents the actual graphics terminal and the functions performed on it, the paper attempts to put in perspective the complexity of the application code and the complexity of the interaction that is possible.
Optical Studies of the Flow Start-Up Processes in Four Convergent-Divergent Nozzles
1991-03-01
Evaluation Naval Civil Engineering Laboratory Command ATTN: Code L51, J. Tancreto Nuclear Effects Laboratory Port Hueneme, CA 93043-5003 ATTN: STEWS ...Levine Edwards AFB, CA 93523-5000 104 No. of No. of Copies Organization Copies Organization ALITSTL (Tech. Lib) 2 Director ATTN: J. Lamb Los Alamos
Relativistic opacities for astrophysical applications
Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...
2015-06-29
Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less
The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krick, M.S.; Harker, W.C.; Rinard, P.M.
1998-12-01
Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows{reg_sign} and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium.
NASA Astrophysics Data System (ADS)
Kolski, Jeffrey
The linear lattice properties of the Proton Storage Ring (PSR) at the Los Alamos Neutron Science Center (LANSCE) in Los Alamos, NM were measured and applied to determine a better linear accelerator model. We found that the initial model was deficient in predicting the vertical focusing strength. The additional vertical focusing was located through fundamental understanding of experiment and statistically rigorous analysis. An improved model was constructed and compared against the initial model and measurement at operation set points and set points far away from nominal and was shown to indeed be an enhanced model. Independent component analysis (ICA) is a tool for data mining in many fields of science. Traditionally, ICA is applied to turn-by-turn beam position data as a means to measure the lattice functions of the real machine. Due to the diagnostic setup for the PSR, this method is not applicable. A new application method for ICA is derived, ICA applied along the length of the bunch. The ICA modes represent motions within the beam pulse. Several of the dominate ICA modes are experimentally identified.
Global warming accelerates drought-induced forest death
McDowell, Nathan; Pockman, William
2018-05-16
Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.
Knott, J.M.
1980-01-01
An assessment of present erosion and sedimentation conditions in the Ca?ada de los Alamos basin was made to aid in estimating the impact of off-road-vehicle use on the sediment yield of the basin. Impacts of off-road vehicles were evaluated by reconnaissance techniques and by comparing the study area with other offroad-vehicle sites in California. Major-storm sediment yields for the basin were estimated using empirical equations developed for the Transverse Ranges and measurements of gully erosion in a representative off-road-vehicle basin. Normal major-storm yields of 73,200 cubic yards would have to be increased to about 98,000 cubic yards to account for the existing level of accelerated erosion caused by off-road vehicles. Long-term sediment yield of the Ca?ada de los Alamos basin upstream from its confluence with Gorman Creek, under present conditions of off-road-vehicle use, is approximately 420 cubic yards per square mile per year--a rate that is considerably lower than a previous estimate of 1,270 cubic yards per square mile per year for the total catchment area above Pyramid Lake.
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.M.; Hochstedler, R.D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less
The Los Alamos Neutron Science Center Spallation Neutron Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
The Los Alamos Neutron Science Center Spallation Neutron Sources
Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael
2017-10-26
The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.« less
Adaptation of Flux-Corrected Transport Algorithms for Modeling Dusty Flows.
1983-12-20
Defense Comunications Agency Olcy Attn XLA Washington, DC 20305 01cy Attn nTW-2 (ADR CNW D I: Attn Code 240 for) Olcy Attn NL-STN O Library Olcy Attn...Library Olcy Attn TIC-Library Olcy Attn R Welch Olcy Attn M Johnson Los Alamos National Scientific Lab. Mail Station 5000 Information Science, Inc. P
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
Testing of a Plasmadynamic Hypervelocity Dust Accelerator
NASA Astrophysics Data System (ADS)
Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.
2006-10-01
A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.
Parallel processing a three-dimensional free-lagrange code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Trease, H.E.
1989-01-01
A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less
Parallel processing a real code: A case history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Trease, H.E.
1988-01-01
A three-dimensional, time-dependent Free-Lagrange hydrodynamics code has been multitasked and autotasked on a Cray X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the Cray multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The 3-D algorithm has presented a number of problems that simpler algorithms, such as 1-D hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a Cray 1, to a multitasking code are discussed, Autotasking of a rewritten version ofmore » the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given. 8 refs., 13 figs.« less
Mathematical Formulation used by MATLAB Code to Convert FTIR Interferograms to Calibrated Spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Derek Elswick
This report discusses the mathematical procedures used to convert raw interferograms from Fourier transform infrared (FTIR) sensors to calibrated spectra. The work discussed in this report was completed as part of the Helios project at Los Alamos National Laboratory. MATLAB code was developed to convert the raw interferograms to calibrated spectra. The report summarizes the developed MATLAB scripts and functions, along with a description of the mathematical methods used by the code. The first step in working with raw interferograms is to convert them to uncalibrated spectra by applying an apodization function to the raw data and then by performingmore » a Fourier transform. The developed MATLAB code also addresses phase error correction by applying the Mertz method. This report provides documentation for the MATLAB scripts.« less
Optimization of etching and reading procedures for the Autoscan 60 track etch system
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeever, R.; Devine, R.; Coennen, C.
1997-02-11
The Los Alamos National Laboratory is charged with measuring the occupational exposure to radiological workers and contractors throughout the Laboratory, which includes many different sites with multiple and varied radiation fields. Of concern here are the high energy neutrons such as those generated during accelerator operations at Los Alamos Neutron Science Center (LANSCE). In 1993, the Los Alamos National Laboratory purchased an Autoscan 60 automated reader for use with chemically etched CR39 detectors. The dosimeter design employed at LANL uses a plastic, hemispherical case, encompassing a polystyrene pyramidal detector holder. The pyramidal holder supports three detectors at a 35{degree} angle.more » Averaging the results of the three detectors minimizes the angular dependence normally associated with a planar dosimeter. The Autoscan 60 is an automated reading system for use with CR39 chemical etch detectors. The detectors are immersed in an etch solution to enhance the visibility of the damage sites caused by recoil proton impact with the hydrogen atoms in the detector. The authors decided to increase the etch time from six hours to 15 hours, while retaining the 70 C temperature. The reason for the change in the etch is to enhance the sensitivity and precision of the CR39 detector as indicated by this study.« less
Global warming accelerates drought-induced forest death
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Nathan; Pockman, William
2013-07-09
Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it withmore » much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.« less
Update of the α - n Yields for Reactor Fuel Materials for the Interest of Nuclear Safeguards
NASA Astrophysics Data System (ADS)
Simakov, S. P.; van den Berg, Q. Y.
2017-01-01
The neutron yields caused by spontaneous α-decay of actinides and subsequent (α,xn) reactions were re-evaluated for the reactor fuel materials UO2, UF6, PuO2 and PuF4. For this purpose, the most recent reference data for decay parameters, α-particle stopping powers and (α,xn) cross sections were collected, analysed and used in calculations. The input data and elaborated code were validated against available thick target neutron yields in pure and compound materials measured at accelerators or with radioactive sources. This paper provides the specific neutron yields and their uncertainties resultant from α-decay of actinides 241Am, 249Bk, 252Cf, 242,244Cm, 237Np, 238-242Pu, 232Th and 232-236,238U in oxide and fluoride compounds. The obtained results are an update of previous reference tables issued by the Los Alamos National Laboratory in 1991 which were used for the safeguarding of radioactive materials by passive non-destructive techniques. The comparison of the updated values with previous ones shows an agreement within one estimated uncertainty (≈ 10%) for oxides, and deviations of up to 50% for fluorides.
DREAM-3D and the importance of model inputs and boundary conditions
NASA Astrophysics Data System (ADS)
Friedel, Reiner; Tu, Weichao; Cunningham, Gregory; Jorgensen, Anders; Chen, Yue
2015-04-01
Recent work on radiation belt 3D diffusion codes such as the Los Alamos "DREAM-3D" code have demonstrated the ability of such codes to reproduce realistic magnetospheric storm events in the relativistic electron dynamics - as long as sufficient "event-oriented" boundary conditions and code inputs such as wave powers, low energy boundary conditions, background plasma densities, and last closed drift shell (outer boundary) are available. In this talk we will argue that the main limiting factor in our modeling ability is no longer our inability to represent key physical processes that govern the dynamics of the radiation belts (radial, pitch angle and energy diffusion) but rather our limitations in specifying accurate boundary conditions and code inputs. We use here DREAM-3D runs to show the sensitivity of the modeled outcomes to these boundary conditions and inputs, and also discuss alternate "proxy" approaches to obtain the required inputs from other (ground-based) sources.
Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Steven Karl; Determan, John C.
2015-10-14
A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.
The physics design of accelerator-driven transmutation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venneri, F.
1995-10-01
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less
Accomplishments in the Trident Laser Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Juan Carlos
Trident has been an extremely productive laser facility, despite its modest size and operating cost in the firmament of high-energy, high-power laser facilities worldwide. More than 150 peer-reviewed journal articles (in 39 different journals) have been published using Trident experimental data, many in high-impact journals such as Nature, Nature Physics, Nature Communications, and Physical Review Letters. More than 230 oral presentations involving research at Trident have been presented at national and international conferences. Trident publications have over 5000 citations in the literature with an h-index of 38. AT least 23 Los Alamos postdoctoral researchers have worked on Trident. In themore » period since its inception in 1992-2007, despite not issuing formal proposal calls for access nor functioning explicitly as a user facility until later, Trident has 170 unique users from more than 30 unique institutions, such as Los Alamos, Lawrence Livermore, and Sandia national laboratories, various University of California campuses, General Atomic, Imperial College, and Ecole Polytechnique. To reinforce its role as an important Los Alamos point of connection to the external research community, at least 20 PhD students did a significant fraction of their thesis work on Trident. Such PhD students include Mike Dunne (Imperial College, 1995) - now director of LCLS and professor at Stanford; David Hoarty (IC, 1997) - scientist at Atomic Weapons Establishment, UK; Dustin Froula (UC Davis, 2002) - Plasma and Ultrafast Physics Group leader at the Laboratory for Laser Energetics and assistant professor at the Physics and Astronomy Department at the University of Rochester; Tom Tierney (UC Irvine, 2002) - scientist at Los Alamos; Eric Loomis (Arizona State U., 2005) - scientist at Los Alamos; and Eliseo Gamboa (University of Michigan, 2013) - scientist at the Linac Coherent Light Source. The work performed on Trident, besides its scientific impact, has also supported the Inertial Confinement Fusion and Weapons research programs at the Laboratory. It also has advanced technologies and techniques that hold significant promise for Los Alamos initiatives, such as MaRIE (the proposed Matter-Radiation Interactions in Extremes experimental facility), and more generally for important societal applications, such as defense, global security, advanced accelerators, fusion energy, radiotherapy, and laser technology. Specific research contributions based on Trident experiments are listed below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronowski, D.R.; Madsen, M.M.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathcock, Charles Dean
This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs)more » near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.« less
Resolving Controversies Concerning the Kinetic Structure of Multi-Ion Plasma Shocks
NASA Astrophysics Data System (ADS)
Keenan, Brett; Simakov, Andrei; Chacon, Luis; Taitano, William
2017-10-01
Strong collisional shocks in multi-ion plasmas are featured in several high-energy-density environments, including Inertial Confinement Fusion (ICF) implosions. Yet, basic structural features of these shocks remain poorly understood (e.g., the shock width's dependence on the Mach number and the plasma ion composition, and temperature decoupling between ion species), causing controversies in the literature; even for stationary shocks in planar geometry [cf., Ref. and Ref.]. Using a LANL-developed, high-fidelity, 1D-2V Vlasov-Fokker-Planck code (iFP), as well as direct comparisons to multi-ion hydrodynamic simulations and semi-analytic predictions, we critically examine steady-state, planar shocks in two-ion species plasmas and put forward resolutions to these controversies. This work was supported by the Los Alamos National Laboratory LDRD Program, Metropolis Postdoctoral Fellowship for W.T.T., and used resources provided by the Los Alamos National Laboratory Institutional Computing Program.
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
Production of Pions in pA-collisions
NASA Technical Reports Server (NTRS)
Moskalenko, I. V.; Mashnik, S. G.
2003-01-01
Accurate knowledge of pion production cross section in PA-collisions is of interest for astrophysics, CR physics, and space radiation studies. Meanwhile, pion production in pA-reactions is often accounted for by simple scaling of that for pp-collisions, which is not enough for many real applications. We evaluate the quality of existing parameterizations using the data and simulations with the Los Alamos version of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.
How DARHT Works - the World's Most Powerful X-ray Machine
None
2018-06-01
The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.
SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, J.T. III
SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.
Specification of the near-Earth space environment with SHIELDS
Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...
2017-11-26
Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less
Specification of the near-Earth space environment with SHIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard
Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less
Detection of shielded nuclear material in a cargo container
NASA Astrophysics Data System (ADS)
Jones, James L.; Norman, Daren R.; Haskell, Kevin J.; Sterbentz, James W.; Yoon, Woo Y.; Watson, Scott M.; Johnson, James T.; Zabriskie, John M.; Bennett, Brion D.; Watson, Richard W.; Moss, Cavin E.; Frank Harmon, J.
2006-06-01
The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University's Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presented for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration.
Study of an External Neutron Source for an Accelerator-Driven System using the PHITS Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, Takanori; Iwasaki, Tomohiko; Chiba, Takashi
A code system for the Accelerator Driven System (ADS) has been under development for analyzing dynamic behaviors of a subcritical core coupled with an accelerator. This code system named DSE (Dynamics calculation code system for a Subcritical system with an External neutron source) consists of an accelerator part and a reactor part. The accelerator part employs a database, which is calculated by using PHITS, for investigating the effect related to the accelerator such as the changes of beam energy, beam diameter, void generation, and target level. This analysis method using the database may introduce some errors into dynamics calculations sincemore » the neutron source data derived from the database has some errors in fitting or interpolating procedures. In this study, the effects of various events are investigated to confirm that the method based on the database is appropriate.« less
1984-08-01
COLLFCTIVF PAPTTCLE ACCELERATOR VIA NUMERICAL MODFLINC WITH THF MAGIC CODE Robert 1. Darker Auqust 19F4 Final Report for Period I April. qI84 - 30...NUMERICAL MODELING WITH THE MAGIC CODE Robert 3. Barker August 1984 Final Report for Period 1 April 1984 - 30 September 1984 Prepared for: Scientific...Collective Final Report Particle Accelerator VIA Numerical Modeling with April 1 - September-30, 1984 MAGIC Code. 6. PERFORMING ORG. REPORT NUMBER MRC/WDC-R
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, W L; Harris, J L
1976-03-01
The First ERDA Statistical Symposium was organized to provide a means for communication among ERDA statisticians, and the sixteen papers presented at the meeting are given. Topics include techniques of numerical analysis used for accelerators, nuclear reactors, skewness and kurtosis statistics, radiochemical spectral analysis, quality control, and other statistics problems. Nine of the papers were previously announced in Nuclear Science Abstracts (NSA), while the remaining seven were abstracted for ERDA Energy Research Abstracts (ERA) and INIS Atomindex. (PMA)
Utilizing GPUs to Accelerate Turbomachinery CFD Codes
NASA Technical Reports Server (NTRS)
MacCalla, Weylin; Kulkarni, Sameer
2016-01-01
GPU computing has established itself as a way to accelerate parallel codes in the high performance computing world. This work focuses on speeding up APNASA, a legacy CFD code used at NASA Glenn Research Center, while also drawing conclusions about the nature of GPU computing and the requirements to make GPGPU worthwhile on legacy codes. Rewriting and restructuring of the source code was avoided to limit the introduction of new bugs. The code was profiled and investigated for parallelization potential, then OpenACC directives were used to indicate parallel parts of the code. The use of OpenACC directives was not able to reduce the runtime of APNASA on either the NVIDIA Tesla discrete graphics card, or the AMD accelerated processing unit. Additionally, it was found that in order to justify the use of GPGPU, the amount of parallel work being done within a kernel would have to greatly exceed the work being done by any one portion of the APNASA code. It was determined that in order for an application like APNASA to be accelerated on the GPU, it should not be modular in nature, and the parallel portions of the code must contain a large portion of the code's computation time.
Influence of the plasma environment on atomic structure using an ion-sphere model
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
2015-09-03
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
Influence of the plasma environment on atomic structure using an ion-sphere model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
1987-09-01
Eulerian or Lagrangian flow problems, use of real equations of state and transport properties from the Los Alamos National Laboratory SESAME package...permissible problem geometries; time differencing; and spatial discretization, centering, and differ- encing of MACH2. /. I." - Magnetohydrodynamics...R-A & Y7 24 9 5.2 THE IDEAL COORDINATE SYSTEM DTIC TAB 13 24 5.3 THE MATERIAL DERIVATIVE Uannounoed 0 26 Justifloatlo- 6. TIME DIFFERENCING 31 6.1
Electron-cloud updated simulation results for the PSR, and recent results for the SNS
NASA Astrophysics Data System (ADS)
Pivi, M.; Furman, M. A.
2002-05-01
Recent simulation results for the main features of the electron cloud in the storage ring of the Spallation Neutron Source (SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR) at Los Alamos are presented in this paper. A refined model for the secondary emission process including the so called true secondary, rediffused and backscattered electrons has recently been included in the electron-cloud code.
New Seismic Monitoring Station at Mohawk Ridge, Valles Caldera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Peter Morse
Two new broadband digital seismic stations were installed in the Valles Caldera in 2011 and 2012. The first is located on the summit of Cerros del Abrigo (station code CDAB) and the second is located on the flanks of San Antonio Mountain (station code SAMT). Seismic monitoring stations in the caldera serve multiple purposes. These stations augment and expand the current coverage of the Los Alamos Seismic Network (LASN), which is operated to support seismic and volcanic hazards studies for LANL and northern New Mexico (Figure 1). They also provide unique continuous seismic data within the caldera that can bemore » used for scientific studies of the caldera’s substructure and detection of very small seismic signals that may indicate changes in the current and evolving state of remnant magma that is known to exist beneath the caldera. Since the installation of CDAB and SAMT, several very small earthquakes have already been detected near San Antonio Mountain just west of SAMT (Figure 2). These are the first events to be seen in that area. Caldera stations also improve the detection and epicenter determination quality for larger local earthquakes on the Pajarito Fault System east of the Preserve and the Nacimiento Uplift to the west. These larger earthquakes are a concern to LANL Seismic Hazards assessments and seismic monitoring of the Los Alamos region, including the VCNP, is a DOE requirement. Currently the next closest seismic stations to the caldera are on Pipeline Road (PPR) just west of Los Alamos, and Peralta Ridge (PER) south of the caldera. There is no station coverage near the resurgent dome, Redondo Peak, in the center of the caldera. Filling this “hole” is the highest priority for the next new LASN station. We propose to install this station in 2018 on Mohawk Ridge just east of Redondito, in the same area already occupied by other scientific installations, such as the MCON flux tower operated by UNM.« less
NASA Astrophysics Data System (ADS)
Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.
2012-12-01
In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. F.; Alvestad, H. W.; Barkley, W. C.
The recently completed 100-MeV H{sup +} Isotope Production Facility (IPF) at the LANSCE will provide radioisotopes for medical research and diagnosis, for basic research and for commercial use. A change to the LANSCE accelerator facility allowed for the installation of the IPF. Three components make up the LANSCE accelerator: an injector that accelerates the H{sup +} beam to 750-KeV, a drift-tube linac (DTL) that increases the beam energy to 100-MeV, and a side-coupled cavity linac (SCCL) that accelerates the beam to 800-MeV. The transition region, a space between the DTL and the SCCL, was modified to permit the insertion ofmore » a kicker magnet (23{sup o} kick angle) for the purpose of extracting a portion of the 100-MeV H{sup +} beam. A new beam line was installed to transport the extracted H{sup +} beam to the radioisotope production target chamber. This paper will describe the commissioning and initial operating experiences of IPF.« less
Production Level CFD Code Acceleration for Hybrid Many-Core Architectures
NASA Technical Reports Server (NTRS)
Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.
2012-01-01
In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.
Multilayer Semiconductor Charged-Particle Spectrometers for Accelerator Experiments
NASA Astrophysics Data System (ADS)
Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.
2018-03-01
The current state of studies in the field of development of multilayer semiconductor systems (semiconductor detector (SCD) telescopes), which allow the energy to be precisely measured within a large dynamic range (from a few to a few hundred MeV) and the particles to be identified in a wide mass range (from pions to multiply charged nuclear fragments), is presented. The techniques for manufacturing the SCD telescopes from silicon and high-purity germanium are described. The issues of measuring characteristics of the constructed detectors and their impact on the energy resolution of the SCD telescopes and on the quality of the experimental data are considered. Much attention is given to the use of the constructed semiconductor devices in experimental studies at accelerators of PNPI (Gatchina), LANL (Los Alamos) and CELSIUS (Uppsala).
NASA Astrophysics Data System (ADS)
Tanny, Sean
The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.
Preliminary theoretical acoustic and rf sounding calculations for MILL RACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warshaw, S.I.; Dubois, P.F.
1981-11-02
As participant in DOE/ISA's Ionospheric Monitoring Program, LLNL has the responsibility of providing theoretical understanding and calculational support for experimental activities carried out by Los Alamos National Laboratory in using ionospheric sounders to remotely detect violent atmospheric phenomena. We have developed a system of interconnected computer codes which simulate the entire range of atmospheric and ionospheric processes involved in this remote detection procedure. We are able to model the acoustic pulse shape from an atmospheric explosion, the subsequent nonlinear transport of this energy to all parts of the immediate atmosphere including the ionosphere, and the propagation of high-frequency ratio wavesmore » through the acoustically perturbed ionosphere. Los Alamos' coverage of DNA's MILL RACE event provided an excellent opportunity to assess the credibility of the calculational system to correctly predict how ionospheric sounders would respond to a surface-based chemical explosion. In this experiment, 600 tons of high explosive were detonated at White Sands Missile Range at 12:35:40 local time on 16 September 1981. Vertical incidence rf phase sounders and bistatic oblique incidence rf sounders fielded by Los Alamos and SRI International throughout New Mexico and southern Colorado detected the ionospheric perturbation that ensued. A brief account of preliminary calculations of the acoustic disturbance and the predicted ionospheric sounder signatures for MILL RACE is presented. (WHK)« less
HMPT: Hazardous Waste Transportation Live 27928, Test 27929
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Lewis Edward
2016-03-17
HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.
Nonlinear Behavior in Optical and Other Systems
1987-09-01
6b OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION University of Arizona J I pCb)AFOSR/NM 6c. ADDRESS (Orr Stat. and 11P Code) 7b ADDRIESS (City Stew ...Abel Klein Stanford UC Irvine Francois Delyon Robert Knapp tcole Polytechnique Courant Institute Charles Doering Willis E. Lamb , Jr. Los Alamos...Casperson W. E. Lamb , Jr. Portland State University University of Arizona M. Cohen M. Lax NMSU City College of the CUNY K. Druhl B. LeMesurier
Prompt γ rays and neutrons from fission
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Chyzh, A.; Gostic, J.; Henderson, R.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.
2011-10-01
Nuclear data are needed to test the accuracy of calculations from nuclear reaction codes. Information on the prompt γ-ray distributions from fission is sparse and only a handful of published experiments data that measured the prompt γ-ray distribution above incident neutron energies of 1 MeV can be found. In addition, improvement on the accuracy and shape of neutron spectrum from the fission of actinides been requested by the nuclear data community. An investigation on the shapes of the neutron and γ-ray distributions from the spontaneous fission of 252Cf and the neutron-induced fission of 235U was undertaken using the Chi-Nu detector array at the Weapons Neutron Research Facility of the Los Alamos Neutron Science Center. Preliminary results will be presented. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)
NASA Astrophysics Data System (ADS)
Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa
2017-10-01
The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.
Science in 60 â Tabletop Fire Prediction
Cary, Lyle
2018-01-16
At the Interagency Fire Center at Los Alamos National Laboratory, experts rely on the state-of-the-art Simtable to help them predict the unpredictable. With algorithms that include camera-based object-tracking and projection developed by the Laboratory, the emergency operations team can simulate a wildland fire spreading across any terrain. The table system, developed and marketed by Simtable, a Santa Fe, N.M., company, takes into account weather, vegetation and fuel conditions. The project also received funding from the LANS Venture Acceleration Fund to improve the user interface.
Science in 60 – Tabletop Fire Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Lyle
At the Interagency Fire Center at Los Alamos National Laboratory, experts rely on the state-of-the-art Simtable to help them predict the unpredictable. With algorithms that include camera-based object-tracking and projection developed by the Laboratory, the emergency operations team can simulate a wildland fire spreading across any terrain. The table system, developed and marketed by Simtable, a Santa Fe, N.M., company, takes into account weather, vegetation and fuel conditions. The project also received funding from the LANS Venture Acceleration Fund to improve the user interface.
NASA Astrophysics Data System (ADS)
Clark, Stephen; Winske, Dan; Schaeffer, Derek; Everson, Erik; Bondarenko, Anton; Constantin, Carmen; Niemann, Christoph
2014-10-01
We present 3D hybrid simulations of laser produced expanding debris clouds propagating though a magnetized ambient plasma in the context of magnetized collisionless shocks. New results from the 3D code are compared to previously obtained simulation results using a 2D hybrid code. The 3D code is an extension of a previously developed 2D code developed at Los Alamos National Laboratory. It has been parallelized and ported to execute on a cluster environment. The new simulations are used to verify scaling relationships, such as shock onset time and coupling parameter (Rm /ρd), developed via 2D simulations. Previous 2D results focus primarily on laboratory shock formation relevant to experiments being performed on the Large Plasma Device, where the shock propagates across the magnetic field. The new 3D simulations show wave structure and dynamics oblique to the magnetic field that introduce new physics to be considered in future experiments.
NASA Astrophysics Data System (ADS)
Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.
2018-01-01
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .
NASA Astrophysics Data System (ADS)
Kajimoto, Tsuyoshi; Shigyo, Nobuhiro; Sanami, Toshiya; Ishibashi, Kenji; Haight, Robert C.; Fotiades, Nikolaos
2011-02-01
Absolute neutron response functions and detection efficiencies of an NE213 liquid scintillator that was 12.7 cm in diameter and 12.7 cm in thickness were measured for neutron energies between 15 and 600 MeV at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. The experiment was performed with continuous-energy neutrons on a spallation neutron source by 800-MeV proton incidence. The incident neutron flux was measured using a 238U fission ionization chamber. Measured response functions and detection efficiencies were compared with corresponding calculations using the SCINFUL-QMD code. The calculated and experimental values were in good agreement for data below 70 MeV. However, there were discrepancies in the energy region between 70 and 150 MeV. Thus, the code was partly modified and the revised code provided better agreement with the experimental data.
Exploring Ultrahigh-Intensity Laser-Plasma Interaction Physics with QED Particle-in-Cell Simulations
NASA Astrophysics Data System (ADS)
Luedtke, S. V.; Yin, L.; Labun, L. A.; Albright, B. J.; Stark, D. J.; Bird, R. F.; Nystrom, W. D.; Hegelich, B. M.
2017-10-01
Next generation high-intensity lasers are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. Modeling laser-plasma interactions in these extreme settings presents a challenge to traditional particle-in-cell (PIC) codes, which either do not have radiation reaction or include only classical radiation reaction. We discuss a semi-classical approach to adding quantum radiation reaction and photon production to the PIC code VPIC. We explore these intensity regimes with VPIC, compare with results from the PIC code PSC, and report on ongoing work to expand the capability of VPIC in these regimes. This work was supported by the U.S. DOE, Los Alamos National Laboratory Science program, LDRD program, NNSA (DE-NA0002008), and AFOSR (FA9550-14-1-0045). HPC resources provided by TACC, XSEDE, and LANL Institutional Computing.
Experimental Physical Sciences Vistas: MaRIE (draft)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack
To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less
2014-09-15
solver, OpenFOAM version 2.1.‡ In particular, the incompressible laminar flow equations (Eq. 6-8) were solved in conjunction with the pressure im- plicit...central differencing and upwinding schemes, respectively. Since the OpenFOAM code is inherently transient, steady-state conditions were ob- tained...collaborative effort between Kitware and Los Alamos National Laboratory. ‡ OpenFOAM is a free, open-source computational fluid dynamics software developed
Design-Load Basis for LANL Structures, Systems, and Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. Cuesta
2004-09-01
This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loadsmore » not related to natural phenomena hazards, and (3) the design loads on structures during construction.« less
Physics in ;Real Life;: Accelerator-based Research with Undergraduates
NASA Astrophysics Data System (ADS)
Klay, J. L.
All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.
Detection of Shielded Nuclear Material in a Cargo Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Jones; D. R. Norman; K. J. Haskell
The Idaho National Laboratory, along with Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, are developing electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This paper describes a developing prototypical cargo container inspection system utilizing the Pulsed Photonuclear Assessment (PPA) technology, incorporates interchangeable, well-defined, contraband shielding structures (i.e., "calibration" pallets) providing realistic detection data for induced radiation signatures from smuggled nuclear material, and provides various shielded nuclear material detection results. Using a 4.8-kg quantity of depleted uranium, neutron and gamma-ray detection responses are presentedmore » for well-defined shielded and unshielded configurations evaluated in a selected cargo container inspection configuration. © 2001 Elsevier Science. All rights reserved« less
NASA Astrophysics Data System (ADS)
Alvanos, Michail; Christoudias, Theodoros
2017-10-01
This paper presents an application of GPU accelerators in Earth system modeling. We focus on atmospheric chemical kinetics, one of the most computationally intensive tasks in climate-chemistry model simulations. We developed a software package that automatically generates CUDA kernels to numerically integrate atmospheric chemical kinetics in the global climate model ECHAM/MESSy Atmospheric Chemistry (EMAC), used to study climate change and air quality scenarios. A source-to-source compiler outputs a CUDA-compatible kernel by parsing the FORTRAN code generated by the Kinetic PreProcessor (KPP) general analysis tool. All Rosenbrock methods that are available in the KPP numerical library are supported.Performance evaluation, using Fermi and Pascal CUDA-enabled GPU accelerators, shows achieved speed-ups of 4. 5 × and 20. 4 × , respectively, of the kernel execution time. A node-to-node real-world production performance comparison shows a 1. 75 × speed-up over the non-accelerated application using the KPP three-stage Rosenbrock solver. We provide a detailed description of the code optimizations used to improve the performance including memory optimizations, control code simplification, and reduction of idle time. The accuracy and correctness of the accelerated implementation are evaluated by comparing to the CPU-only code of the application. The median relative difference is found to be less than 0.000000001 % when comparing the output of the accelerated kernel the CPU-only code.The approach followed, including the computational workload division, and the developed GPU solver code can potentially be used as the basis for hardware acceleration of numerous geoscientific models that rely on KPP for atmospheric chemical kinetics applications.
Dissemination and support of ARGUS for accelerator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Pellet injector development at ORNL (Oak Ridge National Laboratory)
NASA Astrophysics Data System (ADS)
Gouge, M. J.; Argo, B. E.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; Fisher, P. W.; Foster, C. A.; Foust, C. R.; Milora, S. L.; Qualls, A. L.
1990-09-01
Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988 to 1989. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low (sup 3)He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2 to 10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2 to 3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, C.R.; Fortgang, C.M.; Power, J.P.
1992-09-01
The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitormore » System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, C.R.; Fortgang, C.M.; Power, J.P.
1992-01-01
The GTA Beamless-Monitor System at Los Alamos National Laboratory has been designed to detect high-energy particle loss in the accelerator beamline and shut down the accelerator before any damage can occur. To do this, the Beamless-Monitor System measures the induced gamma radiation, from (p, {gamma}) reactions, at 15 selected points along the beamline, converts this measured radiation to electrical signals integrates and compares them to preset limits, and, in the event of an over-limit condition causes the Fast-Protect System to shut down the entire accelerator. The system dynamic range exceeds 70 dB which will enable experimenters to use the Beamless-Monitormore » System to help steer the beam as well as provide signals for a Fast-Protect System. The system response time is less than 7 {mu}s assuming a step-function, worst-case beam spill of 50 mA. The system resolution, based on the noise floor of the electronics is about 1.3 mRads/s. Production units have been built and meet the above specifications. The remainder of the system will be installed and tested later in 1992/1993 with the GTA accelerator. The ionization chamber sensitivity and response time are described in the paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellano, T.; De Palma, L.; Laneve, D.
2015-07-01
A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)
Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Qin, Hong
2002-11-01
A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.
Dynamic Monte Carlo simulations of radiatively accelerated GRB fireballs
NASA Astrophysics Data System (ADS)
Chhotray, Atul; Lazzati, Davide
2018-05-01
We present a novel Dynamic Monte Carlo code (DynaMo code) that self-consistently simulates the Compton-scattering-driven dynamic evolution of a plasma. We use the DynaMo code to investigate the time-dependent expansion and acceleration of dissipationless gamma-ray burst fireballs by varying their initial opacities and baryonic content. We study the opacity and energy density evolution of an initially optically thick, radiation-dominated fireball across its entire phase space - in particular during the Rph < Rsat regime. Our results reveal new phases of fireball evolution: a transition phase with a radial extent of several orders of magnitude - the fireball transitions from Γ ∝ R to Γ ∝ R0, a post-photospheric acceleration phase - where fireballs accelerate beyond the photosphere and a Thomson-dominated acceleration phase - characterized by slow acceleration of optically thick, matter-dominated fireballs due to Thomson scattering. We quantify the new phases by providing analytical expressions of Lorentz factor evolution, which will be useful for deriving jet parameters.
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
NASA Astrophysics Data System (ADS)
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.
2012-12-21
We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clovas, A.; Zanthos, S.; Antonopoulos-Domis, M.
2000-03-01
The dose rate conversion factors {dot D}{sub CF} (absorbed dose rate in air per unit activity per unit of soil mass, nGy h{sup {minus}1} per Bq kg{sup {minus}1}) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained bymore » the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the {dot D}{sub CF} values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons.« less
Search Site submit Feynman Center for Innovation Los Alamos National Laboratory Collaboration for Explosives Detection Los Alamos National Laboratory Los Alamos Collaboration for Explosives Detection Menu is built upon Los Alamos' unparalleled explosive detection capabilities derived from the expertise of
Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.
2013-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.
Accelerator driven reactors and nuclear waste management projects in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janouch, Frantisek; Mach, Rostislav; Institute of Nuclear Physics, Rez near Prague
1995-09-15
The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alterative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium ''Accelerator driven reactors and nuclear waste management'' convened at the Liblice castle near Prague, 27-29.6. 1994 and sponsoredmore » by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less
Accelerator driven reactors and nuclear waste management projects in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janouch, F.; Mach, R.
1995-10-01
The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alternative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium {open_quotes}Accelerator driven reactors and nuclear waste management{close_quotes} convened at the Liblice castle near Prague, 27-29. 6. 1994 andmore » sponsored by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less
Achieving Transformational Materials Performance in a New Era of Science
Sarrao, John
2017-12-22
The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.
NASA Astrophysics Data System (ADS)
Buckingham, A. C.; Hawke, R. S.
1982-09-01
Experimental and theoretical research was conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams were launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressure in the tens of megabars range are obtained for high pressure equations of state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The beating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1992-01-01
Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathcock, Charles Dean; Keller, David Charles; Sartor, Karla A.
This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to control the run-on of storm water by slowing water velocity and managing sediments from the upper portionsmore » of the Cañon de Valle watershed on Los Alamos National Laboratory (LANL) property with a number of new watershed controls near and within the 100-year floodplain (hereafter floodplain). The proposed work will comply with requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement) Number HWB-14-20.« less
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.
1982-02-01
This paper describes the need for non-raytracing schemes in the optical design and analysis of large carbon-dioxide lasers like the Gigawatt,1 Gemini, 2 and Helios3 lasers currently operational at Los Alamos, and the Antares 4 laser fusion system under construction. The scheme currently used at Los Alamos involves characterizing the various optical components with a Zernike polynomial sets obtained by the digitization6 of experimentally produced interferograms of the components. A Fast Fourier Transform code then propagates the complex amplitude and phase of the beam through the whole system and computes the optical parameters of interest. The analysis scheme is illustrated through examples of the Gigawatt, Gemini, and Helios systems. A possible way of using the Zernike polynomials in optical design problems of this type is discussed. Comparisons between the computed values and experimentally obtained results are made and it is concluded that this appears to be a valid approach. As this is a review article, some previously published results are also used where relevant.
NASA Astrophysics Data System (ADS)
Voter, Arthur
Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
High-energy neutron depth-dose distribution experiment.
Ferenci, M S; Hertel, N E
2003-01-01
A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.
Effects of bulk composition on production rates of cosmogenic nuclides in meteorites
NASA Technical Reports Server (NTRS)
Masarik, Jozef; Reedy, Robert C.
1993-01-01
The bulk chemical composition of meteorites has been suggested as a main factor influencing the production of cosmogenic nuclides. Numerical simulations with Los Alamos Monte Carlo production and transport codes were done for Ne-21/Ne-22 ratios and Ar-38 production rates in meteorites with a wide range of compositions. The calculations show that an enhanced flux of low-energy secondary particles in metal-rich phases is the essential key for the explanation of experimentally observed differences in nuclide production processes in various meteorite classes.
Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Cameron Russell; Mckigney, Edward Allen
The use of Bayesian inference in data analysis has become the standard for large scienti c experiments [1, 2]. The Monte Carlo Codes Group(XCP-3) at Los Alamos has developed a simple set of algorithms currently implemented in C++ and Python to easily perform at-prior Markov Chain Monte Carlo Bayesian inference with pure Metropolis sampling. These implementations are designed to be user friendly and extensible for customization based on speci c application requirements. This document describes the algorithmic choices made and presents two use cases.
Science and Innovation at Los Alamos
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.; ...
2018-01-29
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Takeyasu M.; Adamek, E. R.; Callahan, N. B.
We report the ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN densitymore » measured at the exit of the biological shield was 184(32) UCN / cm 3, a fourfold increase from the highest previously reported. Finally, the polarized UCN density stored in an external chamber was measured to be 39(7) UCN / cm 3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(d n) = 3 × 10 -27 e cm.« less
Los Alamos National Lab: National Security Science
SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Permit for Storm Water Public Reading Room Environment Home News Los Alamos National Lab: National deposition operations for the Center for Integrated Nanotechnologies at Los Alamos. Innovation drives his
Cloud-based design of high average power traveling wave linacs
NASA Astrophysics Data System (ADS)
Kutsaev, S. V.; Eidelman, Y.; Bruhwiler, D. L.; Moeller, P.; Nagler, R.; Barbe Welzel, J.
2017-12-01
The design of industrial high average power traveling wave linacs must accurately consider some specific effects. For example, acceleration of high current beam reduces power flow in the accelerating waveguide. Space charge may influence the stability of longitudinal or transverse beam dynamics. Accurate treatment of beam loading is central to the design of high-power TW accelerators, and it is especially difficult to model in the meter-scale region where the electrons are nonrelativistic. Currently, there are two types of available codes: tracking codes (e.g. PARMELA or ASTRA) that cannot solve self-consistent problems, and particle-in-cell codes (e.g. Magic 3D or CST Particle Studio) that can model the physics correctly but are very time-consuming and resource-demanding. Hellweg is a special tool for quick and accurate electron dynamics simulation in traveling wave accelerating structures. The underlying theory of this software is based on the differential equations of motion. The effects considered in this code include beam loading, space charge forces, and external magnetic fields. We present the current capabilities of the code, provide benchmarking results, and discuss future plans. We also describe the browser-based GUI for executing Hellweg in the cloud.
Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE
NASA Astrophysics Data System (ADS)
Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian
2015-09-01
The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.
NASA Astrophysics Data System (ADS)
Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott
2017-06-01
The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.
Multitasking the three-dimensional shock wave code CTH on the Cray X-MP/416
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlaun, J.M.; Thompson, S.L.
1988-01-01
CTH is a software system under development at Sandia National Laboratories Albuquerque that models multidimensional, multi-material, large-deformation, strong shock wave physics. CTH was carefully designed to both vectorize and multitask on the Cray X-MP/416. All of the physics routines are vectorized except the thermodynamics and the interface tracer. All of the physics routines are multitasked except the boundary conditions. The Los Alamos National Laboratory multitasking library was used for the multitasking. The resulting code is easy to maintain, easy to understand, gives the same answers as the unitasked code, and achieves a measured speedup of approximately 3.5 on the fourmore » cpu Cray. This document discusses the design, prototyping, development, and debugging of CTH. It also covers the architecture features of CTH that enhances multitasking, granularity of the tasks, and synchronization of tasks. The utility of system software and utilities such as simulators and interactive debuggers are also discussed. 5 refs., 7 tabs.« less
2D Implosion Simulations with a Kinetic Particle Code
NASA Astrophysics Data System (ADS)
Sagert, Irina; Even, Wesley; Strother, Terrance
2017-10-01
Many problems in laboratory and plasma physics are subject to flows that move between the continuum and the kinetic regime. We discuss two-dimensional (2D) implosion simulations that were performed using a Monte Carlo kinetic particle code. The application of kinetic transport theory is motivated, in part, by the occurrence of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions, which cannot be fully captured by hydrodynamics simulations. Kinetic methods, on the other hand, are able to describe both, continuum and rarefied flows. We perform simple 2D disk implosion simulations using one particle species and compare the results to simulations with the hydrodynamics code RAGE. The impact of the particle mean-free-path on the implosion is also explored. In a second study, we focus on the formation of fluid instabilities from induced perturbations. I.S. acknowledges support through the Director's fellowship from Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program.
Influence of the plasma environment on atomic structure using an ion-sphere model
NASA Astrophysics Data System (ADS)
Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel
2015-09-01
Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.
A practical approach to portability and performance problems on massively parallel supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beazley, D.M.; Lomdahl, P.S.
1994-12-08
We present an overview of the tactics we have used to achieve a high-level of performance while improving portability for a large-scale molecular dynamics code SPaSM. SPaSM was originally implemented in ANSI C with message passing for the Connection Machine 5 (CM-5). In 1993, SPaSM was selected as one of the winners in the IEEE Gordon Bell Prize competition for sustaining 50 Gflops on the 1024 node CM-5 at Los Alamos National Laboratory. Achieving this performance on the CM-5 required rewriting critical sections of code in CDPEAC assembler language. In addition, the code made extensive use of CM-5 parallel I/Omore » and the CMMD message passing library. Given this highly specialized implementation, we describe how we have ported the code to the Cray T3D and high performance workstations. In addition we will describe how it has been possible to do this using a single version of source code that runs on all three platforms without sacrificing any performance. Sound too good to be true? We hope to demonstrate that one can realize both code performance and portability without relying on the latest and greatest prepackaged tool or parallelizing compiler.« less
Factors Contributing to Corrosion of Steel Pilings in Duluth-Superior Harbor
2009-11-01
1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4...Great Lakes. Accelerated corrosion of CS pilings in estua- rine and marine harbors is a global phenomenon.9 The term "accelerated low water corrosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
Development of an integrated, unattended assay system for LWR-MOX fuel pellet trays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Hatcher, C.R.; Pollat, L.L.
1994-08-01
Four identical unattended plutonium assay systems have been developed for use at the new light-water-reactor mixed oxide (LWR-MOX) fuel fabrication facility at Hanau, Germany. The systems provide quantitative plutonium verification for all MOX pellet trays entering or leaving a large, intermediate store. Pellet-tray transport and storage systems are highly automated. Data from the ``I-Point`` (information point) assay systems will be shared by the Euratom and International Atomic Energy Agency (IAEA) Inspectorates. The I-Point system integrates, for the first time, passive neutron coincidence counting (NCC) with electro-mechanical sensing (EMS) in unattended mode. Also, provisions have been made for adding high-resolution gammamore » spectroscopy. The system accumulates data for every tray entering or leaving the store between inspector visits. During an inspection, data are analyzed and compared with operator declarations for the previous inspection period, nominally one month. Specification of the I-point system resulted from a collaboration between the IAEA, Euratom, Siemens, and Los Alamos. Hardware was developed by Siemens and Los Alamos through a bilateral agreement between the German Federal Ministry of Research and Technology (BMFT) and the US DOE. Siemens also provided the EMS subsystem, including software. Through the USSupport Program to the IAEA, Los Alamos developed the NCC software (NCC COLLECT) and also the software for merging and reviewing the EMS and NCC data (MERGE/REVIEW). This paper describes the overall I-Point system, but emphasizes the NCC subsystem, along with the NCC COLLECT and MERGE/REVIEW codes. We also summarize comprehensive testing results that define the quality of assay performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a selectmore » group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to calculate radiation dose due to the neutron environment around a MEA is shown. An uncertainty of a factor of three in the MEA calculations is shown to be due to uncertainties in the geometry modeling. It is believed that the methodology is sound and that good agreement between simulation and experiment has been demonstrated.« less
MCNP4A: Features and philosophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, J.S.
This paper describes MCNP, states its philosophy, introduces a number of new features becoming available with version MCNP4A, and answers a number of questions asked by participants in the workshop. MCNP is a general-purpose three-dimensional neutron, photon and electron transport code. Its philosophy is ``Quality, Value and New Features.`` Quality is exemplified by new software quality assurance practices and a program of benchmarking against experiments. Value includes a strong emphasis on documentation and code portability. New features are the third priority. MCNP4A is now available at Los Alamos. New features in MCNP4A include enhanced statistical analysis, distributed processor multitasking, newmore » photon libraries, ENDF/B-VI capabilities, X-Windows graphics, dynamic memory allocation, expanded criticality output, periodic boundaries, plotting of particle tracks via SABRINA, and many other improvements. 23 refs.« less
Building blocks for correlated superconductors and magnets
Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...
2015-04-01
Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials designmore » and synthesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, J.V.
1989-01-01
A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed.« less
FPGA acceleration of rigid-molecule docking codes
Sukhwani, B.; Herbordt, M.C.
2011-01-01
Modelling the interactions of biological molecules, or docking, is critical both to understanding basic life processes and to designing new drugs. The field programmable gate array (FPGA) based acceleration of a recently developed, complex, production docking code is described. The authors found that it is necessary to extend their previous three-dimensional (3D) correlation structure in several ways, most significantly to support simultaneous computation of several correlation functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code that represents over 95% of the original run-time. An additional 2% is accelerated through a previously described method, yielding a total acceleration of 36× over a single core and 10× over a quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU) based docking, which excels in the protein–protein domain. PMID:21857870
NASA Astrophysics Data System (ADS)
Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H.
2017-02-01
The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.
Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...
2016-07-12
The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less
ERIC Educational Resources Information Center
Addessio, Barbara K.; And Others
Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and…
Atmospheric Science Data Center
2014-05-15
article title: Los Alamos, New Mexico View Larger JPEG image ... kb) Multi-angle views of the Fire in Los Alamos, New Mexico, May 9, 2000. These true-color images covering north-central New Mexico ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Bryan Scott; Gough, Sean T.
This report documents a validation of the MCNP6 Version 1.0 computer code on the high performance computing platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature. The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials.
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Lone, M. A.; Wong, P. Y.; Costen, Robert C.
1994-01-01
A baryon transport code (BRYNTRN) has previously been verified using available Monte Carlo results for a solar-flare spectrum as the reference. Excellent results were obtained, but the comparisons were limited to the available data on dose and dose equivalent for moderate penetration studies that involve minor contributions from secondary neutrons. To further verify the code, the secondary energy spectra of protons and neutrons are calculated using BRYNTRN and LAHET (Los Alamos High-Energy Transport code, which is a Monte Carlo code). These calculations are compared for three locations within a water slab exposed to the February 1956 solar-proton spectrum. Reasonable agreement was obtained when various considerations related to the calculational techniques and their limitations were taken into account. Although the Monte Carlo results are preliminary, it appears that the neutron albedo, which is not currently treated in BRYNTRN, might be a cause for the large discrepancy seen at small penetration depths. It also appears that the nonelastic neutron production cross sections in BRYNTRN may underestimate the number of neutrons produced in proton collisions with energies below 200 MeV. The notion that the poor energy resolution in BRYNTRN may cause a large truncation error in neutron elastic scattering requires further study.
Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel
NASA Astrophysics Data System (ADS)
Edelmann, Paul G.
There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.
Analysis of Computational Models of Shaped Charges for Jet Formation and Penetration
NASA Astrophysics Data System (ADS)
Haefner, Jonah; Ferguson, Jim
2016-11-01
Shaped charges came into use during the Second World War demonstrating the immense penetration power of explosively formed projectiles and since has become a tool used by nearly every nation in the world. Penetration is critically dependent on how the metal liner is collapsed into a jet. The theory of jet formation has been studied in depth since the late 1940s, based on simple models that neglect the strength and compressibility of the metal liner. Although attempts have been made to improve these models, simplifying assumptions limit the understanding of how the material properties affect the jet formation. With a wide range of material and strength models available for simulation, a validation study was necessary to guide code users in choosing models for shaped charge simulations. Using PAGOSA, a finite-volume Eulerian hydrocode designed to model hypervelocity materials and strong shock waves developed by Los Alamos National Laboratory, and experimental data, we investigated the effects of various equations of state and material strength models on jet formation and penetration of a steel target. Comparing PAGOSA simulations against modern experimental data, we analyzed the strengths and weaknesses of available computational models. LA-UR-16-25639 Los Alamos National Laboratory.
Spallation Neutron Source Materials Studies
NASA Astrophysics Data System (ADS)
Sommer, W. F.
1998-04-01
Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.
2012-11-01
The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.
Search Site submit National Security Education Center Los Alamos National LaboratoryEngineering Institute Addressing national needs by fostering specialized recruiting and strategic partnerships Los Alamos National LaboratoryEngineering Institute Menu NSEC Educational Programs Los Alamos Dynamics Summer
Validation of the analytical methods in the LWR code BOXER for gadolinium-loaded fuel pins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paratte, J.M.; Arkuszewski, J.J.; Kamboj, B.K.
1990-01-01
Due to the very high absorption occurring in gadolinium-loaded fuel pins, calculations of lattices with such pins present are a demanding test of the analysis methods in light water reactor (LWR) cell and assembly codes. Considerable effort has, therefore, been devoted to the validation of code methods for gadolinia fuel. The goal of the work reported in this paper is to check the analysis methods in the LWR cell/assembly code BOXER and its associated cross-section processing code ETOBOX, by comparison of BOXER results with those from a very accurate Monte Carlo calculation for a gadolinium benchmark problem. Initial results ofmore » such a comparison have been previously reported. However, the Monte Carlo calculations, done with the MCNP code, were performed at Los Alamos National Laboratory using ENDF/B-V data, while the BOXER calculations were performed at the Paul Scherrer Institute using JEF-1 nuclear data. This difference in the basic nuclear data used for the two calculations, caused by the restricted nature of these evaluated data files, led to associated uncertainties in a comparison of the results for methods validation. In the joint investigations at the Georgia Institute of Technology and PSI, such uncertainty in this comparison was eliminated by using ENDF/B-V data for BOXER calculations at Georgia Tech.« less
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
Optical diagnostics on the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.
2013-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezei, F.; Thompson, J.
1998-12-01
The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developmentsmore » to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.« less
Los Alamos Neutron Science Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth
For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less
A verification and validation effort for high explosives at Los Alamos National Lab (u)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovel, Christina A; Menikoff, Ralph S
2009-01-01
We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentropemore » for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.« less
Breaking the Supermassive Black Hole Speed Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smidt, Joseph
A new computer simulation helps explain the existence of puzzling supermassive black holes observed in the early universe. The simulation is based on a computer code used to understand the coupling of radiation and certain materials. “Supermassive black holes have a speed limit that governs how fast and how large they can grow,” said Joseph Smidt of the Theoretical Design Division at Los Alamos National Laboratory. “The relatively recent discovery of supermassive black holes in the early development of the universe raised a fundamental question, how did they get so big so fast?” Using computer codes developed at Los Alamosmore » for modeling the interaction of matter and radiation related to the Lab’s stockpile stewardship mission, Smidt and colleagues created a simulation of collapsing stars that resulted in supermassive black holes forming in less time than expected, cosmologically speaking, in the first billion years of the universe.« less
Computational Accelerator Physics. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisognano, J.J.; Mondelli, A.A.
1997-04-01
The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less
linkedin facebook Twitter YouTube Twitter Content Apply now » Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Laboratory Delivering Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Alamos Collaboration
New MagViz Airport Liquid Analysis System Undergoes Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-12-18
LOS ALAMOS, New Mexico, December 16, 2008—An innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res
Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W Michael; Wang, Peng; Plimpton, Steven J
The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - 1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory,more » 2) minimizing the amount of code that must be ported for efficient acceleration, 3) utilizing the available processing power from both many-core CPUs and accelerators, and 4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.« less
Efficient modeling of laser-plasma accelerator staging experiments using INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2017-03-01
The computational framework INF&RNO (INtegrated Fluid & paRticle simulatioN cOde) allows for fast and accurate modeling, in 2D cylindrical geometry, of several aspects of laser-plasma accelerator physics. In this paper, we present some of the new features of the code, including the quasistatic Particle-In-Cell (PIC)/fluid modality, and describe using different computational grids and time steps for the laser envelope and the plasma wake. These and other features allow for a speedup of several orders of magnitude compared to standard full 3D PIC simulations while still retaining physical fidelity. INF&RNO is used to support the experimental activity at the BELLA Center, and we will present an example of the application of the code to the laser-plasma accelerator staging experiment.
The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System
2007-06-01
Systems Inc., Stennis Space Center. MS, USA d SHOM/CMO, Toulouse. France € Los Alamos National Laboratory, Los Alamos, NM. USA Received 1 October 2004...Global Ocean Data Assimilation ’U. of Miami, NRL, Los Alamos, NOAA/NCEP, NOAA/AOML, Experiment (GODAE). GODAE is a coordinated inter- NOAA/PMEL, PSI...of Miami, the Naval all three approaches and the optimal distribution is Research Laboratory (NRL), and the Los Alamos chosen at every time step. The
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leal, L.C.; Deen, J.R.; Woodruff, W.L.
1995-02-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment for Research and Test (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the procedure to generatemore » cross-section libraries for reactor analyses and calculations utilizing the WIMSD4M code. To do so, the results of calculations performed with group cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory(ORNL) unreflected critical spheres, the TRX critical experiments, and calculations of a modified Los Alamos highly-enriched heavy-water moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Warp-X: A new exascale computing platform for beam–plasma simulations
Vay, J. -L.; Almgren, A.; Bell, J.; ...
2018-01-31
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
GPU accelerated manifold correction method for spinning compact binaries
NASA Astrophysics Data System (ADS)
Ran, Chong-xi; Liu, Song; Zhong, Shuang-ying
2018-04-01
The graphics processing unit (GPU) acceleration of the manifold correction algorithm based on the compute unified device architecture (CUDA) technology is designed to simulate the dynamic evolution of the Post-Newtonian (PN) Hamiltonian formulation of spinning compact binaries. The feasibility and the efficiency of parallel computation on GPU have been confirmed by various numerical experiments. The numerical comparisons show that the accuracy on GPU execution of manifold corrections method has a good agreement with the execution of codes on merely central processing unit (CPU-based) method. The acceleration ability when the codes are implemented on GPU can increase enormously through the use of shared memory and register optimization techniques without additional hardware costs, implying that the speedup is nearly 13 times as compared with the codes executed on CPU for phase space scan (including 314 × 314 orbits). In addition, GPU-accelerated manifold correction method is used to numerically study how dynamics are affected by the spin-induced quadrupole-monopole interaction for black hole binary system.
Warp-X: A new exascale computing platform for beam–plasma simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vay, J. -L.; Almgren, A.; Bell, J.
Turning the current experimental plasma accelerator state-of-the-art from a promising technology into mainstream scientific tools depends critically on high-performance, high-fidelity modeling of complex processes that develop over a wide range of space and time scales. As part of the U.S. Department of Energy's Exascale Computing Project, a team from Lawrence Berkeley National Laboratory, in collaboration with teams from SLAC National Accelerator Laboratory and Lawrence Livermore National Laboratory, is developing a new plasma accelerator simulation tool that will harness the power of future exascale supercomputers for high-performance modeling of plasma accelerators. We present the various components of the codes such asmore » the new Particle-In-Cell Scalable Application Resource (PICSAR) and the redesigned adaptive mesh refinement library AMReX, which are combined with redesigned elements of the Warp code, in the new WarpX software. Lastly, the code structure, status, early examples of applications and plans are discussed.« less
New MagViz Airport Liquid Analysis System Undergoes Testing
None
2017-12-09
LOS ALAMOS, New Mexico, December 16, 2008âAn innovative application of a technology first used for medical imaging may enhance airport security if Los Alamos National Laboratory scientists are successful. Los Alamos technologists have adapted Magnetic Res
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Transport calculations and accelerator experiments needed for radiation risk assessment in space.
Sihver, Lembit
2008-01-01
The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.
Fassett, J.E.
2009-01-01
Dinosaur fossils are present in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico, and Colorado. Evidence for the Paleo-cene age of the Ojo Alamo Sandstone includes palynologic and paleomagnetic data. Palynologic data indicate that the entire Ojo Alamo Sandstone, including the lower dinosaur-bearing part, is Paleocene in age. All of the palynomorph-productive rock samples collected from the Ojo Alamo Sandstone at multiple localities lacked Creta-ceous index palynomorphs (except for rare, reworked specimens) and produced Paleocene index palynomorphs. Paleocene palynomorphs have been identified strati-graphically below dinosaur fossils at two separate localities in the Ojo Alamo Sand-stone in the central and southern parts of the basin. The Animas Formation in the Colorado part of the basin also contains dinosaur fossils, and its Paleocene age has been established based on fossil leaves and palynology. Magnetostratigraphy provides independent evidence for the Paleocene age of the Ojo Alamo Sandstone and its dinosaur-bearing beds. Normal-polarity magnetochron C29n (early Paleocene) has been identified in the Ojo Alamo Sandstone at six localities in the southern part of the San Juan Basin. An assemblage of 34 skeletal elements from a single hadrosaur, found in the Ojo Alamo Sandstone in the southern San Juan Basin, provided conclusive evidence that this assemblage could not have been reworked from underlying Cretaceous strata. In addition, geochemical studies of 15 vertebrate bones from the Paleocene Ojo Alamo Sandstone and 15 bone samples from the underlying Kirtland Formation of Late Creta-ceous (Campanian) age show that each sample suite contained distinctly different abundances of uranium and rare-earth elements, indicating that the bones were miner-alized in place soon after burial, and that none of the Paleocene dinosaur bones ana-lyzed had been reworked. ?? U.S. Geological Survey, Public Domain April 2009.
Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert D.
2006-08-10
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now takemore » hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.« less
NASA Astrophysics Data System (ADS)
Ryne, Robert D.
2006-09-01
Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook.'' Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Environmental Management System
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Institute for Materials Science
Search Site submit National Security Education Center Los Alamos National LaboratoryInstitute for Materials Science Incubate - Innovate - Integrate Los Alamos National Laboratory Institute for Materials educational center in NSEC focused on fostering the advancement of materials science at Los Alamos National
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
The Effect of Added AL2O3 on the Propagation Behavior of an Al/CuO Nanoscale Thermite
2008-01-01
Malchi a, Richard A. Yetter a,*, T. J. Foley b, and Steven F. Son c a The Pennsylvania State University, University Park, PA, USA b Los Alamos National...Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC...Pennsylvania State University, University Park, PA, USA b Los Alamos National Laboratory, Los Alamos, NM, USA c Purdue University, West Lafayette, IN, USA
Stockpile Stewardship: Los Alamos
McMillan, Charlie; Morgan, Nathanial; Goorley, Tom; Merrill, Frank; Funk, Dave; Korzekwa, Deniece; Laintz, Ken
2018-01-16
"Heritage of Science" is a short video that highlights the Stockpile Stewardship program at Los Alamos National Laboratory. Stockpile Stewardship was conceived in the early 1990s as a national science-based program that could assure the safety, security, and effectiveness of the U.S. nuclear deterrent without the need for full-scale underground nuclear testing. This video was produced by Los Alamos National Laboratory for screening at the Lab's Bradbury Science Museum in Los Alamos, NM and is narrated by science correspondent Miles O'Brien.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amy Robinson; Audrey Archuleta; Barbara Maes
1999-02-01
The Los Alamos Neutron Science Center Activity Report describes scientific and technological progress and achievements in LANSCE Division during the period of 1995 to 1998. This report includes a message from the Division Director, an overview of LANSCE, sponsor overviews, research highlights, advanced projects and facility upgrades achievements, experimental and user program accomplishments, news and events, and a list of publications. The research highlights cover the areas of condensed-matter science and engineering, accelerator science, nuclear science, and radiography. This report also contains a compact disk that includes an overview, the Activity Report itself, LANSCE operations progress reports for 1996 andmore » 1997, experiment reports from LANSCE users, as well as a search capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less
Science-based stockpile stewardship at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, J.
1995-10-01
Let me tell you a little about the Los Alamos Neutron Science Center (LANSCE) and how some of the examples you heard about from Sig Hecker and John Immele fit together in this view of a different world in the future where defense, basic and industrial research overlap. I am going to talk about science-based stockpile stewardship at LANSCE; the accelerator production of tritium (APT), which I think has a real bearing on the neutron road map; the world-class neutron science user facility, for which I will provide some examples so you can see the connection with defense science; andmore » lastly, testing concepts for a high-power spallation neutron target and waste transmutation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan
On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less
Study of Light Neutron-Rich Nuclei Using a Multilayer Semiconductor Setup
NASA Astrophysics Data System (ADS)
Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.
2017-12-01
The characteristics of two modifications of the semiconductor (s.c.d.) setup consisting of telescopes on the basis of silicon detectors are presented. These settings allow performing a precision measurement of energy in a large dynamic range (from a few to hundreds of MeV) and particle identification in a wide range of masses. The issues of measurement of the characteristics of s.c.d. telescopes and their impact on the quality of the obtained experimental data are considered. Considerable attention is paid to the use of created semiconductor devices for the search for and spectroscopy of light exotic nuclei on the accelerators of PNPI (Gatchina) and LANL (Los Alamos).
NASA Astrophysics Data System (ADS)
Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.
1998-04-01
The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.
DOT National Transportation Integrated Search
2014-11-15
The simplified procedure in design codes for determining earthquake response spectra involves : estimating site coefficients to adjust available rock accelerations to site accelerations. Several : investigators have noted concerns with the site coeff...
Laboratory Directed Research & Development (LDRD)
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Nuclear Deterrence and Stockpile Stewardship
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation . thumbnail of Energy and Subsurface Laura Barber, Business Development Laura Barber Energy: Los Alamos is
From biofuels to predicting the flu
Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us
Emerging Threats and Opportunities
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Protecting Against Nuclear Threats
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Search Site submit About | Contacts | Directions Los Alamos National LaboratoryBradbury Science Museum Your Window into Los Alamos National Laboratory Bradbury Science Museum Menu About Contacts Directions Visit Visitor Information About the Museum Large Group Visits Around Los Alamos Contact Us
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation key programs to achieve regional technology commercialization from Los Alamos. The programs below help
Validation of the WIMSD4M cross-section generation code with benchmark results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deen, J.R.; Woodruff, W.L.; Leal, L.E.
1995-01-01
The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less
Particle-in-cell/accelerator code for space-charge dominated beam simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-05-08
Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less
Tiny plastic lung mimics human pulmonary function
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Public Reading Room: Environmental Documents, Reports
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
COLAcode: COmoving Lagrangian Acceleration code
NASA Astrophysics Data System (ADS)
Tassev, Svetlin V.
2016-02-01
COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.
GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.
E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N
2018-03-01
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, Paul Michael
The Monte Carlo N-Particle (MCNP) transport code developed at Los Alamos National Laboratory (LANL) utilizes nuclear cross-section data in a compact ENDF (ACE) format. The accuracy of MCNP calculations depends on the accuracy of nuclear ACE data tables, which depends on the accuracy of the original ENDF files. There are some noticeable differences in ENDF files from one generation to the next, even among the more common fissile materials. As the next generation of ENDF files is being prepared, several software tools were developed to simulate a large number of benchmarks in MCNP (over 1000), collect data from these simulations,more » and visually represent the results.« less
75 FR 72829 - Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease Control and Prevention... release of the Final Report of the Los Alamos Historical Document Retrieval and Assessment (LAHDRA)Project... information about historical chemical or radionuclide releases from facilities at the Los Alamos National...
77 FR 13360 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... Sands Missile Range. 1945. Hangar 481, Kirtland AFB Albuquerque 1989-1996. Kirtland Operations Office, Kirtland Albuquerque 1964-Present. AFB. Los Alamos Medical Center Los Alamos 1952-1963. Los Alamos National.... Institute, Kirtland AFB. Project Gasbuggy Nuclear Explosion Site Farmington 1967-1973; 1978; 1992-Present...
Richard P. Feynman Center for Innovation
Search Site submit About Us Los Alamos National LaboratoryRichard P. Feynman Center for Innovation Innovation protecting tomorrow Los Alamos National Laboratory The Richard P. Feynman Center for Innovation self-healing, self-forming mesh network of long range radios. READ MORE supercomputer Los Alamos
Panel: If I Only Knew Then What I Know Now
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos... Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los Alamos National Laboratory...
Los Alamos Climatology 2016 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruggeman, David Alan
The Los Alamos National Laboratory (LANL or the Laboratory) operates a meteorology monitoring network to support LANL emergency response, engineering designs, environmental compliance, environmental assessments, safety evaluations, weather forecasting, environmental monitoring, research programs, and environmental restoration. Weather data has been collected in Los Alamos since 1910. Bowen (1990) provided climate statistics (temperature and precipitation) for the 1961– 1990 averaging period, and included other analyses (e.g., wind and relative humidity) based on the available station locations and time periods. This report provides an update to the 1990 publication Los Alamos Climatology (Bowen 1990).
Geothermal investigation of spring and well waters of the Los Alamos Region, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, F.E.; Sayer, S.
1980-04-01
The chemical and isotopic characters of 20 springs and wells in the Los Alamos area were investigated for indications of geothermal potential. These waters were compared with known hot and mineral springs from adjacent Valles Caldera and San Ysidro. All waters in the Los Alamos area are composed of meteoric water. Isotopic data show that the two primary aquifers beneath the Los Alamos region have different recharge areas. Relatively high concentrations of lithium, arsenic, chlorine, boron, and fluorine in some of the Los Alamos wells suggest these waters may contain a small fraction of thermal/mineral water of deep origin. Thermalmore » water probably rises up high-angle faults associated with a graben of the Rio Grande rift now buried by the Pajarito Plateau.« less
NASA Astrophysics Data System (ADS)
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named
C++ Coding Standards for the AMP Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Thomas M; Clarno, Kevin T
2009-09-01
This document provides an initial starting point to define the C++ coding standards used by the AMP nuclear fuel performance integrated code project and a part of AMP's software development process. This document draws from the experiences, and documentation [1], of the developers of the Marmot Project at Los Alamos National Laboratory. Much of the software in AMP will be written in C++. The power of C++ can be abused easily, resulting in code that is difficult to understand and maintain. This document gives the practices that should be followed on the AMP project for all new code that ismore » written. The intent is not to be onerous but to ensure that the code can be readily understood by the entire code team and serve as a basis for collectively defining a set of coding standards for use in future development efforts. At the end of the AMP development in fiscal year (FY) 2010, all developers will have experience with the benefits, restrictions, and limitations of the standards described and will collectively define a set of standards for future software development. External libraries that AMP uses do not have to meet these requirements, although we encourage external developers to follow these practices. For any code of which AMP takes ownership, the project will decide on any changes on a case-by-case basis. The practices that we are using in the AMP project have been in use in the Denovo project [2] for several years. The practices build on those given in References [3-5]; the practices given in these references should also be followed. Some of the practices given in this document can also be found in [6].« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Study Team for the Los Alamos Historical Document Retrieval and Assessment (LAHDRA) Project The Centers for Disease... the following meeting. Name: Public Meeting of the Study Team for the Los Alamos Historical Document...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, N.M.; Vanta, E.B.
Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more thanmore » 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.« less
Gorshkov, Anton V; Kirillin, Mikhail Yu
2015-08-01
Over two decades, the Monte Carlo technique has become a gold standard in simulation of light propagation in turbid media, including biotissues. Technological solutions provide further advances of this technique. The Intel Xeon Phi coprocessor is a new type of accelerator for highly parallel general purpose computing, which allows execution of a wide range of applications without substantial code modification. We present a technical approach of porting our previously developed Monte Carlo (MC) code for simulation of light transport in tissues to the Intel Xeon Phi coprocessor. We show that employing the accelerator allows reducing computational time of MC simulation and obtaining simulation speed-up comparable to GPU. We demonstrate the performance of the developed code for simulation of light transport in the human head and determination of the measurement volume in near-infrared spectroscopy brain sensing.
Study of shock-induced combustion using an implicit TVD scheme
NASA Technical Reports Server (NTRS)
Yungster, Shayne
1992-01-01
The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.
Load management strategy for Particle-In-Cell simulations in high energy particle acceleration
NASA Astrophysics Data System (ADS)
Beck, A.; Frederiksen, J. T.; Dérouillat, J.
2016-09-01
In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.
Stochastic Particle Acceleration in the Hot Spots of FRII Radio Galaxies
NASA Astrophysics Data System (ADS)
Liu, Siming; Fan, Z.; Wang, J.; Fryer, C. L.; Li, H.
2007-12-01
Chandra, XMM-Newton, and HST observations of FRII radio galaxies, in combination with traditional radio studies, have advanced our understanding of the nature of jets, hot spots, and lobes significantly. The observed radio to optical emission has been attributed to the synchrotron processes. The X-ray emission can be produced through synchrotron, synchrotron self-Comptonization, and inverse Comptonization of the CMB or other background photos. Phenomenologically modelings of the observed broadband spectra have led to good constraints on the magnetic field and electron distribution. However, the matter and energy contents of the relativistic outflows driven by the central black holes, which power these sources, are still not well-constrained, and we also lack an understanding of the physical processes that determine the energy partition between the electrons and the magnetic field, the low energy cutoff of the electron spectrum, and the electron acceleration rate in these strongly magnetized relativistic plasmas. In the context of stochastic particle acceleration, we propose a model for the hot spots of radio galaxies and show how it may help us to address the above issues. This work was funded in part under the auspices of the US Department of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.
NASA Astrophysics Data System (ADS)
Huang, Zhen; Roussel-Dupré, Robert
2005-12-01
Data collected from Fast On-Orbit Recording of Transient Events (FORTE) satellite-received Los Alamos Portable Pulser (LAPP) signals during 1997-2002 are used to derive the total electron content (TEC) at Los Alamos, New Mexico. The LAPP-derived TECs at Los Alamos are analyzed for diurnal, seasonal, interannual, and 27-day solar cycle variations. Several aspects in deriving TEC are analyzed, including slant to vertical TEC conversion, quartic effects on transionosperic signals, and geomagnetic storm effects on the TEC variance superimposed on the averaged TEC values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niita, K.; Matsuda, N.; Iwamoto, Y.
The paper presents a brief description of the models incorporated in PHITS and the present status of the code, showing some benchmarking tests of the PHITS code for accelerator facilities and space radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Mariann R.; Clow, Shandra Deann
The UC/Los Alamos Entrepreneurial Postdoctoral Fellowship Pilot Program (Pilot) for existing postdoctoral researchers at Los Alamos National Laboratory (Los Alamos) to gain skills in entrepreneurship and commercializing technology as part of their postdoctoral experience. This program will incorporate training and mentoring during the first 6-month period, culminating in a focused 6-month Fellowship aimed at creating a new business in Northern New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, S.P.
1996-08-01
This report describes the biological assessment for the effluent recution program proposed to occur within the boundaries of Los Alamos National Laboratory. Potential effects on wetland plants and on threatened and endangered species are discussed, along with a detailed description of the individual outfalls resulting from the effluent reduction program.
Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube
Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena
2016-04-12
We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF 6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shockedmore » interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less
Fassett, J.E.
2009-01-01
In this issue of Palaeontologia Electronica Lucas, et al. (2009) question the validity f the Fassett (2009) paper that presented evidence for Paleocene dinosaurs in the San Juan Basin of New Mexico and Colorado. Their challenges focus primarily on the lithostratigraphy, palynology, and paleomagnetism of the dinosaur-bearing Ojo Alamo Sandstone, shown by Fassett to be of Paleocene age. The lithostratigraphy of the Ojo Alamo is addressed by Lucas et al. (2009) based on detailed studies of outcrops of this formation in two relatively small areas in the southern San Juan Basin where Ojo Alamo dinosaur fossils have been found. When viewed over its 13,000 km2 extent, the Ojo Alamo is seen to be a much more complex formation than these authors recognize, thus their perception and description of the lithostratigraphy of this rock unit is limited and provincial. Fassett (2009) presented a detailed discussion of the palynology of the rocks adjacent to the Cretaceous-Tertiary (K-T) interface in the San Juan Basin, including a 67-page appendix and 25 tables listing the 244 palynomorph species identified from these strata. The Ojo Alamo Sandstone produced 103 palynomorphs from five principal localities including one especially prolific sample set from drill core through K-T strata. Without exception, all samples collected from the Ojo Alamo Sandstone for palynologic analysis were found to contain Paleocene palynomorph assemblages. Lucas et al. challenge only one Ojo Alamo palynomorph assemblage from one of the five areas studied, stating that they were unable to find palynomorph-productive samples at that locality. They submit no new palynologic data that refutes the Paleocene palynologic age of the Ojo Alamo Sandstone. In addressing the paleomagnetism of the Ojo Alamo, these authors dismiss the presence of a critical normal-polarity magnetochron discovered in the lower part of the Ojo Alamo - magnetochron C29n.2n of Fassett (2009) with no evidence to justify this dismissal. This magnetochron has been identified at five localities in the basin, thus its existence seems unquestionable. At the Mesa Portales locality, this normal chron was found in Ojo Alamo strata containing Paleocene palynomorph assemblages verifying its identification as chron C29n. Other minor arguments of Lucas et al. (2009) are also addressed in this paper. In sum, Lucas et al. (2009) present no new data to contradict the data presented in Fassett (2009).
Beam-dynamics codes used at DARHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Jr., Carl August
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
Seismic Safety Of Simple Masonry Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guadagnuolo, Mariateresa; Faella, Giuseppe
2008-07-08
Several masonry buildings comply with the rules for simple buildings provided by seismic codes. For these buildings explicit safety verifications are not compulsory if specific code rules are fulfilled. In fact it is assumed that their fulfilment ensures a suitable seismic behaviour of buildings and thus adequate safety under earthquakes. Italian and European seismic codes differ in the requirements for simple masonry buildings, mostly concerning the building typology, the building geometry and the acceleration at site. Obviously, a wide percentage of buildings assumed simple by codes should satisfy the numerical safety verification, so that no confusion and uncertainty have tomore » be given rise to designers who must use the codes. This paper aims at evaluating the seismic response of some simple unreinforced masonry buildings that comply with the provisions of the new Italian seismic code. Two-story buildings, having different geometry, are analysed and results from nonlinear static analyses performed by varying the acceleration at site are presented and discussed. Indications on the congruence between code rules and results of numerical analyses performed according to the code itself are supplied and, in this context, the obtained result can provide a contribution for improving the seismic code requirements.« less
Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system
NASA Astrophysics Data System (ADS)
Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin
2007-08-01
The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker J.V.
1988-01-01
A Segmented Rail Surface (SRS) structure is described that eliminates restrike arcs by progressively disconnecting segments of the rail surface after the plasma armature has passed. This technique has been demonstrated using the Los Alamos MIDI-2 railgun. Restrike was eliminated in a plasma armature acceleration experiment using metal-foil fuses as opening switches. A plasma velocity increase from 11 to 16 km/s was demonstrated using the SRS technique to eliminate the viscous drag losses associated with the restrike plasma. This technique appears to be a practical option for a laboratory launcher at present and for future multi-shot launchers if appropriate switchesmore » can be developed. 5 refs., 8 figs.« less
GPU Optimizations for a Production Molecular Docking Code*
Landaverde, Raphael; Herbordt, Martin C.
2015-01-01
Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users. PMID:26594667
GPU Optimizations for a Production Molecular Docking Code.
Landaverde, Raphael; Herbordt, Martin C
2014-09-01
Modeling molecular docking is critical to both understanding life processes and designing new drugs. In previous work we created the first published GPU-accelerated docking code (PIPER) which achieved a roughly 5× speed-up over a contemporaneous 4 core CPU. Advances in GPU architecture and in the CPU code, however, have since reduced this relalative performance by a factor of 10. In this paper we describe the upgrade of GPU PIPER. This required an entire rewrite, including algorithm changes and moving most remaining non-accelerated CPU code onto the GPU. The result is a 7× improvement in GPU performance and a 3.3× speedup over the CPU-only code. We find that this difference in time is almost entirely due to the difference in run times of the 3D FFT library functions on CPU (MKL) and GPU (cuFFT), respectively. The GPU code has been integrated into the ClusPro docking server which has over 4000 active users.
New features in the design code Tlie
NASA Astrophysics Data System (ADS)
van Zeijts, Johannes
1993-12-01
We present features recently installed in the arbitrary-order accelerator design code Tlie. The code uses the MAD input language, and implements programmable extensions modeled after the C language that make it a powerful tool in a wide range of applications: from basic beamline design to high precision-high order design and even control room applications. The basic quantities important in accelerator design are easily accessible from inside the control language. Entities like parameters in elements (strength, current), transfer maps (either in Taylor series or in Lie algebraic form), lines, and beams (either as sets of particles or as distributions) are among the type of variables available. These variables can be set, used as arguments in subroutines, or just typed out. The code is easily extensible with new datatypes.
NASA Technical Reports Server (NTRS)
Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.
2010-01-01
Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.
Empirical evidence for site coefficients in building code provisions
Borcherdt, R.D.
2002-01-01
Site-response coefficients, Fa and Fv, used in U.S. building code provisions are based on empirical data for motions up to 0.1 g. For larger motions they are based on theoretical and laboratory results. The Northridge earthquake of 17 January 1994 provided a significant new set of empirical data up to 0.5 g. These data together with recent site characterizations based on shear-wave velocity measurements provide empirical estimates of the site coefficients at base accelerations up to 0.5 g for Site Classes C and D. These empirical estimates of Fa and Fnu; as well as their decrease with increasing base acceleration level are consistent at the 95 percent confidence level with those in present building code provisions, with the exception of estimates for Fa at levels of 0.1 and 0.2 g, which are less than the lower confidence bound by amounts up to 13 percent. The site-coefficient estimates are consistent at the 95 percent confidence level with those of several other investigators for base accelerations greater than 0.3 g. These consistencies and present code procedures indicate that changes in the site coefficients are not warranted. Empirical results for base accelerations greater than 0.2 g confirm the need for both a short- and a mid- or long-period site coefficient to characterize site response for purposes of estimating site-specific design spectra.
Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program
NASA Astrophysics Data System (ADS)
Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.
1997-05-01
Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.
DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. A. MC CLURE; C. A. NELSON; R. L. BOUDRIE
2001-04-01
This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamosmore » National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety.« less
Joseph Rotblat: influences, scientific achievements and legacy
NASA Astrophysics Data System (ADS)
Underwood, Martin
2008-11-01
Joseph Rotblat was one of the most distinguished nuclear physicists and peace campaigners of the post Second World War period. His peace activities rank alongside those of Albert Einstein and Bertrand Russell; he won the Nobel Peace Prize, jointly with the Pugwash movement, that he helped found. However, he made significant contributions to science, and in particular to the medical applications of accelerators, radiation and radio-nuclides. In this article his early work and influences in Poland are described. He then joined James Chadwick at Liverpool University and began work on the cyclotron recently constructed there. Rotblat then, together with Chadwick, joined the Manhattan Project. This experience was to shape his life. He stayed at Los Alamos for less than a year before walking out. He was suspected of being a spy. Rotblat then became Professor of Physics at St Bartholomew's Medical College and pioneered the use of a 15 MeV linear accelerator in treatment and research. He made fundamental contributions to understanding the effects of the fallout from nuclear bomb tests. He also, together with Patricia Lindop, made important contributions to understanding the biological effects of radiation.
Vertical Gun Test Environmental Assessment
2004-05-18
antillarum E E Mexican spotted owl Strix occidentalis lucida T, CH - Mountain plover Charadrius montanus SOC - New Mexican meadow jumping mouse Zapus...community, there is only one tribal reservation within the County. The Alamo Navajo Band is a satellite community of the Navajo Nation with approximately...860 residents. (Alamo Chapter, 2004) The Alamo Navajo reservation is isolated from the other Navajo Nation communities, and is located
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarmie, N.; Rogers, F.J.
The authors have completed a 5-year survey (1991--1995) of macromycetes found in Los Alamos County, Los Alamos National Laboratory, and Bandelier National Monument. The authors have compiled a database of 1,048 collections, their characteristics, and identifications. The database represents 123 (98%) genera and 175 (73%) species reliably identified. Issues of habitat loss, species extinction, and ecological relationships are addressed, and comparisons with other surveys are made. With this baseline information and modeling of this baseline data, one can begin to understand more about the fungal flora of the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, Miranda Huang
Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter ofmore » Interest.« less
Characterization of Proxy Application Performance on Advanced Architectures. UMT2013, MCB, AMG2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, Louis H.; Gunney, Brian T.; Bhatele, Abhinav
2015-10-09
Three codes were tested at LLNL as part of a Tri-Lab effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. Teams from Sandia and Los Alamos tested proxy apps of their own. The focus in this report is on the LLNL codes UMT2013, MCB, and AMG2013. We present weak and strong MPI scaling results and studies of OpenMP efficiency on a large BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. Themore » hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while information from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Results from three more speculative tests are also included: one that exploits NVRAM as extended memory, one that studies performance under a power bound, and one that illustrates the effects of changing the torus network mapping on BG/Q.« less
NASA Astrophysics Data System (ADS)
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
Improved detonation modeling with CHEETAH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, A.
1997-11-01
A Livermore software program called CHEETAH, an important, even indispensable tool for energetic materials researchers worldwide, was made more powerful in the summer of 1997 with the release of CHEETAH 2.0, an advanced version that simulates a wider variety of detonations. Derived from more than 40 years of experiments on high explosives at Lawrence Livermore and Los Alamos national laboratories, CHEETAH predicts the results from detonating a mixture of specified reactants. It operates by solving thermodynamic equations to predict detonation products and such properties as temperature, pressure, volume, and total energy released. The code is prized by synthesis chemists andmore » other researchers because it allows them to vary the starting molecules and conditions to optimize the desired performance properties. One of the Laboratory`s most popular computer codes, CHEETAH is used at more than 200 sites worldwide, including ones in England, Canada, Sweden, Switzerland, and France. Most sites are defense-related, although a few users, such as Japanese fireworks researchers, are in the civilian sector.« less
^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE
NASA Astrophysics Data System (ADS)
Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.
1998-04-01
The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).
Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrier, Danielle; Andersen, Kyle Richard
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-05-01
The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos Scientific Laboratory (LASL) to provide an advanced ''best estimate'' predictive capability for the analysis of postulated accidents in light water reactors (LWRs). TRAC-Pl provides this analysis capability for pressurized water reactors (PWRs) and for a wide variety of thermal-hydraulic experimental facilities. It features a three-dimensional treatment of the pressure vessel and associated internals; two-phase nonequilibrium hydrodynamics models; flow-regime-dependent constitutive equation treatment; reflood tracking capability for both bottom flood and falling film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions.more » The TRAC-Pl User's Manual is composed of two separate volumes. Volume I gives a description of the thermal-hydraulic models and numerical solution methods used in the code. Detailed programming and user information is also provided. Volume II presents the results of the developmental verification calculations.« less
Validation of a Laser-Ray Package in an Eulerian Code
NASA Astrophysics Data System (ADS)
Bradley, Paul; Hall, Mike; McKenty, Patrick; Collins, Tim; Keller, David
2014-10-01
A laser-ray absorption package was recently installed in the RAGE code by the Laboratory for Laser Energetics (LLE). In this presentation, we describe our use of this package to implode Omega 60 beam symmetric direct drive capsules. The capsules have outer diameters of about 860 microns, CH plastic shell thicknesses between 8 and 32 microns, DD or DT gas fills between 5 and 20 atmospheres, and a 1 ns square pulse of 23 to 27 kJ. These capsule implosions were previously modeled with a calibrated energy source in the outer layer of the capsule, where we matched bang time and burn ion temperature well, but the simulated yields were two to three times higher than the data. We will run simulations with laser ray energy deposition to the experiments and the results to the yield and spectroscopic data. Work performed by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.
Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators
Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew
2014-01-01
Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in multi-dimensional media. PMID:24497950
Synergia: an accelerator modeling tool with 3-D space charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amundson, James F.; Spentzouris, P.; /Fermilab
2004-07-01
High precision modeling of space-charge effects, together with accurate treatment of single-particle dynamics, is essential for designing future accelerators as well as optimizing the performance of existing machines. We describe Synergia, a high-fidelity parallel beam dynamics simulation package with fully three dimensional space-charge capabilities and a higher order optics implementation. We describe the computational techniques, the advanced human interface, and the parallel performance obtained using large numbers of macroparticles. We also perform code benchmarks comparing to semi-analytic results and other codes. Finally, we present initial results on particle tune spread, beam halo creation, and emittance growth in the Fermilab boostermore » accelerator.« less
Narrow beam neutron dosimetry.
Ferenci, M Sutton
2004-01-01
Organ and effective doses have been estimated for male and female anthropomorphic mathematical models exposed to monoenergetic narrow beams of neutrons with energies from 10(-11) to 1000 MeV. Calculations were performed for anterior-posterior, posterior-anterior, left-lateral and right-lateral irradiation geometries. The beam diameter used in the calculations was 7.62 cm and the phantoms were irradiated at a height of 1 m above the ground. This geometry was chosen to simulate an accidental scenario (a worker walking through the beam) at Flight Path 30 Left (FP30L) of the Weapons Neutron Research (WNR) Facility at Los Alamos National Laboratory. The calculations were carried out using the Monte Carlo transport code MCNPX 2.5c.
Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chyzh, A.; Dashdorj, D.; Lawrence Livermore National Laboratory, Livermore, California 94551
2011-07-15
The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.
1983-03-01
values of these functions on the two sides of the slits. The acceleration parameters for the iteration at each point are in the field array WACC (I,J...code will calculate a locally optimum value at each point in the field, these values being placed in the field array WACC . This calculation is...changes in x and y, are calculated by calling subroutine ERROR.) The acceleration parameter is placed in the field 65 array WACC . The addition to the
Nuclear Matters. A Practical Guide
2008-01-01
plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less
VizieR Online Data Catalog: Radiative forces for stellar envelopes (Seaton, 1997)
NASA Astrophysics Data System (ADS)
Seaton, M. J.; Yan, Y.; Mihalas, D.; Pradhan, A. K.
2000-02-01
(1) Primary data files, stages.zz These files give data for the calculation of radiative accelerations, GRAD, for elements with nuclear charge zz. Data are available for zz=06, 07, 08, 10, 11, 12, 13, 14, 16, 18, 20, 24, 25, 26 and 28. Calculations are made using data from the Opacity Project (see papers SYMP and IXZ). The data are given for each ionisation stage, j. They are tabulated on a mesh of (T, Ne, CHI) where T is temperature, Ne electron density and CHI is abundance multiplier. The files include data for ionisation fractions, for each (T, Ne). The file contents are described in the paper ACC and as comments in the code add.f (2) Code add.f This reads a file stages.zz and creates a file acc.zz giving radiative accelerations averaged over ionisation stages. The code prompts for names of input and output files. The code, as provided, gives equal weights (as defined in the paper ACC) to all stages. Th weights are set in SUBROUTINE WEIGHTS, which could be changed to give any weights preferred by the user. The dependence of diffusion coefficients on ionisation stage is given by a function ZET, which is defined in SUBROUTINE ZETA. The expressions used for ZET are as given in the paper. The user can change that subroutine if other expressions are preferred. The output file contains values, ZETBAR, of ZET, averaged over ionisation stages. (3) Files acc.zz Radiative accelerations computed using add.f as provided. The user will need to run the code add.f only if it is required to change the subroutines WEIGHTS or ZETA. The contents of the files acc.zz are described in the paper ACC and in comments contained in the code add.f. (4) Code accfit.f This code gives gives radiative accelerations, and some related data, for a stellar model. Methods used to interpolate data to the values of (T, RHO) for the stellar model are based on those used in the code opfit.for (see the paper OPF). The executable file accfit.com runs accfit.f. It uses a list of files given in accfit.files (see that file for further description). The mesh used for the abundance-multiplier CHI on the output file will generally be finer than that used in the input files acc.zz. The mesh to be used is specified on a file chi.dat. For a test run, the stellar model used is given in the file 10000_4.2 (Teff=10000 K, LOG10(g)=4.2) The output file from that test run is acc100004.2. The contents of the output file are described in the paper ACC and as comments in the code accfit.f. (5) The code diff.f This code reads the output file (e.g. acc1000004.2) created by accfit.f. For any specified depth point in the model and value of CHI, it gives values of radiative accelerations, the quantity ZETBAR required for calculation of diffusion coefficients, and Rosseland-mean opacities. The code prompts for input data. It creates a file recording all data calculated. The code diff.f is intended for incorporation, as a set of subroutines, in codes for diffusion calculations. (1 data file).
NASA Astrophysics Data System (ADS)
Colgan, James
2016-05-01
We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.
NASA Astrophysics Data System (ADS)
Los Alamos National Laboratory in New Mexico is calling for applications for postdoctoral appointments and research fellowships. The positions are available in geoscience as well as other scientific disciplines.The laboratory, which is operated by the University of California for the Department of Energy, awards J. Robert Oppenheimer Research Fellowships to scientists that either have or will soon complete doctoral degrees. The appointments are for two years, are renewable for a third year, and carry a stipend of $51,865 per year. Potential applicants should send a resume or employment application and a statement of research goals to Carol M. Rich, Div. 89, Human Resources Development Division, MS P290, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 by mid-November.
Water Supply at Los Alamos 1998-2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard J. Koch; David B. Rogers
2003-03-01
For the period 1998 through 2001, the total water used at Los Alamos from all sources ranged from 1325 million gallons (Mg) in 1999 to 1515 Mg in 2000. Groundwater production ranged from 1323 Mg in 1999 to 1506 Mg in 2000 from the Guaje, Pajarito, and Otowi fields. Nonpotable surface water used from Los Alamos reservoir ranged from zero gallons in 2001 to 9.3 Mg in 2000. For years 1998 through 2001, over 99% of all water used at Los Alamos was groundwater. Water use by Los Alamos National Laboratory (LANL) between 1998 and 2001 ranged from 379 Mgmore » in 2000 to 461 Mg in 1998. The LANL water use in 2001 was 393 Mg or 27% of the total water use at Los Alamos. Water use by Los Alamos County ranged from 872 Mg in 1999 to 1137 Mg in 2000, and averaged 1006 Mg/yr. Four new replacement wells in the Guaje field (G-2A, G-3A, G-4A, and G-5A) were drilled in 1998 and began production in 1999; with existing well G-1A, the Guaje field currently has five producing wells. Five of the old Guaje wells (G-1, G-2, G-4, G-5, and G-6) were plugged and abandoned in 1999, and one well (G-3) was abandoned but remains as an observation well for the Guaje field. The long-term water level observations in production and observation (test) wells at Los Alamos are consistent with the formation of a cone of depression in response to water production. The water level decline is gradual and at most has been about 0.7 to 2 ft per year for production wells and from 0.4 to 0.9 ft/yr for observation (test) wells. The largest water level declines have been in the Guaje field where nonpumping water levels were about 91 ft lower in 2001 than in 1951. The initial water levels of the Guaje replacement wells were 32 to 57 ft lower than the initial water levels of adjacent original Guaje wells. When production wells are taken off-line for pump replacement or repair, water levels have returned to within about 25 ft of initial static levels within 6 to 12 months. Thus, the water-level trends suggest no adverse impacts by production on long-term water supply sustainability at Los Alamos. This report summarizes production data and aquifer conditions for water production and monitor wells in the Los Alamos, New Mexico, and Los Alamos National Laboratory (LANL) area (Figure 1). Water production wells are grouped within the Guaje, Pajarito, and Otowi fields, the locations of which are shown on Figure 1. Wells from these fields supply all the potable water used for municipal and most industrial purposes in Los Alamos County (LAC), at LANL, and at Bandelier National Monument. This report has three primary objectives: (1) Provide a continuing historical record of metered well production and overall water usage; (2) Provide data to the Department of Energy (DOE) and LANL management, and Los Alamos County planners for operation of the water supply system and for long-range water resource planning; and (3) Provide water-level data from regional aquifer production wells, test wells, and monitoring wells.« less
Ojeda-May, Pedro; Nam, Kwangho
2017-08-08
The strategy and implementation of scalable and efficient semiempirical (SE) QM/MM methods in CHARMM are described. The serial version of the code was first profiled to identify routines that required parallelization. Afterward, the code was parallelized and accelerated with three approaches. The first approach was the parallelization of the entire QM/MM routines, including the Fock matrix diagonalization routines, using the CHARMM message passage interface (MPI) machinery. In the second approach, two different self-consistent field (SCF) energy convergence accelerators were implemented using density and Fock matrices as targets for their extrapolations in the SCF procedure. In the third approach, the entire QM/MM and MM energy routines were accelerated by implementing the hybrid MPI/open multiprocessing (OpenMP) model in which both the task- and loop-level parallelization strategies were adopted to balance loads between different OpenMP threads. The present implementation was tested on two solvated enzyme systems (including <100 QM atoms) and an S N 2 symmetric reaction in water. The MPI version exceeded existing SE QM methods in CHARMM, which include the SCC-DFTB and SQUANTUM methods, by at least 4-fold. The use of SCF convergence accelerators further accelerated the code by ∼12-35% depending on the size of the QM region and the number of CPU cores used. Although the MPI version displayed good scalability, the performance was diminished for large numbers of MPI processes due to the overhead associated with MPI communications between nodes. This issue was partially overcome by the hybrid MPI/OpenMP approach which displayed a better scalability for a larger number of CPU cores (up to 64 CPUs in the tested systems).
AMBER: a PIC slice code for DARHT
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Fawley, William
1999-11-01
The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-μ s output electron beam with a design goal of less than 1000 π mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to study the beam dynamics throughout the accelerator, we have developed a slice Particle-In-Cell code named AMBER, in which the beam is modeled as a time-steady flow, subject to self, as well as external, electrostatic and magnetostatic fields. The code follows the evolution of a slice of the beam as it propagates through the DARHT accelerator lattice, modeled as an assembly of pipes, solenoids and gaps. In particular, we have paid careful attention to non-paraxial phenomena that can contribute to nonlinear forces and possible emittance growth. We will present the model and the numerical techniques implemented, as well as some test cases and some preliminary results obtained when studying emittance growth during the beam propagation.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
NASA Astrophysics Data System (ADS)
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Modeling multi-GeV class laser-plasma accelerators with INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Bulanov, Stepan; Geddes, Cameron; Esarey, Eric; Leemans, Wim
2016-10-01
Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. Understanding and optimizing the performance of LPAs requires detailed numerical modeling of the nonlinear laser-plasma interaction. We present simulation results, obtained with the computationally efficient, PIC/fluid code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde), concerning present (multi-GeV stages) and future (10 GeV stages) LPA experiments performed with the BELLA PW laser system at LBNL. In particular, we will illustrate the issues related to the guiding of a high-intensity, short-pulse, laser when a realistic description for both the laser driver and the background plasma is adopted. Work Supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
Jack D. Cohen
2000-01-01
I arrived at Los Alamos on May 14, 2000 to conduct an examination of the home destruction associated with the Cerro Grande Fire. My examination occurred between the afternoon of 5/14 and late afternoon on 5/16. I had contact with the southern command post incident management team, the Los Alamos Fire Department, and the Santa Fe National Forest.The...
A Manual for the Prediction of Blast and Fragment Loadings on Structures
1981-08-01
H. and Amsden, A. A., "Fluid Dynamics---An Introductory 4100, Los Alamos Scientific Laboratory, University of California, New Mexico, February 1970...Navy Explosives Safety Board, "The Missile Hazard from Explosions," Technical Paper No. 2, ,December 1945 . Arvidsson, T. and Eriksson, L... Alamos Scientific Laboratory, Los Alamos , New-Mexico, June 1975. "Behavior and Utilization of Explosives in Engineering Design and Biomechda-. ical
Gaffney, Shannon H; Donovan, Ellen P; Shonka, Joseph J; Le, Matthew H; Widner, Thomas E
2013-06-01
In the mid-1940s, the United States began producing atomic weapon components at the Los Alamos National Laboratory (LANL). In an attempt to better understand historical exposure to nearby residents, this study evaluates plutonium activity in human tissue relative to residential location and length of time at residence. Data on plutonium activity in the lung, vertebrae, and liver of nearby residents were obtained during autopsies as a part of the Los Alamos Tissue Program. Participant residential histories and the distance from each residence to the primary plutonium processing buildings at LANL were evaluated in the analysis. Summary statistics, including Student t-tests and simple regressions, were calculated. Because the biological half-life of plutonium can vary significantly by organ, data were analyzed separately by tissue type (lung, liver, vertebrae). The ratios of plutonium activity (vertebrae:liver; liver:lung) were also analyzed in order to evaluate the importance of timing of exposure. Tissue data were available for 236 participants who lived in a total of 809 locations, of which 677 were verified postal addresses. Residents of Los Alamos were found to have higher plutonium activities in the lung than non-residents. Further, those who moved to Los Alamos before 1955 had higher lung activities than those who moved there later. These trends were not observed with the liver, vertebrae, or vertebrae:liver and liver:lung ratio data, however, and should be interpreted with caution. Although there are many limitations to this study, including the amount of available data and the analytical methods used to analyze the tissue, the overall results indicate that residence (defined as the year that the individual moved to Los Alamos) may have had a strong correlation to plutonium activity in human tissue. This study is the first to present the results of Los Alamos Autopsy Program in relation to residential status and location in Los Alamos. Copyright © 2012 Elsevier GmbH. All rights reserved.
Probabilistic Seismic Hazard Assessment for Iraq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onur, Tuna; Gok, Rengin; Abdulnaby, Wathiq
Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al.,more » 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.« less
Shock Spectrum Calculation from Acceleration Time Histories
1980-09-01
CLASSIFICATIONe OF THIS PAGE (Uh-e DOg ~ 9--t)____________________ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPRT NU9911ACCUIISIO6 NO .3ASCCSPICHT’S...SCE. Oakland CA NAVSCOLCECOFF C35 Port Hueneme. CA,. CO, Code C44A Porn Hueneme. CA NAVSEASYSCOM Code 05M13 (Newhouse) Wash DC; Code 6212, Wash DC
Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.
2007-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebe, A.; Leveling, A.; Lu, T.
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay gamma-quanta by the residuals in the activated structures and scoring the prompt doses of these gamma-quanta at arbitrary distances frommore » those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and showed a good agreement. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.« less
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
NASA Astrophysics Data System (ADS)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
Atmospheres of Quiescent Low-Mass Neutron Stars
NASA Astrophysics Data System (ADS)
Karpov, Platon; Medin, Zachary; Calder, Alan; Lattimer, James M.
2016-01-01
Observations of the neutron stars in quiescent low-mass X-ray binaries are important for determining their masses and radii which can lead to powerful constraints on the dense matter nuclear equation of state. The interpretation of these sources is complex and their spectra differ appreciably from blackbodies. Further progress hinges on reducing the uncertainties stemming from models of neutron star atmospheres. We present a suite of low-temperature neutron star atmospheres of different chemical compositions (pure H and He). Our models are constructed over a range of temperatures [log(T/1 K)=5.3, 5.6, 5.9, 6.2, 6.5] and surface gravities [log(g/1 cm/s2)=14.0, 14.2, 14.4, 14.6]. We generated model atmospheres using zcode - a radiation transfer code developed at Los Alamos National Laboratory. In order to facilitate analytic studies, we developed three-parameter fits to our models, and also compared them to diluted blackbodies in the energy range of 0.4-5 keV (CXO/MGE). From the latter, we extract color-correction factors (fc), which represent the shift of the spectra as compared to a blackbody with the same effective temperature. These diluted blackbodies are also useful for studies of photspheric expansion X-ray bursts. We provide a comparison of our models to previous calculations using the McGill Planar Hydrogen Atmosphere Code (McPHAC). These results enhance our ability to interpret thermal emission from neutron stars and to constrain the mass-radius relationship of these exotic objects.This research was supported in part by the U.S. Department of Energy under grant DE-FG02-87ER40317 and by resources at the Institute for Advanced Computational Science at Stony Brook University. This research was carried out in part under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory and supported by Contract No. DE-AC52-06NA25396.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsouleas, Thomas; Decyk, Viktor
Final Report for grant DE-FG02-06ER54888, "Simulation of Beam-Electron Cloud Interactions in Circular Accelerators Using Plasma Models" Viktor K. Decyk, University of California, Los Angeles Los Angeles, CA 90095-1547 The primary goal of this collaborative proposal was to modify the code QuickPIC and apply it to study the long-time stability of beam propagation in low density electron clouds present in circular accelerators. The UCLA contribution to this collaborative proposal was in supporting the development of the pipelining scheme for the QuickPIC code, which extended the parallel scaling of this code by two orders of magnitude. The USC work was as describedmore » here the PhD research for Ms. Bing Feng, lead author in reference 2 below, who performed the research at USC under the guidance of the PI Tom Katsouleas and the collaboration of Dr. Decyk The QuickPIC code [1] is a multi-scale Particle-in-Cell (PIC) code. The outer 3D code contains a beam which propagates through a long region of plasma and evolves slowly. The plasma response to this beam is modeled by slices of a 2D plasma code. This plasma response then is fed back to the beam code, and the process repeats. The pipelining is based on the observation that once the beam has passed a 2D slice, its response can be fed back to the beam immediately without waiting for the beam to pass all the other slices. Thus independent blocks of 2D slices from different time steps can be running simultaneously. The major difficulty was when particles at the edges needed to communicate with other blocks. Two versions of the pipelining scheme were developed, for the the full quasi-static code and the other for the basic quasi-static code used by this e-cloud proposal. Details of the pipelining scheme were published in [2]. The new version of QuickPIC was able to run with more than 1,000 processors, and was successfully applied in modeling e-clouds by our collaborators in this proposal [3-8]. Jean-Luc Vay at Lawrence Berkeley National Lab later implemented a similar basic quasistatic scheme including pipelining in the code WARP [9] and found good to very good quantitative agreement between the two codes in modeling e-clouds. References [1] C. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and T. Katsouleas, "QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas," J. Computational Phys. 217, 658 (2006). [2] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [3] C. Huang, V. K. Decyk, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, T. M. Antonsen, Jr., and B. Feng, T. Katsouleas, J. Vieira, and L. O. Silva, "QUICKPIC: A highly efficient fully parallelized PIC code for plasma-based acceleration," Proc. of the SciDAC 2006 Conf., Denver, Colorado, June, 2006 [Journal of Physics: Conference Series, W. M. Tang, Editor, vol. 46, Institute of Physics, Bristol and Philadelphia, 2006], p. 190. [4] B. Feng, C. Huang, V. Decyk, W. B. Mori, T. Katsouleas, P. Muggli, "Enhancing Plasma Wakefield and E-cloud Simulation Performance Using a Pipelining Algorithm," Proc. 12th Workshop on Advanced Accelerator Concepts, Lake Geneva, WI, July, 2006, p. 201 [AIP Conf. Proceedings, vol. 877, Melville, NY, 2006]. [5] B. Feng, P. Muggli, T. Katsouleas, V. Decyk, C. Huang, and W. Mori, "Long Time Electron Cloud Instability Simulation Using QuickPIC with Pipelining Algorithm," Proc. of the 2007 Particle Accelerator Conference, Albuquerque, NM, June, 2007, p. 3615. [6] B. Feng, C. Huang, V. Decyk, W. B. Mori, G. H. Hoffstaetter, P. Muggli, T. Katsouleas, "Simulation of Electron Cloud Effects on Electron Beam at ERL with Pipelined QuickPIC," Proc. 13th Workshop on Advanced Accelerator Concepts, Santa Cruz, CA, July-August, 2008, p. 340 [AIP Conf. Proceedings, vol. 1086, Melville, NY, 2008]. [7] B. Feng, C. Huang, V. K. Decyk, W. B. Mori, P. Muggli, and T. Katsouleas, "Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm," J. Computational Phys, 228, 5430 (2009). [8] C. Huang, W. An, V. K. Decyk, W. Lu, W. B. Mori, F. S. Tsung, M. Tzoufras, S. Morshed, T. Antonsen, B. Feng, T. Katsouleas, R., A. Fonseca, S. F. Martins, J. Vieira, L. O. Silva, E. Esarey, C. G. R. Geddes, W. P. Leemans, E. Cormier-Michel, J.-L. Vay, D. L. Bruhwiler, B. Cowan, J. R. Cary, and K. Paul, "Recent results and future challenges for large scale particleion- cell simulations of plasma-based accelerator concepts," Proc. of the SciDAC 2009 Conf., San Diego, CA, June, 2009 [Journal of Physics: Conference Series, vol. 180, Institute of Physics, Bristol and Philadelphia, 2009], p. 012005. [9] J.-L. Vay, C. M. Celata, M. A. Furman, G. Penn, M. Venturini, D. P. Grote, and K. G. Sonnad, ?Update on Electron-Cloud Simulations Using the Package WARP-POSINST.? Proc. of the 2009 Particle Accelerator Conference PAC09, Vancouver, Canada, June, 2009, paper FR5RFP078.« less
Pre Incident Planning For The Los Alamos National Laboratory
2017-12-01
laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides emergency response services to...Project: the newly established laboratory was asked to design and build the world’s first atomic bomb . The Los Alamos Fire Department (LAFD) provides...lower priority despite its importance to the responders’ scene safety.20 In a Carolina Fire Rescue EMS Journal article, retired New York City
The Sound of Freedom. Naval Weapons Technology at Dahlgren, Virginia, 1918-2006
2006-01-01
the TRINITY device, before later succeeding J. Robert Oppenheimer as the director of Los Alamos National Laboratory. Other former Dahlgren...and the Computer (Cambridge, Mass.: The MIT Press, 1999); Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE...Minutes of Advisory Council. 3. Ibid. 4. Ibid.; Michael R. Williams, A History of Computing Technology, 2nd ed. ( Los Alamos , Calif.: IEEE Computer
A progress report on UNICOS misuse detection at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.L.; Jackson, K.A.; Stallings, C.A.
An effective method for detecting computer misuse is the automatic monitoring and analysis of on-line user activity. During the past year, Los Alamos enhanced its Network Anomaly Detection and Intrusion Reporter (NADIR) to include analysis of user activity on Los Alamos` UNICOS Crays. In near real-time, NADIR compares user activity to historical profiles and tests activity against expert rules. The expert rules express Los Alamos` security policy and define improper or suspicious behavior. NADIR reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. This paper describes the implementation to date of the UNICOS component ofmore » NADIR, along with the operational experiences and future plans for the system.« less
Third user workshop on high-power lasers at the Linac Coherent Light Source
Bolme, Cynthia Anne; Glenzer, Sigfried; Fry, Alan
2016-03-24
On October 5–6, 2015, the third international user workshop focusing on high-power lasers at the Linac Coherent Light Source (LCLS) was held in Menlo Park, CA, USA [1 R. Falcone, S. Glenzer, and S. Hau-Riege, Synchrotron Radiation News 27(2), 56–58 (2014)., 2 P. Heimann and S. Glenzer, Synchrotron Radiation News 28(3), 54–56 (2015).]. Here, the workshop was co-organized by Los Alamos National Laboratory and SLAC National Accelerator Laboratory. More than 110 scientists attended from North America, Europe, and Asia to discuss high-energy-density (HED) science that is enabled by the unique combination of high-power lasers with the LCLS X-rays at themore » LCLS-Matter in Extreme Conditions (MEC) endstation.« less
The Mesoscale Science of the Matter-Radiation Interactions in Extremes (MaRIE) project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kippen, Karen Elizabeth; Montoya, Donald Raymond
The National Nuclear Security Administration (NNSA) requires the ability to understand and test how material structures, defects, and interfaces determine performance in extreme environments such as in nuclear weapons. To do this, MaRIE will be an x-ray source that is laser-like and brilliant with very fl exible and fast pulses to see at weapons-relevant time scales, and with high enough energy to study critical materials. The Department of Energy (DOE) has determined there is a mission need for MaRIE to deliver this capability. MaRIE can use some of the existing infrastructure of the Los Alamos Neutron Science Center (LANSCE) andmore » its accelerator capability. MaRIE will be built as a strategic partnership of DOE national laboratories and university collaborators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Warren
The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi-static PIC code QuickPIC. We have also used our suite of PIC codes to make scientific discovery. Highlights include supporting FACET experiments which achieved the milestones of showing high beam loading and energy transfer efficiency from a drive electron beam to a witness electron beam and the discovery of a self-loading regime a for high gradient acceleration of a positron beam. Both of these experimental milestones were published in Nature together with supporting QuickPIC simulation results. Simulation results from QuickPIC were used on the cover of Nature in one case. We are also making progress on using highly resolved QuickPIC simulations to show that ion motion may not lead to catastrophic emittance growth for tightly focused electron bunches loaded into nonlinear wakefields. This could mean that fully self-consistent beam loading scenarios are possible. This work remains in progress. OSIRIS simulations were used to discover how 200 MeV electron rings are formed in LWFA experiments, on how to generate electrons that have a series of bunches on nanometer scale, and how to transport electron beams from (into) plasma sections into (from) conventional beam optic sections.« less
Programming (Tips) for Physicists & Engineers
Ozcan, Erkcan
2018-02-19
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
Programming (Tips) for Physicists & Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Erkcan
2010-07-13
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
Computational electronics and electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C. C.
The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less
A comparison of models for supernova remnants including cosmic rays
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Drury, L. O'C.
1992-11-01
A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.
Code comparison for accelerator design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1988-01-01
We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary inmore » these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.« less
LEGO: A modular accelerator design code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Donald, M.; Irwin, J.
1997-08-01
An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, themore » code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning.« less
Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.
2017-12-01
On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614
2010-05-01
infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere. But of equal or greater significance for the future strategic posture was the role...nuclear laboratories and defense industrial infrastructure at Los Alamos, Argonne, Oak Ridge, Hanford and elsewhere would design, test, and build...conferences which I attended at Washington, Los Alamos, Argonne, Hanford , and elsewhere, is written in sincere hopes of being helpful to you.... Those
Engineering Design Handbook. Explosions in Air. Part One
1974-07-15
Characteristics in the 6. R. E. Shear, Detonation Properties of Calculation of Non-Steady Compressible Pentolite, BRL Rept. No. 1159, 1961. Flows, Los Alamos ...6 (June 1955). Particle-and-Force Method, Los Alamos Sci. Lab., LA 3144, September 1964. 19. H. L Brode, Point Source Explosion in Air, The Rand Corp...RM-1824-AEC, 29. F. H. Harlow and B. D. Meixner, The December 3, 1956. Particle-and-Force Computing Method in Fluid Dynamics, Los Alamos Scientific
Internship at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunham, Ryan Q.
2012-07-11
Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.
NASA Astrophysics Data System (ADS)
Huang, Z.; Roussel-Dupre, R.
2003-12-01
The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.
Study on radiation production in the charge stripping section of the RISP linear accelerator
NASA Astrophysics Data System (ADS)
Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook
2015-02-01
The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.
NASA Technical Reports Server (NTRS)
Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)
2003-01-01
Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
3D Reconnection and SEP Considerations in the CME-Flare Problem
NASA Astrophysics Data System (ADS)
Moschou, S. P.; Cohen, O.; Drake, J. J.; Sokolov, I.; Borovikov, D.; Alvarado Gomez, J. D.; Garraffo, C.
2017-12-01
Reconnection is known to play a major role in particle acceleration in both solar and astrophysical regimes, yet little is known about its connection with the global scales and its comparative contribution in the generation of SEPs with respect to other acceleration mechanisms, such as the shock at a fast CME front, in the presence of a global structure such as a CME. Coupling efforts, combining both particle and global scales, are necessary to answer questions about the fundamentals of the energetic processes evolved. We present such a coupling modeling effort that looks into particle acceleration through reconnection in a self-consistent CME-flare model in both particle and fluid regimes. Of special interest is the supra-thermal component of the acceleration due to the reconnection that will at a later time interact colliding with the solar atmospheric material of the more dense chromospheric layer and radiate in hard X- and γ-rays for super-thermal electrons and protons respectively. Two cutting edge computational codes are used to capture the global CME and flare dynamics, specifically a two fluid MHD code and a 3D PIC code for the flare scales. Finally, we are connecting the simulations with current observations in different wavelengths in an effort to shed light to the unified CME-flare picture.
Advanced propeller noise prediction in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.; Dunn, M. H.; Spence, P. L.
1992-01-01
The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.
Los Alamos National Laboratory Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neu, Mary
Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Los Alamos National Laboratory Human and Intellectual Capital for Sustaining Nuclear Deterrence
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAlpine, Bradley
2015-04-01
This paper provides an overview of the current human and intellectual capital at Los Alamos National Laboratory, through specific research into the statistics and demographics as well as numerous personal interviews at all levels of personnel. Based on this information, a series of recommendations are provided to assist Los Alamos National Laboratory in ensuring the future of the human and intellectual capital for the nuclear deterrence mission. While the current human and intellectual capital is strong it stands on the precipice and action must be taken to ensure Los Alamos National Laboratory maintains leadership in developing and sustaining national nuclearmore » capabilities. These recommendations may be applicable to other areas of the nuclear enterprise, including the Air Force, after further research and study.« less
Pretest and posttest calculations of Semiscale Test S-07-10D with the TRAC computer program. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duerre, K.H.; Cort, G.E.; Knight, T.D.
The Transient Reactor Analysis Code (TRAC) developed at the Los Alamos National Laboratory was used to predict the behavior of the small-break experiment designated Semiscale S-07-10D. This test simulates a 10 per cent communicative cold-leg break with delayed Emergency Core Coolant injection and blowdown of the broken-loop steam generator secondary. Both pretest calculations that incorporated measured initial conditions and posttest calculations that incorporated measured initial conditions and measured transient boundary conditions were completed. The posttest calculated parameters were generally between those obtained from pretest calculations and those from the test data. The results are strongly dependent on depressurization rate and,more » hence, on break flow.« less
Nuclear criticality safety: 5-day training course
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlesser, J.A.
1992-11-01
This compilation of notes is presented as a source reference for the criticality safety course. It represents the contributions of many people, particularly Tom McLaughlin, the course's primary instructor. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used at Los Alamos; be able to identify examples of circumstances present during criticality accidents; be able to identify examples ofmore » computer codes used by the nuclear criticality safety specialist; be able to identify examples of safety consciousness required in nuclear criticality safety.« less
Optical analysis of high power free electron laser resonators
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Appert, Q. D.; Bender, S. C.; McVey, B. D.
1987-06-01
The first part of this paper briefly describes the optics code used at Los Alamos National Laboratory to do optical analyses of various components of a free electron laser. The body of the paper then discusses the recent results in modeling low frequency gratings and ripple on the surfaces of liquid-cooled mirrors. The ripple is caused by structural/thermal effects in the mirror surface due to heating by optical absorption in high power resonators. Of interest is how much ripple can be permitted before diffractive losses or optical mode distortions become unacceptable. Preliminary work is presented involving classical diffraction problems to support the ripple study. The limitations of the techniques are discussed and the results are compared to experimental results where available.
HMPT: Introduction: Live #27916, Test 27917
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Amalia
This course, HMPT: Introduction Live 27916, addresses the Department of Transportation’s (DOT’s) general awareness, transportation security awareness, and safety training requirements for Los Alamos National Laboratory (LANL) in the Hazardous Materials Packaging and Transportation (HMPT) training. Although the course itself is suggested to be taken one time only, the accompanying test (27917) is required initially and then every 36 months. This course is intended to help you learn how to navigate the regulations found in 49 Code of Federal Regulations (CFR), Parts 107–178, Transportation. These regulations change frequently, and it is your responsibility to keep up to date with thesemore » changes. This course will give you tools to perform your hazardous materials (HAZMAT) tasks according to the most current regulations.« less
Transmutation of 129I and 237Np using spallation neutrons produced by 1.5, 3.7 and 7.4 GeV protons
NASA Astrophysics Data System (ADS)
Wan, J.-S.; Schmidt, Th.; Langrock, E.-J.; Vater, P.; Brandt, R.; Adam, J.; Bradnova, V.; Bamblevski, V. P.; Gelovani, L.; Gridnev, T. D.; Kalinnikov, V. G.; Krivopustov, M. I.; Kulakov, B. A.; Sosnin, A. N.; Perelygin, V. P.; Pronskikh, V. S.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Modolo, G.; Odoj, R.; Phlippen, P.-W.; Zamani-Valassiadou, M.; Adloff, J. C.; Debeauvais, M.; Hashemi-Nezhad, S. R.; Guo, S.-L.; Li, L.; Wang, Y.-L.; Dwivedi, K. K.; Zhuk, I. V.; Boulyga, S. F.; Lomonossova, E. M.; Kievitskaja, A. F.; Rakhno, I. L.; Chigrinov, S. E.; Wilson, W. B.
2001-05-01
Small samples of 129I and 237Np, two long-lived radwaste nuclides, were exposed to spallation neutron fluences from relatively small metal targets of lead and uranium, that were surrounded with a 6 cm thick paraffin moderator, and irradiated with 1.5, 3.7 and 7.4 GeV protons. The (n,γ) transmutation rates were determined for these nuclides. Conventional radiochemical La- and U-sensors and a variety of solid-state nuclear track detectors were irradiated simultaneously with secondary neutrons. Compared with results from calculations with well-known cascade codes (LAHET from Los Alamos and DCM/CEM from Dubna), the observed secondary neutron fluences are larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, B.E.; Steiner, J.L.; Harmony, S.C.
The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness ofmore » the PIUS concept to severe off-normal conditions having a very low probability of occurrence.« less
Radiative neutron capture cross sections on 176Lu at DANCE
NASA Astrophysics Data System (ADS)
Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.
2016-03-01
The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.
Su, Huei-Jiun; Hu, Jer-Ming
2012-01-01
Background and Aims The holoparasitic flowering plant Balanophora displays extreme floral reduction and was previously found to have enormous rate acceleration in the nuclear 18S rDNA region. So far, it remains unclear whether non-ribosomal, protein-coding genes of Balanophora also evolve in an accelerated fashion and whether the genes with high substitution rates retain their functionality. To tackle these issues, six different genes were sequenced from two Balanophora species and their rate variation and expression patterns were examined. Methods Sequences including nuclear PI, euAP3, TM6, LFY and RPB2 and mitochondrial matR were determined from two Balanophora spp. and compared with selected hemiparasitic species of Santalales and autotrophic core eudicots. Gene expression was detected for the six protein-coding genes and the expression patterns of the three B-class genes (PI, AP3 and TM6) were further examined across different organs of B. laxiflora using RT-PCR. Key Results Balanophora mitochondrial matR is highly accelerated in both nonsynonymous (dN) and synonymous (dS) substitution rates, whereas the rate variation of nuclear genes LFY, PI, euAP3, TM6 and RPB2 are less dramatic. Significant dS increases were detected in Balanophora PI, TM6, RPB2 and dN accelerations in euAP3. All of the protein-coding genes are expressed in inflorescences, indicative of their functionality. PI is restrictively expressed in tepals, synandria and floral bracts, whereas AP3 and TM6 are widely expressed in both male and female inflorescences. Conclusions Despite the observation that rates of sequence evolution are generally higher in Balanophora than in hemiparasitic species of Santalales and autotrophic core eudicots, the five nuclear protein-coding genes are functional and are evolving at a much slower rate than 18S rDNA. The mechanism or mechanisms responsible for rapid sequence evolution and concomitant rate acceleration for 18S rDNA and matR are currently not well understood and require further study in Balanophora and other holoparasites. PMID:23041381
NASA Astrophysics Data System (ADS)
Dattoli, G.; Migliorati, M.; Schiavi, A.
2007-05-01
The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high-intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of these types of problems should be fast and reliable, conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that the integration procedure is capable of reproducing the onset of instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed.
Simulation of Combustion Systems with Realistic g-jitter
NASA Technical Reports Server (NTRS)
Mell, William E.; McGrattan, Kevin B.; Baum, Howard R.
2003-01-01
In this project a transient, fully three-dimensional computer simulation code was developed to simulate the effects of realistic g-jitter on a number of combustion systems. The simulation code is capable of simulating flame spread on a solid and nonpremixed or premixed gaseous combustion in nonturbulent flow with simple combustion models. Simple combustion models were used to preserve computational efficiency since this is meant to be an engineering code. Also, the use of sophisticated turbulence models was not pursued (a simple Smagorinsky type model can be implemented if deemed appropriate) because if flow velocities are large enough for turbulence to develop in a reduced gravity combustion scenario it is unlikely that g-jitter disturbances (in NASA's reduced gravity facilities) will play an important role in the flame dynamics. Acceleration disturbances of realistic orientation, magnitude, and time dependence can be easily included in the simulation. The simulation algorithm was based on techniques used in an existing large eddy simulation code which has successfully simulated fire dynamics in complex domains. A series of simulations with measured and predicted acceleration disturbances on the International Space Station (ISS) are presented. The results of this series of simulations suggested a passive isolation system and appropriate scheduling of crew activity would provide a sufficiently "quiet" acceleration environment for spherical diffusion flames.
GOTHIC: Gravitational oct-tree code accelerated by hierarchical time step controlling
NASA Astrophysics Data System (ADS)
Miki, Yohei; Umemura, Masayuki
2017-04-01
The tree method is a widely implemented algorithm for collisionless N-body simulations in astrophysics well suited for GPU(s). Adopting hierarchical time stepping can accelerate N-body simulations; however, it is infrequently implemented and its potential remains untested in GPU implementations. We have developed a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC, which adopts both the tree method and the hierarchical time step. The code adopts some adaptive optimizations by monitoring the execution time of each function on-the-fly and minimizes the time-to-solution by balancing the measured time of multiple functions. Results of performance measurements with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hierarchical time step achieves a speedup by a factor of around 3-5 times compared to the shared time step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the particle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 224 = 16,777,216 particles. The averaged performance of the code corresponds to 10-30% of the theoretical single precision peak performance of the GPU.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung
2000-01-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Astrophysics Data System (ADS)
Ryu, D.; Miniati, F.; Jones, T. W.; Kang, H.
2000-05-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 1283 cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Michael Charles
Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.
The Origin and Evolution of U.S. Naval Strategic Nuclear Policy to 1960
1986-12-01
program at Los Alamos that would actually build the bomb. Groves named Captain William S. Parsons who had graduated in 1922 from Annapolis and later from...the Naval Postgraduate School. Parsons went to Los Alamos after having worked extensively in developing and fleet testing proximity fuses. Upon his...arrival at the security gate of Los Alamos the dearth of naval personnel at work on the project contributed to his arrest by the guard on duty. The
Commission on Protecting and Reducing Government Secrecy.
1997-03-03
just four years after the first American test. As will be discussed, we had learned of the Los Alamos spies in December 1946-December 20, to be precise...destroyed Nagasaki in August 1945 . Now the stakes were raised. This sequence was described in a lecture by Hans Bethe, "My Road From Los Alamos ," given at...would be episodic successes in the years to come, but none equal to earlier feats. New York of the 1930s. Los Alamos . Some unions. The State Department
1978-01-01
32. Ibid. 33. Unpublished narrative histories , U.S. Na\\ ii Administration in World War 11, Cominandant, Eleventh Naval District, 1943 - 1945 ...A-bomb inventory arose, there would be no doubt about the substance of the word. "Hnouuhl" THt LOS ALAMOS CONN LCI ION When the histories ol...then known as the Manhattan Project, at Los Alamos . New Mexico. Although Los Alamos was started exactly a year before NO IS tat the end ol l’M2
2003-04-01
such repositories containing electronic information sources that can be used for academic research. The Los Alamos Physics Archive, providing access to...Pinfield, Gardner and MacColl. 2002). The first e-print server was the Los Alamos Physics Archive, presently known as arXiv.org, which was created in 1991...by Ginsparg (Ginsparg 1996; Luce 2001; McKiernan 2000) at the Los Alamos National Laboratory, to give access to pre-prints in the domain of high
Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations
2017-05-08
NUMBER (Include area code) 08 May 2017 Briefing Charts 05 April 2017 - 08 May 2017 Using Kokkos for Performant Cross-Platform Acceleration of Liquid ...ERC Incorporated RQRC AFRL-West Using Kokkos for Performant Cross-Platform Acceleration of Liquid Rocket Simulations 2DISTRIBUTION A: Approved for... Liquid Rocket Combustion Simulation SPACE simulation of rotating detonation engine (courtesy of Dr. Christopher Lietz) 3DISTRIBUTION A: Approved
None
2017-12-09
The topping out ceremony for a key construction stage in the Los Alamos National Laboratory's newest facility, the Radiological Laboratory Utility & Office Building. This is part of the National Nu... Â
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Chromaticity calculations and code comparisons for x-ray lithography source XLS and SXLS rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1988-06-16
This note presents the chromaticity calculations and code comparison results for the (x-ray lithography source) XLS (Chasman Green, XUV Cosy lattice) and (2 magnet 4T) SXLS lattices, with the standard beam optic codes, including programs SYNCH88.5, MAD6, PATRICIA88.4, PATPET88.2, DIMAD, BETA, and MARYLIE. This analysis is a part of our ongoing accelerator physics code studies. 4 figs., 10 tabs.
Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event
NASA Astrophysics Data System (ADS)
Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.
2010-12-01
The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Buren, Kendra L.; Canfield, Jesse M.; Hemez, Francois M.
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verificationmore » test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.« less
MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashnik, Stepan Georgievich; Kerby, Leslie Marie
2015-05-22
MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 usingmore » CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J.; Rivkin, Carl; Burgess, Robert
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less
GeNN: a code generation framework for accelerated brain simulations
NASA Astrophysics Data System (ADS)
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations.
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-07
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
GeNN: a code generation framework for accelerated brain simulations
Yavuz, Esin; Turner, James; Nowotny, Thomas
2016-01-01
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/. PMID:26740369
Flaws found in Los Alamos safety procedures
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2017-12-01
A US government panel on nuclear safety has discovered a series of safety issues at the Los Alamos National Laboratory, concluding that government oversight of the lab's emergency preparation has been ineffective.
The Mini-CAPTAIN Neutron Run and Future CAPTAIN Program
NASA Astrophysics Data System (ADS)
Cooper, Robert; CAPTAIN Collaboration
2016-09-01
The Cryogenic Apparatus for Precision Tests of Argon Interaction with Neutrinos (CAPTAIN) is an experimental program to measure critical neutrino interaction cross sections in argon for the DUNE long-baseline program. These cross sections are important for understanding and improving the energy resolution of measurements for neutrino oscillations and supernova detection in argon. The full CAPTAIN detector is a 5-ton fiducial volume liquid argon (LAr) time-projection chamber (TPC) with an independently triggered photon detection system (PDS) for fast-timing capabilities on accelerators. To test the full CAPTAIN concept, the 1-ton fiducial volume mini-CAPTAIN detector has been deployed. Mini-CAPTAIN is another LAr TPC with PDS. It was recently deployed to the Weapons Neutron Research (WNR) facility at Los Alamos National Laboratory to measure high-energy neutron interactions in argon. The WNR is a pulsed accelerator capable of delivering neutrons up to 800 MeV in energy. In this talk, I will report on the analysis of the first time-of-flight tagged, high-energy neutron response in liquid argon from our February 2016 run. I will also highlight a second neutron run at the WNR scheduled for Summer 2017 and discuss the implications these data have on the future CAPTAIN program.
NASA Astrophysics Data System (ADS)
Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai
1998-10-01
In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.
Delivering Insight The History of the Accelerated Strategic Computing Initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larzelere II, A R
2007-01-03
The history of the Accelerated Strategic Computing Initiative (ASCI) tells of the development of computational simulation into a third fundamental piece of the scientific method, on a par with theory and experiment. ASCI did not invent the idea, nor was it alone in bringing it to fruition. But ASCI provided the wherewithal - hardware, software, environment, funding, and, most of all, the urgency - that made it happen. On October 1, 2005, the Initiative completed its tenth year of funding. The advances made by ASCI over its first decade are truly incredible. Lawrence Livermore, Los Alamos, and Sandia National Laboratories,more » along with leadership provided by the Department of Energy's Defense Programs Headquarters, fundamentally changed computational simulation and how it is used to enable scientific insight. To do this, astounding advances were made in simulation applications, computing platforms, and user environments. ASCI dramatically changed existing - and forged new - relationships, both among the Laboratories and with outside partners. By its tenth anniversary, despite daunting challenges, ASCI had accomplished all of the major goals set at its beginning. The history of ASCI is about the vision, leadership, endurance, and partnerships that made these advances possible.« less
Activation assessment of the soil around the ESS accelerator tunnel
NASA Astrophysics Data System (ADS)
Rakhno, I. L.; Mokhov, N. V.; Tropin, I. S.; Ene, D.
2018-06-01
Activation of the soil surrounding the ESS accelerator tunnel calculated by the MARS15 code is presented. A detailed composition of the soil, that comprises about 30 chemical elements, is considered. Spatial distributions of the produced activity are provided in both transverse and longitudinal directions. A realistic irradiation profile for the entire planned lifetime of the facility is used. The nuclear transmutation and decay of the produced radionuclides is calculated with the DeTra code which is a built-in tool for the MARS15 code. Radionuclide production by low-energy neutrons is calculated using the ENDF/B-VII evaluated nuclear data library. In order to estimate quality of this activation assessment, a comparison between calculated and measured activation of various foils in a similar radiation environment is presented.
NASA Technical Reports Server (NTRS)
Daw, Murray S.; Mills, Michael J.
2003-01-01
We report on the progress made during the first year of the project. Most of the progress at this point has been on the theoretical and computational side. Here are the highlights: (1) A new code, tailored for high-end desktop computing, now combines modern Accelerated Dynamics (AD) with the well-tested Embedded Atom Method (EAM); (2) The new Accelerated Dynamics allows the study of relatively slow, thermally-activated processes, such as diffusion, which are much too slow for traditional Molecular Dynamics; (3) We have benchmarked the new AD code on a rather simple and well-known process: vacancy diffusion in copper; and (4) We have begun application of the AD code to the diffusion of vacancies in ordered intermetallics.
User input verification and test driven development in the NJOY21 nuclear data processing code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainer, Amelia Jo; Conlin, Jeremy Lloyd; McCartney, Austin Paul
Before physically-meaningful data can be used in nuclear simulation codes, the data must be interpreted and manipulated by a nuclear data processing code so as to extract the relevant quantities (e.g. cross sections and angular distributions). Perhaps the most popular and widely-trusted of these processing codes is NJOY, which has been developed and improved over the course of 10 major releases since its creation at Los Alamos National Laboratory in the mid-1970’s. The current phase of NJOY development is the creation of NJOY21, which will be a vast improvement from its predecessor, NJOY2016. Designed to be fast, intuitive, accessible, andmore » capable of handling both established and modern formats of nuclear data, NJOY21 will address many issues that many NJOY users face, while remaining functional for those who prefer the existing format. Although early in its development, NJOY21 is quickly providing input validation to check user input. By providing rapid and helpful responses to users while writing input files, NJOY21 will prove to be more intuitive and easy to use than any of its predecessors. Furthermore, during its development, NJOY21 is subject to regular testing, such that its test coverage must strictly increase with the addition of any production code. This thorough testing will allow developers and NJOY users to establish confidence in NJOY21 as it gains functionality. This document serves as a discussion regarding the current state input checking and testing practices of NJOY21.« less
Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code
NASA Astrophysics Data System (ADS)
Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.
2012-12-01
We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.
UFO: A THREE-DIMENSIONAL NEUTRON DIFFUSION CODE FOR THE IBM 704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, E.H.; Jewett, J.P.; Ketchum, M.A.
A description of UFO, a code for the solution of the fewgroup neutron diffusion equation in three-dimensional Cartesian coordinates on the IBM 704, is given. An accelerated Liebmann flux iteration scheme is used, and optimum parameters can be calculated by the code whenever they are required. The theory and operation of the program are discussed. (auth)
Los Alamos National Laboratory Prepares for Fire Season
LâEsperance, Manny
2018-01-16
Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.
Los Alamos National Laboratory Prepares for Fire Season
DOE Office of Scientific and Technical Information (OSTI.GOV)
L’Esperance, Manny
Through the establishment of a Wildland Fire Program Office, and the Interagency Fire Base located on Laboratory property, Los Alamos National Laboratory is continuing and improving a program to prepare for wildland fire.
Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher
The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, E.F.
1997-03-01
This report documents the development of major energy-related programs at the Los Alamos Scientific Laboratory between 1945 and 1979. Although the Laboratory`s primary mission during that era was the design and development of nuclear weapons and most of the Laboratory`s funding came from a single source, a number of factors were at work that led to the development of these other programs. Some of those factors were affected by the Laboratory`s internal management structure and organization; others were the result of increasing environmental awareness within the general population and the political consequences of that awareness; still others were related tomore » the increasing demand for energy and the increasing turmoil in the energy-rich Middle East. This report also describes the various activities in Los Alamos, in Washington, and in other areas of the world that contributed to the development of major energy-related programs at Los Alamos. The author has a unique historical perspective because of his involvement as a scientist and manager at the Los Alamos Scientific Laboratory during the time period described within the report. In addition, in numerous footnotes and references, he cites a large body of documents that include the opinions and perspectives of many others who were involved at one time or another in these programs. Finally the report includes a detailed chronology of geopolitical events that led to the development of energy-related programs at Los Alamos.« less
Griffiths, Malcolm; Walters, L.; Greenwood, L. R.; ...
2017-09-21
The original article addresses the opportunities and complexities of using materials test reactors with high neutron fluxes to perform accelerated studies of material aging in power reactors operating at lower neutron fluxes and with different neutron flux spectra. Radiation damage and gas production in different reactors have been compared using the code, SPECTER. This code provides a common standard from which to compare neutron damage data generated by different research groups using a variety of reactors. This Corrigendum identifies a few typographical errors. Tables 2 and 3 are included in revised form.
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2007-08-15
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2007-06-15
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2007-09-20
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2006-06-20
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2006-01-18
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2006-08-15
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2006-12-20
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2007-02-15
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
CH-TRU Waste Content Codes (CH-TRUCON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2006-09-15
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington TRU Solutions LLC
2008-01-16
The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less
Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV
Colgan, James; Fontes, Christopher; Zhang, Honglin; ...
2015-04-30
We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. As a result, we also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less
Overview of the Tusas Code for Simulation of Dendritic Solidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trainer, Amelia J.; Newman, Christopher Kyle; Francois, Marianne M.
2016-01-07
The aim of this project is to conduct a parametric investigation into the modeling of two dimensional dendrite solidification, using the phase field model. Specifically, we use the Tusas code, which is for coupled heat and phase-field simulation of dendritic solidification. Dendritic solidification, which may occur in the presence of an unstable solidification interface, results in treelike microstructures that often grow perpendicular to the rest of the growth front. The interface may become unstable if the enthalpy of the solid material is less than that of the liquid material, or if the solute is less soluble in solid than itmore » is in liquid, potentially causing a partition [1]. A key motivation behind this research is that a broadened understanding of phase-field formulation and microstructural developments can be utilized for macroscopic simulations of phase change. This may be directly implemented as a part of the Telluride project at Los Alamos National Laboratory (LANL), through which a computational additive manufacturing simulation tool is being developed, ultimately to become part of the Advanced Simulation and Computing Program within the U.S. Department of Energy [2].« less
Control rod calibration and reactivity effects at the IPEN/MB-01 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Letícia Negrão; Gonnelli, Eduardo; Santos, Adimir dos
2014-11-11
Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. Control rods may be made of several neutron absorbing materials that are used to adjust the reactivity of the core. For the reactor operation, these experimental data are also extremely important: with them it is possible to estimate the reactivity worth by the movement of themore » control rod, understand the reactor response at each rod position and to operate the reactor safely. This work presents a temperature correction approach for the control rod calibration problem. It is shown the control rod calibration data of the IPEN/MB-01 reactor, the integral and differential reactivity curves and a theoretical analysis, performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, using the ENDF/B-VII.0 nuclear data library.« less
Notes on the KIVA-2 software and chemically reactive fluid mechanics
NASA Astrophysics Data System (ADS)
Holst, M. J.
1992-09-01
Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.
Visualization of nuclear particle trajectories in nuclear oil-well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, C.R.; Chiaramonte, J.M.
Nuclear oil-well logging measures specific properties of subsurface geological formations as a function of depth in the well. The knowledge gained is used to evaluate the hydrocarbon potential of the surrounding oil field. The measurements are made by lowering an instrument package into an oil well and slowly extracting it at a constant speed. During the extraction phase, neutrons or gamma rays are emitted from the tool, interact with the formation, and scatter back to the detectors located within the tool. Even though only a small percentage of the emitted particles ever reach the detectors, mathematical modeling has been verymore » successful in the accurate prediction of these detector responses. The two dominant methods used to model these devices have been the two-dimensional discrete ordinates method and the three-dimensional Monte Carlo method has routinely been used to investigate the response characteristics of nuclear tools. A special Los Alamos National Laboratory version of their standard MCNP Monte carlo code retains the details of each particle history of later viewing within SABRINA, a companion three-dimensional geometry modeling and debugging code.« less
Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods
Hehr, Brian Douglas
2014-11-25
The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less
NASA Astrophysics Data System (ADS)
Rueda, Antonio J.; Noguera, José M.; Luque, Adrián
2016-02-01
In recent years GPU computing has gained wide acceptance as a simple low-cost solution for speeding up computationally expensive processing in many scientific and engineering applications. However, in most cases accelerating a traditional CPU implementation for a GPU is a non-trivial task that requires a thorough refactorization of the code and specific optimizations that depend on the architecture of the device. OpenACC is a promising technology that aims at reducing the effort required to accelerate C/C++/Fortran code on an attached multicore device. Virtually with this technology the CPU code only has to be augmented with a few compiler directives to identify the areas to be accelerated and the way in which data has to be moved between the CPU and GPU. Its potential benefits are multiple: better code readability, less development time, lower risk of errors and less dependency on the underlying architecture and future evolution of the GPU technology. Our aim with this work is to evaluate the pros and cons of using OpenACC against native GPU implementations in computationally expensive hydrological applications, using the classic D8 algorithm of O'Callaghan and Mark for river network extraction as case-study. We implemented the flow accumulation step of this algorithm in CPU, using OpenACC and two different CUDA versions, comparing the length and complexity of the code and its performance with different datasets. We advance that although OpenACC can not match the performance of a CUDA optimized implementation (×3.5 slower in average), it provides a significant performance improvement against a CPU implementation (×2-6) with by far a simpler code and less implementation effort.
A Sailor in the Los Alamos Navy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, D. L.; Meade, Roger Allen
As part of the War Department’s Manhattan Engineer District (MED), Los Alamos was an Army installation during World War II, complete with a base commander and a brace of MPs. But it was a unique Army installation, having more civilian then military personnel. Even more unique was the work performed by the civilian population, work that required highly educated scientists and engineers. As the breadth, scope, and complexity of the Laboratory’s work increased, more and more technically educated and trained personnel were needed. But, the manpower needs of the nation’s war economy had created a shortage of such people. Tomore » meet its manpower needs, the MED scoured the ranks of the Army for anyone who had technical training and reassigned these men to its laboratories, including Los Alamos, as part of its Special Engineer Detachment (SED). Among the SEDs assigned to Los Alamos was Val Fitch, who was awarded the Nobel Prize in Physics in 1980. Another was Al Van Vessem, who helped stack the TNT for the 100 ton test, bolted together the Trinity device, and rode shotgun with the bomb has it was driven from Los Alamos to ground zero.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moniz, Ernest; Carr, Alan; Bethe, Hans
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of today’s advancedmore » supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.« less
Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John
2018-01-16
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of todayâs advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.
Environmental surveillance at Los Alamos during 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.
NASA Astrophysics Data System (ADS)
Woolsey, L. N.; Cranmer, S. R.
2013-12-01
The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.
NASA Astrophysics Data System (ADS)
Liu, Mei-Feng; Zhong, Guo-Yun; He, Xiao-Hai; Qing, Lin-Bo
2016-09-01
Currently, most video resources on line are encoded in the H.264/AVC format. More fluent video transmission can be obtained if these resources are encoded in the newest international video coding standard: high efficiency video coding (HEVC). In order to improve the video transmission and storage on line, a transcoding method from H.264/AVC to HEVC is proposed. In this transcoding algorithm, the coding information of intraprediction, interprediction, and motion vector (MV) in H.264/AVC video stream are used to accelerate the coding in HEVC. It is found through experiments that the region of interprediction in HEVC overlaps that in H.264/AVC. Therefore, the intraprediction for the region in HEVC, which is interpredicted in H.264/AVC, can be skipped to reduce coding complexity. Several macroblocks in H.264/AVC are combined into one PU in HEVC when the MV difference between two of the macroblocks in H.264/AVC is lower than a threshold. This method selects only one coding unit depth and one prediction unit (PU) mode to reduce the coding complexity. An MV interpolation method of combined PU in HEVC is proposed according to the areas and distances between the center of one macroblock in H.264/AVC and that of the PU in HEVC. The predicted MV accelerates the motion estimation for HEVC coding. The simulation results show that our proposed algorithm achieves significant coding time reduction with a little loss in bitrates distortion rate, compared to the existing transcoding algorithms and normal HEVC coding.
Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Joshua T.; Biallas, George H.; Brown, G.
2015-06-01
JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete themore » system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.« less
SEDs at Los Alamos: A Personal Memoir
NASA Astrophysics Data System (ADS)
Bederson, Benjamin
2001-03-01
I have written this personal memoir approximately 55 years after the events I describe. It is based almost exclusively on memory, since apart from the diary I kept while on Tinian, I have few documents concerning it. It covers my service in the U.S. Army's Special Engineering Detachment (SED) in Oak Ridge and Los Alamos in 1944-45, on Tinian island, the launching pad for the bombing raids on Japan, in the summer and fall of 1945, and my return to Los Alamos until my discharge in January 1946.
NASA Astrophysics Data System (ADS)
Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian
2017-11-01
Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.
CFD Code Survey for Thrust Chamber Application
NASA Technical Reports Server (NTRS)
Gross, Klaus W.
1990-01-01
In the quest fo find analytical reference codes, responses from a questionnaire are presented which portray the current computational fluid dynamics (CFD) program status and capability at various organizations, characterizing liquid rocket thrust chamber flow fields. Sample cases are identified to examine the ability, operational condition, and accuracy of the codes. To select the best suited programs for accelerated improvements, evaluation criteria are being proposed.
Publications of Los Alamos Research, 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheridan, C.J.; McClary, W.J.; Rich, J.A.
1984-10-01
This bibliography is a compilation of unclassified publications of work done at the Los Alamos National Laboratory for 1983. Papers published in 1982 are included regardless of when they were actually written. Publications received too late for inclusion in earlier compilations have also been listed. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted - even those papers, themselves unclassified, which were published only as part of a classified document. If a paper was published more than once, all places of publication are included. The bibliography includes Los Alamos National Laboratory reports, papers releasedmore » as non-Laboratory reports, journal articles, books, chapters of books, conference papers either published separately or as part of conference proceedings issued as books or reports, papers publishd in congressional hearings, theses, and US patents. Publications by Los Alamos authors that are not records of Laboratory-sponsored work are included when the Library becomes aware of them.« less
Microwave and Electron Beam Computer Programs
1988-06-01
Research (ONR). SCRIBE was adapted by MRC from the Stanford Linear Accelerator Center Beam Trajectory Program, EGUN . oTIC NSECE Acc !,,o For IDL1C I...achieved with SCRIBE. It is a ver- sion of the Stanford Linear Accelerator (SLAC) code EGUN (Ref. 8), extensively modified by MRC for research on
Accelerated GPU based SPECT Monte Carlo simulations.
Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris
2016-06-07
Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency of SPECT imaging simulations.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
Activation Assessment of the Soil Around the ESS Accelerator Tunnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakhno, I. L.; Mokhov, N. V.; Tropin, I. S.
Activation of the soil surrounding the ESS accelerator tunnel calculated by the MARS15 code is presented. A detailed composition of the soil, that comprises about 30 different chemical elements, is considered. Spatial distributions of the produced activity are provided in both transverse and longitudinal direction. A realistic irradiation profile for the entire planned lifetime of the facility is used. The nuclear transmutation and decay of the produced radionuclides is calculated with the DeTra code which is a built-in tool for the MARS15 code. Radionuclide production by low-energy neutrons is calculated using the ENDF/B-VII evaluated nuclear data library. In order tomore » estimate quality of this activation assessment, a comparison between calculated and measured activation of various foils in a similar radiation environment is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamie N. Gardner: Alexis Lavine; Giday WoldeGabriel; Donathon Krier
1999-03-01
Los Alamos National Laboratory lies at the western boundary of the Rio Grande rift, a major tectonic feature of the North American Continent. Three major faults locally constitute the modem rift boundary, and each of these is potentially seismogenic. In this study we have gathered structural geologic data for the northwestern portion of Los Alamos National Laboratory through high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analyses. Our study area encompasses TA-55 and TA-3, where potential for seismic surface rupture is of interest, and is bounded on the north and south by themore » townsite of Los Alamos and Twomile Canyon, respectively. The study area includes parts of two of the potentially active rift boundary faults--the Pajarito and Rendija Canyon faults-that form a large graben that we name the Diamond Drive graben. The graben embraces the western part of the townsite of Los Alamos, and its southern end is in the TA-3 area where it is defined by east-southeast-trending cross faults. The cross faults are small, but they accommodate interactions between the two major fault zones and gentle tilting of structural blocks to the north into the graben. North of Los Alamos townsite, the Rendija Canyon fault is a large normal fault with about 120 feet of down-to-the-west displacement over the last 1.22 million years. South from Los Alamos townsite, the Rendija Canyon fault splays to the southwest into a broad zone of deformation. The zone of deformation is about 2,000 feet wide where it crosses Los Alamos Canyon and cuts through the Los Alamos County Landfill. Farther southwest, the fault zone is about 3,000 feet wide at the southeastern corner of TA-3 in upper Mortandad Canyon and about 5,000 feet wide in Twomile Canyon. Net down-to-the-west displacement across the entire fault zone over the last 1.22 million years decreases to the south as the fault zone broadens as follows: about 100 feet at Los Alamos Canyon, about 50 feet at upper Mortandad Canyon, and less than 30 feet at Twomile Canyon. These relations lead us to infer that the Rendija Canyon fault probably dies out just south of Twomile Canyon. In detail, the surface deformation expressed within the fault zones can be large, fairly simple normal faults, broad zones of smaller faults, largely unfaulted monocline, and faulted monocline. Our study indicates that the seismic surface rupture hazard, associated with the faults in the study area, is localized. South of the county landfill and Los Alamos Canyon, displacements on individual faults become very small, less than about 10 feet in the last 1.22 million years. Such small displacements imply that these little faults do not have much continuity along strike and in a worst-case scenario present a mean probabilistic fault displacement hazard of less than 0.67 inches in 10,000 years (Olig et al., 1998). We encourage, however, site-specific fault investigations for new construction in certain zones of our study area and that facility siting on potentially active faults be avoided.« less
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.J. Henne; K.J. Buckley
2005-08-12
This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquaticmore » habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, Greg; /LBL, Berkeley; Safranek, James
The LOCO algorithm has been used by many accelerators around the world. Although the uses for LOCO vary, the most common use has been to find calibration errors and correct the optics functions. The light source community in particular has made extensive use of the LOCO algorithms to tightly control the beta function and coupling. Maintaining high quality beam parameters requires constant attention so a relatively large effort was put into software development for the LOCO application. The LOCO code was originally written in FORTRAN. This code worked fine but it was somewhat awkward to use. For instance, the FORTRANmore » code itself did not calculate the model response matrix. It required a separate modeling code such as MAD to calculate the model matrix then one manually loads the data into the LOCO code. As the number of people interested in LOCO grew, it required making it easier to use. The decision to port LOCO to Matlab was relatively easy. It's best to use a matrix programming language with good graphics capability; Matlab was also being used for high level machine control; and the accelerator modeling code AT, [5], was already developed for Matlab. Since LOCO requires collecting and processing a relative large amount of data, it is very helpful to have the LOCO code compatible with the high level machine control, [3]. A number of new features were added while porting the code from FORTRAN and new methods continue to evolve, [7][9]. Although Matlab LOCO was written with AT as the underlying tracking code, a mechanism to connect to other modeling codes has been provided.« less